Sample records for solving quadratic assignment

  1. The generalized quadratic knapsack problem. A neuronal network approach.

    PubMed

    Talaván, Pedro M; Yáñez, Javier

    2006-05-01

    The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.

  2. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows

    PubMed Central

    Wang, Di; Kleinberg, Robert D.

    2009-01-01

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2, C3, C4,…. It is known that C2 can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing Ck (k > 2) require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network. PMID:20161596

  3. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows.

    PubMed

    Wang, Di; Kleinberg, Robert D

    2009-11-28

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C(2), C(3), C(4),…. It is known that C(2) can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing C(k) (k > 2) require solving a linear program. In this paper we prove that C(3) can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}(n), this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.

  4. Learning graph matching.

    PubMed

    Caetano, Tibério S; McAuley, Julian J; Cheng, Li; Le, Quoc V; Smola, Alex J

    2009-06-01

    As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.

  5. Some insights on hard quadratic assignment problem instances

    NASA Astrophysics Data System (ADS)

    Hussin, Mohamed Saifullah

    2017-11-01

    Since the formal introduction of metaheuristics, a huge number Quadratic Assignment Problem (QAP) instances have been introduced. Those instances however are loosely-structured, and therefore made it difficult to perform any systematic analysis. The QAPLIB for example, is a library that contains a huge number of QAP benchmark instances that consists of instances with different size and structure, but with a very limited availability for every instance type. This prevents researchers from performing organized study on those instances, such as parameter tuning and testing. In this paper, we will discuss several hard instances that have been introduced over the years, and algorithms that have been used for solving them.

  6. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    PubMed Central

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  7. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem.

    PubMed

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  8. Ant colony optimization for solving university facility layout problem

    NASA Astrophysics Data System (ADS)

    Mohd Jani, Nurul Hafiza; Mohd Radzi, Nor Haizan; Ngadiman, Mohd Salihin

    2013-04-01

    Quadratic Assignment Problems (QAP) is classified as the NP hard problem. It has been used to model a lot of problem in several areas such as operational research, combinatorial data analysis and also parallel and distributed computing, optimization problem such as graph portioning and Travel Salesman Problem (TSP). In the literature, researcher use exact algorithm, heuristics algorithm and metaheuristic approaches to solve QAP problem. QAP is largely applied in facility layout problem (FLP). In this paper we used QAP to model university facility layout problem. There are 8 facilities that need to be assigned to 8 locations. Hence we have modeled a QAP problem with n ≤ 10 and developed an Ant Colony Optimization (ACO) algorithm to solve the university facility layout problem. The objective is to assign n facilities to n locations such that the minimum product of flows and distances is obtained. Flow is the movement from one to another facility, whereas distance is the distance between one locations of a facility to other facilities locations. The objective of the QAP is to obtain minimum total walking (flow) of lecturers from one destination to another (distance).

  9. An Algebraic Approach for Solving Quadratic Inequalities

    ERIC Educational Resources Information Center

    Mahmood, Munir; Al-Mirbati, Rudaina

    2017-01-01

    In recent years most text books utilise either the sign chart or graphing functions in order to solve a quadratic inequality of the form ax[superscript 2] + bx + c < 0 This article demonstrates an algebraic approach to solve the above inequality. To solve a quadratic inequality in the form of ax[superscript 2] + bx + c < 0 or in the…

  10. Neural Meta-Memes Framework for Combinatorial Optimization

    NASA Astrophysics Data System (ADS)

    Song, Li Qin; Lim, Meng Hiot; Ong, Yew Soon

    In this paper, we present a Neural Meta-Memes Framework (NMMF) for combinatorial optimization. NMMF is a framework which models basic optimization algorithms as memes and manages them dynamically when solving combinatorial problems. NMMF encompasses neural networks which serve as the overall planner/coordinator to balance the workload between memes. We show the efficacy of the proposed NMMF through empirical study on a class of combinatorial problem, the quadratic assignment problem (QAP).

  11. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting.

    PubMed

    Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin

    2011-11-01

    Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights.

  12. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

    PubMed

    Li, Shuai; Li, Yangming; Wang, Zheng

    2013-03-01

    This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Integrated optimization of location assignment and sequencing in multi-shuttle automated storage and retrieval systems under modified 2n-command cycle pattern

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Peng, Yongfei; Ye, Bin; Miao, Lixin

    2017-09-01

    This article explores the integrated optimization problem of location assignment and sequencing in multi-shuttle automated storage/retrieval systems under the modified 2n-command cycle pattern. The decision of storage and retrieval (S/R) location assignment and S/R request sequencing are jointly considered. An integer quadratic programming model is formulated to describe this integrated optimization problem. The optimal travel cycles for multi-shuttle S/R machines can be obtained to process S/R requests in the storage and retrieval request order lists by solving the model. The small-sized instances are optimally solved using CPLEX. For large-sized problems, two tabu search algorithms are proposed, in which the first come, first served and nearest neighbour are used to generate initial solutions. Various numerical experiments are conducted to examine the heuristics' performance and the sensitivity of algorithm parameters. Furthermore, the experimental results are analysed from the viewpoint of practical application, and a parameter list for applying the proposed heuristics is recommended under different real-life scenarios.

  14. Computing the Partial Fraction Decomposition of Rational Functions with Irreducible Quadratic Factors in the Denominators

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…

  15. PSQP: Puzzle Solving by Quadratic Programming.

    PubMed

    Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome

    2017-02-01

    In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  16. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP.

    PubMed

    Mohsen, Abdulqader M

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality.

  17. The Factorability of Quadratics: Motivation for More Techniques

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Nandakumar, N. R.

    2005-01-01

    Typically, secondary and college algebra students attempt to utilize either completing the square or the quadratic formula as techniques to solve a quadratic equation only after frustration with factoring has arisen. While both completing the square and the quadratic formula are techniques which can determine solutions for all quadratic equations,…

  18. Seven Wonders of the Ancient and Modern Quadratic World.

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2001-01-01

    Presents four methods for solving a quadratic equation using graphing calculator technology: (1) graphing with the CALC feature; (2) quadratic formula program; (3) table; and (4) solver. Includes a worksheet for a lab activity on factoring quadratic equations. (KHR)

  19. A hybrid CS-SA intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demands

    NASA Astrophysics Data System (ADS)

    Moslemipour, Ghorbanali

    2018-07-01

    This paper aims at proposing a quadratic assignment-based mathematical model to deal with the stochastic dynamic facility layout problem. In this problem, product demands are assumed to be dependent normally distributed random variables with known probability density function and covariance that change from period to period at random. To solve the proposed model, a novel hybrid intelligent algorithm is proposed by combining the simulated annealing and clonal selection algorithms. The proposed model and the hybrid algorithm are verified and validated using design of experiment and benchmark methods. The results show that the hybrid algorithm has an outstanding performance from both solution quality and computational time points of view. Besides, the proposed model can be used in both of the stochastic and deterministic situations.

  20. Homotopy approach to optimal, linear quadratic, fixed architecture compensation

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1991-01-01

    Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.

  1. A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems.

    PubMed

    Horio, Yoshihiko; Ikeguchi, Tohru; Aihara, Kazuyuki

    2005-01-01

    We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.

  2. Performance and Difficulties of Students in Formulating and Solving Quadratic Equations with One Unknown

    ERIC Educational Resources Information Center

    Didis, Makbule Gozde; Erbas, Ayhan Kursat

    2015-01-01

    This study attempts to investigate the performance of tenth-grade students in solving quadratic equations with one unknown, using symbolic equation and word-problem representations. The participants were 217 tenth-grade students, from three different public high schools. Data was collected through an open-ended questionnaire comprising eight…

  3. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP

    PubMed Central

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality. PMID:27999590

  4. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    ERIC Educational Resources Information Center

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  5. Quadratic Optimisation with One Quadratic Equality Constraint

    DTIC Science & Technology

    2010-06-01

    This report presents a theoretical framework for minimising a quadratic objective function subject to a quadratic equality constraint. The first part of the report gives a detailed algorithm which computes the global minimiser without calling special nonlinear optimisation solvers. The second part of the report shows how the developed theory can be applied to solve the time of arrival geolocation problem.

  6. Design of Linear Quadratic Regulators and Kalman Filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L.

    1986-01-01

    AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.

  7. Building Students' Understanding of Quadratic Equation Concept Using Naïve Geometry

    ERIC Educational Resources Information Center

    Fachrudin, Achmad Dhany; Putri, Ratu Ilma Indra; Darmawijoyo

    2014-01-01

    The purpose of this research is to know how Naïve Geometry method can support students' understanding about the concept of solving quadratic equations. In this article we will discuss one activities of the four activities we developed. This activity focused on how students linking the Naïve Geometry method with the solving of the quadratic…

  8. Development of C++ Application Program for Solving Quadratic Equation in Elementary School in Nigeria

    ERIC Educational Resources Information Center

    Bandele, Samuel Oye; Adekunle, Adeyemi Suraju

    2015-01-01

    The study was conducted to design, develop and test a c++ application program CAP-QUAD for solving quadratic equation in elementary school in Nigeria. The package was developed in c++ using object-oriented programming language, other computer program that were also utilized during the development process is DevC++ compiler, it was used for…

  9. Geometrical and Graphical Solutions of Quadratic Equations.

    ERIC Educational Resources Information Center

    Hornsby, E. John, Jr.

    1990-01-01

    Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

  10. Multi-Objectivising Combinatorial Optimisation Problems by Means of Elementary Landscape Decompositions.

    PubMed

    Ceberio, Josu; Calvo, Borja; Mendiburu, Alexander; Lozano, Jose A

    2018-02-15

    In the last decade, many works in combinatorial optimisation have shown that, due to the advances in multi-objective optimisation, the algorithms from this field could be used for solving single-objective problems as well. In this sense, a number of papers have proposed multi-objectivising single-objective problems in order to use multi-objective algorithms in their optimisation. In this article, we follow up this idea by presenting a methodology for multi-objectivising combinatorial optimisation problems based on elementary landscape decompositions of their objective function. Under this framework, each of the elementary landscapes obtained from the decomposition is considered as an independent objective function to optimise. In order to illustrate this general methodology, we consider four problems from different domains: the quadratic assignment problem and the linear ordering problem (permutation domain), the 0-1 unconstrained quadratic optimisation problem (binary domain), and the frequency assignment problem (integer domain). We implemented two widely known multi-objective algorithms, NSGA-II and SPEA2, and compared their performance with that of a single-objective GA. The experiments conducted on a large benchmark of instances of the four problems show that the multi-objective algorithms clearly outperform the single-objective approaches. Furthermore, a discussion on the results suggests that the multi-objective space generated by this decomposition enhances the exploration ability, thus permitting NSGA-II and SPEA2 to obtain better results in the majority of the tested instances.

  11. Fast parallel DNA-based algorithms for molecular computation: quadratic congruence and factoring integers.

    PubMed

    Chang, Weng-Long

    2012-03-01

    Assume that n is a positive integer. If there is an integer such that M (2) ≡ C (mod n), i.e., the congruence has a solution, then C is said to be a quadratic congruence (mod n). If the congruence does not have a solution, then C is said to be a quadratic noncongruence (mod n). The task of solving the problem is central to many important applications, the most obvious being cryptography. In this article, we describe a DNA-based algorithm for solving quadratic congruence and factoring integers. In additional to this novel contribution, we also show the utility of our encoding scheme, and of the algorithm's submodules. We demonstrate how a variety of arithmetic, shifted and comparative operations, namely bitwise and full addition, subtraction, left shifter and comparison perhaps are performed using strands of DNA.

  12. Effects of Classroom Instruction on Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    Vaiyavutjamai, Pongchawee; Clements, M. A.

    2006-01-01

    Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…

  13. A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes.

    PubMed

    Lee, I; Sikora, R; Shaw, M J

    1997-01-01

    Genetic algorithms (GAs) have been used widely for such combinatorial optimization problems as the traveling salesman problem (TSP), the quadratic assignment problem (QAP), and job shop scheduling. In all of these problems there is usually a well defined representation which GA's use to solve the problem. We present a novel approach for solving two related problems-lot sizing and sequencing-concurrently using GAs. The essence of our approach lies in the concept of using a unified representation for the information about both the lot sizes and the sequence and enabling GAs to evolve the chromosome by replacing primitive genes with good building blocks. In addition, a simulated annealing procedure is incorporated to further improve the performance. We evaluate the performance of applying the above approach to flexible flow line scheduling with variable lot sizes for an actual manufacturing facility, comparing it to such alternative approaches as pair wise exchange improvement, tabu search, and simulated annealing procedures. The results show the efficacy of this approach for flexible flow line scheduling.

  14. Sequential design of discrete linear quadratic regulators via optimal root-locus techniques

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar

    1989-01-01

    A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.

  15. Exact solutions to quadratic gravity

    NASA Astrophysics Data System (ADS)

    Pravda, V.; Pravdová, A.; Podolský, J.; Švarc, R.

    2017-04-01

    Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we show that all geometries conformal to Kundt are either Kundt or Robinson-Trautman, and we provide some explicit Kundt and Robinson-Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.

  16. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    NASA Astrophysics Data System (ADS)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  17. Linear quadratic regulators with eigenvalue placement in a horizontal strip

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1987-01-01

    A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.

  18. Solving the transport equation with quadratic finite elements: Theory and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, J.M.

    1997-12-31

    At the 4th Joint Conference on Computational Mathematics, the author presented a paper introducing a new quadratic finite element scheme (QFEM) for solving the transport equation. In the ensuing year the author has obtained considerable experience in the application of this method, including solution of eigenvalue problems, transmission problems, and solution of the adjoint form of the equation as well as the usual forward solution. He will present detailed results, and will also discuss other refinements of his transport codes, particularly for 3-dimensional problems on rectilinear and non-rectilinear grids.

  19. Students' Conceptions Supporting Their Symbolization and Meaning of Function Rules

    ERIC Educational Resources Information Center

    Fonger, Nicole L.; Ellis, Amy; Dogan, Muhammed F.

    2016-01-01

    This paper explores the nature of students' quantitative reasoning and conceptions of functions supporting their ability to symbolize quadratic function rules, and the meanings students make of these rules. We analyzed middle school students' problem solving activity during a small group teaching experiment (n = 6) emphasizing quadratic growth…

  20. Finding Optimal Gains In Linear-Quadratic Control Problems

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Scheid, Robert E., Jr.

    1990-01-01

    Analytical method based on Volterra factorization leads to new approximations for optimal control gains in finite-time linear-quadratic control problem of system having infinite number of dimensions. Circumvents need to analyze and solve Riccati equations and provides more transparent connection between dynamics of system and optimal gain.

  1. A multiple-drawer medication layout problem in automated dispensing cabinets.

    PubMed

    Pazour, Jennifer A; Meller, Russell D

    2012-12-01

    In this paper we investigate the problem of locating medications in automated dispensing cabinets (ADCs) to minimize human selection errors. We formulate the multiple-drawer medication layout problem and show that the problem can be formulated as a quadratic assignment problem. As a way to evaluate various medication layouts, we develop a similarity rating for medication pairs. To solve industry-sized problem instances, we develop a heuristic approach. We use hospital ADC transaction data to conduct a computational experiment to test the performance of our developed heuristics, to demonstrate how our approach can aid in ADC design trade-offs, and to illustrate the potential improvements that can be made when applying an analytical process to the multiple-drawer medication layout problem. Finally, we present conclusions and future research directions.

  2. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M. S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations is given, specifically for the steady Euler equations. Solutions of the equations were obtained by Newton's linearization procedure, commonly used to solve the roots of nonlinear algebraic equations. In application of the same procedure for solving a set of differential equations we give a theorem showing that a quadratic convergence rate can be achieved. While the domain of quadratic convergence depends on the problems studied and is unknown a priori, we show that firstand second-order derivatives of flux vectors determine whether the condition for quadratic convergence is satisfied. The first derivatives enter as an implicit operator for yielding new iterates and the second derivatives indicates smoothness of the flows considered. Consequently flows involving shocks are expected to require larger number of iterations. First-order upwind discretization in conjunction with the Steger-Warming flux-vector splitting is employed on the implicit operator and a diagonal dominant matrix results. However the explicit operator is represented by first- and seond-order upwind differencings, using both Steger-Warming's and van Leer's splittings. We discuss treatment of boundary conditions and solution procedures for solving the resulting block matrix system. With a set of test problems for one- and two-dimensional flows, we show detailed study as to the efficiency, accuracy, and convergence of the present method.

  3. An analysis of spectral envelope-reduction via quadratic assignment problems

    NASA Technical Reports Server (NTRS)

    George, Alan; Pothen, Alex

    1994-01-01

    A new spectral algorithm for reordering a sparse symmetric matrix to reduce its envelope size was described. The ordering is computed by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. In this paper, we provide an analysis of the spectral envelope reduction algorithm. We described related 1- and 2-sum problems; the former is related to the envelope size, while the latter is related to an upper bound on the work involved in an envelope Cholesky factorization scheme. We formulate the latter two problems as quadratic assignment problems, and then study the 2-sum problem in more detail. We obtain lower bounds on the 2-sum by considering a projected quadratic assignment problem, and then show that finding a permutation matrix closest to an orthogonal matrix attaining one of the lower bounds justifies the spectral envelope reduction algorithm. The lower bound on the 2-sum is seen to be tight for reasonably 'uniform' finite element meshes. We also obtain asymptotically tight lower bounds for the envelope size for certain classes of meshes.

  4. Minimization of the root of a quadratic functional under a system of affine equality constraints with application to portfolio management

    NASA Astrophysics Data System (ADS)

    Landsman, Zinoviy

    2008-10-01

    We present an explicit closed form solution of the problem of minimizing the root of a quadratic functional subject to a system of affine constraints. The result generalizes Z. Landsman, Minimization of the root of a quadratic functional under an affine equality constraint, J. Comput. Appl. Math. 2007, to appear, see , articles in press, where the optimization problem was solved under only one linear constraint. This is of interest for solving significant problems pertaining to financial economics as well as some classes of feasibility and optimization problems which frequently occur in tomography and other fields. The results are illustrated in the problem of optimal portfolio selection and the particular case when the expected return of finance portfolio is certain is discussed.

  5. An Alternative Method to the Classical Partial Fraction Decomposition

    ERIC Educational Resources Information Center

    Cherif, Chokri

    2007-01-01

    PreCalculus students can use the Completing the Square Method to solve quadratic equations without the need to memorize the quadratic formula since this method naturally leads them to that formula. Calculus students, when studying integration, use various standard methods to compute integrals depending on the type of function to be integrated.…

  6. Quantized Algebra I Texts

    NASA Astrophysics Data System (ADS)

    DeBuvitz, William

    2014-03-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a popular Algebra I textbook, and I was surprised and dismayed by how it treated simultaneous equations and quadratic equations. The coefficients are always simple integers in examples and exercises, even when they are related to physics. This is probably a good idea when these topics are first presented to the students. It makes it easy to solve simultaneous equations by the method of elimination of a variable. And it makes it easy to solve some quadratic equations by factoring. The textbook also discusses the method of substitution for linear equations and the use of the quadratic formula, but only with simple integers.

  7. Patent Network Analysis and Quadratic Assignment Procedures to Identify the Convergence of Robot Technologies

    PubMed Central

    Lee, Woo Jin; Lee, Won Kyung

    2016-01-01

    Because of the remarkable developments in robotics in recent years, technological convergence has been active in this area. We focused on finding patterns of convergence within robot technology using network analysis of patents in both the USPTO and KIPO. To identify the variables that affect convergence, we used quadratic assignment procedures (QAP). From our analysis, we observed the patent network ecology related to convergence and found technologies that have great potential to converge with other robotics technologies. The results of our study are expected to contribute to setting up convergence based R&D policies for robotics, which can lead new innovation. PMID:27764196

  8. ACOustic: A Nature-Inspired Exploration Indicator for Ant Colony Optimization.

    PubMed

    Sagban, Rafid; Ku-Mahamud, Ku Ruhana; Abu Bakar, Muhamad Shahbani

    2015-01-01

    A statistical machine learning indicator, ACOustic, is proposed to evaluate the exploration behavior in the iterations of ant colony optimization algorithms. This idea is inspired by the behavior of some parasites in their mimicry to the queens' acoustics of their ant hosts. The parasites' reaction results from their ability to indicate the state of penetration. The proposed indicator solves the problem of robustness that results from the difference of magnitudes in the distance's matrix, especially when combinatorial optimization problems with rugged fitness landscape are applied. The performance of the proposed indicator is evaluated against the existing indicators in six variants of ant colony optimization algorithms. Instances for travelling salesman problem and quadratic assignment problem are used in the experimental evaluation. The analytical results showed that the proposed indicator is more informative and more robust.

  9. Solving the Integral of Quadratic Forms of Covariance Matrices for Applications in Polarimetric Radar Imagery

    NASA Astrophysics Data System (ADS)

    Marino, Armando; Hajnsek, Irena

    2015-04-01

    In this work, the solution of quadratic forms with special application to polarimetric and interferometric covariance matrices is investigated. An analytical solution for the integral of a single quadratic form is derived. Additionally, the integral of the Pol-InSAR coherence (expressed as combination of quadratic forms) is investigated. An approximation for such integral is proposed and defined as Trace coherence. Such approximation is tested on real data to verify that the error is acceptable. The trace coherence can be used for tackle problems related to change detection. Moreover, the use of the Trace coherence in model inversion (as for the RVoG three stage inversion) will be investigated in the future.

  10. The Benefit of Interleaved Mathematics Practice Is Not Limited to Superficially Similar Kinds of Problems

    ERIC Educational Resources Information Center

    Rohrer, Doug; Dedrick, Robert F.; Burgess, Kaleena

    2014-01-01

    Most mathematics assignments consist of a group of problems requiring the same strategy. For example, a lesson on the quadratic formula is typically followed by a block of problems requiring students to use the quadratic formula, which means that students know the appropriate strategy before they read each problem. In an alternative approach,…

  11. Newton on Objects Moving in a Fluid--The Penetration Length

    ERIC Educational Resources Information Center

    Saslow, Wayne M.; Lu, Hong

    2008-01-01

    We solve for the motion of an object with initial velocity v[subscript 0] and subject only to the combined drag of forces linear and quadratic in the velocity. This problem was treated briefly by Newton, after he developed a theoretical argument for the quadratic term, which we now know is characteristic of turbulent flow. Linear drag introduces a…

  12. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Xiu; Zhou, Yuan

    2018-02-01

    Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u = 2(ln ⁡ f) x and u = 2(ln ⁡ f) xx, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.

  13. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  14. DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro

    2016-10-01

    This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.

  15. Extended Decentralized Linear-Quadratic-Gaussian Control

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2000-01-01

    A straightforward extension of a solution to the decentralized linear-Quadratic-Gaussian problem is proposed that allows its use for commonly encountered classes of problems that are currently solved with the extended Kalman filter. This extension allows the system to be partitioned in such a way as to exclude the nonlinearities from the essential algebraic relationships that allow the estimation and control to be optimally decentralized.

  16. Smoothing optimization of supporting quadratic surfaces with Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu

    2018-03-01

    A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.

  17. Neural network for solving convex quadratic bilevel programming problems.

    PubMed

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A sequential quadratic programming algorithm using an incomplete solution of the subproblem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, W.; Prieto, F.J.

    1993-05-01

    We analyze sequential quadratic programming (SQP) methods to solve nonlinear constrained optimization problems that are more flexible in their definition than standard SQP methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard approach when solving large problems. Specifically we no longer require a minimizer of the QP subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results are derived for this algorithm under weaker conditions than previously assumed; in particular, it is notmore » assumed that the iterates lie on a compact set.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kuo -Ling; Mehrotra, Sanjay

    We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less

  20. The Use of Transformations in Solving Equations

    ERIC Educational Resources Information Center

    Libeskind, Shlomo

    2010-01-01

    Many workshops and meetings with the US high school mathematics teachers revealed a lack of familiarity with the use of transformations in solving equations and problems related to the roots of polynomials. This note describes two transformational approaches to the derivation of the quadratic formula as well as transformational approaches to…

  1. Random vibrations of quadratic damping systems. [optimum damping analysis for automobile suspension system

    NASA Technical Reports Server (NTRS)

    Sireteanu, T.

    1974-01-01

    An oscillating system with quadratic damping subjected to white noise excitation is replaced by a nonlinear, statistically equivalent system for which the associated Fokker-Planck equation can be exactly solved. The mean square responses are calculated and the optimum damping coefficient is determined with respect to the minimum mean square acceleration criteria. An application of these results to the optimization of automobile suspension damping is given.

  2. A quadratic-tensor model algorithm for nonlinear least-squares problems with linear constraints

    NASA Technical Reports Server (NTRS)

    Hanson, R. J.; Krogh, Fred T.

    1992-01-01

    A new algorithm for solving nonlinear least-squares and nonlinear equation problems is proposed which is based on approximating the nonlinear functions using the quadratic-tensor model by Schnabel and Frank. The algorithm uses a trust region defined by a box containing the current values of the unknowns. The algorithm is found to be effective for problems with linear constraints and dense Jacobian matrices.

  3. Some Comments on the Use of de Moivre's Theorem to Solve Quadratic Equations with Real or Complex Coefficients

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2014-01-01

    This paper describes how a simple application of de Moivre's theorem may be used to not only find the roots of a quadratic equation with real or generally complex coefficients but also to pinpoint their location in the Argand plane. This approach is much simpler than the comprehensive analysis presented by Bardell (2012, 2014), but it does not…

  4. A Sequential Linear Quadratic Approach for Constrained Nonlinear Optimal Control with Adaptive Time Discretization and Application to Higher Elevation Mars Landing Problem

    NASA Astrophysics Data System (ADS)

    Sandhu, Amit

    A sequential quadratic programming method is proposed for solving nonlinear optimal control problems subject to general path constraints including mixed state-control and state only constraints. The proposed algorithm further develops on the approach proposed in [1] with objective to eliminate the use of a high number of time intervals for arriving at an optimal solution. This is done by introducing an adaptive time discretization to allow formation of a desirable control profile without utilizing a lot of intervals. The use of fewer time intervals reduces the computation time considerably. This algorithm is further used in this thesis to solve a trajectory planning problem for higher elevation Mars landing.

  5. Knowledge Building and Mathematics: Shifting the Responsibility for Knowledge Advancement and Engagement

    ERIC Educational Resources Information Center

    Moss, Joan; Beatty, Ruth

    2010-01-01

    Three classrooms of Grade 4 students from different schools and diverse backgrounds collaborated in early algebra research to solve a series of linear and quadratic generalizing problems. Results revealed that high- and low-achieving students were able to solve problems of recognized difficulty. We discuss Knowledge Building principles and…

  6. Original Recipes for Matrix Multiplication

    ERIC Educational Resources Information Center

    Hallman-Thrasher, Allyson; Litchfield, Erin T.; Dael, Kevin E.

    2016-01-01

    Matrices occupy an awkward spot in a typical algebra 2 textbook: sandwiched between solving linear systems and solving quadratics. Even teachers who do not base their course timeline and pacing on the class textbook may find a disconnect between how matrices are taught (procedurally) and how other topics are taught (conceptually or with real-world…

  7. A subgradient approach for constrained binary optimization via quantum adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Karimi, Sahar; Ronagh, Pooya

    2017-08-01

    Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.

  8. Conic Sampling: An Efficient Method for Solving Linear and Quadratic Programming by Randomly Linking Constraints within the Interior

    PubMed Central

    Serang, Oliver

    2012-01-01

    Linear programming (LP) problems are commonly used in analysis and resource allocation, frequently surfacing as approximations to more difficult problems. Existing approaches to LP have been dominated by a small group of methods, and randomized algorithms have not enjoyed popularity in practice. This paper introduces a novel randomized method of solving LP problems by moving along the facets and within the interior of the polytope along rays randomly sampled from the polyhedral cones defined by the bounding constraints. This conic sampling method is then applied to randomly sampled LPs, and its runtime performance is shown to compare favorably to the simplex and primal affine-scaling algorithms, especially on polytopes with certain characteristics. The conic sampling method is then adapted and applied to solve a certain quadratic program, which compute a projection onto a polytope; the proposed method is shown to outperform the proprietary software Mathematica on large, sparse QP problems constructed from mass spectometry-based proteomics. PMID:22952741

  9. Solution of monotone complementarity and general convex programming problems using a modified potential reduction interior point method

    DOE PAGES

    Huang, Kuo -Ling; Mehrotra, Sanjay

    2016-11-08

    We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less

  10. Inverting x,y grid coordinates to obtain latitude and longitude in the vanderGrinten projection

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1980-01-01

    The latitude and longitude of a point on the Earth's surface are found from its x,y grid coordinates in the vanderGrinten projection. The latitude is a solution of a cubic equation and the longitude a solution of a quadratic equation. Also, the x,y grid coordinates of a point on the Earth's surface can be found if its latitude and longitude are known by solving two simultaneous quadratic equations.

  11. Finite difference schemes for long-time integration

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1993-01-01

    Finite difference schemes for the evaluation of first and second derivatives are presented. These second order compact schemes were designed for long-time integration of evolution equations by solving a quadratic constrained minimization problem. The quadratic cost function measures the global truncation error while taking into account the initial data. The resulting schemes are applicable for integration times fourfold, or more, longer than similar previously studied schemes. A similar approach was used to obtain improved integration schemes.

  12. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  13. On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with a Quadratic Trap

    NASA Astrophysics Data System (ADS)

    Chen, Xuwen

    2013-11-01

    We consider the dynamics of the three-dimensional N-body Schrödinger equation in the presence of a quadratic trap. We assume the pair interaction potential is N 3 β-1 V( N β x). We justify the mean-field approximation and offer a rigorous derivation of the three-dimensional cubic nonlinear Schrödinger equation (NLS) with a quadratic trap. We establish the space-time bound conjectured by Klainerman and Machedon (Commun Math Phys 279:169-185, 2008) for by adapting and simplifying an argument in Chen and Pavlović (Annales Henri Poincaré, 2013) which solves the problem for in the absence of a trap.

  14. Parametric optimal control of uncertain systems under an optimistic value criterion

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhu, Yuanguo

    2018-01-01

    It is well known that the optimal control of a linear quadratic model is characterized by the solution of a Riccati differential equation. In many cases, the corresponding Riccati differential equation cannot be solved exactly such that the optimal feedback control may be a complex time-oriented function. In this article, a parametric optimal control problem of an uncertain linear quadratic model under an optimistic value criterion is considered for simplifying the expression of optimal control. Based on the equation of optimality for the uncertain optimal control problem, an approximation method is presented to solve it. As an application, a two-spool turbofan engine optimal control problem is given to show the utility of the proposed model and the efficiency of the presented approximation method.

  15. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M.-S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations, the steady Euler equations, using Newton's linearization procedure is presented. A theorem indicating quadratic convergence for the case of differential equations is demonstrated. A condition for the domain of quadratic convergence Omega(2) is obtained which indicates that whether an approximation lies in Omega(2) depends on the rate of change and the smoothness of the flow vectors, and hence is problem-dependent. The choice of spatial differencing, of particular importance for the present method, is discussed. The treatment of boundary conditions is addressed, and the system of equations resulting from the foregoing analysis is summarized and solution strategies are discussed. The convergence of calculated solutions is demonstrated by comparing them with exact solutions to one and two-dimensional problems.

  16. Estimating factors influencing the detection probability of semiaquatic freshwater snails using quadrat survey methods

    USGS Publications Warehouse

    Roesler, Elizabeth L.; Grabowski, Timothy B.

    2018-01-01

    Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.

  17. Calculus students' understanding of the vertex of the quadratic function in relation to the concept of derivative

    NASA Astrophysics Data System (ADS)

    Burns-Childers, Annie; Vidakovic, Draga

    2018-07-01

    The purpose of this study was to gain insight into 30, first year calculus students' understanding of the relationship between the concept of vertex of a quadratic function and the concept of the derivative. APOS (action-process-object-schema) theory was applied as a guiding framework of analysis on student written work, think-aloud and follow up group interviews. Students' personal meanings of the vertex, including misconceptions, were explored, along with students' understanding to solve problems pertaining to the derivative of a quadratic function. Results give evidence of students' weak schema of the vertex, lack of connection between different problem types and the importance of linguistics in relation to levels of APOS theory. A preliminary genetic decomposition was developed based on the results. Future research is suggested as a continuation to improve student understanding of the relationship between the vertex of quadratic functions and the derivative.

  18. W-algebra for solving problems with fuzzy parameters

    NASA Astrophysics Data System (ADS)

    Shevlyakov, A. O.; Matveev, M. G.

    2018-03-01

    A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.

  19. Data Assimilation on a Quantum Annealing Computer: Feasibility and Scalability

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.; Halem, M.; Chapman, D. R.; Pelissier, C. S.

    2014-12-01

    Data assimilation is one of the ubiquitous and computationally hard problems in the Earth Sciences. In particular, ensemble-based methods require a large number of model evaluations to estimate the prior probability density over system states, and variational methods require adjoint calculations and iteration to locate the maximum a posteriori solution in the presence of nonlinear models and observation operators. Quantum annealing computers (QAC) like the new D-Wave housed at the NASA Ames Research Center can be used for optimization and sampling, and therefore offers a new possibility for efficiently solving hard data assimilation problems. Coding on the QAC is not straightforward: a problem must be posed as a Quadratic Unconstrained Binary Optimization (QUBO) and mapped to a spherical Chimera graph. We have developed a method for compiling nonlinear 4D-Var problems on the D-Wave that consists of five steps: Emulating the nonlinear model and/or observation function using radial basis functions (RBF) or Chebyshev polynomials. Truncating a Taylor series around each RBF kernel. Reducing the Taylor polynomial to a quadratic using ancilla gadgets. Mapping the real-valued quadratic to a fixed-precision binary quadratic. Mapping the fully coupled binary quadratic to a partially coupled spherical Chimera graph using ancilla gadgets. At present the D-Wave contains 512 qbits (with 1024 and 2048 qbit machines due in the next two years); this machine size allows us to estimate only 3 state variables at each satellite overpass. However, QAC's solve optimization problems using a physical (quantum) system, and therefore do not require iterations or calculation of model adjoints. This has the potential to revolutionize our ability to efficiently perform variational data assimilation, as the size of these computers grows in the coming years.

  20. Quadratic partial eigenvalue assignment in large-scale stochastic dynamic systems for resilient and economic design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sonjoy; Goswami, Kundan; Datta, Biswa N.

    2014-12-10

    Failure of structural systems under dynamic loading can be prevented via active vibration control which shifts the damped natural frequencies of the systems away from the dominant range of loading spectrum. The damped natural frequencies and the dynamic load typically show significant variations in practice. A computationally efficient methodology based on quadratic partial eigenvalue assignment technique and optimization under uncertainty has been formulated in the present work that will rigorously account for these variations and result in an economic and resilient design of structures. A novel scheme based on hierarchical clustering and importance sampling is also developed in this workmore » for accurate and efficient estimation of probability of failure to guarantee the desired resilience level of the designed system. Numerical examples are presented to illustrate the proposed methodology.« less

  1. A new Newton-like method for solving nonlinear equations.

    PubMed

    Saheya, B; Chen, Guo-Qing; Sui, Yun-Kang; Wu, Cai-Ying

    2016-01-01

    This paper presents an iterative scheme for solving nonline ar equations. We establish a new rational approximation model with linear numerator and denominator which has generalizes the local linear model. We then employ the new approximation for nonlinear equations and propose an improved Newton's method to solve it. The new method revises the Jacobian matrix by a rank one matrix each iteration and obtains the quadratic convergence property. The numerical performance and comparison show that the proposed method is efficient.

  2. The algebraic decoding of the (41, 21, 9) quadratic residue code

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Truong, T. K.; Chen, Xuemin; Yin, Xiaowei

    1992-01-01

    A new algebraic approach for decoding the quadratic residue (QR) codes, in particular the (41, 21, 9) QR code is presented. The key ideas behind this decoding technique are a systematic application of the Sylvester resultant method to the Newton identities associated with the code syndromes to find the error-locator polynomial, and next a method for determining error locations by solving certain quadratic, cubic and quartic equations over GF(2 exp m) in a new way which uses Zech's logarithms for the arithmetic. The algorithms developed here are suitable for implementation in a programmable microprocessor or special-purpose VLSI chip. It is expected that the algebraic methods developed here can apply generally to other codes such as the BCH and Reed-Solomon codes.

  3. Method of Conjugate Radii for Solving Linear and Nonlinear Systems

    NASA Technical Reports Server (NTRS)

    Nachtsheim, Philip R.

    1999-01-01

    This paper describes a method to solve a system of N linear equations in N steps. A quadratic form is developed involving the sum of the squares of the residuals of the equations. Equating the quadratic form to a constant yields a surface which is an ellipsoid. For different constants, a family of similar ellipsoids can be generated. Starting at an arbitrary point an orthogonal basis is constructed and the center of the family of similar ellipsoids is found in this basis by a sequence of projections. The coordinates of the center in this basis are the solution of linear system of equations. A quadratic form in N variables requires N projections. That is, the current method is an exact method. It is shown that the sequence of projections is equivalent to a special case of the Gram-Schmidt orthogonalization process. The current method enjoys an advantage not shared by the classic Method of Conjugate Gradients. The current method can be extended to nonlinear systems without modification. For nonlinear equations the Method of Conjugate Gradients has to be augmented with a line-search procedure. Results for linear and nonlinear problems are presented.

  4. IFSM fractal image compression with entropy and sparsity constraints: A sequential quadratic programming approach

    NASA Astrophysics Data System (ADS)

    Kunze, Herb; La Torre, Davide; Lin, Jianyi

    2017-01-01

    We consider the inverse problem associated with IFSM: Given a target function f , find an IFSM, such that its fixed point f ¯ is sufficiently close to f in the Lp distance. Forte and Vrscay [1] showed how to reduce this problem to a quadratic optimization model. In this paper, we extend the collage-based method developed by Kunze, La Torre and Vrscay ([2][3][4]), by proposing the minimization of the 1-norm instead of the 0-norm. In fact, optimization problems involving the 0-norm are combinatorial in nature, and hence in general NP-hard. To overcome these difficulties, we introduce the 1-norm and propose a Sequential Quadratic Programming algorithm to solve the corresponding inverse problem. As in Kunze, La Torre and Vrscay [3] in our formulation, the minimization of collage error is treated as a multi-criteria problem that includes three different and conflicting criteria i.e., collage error, entropy and sparsity. This multi-criteria program is solved by means of a scalarization technique which reduces the model to a single-criterion program by combining all objective functions with different trade-off weights. The results of some numerical computations are presented.

  5. Two Car-Buying Strategies: An Old Problem Revisited with a New Analysis.

    ERIC Educational Resources Information Center

    Sen, Tapan; And Others

    1996-01-01

    Demonstrates the application of spreadsheet analysis in solving equations beyond quadratics. Considers the costs of interest, gasoline, and maintenance in deciding how long it pays to keep a car. (MKR)

  6. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    PubMed

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  7. Neural-genetic synthesis for state-space controllers based on linear quadratic regulator design for eigenstructure assignment.

    PubMed

    da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira

    2010-04-01

    Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.

  8. Analytical approximations for the oscillators with anti-symmetric quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Alal Hosen, Md.; Chowdhury, M. S. H.; Yeakub Ali, Mohammad; Faris Ismail, Ahmad

    2017-12-01

    A second-order ordinary differential equation involving anti-symmetric quadratic nonlinearity changes sign. The behaviour of the oscillators with an anti-symmetric quadratic nonlinearity is assumed to oscillate different in the positive and negative directions. In this reason, Harmonic Balance Method (HBM) cannot be directly applied. The main purpose of the present paper is to propose an analytical approximation technique based on the HBM for obtaining approximate angular frequencies and the corresponding periodic solutions of the oscillators with anti-symmetric quadratic nonlinearity. After applying HBM, a set of complicated nonlinear algebraic equations is found. Analytical approach is not always fruitful for solving such kinds of nonlinear algebraic equations. In this article, two small parameters are found, for which the power series solution produces desired results. Moreover, the amplitude-frequency relationship has also been determined in a novel analytical way. The presented technique gives excellent results as compared with the corresponding numerical results and is better than the existing ones.

  9. About the mechanism of ERP-system pilot test

    NASA Astrophysics Data System (ADS)

    Mitkov, V. V.; Zimin, V. V.

    2018-05-01

    In the paper the mathematical problem of defining the scope of pilot test is stated, which is a task of quadratic programming. The procedure of the problem solving includes the method of network programming based on the structurally similar network representation of the criterion and constraints and which reduces the original problem to a sequence of simpler evaluation tasks. The evaluation tasks are solved by the method of dichotomous programming.

  10. Computers and Mathematics

    DTIC Science & Technology

    1989-01-01

    Signs of Algebraic Numbers T. Sakkalis, New Mexico State University, Las Cruces ................................. 130 Efficient Reduction of Quadratic...equations. These equations are solved for dl,.. , d. and el ’.. e,, and a basis of minimal non-zero simultaneous solutions in which if d1 # 0, then ei = 0 and...and < el ,..,- emm d, dm > need to be considered because of the symmetric nature of the diophantine equations. These equations can be solved using

  11. Simulated annealing algorithm for solving chambering student-case assignment problem

    NASA Astrophysics Data System (ADS)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  12. Formalism for the solution of quadratic Hamiltonians with large cosine terms

    NASA Astrophysics Data System (ADS)

    Ganeshan, Sriram; Levin, Michael

    2016-02-01

    We consider quantum Hamiltonians of the form H =H0-U ∑jcos(Cj) , where H0 is a quadratic function of position and momentum variables {x1,p1,x2,p2,⋯} and the Cj's are linear in these variables. We allow H0 and Cj to be completely general with only two restrictions: we require that (1) the Cj's are linearly independent and (2) [Cj,Ck] is an integer multiple of 2 π i for all j ,k so that the different cosine terms commute with one another. Our main result is a recipe for solving these Hamiltonians and obtaining their exact low-energy spectrum in the limit U →∞ . This recipe involves constructing creation and annihilation operators and is similar in spirit to the procedure for diagonalizing quadratic Hamiltonians. In addition to our exact solution in the infinite U limit, we also discuss how to analyze these systems when U is large but finite. Our results are relevant to a number of different physical systems, but one of the most natural applications is to understanding the effects of electron scattering on quantum Hall edge modes. To demonstrate this application, we use our formalism to solve a toy model for a fractional quantum spin Hall edge with different types of impurities.

  13. Efficient dual approach to distance metric learning.

    PubMed

    Shen, Chunhua; Kim, Junae; Liu, Fayao; Wang, Lei; van den Hengel, Anton

    2014-02-01

    Distance metric learning is of fundamental interest in machine learning because the employed distance metric can significantly affect the performance of many learning methods. Quadratic Mahalanobis metric learning is a popular approach to the problem, but typically requires solving a semidefinite programming (SDP) problem, which is computationally expensive. The worst case complexity of solving an SDP problem involving a matrix variable of size D×D with O(D) linear constraints is about O(D(6.5)) using interior-point methods, where D is the dimension of the input data. Thus, the interior-point methods only practically solve problems exhibiting less than a few thousand variables. Because the number of variables is D(D+1)/2, this implies a limit upon the size of problem that can practically be solved around a few hundred dimensions. The complexity of the popular quadratic Mahalanobis metric learning approach thus limits the size of problem to which metric learning can be applied. Here, we propose a significantly more efficient and scalable approach to the metric learning problem based on the Lagrange dual formulation of the problem. The proposed formulation is much simpler to implement, and therefore allows much larger Mahalanobis metric learning problems to be solved. The time complexity of the proposed method is roughly O(D(3)), which is significantly lower than that of the SDP approach. Experiments on a variety of data sets demonstrate that the proposed method achieves an accuracy comparable with the state of the art, but is applicable to significantly larger problems. We also show that the proposed method can be applied to solve more general Frobenius norm regularized SDP problems approximately.

  14. An algorithm for the solution of dynamic linear programs

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1989-01-01

    The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation scheme.

  15. Bianchi type-I universe in Lyra manifold with quadratic equation of state

    NASA Astrophysics Data System (ADS)

    Şen, R.; Aygün, S.

    2017-02-01

    In this study, we have solved Einstein field equations for Bianchi type I universe model in Lyra manifold with quadratic equation of state (EoS) p = ap(t)2 - ρ(t). Where α ≠0 is an important constant. Cosmic pressure, density and displacement vector (β2) are related with α constant. In this study β2 is a decreasing function of time and behaves like a cosmological constant. These solutions agree with the studies of Halford, Pradhan and Singh, Aygün et al., Agarwal et al., Yadav and Haque as well as SN Ia observations.

  16. Sequential Quadratic Programming Algorithms for Optimization

    DTIC Science & Technology

    1989-08-01

    quadratic program- ma ng (SQ(2l ) aIiatain.seenis to be relgarded aIs tie( buest choice for the solution of smiall. dlense problema (see S tour L)toS...For the step along d, note that a < nOing + 3 szH + i3.ninA A a K f~Iz,;nd and from Id1 _< ,,, we must have that for some /3 , np , 11P11 < dn"p. 5.2...Nevertheless, many of these problems are considered hard to solve. Moreover, for some of these problems the assumptions made in Chapter 2 to establish the

  17. Orientation of doubly rotated quartz plates.

    PubMed

    Sherman, J R

    1989-01-01

    A derivation from classical spherical trigonometry of equations to compute the orientation of doubly-rotated quartz blanks from Bragg X-ray data is discussed. These are usually derived by compact and efficient vector methods, which are reviewed briefly. They are solved by generating a quadratic equation with numerical coefficients. Two methods exist for performing the computation from measurements against two planes: a direct solution by a quadratic equation and a process of convergent iteration. Both have a spurious solution. Measurement against three lattice planes yields a set of three linear equations the solution of which is an unambiguous result.

  18. Decision Making In Assignment Problem With Multiple Attributes Under Intuitionistic Fuzzy Environment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sathi; Basu, Kajla

    2010-10-01

    In this paper we develop a methodology to solve the multiple attribute assignment problems where the attributes are considered to be Intuitionistic Fuzzy Sets (IFS). We apply the concept of similarity measures of IFS to solve the Intuitionistic Fuzzy Multi-Attribute Assignment Problem (IFMAAP). The weights of the attributes are determined from expert opinion. An illustrative example is solved to verify the developed approach and to demonstrate its practicality.

  19. Flight control synthesis for flexible aircraft using Eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Davidson, J. B.; Schmidt, D. K.

    1986-01-01

    The use of eigenspace assignment techniques to synthesize flight control systems for flexible aircraft is explored. Eigenspace assignment techniques are used to achieve a specified desired eigenspace, chosen to yield desirable system impulse residue magnitudes for selected system responses. Two of these are investigated. The first directly determines constant measurement feedback gains that will yield a close-loop system eigenspace close to a desired eigenspace. The second technique selects quadratic weighting matrices in a linear quadratic control synthesis that will asymptotically yield the close-loop achievable eigenspace. Finally, the possibility of using either of these techniques with state estimation is explored. Application of the methods to synthesize integrated flight-control and structural-mode-control laws for a large flexible aircraft is demonstrated and results discussed. Eigenspace selection criteria based on design goals are discussed, and for the study case it would appear that a desirable eigenspace can be obtained. In addition, the importance of state-space selection is noted along with problems with reduced-order measurement feedback. Since the full-state control laws may be implemented with dynamic compensation (state estimation), the use of reduced-order measurement feedback is less desirable. This is especially true since no change in the transient response from the pilot's input results if state estimation is used appropriately. The potential is also noted for high actuator bandwidth requirements if the linear quadratic synthesis approach is utilized. Even with the actuator pole location selected, a problem with unmodeled modes is noted due to high bandwidth. Some suggestions for future research include investigating how to choose an eigenspace that will achieve certain desired dynamics and stability robustness, determining how the choice of measurements effects synthesis results, and exploring how the phase relationships between desired eigenvector elements effects the synthesis results.

  20. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.

    PubMed

    Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang

    2012-10-21

    A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose sorting method. By integrating a smart constraint adding/deleting scheme within the iteration framework, the new technique builds up an improved algorithm for solving the fluence map optimization with dose-volume constraints.

  1. Approximate non-linear multiparameter inversion for multicomponent single and double P-wave scattering in isotropic elastic media

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Mao, Weijian

    2018-03-01

    An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.

  2. Approximate nonlinear multiparameter inversion for multicomponent single and double P-wave scattering in isotropic elastic media

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Mao, Weijian

    2018-07-01

    An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-wave scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform. After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic nonlinear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P- and S-wave information.

  3. Investigations in Mathematics Education, Vol. 10, No. 3.

    ERIC Educational Resources Information Center

    Osborne, Alan R., Ed.

    Eighteen research reports related to mathematics education are abstracted and analyzed in this publication. Three of the reports deal with aspects of learning theory, seven with topics in mathematics instruction (problem solving, weight, quadratic inequalities, probability and statistics, area and volume conservation, cardinality), five with…

  4. How Many Chips off the Old Block?

    ERIC Educational Resources Information Center

    Koehler, Michael H.

    2013-01-01

    Students analyze a photograph to solve mathematical questions related to the images captured in the photograph. This month, photographs of a massive sculpture near the National Mall in Washington, D.C., provide opportunities for counting problems, generalizing from a pattern, and fitting a quadratic to data.

  5. A game theoretic approach to a finite-time disturbance attenuation problem

    NASA Technical Reports Server (NTRS)

    Rhee, Ihnseok; Speyer, Jason L.

    1991-01-01

    A disturbance attenuation problem over a finite-time interval is considered by a game theoretic approach where the control, restricted to a function of the measurement history, plays against adversaries composed of the process and measurement disturbances, and the initial state. A zero-sum game, formulated as a quadratic cost criterion subject to linear time-varying dynamics and measurements, is solved by a calculus of variation technique. By first maximizing the quadratic cost criterion with respect to the process disturbance and initial state, a full information game between the control and the measurement residual subject to the estimator dynamics results. The resulting solution produces an n-dimensional compensator which expresses the controller as a linear combination of the measurement history. A disturbance attenuation problem is solved based on the results of the game problem. For time-invariant systems it is shown that under certain conditions the time-varying controller becomes time-invariant on the infinite-time interval. The resulting controller satisfies an H(infinity) norm bound.

  6. Multi-task feature selection in microarray data by binary integer programming.

    PubMed

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  7. Pushing Memory Bandwidth Limitations Through Efficient Implementations of Block-Krylov Space Solvers on GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, M. A.; Strelchenko, Alexei; Vaquero, Alejandro

    Lattice quantum chromodynamics simulations in nuclear physics have benefited from a tremendous number of algorithmic advances such as multigrid and eigenvector deflation. These improve the time to solution but do not alleviate the intrinsic memory-bandwidth constraints of the matrix-vector operation dominating iterative solvers. Batching this operation for multiple vectors and exploiting cache and register blocking can yield a super-linear speed up. Block-Krylov solvers can naturally take advantage of such batched matrix-vector operations, further reducing the iterations to solution by sharing the Krylov space between solves. However, practical implementations typically suffer from the quadratic scaling in the number of vector-vector operations.more » Using the QUDA library, we present an implementation of a block-CG solver on NVIDIA GPUs which reduces the memory-bandwidth complexity of vector-vector operations from quadratic to linear. We present results for the HISQ discretization, showing a 5x speedup compared to highly-optimized independent Krylov solves on NVIDIA's SaturnV cluster.« less

  8. An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach

    NASA Astrophysics Data System (ADS)

    Kassa, Semu Mitiku; Tsegay, Teklay Hailay

    2017-08-01

    Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of problems. In this paper, we investigate a tri-level programming problem with quadratic fractional objective functions at each of the three levels. A solution algorithm has been proposed by applying fuzzy goal programming approach and by reformulating the fractional constraints to equivalent but non-fractional non-linear constraints. Based on the transformed formulation, an iterative procedure is developed that can yield a satisfactory solution to the tri-level problem. The numerical results on various illustrative examples demonstrated that the proposed algorithm is very much promising and it can also be used to solve larger-sized as well as n-level problems of similar structure.

  9. VTOL controls for shipboard landing. M.S.Thesis

    NASA Technical Reports Server (NTRS)

    Mcmuldroch, C. G.

    1979-01-01

    The problem of landing a VTOL aircraft on a small ship in rough seas using an automatic controller is examined. The controller design uses the linear quadratic Gaussian results of modern control theory. Linear time invariant dynamic models are developed for the aircraft, ship, and wave motions. A hover controller commands the aircraft to track position and orientation of the ship deck using only low levels of control power. Commands for this task are generated by the solution of the steady state linear quadratic gaussian regulator problem. Analytical performance and control requirement tradeoffs are obtained. A landing controller commands the aircraft from stationary hover along a smooth, low control effort trajectory, to a touchdown on a predicted crest of ship motion. The design problem is formulated and solved as an approximate finite-time linear quadratic stochastic regulator. Performance and control results are found by Monte Carlo simulations.

  10. Simultaneous structural and control optimization via linear quadratic regulator eigenstructure assignment

    NASA Technical Reports Server (NTRS)

    Becus, G. A.; Lui, C. Y.; Venkayya, V. B.; Tischler, V. A.

    1987-01-01

    A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented.

  11. Bv and Bfv Formulation of a Gauge Theory of Quadratic Lie Algebras in 2d and a Construction of W3 Topological Gravity

    NASA Astrophysics Data System (ADS)

    Dayi, Ömer F.

    The recently proposed generalized field method for solving the master equation of Batalin and Vilkovisky is applied to a gauge theory of quadratic Lie algebras in two dimensions. The charge corresponding to BRST symmetry derived from this solution in terms of the phase space variables by using the Noether procedure, and the one found due to the BFV-method are compared and found to coincide. W3-algebra, formulated in terms of a continuous variable is exploit in the mentioned gauge theory to construct a W3 topological gravity. Moreover, its gauge fixing is briefly discussed.

  12. Probability, Problem Solving, and "The Price is Right."

    ERIC Educational Resources Information Center

    Wood, Eric

    1992-01-01

    This article discusses the analysis of a decision-making process faced by contestants on the television game show "The Price is Right". The included analyses of the original and related problems concern pattern searching, inductive reasoning, quadratic functions, and graphing. Computer simulation programs in BASIC and tables of…

  13. A Comparison of Approaches for Solving Hard Graph-Theoretic Problems

    DTIC Science & Technology

    2015-04-29

    can be converted to a quadratic unconstrained binary optimization ( QUBO ) problem that uses 0/1-valued variables, and so they are often used...Frontiers in Physics, 2:5 (12 Feb 2014). [7] “Programming with QUBOs ,” (instructional document) D-Wave: The Quantum Computing Company, 2013. [8

  14. Pattern Recognition by Retina-Like Devices.

    ERIC Educational Resources Information Center

    Weiman, Carl F. R.; Rothstein, Jerome

    This study has investigated some pattern recognition capabilities of devices consisting of arrays of cooperating elements acting in parallel. The problem of recognizing straight lines in general position on the quadratic lattice has been completely solved by applying parallel acting algorithms to a special code for lines on the lattice. The…

  15. On Partial Fraction Decompositions by Repeated Polynomial Divisions

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2017-01-01

    We present a method for finding partial fraction decompositions of rational functions with linear or quadratic factors in the denominators by means of repeated polynomial divisions. This method does not involve differentiation or solving linear equations for obtaining the unknown partial fraction coefficients, which is very suitable for either…

  16. Entanglement in a model for Hawking radiation: An application of quadratic algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambah, Bindu A., E-mail: bbsp@uohyd.ernet.in; Mukku, C., E-mail: mukku@iiit.ac.in; Shreecharan, T., E-mail: shreecharan@gmail.com

    2013-03-15

    Quadratic polynomially deformed su(1,1) and su(2) algebras are utilized in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of (a) infalling plus outgoing modes and (b) black hole modes plus the infalling modes, using the Janus-faced nature of the model. The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Finally, wemore » study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance. - Highlights: Black-Right-Pointing-Pointer We examine a toy model for Hawking radiation with quantized black hole modes. Black-Right-Pointing-Pointer We use quadratic polynomially deformed su(1,1) algebras to study its entanglement properties. Black-Right-Pointing-Pointer We study the 'Dicke Superradiance' in black hole radiation using quadratically deformed su(2) algebras. Black-Right-Pointing-Pointer We study the modification of the thermal character of Hawking radiation due to quantized black hole modes.« less

  17. Order-Constrained Solutions in K-Means Clustering: Even Better than Being Globally Optimal

    ERIC Educational Resources Information Center

    Steinley, Douglas; Hubert, Lawrence

    2008-01-01

    This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that…

  18. Analysis of the Electrohydrodynamic Flow in a Symmetric System of Electrodes by the Method of Dynamic Current-Voltage Characteristics

    NASA Astrophysics Data System (ADS)

    Stishkov, Yu. K.; Zakir'yanova, R. E.

    2018-04-01

    We have solved the problem of injection-type through electrohydrodynamic (EHD) flow in a closed channel. We have considered a model of a liquid with four types of ions. It is shown that a through EHD flow without internal vortices in the electrode gap is formed for the ratio 2 : 1 of the initial injection current from the electrodes in the channel. The structure of the flow in different parts of the channel and the integral characteristics of the flow have been analyzed. It is shown that for a quadratic function of injection at the electrodes, the current-voltage characteristic of the flow is also quadratic.

  19. Constrained multiple indicator kriging using sequential quadratic programming

    NASA Astrophysics Data System (ADS)

    Soltani-Mohammadi, Saeed; Erhan Tercan, A.

    2012-11-01

    Multiple indicator kriging (MIK) is a nonparametric method used to estimate conditional cumulative distribution functions (CCDF). Indicator estimates produced by MIK may not satisfy the order relations of a valid CCDF which is ordered and bounded between 0 and 1. In this paper a new method has been presented that guarantees the order relations of the cumulative distribution functions estimated by multiple indicator kriging. The method is based on minimizing the sum of kriging variances for each cutoff under unbiasedness and order relations constraints and solving constrained indicator kriging system by sequential quadratic programming. A computer code is written in the Matlab environment to implement the developed algorithm and the method is applied to the thickness data.

  20. Application of the sequential quadratic programming algorithm for reconstructing the distribution of optical parameters based on the time-domain radiative transfer equation.

    PubMed

    Qi, Hong; Qiao, Yao-Bin; Ren, Ya-Tao; Shi, Jing-Wen; Zhang, Ze-Yu; Ruan, Li-Ming

    2016-10-17

    Sequential quadratic programming (SQP) is used as an optimization algorithm to reconstruct the optical parameters based on the time-domain radiative transfer equation (TD-RTE). Numerous time-resolved measurement signals are obtained using the TD-RTE as forward model. For a high computational efficiency, the gradient of objective function is calculated using an adjoint equation technique. SQP algorithm is employed to solve the inverse problem and the regularization term based on the generalized Gaussian Markov random field (GGMRF) model is used to overcome the ill-posed problem. Simulated results show that the proposed reconstruction scheme performs efficiently and accurately.

  1. DE and NLP Based QPLS Algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo

    As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.

  2. Optimization of Cubic Polynomial Functions without Calculus

    ERIC Educational Resources Information Center

    Taylor, Ronald D., Jr.; Hansen, Ryan

    2008-01-01

    In algebra and precalculus courses, students are often asked to find extreme values of polynomial functions in the context of solving an applied problem; but without the notion of derivative, something is lost. Either the functions are reduced to quadratics, since students know the formula for the vertex of a parabola, or solutions are…

  3. Using a Model to Describe Students' Inductive Reasoning in Problem Solving

    ERIC Educational Resources Information Center

    Canadas, Maria C.; Castro, Encarnacion; Castro, Enrique

    2009-01-01

    Introduction: We present some aspects of a wider investigation (Canadas, 2007), whose main objective is to describe and characterize inductive reasoning used by Spanish students in years 9 and 10 when they work on problems that involved linear and quadratic sequences. Method: We produced a test composed of six problems with different…

  4. Optimization of a bundle divertor for FED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, L.M.; Rothe, K.E.; Minkoff, M.

    1982-01-01

    Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations.

  5. Exploring quantum computing application to satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Cheung, S.; Zhang, S. Q.

    2015-12-01

    This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.

  6. ORACLS: A system for linear-quadratic-Gaussian control law design

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1978-01-01

    A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.

  7. C1 finite elements on non-tensor-product 2d and 3d manifolds

    PubMed Central

    Nguyen, Thien; Karčiauskas, Kęstutis; Peters, Jörg

    2015-01-01

    Geometrically continuous (Gk) constructions naturally yield families of finite elements for isogeometric analysis (IGA) that are Ck also for non-tensor-product layout. This paper describes and analyzes one such concrete C1 geometrically generalized IGA element (short: gIGA element) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA element is based on a recently-developed G1 surface construction that recommends itself by its a B-spline-like control net, low (least) polynomial degree, good shape properties and reproduction of quadratics at irregular (extraordinary) points. Remarkably, for Poisson’s equation on the disk using interior vertices of valence 3 and symmetric layout, we observe O(h3) convergence in the L∞ norm for this family of elements. Numerical experiments confirm the elements to be effective for solving the trivariate Poisson equation on the solid cylinder, deformations thereof (a turbine blade), modeling and computing geodesics on smooth free-form surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-type thin-shell analysis. PMID:26594070

  8. The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.

    2018-04-01

    The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.

  9. C1 finite elements on non-tensor-product 2d and 3d manifolds.

    PubMed

    Nguyen, Thien; Karčiauskas, Kęstutis; Peters, Jörg

    2016-01-01

    Geometrically continuous ( G k ) constructions naturally yield families of finite elements for isogeometric analysis (IGA) that are C k also for non-tensor-product layout. This paper describes and analyzes one such concrete C 1 geometrically generalized IGA element (short: gIGA element) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA element is based on a recently-developed G 1 surface construction that recommends itself by its a B-spline-like control net, low (least) polynomial degree, good shape properties and reproduction of quadratics at irregular (extraordinary) points. Remarkably, for Poisson's equation on the disk using interior vertices of valence 3 and symmetric layout, we observe O ( h 3 ) convergence in the L ∞ norm for this family of elements. Numerical experiments confirm the elements to be effective for solving the trivariate Poisson equation on the solid cylinder, deformations thereof (a turbine blade), modeling and computing geodesics on smooth free-form surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-type thin-shell analysis.

  10. High-order Newton-penalty algorithms

    NASA Astrophysics Data System (ADS)

    Dussault, Jean-Pierre

    2005-10-01

    Recent efforts in differentiable non-linear programming have been focused on interior point methods, akin to penalty and barrier algorithms. In this paper, we address the classical equality constrained program solved using the simple quadratic loss penalty function/algorithm. The suggestion to use extrapolations to track the differentiable trajectory associated with penalized subproblems goes back to the classic monograph of Fiacco & McCormick. This idea was further developed by Gould who obtained a two-steps quadratically convergent algorithm using prediction steps and Newton correction. Dussault interpreted the prediction step as a combined extrapolation with respect to the penalty parameter and the residual of the first order optimality conditions. Extrapolation with respect to the residual coincides with a Newton step.We explore here higher-order extrapolations, thus higher-order Newton-like methods. We first consider high-order variants of the Newton-Raphson method applied to non-linear systems of equations. Next, we obtain improved asymptotic convergence results for the quadratic loss penalty algorithm by using high-order extrapolation steps.

  11. Iterative method for in situ measurement of lens aberrations in lithographic tools using CTC-based quadratic aberration model.

    PubMed

    Liu, Shiyuan; Xu, Shuang; Wu, Xiaofei; Liu, Wei

    2012-06-18

    This paper proposes an iterative method for in situ lens aberration measurement in lithographic tools based on a quadratic aberration model (QAM) that is a natural extension of the linear model formed by taking into account interactions among individual Zernike coefficients. By introducing a generalized operator named cross triple correlation (CTC), the quadratic model can be calculated very quickly and accurately with the help of fast Fourier transform (FFT). The Zernike coefficients up to the 37th order or even higher are determined by solving an inverse problem through an iterative procedure from several through-focus aerial images of a specially designed mask pattern. The simulation work has validated the theoretical derivation and confirms that such a method is simple to implement and yields a superior quality of wavefront estimate, particularly for the case when the aberrations are relatively large. It is fully expected that this method will provide a useful practical means for the in-line monitoring of the imaging quality of lithographic tools.

  12. Application of stochastic particle swarm optimization algorithm to determine the graded refractive index distribution in participating media

    NASA Astrophysics Data System (ADS)

    Wei, Lin-Yang; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming

    2016-11-01

    Inverse estimation of the refractive index distribution in one-dimensional participating media with graded refractive index (GRI) is investigated. The forward radiative transfer problem is solved by the Chebyshev collocation spectral method. The stochastic particle swarm optimization (SPSO) algorithm is employed to retrieve three kinds of GRI distribution, i.e. the linear, sinusoidal and quadratic GRI distribution. The retrieval accuracy of GRI distribution with different wall emissivity, optical thickness, absorption coefficients and scattering coefficients are discussed thoroughly. To improve the retrieval accuracy of quadratic GRI distribution, a double-layer model is proposed to supply more measurement information. The influence of measurement errors upon the precision of estimated results is also investigated. Considering the GRI distribution is unknown beforehand in practice, a quadratic function is employed to retrieve the linear GRI by SPSO algorithm. All the results show that the SPSO algorithm is applicable to retrieve different GRI distributions in participating media accurately even with noisy data.

  13. Minimizing distortion and internal forces in truss structures by simulated annealing

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1989-01-01

    Inaccuracies in the length of members and the diameters of joints of large truss reflector backup structures may produce unacceptable levels of surface distortion and member forces. However, if the member lengths and joint diameters can be measured accurately it is possible to configure the members and joints so that root-mean-square (rms) surface error and/or rms member forces is minimized. Following Greene and Haftka (1989) it is assumed that the force vector f is linearly proportional to the member length errors e(sub M) of dimension NMEMB (the number of members) and joint errors e(sub J) of dimension NJOINT (the number of joints), and that the best-fit displacement vector d is a linear function of f. Let NNODES denote the number of positions on the surface of the truss where error influences are measured. The solution of the problem is discussed. To classify, this problem was compared to a similar combinatorial optimization problem. In particular, when only the member length errors are considered, minimizing d(sup 2)(sub rms) is equivalent to the quadratic assignment problem. The quadratic assignment problem is a well known NP-complete problem in operations research literature. Hence minimizing d(sup 2)(sub rms) is is also an NP-complete problem. The focus of the research is the development of a simulated annealing algorithm to reduce d(sup 2)(sub rms). The plausibility of this technique is its recent success on a variety of NP-complete combinatorial optimization problems including the quadratic assignment problem. A physical analogy for simulated annealing is the way liquids freeze and crystallize. All computational experiments were done on a MicroVAX. The two interchange heuristic is very fast but produces widely varying results. The two and three interchange heuristic provides less variability in the final objective function values but runs much more slowly. Simulated annealing produced the best objective function values for every starting configuration and was faster than the two and three interchange heuristic.

  14. MO-FG-CAMPUS-TeP2-01: A Graph Form ADMM Algorithm for Constrained Quadratic Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X; Belcher, AH; Wiersma, R

    Purpose: In radiation therapy optimization the constraints can be either hard constraints which must be satisfied or soft constraints which are included but do not need to be satisfied exactly. Currently the voxel dose constraints are viewed as soft constraints and included as a part of the objective function and approximated as an unconstrained problem. However in some treatment planning cases the constraints should be specified as hard constraints and solved by constrained optimization. The goal of this work is to present a computation efficiency graph form alternating direction method of multipliers (ADMM) algorithm for constrained quadratic treatment planning optimizationmore » and compare it with several commonly used algorithms/toolbox. Method: ADMM can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian methods for constrained optimization. Various proximal operators were first constructed as applicable to quadratic IMRT constrained optimization and the problem was formulated in a graph form of ADMM. A pre-iteration operation for the projection of a point to a graph was also proposed to further accelerate the computation. Result: The graph form ADMM algorithm was tested by the Common Optimization for Radiation Therapy (CORT) dataset including TG119, prostate, liver, and head & neck cases. Both unconstrained and constrained optimization problems were formulated for comparison purposes. All optimizations were solved by LBFGS, IPOPT, Matlab built-in toolbox, CVX (implementing SeDuMi) and Mosek solvers. For unconstrained optimization, it was found that LBFGS performs the best, and it was 3–5 times faster than graph form ADMM. However, for constrained optimization, graph form ADMM was 8 – 100 times faster than the other solvers. Conclusion: A graph form ADMM can be applied to constrained quadratic IMRT optimization. It is more computationally efficient than several other commercial and noncommercial optimizers and it also used significantly less computer memory.« less

  15. Ontological Problem-Solving Framework for Assigning Sensor Systems and Algorithms to High-Level Missions

    PubMed Central

    Qualls, Joseph; Russomanno, David J.

    2011-01-01

    The lack of knowledge models to represent sensor systems, algorithms, and missions makes opportunistically discovering a synthesis of systems and algorithms that can satisfy high-level mission specifications impractical. A novel ontological problem-solving framework has been designed that leverages knowledge models describing sensors, algorithms, and high-level missions to facilitate automated inference of assigning systems to subtasks that may satisfy a given mission specification. To demonstrate the efficacy of the ontological problem-solving architecture, a family of persistence surveillance sensor systems and algorithms has been instantiated in a prototype environment to demonstrate the assignment of systems to subtasks of high-level missions. PMID:22164081

  16. Generalised Assignment Matrix Methodology in Linear Programming

    ERIC Educational Resources Information Center

    Jerome, Lawrence

    2012-01-01

    Discrete Mathematics instructors and students have long been struggling with various labelling and scanning algorithms for solving many important problems. This paper shows how to solve a wide variety of Discrete Mathematics and OR problems using assignment matrices and linear programming, specifically using Excel Solvers although the same…

  17. Measuring Human Performance on Clustering Problems: Some Potential Objective Criteria and Experimental Research Opportunities

    ERIC Educational Resources Information Center

    Brusco, Michael J.

    2007-01-01

    The study of human performance on discrete optimization problems has a considerable history that spans various disciplines. The two most widely studied problems are the Euclidean traveling salesperson problem and the quadratic assignment problem. The purpose of this paper is to outline a program of study for the measurement of human performance on…

  18. Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre

    2014-07-01

    We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.

  19. Determinant representation of the domain-wall boundary condition partition function of a Richardson-Gaudin model containing one arbitrary spin

    NASA Astrophysics Data System (ADS)

    Faribault, Alexandre; Tschirhart, Hugo; Muller, Nicolas

    2016-05-01

    In this work we present a determinant expression for the domain-wall boundary condition partition function of rational (XXX) Richardson-Gaudin models which, in addition to N-1 spins \\frac{1}{2}, contains one arbitrarily large spin S. The proposed determinant representation is written in terms of a set of variables which, from previous work, are known to define eigenstates of the quantum integrable models belonging to this class as solutions to quadratic Bethe equations. Such a determinant can be useful numerically since systems of quadratic equations are much simpler to solve than the usual highly nonlinear Bethe equations. It can therefore offer significant gains in stability and computation speed.

  20. Computation and analysis for a constrained entropy optimization problem in finance

    NASA Astrophysics Data System (ADS)

    He, Changhong; Coleman, Thomas F.; Li, Yuying

    2008-12-01

    In [T. Coleman, C. He, Y. Li, Calibrating volatility function bounds for an uncertain volatility model, Journal of Computational Finance (2006) (submitted for publication)], an entropy minimization formulation has been proposed to calibrate an uncertain volatility option pricing model (UVM) from market bid and ask prices. To avoid potential infeasibility due to numerical error, a quadratic penalty function approach is applied. In this paper, we show that the solution to the quadratic penalty problem can be obtained by minimizing an objective function which can be evaluated via solving a Hamilton-Jacobian-Bellman (HJB) equation. We prove that the implicit finite difference solution of this HJB equation converges to its viscosity solution. In addition, we provide computational examples illustrating accuracy of calibration.

  1. A Generalization of the Karush-Kuhn-Tucker Theorem for Approximate Solutions of Mathematical Programming Problems Based on Quadratic Approximation

    NASA Astrophysics Data System (ADS)

    Voloshinov, V. V.

    2018-03-01

    In computations related to mathematical programming problems, one often has to consider approximate, rather than exact, solutions satisfying the constraints of the problem and the optimality criterion with a certain error. For determining stopping rules for iterative procedures, in the stability analysis of solutions with respect to errors in the initial data, etc., a justified characteristic of such solutions that is independent of the numerical method used to obtain them is needed. A necessary δ-optimality condition in the smooth mathematical programming problem that generalizes the Karush-Kuhn-Tucker theorem for the case of approximate solutions is obtained. The Lagrange multipliers corresponding to the approximate solution are determined by solving an approximating quadratic programming problem.

  2. Learner-Centered Teaching and Improving Learning by Writing Down the Statement of Problems in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Aurora, Tarlok

    2005-04-01

    In a calculus-based introductory physics course, students were assigned to write the statements of word problems (along with the accompanying diagrams if any), analyze these, identify important concepts/equations and try to solve these end-of- chapter homework problems. They were required to bring to class their written assignment until the chapter was completed in lecture. These were quickly checked at the beginning of the class. In addition, re-doing selected solved examples in the textbook were assigned as homework. Where possible, students were asked to look for similarities between the solved-examples and the end-of-the-chapter problems, or occasionally these were brought to the students' attention. It was observed that many students were able to solve several of the solved-examples on the test even though the instructor had not solved these in class. This was seen as an improvement over the previous years. It made the students more responsible for their learning. Another benefit was that it alleviated the problems previously created by many students not bringing the textbooks to class. It allowed more time for problem solving/discussions in class.

  3. A Differential Evolution Algorithm Based on Nikaido-Isoda Function for Solving Nash Equilibrium in Nonlinear Continuous Games

    PubMed Central

    He, Feng; Zhang, Wei; Zhang, Guoqiang

    2016-01-01

    A differential evolution algorithm for solving Nash equilibrium in nonlinear continuous games is presented in this paper, called NIDE (Nikaido-Isoda differential evolution). At each generation, parent and child strategy profiles are compared one by one pairwisely, adapting Nikaido-Isoda function as fitness function. In practice, the NE of nonlinear game model with cubic cost function and quadratic demand function is solved, and this method could also be applied to non-concave payoff functions. Moreover, the NIDE is compared with the existing Nash Domination Evolutionary Multiplayer Optimization (NDEMO), the result showed that NIDE was significantly better than NDEMO with less iterations and shorter running time. These numerical examples suggested that the NIDE method is potentially useful. PMID:27589229

  4. Path Following in the Exact Penalty Method of Convex Programming.

    PubMed

    Zhou, Hua; Lange, Kenneth

    2015-07-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.

  5. Path Following in the Exact Penalty Method of Convex Programming

    PubMed Central

    Zhou, Hua; Lange, Kenneth

    2015-01-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value. PMID:26366044

  6. Threshold-driven optimization for reference-based auto-planning

    NASA Astrophysics Data System (ADS)

    Long, Troy; Chen, Mingli; Jiang, Steve; Lu, Weiguo

    2018-02-01

    We study threshold-driven optimization methodology for automatically generating a treatment plan that is motivated by a reference DVH for IMRT treatment planning. We present a framework for threshold-driven optimization for reference-based auto-planning (TORA). Commonly used voxel-based quadratic penalties have two components for penalizing under- and over-dosing of voxels: a reference dose threshold and associated penalty weight. Conventional manual- and auto-planning using such a function involves iteratively updating the preference weights while keeping the thresholds constant, an unintuitive and often inconsistent method for planning toward some reference DVH. However, driving a dose distribution by threshold values instead of preference weights can achieve similar plans with less computational effort. The proposed methodology spatially assigns reference DVH information to threshold values, and iteratively improves the quality of that assignment. The methodology effectively handles both sub-optimal and infeasible DVHs. TORA was applied to a prostate case and a liver case as a proof-of-concept. Reference DVHs were generated using a conventional voxel-based objective, then altered to be either infeasible or easy-to-achieve. TORA was able to closely recreate reference DVHs in 5-15 iterations of solving a simple convex sub-problem. TORA has the potential to be effective for auto-planning based on reference DVHs. As dose prediction and knowledge-based planning becomes more prevalent in the clinical setting, incorporating such data into the treatment planning model in a clear, efficient way will be crucial for automated planning. A threshold-focused objective tuning should be explored over conventional methods of updating preference weights for DVH-guided treatment planning.

  7. Show, Don't Tell: Using Photographic "Snapsignments" to Advance and Assess Creative Problem Solving

    ERIC Educational Resources Information Center

    Machin, Jane E.

    2016-01-01

    Traditional assignments that aim to develop and evaluate creative problem solving skills are frequently foregone in large marketing classes due to the daunting grading prospect they present. Here, a new assessment method is introduced: the "snapsignment." Through photography, individual projects can be assigned that promote higher order…

  8. Scalable Effective Approaches for Quadratic Assignment Problems Based on Conic Optimization and Applications

    DTIC Science & Technology

    2012-02-09

    1nclud1ng suggestions for reduc1ng the burden. to the Department of Defense. ExecutiVe Serv1ce D>rectorate (0704-0188) Respondents should be aware...benchmark problem we contacted Bertrand LeCun who in their poject CHOC from 2005-2008 had applied their parallel B&B framework BOB++ to the RLT1

  9. An open source software tool to assign the material properties of bone for ABAQUS finite element simulations.

    PubMed

    Pegg, Elise C; Gill, Harinderjit S

    2016-09-06

    A new software tool to assign the material properties of bone to an ABAQUS finite element mesh was created and compared with Bonemat, a similar tool originally designed to work with Ansys finite element models. Our software tool (py_bonemat_abaqus) was written in Python, which is the chosen scripting language for ABAQUS. The purpose of this study was to compare the software packages in terms of the material assignment calculation and processing speed. Three element types were compared (linear hexahedral (C3D8), linear tetrahedral (C3D4) and quadratic tetrahedral elements (C3D10)), both individually and as part of a mesh. Comparisons were made using a CT scan of a hemi-pelvis as a test case. A small difference, of -0.05kPa on average, was found between Bonemat version 3.1 (the current version) and our Python package. Errors were found in the previous release of Bonemat (version 3.0 downloaded from www.biomedtown.org) during calculation of the quadratic tetrahedron Jacobian, and conversion of the apparent density to modulus when integrating over the Young׳s modulus field. These issues caused up to 2GPa error in the modulus assignment. For these reasons, we recommend users upgrade to the most recent release of Bonemat. Processing speeds were assessed for the three different element types. Our Python package took significantly longer (110s on average) to perform the calculations compared with the Bonemat software (10s). Nevertheless, the workflow advantages of the package and added functionality makes 'py_bonemat_abaqus' a useful tool for ABAQUS users. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    PubMed

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  11. A tight upper bound for quadratic knapsack problems in grid-based wind farm layout optimization

    NASA Astrophysics Data System (ADS)

    Quan, Ning; Kim, Harrison M.

    2018-03-01

    The 0-1 quadratic knapsack problem (QKP) in wind farm layout optimization models possible turbine locations as nodes, and power loss due to wake effects between pairs of turbines as edges in a complete graph. The goal is to select up to a certain number of turbine locations such that the sum of selected node and edge coefficients is maximized. Finding the optimal solution to the QKP is difficult in general, but it is possible to obtain a tight upper bound on the QKP's optimal value which facilitates the use of heuristics to solve QKPs by giving a good estimate of the optimality gap of any feasible solution. This article applies an upper bound method that is especially well-suited to QKPs in wind farm layout optimization due to certain features of the formulation that reduce the computational complexity of calculating the upper bound. The usefulness of the upper bound was demonstrated by assessing the performance of the greedy algorithm for solving QKPs in wind farm layout optimization. The results show that the greedy algorithm produces good solutions within 4% of the optimal value for small to medium sized problems considered in this article.

  12. Quantum algorithms for Gibbs sampling and hitting-time estimation

    DOE PAGES

    Chowdhury, Anirban Narayan; Somma, Rolando D.

    2017-02-01

    In this paper, we present quantum algorithms for solving two problems regarding stochastic processes. The first algorithm prepares the thermal Gibbs state of a quantum system and runs in time almost linear in √Nβ/Ζ and polynomial in log(1/ϵ), where N is the Hilbert space dimension, β is the inverse temperature, Ζ is the partition function, and ϵ is the desired precision of the output state. Our quantum algorithm exponentially improves the dependence on 1/ϵ and quadratically improves the dependence on β of known quantum algorithms for this problem. The second algorithm estimates the hitting time of a Markov chain. Formore » a sparse stochastic matrix Ρ, it runs in time almost linear in 1/(ϵΔ 3/2), where ϵ is the absolute precision in the estimation and Δ is a parameter determined by Ρ, and whose inverse is an upper bound of the hitting time. Our quantum algorithm quadratically improves the dependence on 1/ϵ and 1/Δ of the analog classical algorithm for hitting-time estimation. Finally, both algorithms use tools recently developed in the context of Hamiltonian simulation, spectral gap amplification, and solving linear systems of equations.« less

  13. Identification of spatially-localized initial conditions via sparse PCA

    NASA Astrophysics Data System (ADS)

    Dwivedi, Anubhav; Jovanovic, Mihailo

    2017-11-01

    Principal Component Analysis involves maximization of a quadratic form subject to a quadratic constraint on the initial flow perturbations and it is routinely used to identify the most energetic flow structures. For general flow configurations, principal components can be efficiently computed via power iteration of the forward and adjoint governing equations. However, the resulting flow structures typically have a large spatial support leading to a question of physical realizability. To obtain spatially-localized structures, we modify the quadratic constraint on the initial condition to include a convex combination with an additional regularization term which promotes sparsity in the physical domain. We formulate this constrained optimization problem as a nonlinear eigenvalue problem and employ an inverse power-iteration-based method to solve it. The resulting solution is guaranteed to converge to a nonlinear eigenvector which becomes increasingly localized as our emphasis on sparsity increases. We use several fluids examples to demonstrate that our method indeed identifies the most energetic initial perturbations that are spatially compact. This work was supported by Office of Naval Research through Grant Number N00014-15-1-2522.

  14. Two healing lengths in a two-band GL-model with quadratic terms: Numerical results

    NASA Astrophysics Data System (ADS)

    Macias-Medri, A. E.; Rodríguez-Núñez, J. J.

    2018-05-01

    A two-band and quartic interaction order Ginzburg-Landau model in the presence of a single vortex is studied in this work. Interactions of second (quadratic, with coupling parameter γ) and fourth (quartic, with coupling parameter γ˜) order between the two superconducting order parameters (fi with i = 1,2) are incorporated in a functional. Terms beyond quadratic gradient contributions are neglected in the corresponding minimized free energy. The solution of the system of coupled equations is solved by numerical methods to obtain the fi-profiles, where our starting point was the calculation of the superconducting critical temperature Tc. With this at hand, we evaluate fi and the magnetic field along the z-axis, B0, as function of γ, γ˜, the radial distance r/λ1(0) and the temperature T, for T ≈ Tc. The self-consistent equations allow us to compute λ (penetration depth) and the healing lengths of fi (Lhi with i = 1,2) as functions of T, γ and γ˜. At the end, relevant discussions about type-1.5 superconductivity in the compounds we have studied are presented.

  15. Investigation of the Effect of Assignment Projects on Mathematical Activity of Graduating Junior High School Students.

    ERIC Educational Resources Information Center

    Zehavi, Nurit

    This study explored student mathematical activity in open problem-solving situations, derived from the work of Polya on problem solving and Skemp on intelligent learning and teaching. Assignment projects with problems for ninth-grade students were developed, whether they elicit the desired cognitive and cogno-affective goals was investigated, and…

  16. Linear Matrix Inequality Method for a Quadratic Performance Index Minimization Problem with a class of Bilinear Matrix Inequality Conditions

    NASA Astrophysics Data System (ADS)

    Tanemura, M.; Chida, Y.

    2016-09-01

    There are a lot of design problems of control system which are expressed as a performance index minimization under BMI conditions. However, a minimization problem expressed as LMIs can be easily solved because of the convex property of LMIs. Therefore, many researchers have been studying transforming a variety of control design problems into convex minimization problems expressed as LMIs. This paper proposes an LMI method for a quadratic performance index minimization problem with a class of BMI conditions. The minimization problem treated in this paper includes design problems of state-feedback gain for switched system and so on. The effectiveness of the proposed method is verified through a state-feedback gain design for switched systems and a numerical simulation using the designed feedback gains.

  17. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

    NASA Astrophysics Data System (ADS)

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

    2018-02-01

    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  18. Quantum speedup in solving the maximal-clique problem

    NASA Astrophysics Data System (ADS)

    Chang, Weng-Long; Yu, Qi; Li, Zhaokai; Chen, Jiahui; Peng, Xinhua; Feng, Mang

    2018-03-01

    The maximal-clique problem, to find the maximally sized clique in a given graph, is classically an NP-complete computational problem, which has potential applications ranging from electrical engineering, computational chemistry, and bioinformatics to social networks. Here we develop a quantum algorithm to solve the maximal-clique problem for any graph G with n vertices with quadratic speedup over its classical counterparts, where the time and spatial complexities are reduced to, respectively, O (√{2n}) and O (n2) . With respect to oracle-related quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility of the proposed quantum algorithm, we successfully solve a typical clique problem for a graph G with two vertices and one edge by carrying out a nuclear magnetic resonance experiment involving four qubits.

  19. Half-quadratic variational regularization methods for speckle-suppression and edge-enhancement in SAR complex image

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Wang, Guang-xin

    2008-12-01

    Synthetic aperture radar (SAR) is an active remote sensing sensor. It is a coherent imaging system, the speckle is its inherent default, which affects badly the interpretation and recognition of the SAR targets. Conventional methods of removing the speckle is studied usually in real SAR image, which reduce the edges of the images at the same time as depressing the speckle. Morever, Conventional methods lost the information about images phase. Removing the speckle and enhancing the target and edge simultaneously are still a puzzle. To suppress the spckle and enhance the targets and the edges simultaneously, a half-quadratic variational regularization method in complex SAR image is presented, which is based on the prior knowledge of the targets and the edge. Due to the non-quadratic and non- convex quality and the complexity of the cost function, a half-quadratic variational regularization variation is used to construct a new cost function,which is solved by alternate optimization. In the proposed scheme, the construction of the model, the solution of the model and the selection of the model peremeters are studied carefully. In the end, we validate the method using the real SAR data.Theoretic analysis and the experimental results illustrate the the feasibility of the proposed method. Further more, the proposed method can preserve the information about images phase.

  20. A General Method for Solving Systems of Non-Linear Equations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, Philip R.; Deiss, Ron (Technical Monitor)

    1995-01-01

    The method of steepest descent is modified so that accelerated convergence is achieved near a root. It is assumed that the function of interest can be approximated near a root by a quadratic form. An eigenvector of the quadratic form is found by evaluating the function and its gradient at an arbitrary point and another suitably selected point. The terminal point of the eigenvector is chosen to lie on the line segment joining the two points. The terminal point found lies on an axis of the quadratic form. The selection of a suitable step size at this point leads directly to the root in the direction of steepest descent in a single step. Newton's root finding method not infrequently diverges if the starting point is far from the root. However, the current method in these regions merely reverts to the method of steepest descent with an adaptive step size. The current method's performance should match that of the Levenberg-Marquardt root finding method since they both share the ability to converge from a starting point far from the root and both exhibit quadratic convergence near a root. The Levenberg-Marquardt method requires storage for coefficients of linear equations. The current method which does not require the solution of linear equations requires more time for additional function and gradient evaluations. The classic trade off of time for space separates the two methods.

  1. A neuro approach to solve fuzzy Riccati differential equations

    NASA Astrophysics Data System (ADS)

    Shahrir, Mohammad Shazri; Kumaresan, N.; Kamali, M. Z. M.; Ratnavelu, Kurunathan

    2015-10-01

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  2. A neuro approach to solve fuzzy Riccati differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com; Telekom Malaysia, R&D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor; Kumaresan, N., E-mail: drnk2008@gmail.com

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  3. A Path Algorithm for Constrained Estimation

    PubMed Central

    Zhou, Hua; Lange, Kenneth

    2013-01-01

    Many least-square problems involve affine equality and inequality constraints. Although there are a variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current article proposes a new path-following algorithm for quadratic programming that replaces hard constraints by what are called exact penalties. Similar penalties arise in l1 regularization in model selection. In the regularization setting, penalties encapsulate prior knowledge, and penalized parameter estimates represent a trade-off between the observed data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic penalty method, solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties!are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well-chosen examples illustrate the mechanics and potential of path following. This article has supplementary materials available online. PMID:24039382

  4. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  5. Effects of supplementation with green tea by-products on growth performance, meat quality, blood metabolites and immune cell proliferation in goats.

    PubMed

    Ahmed, S T; Lee, J-W; Mun, H-S; Yang, C-J

    2015-12-01

    Forty-eight castrated male goats were used to determine the effects of feeding green tea by-products (GTB) on growth performance, meat quality, blood metabolites and immune cell proliferation. Experimental treatments consisted of basal diets supplemented with four levels of GTB (0%, 0.5%, 1.0% or 2.0%). Four replicate pens were assigned to each treatment with three goats per replicate. Increasing dietary GTB tended to linearly increase the overall average weight gain and feed intake (p = 0.09). Water holding capacity, pH and sensory attributes of meat were not affected by GTB supplementation, while cooking loss was reduced both linearly and quadratically (p < 0.01). The redness (linear; p = 0.02, quadratic; p < 0.01) and yellowness (quadratic; p < 0.01) values of goat meat were improved by GTB supplementation. Increasing dietary GTB quadratically increased protein and decreased crude fat (p < 0.05), while linearly decreased cholesterol (p = 0.03) content of goat meat. The proportions of monounsaturated fatty acid, polyunsaturated fatty acid (PUFA) and n-6 PUFA increased linearly (p < 0.01) and n-3 PUFA increased quadratically (p < 0.05) as GTB increased in diets. Increasing dietary GTB linearly increased the PUFA/SFA (saturated fatty acid) and tended to linearly and quadratically increase (p ≤ 0.10) the n-6/n-3 ratio. The thiobarbituric acid-reactive substances values of meat were lower in the 2.0% GTB-supplemented group in all storage periods (p < 0.05). Dietary GTB linearly decreased plasma glucose and cholesterol (p < 0.01) and quadratically decreased urea nitrogen concentrations (p = 0.001). The growth of spleen cells incubated in concanavalin A and lipopolysaccharides medium increased significantly (p < 0.05) in response to GTB supplementation. Our results suggest that GTB may positively affect the growth performance, meat quality, blood metabolites and immune cell proliferation when supplemented as a feed additive in goat diet. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  6. Web-Based Problem-Solving Assignment and Grading System

    NASA Astrophysics Data System (ADS)

    Brereton, Giles; Rosenberg, Ronald

    2014-11-01

    In engineering courses with very specific learning objectives, such as fluid mechanics and thermodynamics, it is conventional to reinforce concepts and principles with problem-solving assignments and to measure success in problem solving as an indicator of student achievement. While the modern-day ease of copying and searching for online solutions can undermine the value of traditional assignments, web-based technologies also provide opportunities to generate individualized well-posed problems with an infinite number of different combinations of initial/final/boundary conditions, so that the probability of any two students being assigned identical problems in a course is vanishingly small. Such problems can be designed and programmed to be: single or multiple-step, self-grading, allow students single or multiple attempts; provide feedback when incorrect; selectable according to difficulty; incorporated within gaming packages; etc. In this talk, we discuss the use of a homework/exam generating program of this kind in a single-semester course, within a web-based client-server system that ensures secure operation.

  7. Effects of dietary supplementation with alkyl polyglycoside, a nonionic surfactant, on nutrient digestion and ruminal fermentation in goats.

    PubMed

    Yuan, Z Q; Tang, S X; Zeng, B; Wang, M; Tan, Z L; Sun, Z H; Zhou, C S; Han, X F; Bamikole, M A

    2010-12-01

    The effects of dietary alkyl polyglycoside [APG, a nonionic surfactant (NIS), derived from a reaction of corn starch glucose and a natural fatty alcohol] inclusion on digestion of nutrients and ruminal fermentation in goats were examined in a 4 × 4 Latin square design using 4 ruminally and duodenally cannulated wethers (mean BW: 19.5 ± 0.8 kg). The animals were assigned to 4 dietary treatments of APG supplementation at 0, 3, 6, and 12 g/kg of DM diets and were designated as control, APG3, APG6, and APG12, respectively. The results showed that dietary APG inclusion tended to increase the intestinal digestibility of OM (linear, P = 0.09) and NDF (linear, P = 0.1), and quadratically increased (P ≤ 0.02) total tract digestibility of OM and NDF, the duodenal microbial N flow, and efficiency of microbial protein synthesis. The true ruminal digestibility and apparent total tract digestibility of N quadratically increased (P < 0.01) with increasing dietary APG. The ruminal pH values were not affected by dietary APG inclusion (P > 0.05), but the concentration of NH(3)-N (P < 0.01) and total VFA (linear and quadratic, P < 0.01) increased in the rumen fluid. Dietary APG inclusion also increased the activities of ruminal carboxymethyl cellulase (quadratic, P < 0.01) and xylanase (linear and quadratic, P < 0.01). It is concluded that APG is a potential feed additive that can be used in ruminant production; 6 g/kg in the total mixed rations for goats is recommended. It is necessary to validate the effectiveness of dietary APG inclusion in ruminant diets with more animals in further studies.

  8. Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2017-10-01

    This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.

  9. Quantum optimization for training support vector machines.

    PubMed

    Anguita, Davide; Ridella, Sandro; Rivieccio, Fabio; Zunino, Rodolfo

    2003-01-01

    Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors, represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training, especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences between Quadratic-Programming and Quantum-based optimization techniques are considered.

  10. Robustness of linear quadratic state feedback designs in the presence of system uncertainty. [application to Augmentor Wing Jet STOL Research Aircraft flare control autopilot design

    NASA Technical Reports Server (NTRS)

    Patel, R. V.; Toda, M.; Sridhar, B.

    1977-01-01

    The paper deals with the problem of expressing the robustness (stability) property of a linear quadratic state feedback (LQSF) design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices so that the closed-loop system remains stable. Nonlinear time-varying and linear time-invariant perturbations are considered. The only computation required in obtaining a measure of the robustness of an LQSF design is to determine the eigenvalues of two symmetric matrices determined when solving the algebraic Riccati equation corresponding to the LQSF design problem. Results are applied to a complex dynamic system consisting of the flare control of a STOL aircraft. The design of the flare control is formulated as an LQSF tracking problem.

  11. Controllability of semi-infinite rod heating by a point source

    NASA Astrophysics Data System (ADS)

    Khurshudyan, A.

    2018-04-01

    The possibility of control over heating of a semi-infinite thin rod by a point source concentrated at an inner point of the rod, is studied. Quadratic and piecewise constant solutions of the problem are derived, and the possibilities of solving appropriate problems of optimal control are indicated. Determining of the parameters of the piecewise constant solution is reduced to a problem of nonlinear programming. Numerical examples are considered.

  12. Documentation of the Fourth Order Band Model

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.; Hoitsma, D.

    1979-01-01

    A general circulation model is presented which uses quadratically conservative, fourth order horizontal space differences on an unstaggered grid and second order vertical space differences with a forward-backward or a smooth leap frog time scheme to solve the primitive equations of motion. The dynamic equations for motion, finite difference equations, a discussion of the structure and flow chart of the program code, a program listing, and three relevent papers are given.

  13. Improved Evolutionary Programming with Various Crossover Techniques for Optimal Power Flow Problem

    NASA Astrophysics Data System (ADS)

    Tangpatiphan, Kritsana; Yokoyama, Akihiko

    This paper presents an Improved Evolutionary Programming (IEP) for solving the Optimal Power Flow (OPF) problem, which is considered as a non-linear, non-smooth, and multimodal optimization problem in power system operation. The total generator fuel cost is regarded as an objective function to be minimized. The proposed method is an Evolutionary Programming (EP)-based algorithm with making use of various crossover techniques, normally applied in Real Coded Genetic Algorithm (RCGA). The effectiveness of the proposed approach is investigated on the IEEE 30-bus system with three different types of fuel cost functions; namely the quadratic cost curve, the piecewise quadratic cost curve, and the quadratic cost curve superimposed by sine component. These three cost curves represent the generator fuel cost functions with a simplified model and more accurate models of a combined-cycle generating unit and a thermal unit with value-point loading effect respectively. The OPF solutions by the proposed method and Pure Evolutionary Programming (PEP) are observed and compared. The simulation results indicate that IEP requires less computing time than PEP with better solutions in some cases. Moreover, the influences of important IEP parameters on the OPF solution are described in details.

  14. Evaluating the effects of real power losses in optimal power flow based storage integration

    DOE PAGES

    Castillo, Anya; Gayme, Dennice

    2017-03-27

    This study proposes a DC optimal power flow (DCOPF) with losses formulation (the `-DCOPF+S problem) and uses it to investigate the role of real power losses in OPF based grid-scale storage integration. We derive the `- DCOPF+S problem by augmenting a standard DCOPF with storage (DCOPF+S) problem to include quadratic real power loss approximations. This procedure leads to a multi-period nonconvex quadratically constrained quadratic program, which we prove can be solved to optimality using either a semidefinite or second order cone relaxation. Our approach has some important benefits over existing models. It is more computationally tractable than ACOPF with storagemore » (ACOPF+S) formulations and the provably exact convex relaxations guarantee that an optimal solution can be attained for a feasible problem. Adding loss approximations to a DCOPF+S model leads to a more accurate representation of locational marginal prices, which have been shown to be critical to determining optimal storage dispatch and siting in prior ACOPF+S based studies. Case studies demonstrate the improved accuracy of the `-DCOPF+S model over a DCOPF+S model and the computational advantages over an ACOPF+S formulation.« less

  15. A new numerical approach to solve Thomas-Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming.

    PubMed

    Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid

    2016-01-01

    In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance.

  16. Fractional Programming for Communication Systems—Part I: Power Control and Beamforming

    NASA Astrophysics Data System (ADS)

    Shen, Kaiming; Yu, Wei

    2018-05-01

    This two-part paper explores the use of FP in the design and optimization of communication systems. Part I of this paper focuses on FP theory and on solving continuous problems. The main theoretical contribution is a novel quadratic transform technique for tackling the multiple-ratio concave-convex FP problem--in contrast to conventional FP techniques that mostly can only deal with the single-ratio or the max-min-ratio case. Multiple-ratio FP problems are important for the optimization of communication networks, because system-level design often involves multiple signal-to-interference-plus-noise ratio terms. This paper considers the applications of FP to solving continuous problems in communication system design, particularly for power control, beamforming, and energy efficiency maximization. These application cases illustrate that the proposed quadratic transform can greatly facilitate the optimization involving ratios by recasting the original nonconvex problem as a sequence of convex problems. This FP-based problem reformulation gives rise to an efficient iterative optimization algorithm with provable convergence to a stationary point. The paper further demonstrates close connections between the proposed FP approach and other well-known algorithms in the literature, such as the fixed-point iteration and the weighted minimum mean-square-error beamforming. The optimization of discrete problems is discussed in Part II of this paper.

  17. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.

    PubMed

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-10-23

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation.

  18. Robotics and STEM Learning: Students' Achievements in Assignments According to the P3 Task Taxonomy--Practice, Problem Solving, and Projects

    ERIC Educational Resources Information Center

    Barak, Moshe; Assal, Muhammad

    2018-01-01

    This study presents the case of development and evaluation of a STEM-oriented 30-h robotics course for junior high school students (n = 32). Class activities were designed according to the P3 Task Taxonomy, which included: (1) practice-basic closed-ended tasks and exercises; (2) problem solving--small-scale open-ended assignments in which the…

  19. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  20. Design of reinforced areas of concrete column using quadratic polynomials

    NASA Astrophysics Data System (ADS)

    Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.

    2017-11-01

    Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.

  1. Expected value based fuzzy programming approach to solve integrated supplier selection and inventory control problem with fuzzy demand

    NASA Astrophysics Data System (ADS)

    Sutrisno; Widowati; Sunarsih; Kartono

    2018-01-01

    In this paper, a mathematical model in quadratic programming with fuzzy parameter is proposed to determine the optimal strategy for integrated inventory control and supplier selection problem with fuzzy demand. To solve the corresponding optimization problem, we use the expected value based fuzzy programming. Numerical examples are performed to evaluate the model. From the results, the optimal amount of each product that have to be purchased from each supplier for each time period and the optimal amount of each product that have to be stored in the inventory for each time period were determined with minimum total cost and the inventory level was sufficiently closed to the reference level.

  2. Digital program for solving the linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, B.

    1975-01-01

    A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.

  3. An optical solution for the traveling salesman problem.

    PubMed

    Haist, Tobias; Osten, Wolfgang

    2007-08-06

    We introduce an optical method based on white light interferometry in order to solve the well-known NP-complete traveling salesman problem. To our knowledge it is the first time that a method for the reduction of non-polynomial time to quadratic time has been proposed. We will show that this achievement is limited by the number of available photons for solving the problem. It will turn out that this number of photons is proportional to N(N) for a traveling salesman problem with N cities and that for large numbers of cities the method in practice therefore is limited by the signal-to-noise ratio. The proposed method is meant purely as a gedankenexperiment.

  4. Single Machine Scheduling and Due Date Assignment with Past-Sequence-Dependent Setup Time and Position-Dependent Processing Time

    PubMed Central

    Zhao, Chuan-Li; Hsu, Hua-Feng

    2014-01-01

    This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in O(n 4) time. For the model with job-independent position effects, we proved that the problems can be solved in O(n 3) time by providing a dynamic programming algorithm. PMID:25258727

  5. Single machine scheduling and due date assignment with past-sequence-dependent setup time and position-dependent processing time.

    PubMed

    Zhao, Chuan-Li; Hsu, Chou-Jung; Hsu, Hua-Feng

    2014-01-01

    This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in O(n(4)) time. For the model with job-independent position effects, we proved that the problems can be solved in O(n(3)) time by providing a dynamic programming algorithm.

  6. Formative feedback and scaffolding for developing complex problem solving and modelling outcomes

    NASA Astrophysics Data System (ADS)

    Frank, Brian; Simper, Natalie; Kaupp, James

    2018-07-01

    This paper discusses the use and impact of formative feedback and scaffolding to develop outcomes for complex problem solving in a required first-year course in engineering design and practice at a medium-sized research-intensive Canadian university. In 2010, the course began to use team-based, complex, open-ended contextualised problems to develop problem solving, communications, teamwork, modelling, and professional skills. Since then, formative feedback has been incorporated into: task and process-level feedback on scaffolded tasks in-class, formative assignments, and post-assignment review. Development in complex problem solving and modelling has been assessed through analysis of responses from student surveys, direct criterion-referenced assessment of course outcomes from 2013 to 2015, and an external longitudinal study. The findings suggest that students are improving in outcomes related to complex problem solving over the duration of the course. Most notably, the addition of new feedback and scaffolding coincided with improved student performance.

  7. Investigations into the shape-preserving interpolants using symbolic computation

    NASA Technical Reports Server (NTRS)

    Lam, Maria

    1988-01-01

    Shape representation is a central issue in computer graphics and computer-aided geometric design. Many physical phenomena involve curves and surfaces that are monotone (in some directions) or are convex. The corresponding representation problem is given some monotone or convex data, and a monotone or convex interpolant is found. Standard interpolants need not be monotone or convex even though they may match monotone or convex data. Most of the methods of investigation of this problem involve the utilization of quadratic splines or Hermite polynomials. In this investigation, a similar approach is adopted. These methods require derivative information at the given data points. The key to the problem is the selection of the derivative values to be assigned to the given data points. Schemes for choosing derivatives were examined. Along the way, fitting given data points by a conic section has also been investigated as part of the effort to study shape-preserving quadratic splines.

  8. Jet cooled cavity ringdown spectroscopy of the A ˜ 2 E ″ ← X ˜ 2 A2 ' transition of the NO3 radical

    NASA Astrophysics Data System (ADS)

    Codd, Terrance; Chen, Ming-Wei; Roudjane, Mourad; Stanton, John F.; Miller, Terry A.

    2015-05-01

    The A ˜ 2 E ″ ← X ˜ 2 A2 ' spectrum of NO3 radical from 7550 cm-1 to 9750 cm-1 has been recorded and analyzed. Our spectrum differs from previously recorded spectra of this transition due to jet-cooling, which narrows the rotational contours and eliminates spectral interference from hot bands. Assignments of numerous vibronic features can be made based on both band contour and position including the previously unassigned 30 1 band and several associated combination bands. We have analyzed our spectrum first with an independent anharmonic oscillator model and then by a quadratic Jahn-Teller vibronic coupling model. The fit achieved with the quadratic Jahn-Teller model is excellent, but the potential energy surface obtained with the fitted parameters is in only qualitative agreement with one obtained from ab initio calculations.

  9. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing

    PubMed Central

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-01-01

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation. PMID:26512650

  10. Interactive application of quadratic expansion of chi-square statistic to nonlinear curve fitting

    NASA Technical Reports Server (NTRS)

    Badavi, F. F.; Everhart, Joel L.

    1987-01-01

    This report contains a detailed theoretical description of an all-purpose, interactive curve-fitting routine that is based on P. R. Bevington's description of the quadratic expansion of the Chi-Square statistic. The method is implemented in the associated interactive, graphics-based computer program. Taylor's expansion of Chi-Square is first introduced, and justifications for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations is derived, then solved by matrix algebra. A brief description of the code is presented along with a limited number of changes that are required to customize the program of a particular task. To evaluate the performance of the method and the goodness of nonlinear curve fitting, two typical engineering problems are examined and the graphical and tabular output of each is discussed. A complete listing of the entire package is included as an appendix.

  11. The application of nonlinear programming and collocation to optimal aeroassisted orbital transfers

    NASA Astrophysics Data System (ADS)

    Shi, Y. Y.; Nelson, R. L.; Young, D. H.; Gill, P. E.; Murray, W.; Saunders, M. A.

    1992-01-01

    Sequential quadratic programming (SQP) and collocation of the differential equations of motion were applied to optimal aeroassisted orbital transfers. The Optimal Trajectory by Implicit Simulation (OTIS) computer program codes with updated nonlinear programming code (NZSOL) were used as a testbed for the SQP nonlinear programming (NLP) algorithms. The state-of-the-art sparse SQP method is considered to be effective for solving large problems with a sparse matrix. Sparse optimizers are characterized in terms of memory requirements and computational efficiency. For the OTIS problems, less than 10 percent of the Jacobian matrix elements are nonzero. The SQP method encompasses two phases: finding an initial feasible point by minimizing the sum of infeasibilities and minimizing the quadratic objective function within the feasible region. The orbital transfer problem under consideration involves the transfer from a high energy orbit to a low energy orbit.

  12. Replicator equations, maximal cliques, and graph isomorphism.

    PubMed

    Pelillo, M

    1999-11-15

    We present a new energy-minimization framework for the graph isomorphism problem that is based on an equivalent maximum clique formulation. The approach is centered around a fundamental result proved by Motzkin and Straus in the mid-1960s, and recently expanded in various ways, which allows us to formulate the maximum clique problem in terms of a standard quadratic program. The attractive feature of this formulation is that a clear one-to-one correspondence exists between the solutions of the quadratic program and those in the original, combinatorial problem. To solve the program we use the so-called replicator equations--a class of straightforward continuous- and discrete-time dynamical systems developed in various branches of theoretical biology. We show how, despite their inherent inability to escape from local solutions, they nevertheless provide experimental results that are competitive with those obtained using more elaborate mean-field annealing heuristics.

  13. Sequential quadratic programming-based fast path planning algorithm subject to no-fly zone constraints

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Shunjian; Sun, Mingwei; Yi, Haidong; Wang, Zenghui; Chen, Zengqiang

    2016-08-01

    Path planning plays an important role in aircraft guided systems. Multiple no-fly zones in the flight area make path planning a constrained nonlinear optimization problem. It is necessary to obtain a feasible optimal solution in real time. In this article, the flight path is specified to be composed of alternate line segments and circular arcs, in order to reformulate the problem into a static optimization one in terms of the waypoints. For the commonly used circular and polygonal no-fly zones, geometric conditions are established to determine whether or not the path intersects with them, and these can be readily programmed. Then, the original problem is transformed into a form that can be solved by the sequential quadratic programming method. The solution can be obtained quickly using the Sparse Nonlinear OPTimizer (SNOPT) package. Mathematical simulations are used to verify the effectiveness and rapidity of the proposed algorithm.

  14. Quadratic time dependent Hamiltonians and separation of variables

    NASA Astrophysics Data System (ADS)

    Anzaldo-Meneses, A.

    2017-06-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.

  15. Connection dynamics of a gauge theory of gravity coupled with matter

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Banerjee, Kinjal; Ma, Yongge

    2013-10-01

    We study the coupling of the gravitational action, which is a linear combination of the Hilbert-Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero-Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert-Palatini term and the quadratic torsion term in this gauge theory of gravity.

  16. An EOQ model of time quadratic and inventory dependent demand for deteriorated items with partially backlogged shortages under trade credit

    NASA Astrophysics Data System (ADS)

    Singh, Pushpinder; Mishra, Nitin Kumar; Singh, Vikramjeet; Saxena, Seema

    2017-07-01

    In this paper a single buyer, single supplier inventory model with time quadratic and stock dependent demand for a finite planning horizon has been studied. Single deteriorating item which suffers shortage, with partial backlogging and some lost sales is considered. Model is divided into two scenarios, one with non permissible delay in payment and other with permissible delay in payment. Latter is called, centralized system, where supplier offers trade credit to retailer. In the centralized system cost saving is shared amongst the two. The objective is to study the difference in minimum costs borne by retailer and supplier, under two scenarios including the above mentioned parameters. To obtain optimal solution of the problem the model is solved analytically. Numerical example and a comparative study are then discussed supported by sensitivity analysis of each parameter.

  17. Swarm based mean-variance mapping optimization (MVMOS) for solving economic dispatch

    NASA Astrophysics Data System (ADS)

    Khoa, T. H.; Vasant, P. M.; Singh, M. S. Balbir; Dieu, V. N.

    2014-10-01

    The economic dispatch (ED) is an essential optimization task in the power generation system. It is defined as the process of allocating the real power output of generation units to meet required load demand so as their total operating cost is minimized while satisfying all physical and operational constraints. This paper introduces a novel optimization which named as Swarm based Mean-variance mapping optimization (MVMOS). The technique is the extension of the original single particle mean-variance mapping optimization (MVMO). Its features make it potentially attractive algorithm for solving optimization problems. The proposed method is implemented for three test power systems, including 3, 13 and 20 thermal generation units with quadratic cost function and the obtained results are compared with many other methods available in the literature. Test results have indicated that the proposed method can efficiently implement for solving economic dispatch.

  18. Partial differential equations constrained combinatorial optimization on an adiabatic quantum computer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh

    Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.

  19. Online gaming for learning optimal team strategies in real time

    NASA Astrophysics Data System (ADS)

    Hudas, Gregory; Lewis, F. L.; Vamvoudakis, K. G.

    2010-04-01

    This paper first presents an overall view for dynamical decision-making in teams, both cooperative and competitive. Strategies for team decision problems, including optimal control, zero-sum 2-player games (H-infinity control) and so on are normally solved for off-line by solving associated matrix equations such as the Riccati equation. However, using that approach, players cannot change their objectives online in real time without calling for a completely new off-line solution for the new strategies. Therefore, in this paper we give a method for learning optimal team strategies online in real time as team dynamical play unfolds. In the linear quadratic regulator case, for instance, the method learns the Riccati equation solution online without ever solving the Riccati equation. This allows for truly dynamical team decisions where objective functions can change in real time and the system dynamics can be time-varying.

  20. AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1994-01-01

    AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user with open-loop system information including stability, controllability, and observability. The AESOP program is written in FORTRAN IV for interactive execution and has been implemented on an IBM 3033 computer using TSS 370. As currently configured, AESOP has a central memory requirement of approximately 2 Megs of 8 bit bytes. Memory requirements can be reduced by redimensioning arrays in the AESOP program. Graphical output requires adaptation of the AESOP plot routines to whatever device is available. The AESOP program was developed in 1984.

  1. Optimization of Heterogeneous UAV Communications Using the Multiobjective Quadratic Assignment Problem

    DTIC Science & Technology

    2004-03-01

    definition efficiency is the amount of the time that the processing element is gainfully employed , which is calculated by using the ratio of the... employs an interest- ing form of tournament selection called Pareto domination tournaments. Two members of the population are chosen at random and they...it has a set of solutions and using a template for each solution is not feasible. So the MOMGA employs a different competitive template during the

  2. Power Distribution System Planning with GIS Consideration

    NASA Astrophysics Data System (ADS)

    Wattanasophon, Sirichai; Eua-Arporn, Bundhit

    This paper proposes a method for solving radial distribution system planning problems taking into account geographical information. The proposed method can automatically determine appropriate location and size of a substation, routing of feeders, and sizes of conductors while satisfying all constraints, i.e. technical constraints (voltage drop and thermal limit) and geographical constraints (obstacle, existing infrastructure, and high-cost passages). Sequential quadratic programming (SQP) and minimum path algorithm (MPA) are applied to solve the planning problem based on net price value (NPV) consideration. In addition this method integrates planner's experience and optimization process to achieve an appropriate practical solution. The proposed method has been tested with an actual distribution system, from which the results indicate that it can provide satisfactory plans.

  3. Solution of the 2-D steady-state radiative transfer equation in participating media with specular reflections using SUPG and DG finite elements

    NASA Astrophysics Data System (ADS)

    Le Hardy, D.; Favennec, Y.; Rousseau, B.

    2016-08-01

    The 2D radiative transfer equation coupled with specular reflection boundary conditions is solved using finite element schemes. Both Discontinuous Galerkin and Streamline-Upwind Petrov-Galerkin variational formulations are fully developed. These two schemes are validated step-by-step for all involved operators (transport, scattering, reflection) using analytical formulations. Numerical comparisons of the two schemes, in terms of convergence rate, reveal that the quadratic SUPG scheme proves efficient for solving such problems. This comparison constitutes the main issue of the paper. Moreover, the solution process is accelerated using block SOR-type iterative methods, for which the determination of the optimal parameter is found in a very cheap way.

  4. Developing a feasible neighbourhood search for solving hub location problem in a communication network

    NASA Astrophysics Data System (ADS)

    Rakhmawati, Fibri; Mawengkang, Herman; Buulolo, F.; Mardiningsih

    2018-01-01

    The hub location with single assignment is the problem of locating hubs and assigning the terminal nodes to hubs in order to minimize the cost of hub installation and the cost of routing the traffic in the network. There may also be capacity restrictions on the amount of traffic that can transit by hubs. This paper discusses how to model the polyhedral properties of the problems and develop a feasible neighbourhood search method to solve the model.

  5. Automation of reverse engineering process in aircraft modeling and related optimization problems

    NASA Technical Reports Server (NTRS)

    Li, W.; Swetits, J.

    1994-01-01

    During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for quadratic programming problems.

  6. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.

    PubMed

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.

  7. An h-p Taylor-Galerkin finite element method for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O.

    1991-01-01

    An extension of the familiar Taylor-Galerkin method to arbitrary h-p spatial approximations is proposed. Boundary conditions are analyzed, and a linear stability result for arbitrary meshes is given, showing the unconditional stability for the parameter of implicitness alpha not less than 0.5. The wedge and blunt body problems are solved with both linear, quadratic, and cubic elements and h-adaptivity, showing the feasibility of higher orders of approximation for problems with shocks.

  8. SUBOPT: A CAD program for suboptimal linear regulators

    NASA Technical Reports Server (NTRS)

    Fleming, P. J.

    1985-01-01

    An interactive software package which provides design solutions for both standard linear quadratic regulator (LQR) and suboptimal linear regulator problems is described. Intended for time-invariant continuous systems, the package is easily modified to include sampled-data systems. LQR designs are obtained by established techniques while the large class of suboptimal problems containing controller and/or performance index options is solved using a robust gradient minimization technique. Numerical examples demonstrate features of the package and recent developments are described.

  9. AQMAN; linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling

    USGS Publications Warehouse

    Lefkoff, L.J.; Gorelick, S.M.

    1987-01-01

    A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)

  10. Theoretical analysis of shock induced depolarization and current generation in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Agrawal, Vinamra; Bhattacharya, Kaushik

    Ferroelectric generators are used to generate large magnitude current pulse by impacting a polarized ferroelectric material. The impact causes depolarization of the material and at high impact speeds, dielectric breakdown. Depending on the loading conditions and the electromechanical boundary conditions, the current or voltage profiles obtained vary. In this study, we explore the large deformation dynamic response of a ferroelectric material. Using the Maxwell's equations, conservation laws and the second law of thermodynamics, we derive the governing equations for the phase boundary propagation as well as the driving force acting on it. We allow for the phase boundary to contain surface charges which introduces the contribution of curvature of phase boundary in the governing equations and the driving force. This type of analysis accounts for the dielectric breakdown and resulting conduction in the material. Next, we implement the equations derived to solve a one dimensional impact problem on a ferroelectric material under different electrical boundary conditions. The constitutive law is chosen to be piecewise quadratic in polarization and quadratic in the strain. We solve for the current profile generated in short circuit case and for voltage profile in open circuited case. This work was made possible by the financial support of the US Air Force Office of Scientific Research through the Center of Excellence in High Rate Deformation Physics of Heterogeneous Materials (Grant: FA 9550-12-1-0091).

  11. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  12. Effectiveness of Word Solving: Integrating Morphological Problem-Solving within Comprehension Instruction for Middle School Students

    ERIC Educational Resources Information Center

    Goodwin, Amanda P.

    2016-01-01

    This study explores the effectiveness of integrating morphological instruction within comprehension strategy instruction. Participants were 203 students (N = 117 fifth-grade; 86 sixth-grade) from four urban schools who were randomly assigned to the intervention (N = 110; morphological problem-solving within comprehension strategy instruction) or…

  13. Analog "neuronal" networks in early vision.

    PubMed Central

    Koch, C; Marroquin, J; Yuille, A

    1986-01-01

    Many problems in early vision can be formulated in terms of minimizing a cost function. Examples are shape from shading, edge detection, motion analysis, structure from motion, and surface interpolation. As shown by Poggio and Koch [Poggio, T. & Koch, C. (1985) Proc. R. Soc. London, Ser. B 226, 303-323], quadratic variational problems, an important subset of early vision tasks, can be "solved" by linear, analog electrical, or chemical networks. However, in the presence of discontinuities, the cost function is nonquadratic, raising the question of designing efficient algorithms for computing the optimal solution. Recently, Hopfield and Tank [Hopfield, J. J. & Tank, D. W. (1985) Biol. Cybern. 52, 141-152] have shown that networks of nonlinear analog "neurons" can be effective in computing the solution of optimization problems. We show how these networks can be generalized to solve the nonconvex energy functionals of early vision. We illustrate this approach by implementing a specific analog network, solving the problem of reconstructing a smooth surface from sparse data while preserving its discontinuities. These results suggest a novel computational strategy for solving early vision problems in both biological and real-time artificial vision systems. PMID:3459172

  14. Summer Proceedings 2016: The Center for Computing Research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carleton, James Brian; Parks, Michael L.

    Solving sparse linear systems from the discretization of elliptic partial differential equations (PDEs) is an important building block in many engineering applications. Sparse direct solvers can solve general linear systems, but are usually slower and use much more memory than effective iterative solvers. To overcome these two disadvantages, a hierarchical solver (LoRaSp) based on H2-matrices was introduced in [22]. Here, we have developed a parallel version of the algorithm in LoRaSp to solve large sparse matrices on distributed memory machines. On a single processor, the factorization time of our parallel solver scales almost linearly with the problem size for three-dimensionalmore » problems, as opposed to the quadratic scalability of many existing sparse direct solvers. Moreover, our solver leads to almost constant numbers of iterations, when used as a preconditioner for Poisson problems. On more than one processor, our algorithm has significant speedups compared to sequential runs. With this parallel algorithm, we are able to solve large problems much faster than many existing packages as demonstrated by the numerical experiments.« less

  15. A Scenario-Based Parametric Analysis of Stable Marriage Approaches to the Army Officer Assignment Problem

    DTIC Science & Technology

    2017-03-23

    solutions obtained through their proposed method to comparative instances of a generalized assignment problem with either ordinal cost components or... method flag: Designates the method by which the changed/ new assignment problem instance is solved. methodFlag = 0:SMAWarmstart Returns a matching...of randomized perturbations. We examine the contrasts between these methods in the context of assigning Army Officers among a set of identified

  16. How did you guess? Or, what do multiple-choice questions measure?

    PubMed

    Cox, K R

    1976-06-05

    Multiple-choice questions classified as requiring problem-solving skills have been interpreted as measuring problem-solving skills within students, with the implicit hypothesis that questions needing an increasingly complex intellectual process should present increasing difficulty to the student. This hypothesis was tested in a 150-question paper taken by 721 students in seven Australian medical schools. No correlation was observed between difficulty and assigned process. Consequently, the question-answering process was explored with a group of final-year students. Anecdotal recall by students gave heavy weight to knowledge rather than problem solving in answering these questions. Assignment of the 150 questions to the classification by three teachers and six students showed their congruence to be a little above random probability.

  17. Portfolio optimization using fuzzy linear programming

    NASA Astrophysics Data System (ADS)

    Pandit, Purnima K.

    2013-09-01

    Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.

  18. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Frederickson, Paul O.

    1990-01-01

    High order accurate finite-volume schemes for solving the Euler equations of gasdynamics are developed. Central to the development of these methods are the construction of a k-exact reconstruction operator given cell-averaged quantities and the use of high order flux quadrature formulas. General polygonal control volumes (with curved boundary edges) are considered. The formulations presented make no explicit assumption as to complexity or convexity of control volumes. Numerical examples are presented for Ringleb flow to validate the methodology.

  19. Experimental and Theoretical Results in Output Trajectory Redesign for Flexible Structures

    NASA Technical Reports Server (NTRS)

    Dewey, J. S.; Leang, K.; Devasia, S.

    1998-01-01

    In this paper we study the optimal redesign of output trajectories for linear invertible systems. This is particularly important for tracking control of flexible structures because the input-state trajectores, that achieve tracking of the required output may cause excessive vibrations in the structure. We pose and solve this problem, in the context of linear systems, as the minimization of a quadratic cost function. The theory is developed and applied to the output tracking of a flexible structure and experimental results are presented.

  20. Polynomial mixture method of solving ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Shahrir, Mohammad Shazri; Nallasamy, Kumaresan; Ratnavelu, Kuru; Kamali, M. Z. M.

    2017-11-01

    In this paper, a numerical solution of fuzzy quadratic Riccati differential equation is estimated using a proposed new approach that provides mixture of polynomials where iteratively the right mixture will be generated. This mixture provide a generalized formalism of traditional Neural Networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). This can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that Polynomial Mixture Method (PMM) shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over Mabood et al, RK-4, Multi-Agent NN and Neuro Method (NM).

  1. A computational algorithm for spacecraft control and momentum management

    NASA Technical Reports Server (NTRS)

    Dzielski, John; Bergmann, Edward; Paradiso, Joseph

    1990-01-01

    Developments in the area of nonlinear control theory have shown how coordinate changes in the state and input spaces of a dynamical system can be used to transform certain nonlinear differential equations into equivalent linear equations. These techniques are applied to the control of a spacecraft equipped with momentum exchange devices. An optimal control problem is formulated that incorporates a nonlinear spacecraft model. An algorithm is developed for solving the optimization problem using feedback linearization to transform to an equivalent problem involving a linear dynamical constraint and a functional approximation technique to solve for the linear dynamics in terms of the control. The original problem is transformed into an unconstrained nonlinear quadratic program that yields an approximate solution to the original problem. Two examples are presented to illustrate the results.

  2. Effect of stocking density on performance, diet selection, total-tract digestion, and nitrogen balance among heifers grazing cool-season annual forages.

    PubMed

    Brunsvig, B R; Smart, A J; Bailey, E A; Wright, C L; Grings, E E; Brake, D W

    2017-08-01

    Grazing annual cool-season forages after oat grain harvest in South Dakota may allow an opportunity to increase efficient use of tillable land. However, data are limited regarding effects of stocking density on diet selection, nutrient digestion, performance, and N retention by cattle grazing annual cool-season forage. Heifers were blocked by initial BW (261 ± 11.7 kg) and randomly assigned to 1 of 12 paddocks (1.1 ha) to graze a mixture of grass and brassica for 48 d. Each paddock contained 3, 4, or 5 heifers to achieve 4 replicates of each stocking density treatment. Ruminally cannulated heifers were used to measure diet and nutrient intake. Effects of stocking density on diet and nutrient selection were measured after 2, 24, and 46 d of grazing, and BW was measured at the beginning, middle, and end of the experiment as the average of d 1 and 2, d 22 and 23, and d 47 and 48 BW, respectively. Measures of DMI and DM, OM, NDF, and ADF digestion were collected from d 18 to 23. Increased stocking density increased intake of brassica relative to grass on d 24 (quadratic, = 0.02), but increased stocking density decreased (linear, ≤ 0.01) intake of brassica compared with grass on d 48 (stocking density × time, < 0.01). Increased stocking density increased DM (quadratic, < 0.01), OM (quadratic, = 0.01), and NDF (quadratic, = 0.05) digestion, and stocking density tended to increase DMI (quadratic, = 0.07). Additionally, increased stocking density quadratically increased ( = 0.05) N retention but did not affect overall BW gains. Increased stocking density did, however, contribute to linearly decreased ( = 0.05) BW gains from d 1 to 22 of grazing, but BW gains during the latter half of the experiment were greater than BW gains from d 1 to 22. Ruminal concentration of acetate:propionate was least on d 24 of grazing, and ruminal nitrate concentration tended to linearly decrease ( = 0.06) with greater amounts of time on pasture. Ruminal liquid and particulate fill and amounts of VFA were less (quadratic, ≤ 0.01) with greater amounts of time on pasture. Apparently, binary mixtures of brassica and grass planted after oat grain harvest can provide an opportunity to increase efficient use of land by providing forage resources. Increased stocking density may facilitate a more rapid adaptation to and intake of brassica among cattle grazing brassica-grass-based pastures.

  3. Matter wave coupling of spatially separated and unequally pumped polariton condensates

    NASA Astrophysics Data System (ADS)

    Kalinin, Kirill P.; Lagoudakis, Pavlos G.; Berloff, Natalia G.

    2018-03-01

    Spatial quantum coherence between two separated driven-dissipative polariton condensates created nonresonantly and with a different occupation is studied. We identify the regions where the condensates remain coherent with the phase difference continuously changing with the pumping imbalance and the regions where each condensate acquires its own chemical potential with phase differences exhibiting time-dependent oscillations. We show that in the mutual coherence limit the coupling consists of two competing contributions: a symmetric Heisenberg exchange and the Dzyloshinskii-Moriya asymmetric interactions that enable a continuous tuning of the phase relation across the dyad and derive analytic expressions for these types of interactions. The introduction of nonequal pumping increases the complexity of the type of problems that can be solved by polariton condensates arranged in a graph configuration. If equally pumped polaritons condensates arrange their phases to solve the constrained quadratic minimisation problem with a real symmetric matrix, the nonequally pumped condensates solve that problem for a general Hermitian matrix.

  4. Computational complexities and storage requirements of some Riccati equation solvers

    NASA Technical Reports Server (NTRS)

    Utku, Senol; Garba, John A.; Ramesh, A. V.

    1989-01-01

    The linear optimal control problem of an nth-order time-invariant dynamic system with a quadratic performance functional is usually solved by the Hamilton-Jacobi approach. This leads to the solution of the differential matrix Riccati equation with a terminal condition. The bulk of the computation for the optimal control problem is related to the solution of this equation. There are various algorithms in the literature for solving the matrix Riccati equation. However, computational complexities and storage requirements as a function of numbers of state variables, control variables, and sensors are not available for all these algorithms. In this work, the computational complexities and storage requirements for some of these algorithms are given. These expressions show the immensity of the computational requirements of the algorithms in solving the Riccati equation for large-order systems such as the control of highly flexible space structures. The expressions are also needed to compute the speedup and efficiency of any implementation of these algorithms on concurrent machines.

  5. Expected value analysis for integrated supplier selection and inventory control of multi-product inventory system with fuzzy cost

    NASA Astrophysics Data System (ADS)

    Sutrisno, Widowati, Tjahjana, R. Heru

    2017-12-01

    The future cost in many industrial problem is obviously uncertain. Then a mathematical analysis for a problem with uncertain cost is needed. In this article, we deals with the fuzzy expected value analysis to solve an integrated supplier selection and supplier selection problem with uncertain cost where the costs uncertainty is approached by a fuzzy variable. We formulate the mathematical model of the problems fuzzy expected value based quadratic optimization with total cost objective function and solve it by using expected value based fuzzy programming. From the numerical examples result performed by the authors, the supplier selection problem was solved i.e. the optimal supplier was selected for each time period where the optimal product volume of all product that should be purchased from each supplier for each time period was determined and the product stock level was controlled as decided by the authors i.e. it was followed the given reference level.

  6. The reduced space Sequential Quadratic Programming (SQP) method for calculating the worst resonance response of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Liao, Haitao; Wu, Wenwang; Fang, Daining

    2018-07-01

    A coupled approach combining the reduced space Sequential Quadratic Programming (SQP) method with the harmonic balance condensation technique for finding the worst resonance response is developed. The nonlinear equality constraints of the optimization problem are imposed on the condensed harmonic balance equations. Making use of the null space decomposition technique, the original optimization formulation in the full space is mathematically simplified, and solved in the reduced space by means of the reduced SQP method. The transformation matrix that maps the full space to the null space of the constrained optimization problem is constructed via the coordinate basis scheme. The removal of the nonlinear equality constraints is accomplished, resulting in a simple optimization problem subject to bound constraints. Moreover, second order correction technique is introduced to overcome Maratos effect. The combination application of the reduced SQP method and condensation technique permits a large reduction of the computational cost. Finally, the effectiveness and applicability of the proposed methodology is demonstrated by two numerical examples.

  7. Support Vector Machine algorithm for regression and classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chenggang; Zavaljevski, Nela

    2001-08-01

    The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by themore » capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.« less

  8. Quadratic dissipation effect on the moonpool resonance

    NASA Astrophysics Data System (ADS)

    Liu, Heng-xu; Chen, Hai-long; Zhang, Liang; Zhang, Wan-chao; Liu, Ming

    2017-12-01

    This paper adopted a semi-analytical method based on eigenfunction matching to solve the problem of sharp resonance of cylindrical structures with a moonpool that has a restricted entrance. To eliminate the sharp resonance and to measure the viscous effect, a quadratic dissipation is introduced by assuming an additional dissipative disk at the moonpool entrance. The fluid domain is divided into five cylindrical subdomains, and the velocity potential in each subdomain is obtained by meeting the Laplace equation as well as the boundary conditions. The free-surface elevation at the center of the moonpool, along with the pressure and velocity at the restricted entrance for first-order wave are evaluated. By choosing appropriate dissipation coefficients, the free-surface elevation calculated at the center of the moonpool is in coincidence with the measurements in model tests both at the peak period and amplitude at resonance. It is shown that the sharp resonance in the potential flow theory can be eliminated and the viscous effect can be estimated with a simple method in some provided hydrodynamic models.

  9. Extremal Optimization for Quadratic Unconstrained Binary Problems

    NASA Astrophysics Data System (ADS)

    Boettcher, S.

    We present an implementation of τ-EO for quadratic unconstrained binary optimization (QUBO) problems. To this end, we transform modify QUBO from its conventional Boolean presentation into a spin glass with a random external field on each site. These fields tend to be rather large compared to the typical coupling, presenting EO with a challenging two-scale problem, exploring smaller differences in couplings effectively while sufficiently aligning with those strong external fields. However, we also find a simple solution to that problem that indicates that those external fields apparently tilt the energy landscape to a such a degree such that global minima become more easy to find than those of spin glasses without (or very small) fields. We explore the impact of the weight distribution of the QUBO formulation in the operations research literature and analyze their meaning in a spin-glass language. This is significant because QUBO problems are considered among the main contenders for NP-hard problems that could be solved efficiently on a quantum computer such as D-Wave.

  10. The dual boundary element formulation for elastoplastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Leitao, V.; Aliabadi, M. H.; Rooke, D. P.

    1993-08-01

    The extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied to one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks, and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elastoplastic behavior is modeled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral, and/or triangular cells. A center-cracked plate and a slant edge-cracked plate subjected to tensile load are analyzed and the results are compared with others available in the literature. J-type integrals are calculated.

  11. Response surface modeling of acid activation of raw diatomite using in sunflower oil bleaching by: Box-Behnken experimental design.

    PubMed

    Larouci, M; Safa, M; Meddah, B; Aoues, A; Sonnet, P

    2015-03-01

    The optimum conditions for acid activation of diatomite for maximizing bleaching efficiency of the diatomite in sun flower oil treatment were studied. Box-Behnken experimental design combining with response surface modeling (RSM) and quadratic programming (QP) was employed to obtain the optimum conditions of three independent variables (acid concentration, activation time and solid to liquid) for acid activation of diatomite. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95 % confidence limits (α = 0.05). The optimum values of the selected variables were obtained by solving the quadratic regression model, as well as by analyzing the response surface contour plots. The experimental conditions at this global point were determined to be acid concentration = 8.963 N, activation time = 11.9878 h, and solid to liquid ratio = 221.2113 g/l, the corresponding bleaching efficiency was found to be about 99 %.

  12. Development of Quadratic Programming Algorithm Based on Interior Point Method with Estimation Mechanism of Active Constraints

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiroyuki; Takaguchi, Yusuke; Nakamura, Shizuka

    Instability of calculation process and increase of calculation time caused by increasing size of continuous optimization problem remain the major issues to be solved to apply the technique to practical industrial systems. This paper proposes an enhanced quadratic programming algorithm based on interior point method mainly for improvement of calculation stability. The proposed method has dynamic estimation mechanism of active constraints on variables, which fixes the variables getting closer to the upper/lower limit on them and afterwards releases the fixed ones as needed during the optimization process. It is considered as algorithm-level integration of the solution strategy of active-set method into the interior point method framework. We describe some numerical results on commonly-used bench-mark problems called “CUTEr” to show the effectiveness of the proposed method. Furthermore, the test results on large-sized ELD problem (Economic Load Dispatching problems in electric power supply scheduling) are also described as a practical industrial application.

  13. Spectroscopic and Magnetic Investigations of Rhenium(i)chlorine(carbon MONOXIDE)(3)(ALPHA, - Complexes and Group (1B, 8B) Bimetallic Complexes.

    NASA Astrophysics Data System (ADS)

    Striplin, Durwin Ray

    Complexes with the generic formula, Re(I)Cl(CO) _3(alpha,alpha-diimine), where alpha,alpha-diimine = 2,2^'-bipyridine, 1,10 -phenanthroline, or methyl-substituted analogs, were subjected to detailed optical investigations in the 77-4 K range, both in rigid glasses and in PMMA plastics. Excitation spectra, absorption spectra, and decay kinetics of the phosphorescing manifolds were complemented by detailed measurements of polarization ratios to arrive at a coherent picture of the emitting manifolds. Symmetry assignments and energy orderings of the ^3MLCT (metal-to-ligand charge transfer) spin sublevels were made. Analogous assignments for the ^3MLCT spin -sublevels of Ru(alpha, alpha -diimine)_3^{2+} and Os(alpha,alpha-diimine) _{3}^{2+} ions are implied by this analysis. Increases in luminescence decay rates and emission intensities with increasing external magnetic field strength were observed at 4 K. The decay rates were found to be non-quadratic with respect to magnetic field strength. A simple parametric model that includes spin-orbit coupling and a magnetic field perturbation was developed to describe the MLCT excited states. The energies, symmetry assignments, and magnetic field mixing of the ^3MLCT states were rationalized by the model. Fluorescence, phosphorescence, and excitation spectra were measured on a series of mu -bridged bis(diphenylphosphinomethane) homo- and heterobimetallic compounds of Rh(I), Ir(I), Pt(II), and Au(I). These results were augmented with polarization ratios obtained at 77 K and detailed studies of the temperature dependence of the phosphorescence in the 77-4 K range. The triplet manifold is split by spin-orbit coupling into a forbidden state lying lowest in energy followed by a quasi-degenerate pair lying a few wavenumbers higher that decays two orders of magnitude faster. A quadratic dependence of the decay rate on magnetic field strength was recorded at 4 K for ail complexes. The results are consistent with a rm d_{sigma*}to p_sigma orbital promotion, and the direction of charge-transfer for heterobimetallic complexes was unambiguously assigned. Electronic structural models based on D_{rm 4h}, D_{rm 2h}, and C _{rm 2v} micro-symmetries about the axial chromophore were employed to make explicit symmetry assignments of the excited states.

  14. The Transitory Phase to the Attainment of Self-Regulatory Skill in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Lazakidou, G.; Paraskeva, F.; Retalis, S.

    2007-01-01

    Three phases of development of self-regulatory skill in the domain of mathematical problem solving were designed to examine students' behaviour and the effects on their problem solving ability. Forty-eight Grade 4 students (10 year olds) participated in this pilot study. The students were randomly assigned to one of three groups, each representing…

  15. Effects of Cognitive Strategy Interventions and Cognitive Moderators on Word Problem Solving in Children at Risk for Problem Solving Difficulties

    ERIC Educational Resources Information Center

    Swanson, H. Lee; Lussier, Cathy; Orosco, Michael

    2013-01-01

    This study investigated the role of strategy instruction and cognitive abilities on word problem solving accuracy in children with math difficulties (MD). Elementary school children (N = 120) with and without MD were randomly assigned to 1 of 4 conditions: general-heuristic (e.g., underline question sentence), visual-schematic presentation…

  16. Using Educational Data Mining Methods to Assess Field-Dependent and Field-Independent Learners' Complex Problem Solving

    ERIC Educational Resources Information Center

    Angeli, Charoula; Valanides, Nicos

    2013-01-01

    The present study investigated the problem-solving performance of 101 university students and their interactions with a computer modeling tool in order to solve a complex problem. Based on their performance on the hidden figures test, students were assigned to three groups of field-dependent (FD), field-mixed (FM), and field-independent (FI)…

  17. Using ant colony optimization on the quadratic assignment problem to achieve low energy cost in geo-distributed data centers

    NASA Astrophysics Data System (ADS)

    Osei, Richard

    There are many problems associated with operating a data center. Some of these problems include data security, system performance, increasing infrastructure complexity, increasing storage utilization, keeping up with data growth, and increasing energy costs. Energy cost differs by location, and at most locations fluctuates over time. The rising cost of energy makes it harder for data centers to function properly and provide a good quality of service. With reduced energy cost, data centers will have longer lasting servers/equipment, higher availability of resources, better quality of service, a greener environment, and reduced service and software costs for consumers. Some of the ways that data centers have tried to using to reduce energy costs include dynamically switching on and off servers based on the number of users and some predefined conditions, the use of environmental monitoring sensors, and the use of dynamic voltage and frequency scaling (DVFS), which enables processors to run at different combinations of frequencies with voltages to reduce energy cost. This thesis presents another method by which energy cost at data centers could be reduced. This method involves the use of Ant Colony Optimization (ACO) on a Quadratic Assignment Problem (QAP) in assigning user request to servers in geo-distributed data centers. In this paper, an effort to reduce data center energy cost involves the use of front portals, which handle users' requests, were used as ants to find cost effective ways to assign users requests to a server in heterogeneous geo-distributed data centers. The simulation results indicate that the ACO for Optimal Server Activation and Task Placement algorithm reduces energy cost on a small and large number of users' requests in a geo-distributed data center and its performance increases as the input data grows. In a simulation with 3 geo-distributed data centers, and user's resource request ranging from 25,000 to 25,000,000, the ACO algorithm was able to reduce energy cost on an average of $.70 per second. The ACO for Optimal Server Activation and Task Placement algorithm has proven to work as an alternative or improvement in reducing energy cost in geo-distributed data centers.

  18. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION

    PubMed Central

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    2016-01-01

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method—named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)—for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results. PMID:26778864

  19. Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Bodson, Marc; Acosta, Diana M.

    2009-01-01

    The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.

  20. Cell transmission model of dynamic assignment for urban rail transit networks.

    PubMed

    Xu, Guangming; Zhao, Shuo; Shi, Feng; Zhang, Feilian

    2017-01-01

    For urban rail transit network, the space-time flow distribution can play an important role in evaluating and optimizing the space-time resource allocation. For obtaining the space-time flow distribution without the restriction of schedules, a dynamic assignment problem is proposed based on the concept of continuous transmission. To solve the dynamic assignment problem, the cell transmission model is built for urban rail transit networks. The priority principle, queuing process, capacity constraints and congestion effects are considered in the cell transmission mechanism. Then an efficient method is designed to solve the shortest path for an urban rail network, which decreases the computing cost for solving the cell transmission model. The instantaneous dynamic user optimal state can be reached with the method of successive average. Many evaluation indexes of passenger flow can be generated, to provide effective support for the optimization of train schedules and the capacity evaluation for urban rail transit network. Finally, the model and its potential application are demonstrated via two numerical experiments using a small-scale network and the Beijing Metro network.

  1. Operating System Support for Shared Hardware Data Structures

    DTIC Science & Technology

    2013-01-31

    Carbon [73] uses hardware queues to improve fine-grained multitasking for Recognition, Mining , and Synthesis. Compared to software ap- proaches...web transaction processing, data mining , and multimedia. Early work in database processors [114, 96, 79, 111] reduce the costs of relational database...assignment can be solved statically or dynamically. Static assignment deter- mines offline which data structures are assigned to use HWDS resources and at

  2. Empirical Equation Based Chirality (n, m) Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data

    PubMed Central

    Arefin, Md Shamsul

    2012-01-01

    This work presents a technique for the chirality (n, m) assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n− m) with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m) of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot. PMID:28348319

  3. A systematic linear space approach to solving partially described inverse eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Hu, Sau-Lon James; Li, Haujun

    2008-06-01

    Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.

  4. Estimation of dietary arginine requirements for Longyan laying ducks.

    PubMed

    Xia, Weiguang; Fouad, Ahmed Mohamed; Chen, Wei; Ruan, Dong; Wang, Shuang; Fan, Qiuli; Wang, Ying; Cui, Yiyan; Zheng, Chuntian

    2017-01-01

    This study aimed to establish the arginine requirements of Longyan ducks from 17 to 31 wk of age based on egg production, egg quality, plasma, and ovarian indices, as well as the expression of vitellogenesis-related genes. In total, 660 Longyan ducks with similar body weight at 15 wk of age were assigned randomly to 5 treatments, each with 6 replicates of 22 birds, and fed a corn-corn gluten meal basal diet (0.66% arginine) supplemented with either 0, 0.20%, 0.40%, 0.60%, or 0.80% arginine. Dietary arginine did not affect egg production by laying ducks, but it increased (linear, P < 0.01) the egg weight at 22 to 31 and 17 to 31 wk of age. Dietary arginine increased the yolk color score (linearly, P < 0.05) and the yolk percentage (quadratic, P < 0.05), where the maximum values were obtained with 1.26% arginine. Dietary arginine affected the total shell percentage and shell thickness, with the highest values using 1.46% arginine (P < 0.01). The weight and number of small yellow follicles (SYFs) increased (quadratic, P < 0.05) with the dietary arginine level and there was a quadratic response (P < 0.05) in terms of the SYFs weight/ovarian weight; the highest values were obtained in ducks fed 1.26% arginine. The plasma arginine concentration exhibited a quadratic (P < 0.05) response to dietary arginine. The plasma progesterone concentration decreased (linear, P < 0.05) as dietary arginine increased. The mRNA abundance of the very low density lipoprotein receptor-b increased in the second large yellow follicle membranes (quadratic, P < 0.05) with the dietary arginine level, where the highest value occurred with 1.26% arginine. According to the regression model, the dietary arginine requirements for Longyan laying ducks aged 17 to 31 wk are 1.06%, 1.13%, 1.22%, and 1.11% to obtain the maximum yolk percentage, SYFs number, SYFs weight, and SYFs weight/ovarian weight, respectively. © 2016 Poultry Science Association Inc.

  5. Effect of dietary crude glycerol level on ruminal fermentation in continuous culture and growth performance of beef calves.

    PubMed

    Ramos, M H; Kerley, M S

    2012-03-01

    Continuous culture and in vivo experiments were conducted to measure changes in ruminal fermentation and animal performance when crude glycerol was added to diets. For the continuous culture experiment (n = 6), diets consisted of 4 levels of crude glycerol (0, 5, 10, and 20%) that replaced corn grain. Dry matter and OM digestibility decreased linearly (P < 0.05) when crude glycerol increased in the diet, and no effect (P = 0.20 and 0.65, respectively) was observed for CP and NDF digestibility. Total VFA concentration and ammonia did not change (P > 0.05) due to crude glycerol level. Microbial efficiency increased quadratically (P = 0.012) as crude glycerol increased, whereas microbial N flow did not differ (P = 0.36) among treatments. As crude glycerol increased in the diet, crude glycerol digestibility decreased (P < 0.05). Seventy-two crossbred steer calves (250 ± 2.0 kg) were assigned to 4 treatments: 0, 5, 10, and 20% crude glycerol that replaced corn grain. Animals were fed for a total of 150 d. No differences (P = 0.08) between treatments were measured for DMI. Average daily gain and GF responded quadratically (P < 0.05), with 10% crude glycerol resulting in the greatest values. In the second in vivo experiment, 100 crossbred steer calves (300 ± 2.0 kg) were assigned to 5 treatments: 0, 5, 10, 12.5, or 15% crude glycerol replaced corn grain. Calves were fed for a total of 135 d. No significant differences (P > 0.05) were measured in growth performance. For Exp. 3, one hundred heifer calves (270 ± 2.0 kg) were assigned to 4 treatments: 0, 5, 10, or 20% crude glycerol that replaced hay. No differences (P > 0.05) were measured in animal performance. We concluded that crude glycerol addition to a diet did not negatively affect ruminal fermentation, and addition of up to 20% in concentrate and hay-based diets should not affect performance or carcass characteristics.

  6. Associations between the degree of early lactation inflammation and performance, metabolism, and immune function in dairy cows.

    PubMed

    McCarthy, M M; Yasui, T; Felippe, M J B; Overton, T R

    2016-01-01

    The objective of the current study was to determine associations between the severity of systemic inflammation during the early postpartum period and performance, energy metabolism, and immune function in dairy cows. Cows were assigned to categorical quartiles (Q; Q1=0.18-0.59, Q2=0.60-1.14, Q3=1.15-2.05, and Q4=2.06-2.50 g of haptoglobin/L) based on the highest plasma haptoglobin (Hp) concentration measured during wk 1 postpartum. Although cows were assigned to different categories of inflammation during the postpartum period, we detected a quadratic relationship of inflammation on prepartum dry matter intake (DMI) and body weight (BW) such that cows in Q2 had lower prepartum DMI and cows in Q2 and Q3 had lower prepartum BW compared with cows in the other quartiles. We also detected a quadratic association of inflammation with postpartum DMI and BW such that cows in Q2 and Q3 also had generally lower postpartum DMI and BW compared with cows in Q1. There was a tendency for a Q × time interaction for milk yield and Q × time interactions for 3.5% fat-corrected milk and energy-corrected milk yields; quadratic relationships suggested decreased milk yield for Q2 and Q3 cows. We also found Q × parity and Q × time interactions for plasma glucose and insulin concentrations, suggesting alterations with differing degrees of inflammation. There was also a Q × time interaction for plasma nonesterified fatty acids concentration. In addition, alterations in liver triglyceride and glycogen contents for cows with inflammation as well as alterations in [1-(14)C]propionate oxidation in vitro were observed. Although we observed limited effects of inflammation on neutrophil and monocyte phagocytosis at d 7 postpartum, inflammation appeared to alter neutrophil and monocyte oxidative burst. Overall, cows with any degree of elevated haptoglobin in the first week after calving had alterations in both pre- and postpartum intake and postpartum metabolism. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. An efficient inverse radiotherapy planning method for VMAT using quadratic programming optimization.

    PubMed

    Hoegele, W; Loeschel, R; Merkle, N; Zygmanski, P

    2012-01-01

    The purpose of this study is to investigate the feasibility of an inverse planning optimization approach for the Volumetric Modulated Arc Therapy (VMAT) based on quadratic programming and the projection method. The performance of this method is evaluated against a reference commercial planning system (eclipse(TM) for rapidarc(TM)) for clinically relevant cases. The inverse problem is posed in terms of a linear combination of basis functions representing arclet dose contributions and their respective linear coefficients as degrees of freedom. MLC motion is decomposed into basic motion patterns in an intuitive manner leading to a system of equations with a relatively small number of equations and unknowns. These equations are solved using quadratic programming under certain limiting physical conditions for the solution, such as the avoidance of negative dose during optimization and Monitor Unit reduction. The modeling by the projection method assures a unique treatment plan with beneficial properties, such as the explicit relation between organ weightings and the final dose distribution. Clinical cases studied include prostate and spine treatments. The optimized plans are evaluated by comparing isodose lines, DVH profiles for target and normal organs, and Monitor Units to those obtained by the clinical treatment planning system eclipse(TM). The resulting dose distributions for a prostate (with rectum and bladder as organs at risk), and for a spine case (with kidneys, liver, lung and heart as organs at risk) are presented. Overall, the results indicate that similar plan qualities for quadratic programming (QP) and rapidarc(TM) could be achieved at significantly more efficient computational and planning effort using QP. Additionally, results for the quasimodo phantom [Bohsung et al., "IMRT treatment planning: A comparative inter-system and inter-centre planning exercise of the estro quasimodo group," Radiother. Oncol. 76(3), 354-361 (2005)] are presented as an example for an extreme concave case. Quadratic programming is an alternative approach for inverse planning which generates clinically satisfying plans in comparison to the clinical system and constitutes an efficient optimization process characterized by uniqueness and reproducibility of the solution.

  8. Determining the relationship between students' scores using traditional homework assignments to those who used assignments on a non-traditional interactive CD with tutor helps

    NASA Astrophysics Data System (ADS)

    Tinney, Charles Evan

    2007-12-01

    By using the book "Physics for Scientists and Engineers" by Raymond A. Serway as a guide, CD problem sets for teaching a calculus-based physics course were developed, programmed, and evaluated for homework assignments during the 2003-2004 academic year at Utah State University. These CD sets were used to replace the traditionally handwritten and submitted homework sets. They included a research-based format that guided the students through problem-solving techniques using responseactivated helps and suggestions. The CD contents were designed to help the student improve his/her physics problem-solving skills. The analyzed score results showed a direct correlation between the scores obtained on the homework and the students' time spent per problem, as well as the number of helps used per problem.

  9. Satisfying positivity requirement in the Beyond Complex Langevin approach

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Adam; Ruba, Błażej Ruba

    2018-03-01

    The problem of finding a positive distribution, which corresponds to a given complex density, is studied. By the requirement that the moments of the positive distribution and of the complex density are equal, one can reduce the problem to solving the matching conditions. These conditions are a set of quadratic equations, thus Groebner basis method was used to find its solutions when it is restricted to a few lowest-order moments. For a Gaussian complex density, these approximate solutions are compared with the exact solution, that is known in this special case.

  10. Security of Distributed-Phase-Reference Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Moroder, Tobias; Curty, Marcos; Lim, Charles Ci Wen; Thinh, Le Phuc; Zbinden, Hugo; Gisin, Nicolas

    2012-12-01

    Distributed-phase-reference quantum key distribution stands out for its easy implementation with present day technology. For many years, a full security proof of these schemes in a realistic setting has been elusive. We solve this long-standing problem and present a generic method to prove the security of such protocols against general attacks. To illustrate our result, we provide lower bounds on the key generation rate of a variant of the coherent-one-way quantum key distribution protocol. In contrast to standard predictions, it appears to scale quadratically with the system transmittance.

  11. Experimental and Theoretical Results in Output-Trajectory Redesign for Flexible Structures

    NASA Technical Reports Server (NTRS)

    Dewey, J. S.; Devasia, Santosh

    1996-01-01

    In this paper we study the optimal redesign of output trajectory for linear invertible systems. This is particularly important for tracking control of flexible structures because the input-state trajectories that achieve the required output may cause excessive vibrations in the structure. A trade-off is then required between tracking and vibrations reduction. We pose and solve this problem as the minimization of a quadratic cost function. The theory is developed and applied to the output tracking of a flexible structure and experimental results are presented.

  12. On the computation of steady Hopper flows. II: von Mises materials in various geometries

    NASA Astrophysics Data System (ADS)

    Gremaud, Pierre A.; Matthews, John V.; O'Malley, Meghan

    2004-11-01

    Similarity solutions are constructed for the flow of granular materials through hoppers. Unlike previous work, the present approach applies to nonaxisymmetric containers. The model involves ten unknowns (stresses, velocity, and plasticity function) determined by nine nonlinear first order partial differential equations together with a quadratic algebraic constraint (yield condition). A pseudospectral discretization is applied; the resulting problem is solved with a trust region method. The important role of the hopper geometry on the flow is illustrated by several numerical experiments of industrial relevance.

  13. A quantum heuristic algorithm for the traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Bang, Jeongho; Ryu, Junghee; Lee, Changhyoup; Yoo, Seokwon; Lim, James; Lee, Jinhyoung

    2012-12-01

    We propose a quantum heuristic algorithm to solve the traveling salesman problem by generalizing the Grover search. Sufficient conditions are derived to greatly enhance the probability of finding the tours with the cheapest costs reaching almost to unity. These conditions are characterized by the statistical properties of tour costs and are shown to be automatically satisfied in the large-number limit of cities. In particular for a continuous distribution of the tours along the cost, we show that the quantum heuristic algorithm exhibits a quadratic speedup compared to its classical heuristic algorithm.

  14. Student's Lab Assignments in PDE Course with MAPLE.

    ERIC Educational Resources Information Center

    Ponidi, B. Alhadi

    Computer-aided software has been used intensively in many mathematics courses, especially in computational subjects, to solve initial value and boundary value problems in Partial Differential Equations (PDE). Many software packages were used in student lab assignments such as FORTRAN, PASCAL, MATLAB, MATHEMATICA, and MAPLE in order to accelerate…

  15. Nurturing Students' Problem-Solving Skills and Engagement in Computer-Mediated Communications (CMC)

    ERIC Educational Resources Information Center

    Chen, Ching-Huei

    2014-01-01

    The present study sought to investigate how to enhance students' well- and ill-structured problem-solving skills and increase productive engagement in computer-mediated communication with the assistance of external prompts, namely procedural and reflection. Thirty-three graduate students were randomly assigned to two conditions: procedural and…

  16. Mesh and Time-Step Independent Computational Fluid Dynamics (CFD) Solutions

    ERIC Educational Resources Information Center

    Nijdam, Justin J.

    2013-01-01

    A homework assignment is outlined in which students learn Computational Fluid Dynamics (CFD) concepts of discretization, numerical stability and accuracy, and verification in a hands-on manner by solving physically realistic problems of practical interest to engineers. The students solve a transient-diffusion problem numerically using the common…

  17. Interleaved Practice Improves Mathematics Learning

    ERIC Educational Resources Information Center

    Rohrer, Doug; Dedrick, Robert F.; Stershic, Sandra

    2015-01-01

    A typical mathematics assignment consists primarily of practice problems requiring the strategy introduced in the immediately preceding lesson (e.g., a dozen problems that are solved by using the Pythagorean theorem). This means that students know which strategy is needed to solve each problem before they read the problem. In an alternative…

  18. Effects of Small-Group Tutoring with and without Validated Classroom Instruction on At-Risk Students' Math Problem Solving: Are Two Tiers of Prevention Better Than One?

    PubMed

    Fuchs, Lynn S; Fuchs, Douglas; Craddock, Caitlin; Hollenbeck, Kurstin N; Hamlett, Carol L; Schatschneider, Christopher

    2008-01-01

    The purpose of this study was to assess the effects of small-group tutoring with and without validated classroom instruction on at-risk (AR) students' math problem solving. Stratifying within schools, 119 3(rd)-grade classes were randomly assigned to conventional or validated problem-solving instruction (Hot Math [schema-broadening instruction]). Students identified as AR (n = 243) were randomly assigned, within classroom conditions, to receive Hot Math tutoring or not. Students were tested on problem-solving and math applications measures before and after 16 weeks of intervention. Analyses of variance, which accounted for the nested structure of the data, revealed the tutored students who received validated classroom instruction achieved better than tutored students who received conventional classroom instruction (ES = 1.34). However, the advantage for tutoring over no tutoring was similar whether or not students received validated or conventional classroom instruction (ESs = 1.18 and 1.13). Tutoring, not validated classroom instruction reduced the prevalence of math difficulty. Implications for responsiveness-to-intervention prevention models and for enhancing math problem-solving instruction are discussed.

  19. Effects of Small-Group Tutoring with and without Validated Classroom Instruction on At-Risk Students' Math Problem Solving: Are Two Tiers of Prevention Better Than One?

    PubMed Central

    Fuchs, Lynn S.; Fuchs, Douglas; Craddock, Caitlin; Hollenbeck, Kurstin N.; Hamlett, Carol L.; Schatschneider, Christopher

    2008-01-01

    The purpose of this study was to assess the effects of small-group tutoring with and without validated classroom instruction on at-risk (AR) students' math problem solving. Stratifying within schools, 119 3rd-grade classes were randomly assigned to conventional or validated problem-solving instruction (Hot Math [schema-broadening instruction]). Students identified as AR (n = 243) were randomly assigned, within classroom conditions, to receive Hot Math tutoring or not. Students were tested on problem-solving and math applications measures before and after 16 weeks of intervention. Analyses of variance, which accounted for the nested structure of the data, revealed the tutored students who received validated classroom instruction achieved better than tutored students who received conventional classroom instruction (ES = 1.34). However, the advantage for tutoring over no tutoring was similar whether or not students received validated or conventional classroom instruction (ESs = 1.18 and 1.13). Tutoring, not validated classroom instruction reduced the prevalence of math difficulty. Implications for responsiveness-to-intervention prevention models and for enhancing math problem-solving instruction are discussed. PMID:19122881

  20. Solving optimization problems on computational grids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, S. J.; Mathematics and Computer Science

    2001-05-01

    Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms havemore » become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software infrastructure need to solve these problems on computational grids. This article describes some of the results we have obtained during the first three years of the metaneos project. Our efforts have led to development of the runtime support library MW for implementing algorithms with master-worker control structure on Condor platforms. This work is discussed here, along with work on algorithms and codes for integer linear programming, the quadratic assignment problem, and stochastic linear programmming. Our experiences in the metaneos project have shown that cheap, powerful computational grids can be used to tackle large optimization problems of various types. In an industrial or commercial setting, the results demonstrate that one may not have to buy powerful computational servers to solve many of the large problems arising in areas such as scheduling, portfolio optimization, or logistics; the idle time on employee workstations (or, at worst, an investment in a modest cluster of PCs) may do the job. For the optimization research community, our results motivate further work on parallel, grid-enabled algorithms for solving very large problems of other types. The fact that very large problems can be solved cheaply allows researchers to better understand issues of 'practical' complexity and of the role of heuristics.« less

  1. Retrieve polarization aberration from image degradation: a new measurement method in DUV lithography

    NASA Astrophysics Data System (ADS)

    Xiang, Zhongbo; Li, Yanqiu

    2017-10-01

    Detailed knowledge of polarization aberration (PA) of projection lens in higher-NA DUV lithographic imaging is necessary due to its impact to imaging degradations, and precise measurement of PA is conductive to computational lithography techniques such as RET and OPC. Current in situ measurement method of PA thorough the detection of degradations of aerial images need to do linear approximation and apply the assumption of 3-beam/2-beam interference condition. The former approximation neglects the coupling effect of the PA coefficients, which would significantly influence the accuracy of PA retrieving. The latter assumption restricts the feasible pitch of test masks in higher-NA system, conflicts with the Kirhhoff diffraction model of test mask used in retrieving model, and introduces 3D mask effect as a source of retrieving error. In this paper, a new in situ measurement method of PA is proposed. It establishes the analytical quadratic relation between the PA coefficients and the degradations of aerial images of one-dimensional dense lines in coherent illumination through vector aerial imaging, which does not rely on the assumption of 3-beam/2- beam interference and linear approximation. In this case, the retrieval of PA from image degradation can be convert from the nonlinear system of m-quadratic equations to a multi-objective quadratic optimization problem, and finally be solved by nonlinear least square method. Some preliminary simulation results are given to demonstrate the correctness and accuracy of the new PA retrieving model.

  2. A reduced successive quadratic programming strategy for errors-in-variables estimation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjoa, I.-B.; Biegler, L. T.; Carnegie-Mellon Univ.

    Parameter estimation problems in process engineering represent a special class of nonlinear optimization problems, because the maximum likelihood structure of the objective function can be exploited. Within this class, the errors in variables method (EVM) is particularly interesting. Here we seek a weighted least-squares fit to the measurements with an underdetermined process model. Thus, both the number of variables and degrees of freedom available for optimization increase linearly with the number of data sets. Large optimization problems of this type can be particularly challenging and expensive to solve because, for general-purpose nonlinear programming (NLP) algorithms, the computational effort increases atmore » least quadratically with problem size. In this study we develop a tailored NLP strategy for EVM problems. The method is based on a reduced Hessian approach to successive quadratic programming (SQP), but with the decomposition performed separately for each data set. This leads to the elimination of all variables but the model parameters, which are determined by a QP coordination step. In this way the computational effort remains linear in the number of data sets. Moreover, unlike previous approaches to the EVM problem, global and superlinear properties of the SQP algorithm apply naturally. Also, the method directly incorporates inequality constraints on the model parameters (although not on the fitted variables). This approach is demonstrated on five example problems with up to 102 degrees of freedom. Compared to general-purpose NLP algorithms, large improvements in computational performance are observed.« less

  3. Effect of the inclusion of dry pasta by-products at different levels in the diet of typical Italian finishing heavy pigs: Performance, carcass characteristics, and ham quality.

    PubMed

    Prandini, A; Sigolo, S; Moschini, M; Giuberti, G; Morlacchini, M

    2016-04-01

    The effect of pasta inclusion in finishing pig diets was evaluated on growth performance, carcass characteristics, and ham quality. Pigs (144) were assigned to 4 diets with different pasta levels: 0 (control, corn-based diet), 30, 60, or 80%. Pigs fed pasta had greater (linear, P<0.01) feed intakes than controls. Pasta increased (quadratic, P<0.01) carcass weight and dressing percentage reaching the highest values at 30% inclusion level, and reduced (linear, P<0.01) the Longissimus thoracis et lumborum thickness. Pasta decreased (linear, P<0.01) linoleic acid and polyunsaturated fatty acid levels in subcutaneous (fresh and seasoned hams) and intramuscular (seasoned hams) fat, and enhanced saturated fatty acid content in subcutaneous fat (fresh hams: quadratic, P<0.01; seasoned hams: linear, P=0.03). Proteolysis index, colour, weight losses, and sensory properties (excepted extraneous taste) of the hams were unaffected by the pasta. Pasta could be considered as an ingredient in the diet for typical Italian finishing heavy pigs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A New Runge-Kutta Discontinuous Galerkin Method with Conservation Constraint to Improve CFL Condition for Solving Conservation Laws

    PubMed Central

    Xu, Zhiliang; Chen, Xu-Yan; Liu, Yingjie

    2014-01-01

    We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [9, 8, 7, 6] for solving conservation Laws with increased CFL numbers. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. Numerical computations for solving one-dimensional and two-dimensional scalar and systems of nonlinear hyperbolic conservation laws are performed with approximate solutions represented by piecewise quadratic and cubic polynomials, respectively. The hierarchical reconstruction [17, 33] is applied as a limiter to eliminate spurious oscillations in discontinuous solutions. From both numerical experiments and the analytic estimate of the CFL number of the newly formulated method, we find that: 1) this new formulation improves the CFL number over the original RKDG formulation by at least three times or more and thus reduces the overall computational cost; and 2) the new formulation essentially does not compromise the resolution of the numerical solutions of shock wave problems compared with ones computed by the RKDG method. PMID:25414520

  5. Optimal perturbations for nonlinear systems using graph-based optimal transport

    NASA Astrophysics Data System (ADS)

    Grover, Piyush; Elamvazhuthi, Karthik

    2018-06-01

    We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.

  6. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1985-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  7. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  8. Dual boundary element formulation for elastoplastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Leitao, V.; Aliabadi, M. H.; Rooke, D. P.

    1995-01-01

    In this paper the extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elasto-plastic behavior is modelled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral and/or triangular cells. This formulation was implemented for two-dimensional domains only, although there is no theoretical or numerical limitation to its application to three-dimensional ones. A center-cracked plate and a slant edge-cracked plate subjected to tensile load are analysed and the results are compared with others available in the literature. J-type integrals are calculated.

  9. Improved Shaping Approach to the Preliminary Design of Low-Thrust Trajectories

    NASA Astrophysics Data System (ADS)

    Novak, D. M.; Vasile, M.

    2011-01-01

    This paper presents a general framework for the development of shape-based approaches to low-thrust trajectory design. A novel shaping method, based on a three-dimensional description of the trajectory in spherical coordinates, is developed within this general framework. Both the exponential sinusoid and the inverse polynomial shaping are demonstrated to be particular two-dimensional cases of the spherical one. The pseudoequinoctial shaping is revisited within the new framework, and the nonosculating nature of the pseudoequinoctial elements is analyzed. A two-step approach is introduced to solve the time of flight constraint, related to the design of low-thrust arcs with boundary constraints for both spherical and pseudoequinoctial shaping. The solution derived from the shaping approach is improved with a feedback linear-quadratic controller and compared against a direct collocation method based on finite elements in time. The new shaping approach and the combination of shaping and linear-quadratic controller are tested on three case studies: a mission to Mars, a mission to asteroid 1989ML, a mission to comet Tempel-1, and a mission to Neptune.

  10. Calculation of the electron wave function in a graded-channel double-heterojunction modulation-doped field-effect transistor

    NASA Technical Reports Server (NTRS)

    Mui, D. S. L.; Patil, M. B.; Morkoc, H.

    1989-01-01

    Three double-heterojunction modulation-doped field-effect transistor structures with different channel composition are investigated theoretically. All of these transistors have an In(x)Ga(1-x)As channel sandwiched between two doped Al(0.3)Ga(0.7)As barriers with undoped spacer layers. In one of the structures, x varies from 0 from either heterojunction to 0.15 at the center of the channel quadratically; in the other two, constant values of x of 0 and 0.15 are used. The Poisson and Schroedinger equations are solved self-consistently for the electron wave function in all three cases. The results showed that the two-dimensional electron gas (2DEG) concentration in the channel of the quadratically graded structure is higher than the x = 0 one and slightly lower than the x = 0.15 one, and the mean distance of the 2DEG is closer to the center of the channel for this transistor than the other two. These two effects have important implications on the electron mobility in the channel.

  11. Dynamics of a new family of iterative processes for quadratic polynomials

    NASA Astrophysics Data System (ADS)

    Gutiérrez, J. M.; Hernández, M. A.; Romero, N.

    2010-03-01

    In this work we show the presence of the well-known Catalan numbers in the study of the convergence and the dynamical behavior of a family of iterative methods for solving nonlinear equations. In fact, we introduce a family of methods, depending on a parameter . These methods reach the order of convergence m+2 when they are applied to quadratic polynomials with different roots. Newton's and Chebyshev's methods appear as particular choices of the family appear for m=0 and m=1, respectively. We make both analytical and graphical studies of these methods, which give rise to rational functions defined in the extended complex plane. Firstly, we prove that the coefficients of the aforementioned family of iterative processes can be written in terms of the Catalan numbers. Secondly, we make an incursion into its dynamical behavior. In fact, we show that the rational maps related to these methods can be written in terms of the entries of the Catalan triangle. Next we analyze its general convergence, by including some computer plots showing the intricate structure of the Universal Julia sets associated with the methods.

  12. Estimation of positive semidefinite correlation matrices by using convex quadratic semidefinite programming.

    PubMed

    Fushiki, Tadayoshi

    2009-07-01

    The correlation matrix is a fundamental statistic that is used in many fields. For example, GroupLens, a collaborative filtering system, uses the correlation between users for predictive purposes. Since the correlation is a natural similarity measure between users, the correlation matrix may be used in the Gram matrix in kernel methods. However, the estimated correlation matrix sometimes has a serious defect: although the correlation matrix is originally positive semidefinite, the estimated one may not be positive semidefinite when not all ratings are observed. To obtain a positive semidefinite correlation matrix, the nearest correlation matrix problem has recently been studied in the fields of numerical analysis and optimization. However, statistical properties are not explicitly used in such studies. To obtain a positive semidefinite correlation matrix, we assume the approximate model. By using the model, an estimate is obtained as the optimal point of an optimization problem formulated with information on the variances of the estimated correlation coefficients. The problem is solved by a convex quadratic semidefinite program. A penalized likelihood approach is also examined. The MovieLens data set is used to test our approach.

  13. Morphological adaptation of sheep's rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis.

    PubMed

    Xu, Lei; Wang, Yue; Liu, Junhua; Zhu, Weiyun; Mao, Shengyong

    2018-01-01

    The objectives of this study were to characterize changes in the relative mRNA expression of candidate genes and proteins involved in cell cycle regulation, cell proliferation and apoptosis in the ruminal epithelium (RE) of sheep during high-grain (HG) diet adaptation. Twenty sheep were assigned to four groups with five animals each. These animals were assigned to different periods of HG diet (containing 40% forage and 60% concentrate mix) feeding. The HG groups received an HG diet for 7 (G7, n  = 5), 14 (G14, n  = 5) and 28 d (G28, n  = 5), respectively. In contrast, the control group (CON, n  = 5) was fed the forage-based diet for 28 d. The results showed that HG feeding linearly decreased ( P  <  0.001) the ruminal pH, and increased the concentrations of ruminal total volatile fatty acid (linear, P  = 0.001), butyrate (linear, P  <  0.001), valerate (quadratic P  = 0.029) and the level of IGF-1 (quadratic, P  = 0.043) in plasma. The length (quadratic, P  = 0.004), width (cubic, P  = 0.015) and surface of the ruminal papillae (linear, P  = 0.003) were all enlarged after 14 d of HG diet feeding. HG feeding cubically increased the number of cell layers forming the stratum corneum (SC, P  <  0.001) and the thickness of the SC ( P  <  0.001) and stratum basale ( P  <  0.001). The proportion of basal layer cells in the RE decreased (linear, P  <  0.001) in the G0/G1-phase, but it increased linearly ( P  = 0.006) in the S-phase and cubically ( P  = 0.004) in the G2/M-phases. The proportion of apoptosis cells in G7, G14 and G28 was reduced compared to the CON (quadratic, P  < 0.001). HG diet feeding linearly decreased the mRNA expression of Cyclin E1 ( P  = 0.021) and CDK-2 ( P  = 0.001) and ( P  = 0.027) the protein expression of Cyclin E1. Feeding an HG diet linearly increased the mRNA expression of genes IGFBP-2 ( P  = 0.034) and IGFBP 5 ( P  < 0.009), while linearly decreasing ( P  < 0.001) the IGFBP 3 expression. The expression of cell apoptosis gene Caspase 8 decreased (quadratic, P  = 0.012), while Bad mRNA expression tended to decrease (cubic, P  = 0.053) after HG feeding. These results demonstrated sequential changes in rumen papillae size, cell cycle regulation and the genes involved in proliferation and apoptosis as time elapsed in feeding a high-grain diet to sheep.

  14. Lights, Camera, Action! Learning about Management with Student-Produced Video Assignments

    ERIC Educational Resources Information Center

    Schultz, Patrick L.; Quinn, Andrew S.

    2014-01-01

    In this article, we present a proposal for fostering learning in the management classroom through the use of student-produced video assignments. We describe the potential for video technology to create active learning environments focused on problem solving, authentic and direct experiences, and interaction and collaboration to promote student…

  15. Non-Boolean computing with nanomagnets for computer vision applications

    NASA Astrophysics Data System (ADS)

    Bhanja, Sanjukta; Karunaratne, D. K.; Panchumarthy, Ravi; Rajaram, Srinath; Sarkar, Sudeep

    2016-02-01

    The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high-speed and dense non-volatile memories. It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms. Here, we harness the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive. By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, we develop a magnetic Hamiltonian and implement it in a magnetic system that can identify the salient features of a given image with more than 85% true positive rate. These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.

  16. A second order discontinuous Galerkin fast sweeping method for Eikonal equations

    NASA Astrophysics Data System (ADS)

    Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai

    2008-09-01

    In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.

  17. A curve fitting method for solving the flutter equation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Cooper, J. L.

    1972-01-01

    A curve fitting approach was developed to solve the flutter equation for the critical flutter velocity. The psi versus nu curves are approximated by cubic and quadratic equations. The curve fitting technique utilized the first and second derivatives of psi with respect to nu. The method was tested for two structures, one structure being six times the total mass of the other structure. The algorithm never showed any tendency to diverge from the solution. The average time for the computation of a flutter velocity was 3.91 seconds on an IBM Model 50 computer for an accuracy of five per cent. For values of nu close to the critical root of the flutter equation the algorithm converged on the first attempt. The maximum number of iterations for convergence to the critical flutter velocity was five with an assumed value of nu relatively distant from the actual crossover.

  18. Interpersonal Problem-Solving Skills Training in the Treatment of Self-Poisoning Patients.

    ERIC Educational Resources Information Center

    McLeavey, B. C.; And Others

    1994-01-01

    Evaluated the effectiveness of interpersonal problem-solving skills training (IPSST) for the treatment of self-poisoning patients. Subjects were assigned randomly either to IPSST or to a control treatment. Although both treatments reduced the number of presenting problems, the IPSST was more effective as determined by other outcome measures. (RJM)

  19. Concordancers and Dictionaries as Problem-Solving Tools for ESL Academic Writing

    ERIC Educational Resources Information Center

    Yoon, Choongil

    2016-01-01

    The present study investigated how 6 Korean ESL graduate students in Canada used a suite of freely available reference resources, consisting of Web-based corpus tools, Google search engines, and dictionaries, for solving linguistic problems while completing an authentic academic writing assignment in English. Using a mixed methods design, the…

  20. The Effect of Contextual and Conceptual Rewording on Mathematical Problem-Solving Performance

    ERIC Educational Resources Information Center

    Haghverdi, Majid; Wiest, Lynda R.

    2016-01-01

    This study shows how separate and combined contextual and conceptual problem rewording can positively influence student performance in solving mathematical word problems. Participants included 80 seventh-grade Iranian students randomly assigned in groups of 20 to three experimental groups involving three types of rewording and a control group. All…

  1. Effect of Worked Examples on Mental Model Progression in a Computer-Based Simulation Learning Environment

    ERIC Educational Resources Information Center

    Darabi, Aubteen; Nelson, David W.; Meeker, Richard; Liang, Xinya; Boulware, Wilma

    2010-01-01

    In a diagnostic problem solving operation of a computer-simulated chemical plant, chemical engineering students were randomly assigned to two groups: one studying product-oriented worked examples, the other practicing conventional problem solving. Effects of these instructional strategies on the progression of learners' mental models were examined…

  2. Results and Implications of a Problem-Solving Treatment Program for Obesity.

    ERIC Educational Resources Information Center

    Mahoney, B. K.; And Others

    Data are from a large scale experimental study which was designed to evaluate a multimethod problem solving approach to obesity. Obese adult volunteers (N=90) were randomly assigned to three groups: maximal treatment, minimal treatment, and no treatment control. In the two treatment groups, subjects were exposed to bibliographic material and…

  3. Carcass characteristics of lambs fed spineless cactus as a replacement for sugarcane.

    PubMed

    de Oliveira, Juliana Paula Felipe; de Andrade Ferreira, Marcelo; Alves, Adryanne Marjorie Souza Vitor; de Melo, Ana Caroline Cerqueira; de Andrade, Ida Barbosa; Urbano, Stela Antas; Suassuna, Juraci Marcos Alves; de Barros, Leonardo José Assis; de Barros Melo, Tobias Tobit

    2018-04-01

    Fresh sugarcane has been a new roughage source for ruminant's in semiarid regions, a function of the decline of sugar and alcohol industry in recent years. However, there is little data published regarding lambs fed sugarcane associated with spineless cactus. This study evaluated the effect of sugarcane replacement with spineless cactus (0%, 33%, 66%, and 100%) in the diet of Santa Inês lambs on carcass characteristics. Thirty-six non-castrated Santa Ines lambs at four months of age and an initial body weight of 22±2.3 kg were assigned in a randomized block design and slaughtered after 70 days of confinement. The effects of spineless cactus as a replacement for sugarcane in the diet of the lambs on the carcass characteristics, commercial cut weight and yield, leg tissue composition, and carcass measurements were studied. The study revealed quadratic behavior in slaughter body weight, and hot and cold carcass weight, with maximum values of 38.60, 18.60, and 18.11 kg and replacement levels of 40.18%, 44.42%, and 43.14%, respectively. The cold carcass yield presented an increasing linear behavior. The compactness index of carcass and leg presented a quadratic effect, with estimated maximal values of 0.28 and 0.57 kg/cm and replacement levels of 43.37% and 45.5%, respectively. The weights of commercial cuts of leg, loin, shoulder, and breast showed quadratic behavior, with maximum values of 2.79, 0.852, 1.46, and 1.30 kg and replacement levels of 49.5, 45.32, 39.0, and 40.7, respectively. For tissue composition, quadratic behavior was verified for leg weight, subcutaneous fat, and total fat. The replacement of sugarcane by spineless cactus at level 44% is recommended for finishing lambs considering that this level improved most of the carcass characteristics, weights, and yields of commercial cuts and leg tissue composition.

  4. A Fuzzy Goal Programming for a Multi-Depot Distribution Problem

    NASA Astrophysics Data System (ADS)

    Nunkaew, Wuttinan; Phruksaphanrat, Busaba

    2010-10-01

    A fuzzy goal programming model for solving a Multi-Depot Distribution Problem (MDDP) is proposed in this research. This effective proposed model is applied for solving in the first step of Assignment First-Routing Second (AFRS) approach. Practically, a basic transportation model is firstly chosen to solve this kind of problem in the assignment step. After that the Vehicle Routing Problem (VRP) model is used to compute the delivery cost in the routing step. However, in the basic transportation model, only depot to customer relationship is concerned. In addition, the consideration of customer to customer relationship should also be considered since this relationship exists in the routing step. Both considerations of relationships are solved using Preemptive Fuzzy Goal Programming (P-FGP). The first fuzzy goal is set by a total transportation cost and the second fuzzy goal is set by a satisfactory level of the overall independence value. A case study is used for describing the effectiveness of the proposed model. Results from the proposed model are compared with the basic transportation model that has previously been used in this company. The proposed model can reduce the actual delivery cost in the routing step owing to the better result in the assignment step. Defining fuzzy goals by membership functions are more realistic than crisps. Furthermore, flexibility to adjust goals and an acceptable satisfactory level for decision maker can also be increased and the optimal solution can be obtained.

  5. NVR-BIP: Nuclear Vector Replacement using Binary Integer Programming for NMR Structure-Based Assignments.

    PubMed

    Apaydin, Mehmet Serkan; Çatay, Bülent; Patrick, Nicholas; Donald, Bruce R

    2011-05-01

    Nuclear magnetic resonance (NMR) spectroscopy is an important experimental technique that allows one to study protein structure and dynamics in solution. An important bottleneck in NMR protein structure determination is the assignment of NMR peaks to the corresponding nuclei. Structure-based assignment (SBA) aims to solve this problem with the help of a template protein which is homologous to the target and has applications in the study of structure-activity relationship, protein-protein and protein-ligand interactions. We formulate SBA as a linear assignment problem with additional nuclear overhauser effect constraints, which can be solved within nuclear vector replacement's (NVR) framework (Langmead, C., Yan, A., Lilien, R., Wang, L. and Donald, B. (2003) A Polynomial-Time Nuclear Vector Replacement Algorithm for Automated NMR Resonance Assignments. Proc. the 7th Annual Int. Conf. Research in Computational Molecular Biology (RECOMB) , Berlin, Germany, April 10-13, pp. 176-187. ACM Press, New York, NY. J. Comp. Bio. , (2004), 11, pp. 277-298; Langmead, C. and Donald, B. (2004) An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. J. Biomol. NMR , 29, 111-138). Our approach uses NVR's scoring function and data types and also gives the option of using CH and NH residual dipolar coupling (RDCs), instead of NH RDCs which NVR requires. We test our technique on NVR's data set as well as on four new proteins. Our results are comparable to NVR's assignment accuracy on NVR's test set, but higher on novel proteins. Our approach allows partial assignments. It is also complete and can return the optimum as well as near-optimum assignments. Furthermore, it allows us to analyze the information content of each data type and is easily extendable to accept new forms of input data, such as additional RDCs.

  6. Neural Mechanisms of Credit Assignment in a Multicue Environment

    PubMed Central

    Kolling, Nils; Brown, Joshua W.; Rushworth, Matthew

    2016-01-01

    In complex environments, many potential cues can guide a decision or be assigned responsibility for the outcome of the decision. We know little, however, about how humans and animals select relevant information sources that should guide behavior. We show that subjects solve this relevance selection and credit assignment problem by selecting one cue and its association with a particular outcome as the main focus of a hypothesis. To do this, we examined learning while using a task design that allowed us to estimate the focus of each subject's hypotheses on a trial-by-trial basis. When a prediction is confirmed by the outcome, then credit for the outcome is assigned to that cue rather than an alternative. Activity in medial frontal cortex is associated with the assignment of credit to the cue that is the main focus of the hypothesis. However, when the outcome disconfirms a prediction, the focus shifts between cues, and the credit for the outcome is assigned to an alternative cue. This process of reselection for credit assignment to an alternative cue is associated with lateral orbitofrontal cortex. SIGNIFICANCE STATEMENT Learners should infer which features of environments are predictive of significant events, such as rewards. This “credit assignment” problem is particularly challenging when any of several cues might be predictive. We show that human subjects solve the credit assignment problem by implicitly “hypothesizing” which cue is relevant for predicting subsequent outcomes, and then credit is assigned according to this hypothesis. This process is associated with a distinctive pattern of activity in a part of medial frontal cortex. By contrast, when unexpected outcomes occur, hypotheses are redirected toward alternative cues, and this process is associated with activity in lateral orbitofrontal cortex. PMID:26818500

  7. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task.

    PubMed

    Kinjo, Ken; Uchibe, Eiji; Doya, Kenji

    2013-01-01

    Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning.

  8. Fixed order dynamic compensation for multivariable linear systems

    NASA Technical Reports Server (NTRS)

    Kramer, F. S.; Calise, A. J.

    1986-01-01

    This paper considers the design of fixed order dynamic compensators for multivariable time invariant linear systems, minimizing a linear quadratic performance cost functional. Attention is given to robustness issues in terms of multivariable frequency domain specifications. An output feedback formulation is adopted by suitably augmenting the system description to include the compensator states. Either a controller or observer canonical form is imposed on the compensator description to reduce the number of free parameters to its minimal number. The internal structure of the compensator is prespecified by assigning a set of ascending feedback invariant indices, thus forming a Brunovsky structure for the nominal compensator.

  9. Real life working shift assignment problem

    NASA Astrophysics Data System (ADS)

    Sze, San-Nah; Kwek, Yeek-Ling; Tiong, Wei-King; Chiew, Kang-Leng

    2017-07-01

    This study concerns about the working shift assignment in an outlet of Supermarket X in Eastern Mall, Kuching. The working shift assignment needs to be solved at least once in every month. Current approval process of working shifts is too troublesome and time-consuming. Furthermore, the management staff cannot have an overview of manpower and working shift schedule. Thus, the aim of this study is to develop working shift assignment simulation and propose a working shift assignment solution. The main objective for this study is to fulfill manpower demand at minimum operation cost. Besides, the day off and meal break policy should be fulfilled accordingly. Demand based heuristic is proposed to assign working shift and the quality of the solution is evaluated by using the real data.

  10. Solution of the symmetric eigenproblem AX=lambda BX by delayed division

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.; Bains, N. J. C.

    1986-01-01

    Delayed division is an iterative method for solving the linear eigenvalue problem AX = lambda BX for a limited number of small eigenvalues and their corresponding eigenvectors. The distinctive feature of the method is the reduction of the problem to an approximate triangular form by systematically dropping quadratic terms in the eigenvalue lambda. The report describes the pivoting strategy in the reduction and the method for preserving symmetry in submatrices at each reduction step. Along with the approximate triangular reduction, the report extends some techniques used in the method of inverse subspace iteration. Examples are included for problems of varying complexity.

  11. A Generalization of the Simultaneous Diagonalization of Hermitian Matrices and its Relation to Quantum Estimation Theory

    NASA Astrophysics Data System (ADS)

    Nagaoka, Hiroshi

    We study the problem of minimizing a quadratic quantity defined for given two Hermitian matrices X, Y and a positive-definite Hermitian matrix. This problem is reduced to the simultaneous diagonalization of X, Y when XY = YX. We derive a lower bound for the quantity, and in some special cases solve the problem by showing that the lower bound is achievable. This problem is closely related to a simultaneous measurement of quantum mechanical observables which are not commuting and has an application in the theory of quantum state estimation.

  12. Multimodal Image Alignment via Linear Mapping between Feature Modalities.

    PubMed

    Jiang, Yanyun; Zheng, Yuanjie; Hou, Sujuan; Chang, Yuchou; Gee, James

    2017-01-01

    We propose a novel landmark matching based method for aligning multimodal images, which is accomplished uniquely by resolving a linear mapping between different feature modalities. This linear mapping results in a new measurement on similarity of images captured from different modalities. In addition, our method simultaneously solves this linear mapping and the landmark correspondences by minimizing a convex quadratic function. Our method can estimate complex image relationship between different modalities and nonlinear nonrigid spatial transformations even in the presence of heavy noise, as shown in our experiments carried out by using a variety of image modalities.

  13. Representation of turbulent shear stress by a product of mean velocity differences

    NASA Technical Reports Server (NTRS)

    Braun, W. H.

    1977-01-01

    A quadratic form in the mean velocity for the turbulent shear stress is presented. It is expressed as the product of two velocity differences whose roots are the maximum velocity in the flow and a cutoff velocity below which the turbulent shear stress vanishes. Application to pipe and channel flows yields the centerline velocity as a function of pressure gradient, as well as the velocity profile. The flat plate, boundary-layer problem is solved by a system of integral equations to obtain friction coefficient, displacement thickness, and momentum-loss thickness. Comparisons are made with experiment.

  14. Accurate evaluation of exchange fields in finite element micromagnetic solvers

    NASA Astrophysics Data System (ADS)

    Chang, R.; Escobar, M. A.; Li, S.; Lubarda, M. V.; Lomakin, V.

    2012-04-01

    Quadratic basis functions (QBFs) are implemented for solving the Landau-Lifshitz-Gilbert equation via the finite element method. This involves the introduction of a set of special testing functions compatible with the QBFs for evaluating the Laplacian operator. The results by using QBFs are significantly more accurate than those via linear basis functions. QBF approach leads to significantly more accurate results than conventionally used approaches based on linear basis functions. Importantly QBFs allow reducing the error of computing the exchange field by increasing the mesh density for structured and unstructured meshes. Numerical examples demonstrate the feasibility of the method.

  15. Aerodynamic design optimization via reduced Hessian SQP with solution refining

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1995-01-01

    An all-at-once reduced Hessian Successive Quadratic Programming (SQP) scheme has been shown to be efficient for solving aerodynamic design optimization problems with a moderate number of design variables. This paper extends this scheme to allow solution refining. In particular, we introduce a reduced Hessian refining technique that is critical for making a smooth transition of the Hessian information from coarse grids to fine grids. Test results on a nozzle design using quasi-one-dimensional Euler equations show that through solution refining the efficiency and the robustness of the all-at-once reduced Hessian SQP scheme are significantly improved.

  16. Type II universal spacetimes

    NASA Astrophysics Data System (ADS)

    Hervik, S.; Málek, T.; Pravda, V.; Pravdová, A.

    2015-12-01

    We study type II universal metrics of the Lorentzian signature. These metrics simultaneously solve vacuum field equations of all theories of gravitation with the Lagrangian being a polynomial curvature invariant constructed from the metric, the Riemann tensor and its covariant derivatives of an arbitrary order. We provide examples of type II universal metrics for all composite number dimensions. On the other hand, we have no examples for prime number dimensions and we prove the non-existence of type II universal spacetimes in five dimensions. We also present type II vacuum solutions of selected classes of gravitational theories, such as Lovelock, quadratic and L({{Riemann}}) gravities.

  17. The propagation of the shock wave from a strong explosion in a plane-parallel stratified medium: the Kompaneets approximation

    NASA Astrophysics Data System (ADS)

    Olano, C. A.

    2009-11-01

    Context: Using certain simplifications, Kompaneets derived a partial differential equation that states the local geometrical and kinematical conditions that each surface element of a shock wave, created by a point blast in a stratified gaseous medium, must satisfy. Kompaneets could solve his equation analytically for the case of a wave propagating in an exponentially stratified medium, obtaining the form of the shock front at progressive evolutionary stages. Complete analytical solutions of the Kompaneets equation for shock wave motion in further plane-parallel stratified media were not found, except for radially stratified media. Aims: We aim to analytically solve the Kompaneets equation for the motion of a shock wave in different plane-parallel stratified media that can reflect a wide variety of astrophysical contexts. We were particularly interested in solving the Kompaneets equation for a strong explosion in the interstellar medium of the Galactic disk, in which, due to intense winds and explosions of stars, gigantic gaseous structures known as superbubbles and supershells are formed. Methods: Using the Kompaneets approximation, we derived a pair of equations that we call adapted Kompaneets equations, that govern the propagation of a shock wave in a stratified medium and that permit us to obtain solutions in parametric form. The solutions provided by the system of adapted Kompaneets equations are equivalent to those of the Kompaneets equation. We solved the adapted Kompaneets equations for shock wave propagation in a generic stratified medium by means of a power-series method. Results: Using the series solution for a shock wave in a generic medium, we obtained the series solutions for four specific media whose respective density distributions in the direction perpendicular to the stratification plane are of an exponential, power-law type (one with exponent k=-1 and the other with k =-2) and a quadratic hyperbolic-secant. From these series solutions, we deduced exact solutions for the four media in terms of elemental functions. The exact solution for shock wave propagation in a medium of quadratic hyperbolic-secant density distribution is very appropriate to describe the growth of superbubbles in the Galactic disk. Member of the Carrera del Investigador Científico del CONICET, Argentina.

  18. Gamification for Non-Majors Mathematics: An Innovative Assignment Model

    ERIC Educational Resources Information Center

    Leong, Siow Hoo; Tang, Howe Eng

    2017-01-01

    The most important ingredient of the pedagogy for teaching non-majors is getting their engagement. This paper proposes to use gamification to engage non-majors. An innovative game termed as Cover the Hungarian's Zeros is designed to tackle the common weakness of non-majors mathematics in solving the assignment problem using the Hungarian Method.…

  19. Selections from the ABC 2014 Annual Convention, Philadelphia, Pennsylvania A Well-Stitched Banner of Favorite Assignments: Leadership and Other-Focused Communication and Projects

    ERIC Educational Resources Information Center

    Whalen, D. Joel

    2015-01-01

    This article, the second of a two-part series, features 11 teaching innovations presented at the 2014 Association for Business Communication annual conference. These 11 assignments included leadership and other-focused communication--detecting communication style, adaptive communication, personality type, delivering feedback, problem solving, and…

  20. Following the Wrong Footsteps: Fixation Effects of Pictorial Examples in a Design Problem-Solving Task

    ERIC Educational Resources Information Center

    Chrysikou, Evangelia G.; Weisberg, Robert W.

    2005-01-01

    Two experiments examined possible negative transfer in nonexperts from the use of pictorial examples in a laboratory design problem-solving situation. In Experiment 1, 89 participants were instructed to "think aloud" and were assigned to 1 of 3 conditions: (a) control (standard instructions), (b) fixation (inclusion of a problematic…

  1. Learning by Preparing to Teach: Fostering Self-Regulatory Processes and Achievement during Complex Mathematics Problem Solving

    ERIC Educational Resources Information Center

    Muis, Krista R.; Psaradellis, Cynthia; Chevrier, Marianne; Di Leo, Ivana; Lajoie, Susanne P.

    2016-01-01

    We developed an intervention based on the learning by teaching paradigm to foster self-regulatory processes and better learning outcomes during complex mathematics problem solving in a technology-rich learning environment. Seventy-eight elementary students were randomly assigned to 1 of 2 conditions: learning by preparing to teach, or learning for…

  2. What Do Employers Pay for Employees' Complex Problem Solving Skills?

    ERIC Educational Resources Information Center

    Ederer, Peer; Nedelkoska, Ljubica; Patt, Alexander; Castellazzi, Silvia

    2015-01-01

    We estimate the market value that employers assign to the complex problem solving (CPS) skills of their employees, using individual-level Mincer-style wage regressions. For the purpose of the study, we collected new and unique data using psychometric measures of CPS and an extensive background questionnaire on employees' personal and work history.…

  3. Writing for Business: A Graduate-Level Course in Problem-Solving

    ERIC Educational Resources Information Center

    Seifert, Christine

    2009-01-01

    This paper details an assignment sequence that requires graduate students in an applied communication program to identify problems that clients may not be aware of. Good writing and good problem-solving are "inextricably linked to [a student's] ability to frame an issue, gather, and analyze information, and to structure a helpful response" (Musso,…

  4. Case-Based Instruction in Post-Secondary Education: Developing Students' Problem-Solving Expertise.

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; Stepich, Donald A.

    This study was designed to explore changes in students' problem-solving skills as they analyzed instructional design case studies during a semester-long course. Nineteen students at two Midwestern universities analyzed six to ten case studies as part of their course assignments. Both quantitative and qualitative data were collected, with students'…

  5. HIV health center affiliation networks of black men who have sex with men: disentangling fragmented patterns of HIV prevention service utilization.

    PubMed

    Schneider, John A; Walsh, Tim; Cornwell, Benjamin; Ostrow, David; Michaels, Stuart; Laumann, Edward O

    2012-08-01

    In the United States, black men who have sex with men (BMSM) are at highest risk for HIV infection and are at high risk for limited health service utilization. We describe HIV health center (HHC) affiliation network patterns and their potential determinants among urban BMSM. The Men's Assessment of Social and Risk Network instrument was used to elicit HHC utilization, as reported by study respondents recruited through respondent-driven sampling. In 2010, 204 BMSM were systematically recruited from diverse venues in Chicago, IL. A 2-mode data set was constructed that included study participants and 9 diverse HHCs. Associations between individual-level characteristics and HHC utilization were analyzed using Multiple Regression Quadratic Assignment Procedure. Visualization analyses included computation of HHC centrality and faction membership. High utilization of HHCs (45.9%-70.3%) was evident among BMSM, 44.4% who were HIV infected. Multiple Regression Quadratic Assignment Procedure revealed that age, social network size, and HIV status were associated with HHC affiliation patterns (coeff., 0.13-0.27; all P < 0.05). With the exception of one HHC, HHCs offering HIV prevention services to HIV-infected participants occupied peripheral positions within the network of health centers. High-risk HIV-uninfected participants affiliated most with an HHC that offers only treatment services. Subcategories of BMSM in this sample affiliated with HHCs that may not provide appropriate HIV prevention services. Using 2-mode data, public health authorities may be better able to match prevention services to BMSM need; in particular, HIV prevention services for high-risk HIV-uninfected men and HIV "prevention for positives" services for HIV-infected men.

  6. Modelling Ocean Dissipation in Icy Satellites: A Comparison of Linear and Quadratic Friction

    NASA Astrophysics Data System (ADS)

    Hay, H.; Matsuyama, I.

    2015-12-01

    Although subsurface oceans are confirmed in Europa, Ganymede, Callisto, and strongly suspected in Enceladus and Titan, the exact mechanism required to heat and maintain these liquid reservoirs over Solar System history remains a mystery. Radiogenic heating can supply enough energy for large satellites whereas tidal dissipation provides the best explanation for the presence of oceans in small icy satellites. The amount of thermal energy actually contributed to the interiors of these icy satellites through oceanic tidal dissipation is largely unquantified. Presented here is a numerical model that builds upon previous work for quantifying tidally dissipated energy in the subsurface oceans of the icy satellites. Recent semi-analytical models (Tyler, 2008 and Matsuyama, 2014) have solved the Laplace Tidal Equations to estimate the time averaged energy flux over an orbital period in icy satellite oceans, neglecting the presence of a solid icy shell. These models are only able to consider linear Rayleigh friction. The numerical model presented here is compared to one of these semi-analytical models, finding excellent agreement between velocity and displacement solutions for all three terms to the tidal potential. Time averaged energy flux is within 2-6% of the analytical values. Quadratic (bottom) friction is then incorporated into the model, replacing linear friction. This approach is commonly applied to terrestrial ocean dissipation studies where dissipation scales nonlinearly with velocity. A suite of simulations are also run for the quadratic friction case which are then compared to and analysed against recent scaling laws developed by Chen and Nimmo (2013).

  7. Quadrat Data for Fermilab Prairie Plant Survey

    Science.gov Websites

    Quadrat Data 2012 Quadrat Data 2013 Quadrat Data None taken by volunteers in 2014 due to weather problems . 2015 Quadrat Data 2016 Quadrat Data None taken by volunteers in 2017 due to weather and other problems

  8. An Alternative Optimization Model and Robust Experimental Design for the Assignment Scheduling Capability for Unmanned Aerial Vehicles (ASC-U) Simulation

    DTIC Science & Technology

    2007-06-01

    introduces ASC-U’s approach for solving the dynamic UAV allocation problem. 26 Christopher J...18 Figure 6. Assignments Dynamics Example (after) .........................................................20 Figure 7. ASC-U Dynamic Cueing...decisions in order to respond to the dynamic environment they face. Thus, to succeed, the Army’s transformation cannot rely

  9. Undergraduates Improve upon Published Crystal Structure in Class Assignment

    ERIC Educational Resources Information Center

    Horowitz, Scott; Koldewey, Philipp; Bardwell, James C.

    2014-01-01

    Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the…

  10. Design of a Software Configuration for Real-Time Multimedia Group Communication; HNUMTP

    NASA Astrophysics Data System (ADS)

    Park, Gil-Cheol

    This paper designs transport protocol of multi-session/channel method for real time multimedia group telecommunication and realizes it. The special features of the designed and realized protocol are first, that it solved the sync problem which is the specific character of multimedia telecommunication by using multi-channel method protocol. Usual multimedia telecommunication is assigned one channel by each media data. This paper shortened the phenomenon that waits data for sync of receiving part by assigning more than one channel for the channel that has a lot of data per hour as video data. The problem of intermedia synchronization that happens then could be solved by sending temporal/spacial related data among data assigning extra control channel. Second, that it does integrated management for sessions. Each session is one group telecommunication unit which supports mutual working environment that is independent. Each session communicates the participants in the group independently, the session manager manages all the communication among groups and lets media sources connected with all network be operated efficiently.

  11. Optimizing a realistic large-scale frequency assignment problem using a new parallel evolutionary approach

    NASA Astrophysics Data System (ADS)

    Chaves-González, José M.; Vega-Rodríguez, Miguel A.; Gómez-Pulido, Juan A.; Sánchez-Pérez, Juan M.

    2011-08-01

    This article analyses the use of a novel parallel evolutionary strategy to solve complex optimization problems. The work developed here has been focused on a relevant real-world problem from the telecommunication domain to verify the effectiveness of the approach. The problem, known as frequency assignment problem (FAP), basically consists of assigning a very small number of frequencies to a very large set of transceivers used in a cellular phone network. Real data FAP instances are very difficult to solve due to the NP-hard nature of the problem, therefore using an efficient parallel approach which makes the most of different evolutionary strategies can be considered as a good way to obtain high-quality solutions in short periods of time. Specifically, a parallel hyper-heuristic based on several meta-heuristics has been developed. After a complete experimental evaluation, results prove that the proposed approach obtains very high-quality solutions for the FAP and beats any other result published.

  12. Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves †

    PubMed Central

    Zhang, Meiyan; Zheng, Yahong Rosa

    2017-01-01

    This paper investigates the task assignment and path planning problem for multiple AUVs in three dimensional (3D) underwater wireless sensor networks where nonholonomic motion constraints of underwater AUVs in 3D space are considered. The multi-target task assignment and path planning problem is modeled by the Multiple Traveling Sales Person (MTSP) problem and the Genetic Algorithm (GA) is used to solve the MTSP problem with Euclidean distance as the cost function and the Tour Hop Balance (THB) or Tour Length Balance (TLB) constraints as the stop criterion. The resulting tour sequences are mapped to 2D Dubins curves in the X−Y plane, and then interpolated linearly to obtain the Z coordinates. We demonstrate that the linear interpolation fails to achieve G1 continuity in the 3D Dubins path for multiple targets. Therefore, the interpolated 3D Dubins curves are checked against the AUV dynamics constraint and the ones satisfying the constraint are accepted to finalize the 3D Dubins curve selection. Simulation results demonstrate that the integration of the 3D Dubins curve with the MTSP model is successful and effective for solving the 3D target assignment and path planning problem. PMID:28696377

  13. Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves †.

    PubMed

    Cai, Wenyu; Zhang, Meiyan; Zheng, Yahong Rosa

    2017-07-11

    This paper investigates the task assignment and path planning problem for multiple AUVs in three dimensional (3D) underwater wireless sensor networks where nonholonomic motion constraints of underwater AUVs in 3D space are considered. The multi-target task assignment and path planning problem is modeled by the Multiple Traveling Sales Person (MTSP) problem and the Genetic Algorithm (GA) is used to solve the MTSP problem with Euclidean distance as the cost function and the Tour Hop Balance (THB) or Tour Length Balance (TLB) constraints as the stop criterion. The resulting tour sequences are mapped to 2D Dubins curves in the X - Y plane, and then interpolated linearly to obtain the Z coordinates. We demonstrate that the linear interpolation fails to achieve G 1 continuity in the 3D Dubins path for multiple targets. Therefore, the interpolated 3D Dubins curves are checked against the AUV dynamics constraint and the ones satisfying the constraint are accepted to finalize the 3D Dubins curve selection. Simulation results demonstrate that the integration of the 3D Dubins curve with the MTSP model is successful and effective for solving the 3D target assignment and path planning problem.

  14. Effect of Computer-Presented Organizational/Memory Aids on Problem Solving Behavior.

    ERIC Educational Resources Information Center

    Steinberg, Esther R.; And Others

    This research studied the effects of computer-presented organizational/memory aids on problem solving behavior. The aids were either matrix or verbal charts shown on the display screen next to the problem. The 104 college student subjects were randomly assigned to one of the four conditions: type of chart (matrix or verbal chart) and use of charts…

  15. A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks

    PubMed Central

    Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza

    2015-01-01

    Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower’s problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502

  16. Flippin' Fluid Mechanics - Using Online Technology to Enhance the In-Class Learning Experience

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Majerich, D. M.

    2013-11-01

    This study provides an empirical analysis of using online technologies and team problem solving sessions to shift an undergraduate fluid mechanics course from a traditional lecture format to a collaborative learning environment. Students were from two consecutive semesters of the same course taught by the same professor. One group used online technologies and solved problems in class and the other did not. Out of class, the treatment group watched 72 short (11 minutes, average) video lectures covering course topics and example problems being solved. Three times a week students worked in teams of two to solve problems on desktop whiteboard tablets while the instructor and graduate assistants provided ``just-in-time'' tutoring. The number of team problems assigned during the semester exceeded 100. Weekly online homework was assigned to reinforce topics. The WileyPlus online system generated unique problem parameters for each student. The control group received three-50 minute weekly lectures. Data include three midterms and a final exam. Regression results indicate that controlling for all of the entered variables, for every one more problem solving session the student attended, the final grade was raised by 0.327 points. Thus, if a student participated in all 25 of the team problem solving sessions, the final grade would have been 8.2 points higher, a difference of nearly a grade. Using online technologies and teamwork appeared to result in improved achievement, but more research is needed to support these findings.

  17. Improvements on ν-Twin Support Vector Machine.

    PubMed

    Khemchandani, Reshma; Saigal, Pooja; Chandra, Suresh

    2016-07-01

    In this paper, we propose two novel binary classifiers termed as "Improvements on ν-Twin Support Vector Machine: Iν-TWSVM and Iν-TWSVM (Fast)" that are motivated by ν-Twin Support Vector Machine (ν-TWSVM). Similar to ν-TWSVM, Iν-TWSVM determines two nonparallel hyperplanes such that they are closer to their respective classes and are at least ρ distance away from the other class. The significant advantage of Iν-TWSVM over ν-TWSVM is that Iν-TWSVM solves one smaller-sized Quadratic Programming Problem (QPP) and one Unconstrained Minimization Problem (UMP); as compared to solving two related QPPs in ν-TWSVM. Further, Iν-TWSVM (Fast) avoids solving a smaller sized QPP and transforms it as a unimodal function, which can be solved using line search methods and similar to Iν-TWSVM, the other problem is solved as a UMP. Due to their novel formulation, the proposed classifiers are faster than ν-TWSVM and have comparable generalization ability. Iν-TWSVM also implements structural risk minimization (SRM) principle by introducing a regularization term, along with minimizing the empirical risk. The other properties of Iν-TWSVM, related to support vectors (SVs), are similar to that of ν-TWSVM. To test the efficacy of the proposed method, experiments have been conducted on a wide range of UCI and a skewed variation of NDC datasets. We have also given the application of Iν-TWSVM as a binary classifier for pixel classification of color images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Fourier transform and particle swarm optimization based modified LQR algorithm for mitigation of vibrations using magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Kumar, Gaurav; Kumar, Ashok

    2017-11-01

    Structural control has gained significant attention in recent times. The standalone issue of power requirement during an earthquake has already been solved up to a large extent by designing semi-active control systems using conventional linear quadratic control theory, and many other intelligent control algorithms such as fuzzy controllers, artificial neural networks, etc. In conventional linear-quadratic regulator (LQR) theory, it is customary to note that the values of the design parameters are decided at the time of designing the controller and cannot be subsequently altered. During an earthquake event, the response of the structure may increase or decrease, depending the quasi-resonance occurring between the structure and the earthquake. In this case, it is essential to modify the value of the design parameters of the conventional LQR controller to obtain optimum control force to mitigate the vibrations due to the earthquake. A few studies have been done to sort out this issue but in all these studies it was necessary to maintain a database of the earthquake. To solve this problem and to find the optimized design parameters of the LQR controller in real time, a fast Fourier transform and particle swarm optimization based modified linear quadratic regulator method is presented here. This method comprises four different algorithms: particle swarm optimization (PSO), the fast Fourier transform (FFT), clipped control algorithm and the LQR. The FFT helps to obtain the dominant frequency for every time window. PSO finds the optimum gain matrix through the real-time update of the weighting matrix R, thereby, dispensing with the experimentation. The clipped control law is employed to match the magnetorheological (MR) damper force with the desired force given by the controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done by simulation of a three-story structure having an MR damper at the ground floor level subjected to three different near-fault historical earthquake time histories, and the outcomes are equated with those of simple conventional LQR. The results establish that the advised methodology is more effective than conventional LQR controllers in reducing inter-storey drift, relative displacement, and acceleration response.

  19. An optimization program based on the method of feasible directions: Theory and users guide

    NASA Technical Reports Server (NTRS)

    Belegundu, Ashok D.; Berke, Laszlo; Patnaik, Surya N.

    1994-01-01

    The theory and user instructions for an optimization code based on the method of feasible directions are presented. The code was written for wide distribution and ease of attachment to other simulation software. Although the theory of the method of feasible direction was developed in the 1960's, many considerations are involved in its actual implementation as a computer code. Included in the code are a number of features to improve robustness in optimization. The search direction is obtained by solving a quadratic program using an interior method based on Karmarkar's algorithm. The theory is discussed focusing on the important and often overlooked role played by the various parameters guiding the iterations within the program. Also discussed is a robust approach for handling infeasible starting points. The code was validated by solving a variety of structural optimization test problems that have known solutions obtained by other optimization codes. It has been observed that this code is robust: it has solved a variety of problems from different starting points. However, the code is inefficient in that it takes considerable CPU time as compared with certain other available codes. Further work is required to improve its efficiency while retaining its robustness.

  20. Performance of Infinitely Wide Parabolic and Inclined Slider Bearings Lubricated with Couple Stress or Magnetic Fluids

    NASA Astrophysics Data System (ADS)

    Oladeinde, Mobolaji Humphrey; Akpobi, John Ajokpaoghene

    2011-10-01

    The hydrodynamic and magnetohydrodynamic (MHD) lubrication problem of infinitely wide inclined and parabolic slider bearings is solved numerically using the finite element method. The bearing configurations are discretized into three-node isoparametric quadratic elements. Stiffness integrals obtained from the weak form of the governing equations are solved using Gauss quadrature to obtain a finite number of stiffness matrices. The global system of equations obtained from enforcing nodal continuity of pressure for the bearings are solved using the Gauss-Seidel iterative scheme with a convergence criterion of 10-10. Numerical computations reveal that, when compared for similar profile and couple stress parameters, greater pressure builds up in a parabolic slider compared to an inclined slider, indicating a greater wedge effect in the parabolic slider. The parabolic slider bearing is also shown to develop a greater load capacity when lubricated with magnetic fluids. The superior performance of parabolic slider bearing is more pronounced at greater Hartmann numbers for identical bearing structural parameters. It is also shown that when load carrying capacity is the yardstick for comparison, the parabolic slider bearings are superior to the inclined bearings when lubricated with couple stress or magnetic lubricants.

  1. AESOP: An interactive computer program for the design of linear quadratic regulators and Kalman filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L. C.

    1984-01-01

    AESOP is a computer program for use in designing feedback controls and state estimators for linear multivariable systems. AESOP is meant to be used in an interactive manner. Each design task that the program performs is assigned a "function" number. The user accesses these functions either (1) by inputting a list of desired function numbers or (2) by inputting a single function number. In the latter case the choice of the function will in general depend on the results obtained by the previously executed function. The most important of the AESOP functions are those that design,linear quadratic regulators and Kalman filters. The user interacts with the program when using these design functions by inputting design weighting parameters and by viewing graphic displays of designed system responses. Supporting functions are provided that obtain system transient and frequency responses, transfer functions, and covariance matrices. The program can also compute open-loop system information such as stability (eigenvalues), eigenvectors, controllability, and observability. The program is written in ANSI-66 FORTRAN for use on an IBM 3033 using TSS 370. Descriptions of all subroutines and results of two test cases are included in the appendixes.

  2. Single machine scheduling with slack due dates assignment

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Hu, Xiangpei; Wang, Xuyin

    2017-04-01

    This paper considers a single machine scheduling problem in which each job is assigned an individual due date based on a common flow allowance (i.e. all jobs have slack due date). The goal is to find a sequence for jobs, together with a due date assignment, that minimizes a non-regular criterion comprising the total weighted absolute lateness value and common flow allowance cost, where the weight is a position-dependent weight. In order to solve this problem, an ? time algorithm is proposed. Some extensions of the problem are also shown.

  3. Design a software real-time operation platform for wave piercing catamarans motion control using linear quadratic regulator based genetic algorithm.

    PubMed

    Liang, Lihua; Yuan, Jia; Zhang, Songtao; Zhao, Peng

    2018-01-01

    This work presents optimal linear quadratic regulator (LQR) based on genetic algorithm (GA) to solve the two degrees of freedom (2 DoF) motion control problem in head seas for wave piercing catamarans (WPC). The proposed LQR based GA control strategy is to select optimal weighting matrices (Q and R). The seakeeping performance of WPC based on proposed algorithm is challenged because of multi-input multi-output (MIMO) system of uncertain coefficient problems. Besides the kinematical constraint problems of WPC, the external conditions must be considered, like the sea disturbance and the actuators (a T-foil and two flaps) control. Moreover, this paper describes the MATLAB and LabVIEW software plats to simulate the reduction effects of WPC. Finally, the real-time (RT) NI CompactRIO embedded controller is selected to test the effectiveness of the actuators based on proposed techniques. In conclusion, simulation and experimental results prove the correctness of the proposed algorithm. The percentage of heave and pitch reductions are more than 18% in different high speeds and bad sea conditions. And the results also verify the feasibility of NI CompactRIO embedded controller.

  4. Design a software real-time operation platform for wave piercing catamarans motion control using linear quadratic regulator based genetic algorithm

    PubMed Central

    Liang, Lihua; Zhang, Songtao; Zhao, Peng

    2018-01-01

    This work presents optimal linear quadratic regulator (LQR) based on genetic algorithm (GA) to solve the two degrees of freedom (2 DoF) motion control problem in head seas for wave piercing catamarans (WPC). The proposed LQR based GA control strategy is to select optimal weighting matrices (Q and R). The seakeeping performance of WPC based on proposed algorithm is challenged because of multi-input multi-output (MIMO) system of uncertain coefficient problems. Besides the kinematical constraint problems of WPC, the external conditions must be considered, like the sea disturbance and the actuators (a T-foil and two flaps) control. Moreover, this paper describes the MATLAB and LabVIEW software plats to simulate the reduction effects of WPC. Finally, the real-time (RT) NI CompactRIO embedded controller is selected to test the effectiveness of the actuators based on proposed techniques. In conclusion, simulation and experimental results prove the correctness of the proposed algorithm. The percentage of heave and pitch reductions are more than 18% in different high speeds and bad sea conditions. And the results also verify the feasibility of NI CompactRIO embedded controller. PMID:29709008

  5. Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously

    NASA Astrophysics Data System (ADS)

    Long, Kai; Wang, Xuan; Gu, Xianguang

    2017-09-01

    The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously. Nodal displacement of macrostructure and effective thermal conductivity of microstructure are regarded as the constraint functions, which means taking into account both the load-carrying capabilities and the thermal insulation properties. The effective properties of porous material derived from numerical homogenization are used for macrostructural analysis. Meanwhile, displacement vectors of macrostructures from original and adjoint load cases are used for sensitivity analysis of the microstructure. Design variables in the form of reciprocal functions of relative densities are introduced and used for linearization of the constraint function. The objective function of total mass is approximately expressed by the second order Taylor series expansion. Then, the proposed concurrent optimization problem is solved using a sequential quadratic programming algorithm, by splitting into a series of sub-problems in the form of the quadratic program. Finally, several numerical examples are presented to validate the effectiveness of the proposed optimization method. The various effects including initial designs, prescribed limits of nodal displacement, and effective thermal conductivity on optimized designs are also investigated. An amount of optimized macrostructures and their corresponding microstructures are achieved.

  6. Patterns formation in ferrofluids and solid dissolutions using stochastic models with dissipative dynamics

    NASA Astrophysics Data System (ADS)

    Morales, Marco A.; Fernández-Cervantes, Irving; Agustín-Serrano, Ricardo; Anzo, Andrés; Sampedro, Mercedes P.

    2016-08-01

    A functional with interactions short-range and long-range low coarse-grained approximation is proposed. This functional satisfies models with dissipative dynamics A, B and the stochastic Swift-Hohenberg equation. Furthermore, terms associated with multiplicative noise source are added in these models. These models are solved numerically using the method known as fast Fourier transform. Results of the spatio-temporal dynamic show similarity with respect to patterns behaviour in ferrofluids phases subject to external fields (magnetic, electric and temperature), as well as with the nucleation and growth phenomena present in some solid dissolutions. As a result of the multiplicative noise effect over the dynamic, some microstructures formed by changing solid phase and composed by binary alloys of Pb-Sn, Fe-C and Cu-Ni, as well as a NiAl-Cr(Mo) eutectic composite material. The model A for active-particles with a non-potential term in form of quadratic gradient explain the formation of nanostructured particles of silver phosphate. With these models is shown that the underlying mechanisms in the patterns formation in all these systems depends of: (a) dissipative dynamics; (b) the short-range and long-range interactions and (c) the appropiate combination of quadratic and multiplicative noise terms.

  7. Optimization strategies based on sequential quadratic programming applied for a fermentation process for butanol production.

    PubMed

    Pinto Mariano, Adriano; Bastos Borba Costa, Caliane; de Franceschi de Angelis, Dejanira; Maugeri Filho, Francisco; Pires Atala, Daniel Ibraim; Wolf Maciel, Maria Regina; Maciel Filho, Rubens

    2009-11-01

    In this work, the mathematical optimization of a continuous flash fermentation process for the production of biobutanol was studied. The process consists of three interconnected units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The objective of the optimization was to maximize butanol productivity for a desired substrate conversion. Two strategies were compared for the optimization of the process. In one of them, the process was represented by a deterministic model with kinetic parameters determined experimentally and, in the other, by a statistical model obtained using the factorial design technique combined with simulation. For both strategies, the problem was written as a nonlinear programming problem and was solved with the sequential quadratic programming technique. The results showed that despite the very similar solutions obtained with both strategies, the problems found with the strategy using the deterministic model, such as lack of convergence and high computational time, make the use of the optimization strategy with the statistical model, which showed to be robust and fast, more suitable for the flash fermentation process, being recommended for real-time applications coupling optimization and control.

  8. Assignment Scheduling Capability for Unmanned Aerial Vehicles - A Discrete Event Simulation with Optimization in the Loop Approach to Solving a Scheduling Problem

    DTIC Science & Technology

    2006-12-01

    APPROACH As mentioned previously, ASCU does not use simulation in the traditional manner. Instead, it uses simulation to transition and capture the state...0 otherwise (by a heuristic discussed below). • Let cja = The reward for a UAV with sensor pack- age j being assigned to mission area a from the

  9. Self-Affirmation Improves Problem-Solving under Stress

    PubMed Central

    Creswell, J. David; Dutcher, Janine M.; Klein, William M. P.; Harris, Peter R.; Levine, John M.

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. PMID:23658751

  10. Self-affirmation improves problem-solving under stress.

    PubMed

    Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  11. Solving multiconstraint assignment problems using learning automata.

    PubMed

    Horn, Geir; Oommen, B John

    2010-02-01

    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the pioneering LA solutions to this problem, unequivocally demonstrates that LA can play an important role in solving complex combinatorial and integer optimization problems.

  12. The Big6: Not Just for Kids! Introduction to the Big6: Information Problem-Solving for Upper High School, College-Age, and Adult Students.

    ERIC Educational Resources Information Center

    Eisenberg, Mike; Spitzer, Kathy

    1998-01-01

    Explains the Big6 approach to information problem-solving based on exercises that were developed for college or upper high school students that can be completed during class sessions. Two of the exercises relate to personal information problems, and one relates Big6 skill areas to course assignments. (LRW)

  13. A transformation method for constrained-function minimization

    NASA Technical Reports Server (NTRS)

    Park, S. K.

    1975-01-01

    A direct method for constrained-function minimization is discussed. The method involves the construction of an appropriate function mapping all of one finite dimensional space onto the region defined by the constraints. Functions which produce such a transformation are constructed for a variety of constraint regions including, for example, those arising from linear and quadratic inequalities and equalities. In addition, the computational performance of this method is studied in the situation where the Davidon-Fletcher-Powell algorithm is used to solve the resulting unconstrained problem. Good performance is demonstrated for 19 test problems by achieving rapid convergence to a solution from several widely separated starting points.

  14. Nonnegative constraint quadratic program technique to enhance the resolution of γ spectra

    NASA Astrophysics Data System (ADS)

    Li, Jinglun; Xiao, Wuyun; Ai, Xianyun; Chen, Ye

    2018-04-01

    Two concepts of the nonnegative least squares problem (NNLS) and the linear complementarity problem (LCP) are introduced for the resolution enhancement of the γ spectra. The respective algorithms such as the active set method and the primal-dual interior point method are applied to solve the above two problems. In mathematics, the nonnegative constraint results in the sparsity of the optimal solution of the deconvolution, and it is this sparsity that enhances the resolution. Finally, a comparison in the peak position accuracy and the computation time is made between these two methods and the boosted L_R and Gold methods.

  15. Different-Level Simultaneous Minimization Scheme for Fault Tolerance of Redundant Manipulator Aided with Discrete-Time Recurrent Neural Network

    PubMed Central

    Jin, Long; Liao, Bolin; Liu, Mei; Xiao, Lin; Guo, Dongsheng; Yan, Xiaogang

    2017-01-01

    By incorporating the physical constraints in joint space, a different-level simultaneous minimization scheme, which takes both the robot kinematics and robot dynamics into account, is presented and investigated for fault-tolerant motion planning of redundant manipulator in this paper. The scheme is reformulated as a quadratic program (QP) with equality and bound constraints, which is then solved by a discrete-time recurrent neural network. Simulative verifications based on a six-link planar redundant robot manipulator substantiate the efficacy and accuracy of the presented acceleration fault-tolerant scheme, the resultant QP and the corresponding discrete-time recurrent neural network. PMID:28955217

  16. Genetics-based control of a mimo boiler-turbine plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.M.; Lee, K.Y.

    1994-12-31

    A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.

  17. Viscoelastic/damage modeling of filament-wound spherical pressure vessels

    NASA Technical Reports Server (NTRS)

    Hackett, Robert M.; Dozier, Jan D.

    1987-01-01

    A model of the viscoelastic/damage response of a filament-wound spherical vessel used for long-term pressure containment is developed. The matrix material of the composite system is assumed to be linearly viscoelastic. Internal accumulated damage based upon a quadratic relationship between transverse modulus and maximum circumferential strain is postulated. The resulting nonlinear problem is solved by an iterative routine. The elastic-viscoelastic correspondence is employed to produce, in the Laplace domain, the associated elastic solution for the maximum circumferential strain which is inverted by the method of collocation to yield the time-dependent solution. Results obtained with the model are compared to experimental observations.

  18. Autonomous Guidance Strategy for Spacecraft Formations and Reconfiguration Maneuvers

    NASA Astrophysics Data System (ADS)

    Wahl, Theodore P.

    A guidance strategy for autonomous spacecraft formation reconfiguration maneuvers is presented. The guidance strategy is presented as an algorithm that solves the linked assignment and delivery problems. The assignment problem is the task of assigning the member spacecraft of the formation to their new positions in the desired formation geometry. The guidance algorithm uses an auction process (also called an "auction algorithm''), presented in the dissertation, to solve the assignment problem. The auction uses the estimated maneuver and time of flight costs between the spacecraft and targets to create assignments which minimize a specific "expense'' function for the formation. The delivery problem is the task of delivering the spacecraft to their assigned positions, and it is addressed through one of two guidance schemes described in this work. The first is a delivery scheme based on artificial potential function (APF) guidance. APF guidance uses the relative distances between the spacecraft, targets, and any obstacles to design maneuvers based on gradients of potential fields. The second delivery scheme is based on model predictive control (MPC); this method uses a model of the system dynamics to plan a series of maneuvers designed to minimize a unique cost function. The guidance algorithm uses an analytic linearized approximation of the relative orbital dynamics, the Yamanaka-Ankersen state transition matrix, in the auction process and in both delivery methods. The proposed guidance strategy is successful, in simulations, in autonomously assigning the members of the formation to new positions and in delivering the spacecraft to these new positions safely using both delivery methods. This guidance algorithm can serve as the basis for future autonomous guidance strategies for spacecraft formation missions.

  19. Comparative analysis of methods for modeling the penetration and plane-parallel motion of conical projectiles in soil

    NASA Astrophysics Data System (ADS)

    Bazhenov, V. G.; Bragov, A. M.; Konstantinov, A. Yu.; Kotov, V. L.

    2015-05-01

    This paper presents an analysis of the accuracy of known and new modeling methods using the hypothesis of local and plane sections for solution of problems of the impact and plane-parallel motion of conical bodies at an angle to the free surface of the half-space occupied by elastoplastic soil. The parameters of the local interaction model that is quadratic in velocity are determined by solving the one-dimensional problem of the expansion of a spherical cavity. Axisymmetric problems for each of the meridional section are solved simultaneously neglecting mass and momentum transfer in the circumferential direction and using an approach based on the hypothesis of plane sections. The dynamic and kinematic parameters of oblique penetration obtained using modified models are compared with the results of computer simulation in a three-dimensional formulation. The results obtained with regard to the contact stress distribution along the generator of the pointed cone are in satisfactory agreement.

  20. Learning locality preserving graph from data.

    PubMed

    Zhang, Yan-Ming; Huang, Kaizhu; Hou, Xinwen; Liu, Cheng-Lin

    2014-11-01

    Machine learning based on graph representation, or manifold learning, has attracted great interest in recent years. As the discrete approximation of data manifold, the graph plays a crucial role in these kinds of learning approaches. In this paper, we propose a novel learning method for graph construction, which is distinct from previous methods in that it solves an optimization problem with the aim of directly preserving the local information of the original data set. We show that the proposed objective has close connections with the popular Laplacian Eigenmap problem, and is hence well justified. The optimization turns out to be a quadratic programming problem with n(n-1)/2 variables (n is the number of data points). Exploiting the sparsity of the graph, we further propose a more efficient cutting plane algorithm to solve the problem, making the method better scalable in practice. In the context of clustering and semi-supervised learning, we demonstrated the advantages of our proposed method by experiments.

  1. An all-at-once reduced Hessian SQP scheme for aerodynamic design optimization

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1995-01-01

    This paper introduces a computational scheme for solving a class of aerodynamic design problems that can be posed as nonlinear equality constrained optimizations. The scheme treats the flow and design variables as independent variables, and solves the constrained optimization problem via reduced Hessian successive quadratic programming. It updates the design and flow variables simultaneously at each iteration and allows flow variables to be infeasible before convergence. The solution of an adjoint flow equation is never needed. In addition, a range space basis is chosen so that in a certain sense the 'cross term' ignored in reduced Hessian SQP methods is minimized. Numerical results for a nozzle design using the quasi-one-dimensional Euler equations show that this scheme is computationally efficient and robust. The computational cost of a typical nozzle design is only a fraction more than that of the corresponding analysis flow calculation. Superlinear convergence is also observed, which agrees with the theoretical properties of this scheme. All optimal solutions are obtained by starting far away from the final solution.

  2. Boosting quantum annealer performance via sample persistence

    NASA Astrophysics Data System (ADS)

    Karimi, Hamed; Rosenberg, Gili

    2017-07-01

    We propose a novel method for reducing the number of variables in quadratic unconstrained binary optimization problems, using a quantum annealer (or any sampler) to fix the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are usually much easier for the quantum annealer to solve, due to their being smaller and consisting of disconnected components. This approach significantly increases the success rate and number of observations of the best known energy value in samples obtained from the quantum annealer, when compared with calling the quantum annealer without using it, even when using fewer annealing cycles. Use of the method results in a considerable improvement in success metrics even for problems with high-precision couplers and biases, which are more challenging for the quantum annealer to solve. The results are further enhanced by applying the method iteratively and combining it with classical pre-processing. We present results for both Chimera graph-structured problems and embedded problems from a real-world application.

  3. Randomly Sampled-Data Control Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Han, Kuoruey

    1990-01-01

    The purpose is to solve the Linear Quadratic Regulator (LQR) problem with random time sampling. Such a sampling scheme may arise from imperfect instrumentation as in the case of sampling jitter. It can also model the stochastic information exchange among decentralized controllers to name just a few. A practical suboptimal controller is proposed with the nice property of mean square stability. The proposed controller is suboptimal in the sense that the control structure is limited to be linear. Because of i. i. d. assumption, this does not seem unreasonable. Once the control structure is fixed, the stochastic discrete optimal control problem is transformed into an equivalent deterministic optimal control problem with dynamics described by the matrix difference equation. The N-horizon control problem is solved using the Lagrange's multiplier method. The infinite horizon control problem is formulated as a classical minimization problem. Assuming existence of solution to the minimization problem, the total system is shown to be mean square stable under certain observability conditions. Computer simulations are performed to illustrate these conditions.

  4. Space-time least-squares finite element method for convection-reaction system with transformed variables

    PubMed Central

    Nam, Jaewook

    2011-01-01

    We present a method to solve a convection-reaction system based on a least-squares finite element method (LSFEM). For steady-state computations, issues related to recirculation flow are stated and demonstrated with a simple example. The method can compute concentration profiles in open flow even when the generation term is small. This is the case for estimating hemolysis in blood. Time-dependent flows are computed with the space-time LSFEM discretization. We observe that the computed hemoglobin concentration can become negative in certain regions of the flow; it is a physically unacceptable result. To prevent this, we propose a quadratic transformation of variables. The transformed governing equation can be solved in a straightforward way by LSFEM with no sign of unphysical behavior. The effect of localized high shear on blood damage is shown in a circular Couette-flow-with-blade configuration, and a physiological condition is tested in an arterial graft flow. PMID:21709752

  5. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.

    2012-01-01

    We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.

  6. Optimal control of coupled parabolic-hyperbolic non-autonomous PDEs: infinite-dimensional state-space approach

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2018-04-01

    This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.

  7. Junior high school students’ reflective thinking on fraction problem solving: In case of gender differences

    NASA Astrophysics Data System (ADS)

    Rasyid, M. A.; Budiarto, M. T.; Lukito, A.

    2018-01-01

    This study aims to describe reflective thinking of junior high school students on solving the fractions problem in terms of gender differences. This research is a qualitative approach involving one male student and one female student in seventh grade. The data were collected through the assignment of fractional problem solving and interview, then the data were triangulated and analyzed by three stages, namely data condensation, data display and conclusion. The results showed that the subjects of male and female were reacting, elaborating and contemplating at each stage of solving the fractions problem. But at the stage of devising the plan, the female subject was contemplating, relying more on their beliefs, did not consider their experience, in addition, the female subject didn’t use experience of the steps she planned to solve the problem of fractions.

  8. An advanced panel method for analysis of arbitrary configurations in unsteady subsonic flow

    NASA Technical Reports Server (NTRS)

    Dusto, A. R.; Epton, M. A.

    1980-01-01

    An advanced method is presented for solving the linear integral equations for subsonic unsteady flow in three dimensions. The method is applicable to flows about arbitrary, nonplanar boundary surfaces undergoing small amplitude harmonic oscillations about their steady mean locations. The problem is formulated with a wake model wherein unsteady vorticity can be convected by the steady mean component of flow. The geometric location of the unsteady source and doublet distributions can be located on the actual surfaces of thick bodies in their steady mean locations. The method is an outgrowth of a recently developed steady flow panel method and employs the linear source and quadratic doublet splines of that method.

  9. An optimal control approach to the design of moving flight simulators

    NASA Technical Reports Server (NTRS)

    Sivan, R.; Ish-Shalom, J.; Huang, J.-K.

    1982-01-01

    An abstract flight simulator design problem is formulated in the form of an optimal control problem, which is solved for the linear-quadratic-Gaussian special case using a mathematical model of the vestibular organs. The optimization criterion used is the mean-square difference between the physiological outputs of the vestibular organs of the pilot in the aircraft and the pilot in the simulator. The dynamical equations are linearized, and the output signal is modeled as a random process with rational power spectral density. The method described yields the optimal structure of the simulator's motion generator, or 'washout filter'. A two-degree-of-freedom flight simulator design, including single output simulations, is presented.

  10. Newton's laws of motion in the form of a Riccati equation.

    PubMed

    Nowakowski, Marek; Rosu, Haret C

    2002-04-01

    We discuss two applications of a Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential V(r)=kr(epsilon). For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, where again the Riccati equation appears naturally, are problems involving quadratic friction. We use methods reminiscent to nonrelativistic supersymmetry to generalize and solve such problems.

  11. Optimal control of LQR for discrete time-varying systems with input delays

    NASA Astrophysics Data System (ADS)

    Yin, Yue-Zhu; Yang, Zhong-Lian; Yin, Zhi-Xiang; Xu, Feng

    2018-04-01

    In this work, we consider the optimal control problem of linear quadratic regulation for discrete time-variant systems with single input and multiple input delays. An innovative and simple method to derive the optimal controller is given. The studied problem is first equivalently converted into a problem subject to a constraint condition. Last, with the established duality, the problem is transformed into a static mathematical optimisation problem without input delays. The optimal control input solution to minimise performance index function is derived by solving this optimisation problem with two methods. A numerical simulation example is carried out and its results show that our two approaches are both feasible and very effective.

  12. DEM interpolation weight calculation modulus based on maximum entropy

    NASA Astrophysics Data System (ADS)

    Chen, Tian-wei; Yang, Xia

    2015-12-01

    There is negative-weight in traditional interpolation of gridding DEM, in the article, the principle of Maximum Entropy is utilized to analyze the model system which depends on modulus of space weight. Negative-weight problem of the DEM interpolation is researched via building Maximum Entropy model, and adding nonnegative, first and second order's Moment constraints, the negative-weight problem is solved. The correctness and accuracy of the method was validated with genetic algorithm in matlab program. The method is compared with the method of Yang Chizhong interpolation and quadratic program. Comparison shows that the volume and scaling of Maximum Entropy's weight is fit to relations of space and the accuracy is superior to the latter two.

  13. Homoclinic orbits in three-dimensional Shilnikov-type chaotic systems

    NASA Astrophysics Data System (ADS)

    Feng, Jing-Jing; Zhang, Qi-Chang; Wang, Wei; Hao, Shu-Ying

    2013-09-01

    In this paper, the Padé approximant and analytic solution in the neighborhood of the initial value are introduced into the process of constructing the Shilnikov type homoclinic trajectories in three-dimensional nonlinear dynamical systems. The PID controller system with quadratic and cubic nonlinearities, the simplified solar-wind-driven-magnetosphere-ionosphere system, and the human DNA sequence system are considered. With the aid of presenting a new condition, the solutions of solving the boundary-value problems which are formulated for the trajectory and evaluating the initial amplitude values become available. At the same time, the value of the bifurcation parameter is obtained directly, which is almost consistent with the numerical result.

  14. Performance Analysis and Design Synthesis (PADS) computer program. Volume 2: Program description, part 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The QL module of the Performance Analysis and Design Synthesis (PADS) computer program is described. Execution of this module is initiated when and if subroutine PADSI calls subroutine GROPE. Subroutine GROPE controls the high level logical flow of the QL module. The purpose of the module is to determine a trajectory that satisfies the necessary variational conditions for optimal performance. The module achieves this by solving a nonlinear multi-point boundary value problem. The numerical method employed is described. It is an iterative technique that converges quadratically when it does converge. The three basic steps of the module are: (1) initialization, (2) iteration, and (3) culmination. For Volume 1 see N73-13199.

  15. Numerical study on the influence of aluminum on infrared radiation signature of exhaust plume

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ye, Qing-qing; Li, Shi-peng; Wang, Ning-fei

    2013-09-01

    The infrared radiation signature of exhaust plume from solid propellant rockets has been widely mentioned for its important realistic meaning. The content of aluminum powder in the propellants is a key factor that affects the infrared radiation signature of the plume. The related studies are mostly on the conical nozzles. In this paper, the influence of aluminum on the flow field of plume, temperature distribution, and the infrared radiation characteristics were numerically studied with an object of 3D quadrate nozzle. Firstly, the gas phase flow field and gas-solid multi phase flow filed of the exhaust plume were calculated using CFD method. The result indicates that the Al203 particles have significant effect on the flow field of plume. Secondly, the radiation transfer equation was solved by using a discrete coordinate method. The spectral radiation intensity from 1000-2400 cm-1 was obtained. To study the infrared radiation characteristics of exhaust plume, an exceptional quadrate nozzle was employed and much attention was paid to the influences of Al203 particles in solid propellants. The results could dedicate the design of the divert control motor in such hypervelocity interceptors or missiles, or be of certain meaning to the improvement of ingredients of solid propellants.

  16. Memetic computing through bio-inspired heuristics integration with sequential quadratic programming for nonlinear systems arising in different physical models.

    PubMed

    Raja, Muhammad Asif Zahoor; Kiani, Adiqa Kausar; Shehzad, Azam; Zameer, Aneela

    2016-01-01

    In this study, bio-inspired computing is exploited for solving system of nonlinear equations using variants of genetic algorithms (GAs) as a tool for global search method hybrid with sequential quadratic programming (SQP) for efficient local search. The fitness function is constructed by defining the error function for systems of nonlinear equations in mean square sense. The design parameters of mathematical models are trained by exploiting the competency of GAs and refinement are carried out by viable SQP algorithm. Twelve versions of the memetic approach GA-SQP are designed by taking a different set of reproduction routines in the optimization process. Performance of proposed variants is evaluated on six numerical problems comprising of system of nonlinear equations arising in the interval arithmetic benchmark model, kinematics, neurophysiology, combustion and chemical equilibrium. Comparative studies of the proposed results in terms of accuracy, convergence and complexity are performed with the help of statistical performance indices to establish the worth of the schemes. Accuracy and convergence of the memetic computing GA-SQP is found better in each case of the simulation study and effectiveness of the scheme is further established through results of statistics based on different performance indices for accuracy and complexity.

  17. Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables

    NASA Astrophysics Data System (ADS)

    Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang

    2017-10-01

    The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.

  18. Federal Aviation Administration's Runway Incursion Program

    DOT National Transportation Integrated Search

    1997-12-08

    To reverse the upward trend in runway incursions, FAA must have a strong : Runway Incursion Program to solve systemwide problems and expedite : solutions. The Office of Inspector General report recommends that FAA (1) assign specific responsibility f...

  19. Frequency Assignments for HFDF Receivers in a Search and Rescue Network

    DTIC Science & Technology

    1990-03-01

    SAR problem where whether or not a signal is detected by RS or HFDF at the various stations is described by probabilities. Daskin assumes the...allows the problem to be formulated with a linear objective function (6:52-53). Daskin also developed a heuristic solution algorithm to solve this...en CM in o CM CM < I Q < - -.~- -^ * . . . ■ . ,■ . :ST.-.r . 5 Frequency Assignments for HFDF Receivers in a Search and

  20. ¹H, ¹³C, ¹⁵N and ³¹P chemical shift assignments of a human Xist RNA A-repeat tetraloop hairpin essential for X-chromosome inactivation.

    PubMed

    Duszczyk, Malgorzata M; Sattler, Michael

    2012-04-01

    Initiation of X-chromosome inactivation in female mammals depends on the non-coding RNA Xist. We have solved the NMR structure of a 14-nucleotide hairpin with a novel AUCG tetraloop fold from a Xist A-repeat that is essential for silencing. The (1)H, (13)C, (15)N and (31)P chemical shift assignments are reported.

  1. Fleet Assignment Using Collective Intelligence

    NASA Technical Reports Server (NTRS)

    Antoine, Nicolas E.; Bieniawski, Stefan R.; Kroo, Ilan M.; Wolpert, David H.

    2004-01-01

    Airline fleet assignment involves the allocation of aircraft to a set of flights legs in order to meet passenger demand, while satisfying a variety of constraints. Over the course of the day, the routing of each aircraft is determined in order to minimize the number of required flights for a given fleet. The associated flow continuity and aircraft count constraints have led researchers to focus on obtaining quasi-optimal solutions, especially at larger scales. In this paper, the authors propose the application of an agent-based integer optimization algorithm to a "cold start" fleet assignment problem. Results show that the optimizer can successfully solve such highly- constrained problems (129 variables, 184 constraints).

  2. Single-machine common/slack due window assignment problems with linear decreasing processing times

    NASA Astrophysics Data System (ADS)

    Zhang, Xingong; Lin, Win-Chin; Wu, Wen-Hsiang; Wu, Chin-Chia

    2017-08-01

    This paper studies linear non-increasing processing times and the common/slack due window assignment problems on a single machine, where the actual processing time of a job is a linear non-increasing function of its starting time. The aim is to minimize the sum of the earliness cost, tardiness cost, due window location and due window size. Some optimality results are discussed for the common/slack due window assignment problems and two O(n log n) time algorithms are presented to solve the two problems. Finally, two examples are provided to illustrate the correctness of the corresponding algorithms.

  3. Secondary prevention of work-related disability in nonspecific low back pain: does problem-solving therapy help? A randomized clinical trial.

    PubMed

    van den Hout, Johanna H C; Vlaeyen, Johan W S; Heuts, Peter H T G; Zijlema, Johan H L; Wijnen, Joseph A G

    2003-01-01

    Given the individual and economic burden of chronic work disability in low back pain patients, there is a need for effective preventive interventions. The aim of the present study was to investigate whether problem-solving therapy had a supplemental value when added to behavioral graded activity, regarding days of sick leave and work status. Randomized controlled trial. Employees who were recently on sick leave as a result of nonspecific low back pain were referred to the rehabilitation center by general practitioner, occupational physician, or rehabilitation physician. Forty-five employees had been randomly assigned to the experimental treatment condition that included behavioral graded activity and problem-solving therapy (GAPS), and 39 employees had been randomly assigned to behavioral graded activity and group education (GAGE). Days of sick leave and work status. Data were retrieved from occupational health services. Data analyses showed that employees in the GAPS group had significantly fewer days of sick leave in the second half-year after the intervention. Moreover, work status was more favorable for employees in this condition, in that more employees had a 100% return-to-work and fewer patients ended up receiving disability pensions one year after the intervention. Sensitivity analyses confirmed these results. The addition of problem-solving therapy to behavioral graded activity had supplemental value in employees with nonspecific low back pain.

  4. Self-diagnosis as a tool for supporting students’ conceptual understanding and achievements in physics: the case of 8th-graders studying force and motion

    NASA Astrophysics Data System (ADS)

    Safadi, Rafi'

    2017-01-01

    I examined the impact of a self-diagnosis activity on students’ conceptual understanding and achievements in physics. This activity requires students to self-diagnose their solutions to problems that they have solved on their own—namely, to identify and explain their errors—and self-score them—that is, assign scores to their solutions—aided by a rubric demonstrating how to solve each problem step by step. I also examined a common practice in the physics classroom in which teachers manage a whole class discussion during which they solve, together with their students, problems that students had solved on their own. Three 8th-grade classes studying force and motion with the same teacher participated. Students were first taught the unit in force and motion. Then a first summative exam was administered. Next, two classes (59 students) were assigned to the self-diagnosis activity and the other class to the whole class discussion (27 students). To assess students’ learning with these activities, a repeat exam was administered. Results suggest that at least for teachers who are not competent in managing argumentative class discussions, the self-diagnosis activity is more effective than the whole class discussion in advancing students’ conceptual understanding and achievements. I account for these results and suggest possible directions for future research.

  5. Global Optimization of Emergency Evacuation Assignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Lee; Yuan, Fang; Chin, Shih-Miao

    2006-01-01

    Conventional emergency evacuation plans often assign evacuees to fixed routes or destinations based mainly on geographic proximity. Such approaches can be inefficient if the roads are congested, blocked, or otherwise dangerous because of the emergency. By not constraining evacuees to prespecified destinations, a one-destination evacuation approach provides flexibility in the optimization process. We present a framework for the simultaneous optimization of evacuation-traffic distribution and assignment. Based on the one-destination evacuation concept, we can obtain the optimal destination and route assignment by solving a one-destination traffic-assignment problem on a modified network representation. In a county-wide, large-scale evacuation case study, the one-destinationmore » model yields substantial improvement over the conventional approach, with the overall evacuation time reduced by more than 60 percent. More importantly, emergency planners can easily implement this framework by instructing evacuees to go to destinations that the one-destination optimization process selects.« less

  6. Neural-network dedicated processor for solving competitive assignment problems

    NASA Technical Reports Server (NTRS)

    Eberhardt, Silvio P. (Inventor)

    1993-01-01

    A neural-network processor for solving first-order competitive assignment problems consists of a matrix of N x M processing units, each of which corresponds to the pairing of a first number of elements of (R sub i) with a second number of elements (C sub j), wherein limits of the first number are programmed in row control superneurons, and limits of the second number are programmed in column superneurons as MIN and MAX values. The cost (weight) W sub ij of the pairings is programmed separately into each PU. For each row and column of PU's, a dedicated constraint superneuron insures that the number of active neurons within the associated row or column fall within a specified range. Annealing is provided by gradually increasing the PU gain for each row and column or increasing positive feedback to each PU, the latter being effective to increase hysteresis of each PU or by combining both of these techniques.

  7. Quadratic adaptive algorithm for solving cardiac action potential models.

    PubMed

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. On the time-weighted quadratic sum of linear discrete systems

    NASA Technical Reports Server (NTRS)

    Jury, E. I.; Gutman, S.

    1975-01-01

    A method is proposed for obtaining the time-weighted quadratic sum for linear discrete systems. The formula of the weighted quadratic sum is obtained from matrix z-transform formulation. In addition, it is shown that this quadratic sum can be derived in a recursive form for several useful weighted functions. The discussion presented parallels that of MacFarlane (1963) for weighted quadratic integral for linear continuous systems.

  9. The solution of target assignment problem in command and control decision-making behaviour simulation

    NASA Astrophysics Data System (ADS)

    Li, Ni; Huai, Wenqing; Wang, Shaodan

    2017-08-01

    C2 (command and control) has been understood to be a critical military component to meet an increasing demand for rapid information gathering and real-time decision-making in a dynamically changing battlefield environment. In this article, to improve a C2 behaviour model's reusability and interoperability, a behaviour modelling framework was proposed to specify a C2 model's internal modules and a set of interoperability interfaces based on the C-BML (coalition battle management language). WTA (weapon target assignment) is a typical C2 autonomous decision-making behaviour modelling problem. Different from most WTA problem descriptions, here sensors were considered to be available resources of detection and the relationship constraints between weapons and sensors were also taken into account, which brought it much closer to actual application. A modified differential evolution (MDE) algorithm was developed to solve this high-dimension optimisation problem and obtained an optimal assignment plan with high efficiency. In case study, we built a simulation system to validate the proposed C2 modelling framework and interoperability interface specification. Also, a new optimisation solution was used to solve the WTA problem efficiently and successfully.

  10. Frequency assignments for HFDF receivers in a search and rescue network

    NASA Astrophysics Data System (ADS)

    Johnson, Krista E.

    1990-03-01

    This thesis applies a multiobjective linear programming approach to the problem of assigning frequencies to high frequency direction finding (HFDF) receivers in a search-and-rescue network in order to maximize the expected number of geolocations of vessels in distress. The problem is formulated as a multiobjective integer linear programming problem. The integrality of the solutions is guaranteed by the totally unimodularity of the A-matrix. Two approaches are taken to solve the multiobjective linear programming problem: (1) the multiobjective simplex method as implemented in ADBASE; and (2) an iterative approach. In this approach, the individual objective functions are weighted and combined in a single additive objective function. The resulting single objective problem is expressed as a network programming problem and solved using SAS NETFLOW. The process is then repeated with different weightings for the objective functions. The solutions obtained from the multiobjective linear programs are evaluated using a FORTRAN program to determine which solution provides the greatest expected number of geolocations. This solution is then compared to the sample mean and standard deviation for the expected number of geolocations resulting from 10,000 random frequency assignments for the network.

  11. Interpersonal problem-solving skills training in the treatment of self-poisoning patients.

    PubMed

    McLeavey, B C; Daly, R J; Ludgate, J W; Murray, C M

    1994-01-01

    The present study evaluated the effectiveness of interpersonal problem-solving skills training (IPSST) for the treatment of self-poisoning patients. Thirty-nine self-poisoning patients were assigned randomly either to IPSST or to a control treatment condition (a brief problem-oriented approach). Both conditions were equally effective in reducing the number of presenting problems and in reducing hopelessness levels. However, the IPSST condition was significantly more effective than the control condition as determined by other outcome measures (measures of interpersonal cognitive problem solving, self-rated personal problem-solving ability, perceived ability to cope with ongoing problems, and self-perception). Follow-up studies showed maintenance of IPSST treatment gains at 6 months and a greater reduction of repetition of self-poisoning in the IPSST group at 1 year posttreatment.

  12. The Effects of Thinking Aloud Pair Problem Solving on High School Students' Chemistry Problem-Solving Performance and Verbal Interactions

    NASA Astrophysics Data System (ADS)

    Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee

    2005-10-01

    This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.

  13. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students With Mathematics Problem-Solving Difficulties.

    PubMed

    Jitendra, Asha K; Harwell, Michael R; Dupuis, Danielle N; Karl, Stacy R

    This article reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and their students in the larger study were randomly assigned to an SBI or control condition and teachers in both conditions then provided instruction on the topics of ratio, proportion, and percent. We found that students with MD-PS in SBI classrooms scored on average higher than their counterparts in control classrooms on a posttest and delayed posttest administered 9 weeks later. Given students' difficulties with proportional problem-solving and the consequences of these difficulties, an important contribution of this research is the finding that when provided with appropriate instruction, students with MD-PS are capable of enhanced proportional problem-solving performance.

  14. THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY

    EPA Science Inventory

    Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...

  15. Optimal External Wrench Distribution During a Multi-Contact Sit-to-Stand Task.

    PubMed

    Bonnet, Vincent; Azevedo-Coste, Christine; Robert, Thomas; Fraisse, Philippe; Venture, Gentiane

    2017-07-01

    This paper aims at developing and evaluating a new practical method for the real-time estimate of joint torques and external wrenches during multi-contact sit-to-stand (STS) task using kinematics data only. The proposed method allows also identifying subject specific body inertial segment parameters that are required to perform inverse dynamics. The identification phase is performed using simple and repeatable motions. Thanks to an accurately identified model the estimate of the total external wrench can be used as an input to solve an under-determined multi-contact problem. It is solved using a constrained quadratic optimization process minimizing a hybrid human-like energetic criterion. The weights of this hybrid cost function are adjusted and a sensitivity analysis is performed in order to reproduce robustly human external wrench distribution. The results showed that the proposed method could successfully estimate the external wrenches under buttocks, feet, and hands during STS tasks (RMS error lower than 20 N and 6 N.m). The simplicity and generalization abilities of the proposed method allow paving the way of future diagnosis solutions and rehabilitation applications, including in-home use.

  16. Mass eigenstates in bimetric theory with matter coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt-May, Angnis, E-mail: angnis.schmidt-may@fysik.su.se

    2015-01-01

    In this paper we study the ghost-free bimetric action extended by a recently proposed coupling to matter through a composite metric. The equations of motion for this theory are derived using a method which avoids varying the square-root matrix that appears in the matter coupling. We make an ansatz for which the metrics are proportional to each other and find that it can solve the equations provided that one parameter in the action is fixed. In this case, the proportional metrics as well as the effective metric that couples to matter solve Einstein's equations of general relativity including a mattermore » source. Around these backgrounds we derive the quadratic action for perturbations and diagonalize it into generalized mass eigenstates. It turns out that matter only interacts with the massless spin-2 mode whose equation of motion has exactly the form of the linearized Einstein equations, while the field with Fierz-Pauli mass term is completely decoupled. Hence, bimetric theory, with one parameter fixed such that proportional solutions exist, is degenerate with general relativity up to linear order around these backgrounds.« less

  17. Escape problem under stochastic volatility: The Heston model

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume; Perelló, Josep

    2008-11-01

    We solve the escape problem for the Heston random diffusion model from a finite interval of span L . We obtain exact expressions for the survival probability (which amounts to solving the complete escape problem) as well as for the mean exit time. We also average the volatility in order to work out the problem for the return alone regardless of volatility. We consider these results in terms of the dimensionless normal level of volatility—a ratio of the three parameters that appear in the Heston model—and analyze their form in several asymptotic limits. Thus, for instance, we show that the mean exit time grows quadratically with large spans while for small spans the growth is systematically slower, depending on the value of the normal level. We compare our results with those of the Wiener process and show that the assumption of stochastic volatility, in an apparently paradoxical way, increases survival and prolongs the escape time. We finally observe that the model is able to describe the main exit-time statistics of the Dow-Jones daily index.

  18. Numerical simulation of axisymmetric turbulent flow in combustors and diffusors. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Yung, Chain Nan

    1988-01-01

    A method for predicting turbulent flow in combustors and diffusers is developed. The Navier-Stokes equations, incorporating a turbulence kappa-epsilon model equation, were solved in a nonorthogonal curvilinear coordinate system. The solution applied the finite volume method to discretize the differential equations and utilized the SIMPLE algorithm iteratively to solve the differenced equations. A zonal grid method, wherein the flow field was divided into several subsections, was developed. This approach permitted different computational schemes to be used in the various zones. In addition, grid generation was made a more simple task. However, treatment of the zonal boundaries required special handling. Boundary overlap and interpolating techniques were used and an adjustment of the flow variables was required to assure conservation of mass, momentum and energy fluxes. The numerical accuracy was assessed using different finite differencing methods, i.e., hybrid, quadratic upwind and skew upwind, to represent the convection terms. Flows in different geometries of combustors and diffusers were simulated and results compared with experimental data and good agreement was obtained.

  19. An historical survey of computational methods in optimal control.

    NASA Technical Reports Server (NTRS)

    Polak, E.

    1973-01-01

    Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.

  20. Optimal cure cycle design of a resin-fiber composite laminate

    NASA Technical Reports Server (NTRS)

    Hou, Jean W.; Sheen, Jeenson

    1987-01-01

    A unified computed aided design method was studied for the cure cycle design that incorporates an optimal design technique with the analytical model of a composite cure process. The preliminary results of using this proposed method for optimal cure cycle design are reported and discussed. The cure process of interest is the compression molding of a polyester which is described by a diffusion reaction system. The finite element method is employed to convert the initial boundary value problem into a set of first order differential equations which are solved simultaneously by the DE program. The equations for thermal design sensitivities are derived by using the direct differentiation method and are solved by the DE program. A recursive quadratic programming algorithm with an active set strategy called a linearization method is used to optimally design the cure cycle, subjected to the given design performance requirements. The difficulty of casting the cure cycle design process into a proper mathematical form is recognized. Various optimal design problems are formulated to address theses aspects. The optimal solutions of these formulations are compared and discussed.

  1. Convergence of the standard RLS method and UDUT factorisation of covariance matrix for solving the algebraic Riccati equation of the DLQR via heuristic approximate dynamic programming

    NASA Astrophysics Data System (ADS)

    Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.

    2015-08-01

    The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.

  2. Solving portfolio selection problems with minimum transaction lots based on conditional-value-at-risk

    NASA Astrophysics Data System (ADS)

    Setiawan, E. P.; Rosadi, D.

    2017-01-01

    Portfolio selection problems conventionally means ‘minimizing the risk, given the certain level of returns’ from some financial assets. This problem is frequently solved with quadratic or linear programming methods, depending on the risk measure that used in the objective function. However, the solutions obtained by these method are in real numbers, which may give some problem in real application because each asset usually has its minimum transaction lots. In the classical approach considering minimum transaction lots were developed based on linear Mean Absolute Deviation (MAD), variance (like Markowitz’s model), and semi-variance as risk measure. In this paper we investigated the portfolio selection methods with minimum transaction lots with conditional value at risk (CVaR) as risk measure. The mean-CVaR methodology only involves the part of the tail of the distribution that contributed to high losses. This approach looks better when we work with non-symmetric return probability distribution. Solution of this method can be found with Genetic Algorithm (GA) methods. We provide real examples using stocks from Indonesia stocks market.

  3. The non-avian theropod quadrate I: standardized terminology with an overview of the anatomy and function

    PubMed Central

    Araújo, Ricardo; Mateus, Octávio

    2015-01-01

    The quadrate of reptiles and most other tetrapods plays an important morphofunctional role by allowing the articulation of the mandible with the cranium. In Theropoda, the morphology of the quadrate is particularly complex and varies importantly among different clades of non-avian theropods, therefore conferring a strong taxonomic potential. Inconsistencies in the notation and terminology used in discussions of the theropod quadrate anatomy have been noticed, including at least one instance when no less than eight different terms were given to the same structure. A standardized list of terms and notations for each quadrate anatomical entity is proposed here, with the goal of facilitating future descriptions of this important cranial bone. In addition, an overview of the literature on quadrate function and pneumaticity in non-avian theropods is presented, along with a discussion of the inferences that could be made from this research. Specifically, the quadrate of the large majority of non-avian theropods is akinetic but the diagonally oriented intercondylar sulcus of the mandibular articulation allowed both rami of the mandible to move laterally when opening the mouth in many of theropods. Pneumaticity of the quadrate is also present in most averostran clades and the pneumatic chamber—invaded by the quadrate diverticulum of the mandibular arch pneumatic system—was connected to one or several pneumatic foramina on the medial, lateral, posterior, anterior or ventral sides of the quadrate. PMID:26401455

  4. Quantum annealing for combinatorial clustering

    NASA Astrophysics Data System (ADS)

    Kumar, Vaibhaw; Bass, Gideon; Tomlin, Casey; Dulny, Joseph

    2018-02-01

    Clustering is a powerful machine learning technique that groups "similar" data points based on their characteristics. Many clustering algorithms work by approximating the minimization of an objective function, namely the sum of within-the-cluster distances between points. The straightforward approach involves examining all the possible assignments of points to each of the clusters. This approach guarantees the solution will be a global minimum; however, the number of possible assignments scales quickly with the number of data points and becomes computationally intractable even for very small datasets. In order to circumvent this issue, cost function minima are found using popular local search-based heuristic approaches such as k-means and hierarchical clustering. Due to their greedy nature, such techniques do not guarantee that a global minimum will be found and can lead to sub-optimal clustering assignments. Other classes of global search-based techniques, such as simulated annealing, tabu search, and genetic algorithms, may offer better quality results but can be too time-consuming to implement. In this work, we describe how quantum annealing can be used to carry out clustering. We map the clustering objective to a quadratic binary optimization problem and discuss two clustering algorithms which are then implemented on commercially available quantum annealing hardware, as well as on a purely classical solver "qbsolv." The first algorithm assigns N data points to K clusters, and the second one can be used to perform binary clustering in a hierarchical manner. We present our results in the form of benchmarks against well-known k-means clustering and discuss the advantages and disadvantages of the proposed techniques.

  5. On a 3-D singularity element for computation of combined mode stress intensities

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.; Kathiresan, K.

    1976-01-01

    A special three-dimensional singularity element is developed for the computation of combined modes 1, 2, and 3 stress intensity factors, which vary along an arbitrarily curved crack front in three dimensional linear elastic fracture problems. The finite element method is based on a displacement-hybrid finite element model, based on a modified variational principle of potential energy, with arbitrary element interior displacements, interelement boundary displacements, and element boundary tractions as variables. The special crack-front element used in this analysis contains the square root singularity in strains and stresses, where the stress-intensity factors K(1), K(2), and K(3) are quadratically variable along the crack front and are solved directly along with the unknown nodal displacements.

  6. Discretized energy minimization in a wave guide with point sources

    NASA Technical Reports Server (NTRS)

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  7. Differential geometric treewidth estimation in adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Jonckheere, Edmond; Brun, Todd

    2016-10-01

    The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.

  8. On distributed wavefront reconstruction for large-scale adaptive optics systems.

    PubMed

    de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel

    2016-05-01

    The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.

  9. The optimal location of piezoelectric actuators and sensors for vibration control of plates

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ramesh; Narayanan, S.

    2007-12-01

    This paper considers the optimal placement of collocated piezoelectric actuator-sensor pairs on a thin plate using a model-based linear quadratic regulator (LQR) controller. LQR performance is taken as objective for finding the optimal location of sensor-actuator pairs. The problem is formulated using the finite element method (FEM) as multi-input-multi-output (MIMO) model control. The discrete optimal sensor and actuator location problem is formulated in the framework of a zero-one optimization problem. A genetic algorithm (GA) is used to solve the zero-one optimization problem. Different classical control strategies like direct proportional feedback, constant-gain negative velocity feedback and the LQR optimal control scheme are applied to study the control effectiveness.

  10. Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization.

    PubMed

    Li, Zhijun; Xia, Yuanqing; Su, Chun-Yi; Deng, Jun; Fu, Jun; He, Wei

    2015-08-01

    In this brief, the utilization of robust model-based predictive control is investigated for the problem of missile interception. Treating the target acceleration as a bounded disturbance, novel guidance law using model predictive control is developed by incorporating missile inside constraints. The combined model predictive approach could be transformed as a constrained quadratic programming (QP) problem, which may be solved using a linear variational inequality-based primal-dual neural network over a finite receding horizon. Online solutions to multiple parametric QP problems are used so that constrained optimal control decisions can be made in real time. Simulation studies are conducted to illustrate the effectiveness and performance of the proposed guidance control law for missile interception.

  11. Correction of aeroheating-induced intensity nonuniformity in infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Li; Yan, Luxin; Zhao, Hui; Dai, Xiaobing; Zhang, Tianxu

    2016-05-01

    Aeroheating-induced intensity nonuniformity effects severely influence the effective performance of an infrared (IR) imaging system in high-speed flight. In this paper, we propose a new approach to the correction of intensity nonuniformity in IR images. The basic assumption is that the low-frequency intensity bias is additive and smoothly varying so that it can be modeled as a bivariate polynomial and estimated by using an isotropic total variation (TV) model. A half quadratic penalty method is applied to the isotropic form of TV discretization. And an alternating minimization algorithm is adopted for solving the optimization model. The experimental results of simulated and real aerothermal images show that the proposed correction method can effectively improve IR image quality.

  12. On a stochastic control method for weakly coupled linear systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kwong, R. H.

    1972-01-01

    The stochastic control of two weakly coupled linear systems with different controllers is considered. Each controller only makes measurements about his own system; no information about the other system is assumed to be available. Based on the noisy measurements, the controllers are to generate independently suitable control policies which minimize a quadratic cost functional. To account for the effects of weak coupling directly, an approximate model, which involves replacing the influence of one system on the other by a white noise process is proposed. Simple suboptimal control problem for calculating the covariances of these noises is solved using the matrix minimum principle. The overall system performance based on this scheme is analyzed as a function of the degree of intersystem coupling.

  13. Technical Note: Harmonic analysis applied to MR image distortion fields specific to arbitrarily shaped volumes.

    PubMed

    Stanescu, T; Jaffray, D

    2018-05-25

    Magnetic resonance imaging is expected to play a more important role in radiation therapy given the recent developments in MR-guided technologies. MR images need to consistently show high spatial accuracy to facilitate RT specific tasks such as treatment planning and in-room guidance. The present study investigates a new harmonic analysis method for the characterization of complex 3D fields derived from MR images affected by system-related distortions. An interior Dirichlet problem based on solving the Laplace equation with boundary conditions (BCs) was formulated for the case of a 3D distortion field. The second-order boundary value problem (BVP) was solved using a finite elements method (FEM) for several quadratic geometries - i.e., sphere, cylinder, cuboid, D-shaped, and ellipsoid. To stress-test the method and generalize it, the BVP was also solved for more complex surfaces such as a Reuleaux 9-gon and the MR imaging volume of a scanner featuring a high degree of surface irregularities. The BCs were formatted from reference experimental data collected with a linearity phantom featuring a volumetric grid structure. The method was validated by comparing the harmonic analysis results with the corresponding experimental reference fields. The harmonic fields were found to be in good agreement with the baseline experimental data for all geometries investigated. In the case of quadratic domains, the percentage of sampling points with residual values larger than 1 mm were 0.5% and 0.2% for the axial components and vector magnitude, respectively. For the general case of a domain defined by the available MR imaging field of view, the reference data showed a peak distortion of about 12 mm and 79% of the sampling points carried a distortion magnitude larger than 1 mm (tolerance intrinsic to the experimental data). The upper limits of the residual values after comparison with the harmonic fields showed max and mean of 1.4 mm and 0.25 mm, respectively, with only 1.5% of sampling points exceeding 1 mm. A novel harmonic analysis approach relying on finite element methods was introduced and validated for multiple volumes with surface shape functions ranging from simple to highly complex. Since a boundary value problem is solved the method requires input data from only the surface of the desired domain of interest. It is believed that the harmonic method will facilitate (a) the design of new phantoms dedicated for the quantification of MR image distortions in large volumes and (b) an integrative approach of combining multiple imaging tests specific to radiotherapy into a single test object for routine imaging quality control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Nonlinear and parallel algorithms for finite element discretizations of the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Arteaga, Santiago Egido

    1998-12-01

    The steady-state Navier-Stokes equations are of considerable interest because they are used to model numerous common physical phenomena. The applications encountered in practice often involve small viscosities and complicated domain geometries, and they result in challenging problems in spite of the vast attention that has been dedicated to them. In this thesis we examine methods for computing the numerical solution of the primitive variable formulation of the incompressible equations on distributed memory parallel computers. We use the Galerkin method to discretize the differential equations, although most results are stated so that they apply also to stabilized methods. We also reformulate some classical results in a single framework and discuss some issues frequently dismissed in the literature, such as the implementation of pressure space basis and non- homogeneous boundary values. We consider three nonlinear methods: Newton's method, Oseen's (or Picard) iteration, and sequences of Stokes problems. All these iterative nonlinear methods require solving a linear system at every step. Newton's method has quadratic convergence while that of the others is only linear; however, we obtain theoretical bounds showing that Oseen's iteration is more robust, and we confirm it experimentally. In addition, although Oseen's iteration usually requires more iterations than Newton's method, the linear systems it generates tend to be simpler and its overall costs (in CPU time) are lower. The Stokes problems result in linear systems which are easier to solve, but its convergence is much slower, so that it is competitive only for large viscosities. Inexact versions of these methods are studied, and we explain why the best timings are obtained using relatively modest error tolerances in solving the corresponding linear systems. We also present a new damping optimization strategy based on the quadratic nature of the Navier-Stokes equations, which improves the robustness of all the linearization strategies considered and whose computational cost is negligible. The algebraic properties of these systems depend on both the discretization and nonlinear method used. We study in detail the positive definiteness and skewsymmetry of the advection submatrices (essentially, convection-diffusion problems). We propose a discretization based on a new trilinear form for Newton's method. We solve the linear systems using three Krylov subspace methods, GMRES, QMR and TFQMR, and compare the advantages of each. Our emphasis is on parallel algorithms, and so we consider preconditioners suitable for parallel computers such as line variants of the Jacobi and Gauss- Seidel methods, alternating direction implicit methods, and Chebyshev and least squares polynomial preconditioners. These work well for moderate viscosities (moderate Reynolds number). For small viscosities we show that effective parallel solution of the advection subproblem is a critical factor to improve performance. Implementation details on a CM-5 are presented.

  15. An automated system for reduction of the firm's employees under maximal overall efficiency

    NASA Astrophysics Data System (ADS)

    Yonchev, Yoncho; Nikolov, Simeon; Baeva, Silvia

    2012-11-01

    Achieving maximal overall efficiency is a priority in all companies. This problem is formulated as a knap-sack problem and afterwards as a linear assignment problem. An automated system is created for solving of this problem.

  16. Novel approaches for road congestion mitigation.

    DOT National Transportation Integrated Search

    2012-07-02

    Transportation planning is usually aiming to solve two problems: the traffic assignment and the toll pricing problems. The latter one utilizes information from the first one, in order to find the optimal set of tolls that is the set of tolls that lea...

  17. Novel approaches for road congestion minimization.

    DOT National Transportation Integrated Search

    2012-07-01

    Transportation planning is usually aiming to solve two problems: the traffic assignment and the toll pricing problems. The latter one utilizes information from the first one, in order to find the optimal set of tolls that is the set of tolls that lea...

  18. Rumination decreases parental problem-solving effectiveness in dysphoric postnatal mothers.

    PubMed

    O'Mahen, Heather A; Boyd, Alex; Gashe, Caroline

    2015-06-01

    Postnatal depression is associated with poorer parenting quality, but there are few studies examining maternal-specific cognitive processes that may impact on parenting quality. In this study, we examined the impact of rumination on parental problem-solving effectiveness in dysphoric and non-dysphoric postnatal mothers. Fifty-nine mothers with a infant aged 12 months and under, 20 of whom had a Beck Depression Score II (BDI-II) score ≥ 14, and 39 who scored less than 14 on the BDI-II were randomly assigned to either a rumination or distraction condition. Problem-solving effectiveness was assessed post-induction with the "Postnatal Parental Problem-Solving Task" (PPST), which was adapted from the Means Ends Problem-solving task. Parental problem-solving confidence was also assessed. Dysphoric ruminating mothers exhibited poorer problem-solving effectiveness and poorer confidence regarding their problem-solving compared to dysphoric distracting, non-dysphoric distracting, and non-dysphoric ruminating mothers. A self-report measure of depressed mood was used. Rumination may be a key mechanism associated with both depressive mood and maternal parenting quality during the postnatal period. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. The airport gate assignment problem: a survey.

    PubMed

    Bouras, Abdelghani; Ghaleb, Mageed A; Suryahatmaja, Umar S; Salem, Ahmed M

    2014-01-01

    The airport gate assignment problem (AGAP) is one of the most important problems operations managers face daily. Many researches have been done to solve this problem and tackle its complexity. The objective of the task is assigning each flight (aircraft) to an available gate while maximizing both conveniences to passengers and the operational efficiency of airport. This objective requires a solution that provides the ability to change and update the gate assignment data on a real time basis. In this paper, we survey the state of the art of these problems and the various methods to obtain the solution. Our survey covers both theoretical and real AGAP with the description of mathematical formulations and resolution methods such as exact algorithms, heuristic algorithms, and metaheuristic algorithms. We also provide a research trend that can inspire researchers about new problems in this area.

  20. The Airport Gate Assignment Problem: A Survey

    PubMed Central

    Ghaleb, Mageed A.; Salem, Ahmed M.

    2014-01-01

    The airport gate assignment problem (AGAP) is one of the most important problems operations managers face daily. Many researches have been done to solve this problem and tackle its complexity. The objective of the task is assigning each flight (aircraft) to an available gate while maximizing both conveniences to passengers and the operational efficiency of airport. This objective requires a solution that provides the ability to change and update the gate assignment data on a real time basis. In this paper, we survey the state of the art of these problems and the various methods to obtain the solution. Our survey covers both theoretical and real AGAP with the description of mathematical formulations and resolution methods such as exact algorithms, heuristic algorithms, and metaheuristic algorithms. We also provide a research trend that can inspire researchers about new problems in this area. PMID:25506074

  1. Telephone-based problem-solving intervention for family caregivers of stroke survivors: a randomized controlled trial.

    PubMed

    Pfeiffer, Klaus; Beische, Denis; Hautzinger, Martin; Berry, Jack W; Wengert, Julia; Hoffrichter, Ruth; Becker, Clemens; van Schayck, Rudolf; Elliott, Timothy R

    2014-08-01

    Intervention trials for stroke caregivers after the early poststroke period are lacking. To address this gap, we examined the effectiveness of a problem-solving intervention (PSI) for stroke caregivers who provided care for at least 6 months and who experienced significant strain in their role. One hundred twenty-two family caregivers (age = 66.2 years, 77.9% female) were randomly allocated to a PSI or control group. The PSI was composed of 2 home visits and 18 telephone calls delivered over a 3-month intensive intervention and a 9-month maintenance period. PSI and control groups received monthly information letters in addition to usual care. Primary caregiver outcomes were depressive symptoms (measure: Center for Epidemiologic Studies-Depression Scale) and sense of competence (measure: Sense of Competence Questionnaire). In covariance analyses, caregivers of the PSI group showed significantly lower levels of depressive symptoms after 3 months (p < .01, d = -.48) and after 12 months (p < .05, d = -.37), but no better sense of competence compared with the control group. Latent growth curve analyses revealed positive significant (p < .05) linear and quadratic effects of PSI on both primary outcomes. No effects, however, were found on caregiver social-problem-solving abilities. Although beneficial effects were observed among caregivers in the PSI group, the lack of effects on problem-solving abilities implies other characteristics of the intervention might account for these benefits. The relative intensity and therapeutic contact during the first 3 months of the intervention may be particularly helpful to caregivers of stroke survivors. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Estimating population size with correlated sampling unit estimates

    Treesearch

    David C. Bowden; Gary C. White; Alan B. Franklin; Joseph L. Ganey

    2003-01-01

    Finite population sampling theory is useful in estimating total population size (abundance) from abundance estimates of each sampled unit (quadrat). We develop estimators that allow correlated quadrat abundance estimates, even for quadrats in different sampling strata. Correlated quadrat abundance estimates based on mark–recapture or distance sampling methods occur...

  3. Quadratic soliton self-reflection at a quadratically nonlinear interface

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai

    2003-11-01

    The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.

  4. Self-Replicating Quadratics

    ERIC Educational Resources Information Center

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

  5. Approximate optimal tracking control for near-surface AUVs with wave disturbances

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Su, Hao; Tang, Gongyou

    2016-10-01

    This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles (AUVs) in the presence of wave disturbances. An approximate optimal tracking control (AOTC) approach is proposed. Firstly, a six-degrees-of-freedom (six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value (TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit (REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.

  6. The benefits of computer-generated feedback for mathematics problem solving.

    PubMed

    Fyfe, Emily R; Rittle-Johnson, Bethany

    2016-07-01

    The goal of the current research was to better understand when and why feedback has positive effects on learning and to identify features of feedback that may improve its efficacy. In a randomized experiment, second-grade children received instruction on a correct problem-solving strategy and then solved a set of relevant problems. Children were assigned to receive no feedback, immediate feedback, or summative feedback from the computer. On a posttest the following day, feedback resulted in higher scores relative to no feedback for children who started with low prior knowledge. Immediate feedback was particularly effective, facilitating mastery of the material for children with both low and high prior knowledge. Results suggest that minimal computer-generated feedback can be a powerful form of guidance during problem solving. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Designing and evaluating health systems level hypertension control interventions for African-Americans: lessons from a pooled analysis of three cluster randomized trials.

    PubMed

    Pavlik, Valory N; Chan, Wenyaw; Hyman, David J; Feldman, Penny; Ogedegbe, Gbenga; Schwartz, Joseph E; McDonald, Margaret; Einhorn, Paula; Tobin, Jonathan N

    2015-01-01

    African-Americans (AAs) have a high prevalence of hypertension and their blood pressure (BP) control on treatment still lags behind other groups. In 2004, NHLBI funded five projects that aimed to evaluate clinically feasible interventions to effect changes in medical care delivery leading to an increased proportion of AA patients with controlled BP. Three of the groups performed a pooled analysis of trial results to determine: 1) the magnitude of the combined intervention effect; and 2) how the pooled results could inform the methodology for future health-system level BP interventions. Using a cluster randomized design, the trials enrolled AAs with uncontrolled hypertension to test interventions targeting a combination of patient and clinician behaviors. The 12-month Systolic BP (SBP) and Diastolic BP (DBP) effects of intervention or control cluster assignment were assessed using mixed effects longitudinal regression modeling. 2,015 patients representing 352 clusters participated across the three trials. Pooled BP slopes followed a quadratic pattern, with an initial decline, followed by a rise toward baseline, and did not differ significantly between intervention and control clusters: SBP linear coefficient = -2.60±0.21 mmHg per month, p<0.001; quadratic coefficient = 0.167± 0.02 mmHg/month, p<0.001; group by time interaction group by time group x linear time coefficient=0.145 ± 0.293, p=0.622; group x quadratic time coefficient= -0.017 ± 0.026, p=0.525). RESULTS were similar for DBP. The individual sites did not have significant intervention effects when analyzed separately. Investigators planning behavioral trials to improve BP control in health systems serving AAs should plan for small effect sizes and employ a "run-in" period in which BP can be expected to improve in both experimental and control clusters.

  8. Quadratic general rotary unitized design for doping concentrations and up-conversion luminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped NaLa(MoO{sub 4}){sub 2} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiashi, E-mail: sunjs@dlmu.edu.cn; Shi, Linlin; Li, Shuwei

    Highlights: • NaLa(MoO4)2: Er3+/Yb3+ phosphor is synthesized by solid state method. • QGRUD is first applied to the codoping concentration option. • Optimized phosphor presents more stable UC emissions than the commercial phosphor. - Abstract: It is still a great challenge that designing proper codoping concentrations of rare earth ions for achieving intensest expected emission from the studied phosphor. In this work, the quadratic general rotary unitized design (QGRUD) was introduced into the codoping concentration option of NaLa(MoO{sub 4}){sub 2}: Er{sup 3+}/Yb{sup 3+} phosphor for upconversion (UC) applications, and the optimum doping concentrations of Er{sup 3+} and Yb{sup 3+} formore » achieving maximum UC luminescence intensity, which is close to commercial NaYF{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor, were obtained. The two-photon process was assigned to the green UC emissions in the optimized NaLa(MoO{sub 4}){sub 2}: Er{sup 3+}/Yb{sup 3+} phosphor. It was also demonstrated that the optimized phosphor presented more stable upconversion emissions than the commercial NaYF{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor.« less

  9. Orthogonality preserving infinite dimensional quadratic stochastic operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akın, Hasan; Mukhamedov, Farrukh

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.

  10. University Learning Systems for Participative Courses.

    ERIC Educational Resources Information Center

    Billingham, Carol J.; Harper, William W.

    1980-01-01

    Describes the instructional development of a course for advanced finance students on the use of data files and/or databases for solving complex finance problems. Areas covered include course goals and the design. The course class schedule and sample learning assessment assignments are provided. (JD)

  11. Quantum attack-resistent certificateless multi-receiver signcryption scheme.

    PubMed

    Li, Huixian; Chen, Xubao; Pang, Liaojun; Shi, Weisong

    2013-01-01

    The existing certificateless signcryption schemes were designed mainly based on the traditional public key cryptography, in which the security relies on the hard problems, such as factor decomposition and discrete logarithm. However, these problems will be easily solved by the quantum computing. So the existing certificateless signcryption schemes are vulnerable to the quantum attack. Multivariate public key cryptography (MPKC), which can resist the quantum attack, is one of the alternative solutions to guarantee the security of communications in the post-quantum age. Motivated by these concerns, we proposed a new construction of the certificateless multi-receiver signcryption scheme (CLMSC) based on MPKC. The new scheme inherits the security of MPKC, which can withstand the quantum attack. Multivariate quadratic polynomial operations, which have lower computation complexity than bilinear pairing operations, are employed in signcrypting a message for a certain number of receivers in our scheme. Security analysis shows that our scheme is a secure MPKC-based scheme. We proved its security under the hardness of the Multivariate Quadratic (MQ) problem and its unforgeability under the Isomorphism of Polynomials (IP) assumption in the random oracle model. The analysis results show that our scheme also has the security properties of non-repudiation, perfect forward secrecy, perfect backward secrecy and public verifiability. Compared with the existing schemes in terms of computation complexity and ciphertext length, our scheme is more efficient, which makes it suitable for terminals with low computation capacity like smart cards.

  12. Progress Towards a Cartesian Cut-Cell Method for Viscous Compressible Flow

    NASA Technical Reports Server (NTRS)

    Berger, Marsha; Aftosmis, Michael J.

    2012-01-01

    We present preliminary development of an approach for simulating high Reynolds number steady compressible flow in two space dimensions using a Cartesian cut-cell finite volume method. We consider both laminar and turbulent flow with both low and high cell Reynolds numbers near the wall. The approach solves the full Navier-Stokes equations in all cells, and uses a wall model to address the resolution requirements near boundaries and to mitigate mesh irregularities in cut cells. We present a quadratic wall model for low cell Reynolds numbers. At high cell Reynolds numbers, the quadratic is replaced with a newly developed analytic wall model stemming from solution of a limiting form of the Spalart-Allmaras turbulence model which features a forward evaluation for flow velocity and exactly matches characteristics of the SA turbulence model in the field. We develop multigrid operators which attain convergence rates similar to inviscid multigrid. Investigations focus on preliminary verification and validation of the method. Flows over flat plates and compressible airfoils show good agreement with both theoretical results and experimental data. Mesh convergence studies on sub- and transonic airfoil flows show convergence of surface pressures with wall spacings as large as approx.0.1% chord. With the current analytic wall model, one or two additional refinements near the wall are required to obtain mesh converged values of skin friction.

  13. Locally optimal control under unknown dynamics with learnt cost function: application to industrial robot positioning

    NASA Astrophysics Data System (ADS)

    Guérin, Joris; Gibaru, Olivier; Thiery, Stéphane; Nyiri, Eric

    2017-01-01

    Recent methods of Reinforcement Learning have enabled to solve difficult, high dimensional, robotic tasks under unknown dynamics using iterative Linear Quadratic Gaussian control theory. These algorithms are based on building a local time-varying linear model of the dynamics from data gathered through interaction with the environment. In such tasks, the cost function is often expressed directly in terms of the state and control variables so that it can be locally quadratized to run the algorithm. If the cost is expressed in terms of other variables, a model is required to compute the cost function from the variables manipulated. We propose a method to learn the cost function directly from the data, in the same way as for the dynamics. This way, the cost function can be defined in terms of any measurable quantity and thus can be chosen more appropriately for the task to be carried out. With our method, any sensor information can be used to design the cost function. We demonstrate the efficiency of this method through simulating, with the V-REP software, the learning of a Cartesian positioning task on several industrial robots with different characteristics. The robots are controlled in joint space and no model is provided a priori. Our results are compared with another model free technique, consisting in writing the cost function as a state variable.

  14. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    PubMed

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-07

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A modeling of dynamic storage assignment for order picking in beverage warehousing with Drive-in Rack system

    NASA Astrophysics Data System (ADS)

    Hadi, M. Z.; Djatna, T.; Sugiarto

    2018-04-01

    This paper develops a dynamic storage assignment model to solve storage assignment problem (SAP) for beverages order picking in a drive-in rack warehousing system to determine the appropriate storage location and space for each beverage products dynamically so that the performance of the system can be improved. This study constructs a graph model to represent drive-in rack storage position then combine association rules mining, class-based storage policies and an arrangement rule algorithm to determine an appropriate storage location and arrangement of the product according to dynamic orders from customers. The performance of the proposed model is measured as rule adjacency accuracy, travel distance (for picking process) and probability a product become expiry using Last Come First Serve (LCFS) queue approach. Finally, the proposed model is implemented through computer simulation and compare the performance for different storage assignment methods as well. The result indicates that the proposed model outperforms other storage assignment methods.

  16. Protein assignments without peak lists using higher-order spectra.

    PubMed

    Benison, Gregory; Berkholz, Donald S; Barbar, Elisar

    2007-12-01

    Despite advances in automating the generation and manipulation of peak lists for assigning biomolecules, there are well-known advantages to working directly with spectra: the eye is still superior to computer algorithms when it comes to picking out peak relationships from contour plots in the presence of confounding factors such as noise, overlap, and spectral artifacts. Here, we present constructs called higher-order spectra for identifying, through direct visual examination, many of the same relationships typically identified by searching peak lists, making them another addition to the set of tools (alongside peak picking and automated assignment) that can be used to solve the assignment problem. The technique is useful for searching for correlated peaks in any spectrum type. Application of this technique to novel, complete sequential assignment of two proteins (AhpFn and IC74(84-143)) is demonstrated. The program "burrow-owl" for the generation and display of higher-order spectra is available at (http://sourceforge.net/projects/burrow-owl) or from the authors.

  17. Computing Role Assignments of Proper Interval Graphs in Polynomial Time

    NASA Astrophysics Data System (ADS)

    Heggernes, Pinar; van't Hof, Pim; Paulusma, Daniël

    A homomorphism from a graph G to a graph R is locally surjective if its restriction to the neighborhood of each vertex of G is surjective. Such a homomorphism is also called an R-role assignment of G. Role assignments have applications in distributed computing, social network theory, and topological graph theory. The Role Assignment problem has as input a pair of graphs (G,R) and asks whether G has an R-role assignment. This problem is NP-complete already on input pairs (G,R) where R is a path on three vertices. So far, the only known non-trivial tractable case consists of input pairs (G,R) where G is a tree. We present a polynomial time algorithm that solves Role Assignment on all input pairs (G,R) where G is a proper interval graph. Thus we identify the first graph class other than trees on which the problem is tractable. As a complementary result, we show that the problem is Graph Isomorphism-hard on chordal graphs, a superclass of proper interval graphs and trees.

  18. Recursive heuristic classification

    NASA Technical Reports Server (NTRS)

    Wilkins, David C.

    1994-01-01

    The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.

  19. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem.

    PubMed

    Rajeswari, M; Amudhavel, J; Pothula, Sujatha; Dhavachelvan, P

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria.

  20. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem

    PubMed Central

    Amudhavel, J.; Pothula, Sujatha; Dhavachelvan, P.

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria. PMID:28473849

  1. Due-Window Assignment Scheduling with Variable Job Processing Times

    PubMed Central

    Wu, Yu-Bin

    2015-01-01

    We consider a common due-window assignment scheduling problem jobs with variable job processing times on a single machine, where the processing time of a job is a function of its position in a sequence (i.e., learning effect) or its starting time (i.e., deteriorating effect). The problem is to determine the optimal due-windows, and the processing sequence simultaneously to minimize a cost function includes earliness, tardiness, the window location, window size, and weighted number of tardy jobs. We prove that the problem can be solved in polynomial time. PMID:25918745

  2. PROBABILISTIC CROSS-IDENTIFICATION IN CROWDED FIELDS AS AN ASSIGNMENT PROBLEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budavári, Tamás; Basu, Amitabh, E-mail: budavari@jhu.edu, E-mail: basu.amitabh@jhu.edu

    2016-10-01

    One of the outstanding challenges of cross-identification is multiplicity: detections in crowded regions of the sky are often linked to more than one candidate associations of similar likelihoods. We map the resulting maximum likelihood partitioning to the fundamental assignment problem of discrete mathematics and efficiently solve the two-way catalog-level matching in the realm of combinatorial optimization using the so-called Hungarian algorithm. We introduce the method, demonstrate its performance in a mock universe where the true associations are known, and discuss the applicability of the new procedure to large surveys.

  3. Probabilistic Cross-identification in Crowded Fields as an Assignment Problem

    NASA Astrophysics Data System (ADS)

    Budavári, Tamás; Basu, Amitabh

    2016-10-01

    One of the outstanding challenges of cross-identification is multiplicity: detections in crowded regions of the sky are often linked to more than one candidate associations of similar likelihoods. We map the resulting maximum likelihood partitioning to the fundamental assignment problem of discrete mathematics and efficiently solve the two-way catalog-level matching in the realm of combinatorial optimization using the so-called Hungarian algorithm. We introduce the method, demonstrate its performance in a mock universe where the true associations are known, and discuss the applicability of the new procedure to large surveys.

  4. Hidden supersymmetry and quadratic deformations of the space-time conformal superalgebra

    NASA Astrophysics Data System (ADS)

    Yates, L. A.; Jarvis, P. D.

    2018-04-01

    We analyze the structure of the family of quadratic superalgebras, introduced in Jarvis et al (2011 J. Phys. A: Math. Theor. 44 235205), for the quadratic deformations of N  =  1 space-time conformal supersymmetry. We characterize in particular the ‘zero-step’ modules for this case. In such modules, the odd generators vanish identically, and the quadratic superalgebra is realized on a single irreducible representation of the even subalgebra (which is a Lie algebra). In the case under study, the quadratic deformations of N  =  1 space-time conformal supersymmetry, it is shown that each massless positive energy unitary irreducible representation (in the standard classification of Mack), forms such a zero-step module, for an appropriate parameter choice amongst the quadratic family (with vanishing central charge). For these massless particle multiplets therefore, quadratic supersymmetry is unbroken, in that the supersymmetry generators annihilate all physical states (including the vacuum state), while at the same time, superpartners do not exist.

  5. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  6. Group Problem-Solving versus Lecture in College-Level Quantitative Analysis: The Good, the Bad, and the Ugly

    NASA Astrophysics Data System (ADS)

    Williamson, Vickie M.; Rowe, Marvin W.

    2002-09-01

    The purpose of this semester-long study was to investigate the effect of replacing traditional lecture with cooperative group problem-solving sessions in a junior-level quantitative analysis course. The control and treatment groups had the same instructor, met on the same day, had the same reading assignments, and had common exams. The instructor worked sample problems for the control group. In the treatment group, students were assigned to heterogeneous cooperative groups of 4. The groups solved problems presented on an overhead that were the same or equivalent in content and number to those used in the control group. Students were responsible for making sure that all members of the group could work each problem. The students' reasoning abilities were measured by the Test of Logical Thinking (TOLT). Groups were compared on quiz, exam, final, and course grades. Other data included attitudinal surveys, observations, field notes, interviews, and open-response evaluations. No significant differences were found in content measures. Differences were found in the number of students dropping the course and in the attitudes and perceptions of the two groups. Qualitative measures support a number of assertions concerning more positive attitudes and lower withdrawal rates in the treatment group, and a case for mixed delivery modes.

  7. Analysis, Evaluation and Improvement of Sequential Single-Item Auctions for the Cooperative Real-Time Allocation of Tasks

    DTIC Science & Technology

    2013-03-30

    Abstract: We study multi-robot routing problems (MR- LDR ) where a team of robots has to visit a set of given targets with linear decreasing rewards over...time, such as required for the delivery of goods to rescue sites after disasters. The objective of MR- LDR is to find an assignment of targets to...We develop a mixed integer program that solves MR- LDR optimally with a flow-type formulation and can be solved faster than the standard TSP-type

  8. Experimental problem solving: An instructional improvement field experiment

    NASA Astrophysics Data System (ADS)

    Ross, John A.; Maynes, Florence J.

    An instructional program based on expert-novice differences in experimental problem-solving performance was taught to grade 6 students (N = 265). Classes of students were randomly assigned to conditions in a delayed treatment design. Performance was assessed with multiple-choice and open-ended measures of specific transfer. Between group comparisons using pretest scores as a covariate showed that treatment condition students consistently outperformed controls; similar results were revealed in the within group comparisons. The achievement of the early treatment group did not decline in tests administered one month after the posttest.

  9. The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres

    NASA Astrophysics Data System (ADS)

    Ming-Huang Chiang, David; Lin, Chia-Ping; Chen, Mu-Chen

    2011-05-01

    Among distribution centre operations, order picking has been reported to be the most labour-intensive activity. Sophisticated storage assignment policies adopted to reduce the travel distance of order picking have been explored in the literature. Unfortunately, previous research has been devoted to locating entire products from scratch. Instead, this study intends to propose an adaptive approach, a Data Mining-based Storage Assignment approach (DMSA), to find the optimal storage assignment for newly delivered products that need to be put away when there is vacant shelf space in a distribution centre. In the DMSA, a new association index (AIX) is developed to evaluate the fitness between the put away products and the unassigned storage locations by applying association rule mining. With AIX, the storage location assignment problem (SLAP) can be formulated and solved as a binary integer programming. To evaluate the performance of DMSA, a real-world order database of a distribution centre is obtained and used to compare the results from DMSA with a random assignment approach. It turns out that DMSA outperforms random assignment as the number of put away products and the proportion of put away products with high turnover rates increase.

  10. Towards Automated Structure-Based NMR Resonance Assignment

    NASA Astrophysics Data System (ADS)

    Jang, Richard; Gao, Xin; Li, Ming

    We propose a general framework for solving the structure-based NMR backbone resonance assignment problem. The core is a novel 0-1 integer programming model that can start from a complete or partial assignment, generate multiple assignments, and model not only the assignment of spins to residues, but also pairwise dependencies consisting of pairs of spins to pairs of residues. It is still a challenge for automated resonance assignment systems to perform the assignment directly from spectra without any manual intervention. To test the feasibility of this for structure-based assignment, we integrated our system with our automated peak picking and sequence-based resonance assignment system to obtain an assignment for the protein TM1112 with 91% recall and 99% precision without manual intervention. Since using a known structure has the potential to allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data, we work towards the goal of automated structure-based assignment using only such labeled data. Our system reduced the assignment error of Xiong-Pandurangan-Bailey-Kellogg's contact replacement (CR) method, which to our knowledge is the most error-tolerant method for this problem, by 5 folds on average. By using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for Ubiquitin, where the type prediction accuracy is 83%, we achieved 91% assignment accuracy, compared to the 59% accuracy that was obtained without correcting for typing errors.

  11. Structuring Effective Student Teams.

    ERIC Educational Resources Information Center

    Dickson, Ellen L.

    1997-01-01

    Experience with student teams working on policy analysis projects indicates the need for faculty supervision of teams in the process of addressing complex issues. The problem-solving approach adopted in one policy analysis course is described, including assignments and tasks, issues and sponsors, team dynamics, conflict management, and the…

  12. Data Processing: Fifteen Suggestions for Computer Training in Your Business Education Classes.

    ERIC Educational Resources Information Center

    Barr, Lowell L.

    1980-01-01

    Presents 15 suggestions for training business education students in the use of computers. Suggestions involve computer language, method of presentation, laboratory time, programing assignments, instructions and handouts, problem solving, deadlines, reviews, programming concepts, programming logic, documentation, and defensive programming. (CT)

  13. A heterogeneous fleet vehicle routing model for solving the LPG distribution problem: A case study

    NASA Astrophysics Data System (ADS)

    Onut, S.; Kamber, M. R.; Altay, G.

    2014-03-01

    Vehicle Routing Problem (VRP) is an important management problem in the field of distribution and logistics. In VRPs, routes from a distribution point to geographically distributed points are designed with minimum cost and considering customer demands. All points should be visited only once and by one vehicle in one route. Total demand in one route should not exceed the capacity of the vehicle that assigned to that route. VRPs are varied due to real life constraints related to vehicle types, number of depots, transportation conditions and time periods, etc. Heterogeneous fleet vehicle routing problem is a kind of VRP that vehicles have different capacity and costs. There are two types of vehicles in our problem. In this study, it is used the real world data and obtained from a company that operates in LPG sector in Turkey. An optimization model is established for planning daily routes and assigned vehicles. The model is solved by GAMS and optimal solution is found in a reasonable time.

  14. Integrated case management for work-related upper-extremity disorders: impact of patient satisfaction on health and work status.

    PubMed

    Feuerstein, Michael; Huang, Grant D; Ortiz, Jose M; Shaw, William S; Miller, Virginia I; Wood, Patricia M

    2003-08-01

    An integrated case management (ICM) approach (ergonomic and problem-solving intervention) to work-related upper-extremity disorders was examined in relation to patient satisfaction, future symptom severity, function, and return to work (RTW). Federal workers with work-related upper-extremity disorder workers' compensation claims (n = 205) were randomly assigned to usual care or ICM intervention. Patient satisfaction was assessed after the 4-month intervention period. Questionnaires on clinical outcomes and ergonomic exposure were administered at baseline and at 6- and 12-months postintervention. Time from intervention to RTW was obtained from an administrative database. ICM group assignment was significantly associated with greater patient satisfaction. Regression analyses found higher patient satisfaction levels predicted decreased symptom severity and functional limitations at 6 months and a shorter RTW. At 12 months, predictors of positive outcomes included male gender, lower distress, lower levels of reported ergonomic exposure, and receipt of ICM. Findings highlight the utility of targeting workplace ergonomic and problem solving skills.

  15. A randomized controlled trial of a Dutch version of systems training for emotional predictability and problem solving for borderline personality disorder.

    PubMed

    Bos, Elisabeth H; van Wel, E Bas; Appelo, Martin T; Verbraak, Marc J P M

    2010-04-01

    Systems Training for Emotional Predictability and Problem Solving (STEPPS) is a group treatment for persons with borderline personality disorder (BPD) that is relatively easy to implement. We investigated the efficacy of a Dutch version of this treatment (VERS). Seventy-nine DSM-IV BPD patients were randomly assigned to STEPPS plus an adjunctive individual therapy, or to treatment as usual. Assessments took place before and after the intervention, and at a 6-month follow-up. STEPPS recipients showed a significantly greater reduction in general psychiatric and BPD-specific symptomatology than subjects assigned to treatment as usual; these differences remained significant at follow-up. STEPPS also led to greater improvement in quality of life, especially at follow-up. No differences in impulsive or parasuicidal behavior were observed. Effect sizes for the differences between the treatments were moderate to large. The results suggest that the brief STEPPS program combined with limited individual therapy can improve BPD-treatment in a number of ways.

  16. Problem solving strategies integrated into nursing process to promote clinical problem solving abilities of RN-BSN students.

    PubMed

    Wang, Jing-Jy; Lo, Chi-Hui Kao; Ku, Ya-Lie

    2004-11-01

    A set of problem solving strategies integrated into nursing process in nursing core courses (PSNP) was developed for students enrolled in a post-RN baccalaureate nursing program (RN-BSN) in a university in Taiwan. The purpose of this study, therefore, was to evaluate the effectiveness of PSNP on students' clinical problem solving abilities. The one-group post-test design with repeated measures was used. In total 114 nursing students with 47 full-time students and 67 part-time students participated in this study. The nursing core courses were undertaken separately in three semesters. After each semester's learning, students would start their clinical practice, and were asked to submit three written nursing process recordings during each clinic. Assignments from the three practices were named post-test I, II, and III sequentially, and provided the data for this study. The overall score of problem solving indicated that score on the post-test III was significantly better than that on post-test I and II, meaning both full-time and part-time students' clinical problem solving abilities improved at the last semester. In conclusion, problem-solving strategies integrated into nursing process designed for future RN-BSN students are recommendable.

  17. Mixed Linear/Square-Root Encoded Single-Slope Ramp Provides Low-Noise ADC with High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Chris J.; Hancock, Bruce R.; Newton, Kenneth W.; Cunningham, Thomas J.

    2013-01-01

    Single-slope analog-to-digital converters (ADCs) are particularly useful for onchip digitization in focal plane arrays (FPAs) because of their inherent monotonicity, relative simplicity, and efficiency for column-parallel applications, but they are comparatively slow. Squareroot encoding can allow the number of code values to be reduced without loss of signal-to-noise ratio (SNR) by keeping the quantization noise just below the signal shot noise. This encoding can be implemented directly by using a quadratic ramp. The reduction in the number of code values can substantially increase the quantization speed. However, in an FPA, the fixed pattern noise (FPN) limits the use of small quantization steps at low signal levels. If the zero-point is adjusted so that the lowest column is onscale, the other columns, including those at the center of the distribution, will be pushed up the ramp where the quantization noise is higher. Additionally, the finite frequency response of the ramp buffer amplifier and the comparator distort the shape of the ramp, so that the effective ramp value at the time the comparator trips differs from the intended value, resulting in errors. Allowing increased settling time decreases the quantization speed, while increasing the bandwidth increases the noise. The FPN problem is solved by breaking the ramp into two portions, with some fraction of the available code values allocated to a linear ramp and the remainder to a quadratic ramp. To avoid large transients, both the value and the slope of the linear and quadratic portions should be equal where they join. The span of the linear portion must cover the minimum offset, but not necessarily the maximum, since the fraction of the pixels above the upper limit will still be correctly quantized, albeit with increased quantization noise. The required linear span, maximum signal and ratio of quantization noise to shot noise at high signal, along with the continuity requirement, determines the number of code values that must be allocated to each portion. The distortion problem is solved by using a lookup table to convert captured code values back to signal levels. The values in this table will be similar to the intended ramp value, but with a correction for the finite bandwidth effects. Continuous-time comparators are used, and their bandwidth is set below the step rate, which smoothes the ramp and reduces the noise. No settling time is needed, as would be the case for clocked comparators, but the low bandwidth enhances the distortion of the non-linear portion. This is corrected by use of a return lookup table, which differs from the one used to generate the ramp. The return lookup table is obtained by calibrating against a stepped precision DC reference. This results in a residual non-linearity well below the quantization noise. This method can also compensate for differential non-linearity (DNL) in the DAC used to generate the ramp. The use of a ramp with a combination of linear and quadratic portions for a single-slope ADC is novel. The number of steps is minimized by keeping the step size just below the photon shot noise. This in turn maximizes the speed of the conversion. High resolution is maintained by keeping small quantization steps at low signals, and noise is minimized by allowing the lowest analog bandwidth, all without increasing the quantization noise. A calibrated return lookup table allows the system to maintain excellent linearity.

  18. Ontological Problem-Solving Framework for Dynamically Configuring Sensor Systems and Algorithms

    PubMed Central

    Qualls, Joseph; Russomanno, David J.

    2011-01-01

    The deployment of ubiquitous sensor systems and algorithms has led to many challenges, such as matching sensor systems to compatible algorithms which are capable of satisfying a task. Compounding the challenges is the lack of the requisite knowledge models needed to discover sensors and algorithms and to subsequently integrate their capabilities to satisfy a specific task. A novel ontological problem-solving framework has been designed to match sensors to compatible algorithms to form synthesized systems, which are capable of satisfying a task and then assigning the synthesized systems to high-level missions. The approach designed for the ontological problem-solving framework has been instantiated in the context of a persistence surveillance prototype environment, which includes profiling sensor systems and algorithms to demonstrate proof-of-concept principles. Even though the problem-solving approach was instantiated with profiling sensor systems and algorithms, the ontological framework may be useful with other heterogeneous sensing-system environments. PMID:22163793

  19. Model reduction by weighted Component Cost Analysis

    NASA Technical Reports Server (NTRS)

    Kim, Jae H.; Skelton, Robert E.

    1990-01-01

    Component Cost Analysis considers any given system driven by a white noise process as an interconnection of different components, and assigns a metric called 'component cost' to each component. These component costs measure the contribution of each component to a predefined quadratic cost function. A reduced-order model of the given system may be obtained by deleting those components that have the smallest component costs. The theory of Component Cost Analysis is extended to include finite-bandwidth colored noises. The results also apply when actuators have dynamics of their own. Closed-form analytical expressions of component costs are also derived for a mechanical system described by its modal data. This is very useful to compute the modal costs of very high order systems. A numerical example for MINIMAST system is presented.

  20. [FQA: A method for floristic quality assessment based on conservatism of plant species].

    PubMed

    Cao, Li Juan; He, Ping; Wang, Mi; Xui, Jie; Ren, Ying

    2018-04-01

    FQA, which uses the conservatism of plant species for particular habitats and the species richness of plant communities, is a rapid method for the assessment of habitat quality. This method is based on species composition of quadrats and coefficients of conservatism for species which assigned by experts. Floristic Quality Index (FQI) that reflects vegetation integrity and degradation of a site can be calculated by a simple formula and be used for space-time comparison of habitat quality. It has been widely used in more than ten countries including the United States and Canada. This paper presented the principle, calculation formulas and application cases of this method, with the aim to provide a simple, repeatable and comparable method to assess habitat quality for ecological managers and researchers.

  1. On the number of channels needed to classify vowels: Implications for cochlear implants

    NASA Astrophysics Data System (ADS)

    Fourakis, Marios; Hawks, John W.; Davis, Erin

    2005-09-01

    In cochlear implants the incoming signal is analyzed by a bank of filters. Each filter is associated with an electrode to constitute a channel. The present research seeks to determine the number of channels needed for optimal vowel classification. Formant measurements of vowels produced by men and women [Hillenbrand et al., J. Acoust. Soc. Am. 97, 3099-3111 (1995)] were converted to channel assignments. The number of channels varied from 4 to 20 over two frequency ranges (180-4000 and 180-6000 Hz) in equal bark steps. Channel assignments were submitted to linear discriminant analysis (LDA). Classification accuracy increased with the number of channels, ranging from 30% with 4 channels to 98% with 20 channels, both for the female voice. To determine asymptotic performance, LDA classification scores were plotted against the number of channels and fitted with quadratic equations. The number of channels at which no further improvement occurred was determined, averaging 19 across all conditions with little variation. This number of channels seems to resolve the frequency range spanned by the first three formants finely enough to maximize vowel classification. This resolution may not be achieved using six or eight channels as previously proposed. [Work supported by NIH.

  2. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method.

    PubMed

    He, Xiaowei; Liang, Jimin; Wang, Xiaorui; Yu, Jingjing; Qu, Xiaochao; Wang, Xiaodong; Hou, Yanbin; Chen, Duofang; Liu, Fang; Tian, Jie

    2010-11-22

    In this paper, we present an incomplete variables truncated conjugate gradient (IVTCG) method for bioluminescence tomography (BLT). Considering the sparse characteristic of the light source and insufficient surface measurement in the BLT scenarios, we combine a sparseness-inducing (ℓ1 norm) regularization term with a quadratic error term in the IVTCG-based framework for solving the inverse problem. By limiting the number of variables updated at each iterative and combining a variable splitting strategy to find the search direction more efficiently, it obtains fast and stable source reconstruction, even without a priori information of the permissible source region and multispectral measurements. Numerical experiments on a mouse atlas validate the effectiveness of the method. In vivo mouse experimental results further indicate its potential for a practical BLT system.

  3. Exact solution for the optimal neuronal layout problem.

    PubMed

    Chklovskii, Dmitri B

    2004-10-01

    Evolution perfected brain design by maximizing its functionality while minimizing costs associated with building and maintaining it. Assumption that brain functionality is specified by neuronal connectivity, implemented by costly biological wiring, leads to the following optimal design problem. For a given neuronal connectivity, find a spatial layout of neurons that minimizes the wiring cost. Unfortunately, this problem is difficult to solve because the number of possible layouts is often astronomically large. We argue that the wiring cost may scale as wire length squared, reducing the optimal layout problem to a constrained minimization of a quadratic form. For biologically plausible constraints, this problem has exact analytical solutions, which give reasonable approximations to actual layouts in the brain. These solutions make the inverse problem of inferring neuronal connectivity from neuronal layout more tractable.

  4. Simulated parallel annealing within a neighborhood for optimization of biomechanical systems.

    PubMed

    Higginson, J S; Neptune, R R; Anderson, F C

    2005-09-01

    Optimization problems for biomechanical systems have become extremely complex. Simulated annealing (SA) algorithms have performed well in a variety of test problems and biomechanical applications; however, despite advances in computer speed, convergence to optimal solutions for systems of even moderate complexity has remained prohibitive. The objective of this study was to develop a portable parallel version of a SA algorithm for solving optimization problems in biomechanics. The algorithm for simulated parallel annealing within a neighborhood (SPAN) was designed to minimize interprocessor communication time and closely retain the heuristics of the serial SA algorithm. The computational speed of the SPAN algorithm scaled linearly with the number of processors on different computer platforms for a simple quadratic test problem and for a more complex forward dynamic simulation of human pedaling.

  5. Multiplexed Predictive Control of a Large Commercial Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Richter, hanz; Singaraju, Anil; Litt, Jonathan S.

    2008-01-01

    Model predictive control is a strategy well-suited to handle the highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. However, it has thus far been infeasible to implement model predictive control in engine control applications, because of the combination of model complexity and the time allotted for the control update calculation. In this paper, a multiplexed implementation is proposed that dramatically reduces the computational burden of the quadratic programming optimization that must be solved online as part of the model-predictive-control algorithm. Actuator updates are calculated sequentially and cyclically in a multiplexed implementation, as opposed to the simultaneous optimization taking place in conventional model predictive control. Theoretical aspects are discussed based on a nominal model, and actual computational savings are demonstrated using a realistic commercial engine model.

  6. Composite boson mapping for lattice boson systems.

    PubMed

    Huerga, Daniel; Dukelsky, Jorge; Scuseria, Gustavo E

    2013-07-26

    We present a canonical mapping transforming physical boson operators into quadratic products of cluster composite bosons that preserves matrix elements of operators when a physical constraint is enforced. We map the 2D lattice Bose-Hubbard Hamiltonian into 2×2 composite bosons and solve it within a generalized Hartree-Bogoliubov approximation. The resulting Mott insulator-superfluid phase diagram reproduces well quantum Monte Carlo results. The Higgs boson behavior in the superfluid phase along the unit density line is unraveled and in remarkable agreement with experiments. Results for the properties of the ground and excited states are competitive with other state-of-the-art approaches, but at a fraction of their computational cost. The composite boson mapping here introduced can be readily applied to frustrated many-body systems where most methodologies face significant hurdles.

  7. Spin connection as Lorentz gauge field in Fairchild’s action

    NASA Astrophysics Data System (ADS)

    Cianfrani, Francesco; Montani, Giovanni; Scopelliti, Vincenzo

    2016-06-01

    We propose a modified gravitational action containing besides the Einstein-Cartan term some quadratic contributions resembling the Yang-Mills Lagrangian for the Lorentz spin connections. We outline how a propagating torsion arises and we solve explicitly the linearized equations of motion on a Minkowski background. We identify among torsion components six degrees of freedom: one is carried by a pseudo-scalar particle, five by a tachyon field. By adding spinor fields and neglecting backreaction on the geometry, we point out how only the pseudo-scalar particle couples directly with fermions, but the resulting coupling constant is suppressed by the ratio between fermion and Planck masses. Including backreaction, we demonstrate how the tachyon field provides causality violation in the matter sector, via an interaction mediated by gravitational waves.

  8. An approach of traffic signal control based on NLRSQP algorithm

    NASA Astrophysics Data System (ADS)

    Zou, Yuan-Yang; Hu, Yu

    2017-11-01

    This paper presents a linear program model with linear complementarity constraints (LPLCC) to solve traffic signal optimization problem. The objective function of the model is to obtain the minimization of total queue length with weight factors at the end of each cycle. Then, a combination algorithm based on the nonlinear least regression and sequence quadratic program (NLRSQP) is proposed, by which the local optimal solution can be obtained. Furthermore, four numerical experiments are proposed to study how to set the initial solution of the algorithm that can get a better local optimal solution more quickly. In particular, the results of numerical experiments show that: The model is effective for different arrival rates and weight factors; and the lower bound of the initial solution is, the better optimal solution can be obtained.

  9. TWSVR: Regression via Twin Support Vector Machine.

    PubMed

    Khemchandani, Reshma; Goyal, Keshav; Chandra, Suresh

    2016-02-01

    Taking motivation from Twin Support Vector Machine (TWSVM) formulation, Peng (2010) attempted to propose Twin Support Vector Regression (TSVR) where the regressor is obtained via solving a pair of quadratic programming problems (QPPs). In this paper we argue that TSVR formulation is not in the true spirit of TWSVM. Further, taking motivation from Bi and Bennett (2003), we propose an alternative approach to find a formulation for Twin Support Vector Regression (TWSVR) which is in the true spirit of TWSVM. We show that our proposed TWSVR can be derived from TWSVM for an appropriately constructed classification problem. To check the efficacy of our proposed TWSVR we compare its performance with TSVR and classical Support Vector Regression(SVR) on various regression datasets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Comprehensive analysis of the optical Kerr coefficient of graphene

    DOE PAGES

    Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo

    2016-08-25

    We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition,more » self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.« less

  11. Statistical model to perform error analysis of curve fits of wind tunnel test data using the techniques of analysis of variance and regression analysis

    NASA Technical Reports Server (NTRS)

    Alston, D. W.

    1981-01-01

    The considered research had the objective to design a statistical model that could perform an error analysis of curve fits of wind tunnel test data using analysis of variance and regression analysis techniques. Four related subproblems were defined, and by solving each of these a solution to the general research problem was obtained. The capabilities of the evolved true statistical model are considered. The least squares fit is used to determine the nature of the force, moment, and pressure data. The order of the curve fit is increased in order to delete the quadratic effect in the residuals. The analysis of variance is used to determine the magnitude and effect of the error factor associated with the experimental data.

  12. Structural optimization with approximate sensitivities

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.

    1994-01-01

    Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.

  13. Active control using control allocation for UAVs with seamless morphing wing

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-jie; Sun, Yin-di; Yang, Da-qing; Guo, Shi-jun

    2012-04-01

    In this paper, a small seamless morphing wing aircraft of MTOW=51 kg is investigated. The leading edge (LE) and trailing edge (TE) control surfaces are positioned in the wing section in span wise. Based on the studying results of aeroelastic wing characteristics, the controller should be designed depending on the flight speed. Compared with a wing of rigid hinged aileron, the morphing wing produces the rolling moment by deflecting the flexible TE and LE surfaces. An iteration method of pseudo-inverse allocation and quadratic programming allocation within the constraints of actuators have be investigated to solve the nonlinear control allocation caused by the aerodynamics of the effectors. The simulation results will show that the control method based on control allocation can achieve the control target.

  14. Active control using control allocation for UAVs with seamless morphing wing

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-jie; Sun, Yin-di; Yang, Da-qing; Guo, Shi-jun

    2011-11-01

    In this paper, a small seamless morphing wing aircraft of MTOW=51 kg is investigated. The leading edge (LE) and trailing edge (TE) control surfaces are positioned in the wing section in span wise. Based on the studying results of aeroelastic wing characteristics, the controller should be designed depending on the flight speed. Compared with a wing of rigid hinged aileron, the morphing wing produces the rolling moment by deflecting the flexible TE and LE surfaces. An iteration method of pseudo-inverse allocation and quadratic programming allocation within the constraints of actuators have be investigated to solve the nonlinear control allocation caused by the aerodynamics of the effectors. The simulation results will show that the control method based on control allocation can achieve the control target.

  15. PIFCGT: A PIF autopilot design program for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    This report documents the PIFCGT computer program. In FORTRAN, PIFCGT is a computer design aid for determing Proportional-Integral-Filter (PIF) control laws for aircraft autopilots implemented with a Command Generator Tracker (CGT). The program uses Linear-Quadratic-Regulator synthesis algorithms to determine feedback gains, and includes software to solve the feedforward matrix equation which is useful in determining the command generator tracker feedforward gains. The program accepts aerodynamic stability derivatives and computes the corresponding aerodynamic linear model. The nine autopilot modes that can be designed include four maneuver modes (ROLL SEL, PITCH SEL, HDG SEL, ALT SEL), four final approach models (APR GS, APR LOCI, APR LOCR, APR LOCP), and a BETA HOLD mode. The program has been compiled and executed on a CDC computer.

  16. Variable Neural Adaptive Robust Control: A Switched System Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewisemore » quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.« less

  17. Ant Colony Optimization for Markowitz Mean-Variance Portfolio Model

    NASA Astrophysics Data System (ADS)

    Deng, Guang-Feng; Lin, Woo-Tsong

    This work presents Ant Colony Optimization (ACO), which was initially developed to be a meta-heuristic for combinatorial optimization, for solving the cardinality constraints Markowitz mean-variance portfolio model (nonlinear mixed quadratic programming problem). To our knowledge, an efficient algorithmic solution for this problem has not been proposed until now. Using heuristic algorithms in this case is imperative. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The test results indicate that the ACO is much more robust and effective than Particle swarm optimization (PSO), especially for low-risk investment portfolios.

  18. Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential

    NASA Astrophysics Data System (ADS)

    Leonenko, N. N.; Ruiz-Medina, M. D.

    2006-07-01

    The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.

  19. L2CXCV: A Fortran 77 package for least squares convex/concave data smoothing

    NASA Astrophysics Data System (ADS)

    Demetriou, I. C.

    2006-04-01

    Fortran 77 software is given for least squares smoothing to data values contaminated by random errors subject to one sign change in the second divided differences of the smoothed values, where the location of the sign change is also unknown of the optimization problem. A highly useful description of the constraints is that they follow from the assumption of initially increasing and subsequently decreasing rates of change, or vice versa, of the process considered. The underlying algorithm partitions the data into two disjoint sets of adjacent data and calculates the required fit by solving a strictly convex quadratic programming problem for each set. The piecewise linear interpolant to the fit is convex on the first set and concave on the other one. The partition into suitable sets is achieved by a finite iterative algorithm, which is made quite efficient because of the interactions of the quadratic programming problems on consecutive data. The algorithm obtains the solution by employing no more quadratic programming calculations over subranges of data than twice the number of the divided differences constraints. The quadratic programming technique makes use of active sets and takes advantage of a B-spline representation of the smoothed values that allows some efficient updating procedures. The entire code required to implement the method is 2920 Fortran lines. The package has been tested on a variety of data sets and it has performed very efficiently, terminating in an overall number of active set changes over subranges of data that is only proportional to the number of data. The results suggest that the package can be used for very large numbers of data values. Some examples with output are provided to help new users and exhibit certain features of the software. Important applications of the smoothing technique may be found in calculating a sigmoid approximation, which is a common topic in various contexts in applications in disciplines like physics, economics, biology and engineering. Distribution material that includes single and double precision versions of the code, driver programs, technical details of the implementation of the software package and test examples that demonstrate the use of the software is available in an accompanying ASCII file. Program summaryTitle of program:L2CXCV Catalogue identifier:ADXM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXM_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:PC Intel Pentium, Sun Sparc Ultra 5, Hewlett-Packard HP UX 11.0 Operating system:WINDOWS 98, 2000, Unix/Solaris 7, Unix/HP UX 11.0 Programming language used:FORTRAN 77 Memory required to execute with typical data:O(n), where n is the number of data No. of bits in a byte:8 No. of lines in distributed program, including test data, etc.:29 349 No. of bytes in distributed program, including test data, etc.:1 276 663 No. of processors used:1 Has the code been vectorized or parallelized?:no Distribution format:default tar.gz Separate documentation available:Yes Nature of physical problem:Analysis of processes that show initially increasing and then decreasing rates of change (sigmoid shape), as, for example, in heat curves, reactor stability conditions, evolution curves, photoemission yields, growth models, utility functions, etc. Identifying an unknown convex/concave (sigmoid) function from some measurements of its values that contain random errors. Also, identifying the inflection point of this sigmoid function. Method of solution:Univariate data smoothing by minimizing the sum of the squares of the residuals (least squares approximation) subject to the condition that the second order divided differences of the smoothed values change sign at most once. Ideally, this is the number of sign changes in the second derivative of the underlying function. The remarkable property of the smoothed values is that they consist of one separate section of optimal components that give nonnegative second divided differences (convexity) and one separate section of optimal components that give nonpositive second divided differences (concavity). The solution process finds the joint (that is the inflection point estimate of the underlying function) of the sections automatically. The underlying method is iterative, each iteration solving a structured strictly convex quadratic programming problem in order to obtain a convex or a concave section over a subrange of data. Restrictions on the complexity of the problem:Number of data, n, is not limited in the software package, but is limited to 2000 in the main driver. The total work of the method requires 2n-2 structured quadratic programming calculations over subranges of data, which in practice does not exceed the amount of O(n) computer operations. Typical running times:CPU time on a PC with an Intel 733 MHz processor operating in Windows 98: About 2 s to smooth n=1000 noisy measurements that follow the shape of the sine function over one period. Summary:L2CXCV is a package of Fortran 77 subroutines for least squares smoothing to n univariate data values contaminated by random errors subject to one sign change in the second divided differences of the smoothed values, where the location of the sign change is unknown. The piecewise linear interpolant to the smoothed values gives a convex/concave fit to the data. The underlying algorithm is based on the property that in this best convex/concave fit, the convex and the concave section are both optimal and separate. The algorithm is iterative, each iteration solving a strictly convex quadratic programming problem for the best convex fit to the first k data, starting from the best convex fit to the first k-1 data. By reversing the order and sign of the data, the algorithm obtains the best concave fit to the last n-k data. Then it chooses that k as the optimal position of the required sign change (which defines the inflection point of the fit), if the convex and the concave components to the first k and the last n-k data, respectively, form a convex/concave vector that gives the least sum of squares of residuals. In effect the algorithm requires at most 2n-2 quadratic programming calculations over subranges of data. The package employs a technique for quadratic programming, which takes advantage of a B-spline representation of the smoothed values and makes use of some efficient O(k) updating procedures, where k is the number of data of a subrange. The package has been tested on a variety of data sets and it has performed very efficiently, terminating in an overall number of active set changes that is about n, thus exhibiting quadratic performance in n. The Fortran codes have been designed to minimize the use of computing resources. Attention has been given to computer rounding errors details, which are essential to the robustness of the software package. Numerical examples with output are provided to help the use of the software and exhibit certain features of the method. Distribution material that includes driver programs, technical details of the installation of the package and test examples that demonstrate the use of the software is available in an ASCII file that accompanies this work.

  20. An investigation of the effects of interventions on problem-solving strategies and abilities

    NASA Astrophysics Data System (ADS)

    Cox, Charles Terrence, Jr.

    Problem-solving has been described as being the "heart" of the chemistry classroom, and students' development of problem-solving skills is essential for their success in chemistry. Despite the importance of problem-solving, there has been little research within the chemistry domain, largely because of the lack of tools to collect data for large populations. Problem-solving was assessed using a software package known as IMMEX (for Interactive Multimedia Exercises) which has an HTML tracking feature that allows for collection of problem-solving data in the background as students work the problems. The primary goal of this research was to develop methods (known as interventions) that could promote improvements in students' problem-solving and most notably aid in their transition from the novice to competent level. Three intervention techniques that were incorporated within the chemistry curricula: collaborative grouping (face-to-face and distance), concept mapping, and peer-led team learning. The face-to-face collaborative grouping intervention was designed to probe the factors affecting the quality of the group interaction. Students' logical reasoning abilities were measured using the Group Assessment of Logical Thinking (GALT) test which classifies students as formal, transitional, or concrete. These classifications essentially provide a basis for identifying scientific aptitude. These designations were used as the basis for forming collaborative groups of two students. The six possibilities (formal-formal, formal-transitional, etc.) were formed to determine how the group composition influences the gains in student abilities observed from collaborative grouping interventions. Students were given three assignments (an individual pre-collaborative, an individual post collaborative, and a collaborative assignment) each requiring them to work an IMMEX problem set. Similar gains in performance of 10% gains were observed for each group with two exceptions. The transitional students who were paired with concrete students had a 15% gain, and the concrete students paired with other concrete students had only a marginal gain. In fact, there was no statistical difference in the pre-collaborative and post-collaborative student abilities for concrete-concrete groups. The distance collaborative intervention was completed using a new interface for the IMMEX software designed to mimic face-to-face collaboration. A stereochemistry problem set which had a solved rate of 28% prior to collaboration was chosen for incorporation into this distance collaboration study. (Abstract shortened by UMI.)

  1. Review: Optimization methods for groundwater modeling and management

    NASA Astrophysics Data System (ADS)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  2. The mathematical model of dynamic stabilization system for autonomous car

    NASA Astrophysics Data System (ADS)

    Saikin, A. M.; Buznikov, S. E.; Shabanov, N. S.; Elkin, D. S.

    2018-02-01

    Leading foreign companies and domestic enterprises carry out extensive researches and developments in the field of control systems for autonomous cars and in the field of improving driver assistance systems. The search for technical solutions, as a rule, is based on heuristic methods and does not always lead to satisfactory results. The purpose of this research is to formalize the road safety problem in the terms of modern control theory, to construct the adequate mathematical model for solving it, including the choice of software and hardware environment. For automatic control of the object, it is necessary to solve the problem of dynamic stabilization in the most complete formulation. The solution quality of the problem on a finite time interval is estimated by the value of the quadratic functional. Car speed, turn angle and additional yaw rate (during car drift or skidding) measurements are performed programmatically by the original virtual sensors. The limit speeds at which drift, skidding or rollover begins are calculated programmatically taking into account the friction coefficient identified in motion. The analysis of the results confirms both the adequacy of the mathematical models and the algorithms and the possibility of implementing the system in the minimal technical configuration.

  3. Optimization-based mesh correction with volume and convexity constraints

    DOE PAGES

    D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; ...

    2016-02-24

    In this study, we consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. This volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimizationmore » problem in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.« less

  4. Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

    NASA Astrophysics Data System (ADS)

    Rangan, Aaditya V.; Cai, David; Tao, Louis

    2007-02-01

    Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.

  5. Geometric Approaches to Quadratic Equations from Other Times and Places.

    ERIC Educational Resources Information Center

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  6. An Integrated Learning Project in Introductory Soils.

    ERIC Educational Resources Information Center

    Robinson, C. A.; Schafer, J.

    1993-01-01

    Describes a problem-solving teaching method used in the Introductory Soils course at Iowa State University whereby students are assigned to groups and asked to serve as an advisor to a landowner. Using a computerized database for most data acquisition, students recommend farm usage and urban/alternate development plans. Includes the program…

  7. Design and Implementation of a Simulation-Based Learning System for International Trade

    ERIC Educational Resources Information Center

    Luo, Guo-Heng; Liu, Eric Zhi-Feng; Kuo, Hung-Wei; Yuan, Shyan-Ming

    2014-01-01

    In the traditional instructional method used in international trade, teachers provide knowledge to learners by lecturing using slides and setting assignments; however, these methods merely deliver international trade knowledge rather than facilitating student development of relevant skills. To solve these problems, we proposed a simulation-based…

  8. Protein-Sequencing Jigsaw

    ERIC Educational Resources Information Center

    Davis-McGibony, C. Michele

    2010-01-01

    The jigsaw technique has been used in a fourth-year biochemistry course to increase problem-solving abilities of the students. The jigsaw method is a cooperative-learning technique that involves a group structure. Students start with a "home" group. That group is responsible for learning an assigned portion of a task. Then the instructor separates…

  9. Education's Role in National Development Plans: Ten Country Cases.

    ERIC Educational Resources Information Center

    Thomas, R. Murray, Ed.

    The place education has been assigned in the national development programs of 10 nations is discussed, the problems that these countries have encountered in managing education are examined, and the measures adopted to solve educational problems are assessed. Included are the following papers: (1) "The Nature of National Development…

  10. Nudging Students' Creative Problem-Solving Skills

    ERIC Educational Resources Information Center

    Griffin, Dana

    2011-01-01

    People often make choices that go against their own best interests. In the controversial bestseller "Nudge," Richard Thaler and Cass Sunstein argue that people can benefit from simple "nudges" to improve their decision-making. In an upper-level undergraduate course on political decision-making, I created a series of assignments around "Nudge." In…

  11. Building a Model for Distance Collaboration in the Computer-Assisted Business Communication Classroom.

    ERIC Educational Resources Information Center

    Lopez, Elizabeth Sanders; Nagelhout, Edwin

    1995-01-01

    Outlines a model for distance collaboration between business writing classrooms using network technology. Discusses ways to teach national and international audience awareness, problem solving, and the contextual nature of cases. Discusses goals for distance collaboration, sample assignments, and the pros and cons of network technologies. (SR)

  12. Using Worked Examples Assignments in Classroom Instruction

    ERIC Educational Resources Information Center

    Paré-Blagoev, Juliana; Booth, Julie; Elliot, Andrew; Koedinger, Ken

    2013-01-01

    As highlighted by the National Math Panel Report (2008), consistent results from laboratory studies have demonstrated that interleaving worked examples with problems to solve improves learning for novices. The purpose of this work is to create materials and tests that can be used flexibly in classrooms and which employ worked examples interleaved…

  13. Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens

    PubMed Central

    Gomez-Rosales, S.; de L. Angeles, M.

    2015-01-01

    The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water. PMID:25557817

  14. Addition of a worm leachate as source of humic substances in the drinking water of broiler chickens.

    PubMed

    Gomez-Rosales, S; de L Angeles, M

    2015-02-01

    The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water.

  15. A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems

    NASA Astrophysics Data System (ADS)

    Pan, Kejia; He, Dongdong; Hu, Hongling; Ren, Zhengyong

    2017-09-01

    In this paper, we develop a new extrapolation cascadic multigrid method, which makes it possible to solve three dimensional elliptic boundary value problems with over 100 million unknowns on a desktop computer in half a minute. First, by combining Richardson extrapolation and quadratic finite element (FE) interpolation for the numerical solutions on two-level of grids (current and previous grids), we provide a quite good initial guess for the iterative solution on the next finer grid, which is a third-order approximation to the FE solution. And the resulting large linear system from the FE discretization is then solved by the Jacobi-preconditioned conjugate gradient (JCG) method with the obtained initial guess. Additionally, instead of performing a fixed number of iterations as used in existing cascadic multigrid methods, a relative residual tolerance is introduced in the JCG solver, which enables us to obtain conveniently the numerical solution with the desired accuracy. Moreover, a simple method based on the midpoint extrapolation formula is proposed to achieve higher-order accuracy on the finest grid cheaply and directly. Test results from four examples including two smooth problems with both constant and variable coefficients, an H3-regular problem as well as an anisotropic problem are reported to show that the proposed method has much better efficiency compared to the classical V-cycle and W-cycle multigrid methods. Finally, we present the reason why our method is highly efficient for solving these elliptic problems.

  16. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yan-Lin, E-mail: yanlin.shao@dnvgl.com; Faltinsen, Odd M.

    2014-10-01

    We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods,more » e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.« less

  17. Neural reactivations during sleep determine network credit assignment

    PubMed Central

    Gulati, Tanuj; Guo, Ling; Ramanathan, Dhakshin S.; Bodepudi, Anitha; Ganguly, Karunesh

    2018-01-01

    A fundamental goal of motor learning is to establish neural patterns that produce a desired behavioral outcome. It remains unclear how and when the nervous system solves this “credit–assignment” problem. Using neuroprosthetic learning where we could control the causal relationship between neurons and behavior, here we show that sleep–dependent processing is required for credit-assignment and the establishment of task-related functional connectivity reflecting the casual neuron-behavior relationship. Importantly, we found a strong link between the microstructure of sleep reactivations and credit assignment, with downscaling of non–causal activity. Strikingly, decoupling of spiking to slow–oscillations using optogenetic methods eliminated rescaling. Thus, our results suggest that coordinated firing during sleep plays an essential role in establishing sparse activation patterns that reflect the causal neuron–behavior relationship. PMID:28692062

  18. Using sound to solve syntactic problems: the role of phonology in grammatical category assignments.

    PubMed

    Kelly, M H

    1992-04-01

    One ubiquitous problem in language processing involves the assignment of words to the correct grammatical category, such as noun or verb. In general, semantic and syntactic cues have been cited as the principal information for grammatical category assignment, to the neglect of possible phonological cues. This neglect is unwarranted, and the following claims are made: (a) Numerous correlations between phonology and grammatical class exist, (b) some of these correlations are large and can pervade the entire lexicon of a language and hence can involve thousands of words, (c) experiments have repeatedly found that adults and children have learned these correlations, and (d) explanations for how these correlations arose can be proposed and evaluated. Implications of these phenomena for language representation and processing are discussed.

  19. Topological numbering of features on a mesh

    NASA Technical Reports Server (NTRS)

    Atallah, Mikhail J.; Hambrusch, Susanne E.; Tewinkel, Lynn E.

    1988-01-01

    Assume a nxn binary image is given containing horizontally convex features; i.e., for each feature, each of its row's pixels form an interval on that row. The problem of assigning topological numbers to such features is considered; i.e., assign a number to every feature f so that all features to the left of f have a smaller number assigned to them. This problem arises in solutions to the stereo matching problem. A parallel algorithm to solve the topological numbering problem in O(n) time on an nxn mesh of processors is presented. The key idea of the solution is to create a tree from which the topological numbers can be obtained even though the tree does not uniquely represent the to the left of relationship of the features.

  20. Unifying Temporal and Structural Credit Assignment Problems

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian K.; Tumer, Kagan

    2004-01-01

    Single-agent reinforcement learners in time-extended domains and multi-agent systems share a common dilemma known as the credit assignment problem. Multi-agent systems have the structural credit assignment problem of determining the contributions of a particular agent to a common task. Instead, time-extended single-agent systems have the temporal credit assignment problem of determining the contribution of a particular action to the quality of the full sequence of actions. Traditionally these two problems are considered different and are handled in separate ways. In this article we show how these two forms of the credit assignment problem are equivalent. In this unified frame-work, a single-agent Markov decision process can be broken down into a single-time-step multi-agent process. Furthermore we show that Monte-Carlo estimation or Q-learning (depending on whether the values of resulting actions in the episode are known at the time of learning) are equivalent to different agent utility functions in a multi-agent system. This equivalence shows how an often neglected issue in multi-agent systems is equivalent to a well-known deficiency in multi-time-step learning and lays the basis for solving time-extended multi-agent problems, where both credit assignment problems are present.

  1. A randomized trial of teen online problem solving: efficacy in improving caregiver outcomes after brain injury.

    PubMed

    Wade, Shari L; Walz, Nicolay C; Carey, JoAnne; McMullen, Kendra M; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen

    2012-11-01

    To examine the results of a randomized clinical trial (RCT) of Teen Online Problem Solving (TOPS), an online problem solving therapy model, in increasing problem-solving skills and decreasing depressive symptoms and global distress for caregivers of adolescents with traumatic brain injury (TBI). Families of adolescents aged 11-18 who sustained a moderate to severe TBI between 3 and 19 months earlier were recruited from hospital trauma registries. Participants were assigned to receive a web-based, problem-solving intervention (TOPS, n = 20), or access to online resources pertaining to TBI (Internet Resource Comparison; IRC; n = 21). Parent report of problem solving skills, depressive symptoms, global distress, utilization, and satisfaction were assessed pre- and posttreatment. Groups were compared on follow-up scores after controlling for pretreatment levels. Family income was examined as a potential moderator of treatment efficacy. Improvement in problem solving was examined as a mediator of reductions in depression and distress. Forty-one participants provided consent and completed baseline assessments, with follow-up assessments completed on 35 participants (16 TOPS and 19 IRC). Parents in both groups reported a high level of satisfaction with both interventions. Improvements in problem solving skills and depression were moderated by family income, with caregivers of lower income in TOPS reporting greater improvements. Increases in problem solving partially mediated reductions in global distress. Findings suggest that TOPS may be effective in improving problem solving skills and reducing depressive symptoms for certain subsets of caregivers in families of adolescents with TBI.

  2. Validation of social self-esteem and an experimental index of delinquent behavior.

    PubMed

    Berman, S M

    1976-12-01

    30 male adolescents were administered a checklist of their delinquent behavior and the measure of social self-esteem designed by Ziller, Hagey, Smith, and Long (1969). A Pearson correlation of --.26 was found between self-esteem and scores on the delinquent behavior checklist. At a later session 18 of the subjects were assigned a puzzle-solving task which served as a measure of cheating. A significant relation between cheating scores and self-reported delinquent behavior indicated that the puzzle-solving task may be useful for measuring level of delinquency in an experimental setting.

  3. Technical note: A method for assigning animals to treatment groups with unequal count per group that equalizes mean animal weight among groups.

    PubMed

    Epplin, F M; Haankuku, C; Horn, G W

    2015-09-01

    Pastures available for grazing studies may be of unequal size and may have heterogeneous carrying capacity necessitating the assignment of unequal numbers of animals per pasture. To reduce experimental error, it is often desirable that the initial mean BW be similar among experimental units. The objective of this note is to present and illustrate the use of a method for assignment of animals to experimental units of different sizes such that the initial mean weight of animals in each unit is approximately the same as the overall mean. Two alternative models were developed and solved to assign each of 231 weaned steers () to 1 of 12 pastures with carrying capacity ranging from 5 to 26 animals per pasture. A solution to Model 1 was obtained in which the mean weights among pastures were approximately the same but the variances among pastures were heteroskedastic, meaning that weight variances across pens were different (-value < 0.05). An alternative model was developed (Model 2) and used to derive assignments with nearly equal mean weights and homoskedastic variances among pastures.

  4. New optimization model for routing and spectrum assignment with nodes insecurity

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-04-01

    By adopting the orthogonal frequency division multiplexing technology, elastic optical networks can provide the flexible and variable bandwidth allocation to each connection request and get higher spectrum utilization. The routing and spectrum assignment problem in elastic optical network is a well-known NP-hard problem. In addition, information security has received worldwide attention. We combine these two problems to investigate the routing and spectrum assignment problem with the guaranteed security in elastic optical network, and establish a new optimization model to minimize the maximum index of the used frequency slots, which is used to determine an optimal routing and spectrum assignment schemes. To solve the model effectively, a hybrid genetic algorithm framework integrating a heuristic algorithm into a genetic algorithm is proposed. The heuristic algorithm is first used to sort the connection requests and then the genetic algorithm is designed to look for an optimal routing and spectrum assignment scheme. In the genetic algorithm, tailor-made crossover, mutation and local search operators are designed. Moreover, simulation experiments are conducted with three heuristic strategies, and the experimental results indicate that the effectiveness of the proposed model and algorithm framework.

  5. Planning and problem-solving training for patients with schizophrenia: a randomized controlled trial

    PubMed Central

    2011-01-01

    Background The purpose of this study was to assess whether planning and problem-solving training is more effective in improving functional capacity in patients with schizophrenia than a training program addressing basic cognitive functions. Methods Eighty-nine patients with schizophrenia were randomly assigned either to a computer assisted training of planning and problem-solving or a training of basic cognition. Outcome variables included planning and problem-solving ability as well as functional capacity, which represents a proxy measure for functional outcome. Results Planning and problem-solving training improved one measure of planning and problem-solving more strongly than basic cognition training, while two other measures of planning did not show a differential effect. Participants in both groups improved over time in functional capacity. There was no differential effect of the interventions on functional capacity. Conclusion A differential effect of targeting specific cognitive functions on functional capacity could not be established. Small differences on cognitive outcome variables indicate a potential for differential effects. This will have to be addressed in further research including longer treatment programs and other settings. Trial registration ClinicalTrials.gov NCT00507988 PMID:21527028

  6. Increased fatty acid β-oxidation as a possible mechanism for fat-reducing effect of betaine in broilers.

    PubMed

    Leng, Zhixian; Fu, Qin; Yang, Xue; Ding, Liren; Wen, Chao; Zhou, Yanmin

    2016-08-01

    Two hundred and forty 1-day-old male Arbor Acres broiler chickens were randomly assigned to five dietary treatments with six replicates of eight chickens per replicate cage for a 42-day feeding trial. Broiler chickens were fed a basal diet supplemented with 0 (control), 250, 500, 750 or 1000 mg/kg betaine, respectively. Growth performance was not affected by betaine. Incremental levels of betaine decreased the absolute and relative weight of abdominal fat (linear P < 0.05, quadratic P < 0.01), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and total cholesterol (TC) (linear P < 0.05), and increased concentration of nonesterified fatty acid (NEFA) (linear P = 0.038, quadratic P = 0.003) in serum of broilers. Moreover, incremental levels of betaine increased linearly (P < 0.05) the proliferator-activated receptor alpha (PPARα), the carnitine palmitoyl transferase-I (CPT-I) and 3-hydroxyacyl-coenzyme A dehydrogenase (HADH) messenger RNA (mRNA) expression, but decreased linearly (P < 0.05) the fatty acid synthase (FAS) and 3-hydroxyl-3-methylglutaryl-CoA (HMGR) mRNA expression in liver of broilers. In conclusion, this study indicated that betaine supplementation did not affect growth performance of broilers, but was effective in reducing abdominal fat deposition in a dose-dependent manner, which was probably caused by combinations of a decrease in fatty acid synthesis and an increase in β-oxidation. © 2016 Japanese Society of Animal Science.

  7. Dietary α-ketoglutarate supplementation improves hepatic and intestinal energy status and anti-oxidative capacity of Cherry Valley ducks.

    PubMed

    Guo, Shuangshuang; Duan, Rui; Wang, Lei; Hou, Yongqing; Tan, Linglin; Cheng, Qiang; Liao, Man; Ding, Binying

    2017-11-01

    α-Ketoglutarate (AKG) is an extensively used dietary supplement in human and animal nutrition. The aim of the present study was to investigate effects of dietary AKG supplementation on the energy status and anti-oxidative capacity in liver and intestinal mucosa of Cherry Valley ducks. A total of 80 1-day-old ducks were randomly assigned into four groups, in which ducks were fed basal diets supplemented with 0% (control), 0.5%, 1.0% and 1.5% AKG, respectively. Graded doses of AKG supplementation linearly decreased the ratio of adenosine monophosphate (AMP) to adenosine triphosphate (ATP) in the liver, but increased ATP content and adenylate energy charge (AEC) in a quadratic and linear manner, respectively (P < 0.05). Increasing dietary AKG supplemental levels produced linear positive responses in ATP content and AEC, and negative responses in AMP concentration, the ratio of AMP to ATP and total adenine nucleotide in the ileal mucosa (P < 0.05). All levels of dietary AKG reduced the production of jejunal hydrogen peroxide and hepatic malondialdehyde (P < 0.05). Hepatic and ileal messenger RNA expression of AMP kinase α-1 and hypoxia-inducible factor-1α were linearly up-regulated as dietary AKG supplemental levels increased (P < 0.05). In conclusion, dietary AKG supplementation linearly or quadratically enhanced hepatic and intestinal energy storage and anti-oxidative capacity of Cherry Valley ducks. © 2017 Japanese Society of Animal Science.

  8. Evaluation of dried vegetables residues for poultry: II. Effects of feeding cabbage leaf residues on broiler performance, ileal digestibility and total tract nutrient digestibility.

    PubMed

    Mustafa, A F; Baurhoo, B

    2017-03-01

    A study was conducted to investigate the effects of partial replacing corn and soybean meal with dried cabbage leaf residues (DCR) on broiler growth performance, apparent ileal nutrient digestibility, and apparent total tract nutrient utilization. Dietary treatments include 4 levels of DCR (0, 3, 6, and 9%). Two hundred and twenty-four day-old male broilers were randomly assigned to one of 4 groups (8 cage replicates; 7 birds/cage) and grown over a 35-d experimental period. Results showed that feeding DCR had no effects on daily body weigh gain (average 53.4 g/d), daily feed intake (average 94.9 g/d), and feed conversion ratio (average 1.78 g of feed/g of gain). Inclusion of DCR reduced apparent ileal DM (quadratic effect, P < 0.001), OM (linear effect, P = 0.012), and CP (quadratic effect, P = 0.001) digestibility of younger birds (d 21) while incremental levels of DCR had no effect on apparent ileal nutrient digestibilities of older birds (d 35). Apparent total tract digestibility of DM, OM, and CP increased (linear effect, P < 0.001) as the level of DCR increased. It was concluded that the inclusion of DCR in broiler diets up to 9% had no negative impact on bird performance and apparent ileal digestibility of older birds and improved apparent total tract nutrient digestibility. © 2016 Poultry Science Association Inc.

  9. [Computer-assisted education in problem-solving in neurology; a randomized educational study].

    PubMed

    Weverling, G J; Stam, J; ten Cate, T J; van Crevel, H

    1996-02-24

    To determine the effect of computer-based medical teaching (CBMT) as a supplementary method to teach clinical problem-solving during the clerkship in neurology. Randomized controlled blinded study. Academic Medical Centre, Amsterdam, the Netherlands. 103 Students were assigned at random to a group with access to CBMT and a control group. CBMT consisted of 20 computer-simulated patients with neurological diseases, and was permanently available during five weeks to students in the CBMT group. The ability to recognize and solve neurological problems was assessed with two free-response tests, scored by two blinded observers. The CBMT students scored significantly better on the test related to the CBMT cases (mean score 7.5 on a zero to 10 point scale; control group 6.2; p < 0.001). There was no significant difference on the control test not related to the problems practised with CBMT. CBMT can be an effective method for teaching clinical problem-solving, when used as a supplementary teaching facility during a clinical clerkship. The increased ability to solve problems learned by CBMT had no demonstrable effect on the performance with other neurological problems.

  10. Quantum Attack-Resistent Certificateless Multi-Receiver Signcryption Scheme

    PubMed Central

    Li, Huixian; Chen, Xubao; Pang, Liaojun; Shi, Weisong

    2013-01-01

    The existing certificateless signcryption schemes were designed mainly based on the traditional public key cryptography, in which the security relies on the hard problems, such as factor decomposition and discrete logarithm. However, these problems will be easily solved by the quantum computing. So the existing certificateless signcryption schemes are vulnerable to the quantum attack. Multivariate public key cryptography (MPKC), which can resist the quantum attack, is one of the alternative solutions to guarantee the security of communications in the post-quantum age. Motivated by these concerns, we proposed a new construction of the certificateless multi-receiver signcryption scheme (CLMSC) based on MPKC. The new scheme inherits the security of MPKC, which can withstand the quantum attack. Multivariate quadratic polynomial operations, which have lower computation complexity than bilinear pairing operations, are employed in signcrypting a message for a certain number of receivers in our scheme. Security analysis shows that our scheme is a secure MPKC-based scheme. We proved its security under the hardness of the Multivariate Quadratic (MQ) problem and its unforgeability under the Isomorphism of Polynomials (IP) assumption in the random oracle model. The analysis results show that our scheme also has the security properties of non-repudiation, perfect forward secrecy, perfect backward secrecy and public verifiability. Compared with the existing schemes in terms of computation complexity and ciphertext length, our scheme is more efficient, which makes it suitable for terminals with low computation capacity like smart cards. PMID:23967037

  11. A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints.

    PubMed

    Liang, X B; Wang, J

    2000-01-01

    This paper presents a continuous-time recurrent neural-network model for nonlinear optimization with any continuously differentiable objective function and bound constraints. Quadratic optimization with bound constraints is a special problem which can be solved by the recurrent neural network. The proposed recurrent neural network has the following characteristics. 1) It is regular in the sense that any optimum of the objective function with bound constraints is also an equilibrium point of the neural network. If the objective function to be minimized is convex, then the recurrent neural network is complete in the sense that the set of optima of the function with bound constraints coincides with the set of equilibria of the neural network. 2) The recurrent neural network is primal and quasiconvergent in the sense that its trajectory cannot escape from the feasible region and will converge to the set of equilibria of the neural network for any initial point in the feasible bound region. 3) The recurrent neural network has an attractivity property in the sense that its trajectory will eventually converge to the feasible region for any initial states even at outside of the bounded feasible region. 4) For minimizing any strictly convex quadratic objective function subject to bound constraints, the recurrent neural network is globally exponentially stable for almost any positive network parameters. Simulation results are given to demonstrate the convergence and performance of the proposed recurrent neural network for nonlinear optimization with bound constraints.

  12. Convergence of neural networks for programming problems via a nonsmooth Lojasiewicz inequality.

    PubMed

    Forti, Mauro; Nistri, Paolo; Quincampoix, Marc

    2006-11-01

    This paper considers a class of neural networks (NNs) for solving linear programming (LP) problems, convex quadratic programming (QP) problems, and nonconvex QP problems where an indefinite quadratic objective function is subject to a set of affine constraints. The NNs are characterized by constraint neurons modeled by ideal diodes with vertical segments in their characteristic, which enable to implement an exact penalty method. A new method is exploited to address convergence of trajectories, which is based on a nonsmooth Lojasiewicz inequality for the generalized gradient vector field describing the NN dynamics. The method permits to prove that each forward trajectory of the NN has finite length, and as a consequence it converges toward a singleton. Furthermore, by means of a quantitative evaluation of the Lojasiewicz exponent at the equilibrium points, the following results on convergence rate of trajectories are established: (1) for nonconvex QP problems, each trajectory is either exponentially convergent, or convergent in finite time, toward a singleton belonging to the set of constrained critical points; (2) for convex QP problems, the same result as in (1) holds; moreover, the singleton belongs to the set of global minimizers; and (3) for LP problems, each trajectory converges in finite time to a singleton belonging to the set of global minimizers. These results, which improve previous results obtained via the Lyapunov approach, are true independently of the nature of the set of equilibrium points, and in particular they hold even when the NN possesses infinitely many nonisolated equilibrium points.

  13. An accurate method for measuring triploidy of larval fish spawns

    USGS Publications Warehouse

    Jenkins, Jill A.; Draugelis-Dale, Rassa O.; Glennon, Robert; Kelly, Anita; Brown, Bonnie L.; Morrison, John

    2017-01-01

    A standard flow cytometric protocol was developed for estimating triploid induction in batches of larval fish. Polyploid induction treatments are not guaranteed to be 100% efficient, thus the ability to quantify the proportion of triploid larvae generated by a particular treatment helps managers to stock high-percentage spawns and researchers to select treatments for efficient triploid induction. At 3 d posthatch, individual Grass Carp Ctenopharyngodon idella were mechanically dissociated into single-cell suspensions; nuclear DNA was stained with propidium iodide then analyzed by flow cytometry. Following ploidy identification of individuals, aliquots of diploid and triploid cell suspensions were mixed to generate 15 levels (0–100%) of known triploidy (n = 10). Using either 20 or 50 larvae per level, the observed triploid percentages were lower than the known, actual values. Using nonlinear regression analyses, quadratic equations solved for triploid proportions in mixed samples and corresponding estimation reference plots allowed for predicting triploidy. Thus, an accurate prediction of the proportion of triploids in a spawn can be made by following a standard larval processing and analysis protocol with either 20 or 50 larvae from a single spawn, coupled with applying the quadratic equations or reference plots to observed flow cytometry results. Due to the universality of triploid DNA content being 1.5 times the diploid level and because triploid fish consist of fewer cells than diploids, this method should be applicable to other produced triploid fish species, and it may be adapted for use with bivalves or other species where batch analysis is appropriate.

  14. Nonlinear flow model of multiple fractured horizontal wells with stimulated reservoir volume including the quadratic gradient term

    NASA Astrophysics Data System (ADS)

    Ren, Junjie; Guo, Ping

    2017-11-01

    The real fluid flow in porous media is consistent with the mass conservation which can be described by the nonlinear governing equation including the quadratic gradient term (QGT). However, most of the flow models have been established by ignoring the QGT and little work has been conducted to incorporate the QGT into the flow model of the multiple fractured horizontal (MFH) well with stimulated reservoir volume (SRV). This paper first establishes a semi-analytical model of an MFH well with SRV including the QGT. Introducing the transformed pressure and flow-rate function, the nonlinear model of a point source in a composite system including the QGT is linearized. Then the Laplace transform, principle of superposition, numerical discrete method, Gaussian elimination method and Stehfest numerical inversion are employed to establish and solve the seepage model of the MFH well with SRV. Type curves are plotted and the effects of relevant parameters are analyzed. It is found that the nonlinear effect caused by the QGT can increase the flow capacity of fluid flow and influence the transient pressure positively. The relevant parameters not only have an effect on the type curve but also affect the error in the pressure calculated by the conventional linear model. The proposed model, which is consistent with the mass conservation, reflects the nonlinear process of the real fluid flow, and thus it can be used to obtain more accurate transient pressure of an MFH well with SRV.

  15. Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  16. The Strengthening Families Program 10-14: influence on parent and youth problem-solving skill.

    PubMed

    Semeniuk, Y; Brown, R L; Riesch, S K; Zywicki, M; Hopper, J; Henriques, J B

    2010-06-01

    The aim of this paper is to report the results of a preliminary examination of the efficacy of the Strengthening Families Program (SFP) 10-14 in improving parent and youth problem-solving skill. The Hypotheses in this paper include: (1) youth and parents who participated in SFP would have lower mean scores immediately (T2) and 6 months (T3) post intervention on indicators of hostile and negative problem-solving strategies; (2) higher mean scores on positive problem-solving strategies; and (3) youth who participated in SFP would have higher mean scores at T2 and at T3 on indicators of individual problem solving and problem-solving efficacy than youth in the comparison group. The dyads were recruited from elementary schools that had been stratified for race and assigned randomly to intervention or comparison conditions. Mean age of youth was 11 years (SD = 1.04). Fifty-seven dyads (34-intervention&23-control) were videotaped discussing a frequently occurring problem. The videotapes were analysed using the Iowa Family Interaction Rating Scale (IFIRS) and data were analysed using Dyadic Assessment Intervention Model. Most mean scores on the IFIRS did not change. One score changed as predicted: youth hostility decreased at T3. Two scores changed contrary to prediction: parent hostility increased T3 and parent positive problem solving decreased at T2. SFP demonstrated questionable efficacy for problem-solving skill in this study.

  17. Optimization Models for Scheduling of Jobs

    PubMed Central

    Indika, S. H. Sathish; Shier, Douglas R.

    2006-01-01

    This work is motivated by a particular scheduling problem that is faced by logistics centers that perform aircraft maintenance and modification. Here we concentrate on a single facility (hangar) which is equipped with several work stations (bays). Specifically, a number of jobs have already been scheduled for processing at the facility; the starting times, durations, and work station assignments for these jobs are assumed to be known. We are interested in how best to schedule a number of new jobs that the facility will be processing in the near future. We first develop a mixed integer quadratic programming model (MIQP) for this problem. Since the exact solution of this MIQP formulation is time consuming, we develop a heuristic procedure, based on existing bin packing techniques. This heuristic is further enhanced by application of certain local optimality conditions. PMID:27274921

  18. Quadratic Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  19. Visualising the Roots of Quadratic Equations with Complex Coefficients

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2014-01-01

    This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…

  20. Simply Prairie Homepage

    Science.gov Websites

    Ed Home - Data Home PRAIRIE ADVOCATES Project - QUADRAT STUDY Project Answer research questions multi-state quadrat study. Bob Lootens, Fermilab Join us! Check out the Quadrat Study Project. Prairie study a prairie "expert" to facilitate your research student Internet access an e-mail address

Top