Sample records for solving simple linear

  1. Linear and Non-Linear Visual Feature Learning in Rat and Humans

    PubMed Central

    Bossens, Christophe; Op de Beeck, Hans P.

    2016-01-01

    The visual system processes visual input in a hierarchical manner in order to extract relevant features that can be used in tasks such as invariant object recognition. Although typically investigated in primates, recent work has shown that rats can be trained in a variety of visual object and shape recognition tasks. These studies did not pinpoint the complexity of the features used by these animals. Many tasks might be solved by using a combination of relatively simple features which tend to be correlated. Alternatively, rats might extract complex features or feature combinations which are nonlinear with respect to those simple features. In the present study, we address this question by starting from a small stimulus set for which one stimulus-response mapping involves a simple linear feature to solve the task while another mapping needs a well-defined nonlinear combination of simpler features related to shape symmetry. We verified computationally that the nonlinear task cannot be trivially solved by a simple V1-model. We show how rats are able to solve the linear feature task but are unable to acquire the nonlinear feature. In contrast, humans are able to use the nonlinear feature and are even faster in uncovering this solution as compared to the linear feature. The implications for the computational capabilities of the rat visual system are discussed. PMID:28066201

  2. The Multifaceted Variable Approach: Selection of Method in Solving Simple Linear Equations

    ERIC Educational Resources Information Center

    Tahir, Salma; Cavanagh, Michael

    2010-01-01

    This paper presents a comparison of the solution strategies used by two groups of Year 8 students as they solved linear equations. The experimental group studied algebra following a multifaceted variable approach, while the comparison group used a traditional approach. Students in the experimental group employed different solution strategies,…

  3. Semilinear programming: applications and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, S.

    Semilinear programming is a method of solving optimization problems with linear constraints where the non-negativity restrictions on the variables are dropped and the objective function coefficients can take on different values depending on whether the variable is positive or negative. The simplex method for linear programming is modified in this thesis to solve general semilinear and piecewise linear programs efficiently without having to transform them into equivalent standard linear programs. Several models in widely different areas of optimization such as production smoothing, facility locations, goal programming and L/sub 1/ estimation are presented first to demonstrate the compact formulation that arisesmore » when such problems are formulated as semilinear programs. A code SLP is constructed using the semilinear programming techniques. Problems in aggregate planning and L/sub 1/ estimation are solved using SLP and equivalent linear programs using a linear programming simplex code. Comparisons of CPU times and number iterations indicate SLP to be far superior. The semilinear programming techniques are extended to piecewise linear programming in the implementation of the code PLP. Piecewise linear models in aggregate planning are solved using PLP and equivalent standard linear programs using a simple upper bounded linear programming code SUBLP.« less

  4. Cryptography: Cracking Codes.

    ERIC Educational Resources Information Center

    Myerscough, Don; And Others

    1996-01-01

    Describes an activity whose objectives are to encode and decode messages using linear functions and their inverses; to use modular arithmetic, including use of the reciprocal for simple equation solving; to analyze patterns and make and test conjectures; to communicate procedures and algorithms; and to use problem-solving strategies. (ASK)

  5. Solving ay'' + by' + cy = 0 with a Simple Product Rule Approach

    ERIC Educational Resources Information Center

    Tolle, John

    2011-01-01

    When elementary ordinary differential equations (ODEs) of first and second order are included in the calculus curriculum, second-order linear constant coefficient ODEs are typically solved by a method more appropriate to differential equations courses. This method involves the characteristic equation and its roots, complex-valued solutions, and…

  6. Program for the solution of multipoint boundary value problems of quasilinear differential equations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.

  7. A simple smoothness indicator for the WENO scheme with adaptive order

    NASA Astrophysics Data System (ADS)

    Huang, Cong; Chen, Li Li

    2018-01-01

    The fifth order WENO scheme with adaptive order is competent for solving hyperbolic conservation laws, its reconstruction is a convex combination of a fifth order linear reconstruction and three third order linear reconstructions. Note that, on uniform mesh, the computational cost of smoothness indicator for fifth order linear reconstruction is comparable with the sum of ones for three third order linear reconstructions, thus it is too heavy; on non-uniform mesh, the explicit form of smoothness indicator for fifth order linear reconstruction is difficult to be obtained, and its computational cost is much heavier than the one on uniform mesh. In order to overcome these problems, a simple smoothness indicator for fifth order linear reconstruction is proposed in this paper.

  8. Homotopy approach to optimal, linear quadratic, fixed architecture compensation

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1991-01-01

    Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.

  9. Investigating the linearity assumption between lumber grade mix and yield using design of experiments (DOE)

    Treesearch

    Xiaoqiu Zuo; Urs Buehlmann; R. Edward Thomas

    2004-01-01

    Solving the least-cost lumber grade mix problem allows dimension mills to minimize the cost of dimension part production. This problem, due to its economic importance, has attracted much attention from researchers and industry in the past. Most solutions used linear programming models and assumed that a simple linear relationship existed between lumber grade mix and...

  10. The Pendulum: A Paradigm for the Linear Oscillator

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2004-01-01

    The simple pendulum is a model for the linear oscillator. The usual mathematical treatment of the problem begins with a differential equation that one solves with the techniques of the differential calculus, a formal process that tends to obscure the physics. In this paper we begin with a kinematic description of the motion obtained by experiment…

  11. A diffuse-interface method for two-phase flows with soluble surfactants

    PubMed Central

    Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel

    2010-01-01

    A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier–Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125

  12. Machining Chatter Analysis for High Speed Milling Operations

    NASA Astrophysics Data System (ADS)

    Sekar, M.; Kantharaj, I.; Amit Siddhappa, Savale

    2017-10-01

    Chatter in high speed milling is characterized by time delay differential equations (DDE). Since closed form solution exists only for simple cases, the governing non-linear DDEs of chatter problems are solved by various numerical methods. Custom codes to solve DDEs are tedious to build, implement and not error free and robust. On the other hand, software packages provide solution to DDEs, however they are not straight forward to implement. In this paper an easy way to solve DDE of chatter in milling is proposed and implemented with MATLAB. Time domain solution permits the study and model of non-linear effects of chatter vibration with ease. Time domain results are presented for various stable and unstable conditions of cut and compared with stability lobe diagrams.

  13. Metric versus observable operator representation, higher spin models

    NASA Astrophysics Data System (ADS)

    Fring, Andreas; Frith, Thomas

    2018-02-01

    We elaborate further on the metric representation that is obtained by transferring the time-dependence from a Hermitian Hamiltonian to the metric operator in a related non-Hermitian system. We provide further insight into the procedure on how to employ the time-dependent Dyson relation and the quasi-Hermiticity relation to solve time-dependent Hermitian Hamiltonian systems. By solving both equations separately we argue here that it is in general easier to solve the former. We solve the mutually related time-dependent Schrödinger equation for a Hermitian and non-Hermitian spin 1/2, 1 and 3/2 model with time-independent and time-dependent metric, respectively. In all models the overdetermined coupled system of equations for the Dyson map can be decoupled algebraic manipulations and reduces to simple linear differential equations and an equation that can be converted into the non-linear Ermakov-Pinney equation.

  14. A simple finite element method for linear hyperbolic problems

    DOE PAGES

    Mu, Lin; Ye, Xiu

    2017-09-14

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  15. A simple finite element method for linear hyperbolic problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Ye, Xiu

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  16. A recurrent neural network for solving bilevel linear programming problem.

    PubMed

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian

    2014-04-01

    In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.

  17. A Family of Ellipse Methods for Solving Non-Linear Equations

    ERIC Educational Resources Information Center

    Gupta, K. C.; Kanwar, V.; Kumar, Sanjeev

    2009-01-01

    This note presents a method for the numerical approximation of simple zeros of a non-linear equation in one variable. In order to do so, the method uses an ellipse rather than a tangent approach. The main advantage of our method is that it does not fail even if the derivative of the function is either zero or very small in the vicinity of the…

  18. PHYSICS REQUIRES A SIMPLE LOW MACH NUMBER FLOW TO BE COMPRESSIBLE

    EPA Science Inventory

    Radial, laminar, plane, low velocity flow represents the simplest, non-linear fluid dynamics problem. Ostensibly this apparently trivial flow could be solved using the incompressible Navier-Stokes equations, universally believed to be adequate for such problems. Most researchers ...

  19. Code Samples Used for Complexity and Control

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    The following sections are included: * MathematicaⓇ Code * Generic Chaotic Simulator * Vector Differential Operators * NLS Explorer * 2C++ Code * C++ Lambda Functions for Real Calculus * Accelerometer Data Processor * Simple Predictor-Corrector Integrator * Solving the BVP with the Shooting Method * Linear Hyperbolic PDE Solver * Linear Elliptic PDE Solver * Method of Lines for a Set of the NLS Equations * C# Code * Iterative Equation Solver * Simulated Annealing: A Function Minimum * Simple Nonlinear Dynamics * Nonlinear Pendulum Simulator * Lagrangian Dynamics Simulator * Complex-Valued Crowd Attractor Dynamics * Freeform Fortran Code * Lorenz Attractor Simulator * Complex Lorenz Attractor * Simple SGE Soliton * Complex Signal Presentation * Gaussian Wave Packet * Hermitian Matrices * Euclidean L2-Norm * Vector/Matrix Operations * Plain C-Code: Levenberg-Marquardt Optimizer * Free Basic Code: 2D Crowd Dynamics with 3000 Agents

  20. Portfolio optimization using fuzzy linear programming

    NASA Astrophysics Data System (ADS)

    Pandit, Purnima K.

    2013-09-01

    Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.

  1. A simple strategy for varying the restart parameter in GMRES(m)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A H; Jessup, E R; Kolev, T V

    2007-10-02

    When solving a system of linear equations with the restarted GMRES method, a fixed restart parameter is typically chosen. We present numerical experiments that demonstrate the beneficial effects of changing the value of the restart parameter in each restart cycle on the total time to solution. We propose a simple strategy for varying the restart parameter and provide some heuristic explanations for its effectiveness based on analysis of the symmetric case.

  2. Numerical computation of linear instability of detonations

    NASA Astrophysics Data System (ADS)

    Kabanov, Dmitry; Kasimov, Aslan

    2017-11-01

    We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.

  3. A First Step towards Variational Methods in Engineering

    ERIC Educational Resources Information Center

    Periago, Francisco

    2003-01-01

    In this paper, a didactical proposal is presented to introduce the variational methods for solving boundary value problems to engineering students. Starting from a couple of simple models arising in linear elasticity and heat diffusion, the concept of weak solution for these models is motivated and the existence, uniqueness and continuous…

  4. Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations

    NASA Astrophysics Data System (ADS)

    Parand, K.; Latifi, S.; Moayeri, M. M.; Delkhosh, M.

    2018-05-01

    In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective, reliable and does not require any restrictive assumptions for nonlinear terms.

  5. Analysis of junior high school students' attempt to solve a linear inequality problem

    NASA Astrophysics Data System (ADS)

    Taqiyuddin, Muhammad; Sumiaty, Encum; Jupri, Al

    2017-08-01

    Linear inequality is one of fundamental subjects within junior high school mathematics curricula. Several studies have been conducted to asses students' perform on linear inequality. However, it can hardly be found that linear inequality problems are in the form of "ax + b < dx + e" with "a, d ≠ 0", and "a ≠ d" as it can be seen on the textbook used by Indonesian students and several studies. This condition leads to the research questions concerning students' attempt on solving a simple linear inequality problem in this form. In order to do so, the written test was administered to 58 students from two schools in Bandung followed by interviews. The other sources of the data are from teachers' interview and mathematics books used by students. After that, the constant comparative method was used to analyse the data. The result shows that the majority approached the question by doing algebraic operations. Interestingly, most of them did it incorrectly. In contrast, algebraic operations were correctly used by some of them. Moreover, the others performed expected-numbers solution, rewriting the question, translating the inequality into words, and blank answer. Furthermore, we found that there is no one who was conscious of the existence of all-numbers solution. It was found that this condition is reasonably due to how little the learning components concern about why a procedure of solving a linear inequality works and possibilities of linear inequality solution.

  6. Aeroelastic analysis of a troposkien-type wind turbine blade

    NASA Technical Reports Server (NTRS)

    Nitzsche, F.

    1981-01-01

    The linear aeroelastic equations for one curved blade of a vertical axis wind turbine in state vector form are presented. The method is based on a simple integrating matrix scheme together with the transfer matrix idea. The method is proposed as a convenient way of solving the associated eigenvalue problem for general support conditions.

  7. The numerical solution of linear multi-term fractional differential equations: systems of equations

    NASA Astrophysics Data System (ADS)

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  8. An efficient computer based wavelets approximation method to solve Fuzzy boundary value differential equations

    NASA Astrophysics Data System (ADS)

    Alam Khan, Najeeb; Razzaq, Oyoon Abdul

    2016-03-01

    In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.

  9. Choosing order of operations to accelerate strip structure analysis in parameter range

    NASA Astrophysics Data System (ADS)

    Kuksenko, S. P.; Akhunov, R. R.; Gazizov, T. R.

    2018-05-01

    The paper considers the issue of using iteration methods in solving the sequence of linear algebraic systems obtained in quasistatic analysis of strip structures with the method of moments. Using the analysis of 4 strip structures, the authors have proved that additional acceleration (up to 2.21 times) of the iterative process can be obtained during the process of solving linear systems repeatedly by means of choosing a proper order of operations and a preconditioner. The obtained results can be used to accelerate the process of computer-aided design of various strip structures. The choice of the order of operations to accelerate the process is quite simple, universal and could be used not only for strip structure analysis but also for a wide range of computational problems.

  10. Linear complementarity formulation for 3D frictional sliding problems

    USGS Publications Warehouse

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.; Mutlu, Ovunc

    2012-01-01

    Frictional sliding on quasi-statically deforming faults and fractures can be modeled efficiently using a linear complementarity formulation. We review the formulation in two dimensions and expand the formulation to three-dimensional problems including problems of orthotropic friction. This formulation accurately reproduces analytical solutions to static Coulomb friction sliding problems. The formulation accounts for opening displacements that can occur near regions of non-planarity even under large confining pressures. Such problems are difficult to solve owing to the coupling of relative displacements and tractions; thus, many geomechanical problems tend to neglect these effects. Simple test cases highlight the importance of including friction and allowing for opening when solving quasi-static fault mechanics models. These results also underscore the importance of considering the effects of non-planarity in modeling processes associated with crustal faulting.

  11. A simple attitude control of quadrotor helicopter based on Ziegler-Nichols rules for tuning PD parameters.

    PubMed

    He, ZeFang; Zhao, Long

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement.

  12. Keep Your Distance! Using Second-Order Ordinary Differential Equations to Model Traffic Flow

    ERIC Educational Resources Information Center

    McCartney, Mark

    2004-01-01

    A simple mathematical model for how vehicles follow each other along a stretch of road is presented. The resulting linear second-order differential equation with constant coefficients is solved and interpreted. The model can be used as an application of solution techniques taught at first-year undergraduate level and as a motivator to encourage…

  13. Direct localization of poles of a meromorphic function from measurements on an incomplete boundary

    NASA Astrophysics Data System (ADS)

    Nara, Takaaki; Ando, Shigeru

    2010-01-01

    This paper proposes an algebraic method to reconstruct the positions of multiple poles in a meromorphic function field from measurements on an arbitrary simple arc in it. A novel issue is the exactness of the algorithm depending on whether the arc is open or closed, and whether it encloses or does not enclose the poles. We first obtain a differential equation that can equivalently determine the meromorphic function field. From it, we derive linear equations that relate the elementary symmetric polynomials of the pole positions to weighted integrals of the field along the simple arc and end-point terms of the arc when it is an open one. Eliminating the end-point terms based on an appropriate choice of weighting functions and a combination of the linear equations, we obtain a simple system of linear equations for solving the elementary symmetric polynomials. We also show that our algorithm can be applied to a 2D electric impedance tomography problem. The effects of the proximity of the poles, the number of measurements and noise on the localization accuracy are numerically examined.

  14. Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Nikjoo, H.; O'Neill, P.; Goodhead, D. T.

    2000-01-01

    PURPOSE: To investigate the role of kinetics in the processing of DNA double strand breaks (DSB), and the formation of simple chromosome exchange aberrations following X-ray exposures to mammalian cells based on an enzymatic approach. METHODS: Using computer simulations based on a biochemical approach, rate-equations that describe the processing of DSB through the formation of a DNA-enzyme complex were formulated. A second model that allows for competition between two processing pathways was also formulated. The formation of simple exchange aberrations was modelled as misrepair during the recombination of single DSB with undamaged DNA. Non-linear coupled differential equations corresponding to biochemical pathways were solved numerically by fitting to experimental data. RESULTS: When mediated by a DSB repair enzyme complex, the processing of single DSB showed a complex behaviour that gives the appearance of fast and slow components of rejoining. This is due to the time-delay caused by the action time of enzymes in biomolecular reactions. It is shown that the kinetic- and dose-responses of simple chromosome exchange aberrations are well described by a recombination model of DSB interacting with undamaged DNA when aberration formation increases with linear dose-dependence. Competition between two or more recombination processes is shown to lead to the formation of simple exchange aberrations with a dose-dependence similar to that of a linear quadratic model. CONCLUSIONS: Using a minimal number of assumptions, the kinetics and dose response observed experimentally for DSB rejoining and the formation of simple chromosome exchange aberrations are shown to be consistent with kinetic models based on enzymatic reaction approaches. A non-linear dose response for simple exchange aberrations is possible in a model of recombination of DNA containing a DSB with undamaged DNA when two or more pathways compete for DSB repair.

  15. Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints

    PubMed Central

    Wolff, Sebastian; Bucher, Christian

    2013-01-01

    This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. PMID:23970806

  16. Linear Least Squares for Correlated Data

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1988-01-01

    Throughout the literature authors have consistently discussed the suspicion that regression results were less than satisfactory when the independent variables were correlated. Camm, Gulledge, and Womer, and Womer and Marcotte provide excellent applied examples of these concerns. Many authors have obtained partial solutions for this problem as discussed by Womer and Marcotte and Wonnacott and Wonnacott, which result in generalized least squares algorithms to solve restrictive cases. This paper presents a simple but relatively general multivariate method for obtaining linear least squares coefficients which are free of the statistical distortion created by correlated independent variables.

  17. Inverse kinematics of a dual linear actuator pitch/roll heliostat

    NASA Astrophysics Data System (ADS)

    Freeman, Joshua; Shankar, Balakrishnan; Sundaram, Ganesh

    2017-06-01

    This work presents a simple, computationally efficient inverse kinematics solution for a pitch/roll heliostat using two linear actuators. The heliostat design and kinematics have been developed, modeled and tested using computer simulation software. A physical heliostat prototype was fabricated to validate the theoretical computations and data. Pitch/roll heliostats have numerous advantages including reduced cost potential and reduced space requirements, with a primary disadvantage being the significantly more complicated kinematics, which are solved here. Novel methods are applied to simplify the inverse kinematics problem which could be applied to other similar problems.

  18. A neural network approach to job-shop scheduling.

    PubMed

    Zhou, D N; Cherkassky, V; Baldwin, T R; Olson, D E

    1991-01-01

    A novel analog computational network is presented for solving NP-complete constraint satisfaction problems, i.e. job-shop scheduling. In contrast to most neural approaches to combinatorial optimization based on quadratic energy cost function, the authors propose to use linear cost functions. As a result, the network complexity (number of neurons and the number of resistive interconnections) grows only linearly with problem size, and large-scale implementations become possible. The proposed approach is related to the linear programming network described by D.W. Tank and J.J. Hopfield (1985), which also uses a linear cost function for a simple optimization problem. It is shown how to map a difficult constraint-satisfaction problem onto a simple neural net in which the number of neural processors equals the number of subjobs (operations) and the number of interconnections grows linearly with the total number of operations. Simulations show that the authors' approach produces better solutions than existing neural approaches to job-shop scheduling, i.e. the traveling salesman problem-type Hopfield approach and integer linear programming approach of J.P.S. Foo and Y. Takefuji (1988), in terms of the quality of the solution and the network complexity.

  19. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.

    PubMed

    Hasegawa, Chihiro; Duffull, Stephen B

    2018-02-01

    Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.

  20. A sequential linear optimization approach for controller design

    NASA Technical Reports Server (NTRS)

    Horta, L. G.; Juang, J.-N.; Junkins, J. L.

    1985-01-01

    A linear optimization approach with a simple real arithmetic algorithm is presented for reliable controller design and vibration suppression of flexible structures. Using first order sensitivity of the system eigenvalues with respect to the design parameters in conjunction with a continuation procedure, the method converts a nonlinear optimization problem into a maximization problem with linear inequality constraints. The method of linear programming is then applied to solve the converted linear optimization problem. The general efficiency of the linear programming approach allows the method to handle structural optimization problems with a large number of inequality constraints on the design vector. The method is demonstrated using a truss beam finite element model for the optimal sizing and placement of active/passive-structural members for damping augmentation. Results using both the sequential linear optimization approach and nonlinear optimization are presented and compared. The insensitivity to initial conditions of the linear optimization approach is also demonstrated.

  1. On the solution of the complex eikonal equation in acoustic VTI media: A perturbation plus optimization scheme

    NASA Astrophysics Data System (ADS)

    Huang, Xingguo; Sun, Jianguo; Greenhalgh, Stewart

    2018-04-01

    We present methods for obtaining numerical and analytic solutions of the complex eikonal equation in inhomogeneous acoustic VTI media (transversely isotropic media with a vertical symmetry axis). The key and novel point of the method for obtaining numerical solutions is to transform the problem of solving the highly nonlinear acoustic VTI eikonal equation into one of solving the relatively simple eikonal equation for the background (isotropic) medium and a system of linear partial differential equations. Specifically, to obtain the real and imaginary parts of the complex traveltime in inhomogeneous acoustic VTI media, we generalize a perturbation theory, which was developed earlier for solving the conventional real eikonal equation in inhomogeneous anisotropic media, to the complex eikonal equation in such media. After the perturbation analysis, we obtain two types of equations. One is the complex eikonal equation for the background medium and the other is a system of linearized partial differential equations for the coefficients of the corresponding complex traveltime formulas. To solve the complex eikonal equation for the background medium, we employ an optimization scheme that we developed for solving the complex eikonal equation in isotropic media. Then, to solve the system of linearized partial differential equations for the coefficients of the complex traveltime formulas, we use the finite difference method based on the fast marching strategy. Furthermore, by applying the complex source point method and the paraxial approximation, we develop the analytic solutions of the complex eikonal equation in acoustic VTI media, both for the isotropic and elliptical anisotropic background medium. Our numerical results demonstrate the effectiveness of our derivations and illustrate the influence of the beam widths and the anisotropic parameters on the complex traveltimes.

  2. A new adaptively central-upwind sixth-order WENO scheme

    NASA Astrophysics Data System (ADS)

    Huang, Cong; Chen, Li Li

    2018-03-01

    In this paper, we propose a new sixth-order WENO scheme for solving one dimensional hyperbolic conservation laws. The new WENO reconstruction has three properties: (1) it is central in smooth region for low dissipation, and is upwind near discontinuities for numerical stability; (2) it is a convex combination of four linear reconstructions, in which one linear reconstruction is sixth order, and the others are third order; (3) its linear weights can be any positive numbers with requirement that their sum equals one. Furthermore, we propose a simple smoothness indicator for the sixth-order linear reconstruction, this smooth indicator not only can distinguish the smooth region and discontinuities exactly, but also can reduce the computational cost, thus it is more efficient than the classical one.

  3. A Simple Attitude Control of Quadrotor Helicopter Based on Ziegler-Nichols Rules for Tuning PD Parameters

    PubMed Central

    He, ZeFang

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement. PMID:25614879

  4. A sequential solution for anisotropic total variation image denoising with interval constraints

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Noo, Frédéric

    2017-09-01

    We show that two problems involving the anisotropic total variation (TV) and interval constraints on the unknown variables admit, under some conditions, a simple sequential solution. Problem 1 is a constrained TV penalized image denoising problem; problem 2 is a constrained fused lasso signal approximator. The sequential solution entails finding first the solution to the unconstrained problem, and then applying a thresholding to satisfy the constraints. If the interval constraints are uniform, this sequential solution solves problem 1. If the interval constraints furthermore contain zero, the sequential solution solves problem 2. Here uniform interval constraints refer to all unknowns being constrained to the same interval. A typical example of application is image denoising in x-ray CT, where the image intensities are non-negative as they physically represent linear attenuation coefficient in the patient body. Our results are simple yet seem unknown; we establish them using the Karush-Kuhn-Tucker conditions for constrained convex optimization.

  5. Quantized Algebra I Texts

    NASA Astrophysics Data System (ADS)

    DeBuvitz, William

    2014-03-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a popular Algebra I textbook, and I was surprised and dismayed by how it treated simultaneous equations and quadratic equations. The coefficients are always simple integers in examples and exercises, even when they are related to physics. This is probably a good idea when these topics are first presented to the students. It makes it easy to solve simultaneous equations by the method of elimination of a variable. And it makes it easy to solve some quadratic equations by factoring. The textbook also discusses the method of substitution for linear equations and the use of the quadratic formula, but only with simple integers.

  6. A novel neural network for variational inequalities with linear and nonlinear constraints.

    PubMed

    Gao, Xing-Bao; Liao, Li-Zhi; Qi, Liqun

    2005-11-01

    Variational inequality is a uniform approach for many important optimization and equilibrium problems. Based on the sufficient and necessary conditions of the solution, this paper presents a novel neural network model for solving variational inequalities with linear and nonlinear constraints. Three sufficient conditions are provided to ensure that the proposed network with an asymmetric mapping is stable in the sense of Lyapunov and converges to an exact solution of the original problem. Meanwhile, the proposed network with a gradient mapping is also proved to be stable in the sense of Lyapunov and to have a finite-time convergence under some mild condition by using a new energy function. Compared with the existing neural networks, the new model can be applied to solve some nonmonotone problems, has no adjustable parameter, and has lower complexity. Thus, the structure of the proposed network is very simple. Since the proposed network can be used to solve a broad class of optimization problems, it has great application potential. The validity and transient behavior of the proposed neural network are demonstrated by several numerical examples.

  7. Simple, explicitly time-dependent, and regular solutions of the linearized vacuum Einstein equations in Bondi-Sachs coordinates

    NASA Astrophysics Data System (ADS)

    Mädler, Thomas

    2013-05-01

    Perturbations of the linearized vacuum Einstein equations in the Bondi-Sachs formulation of general relativity can be derived from a single master function with spin weight two, which is related to the Weyl scalar Ψ0, and which is determined by a simple wave equation. By utilizing a standard spin representation of tensors on a sphere and two different approaches to solve the master equation, we are able to determine two simple and explicitly time-dependent solutions. Both solutions, of which one is asymptotically flat, comply with the regularity conditions at the vertex of the null cone. For the asymptotically flat solution we calculate the corresponding linearized perturbations, describing all multipoles of spin-2 waves that propagate on a Minkowskian background spacetime. We also analyze the asymptotic behavior of this solution at null infinity using a Penrose compactification and calculate the Weyl scalar Ψ4. Because of its simplicity, the asymptotically flat solution presented here is ideally suited for test bed calculations in the Bondi-Sachs formulation of numerical relativity. It may be considered as a sibling of the Bergmann-Sachs or Teukolsky-Rinne solutions, on spacelike hypersurfaces, for a metric adapted to null hypersurfaces.

  8. Heuristics and Biases in Military Decision Making

    DTIC Science & Technology

    2010-10-01

    rationality and is based on a linear, step-based model that generates a specific course of action and is useful for the examination of problems that...exhibit stability and are underpinned by assumptions of “technical- rationality .”5 The Army values MDMP as the sanctioned approach for solving...theory) which sought to describe human behavior as a rational maximization of cost-benefit decisions, Kahne- man and Tversky provided a simple

  9. A simple theory of motor protein kinetics and energetics. II.

    PubMed

    Qian, H

    2000-01-10

    A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.

  10. Squeeze-film dampers for turbomachinery stabilization

    NASA Technical Reports Server (NTRS)

    Mclean, L. J.; Hahn, E. J.

    1984-01-01

    A technique for investigating the stability and damping present in centrally preloaded radially symmetric multi-mass flexible rotor bearing systems is presented. In general, one needs to find the eigenvalues of the linearized perturbation equations, though zero frequency stability maps may be found by solving as many simultaneous non-linear equations as there are dampers; and in the case of a single damper, such maps may be found directly, regardless of the number of degrees of freedom. The technique is illustrated for a simple symmetric four degree of freedom flexible rotor with an unpressurized damper. This example shows that whereas zero frequency stability maps are likely to prove to be a simple way to delineate multiple solution possibilities, they do not provide full stability information. Further, particularly for low bearing parameters, the introduction of an unpressurized squeeze film damper may promote instability in an otherwise stable system.

  11. A simple and general method for solving detailed chemical evolution with delayed production of iron and other chemical elements

    NASA Astrophysics Data System (ADS)

    Vincenzo, F.; Matteucci, F.; Spitoni, E.

    2017-04-01

    We present a theoretical method for solving the chemical evolution of galaxies by assuming an instantaneous recycling approximation for chemical elements restored by massive stars and the delay time distribution formalism for delayed chemical enrichment by Type Ia Supernovae. The galaxy gas mass assembly history, together with the assumed stellar yields and initial mass function, represents the starting point of this method. We derive a simple and general equation, which closely relates the Laplace transforms of the galaxy gas accretion history and star formation history, which can be used to simplify the problem of retrieving these quantities in the galaxy evolution models assuming a linear Schmidt-Kennicutt law. We find that - once the galaxy star formation history has been reconstructed from our assumptions - the differential equation for the evolution of the chemical element X can be suitably solved with classical methods. We apply our model to reproduce the [O/Fe] and [Si/Fe] versus [Fe/H] chemical abundance patterns as observed at the solar neighbourhood by assuming a decaying exponential infall rate of gas and different delay time distributions for Type Ia Supernovae; we also explore the effect of assuming a non-linear Schmidt-Kennicutt law, with the index of the power law being k = 1.4. Although approximate, we conclude that our model with the single-degenerate scenario for Type Ia Supernovae provides the best agreement with the observed set of data. Our method can be used by other complementary galaxy stellar population synthesis models to predict also the chemical evolution of galaxies.

  12. Least-squares solution of incompressible Navier-Stokes equations with the p-version of finite elements

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Sonnad, Vijay

    1991-01-01

    A p-version of the least squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady state incompressible viscous flow problems. The resulting system of symmetric and positive definite linear equations can be solved satisfactorily with the conjugate gradient method. In conjunction with the use of rapid operator application which avoids the formation of either element of global matrices, it is possible to achieve a highly compact and efficient solution scheme for the incompressible Navier-Stokes equations. Numerical results are presented for two-dimensional flow over a backward facing step. The effectiveness of simple outflow boundary conditions is also demonstrated.

  13. Energy-balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  14. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  15. A study of two cases of comma-cloud cyclogenesis using a semigeostrophic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, G.C.; Cho, Hanru

    1992-12-01

    The linear stability of two atmospheric flows is studied, with basic-state data taken from environments where comma clouds are observed to flow. Each basic state features a baroclinic zone associated with an upper-level jet, with conditional instability on the north side. The semigeostrophic approximation is utilized, along with a simple parameterization for cumulus heating, and the eigenvalue problem is solved employing a Chebyshev spectral technique. 47 refs.

  16. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 1 is the Analysis Description, and describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.

  17. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

    PubMed

    Benhammouda, Brahim

    2016-01-01

    Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.

  18. Robust L1-norm two-dimensional linear discriminant analysis.

    PubMed

    Li, Chun-Na; Shao, Yuan-Hai; Deng, Nai-Yang

    2015-05-01

    In this paper, we propose an L1-norm two-dimensional linear discriminant analysis (L1-2DLDA) with robust performance. Different from the conventional two-dimensional linear discriminant analysis with L2-norm (L2-2DLDA), where the optimization problem is transferred to a generalized eigenvalue problem, the optimization problem in our L1-2DLDA is solved by a simple justifiable iterative technique, and its convergence is guaranteed. Compared with L2-2DLDA, our L1-2DLDA is more robust to outliers and noises since the L1-norm is used. This is supported by our preliminary experiments on toy example and face datasets, which show the improvement of our L1-2DLDA over L2-2DLDA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  20. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen

    2007-01-01

    A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  1. Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

    NASA Astrophysics Data System (ADS)

    Rangan, Aaditya V.; Cai, David; Tao, Louis

    2007-02-01

    Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.

  2. A simple method to derive bounds on the size and to train multilayer neural networks

    NASA Technical Reports Server (NTRS)

    Sartori, Michael A.; Antsaklis, Panos J.

    1991-01-01

    A new derivation is presented for the bounds on the size of a multilayer neural network to exactly implement an arbitrary training set; namely, the training set can be implemented with zero error with two layers and with the number of the hidden-layer neurons equal to no.1 is greater than p - 1. The derivation does not require the separation of the input space by particular hyperplanes, as in previous derivations. The weights for the hidden layer can be chosen almost arbitrarily, and the weights for the output layer can be found by solving no.1 + 1 linear equations. The method presented exactly solves (M), the multilayer neural network training problem, for any arbitrary training set.

  3. COMPARISON OF IMPLICIT SCHEMES TO SOLVE EQUATIONS OF RADIATION HYDRODYNAMICS WITH A FLUX-LIMITED DIFFUSION APPROXIMATION: NEWTON–RAPHSON, OPERATOR SPLITTING, AND LINEARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetsu, Hiroyuki; Nakamoto, Taishi, E-mail: h.tetsu@geo.titech.ac.jp

    Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton–Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme,more » we examined the scheme developed by Douglas and Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.« less

  4. ALPS: A Linear Program Solver

    NASA Technical Reports Server (NTRS)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivak, David; Crooks, Gavin

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  6. Time dependent density functional calculation of plasmon response in clusters

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Zhang, Feng-Shou; Eric, Suraud

    2003-02-01

    We have introduced a theoretical scheme for the efficient description of the optical response of a cluster based on the time-dependent density functional theory. The practical implementation is done by means of the fully fledged time-dependent local density approximation scheme, which is solved directly in the time domain without any linearization. As an example we consider the simple Na2 cluster and compute its surface plasmon photoabsorption cross section, which is in good agreement with the experiments.

  7. On supporting students' understanding of solving linear equation by using flowchart

    NASA Astrophysics Data System (ADS)

    Toyib, Muhamad; Kusmayadi, Tri Atmojo; Riyadi

    2017-05-01

    The aim of this study was to support 7th graders to gradually understand the concepts and procedures of solving linear equation. Thirty-two 7th graders of a Junior High School in Surakarta, Indonesia were involved in this study. Design research was used as the research approach to achieve the aim. A set of learning activities in solving linear equation with one unknown were designed based on Realistic Mathematics Education (RME) approach. The activities were started by playing LEGO to find a linear equation then solve the equation by using flowchart. The results indicate that using the realistic problems, playing LEGO could stimulate students to construct linear equation. Furthermore, Flowchart used to encourage students' reasoning and understanding on the concepts and procedures of solving linear equation with one unknown.

  8. A Physics-Based Engineering Methodology for Calculating Soft Error Rates of Bulk CMOS and SiGe Heterojunction Bipolar Transistor Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Fulkerson, David E.

    2010-02-01

    This paper describes a new methodology for characterizing the electrical behavior and soft error rate (SER) of CMOS and SiGe HBT integrated circuits that are struck by ions. A typical engineering design problem is to calculate the SER of a critical path that commonly includes several circuits such as an input buffer, several logic gates, logic storage, clock tree circuitry, and an output buffer. Using multiple 3D TCAD simulations to solve this problem is too costly and time-consuming for general engineering use. The new and simple methodology handles the problem with ease by simple SPICE simulations. The methodology accurately predicts the measured threshold linear energy transfer (LET) of a bulk CMOS SRAM. It solves for circuit currents and voltage spikes that are close to those predicted by expensive 3D TCAD simulations. It accurately predicts the measured event cross-section vs. LET curve of an experimental SiGe HBT flip-flop. The experimental cross section vs. frequency behavior and other subtle effects are also accurately predicted.

  9. A Simple and Accurate Rate-Driven Infiltration Model

    NASA Astrophysics Data System (ADS)

    Cui, G.; Zhu, J.

    2017-12-01

    In this study, we develop a novel Rate-Driven Infiltration Model (RDIMOD) for simulating infiltration into soils. Unlike traditional methods, RDIMOD avoids numerically solving the highly non-linear Richards equation or simply modeling with empirical parameters. RDIMOD employs infiltration rate as model input to simulate one-dimensional infiltration process by solving an ordinary differential equation. The model can simulate the evolutions of wetting front, infiltration rate, and cumulative infiltration on any surface slope including vertical and horizontal directions. Comparing to the results from the Richards equation for both vertical infiltration and horizontal infiltration, RDIMOD simply and accurately predicts infiltration processes for any type of soils and soil hydraulic models without numerical difficulty. Taking into account the accuracy, capability, and computational effectiveness and stability, RDIMOD can be used in large-scale hydrologic and land-atmosphere modeling.

  10. Macroscopic dielectric function within time-dependent density functional theory—Real time evolution versus the Casida approach

    NASA Astrophysics Data System (ADS)

    Sander, Tobias; Kresse, Georg

    2017-02-01

    Linear optical properties can be calculated by solving the time-dependent density functional theory equations. Linearization of the equation of motion around the ground state orbitals results in the so-called Casida equation, which is formally very similar to the Bethe-Salpeter equation. Alternatively one can determine the spectral functions by applying an infinitely short electric field in time and then following the evolution of the electron orbitals and the evolution of the dipole moments. The long wavelength response function is then given by the Fourier transformation of the evolution of the dipole moments in time. In this work, we compare the results and performance of these two approaches for the projector augmented wave method. To allow for large time steps and still rely on a simple difference scheme to solve the differential equation, we correct for the errors in the frequency domain, using a simple analytic equation. In general, we find that both approaches yield virtually indistinguishable results. For standard density functionals, the time evolution approach is, with respect to the computational performance, clearly superior compared to the solution of the Casida equation. However, for functionals including nonlocal exchange, the direct solution of the Casida equation is usually much more efficient, even though it scales less beneficial with the system size. We relate this to the large computational prefactors in evaluating the nonlocal exchange, which renders the time evolution algorithm fairly inefficient.

  11. On a stochastic control method for weakly coupled linear systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kwong, R. H.

    1972-01-01

    The stochastic control of two weakly coupled linear systems with different controllers is considered. Each controller only makes measurements about his own system; no information about the other system is assumed to be available. Based on the noisy measurements, the controllers are to generate independently suitable control policies which minimize a quadratic cost functional. To account for the effects of weak coupling directly, an approximate model, which involves replacing the influence of one system on the other by a white noise process is proposed. Simple suboptimal control problem for calculating the covariances of these noises is solved using the matrix minimum principle. The overall system performance based on this scheme is analyzed as a function of the degree of intersystem coupling.

  12. New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.; Amm, O.; Viljanen, A.

    2006-10-01

    We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.

  13. On the Numerical Formulation of Parametric Linear Fractional Transformation (LFT) Uncertainty Models for Multivariate Matrix Polynomial Problems

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    1998-01-01

    Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.

  14. The entrainment matrix of a superfluid nucleon mixture at finite temperatures

    NASA Astrophysics Data System (ADS)

    Leinson, Lev B.

    2018-06-01

    It is considered a closed system of non-linear equations for the entrainment matrix of a non-relativistic mixture of superfluid nucleons at arbitrary temperatures below the onset of neutron superfluidity, which takes into account the essential dependence of the superfluid energy gap in the nucleon spectra on the velocities of superfluid flows. It is assumed that the protons condense into the isotropic 1S0 state, and the neutrons are paired into the spin-triplet 3P2 state. It is derived an analytic solution to the non-linear equations for the entrainment matrix under temperatures just below the critical value for the neutron superfluidity onset. In general case of an arbitrary temperature of the superfluid mixture the non-linear equations are solved numerically and fitted by simple formulas convenient for a practical use with an arbitrary set of the Landau parameters.

  15. A simple level set method for solving Stefan problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.; Merriman, B.; Osher, S.

    1997-07-15

    Discussed in this paper is an implicit finite difference scheme for solving a heat equation and a simple level set method for capturing the interface between solid and liquid phases which are used to solve Stefan problems.

  16. Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings

    NASA Astrophysics Data System (ADS)

    Vines, Justin

    2018-04-01

    We demonstrate equivalences, under simple mappings, between the dynamics of three distinct systems—(i) an arbitrary-mass-ratio two-spinning-black-hole system, (ii) a spinning test black hole in a background Kerr spacetime, and (iii) geodesic motion in Kerr—when each is considered in the first post-Minkowskian (1PM) approximation to general relativity, i.e. to linear order G but to all orders in 1/c, and to all orders in the black holes’ spins, with all orders in the multipole expansions of their linearized gravitational fields. This is accomplished via computations of the net results of weak gravitational scattering encounters between two spinning black holes, namely the net O(G) changes in the holes’ momenta and spins as functions of the incoming state. The results are given in remarkably simple closed forms, found by solving effective Mathisson–Papapetrou–Dixon-type equations of motion for a spinning black hole in conjunction with the linearized Einstein equation, with appropriate matching to the Kerr solution. The scattering results fully encode the gauge-invariant content of a canonical Hamiltonian governing binary-black-hole dynamics at 1PM order, for generic (unbound and bound) orbits and spin orientations. We deduce one such Hamiltonian, which reproduces and resums the 1PM parts of all such previous post-Newtonian results, and which directly manifests the equivalences with the test-body limits via simple effective-one-body mappings.

  17. Energy efficient LED layout optimization for near-uniform illumination

    NASA Astrophysics Data System (ADS)

    Ali, Ramy E.; Elgala, Hany

    2016-09-01

    In this paper, we consider the problem of designing energy efficient light emitting diodes (LEDs) layout while satisfying the illumination constraints. Towards this objective, we present a simple approach to the illumination design problem based on the concept of the virtual LED. We formulate a constrained optimization problem for minimizing the power consumption while maintaining a near-uniform illumination throughout the room. By solving the resulting constrained linear program, we obtain the number of required LEDs and the optimal output luminous intensities that achieve the desired illumination constraints.

  18. Thermodynamic metrics and optimal paths.

    PubMed

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  19. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  20. A simple method for identifying parameter correlations in partially observed linear dynamic models.

    PubMed

    Li, Pu; Vu, Quoc Dong

    2015-12-14

    Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a software packet.

  1. Composite fermion basis for two-component Bose gases

    NASA Astrophysics Data System (ADS)

    Meyer, Marius; Liabotro, Ola

    The composite fermion (CF) construction is known to produce wave functions that are not necessarily orthogonal, or even linearly independent, after projection. While usually not a practical issue in the quantum Hall regime, we have previously shown that it presents a technical challenge for rotating Bose gases with low angular momentum. These are systems where the CF approach yield surprisingly good approximations to the exact eigenstates of weak short-range interactions, and so solving the problem of linearly dependent wave functions is of interest. It can also be useful for studying CF excitations for fermions. Here we present several ways of constructing a basis for the space of ``simple CF states'' for two-component rotating Bose gases in the lowest Landau level, and prove that they all give a basis. Using the basis, we study the structure of the lowest-lying state using so-called restricted wave functions. We also examine the scaling of the overlap between the exact and CF wave functions at the maximal possible angular momentum for simple states. This work was financially supported by the Research Council of Norway.

  2. Change in hippocampal theta activity with transfer from simple discrimination tasks to a simultaneous feature-negative task

    PubMed Central

    Sakimoto, Yuya; Sakata, Shogo

    2014-01-01

    It was showed that solving a simple discrimination task (A+, B−) and a simultaneous feature-negative (FN) task (A+, AB−) used the hippocampal-independent strategy. Recently, we showed that the number of sessions required for a rat to completely learn a task differed between the FN and simple discrimination tasks, and there was a difference in hippocampal theta activity between these tasks. These results suggested that solving the FN task relied on a different strategy than the simple discrimination task. In this study, we provided supportive evidence that solving the FN and simple discrimination tasks involved different strategies by examining changes in performance and hippocampal theta activity in the FN task after transfer from the simple discrimination task (A+, B− → A+, AB−). The results of this study showed that performance on the FN task was impaired and there was a difference in hippocampal theta activity between the simple discrimination task and FN task. Thus, we concluded that solving the FN task uses a different strategy than the simple discrimination task. PMID:24917797

  3. The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.

    PubMed

    Narayanamoorthy, S; Kalyani, S

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  4. Isometric Non-Rigid Shape-from-Motion with Riemannian Geometry Solved in Linear Time.

    PubMed

    Parashar, Shaifali; Pizarro, Daniel; Bartoli, Adrien

    2017-10-06

    We study Isometric Non-Rigid Shape-from-Motion (Iso-NRSfM): given multiple intrinsically calibrated monocular images, we want to reconstruct the time-varying 3D shape of a thin-shell object undergoing isometric deformations. We show that Iso-NRSfM is solvable from local warps, the inter-image geometric transformations. We propose a new theoretical framework based on the Riemmanian manifold to represent the unknown 3D surfaces as embeddings of the camera's retinal plane. This allows us to use the manifold's metric tensor and Christoffel Symbol (CS) fields. These are expressed in terms of the first and second order derivatives of the inverse-depth of the 3D surfaces, which are the unknowns for Iso-NRSfM. We prove that the metric tensor and the CS are related across images by simple rules depending only on the warps. This forms a set of important theoretical results. We show that current solvers cannot solve for the first and second order derivatives of the inverse-depth simultaneously. We thus propose an iterative solution in two steps. 1) We solve for the first order derivatives assuming that the second order derivatives are known. We initialise the second order derivatives to zero, which is an infinitesimal planarity assumption. We derive a system of two cubics in two variables for each image pair. The sum-of-squares of these polynomials is independent of the number of images and can be solved globally, forming a well-posed problem for N ≥ 3 images. 2) We solve for the second order derivatives by initialising the first order derivatives from the previous step. We solve a linear system of 4N-4 equations in three variables. We iterate until the first order derivatives converge. The solution for the first order derivatives gives the surfaces' normal fields which we integrate to recover the 3D surfaces. The proposed method outperforms existing work in terms of accuracy and computation cost on synthetic and real datasets.

  5. Cost effective campaigning in social networks

    NASA Astrophysics Data System (ADS)

    Kotnis, Bhushan; Kuri, Joy

    2016-05-01

    Campaigners are increasingly using online social networking platforms for promoting products, ideas and information. A popular method of promoting a product or even an idea is incentivizing individuals to evangelize the idea vigorously by providing them with referral rewards in the form of discounts, cash backs, or social recognition. Due to budget constraints on scarce resources such as money and manpower, it may not be possible to provide incentives for the entire population, and hence incentives need to be allocated judiciously to appropriate individuals for ensuring the highest possible outreach size. We aim to do the same by formulating and solving an optimization problem using percolation theory. In particular, we compute the set of individuals that are provided incentives for minimizing the expected cost while ensuring a given outreach size. We also solve the problem of computing the set of individuals to be incentivized for maximizing the outreach size for given cost budget. The optimization problem turns out to be non trivial; it involves quantities that need to be computed by numerically solving a fixed point equation. Our primary contribution is, that for a fairly general cost structure, we show that the optimization problems can be solved by solving a simple linear program. We believe that our approach of using percolation theory to formulate an optimization problem is the first of its kind.

  6. An interative solution of an integral equation for radiative transfer by using variational technique

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.

    1973-01-01

    An effective iterative technique is introduced to solve a nonlinear integral equation frequently associated with radiative transfer problems. The problem is formulated in such a way that each step of an iterative sequence requires the solution of a linear integral equation. The advantage of a previously introduced variational technique which utilizes a stepwise constant trial function is exploited to cope with the nonlinear problem. The method is simple and straightforward. Rapid convergence is obtained by employing a linear interpolation of the iterative solutions. Using absorption coefficients of the Milne-Eddington type, which are applicable to some planetary atmospheric radiation problems. Solutions are found in terms of temperature and radiative flux. These solutions are presented numerically and show excellent agreement with other numerical solutions.

  7. Conjugate gradient based projection - A new explicit methodology for frictional contact

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Li, Maocheng; Sha, Desong

    1993-01-01

    With special attention towards the applicability to parallel computation or vectorization, a new and effective explicit approach for linear complementary formulations involving a conjugate gradient based projection methodology is proposed in this study for contact problems with Coulomb friction. The overall objectives are focussed towards providing an explicit methodology of computation for the complete contact problem with friction. In this regard, the primary idea for solving the linear complementary formulations stems from an established search direction which is projected to a feasible region determined by the non-negative constraint condition; this direction is then applied to the Fletcher-Reeves conjugate gradient method resulting in a powerful explicit methodology which possesses high accuracy, excellent convergence characteristics, fast computational speed and is relatively simple to implement for contact problems involving Coulomb friction.

  8. Multigrid approaches to non-linear diffusion problems on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.

  9. Chosen interval methods for solving linear interval systems with special type of matrix

    NASA Astrophysics Data System (ADS)

    Szyszka, Barbara

    2013-10-01

    The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.

  10. The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem

    PubMed Central

    Narayanamoorthy, S.; Kalyani, S.

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example. PMID:25810713

  11. Numerical solutions to the time-dependent Bloch equations revisited.

    PubMed

    Murase, Kenya; Tanki, Nobuyoshi

    2011-01-01

    The purpose of this study was to demonstrate a simple and fast method for solving the time-dependent Bloch equations. First, the time-dependent Bloch equations were reduced to a homogeneous linear differential equation, and then a simple equation was derived to solve it using a matrix operation. The validity of this method was investigated by comparing with the analytical solutions in the case of constant radiofrequency irradiation. There was a good agreement between them, indicating the validity of this method. As a further example, this method was applied to the time-dependent Bloch equations in the two-pool exchange model for chemical exchange saturation transfer (CEST) or amide proton transfer (APT) magnetic resonance imaging (MRI), and the Z-spectra and asymmetry spectra were calculated from their solutions. They were also calculated using the fourth/fifth-order Runge-Kutta-Fehlberg (RKF) method for comparison. There was also a good agreement between them, and this method was much faster than the RKF method. In conclusion, this method will be useful for analyzing the complex CEST or APT contrast mechanism and/or investigating the optimal conditions for CEST or APT MRI. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Schrödinger and Dirac solutions to few-body problems

    NASA Astrophysics Data System (ADS)

    Muolo, Andrea; Reiher, Markus

    We elaborate on the variational solution of the Schrödinger and Dirac equations for small atomic and molecular systems without relying on the Born-Oppenheimer approximation. The all-particle equations of motion are solved in a numerical procedure that relies on the variational principle, Cartesian coordinates and parametrized explicitly correlated Gaussians functions. A stochastic optimization of the variational parameters allows the calculation of accurate wave functions for ground and excited states. Expectation values such as the radial and angular distribution functions or the dipole moment can be calculated. We developed a simple strategy for the elimination of the global translation that allows to generally adopt laboratory-fixed cartesian coordinates. Simple expressions for the coordinates and operators are then preserved throughout the formalism. For relativistic calculations we devised a kinetic-balance condition for explicitly correlated basis functions. We demonstrate that the kinetic-balance condition can be obtained from the row reduction process commonly applied to solve systems of linear equations. The resulting form of kinetic balance establishes a relation between all components of the spinor of an N-fermion system. ETH Zürich, Laboratorium für Physikalische Chemie, CH-8093 Zürich, Switzerland.

  13. Tour of a Simple Trigonometry Problem

    ERIC Educational Resources Information Center

    Poon, Kin-Keung

    2012-01-01

    This article focuses on a simple trigonometric problem that generates a strange phenomenon when different methods are applied to tackling it. A series of problem-solving activities are discussed, so that students can be alerted that the precision of diagrams is important when solving geometric problems. In addition, the problem-solving plan was…

  14. Eye Movements Reveal Students' Strategies in Simple Equation Solving

    ERIC Educational Resources Information Center

    Susac, Ana; Bubic, Andreja; Kaponja, Jurica; Planinic, Maja; Palmovic, Marijan

    2014-01-01

    Equation rearrangement is an important skill required for problem solving in mathematics and science. Eye movements of 40 university students were recorded while they were rearranging simple algebraic equations. The participants also reported on their strategies during equation solving in a separate questionnaire. The analysis of the behavioral…

  15. Design of Linear Quadratic Regulators and Kalman Filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L.

    1986-01-01

    AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.

  16. Solving a mixture of many random linear equations by tensor decomposition and alternating minimization.

    DOT National Transportation Integrated Search

    2016-09-01

    We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...

  17. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

    NASA Astrophysics Data System (ADS)

    Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

    2018-04-01

    In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

  18. Discrete-time neural network for fast solving large linear L1 estimation problems and its application to image restoration.

    PubMed

    Xia, Youshen; Sun, Changyin; Zheng, Wei Xing

    2012-05-01

    There is growing interest in solving linear L1 estimation problems for sparsity of the solution and robustness against non-Gaussian noise. This paper proposes a discrete-time neural network which can calculate large linear L1 estimation problems fast. The proposed neural network has a fixed computational step length and is proved to be globally convergent to an optimal solution. Then, the proposed neural network is efficiently applied to image restoration. Numerical results show that the proposed neural network is not only efficient in solving degenerate problems resulting from the nonunique solutions of the linear L1 estimation problems but also needs much less computational time than the related algorithms in solving both linear L1 estimation and image restoration problems.

  19. Encouraging Students to Think Strategically when Learning to Solve Linear Equations

    ERIC Educational Resources Information Center

    Robson, Daphne; Abell, Walt; Boustead, Therese

    2012-01-01

    Students who are preparing to study science and engineering need to understand equation solving but adult students returning to study can find this difficult. In this paper, the design of an online resource, Equations2go, for helping students learn to solve linear equations is investigated. Students learning to solve equations need to consider…

  20. Experimental quantum computing to solve systems of linear equations.

    PubMed

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  1. Students’ difficulties in solving linear equation problems

    NASA Astrophysics Data System (ADS)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  2. Analysis of genome rearrangement by block-interchanges.

    PubMed

    Lu, Chin Lung; Lin, Ying Chih; Huang, Yen Lin; Tang, Chuan Yi

    2007-01-01

    Block-interchanges are a new kind of genome rearrangements that affect the gene order in a chromosome by swapping two nonintersecting blocks of genes of any length. More recently, the study of such rearrangements is becoming increasingly important because of its applications in molecular evolution. Usually, this kind of study requires to solve a combinatorial problem, called the block-interchange distance problem, which is to find a minimum number of block-interchanges between two given gene orders of linear/circular chromosomes to transform one gene order into another. In this chapter, we shall introduce the basics of block-interchange rearrangements and permutation groups in algebra that are useful in analyses of genome rearrangements. In addition, we shall present a simple algorithm on the basis of permutation groups to efficiently solve the block-interchange distance problem, as well as ROBIN, a web server for the online analyses of block-interchange rearrangements.

  3. A second order discontinuous Galerkin fast sweeping method for Eikonal equations

    NASA Astrophysics Data System (ADS)

    Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai

    2008-09-01

    In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.

  4. Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation

    PubMed Central

    Zhao, Tuo; Liu, Han

    2016-01-01

    We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430

  5. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 3: Programmer's reference

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the 2-D or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating-direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 3 is the Programmer's Reference, and describes the program structure, the FORTRAN variables stored in common blocks, and the details of each subprogram.

  6. Constitutive error based parameter estimation technique for plate structures using free vibration signatures

    NASA Astrophysics Data System (ADS)

    Guchhait, Shyamal; Banerjee, Biswanath

    2018-04-01

    In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.

  7. Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent; Kanp, Jaroslaw

    Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.

  8. Mode Identification of High-Amplitude Pressure Waves in Liquid Rocket Engines

    NASA Astrophysics Data System (ADS)

    EBRAHIMI, R.; MAZAHERI, K.; GHAFOURIAN, A.

    2000-01-01

    Identification of existing instability modes from experimental pressure measurements of rocket engines is difficult, specially when steep waves are present. Actual pressure waves are often non-linear and include steep shocks followed by gradual expansions. It is generally believed that interaction of these non-linear waves is difficult to analyze. A method of mode identification is introduced. After presumption of constituent modes, they are superposed by using a standard finite difference scheme for solution of the classical wave equation. Waves are numerically produced at each end of the combustion tube with different wavelengths, amplitudes, and phases with respect to each other. Pressure amplitude histories and phase diagrams along the tube are computed. To determine the validity of the presented method for steep non-linear waves, the Euler equations are numerically solved for non-linear waves, and negligible interactions between these waves are observed. To show the applicability of this method, other's experimental results in which modes were identified are used. Results indicate that this simple method can be used in analyzing complicated pressure signal measurements.

  9. An efficient method for generalized linear multiplicative programming problem with multiplicative constraints.

    PubMed

    Zhao, Yingfeng; Liu, Sanyang

    2016-01-01

    We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.

  10. Designing with non-linear viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy

    2017-11-01

    Material design is typically limited to hard materials or simple fluids; however, design with more complex materials can provide ways to enhance performance. Using the Criminale-Ericksen-Filbey (CEF) constitutive model in the thin film lubrication limit, we derive a modified Reynolds Equation (based on asymptotic analysis) that includes shear thinning, first normal stress, and terminal regime viscoelastic effects. This allows for designing non-linear viscoelastic fluids in thin-film creeping flow scenarios, i.e. optimizing the shape of rheological material properties to achieve different design objectives. We solve the modified Reynolds equation using the pseudo-spectral method, and describe a case study in full-film lubricated sliding where optimal fluid properties are identified. These material-agnostic property targets can then guide formulation of complex fluids which may use polymeric, colloidal, or other creative approaches to achieve the desired non-Newtonian properties.

  11. No Generalization of Practice for Nonzero Simple Addition

    ERIC Educational Resources Information Center

    Campbell, Jamie I. D.; Beech, Leah C.

    2014-01-01

    Several types of converging evidence have suggested recently that skilled adults solve very simple addition problems (e.g., 2 + 1, 4 + 2) using a fast, unconscious counting algorithm. These results stand in opposition to the long-held assumption in the cognitive arithmetic literature that such simple addition problems normally are solved by fact…

  12. Solving the Problem of Linear Viscoelasticity for Piecewise-Homogeneous Anisotropic Plates

    NASA Astrophysics Data System (ADS)

    Kaloerov, S. A.; Koshkin, A. A.

    2017-11-01

    An approximate method for solving the problem of linear viscoelasticity for thin anisotropic plates subject to transverse bending is proposed. The method of small parameter is used to reduce the problem to a sequence of boundary problems of applied theory of bending of plates solved using complex potentials. The general form of complex potentials in approximations and the boundary conditions for determining them are obtained. Problems for a plate with elliptic elastic inclusions are solved as an example. The numerical results for a plate with one, two elliptical (circular), and linear inclusions are analyzed.

  13. Misconceptions of Mexican Teachers in the Solution of Simple Pendulum

    ERIC Educational Resources Information Center

    Garcia Trujillo, Luis Antonio; Ramirez Díaz, Mario H.; Rodriguez Castillo, Mario

    2013-01-01

    Solving the position of a simple pendulum at any time is apparently one of the most simple and basic problems to solve in high school and college physics courses. However, because of this apparent simplicity, teachers and physics texts often assume that the solution is immediate without pausing to reflect on the problem formulation or verifying…

  14. Tour of a simple trigonometry problem

    NASA Astrophysics Data System (ADS)

    Poon, Kin-Keung

    2012-06-01

    This article focuses on a simple trigonometric problem that generates a strange phenomenon when different methods are applied to tackling it. A series of problem-solving activities are discussed, so that students can be alerted that the precision of diagrams is important when solving geometric problems. In addition, the problem-solving plan was implemented in a high school and the results indicated that students are relatively weak in problem-solving abilities but they understand and appreciate the thinking process in different stages and steps of the activities.

  15. "Compacted" procedures for adults' simple addition: A review and critique of the evidence.

    PubMed

    Chen, Yalin; Campbell, Jamie I D

    2018-04-01

    We review recent empirical findings and arguments proffered as evidence that educated adults solve elementary addition problems (3 + 2, 4 + 1) using so-called compacted procedures (e.g., unconscious, automatic counting); a conclusion that could have significant pedagogical implications. We begin with the large-sample experiment reported by Uittenhove, Thevenot and Barrouillet (2016, Cognition, 146, 289-303), which tested 90 adults on the 81 single-digit addition problems from 1 + 1 to 9 + 9. They identified the 12 very-small addition problems with different operands both ≤ 4 (e.g., 4 + 3) as a distinct subgroup of problems solved by unconscious, automatic counting: These items yielded a near-perfectly linear increase in answer response time (RT) yoked to the sum of the operands. Using the data reported in the article, however, we show that there are clear violations of the sum-counting model's predictions among the very-small addition problems, and that there is no real RT boundary associated with addends ≤4. Furthermore, we show that a well-known associative retrieval model of addition facts-the network interference theory (Campbell, 1995)-predicts the results observed for these problems with high precision. We also review the other types of evidence adduced for the compacted procedure theory of simple addition and conclude that these findings are unconvincing in their own right and only distantly consistent with automatic counting. We conclude that the cumulative evidence for fast compacted procedures for adults' simple addition does not justify revision of the long-standing assumption that direct memory retrieval is ultimately the most efficient process of simple addition for nonzero problems, let alone sufficient to recommend significant changes to basic addition pedagogy.

  16. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    ERIC Educational Resources Information Center

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  17. Large-scale computation of incompressible viscous flow by least-squares finite element method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000.

  18. Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting

    DOE PAGES

    Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart

    2015-02-14

    Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equationsmore » at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.« less

  19. Simple method for quick estimation of aquifer hydrogeological parameters

    NASA Astrophysics Data System (ADS)

    Ma, C.; Li, Y. Y.

    2017-08-01

    Development of simple and accurate methods to determine the aquifer hydrogeological parameters was of importance for groundwater resources assessment and management. Aiming at the present issue of estimating aquifer parameters based on some data of the unsteady pumping test, a fitting function of Theis well function was proposed using fitting optimization method and then a unitary linear regression equation was established. The aquifer parameters could be obtained by solving coefficients of the regression equation. The application of the proposed method was illustrated, using two published data sets. By the error statistics and analysis on the pumping drawdown, it showed that the method proposed in this paper yielded quick and accurate estimates of the aquifer parameters. The proposed method could reliably identify the aquifer parameters from long distance observed drawdowns and early drawdowns. It was hoped that the proposed method in this paper would be helpful for practicing hydrogeologists and hydrologists.

  20. A simple technique to increase profits in wood products marketing

    Treesearch

    George B. Harpole

    1971-01-01

    Mathematical models can be used to solve quickly some simple day-to-day marketing problems. This note explains how a sawmill production manager, who has an essentially fixed-capacity mill, can solve several optimization problems by using pencil and paper, a forecast of market prices, and a simple algorithm. One such problem is to maximize profits in an operating period...

  1. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  2. A dimensionally split Cartesian cut cell method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Gokhale, Nandan; Nikiforakis, Nikos; Klein, Rupert

    2018-07-01

    We present a dimensionally split method for solving hyperbolic conservation laws on Cartesian cut cell meshes. The approach combines local geometric and wave speed information to determine a novel stabilised cut cell flux, and we provide a full description of its three-dimensional implementation in the dimensionally split framework of Klein et al. [1]. The convergence and stability of the method are proved for the one-dimensional linear advection equation, while its multi-dimensional numerical performance is investigated through the computation of solutions to a number of test problems for the linear advection and Euler equations. When compared to the cut cell flux of Klein et al., it was found that the new flux alleviates the problem of oscillatory boundary solutions produced by the former at higher Courant numbers, and also enables the computation of more accurate solutions near stagnation points. Being dimensionally split, the method is simple to implement and extends readily to multiple dimensions.

  3. New Galerkin operational matrices for solving Lane-Emden type equations

    NASA Astrophysics Data System (ADS)

    Abd-Elhameed, W. M.; Doha, E. H.; Saad, A. S.; Bassuony, M. A.

    2016-04-01

    Lane-Emden type equations model many phenomena in mathematical physics and astrophysics, such as thermal explosions. This paper is concerned with introducing third and fourth kind Chebyshev-Galerkin operational matrices in order to solve such problems. The principal idea behind the suggested algorithms is based on converting the linear or nonlinear Lane-Emden problem, through the application of suitable spectral methods, into a system of linear or nonlinear equations in the expansion coefficients, which can be efficiently solved. The main advantage of the proposed algorithm in the linear case is that the resulting linear systems are specially structured, and this of course reduces the computational effort required to solve such systems. As an application, we consider the solar model polytrope with n=3 to show that the suggested solutions in this paper are in good agreement with the numerical results.

  4. Aerodynamic Shape Sensitivity Analysis and Design Optimization of Complex Configurations Using Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Newman, James C., III; Barnwell, Richard W.

    1997-01-01

    A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.

  5. Simple and complex mental subtraction: strategy choice and speed-of-processing differences in younger and older adults.

    PubMed

    Geary, D C; Frensch, P A; Wiley, J G

    1993-06-01

    Thirty-six younger adults (10 male, 26 female; ages 18 to 38 years) and 36 older adults (14 male, 22 female; ages 61 to 80 years) completed simple and complex paper-and-pencil subtraction tests and solved a series of simple and complex computer-presented subtraction problems. For the computer task, strategies and solution times were recorded on a trial-by-trial basis. Older Ss used a developmentally more mature mix of problem-solving strategies to solve both simple and complex subtraction problems. Analyses of component scores derived from the solution times suggest that the older Ss are slower at number encoding and number production but faster at executing the borrow procedure. In contrast, groups did not appear to differ in the speed of subtraction fact retrieval. Results from a computational simulation are consistent with the interpretation that older adults' advantage for strategy choices and for the speed of executing the borrow procedure might result from more practice solving subtraction problems.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.

    When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modularmore » In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.« less

  7. Solving ordinary differential equations by electrical analogy: a multidisciplinary teaching tool

    NASA Astrophysics Data System (ADS)

    Sanchez Perez, J. F.; Conesa, M.; Alhama, I.

    2016-11-01

    Ordinary differential equations are the mathematical formulation for a great variety of problems in science and engineering, and frequently, two different problems are equivalent from a mathematical point of view when they are formulated by the same equations. Students acquire the knowledge of how to solve these equations (at least some types of them) using protocols and strict algorithms of mathematical calculation without thinking about the meaning of the equation. The aim of this work is that students learn to design network models or circuits in this way; with simple knowledge of them, students can establish the association of electric circuits and differential equations and their equivalences, from a formal point of view, that allows them to associate knowledge of two disciplines and promote the use of this interdisciplinary approach to address complex problems. Therefore, they learn to use a multidisciplinary tool that allows them to solve these kinds of equations, even students of first course of engineering, whatever the order, grade or type of non-linearity. This methodology has been implemented in numerous final degree projects in engineering and science, e.g., chemical engineering, building engineering, industrial engineering, mechanical engineering, architecture, etc. Applications are presented to illustrate the subject of this manuscript.

  8. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 2: User's guide

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 2 is the User's Guide, and describes the program's general features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases.

  9. Efficient Implementation of an Optimal Interpolator for Large Spatial Data Sets

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mount, David M.

    2007-01-01

    Interpolating scattered data points is a problem of wide ranging interest. A number of approaches for interpolation have been proposed both from theoretical domains such as computational geometry and in applications' fields such as geostatistics. Our motivation arises from geological and mining applications. In many instances data can be costly to compute and are available only at nonuniformly scattered positions. Because of the high cost of collecting measurements, high accuracy is required in the interpolants. One of the most popular interpolation methods in this field is called ordinary kriging. It is popular because it is a best linear unbiased estimator. The price for its statistical optimality is that the estimator is computationally very expensive. This is because the value of each interpolant is given by the solution of a large dense linear system. In practice, kriging problems have been solved approximately by restricting the domain to a small local neighborhood of points that lie near the query point. Determining the proper size for this neighborhood is a solved by ad hoc methods, and it has been shown that this approach leads to undesirable discontinuities in the interpolant. Recently a more principled approach to approximating kriging has been proposed based on a technique called covariance tapering. This process achieves its efficiency by replacing the large dense kriging system with a much sparser linear system. This technique has been applied to a restriction of our problem, called simple kriging, which is not unbiased for general data sets. In this paper we generalize these results by showing how to apply covariance tapering to the more general problem of ordinary kriging. Through experimentation we demonstrate the space and time efficiency and accuracy of approximating ordinary kriging through the use of covariance tapering combined with iterative methods for solving large sparse systems. We demonstrate our approach on large data sizes arising both from synthetic sources and from real applications.

  10. Steady induction effects in geomagnetism. Part 1B: Geomagnetic estimation of steady surficial core motions: A non-linear inverse problem

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1993-01-01

    The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.

  11. Bounding solutions of geometrically nonlinear viscoelastic problems

    NASA Technical Reports Server (NTRS)

    Stubstad, J. M.; Simitses, G. J.

    1985-01-01

    Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.

  12. Bounding solutions of geometrically nonlinear viscoelastic problems

    NASA Technical Reports Server (NTRS)

    Stubstad, J. M.; Simitses, G. J.

    1986-01-01

    Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.

  13. EZLP: An Interactive Computer Program for Solving Linear Programming Problems. Final Report.

    ERIC Educational Resources Information Center

    Jarvis, John J.; And Others

    Designed for student use in solving linear programming problems, the interactive computer program described (EZLP) permits the student to input the linear programming model in exactly the same manner in which it would be written on paper. This report includes a brief review of the development of EZLP; narrative descriptions of program features,…

  14. Investigation of Conjugate Heat Transfer in Turbine Blades and Vanes

    NASA Technical Reports Server (NTRS)

    Kassab, A. J.; Kapat, J. S.

    2001-01-01

    We report on work carried out to develop a 3-D coupled Finite Volume/BEM-based temperature forward/flux back (TFFB) coupling algorithm to solve the conjugate heat transfer (CHT) which arises naturally in analysis of systems exposed to a convective environment. Here, heat conduction within a structure is coupled to heat transfer to the external fluid which is convecting heat into or out of the solid structure. There are two basic approaches to solving coupled fluid structural systems. The first is a direct coupling where the solution of the different fields is solved simultaneously in one large set of equations. The second approach is a loose coupling strategy where each set of field equations is solved to provide boundary conditions for the other. The equations are solved in turn until an iterated convergence criterion is met at the fluid-solid interface. The loose coupling strategy is particularly attractive when coupling auxiliary field equations to computational fluid dynamics codes. We adopt the latter method in which the BEM is used to solve heat conduction inside a structure which is exposed to a convective field which in turn is resolved by solving the NASA Glenn compressible Navier-Stokes finite volume code Glenn-HT. The BEM code features constant and bi-linear discontinuous elements and an ILU-preconditioned GMRES iterative solver for the resulting non-symmetric algebraic set arising in the conduction solution. Interface of flux and temperature is enforced at the solid/fluid interface, and a radial-basis function scheme is used to interpolated information between the CFD and BEM surface grids. Additionally, relaxation is implemented in passing the fluxes from the conduction solution to the fluid solution. Results from a simple test example are reported.

  15. Paraxial diffractive elements for space-variant linear transforms

    NASA Astrophysics Data System (ADS)

    Teiwes, Stephan; Schwarzer, Heiko; Gu, Ben-Yuan

    1998-06-01

    Optical linear transform architectures bear good potential for future developments of very powerful hybrid vision systems and neural network classifiers. The optical modules of such systems could be used as pre-processors to solve complex linear operations at very high speed in order to simplify an electronic data post-processing. However, the applicability of linear optical architectures is strongly connected with the fundamental question of how to implement a specific linear transform by optical means and physical imitations. The large majority of publications on this topic focusses on the optical implementation of space-invariant transforms by the well-known 4f-setup. Only few papers deal with approaches to implement selected space-variant transforms. In this paper, we propose a simple algebraic method to design diffractive elements for an optical architecture in order to realize arbitrary space-variant transforms. The design procedure is based on a digital model of scalar, paraxial wave theory and leads to optimal element transmission functions within the model. Its computational and physical limitations are discussed in terms of complexity measures. Finally, the design procedure is demonstrated by some examples. Firstly, diffractive elements for the realization of different rotation operations are computed and, secondly, a Hough transform element is presented. The correct optical functions of the elements are proved in computer simulation experiments.

  16. Finite-horizon differential games for missile-target interception system using adaptive dynamic programming with input constraints

    NASA Astrophysics Data System (ADS)

    Sun, Jingliang; Liu, Chunsheng

    2018-01-01

    In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.

  17. A modal aeroelastic analysis scheme for turbomachinery blading. M.S. Thesis - Case Western Reserve Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Smith, Todd E.

    1991-01-01

    An aeroelastic analysis is developed which has general application to all types of axial-flow turbomachinery blades. The approach is based on linear modal analysis, where the blade's dynamic response is represented as a linear combination of contributions from each of its in-vacuum free vibrational modes. A compressible linearized unsteady potential theory is used to model the flow over the oscillating blades. The two-dimensional unsteady flow is evaluated along several stacked axisymmetric strips along the span of the airfoil. The unsteady pressures at the blade surface are integrated to result in the generalized force acting on the blade due to simple harmonic motions. The unsteady aerodynamic forces are coupled to the blade normal modes in the frequency domain using modal analysis. An iterative eigenvalue problem is solved to determine the stability of the blade when the unsteady aerodynamic forces are included in the analysis. The approach is demonstrated by applying it to a high-energy subsonic turbine blade from a rocket engine turbopump power turbine. The results indicate that this turbine could undergo flutter in an edgewise mode of vibration.

  18. Can Linear Superiorization Be Useful for Linear Optimization Problems?

    PubMed Central

    Censor, Yair

    2017-01-01

    Linear superiorization considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are (i) Does linear superiorization provide a feasible point whose linear target function value is lower than that obtained by running the same feasibility-seeking algorithm without superiorization under identical conditions? and (ii) How does linear superiorization fare in comparison with the Simplex method for solving linear programming problems? Based on our computational experiments presented here, the answers to these two questions are: “yes” and “very well”, respectively. PMID:29335660

  19. Krylov subspace methods - Theory, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Sad, Youcef

    1990-01-01

    Projection methods based on Krylov subspaces for solving various types of scientific problems are reviewed. The main idea of this class of methods when applied to a linear system Ax = b, is to generate in some manner an approximate solution to the original problem from the so-called Krylov subspace span. Thus, the original problem of size N is approximated by one of dimension m, typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now becoming popular for solving nonlinear equations. The main ideas in Krylov subspace methods are shown and their use in solving linear systems, eigenvalue problems, parabolic partial differential equations, Liapunov matrix equations, and nonlinear system of equations are discussed.

  20. Using Algorithms in Solving Synapse Transmission Problems.

    ERIC Educational Resources Information Center

    Stencel, John E.

    1992-01-01

    Explains how a simple three-step algorithm can aid college students in solving synapse transmission problems. Reports that all of the students did not completely understand the algorithm. However, many learn a simple working model of synaptic transmission and understand why an impulse will pass across a synapse quantitatively. Students also see…

  1. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  2. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  3. Variational method enabling simplified solutions to the linearized Boltzmann equation for oscillatory gas flows

    NASA Astrophysics Data System (ADS)

    Ladiges, Daniel R.; Sader, John E.

    2018-05-01

    Nanomechanical resonators and sensors, operated in ambient conditions, often generate low-Mach-number oscillating rarefied gas flows. Cercignani [C. Cercignani, J. Stat. Phys. 1, 297 (1969), 10.1007/BF01007482] proposed a variational principle for the linearized Boltzmann equation, which can be used to derive approximate analytical solutions of steady (time-independent) flows. Here we extend and generalize this principle to unsteady oscillatory rarefied flows and thus accommodate resonating nanomechanical devices. This includes a mathematical approach that facilitates its general use and allows for systematic improvements in accuracy. This formulation is demonstrated for two canonical flow problems: oscillatory Couette flow and Stokes' second problem. Approximate analytical formulas giving the bulk velocity and shear stress, valid for arbitrary oscillation frequency, are obtained for Couette flow. For Stokes' second problem, a simple system of ordinary differential equations is derived which may be solved to obtain the desired flow fields. Using this framework, a simple and accurate formula is provided for the shear stress at the oscillating boundary, again for arbitrary frequency, which may prove useful in application. These solutions are easily implemented on any symbolic or numerical package, such as Mathematica or matlab, facilitating the characterization of flows produced by nanomechanical devices and providing insight into the underlying flow physics.

  4. Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, FaMAF, Universidad Nacional de Cordoba, Instituto de Fisica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria

    2010-02-15

    For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, thoughmore » the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.« less

  5. A duality approach for solving bounded linear programming problems with fuzzy variables based on ranking functions and its application in bounded transportation problems

    NASA Astrophysics Data System (ADS)

    Ebrahimnejad, Ali

    2015-08-01

    There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.

  6. Chemical Equation Balancing.

    ERIC Educational Resources Information Center

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  7. Symbolic Solution of Linear Differential Equations

    NASA Technical Reports Server (NTRS)

    Feinberg, R. B.; Grooms, R. G.

    1981-01-01

    An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.

  8. On Solving Linear Recurrences

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2013-01-01

    A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.

  9. A Simple Acronym for Doing Calculus: CAL

    ERIC Educational Resources Information Center

    Hathaway, Richard J.

    2008-01-01

    An acronym is presented that provides students a potentially useful, unifying view of the major topics covered in an elementary calculus sequence. The acronym (CAL) is based on viewing the calculus procedure for solving a calculus problem P* in three steps: (1) recognizing that the problem cannot be solved using simple (non-calculus) techniques;…

  10. Optimal control of LQR for discrete time-varying systems with input delays

    NASA Astrophysics Data System (ADS)

    Yin, Yue-Zhu; Yang, Zhong-Lian; Yin, Zhi-Xiang; Xu, Feng

    2018-04-01

    In this work, we consider the optimal control problem of linear quadratic regulation for discrete time-variant systems with single input and multiple input delays. An innovative and simple method to derive the optimal controller is given. The studied problem is first equivalently converted into a problem subject to a constraint condition. Last, with the established duality, the problem is transformed into a static mathematical optimisation problem without input delays. The optimal control input solution to minimise performance index function is derived by solving this optimisation problem with two methods. A numerical simulation example is carried out and its results show that our two approaches are both feasible and very effective.

  11. Viscous cavity damping of a microlever in a simple fluid.

    PubMed

    Siria, A; Drezet, A; Marchi, F; Comin, F; Huant, S; Chevrier, J

    2009-06-26

    We consider the problem of oscillation damping in air of a thermally actuated microlever as it gradually approaches an infinite wall in parallel geometry. As the gap is decreased from 20 microm down to 400 nm, we observe the increasing damping of the lever Brownian motion in the fluid laminar regime. This manifests itself as a linear decrease in the lever quality factor accompanied by a dramatic softening of its resonance, and eventually leads to the freezing of the CL oscillation. We are able to quantitatively explain this behavior by analytically solving the Navier-Stokes equation with perfect slip boundary conditions. Our findings may have implications for microfluidics and micro- and nanoelectromechanical applications.

  12. [Feature extraction for breast cancer data based on geometric algebra theory and feature selection using differential evolution].

    PubMed

    Li, Jing; Hong, Wenxue

    2014-12-01

    The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

  13. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    NASA Astrophysics Data System (ADS)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  14. A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Leonov, Arkady I.

    2002-01-01

    The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.

  15. A review on classification methods for solving fully fuzzy linear systems

    NASA Astrophysics Data System (ADS)

    Daud, Wan Suhana Wan; Ahmad, Nazihah; Aziz, Khairu Azlan Abd

    2015-12-01

    Fully Fuzzy Linear System (FFLS) exists when there are fuzzy numbers on both sides of the linear systems. This system is quite significant today since most of the linear systems play with uncertainties of parameters especially in mathematics, engineering and finance. Many researchers and practitioners used the FFLS to model their problem and they apply various methods to solve it. In this paper, we present the outcome of a comprehensive review that we have done on various methods used for solving the FFLS. We classify our findings based on parameters' type used for the FFLS either restricted or unrestricted. We also discuss some of the methods by illustrating numerical examples and identify the differences between the methods. Ultimately, we summarize all findings in a table. We hope this study will encourage researchers to appreciate the use of this method and with that it will be easier for them to choose the right method or to propose any new method for solving the FFLS.

  16. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2014-05-01

    Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained. The optimization framework based on the GA is still computationally feasible and represents a clean and customizable method. The method has been applied to the Ziya River basin, China. The basin is located on the North China Plain and is subject to severe water scarcity, which includes surface water droughts and groundwater over-pumping. The head-dependent groundwater pumping costs will enable assessment of the long-term effects of increased electricity prices on the groundwater pumping. The coupled optimization framework is used to assess realistic alternative development scenarios for the basin. In particular the potential for using electricity pricing policies to reach sustainable groundwater pumping is investigated.

  17. Can linear superiorization be useful for linear optimization problems?

    NASA Astrophysics Data System (ADS)

    Censor, Yair

    2017-04-01

    Linear superiorization (LinSup) considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are: (i) does LinSup provide a feasible point whose linear target function value is lower than that obtained by running the same feasibility-seeking algorithm without superiorization under identical conditions? (ii) How does LinSup fare in comparison with the Simplex method for solving linear programming problems? Based on our computational experiments presented here, the answers to these two questions are: ‘yes’ and ‘very well’, respectively.

  18. Using the Multiplicative Schwarz Alternating Algorithm (MSAA) for Solving the Large Linear System of Equations Related to Global Gravity Field Recovery up to Degree and Order 120

    NASA Astrophysics Data System (ADS)

    Safari, A.; Sharifi, M. A.; Amjadiparvar, B.

    2010-05-01

    The GRACE mission has substantiated the low-low satellite-to-satellite tracking (LL-SST) concept. The LL-SST configuration can be combined with the previously realized high-low SST concept in the CHAMP mission to provide a much higher accuracy. The line of sight (LOS) acceleration difference between the GRACE satellite pair is the mostly used observable for mapping the global gravity field of the Earth in terms of spherical harmonic coefficients. In this paper, mathematical formulae for LOS acceleration difference observations have been derived and the corresponding linear system of equations has been set up for spherical harmonic up to degree and order 120. The total number of unknowns is 14641. Such a linear equation system can be solved with iterative solvers or direct solvers. However, the runtime of direct methods or that of iterative solvers without a suitable preconditioner increases tremendously. This is the reason why we need a more sophisticated method to solve the linear system of problems with a large number of unknowns. Multiplicative variant of the Schwarz alternating algorithm is a domain decomposition method, which allows it to split the normal matrix of the system into several smaller overlaped submatrices. In each iteration step the multiplicative variant of the Schwarz alternating algorithm solves linear systems with the matrices obtained from the splitting successively. It reduces both runtime and memory requirements drastically. In this paper we propose the Multiplicative Schwarz Alternating Algorithm (MSAA) for solving the large linear system of gravity field recovery. The proposed algorithm has been tested on the International Association of Geodesy (IAG)-simulated data of the GRACE mission. The achieved results indicate the validity and efficiency of the proposed algorithm in solving the linear system of equations from accuracy and runtime points of view. Keywords: Gravity field recovery, Multiplicative Schwarz Alternating Algorithm, Low-Low Satellite-to-Satellite Tracking

  19. Novel methods for Solving Economic Dispatch of Security-Constrained Unit Commitment Based on Linear Programming

    NASA Astrophysics Data System (ADS)

    Guo, Sangang

    2017-09-01

    There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient.

  20. On a new iterative method for solving linear systems and comparison results

    NASA Astrophysics Data System (ADS)

    Jing, Yan-Fei; Huang, Ting-Zhu

    2008-10-01

    In Ujevic [A new iterative method for solving linear systems, Appl. Math. Comput. 179 (2006) 725-730], the author obtained a new iterative method for solving linear systems, which can be considered as a modification of the Gauss-Seidel method. In this paper, we show that this is a special case from a point of view of projection techniques. And a different approach is established, which is both theoretically and numerically proven to be better than (at least the same as) Ujevic's. As the presented numerical examples show, in most cases, the convergence rate is more than one and a half that of Ujevic.

  1. Generalised Assignment Matrix Methodology in Linear Programming

    ERIC Educational Resources Information Center

    Jerome, Lawrence

    2012-01-01

    Discrete Mathematics instructors and students have long been struggling with various labelling and scanning algorithms for solving many important problems. This paper shows how to solve a wide variety of Discrete Mathematics and OR problems using assignment matrices and linear programming, specifically using Excel Solvers although the same…

  2. Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

    NASA Astrophysics Data System (ADS)

    Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.

    2017-11-01

    When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.

  3. A new fractional nonlocal model and its application in free vibration of Timoshenko and Euler-Bernoulli beams

    NASA Astrophysics Data System (ADS)

    Rahimi, Zaher; Sumelka, Wojciech; Yang, Xiao-Jun

    2017-11-01

    The application of fractional calculus in fractional models (FMs) makes them more flexible than integer models inasmuch they can conclude all of integer and non-integer operators. In other words FMs let us use more potential of mathematics to modeling physical phenomena due to the use of both integer and fractional operators to present a better modeling of problems, which makes them more flexible and powerful. In the present work, a new fractional nonlocal model has been proposed, which has a simple form and can be used in different problems due to the simple form of numerical solutions. Then the model has been used to govern equations of the motion of the Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). Next, free vibration of the Timoshenko and Euler-Bernoulli simply-supported (S-S) beam has been investigated. The Galerkin weighted residual method has been used to solve the non-linear governing equations.

  4. On HPM approximation for the perihelion precession angle in general relativity

    NASA Astrophysics Data System (ADS)

    Shchigolev, Victor; Bezbatko, Dmitrii

    2017-03-01

    In this paper, the homotopy perturbation method (HPM) is applied for calculating the perihelion precession angle of planetary orbits in General Relativity. The HPM is quite efficient and is practically well suited for use in many astrophysical and cosmological problems. For our purpose, we applied HPM to the approximate solutions for the orbits in order to calculate the perihelion shift. On the basis of the main idea of HPM, we construct the appropriate homotopy that leads to the problem of solving the set of linear algebraic equations. As a result, we obtain a simple formula for the angle of precession avoiding any restrictions on the smallness of physical parameters. First of all, we consider the simple examples of the Schwarzschild metric and the Reissner - Nordström spacetime of a charged star for which the approximate geodesics solutions are known. Furthermore, the implementation of HPM has allowed us to readily obtain the precession angle for the orbits in the gravitational field of Kiselev black hole.

  5. Accurate radiative transfer calculations for layered media.

    PubMed

    Selden, Adrian C

    2016-07-01

    Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics.

  6. Object matching using a locally affine invariant and linear programming techniques.

    PubMed

    Li, Hongsheng; Huang, Xiaolei; He, Lei

    2013-02-01

    In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.

  7. Phase-space finite elements in a least-squares solution of the transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drumm, C.; Fan, W.; Pautz, S.

    2013-07-01

    The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less

  8. Technology, Linear Equations, and Buying a Car.

    ERIC Educational Resources Information Center

    Sandefur, James T.

    1992-01-01

    Discusses the use of technology in solving compound interest-rate problems that can be modeled by linear relationships. Uses a graphing calculator to solve the specific problem of determining the amount of money that can be borrowed to buy a car for a given monthly payment and interest rate. (MDH)

  9. Photon-Z mixing the Weinberg-Salam model: Effective charges and the a = -3 gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baulieu, L.; Coquereaux, R.

    1982-04-15

    We study some properties of the Weinberg-Salam model connected with the photon-Z mixing. We solve the linear Dyson-Schwinger equations between full and 1PI boson propagators. The task is made easier, by the two-point function Ward identities that we derive to all orders and in any gauge. Some aspects of the renormalization of the model are also discussed. We display the exact mass-dependent one-loop two-point functions involving the photon and Z field in any linear xi-gauge. The special gauge a = xi/sup -1/ = -3 is shown to play a peculiar role. In this gauge, the Z field is multiplicatively renormalizablemore » (at the one-loop level), and one can construct both electric and weak effective charges of the theory from the photon and Z propagators, with a very simple expression similar to that of the QED Petermann, Stueckelberg, Gell-Mann and Low charge.« less

  10. High-order Newton-penalty algorithms

    NASA Astrophysics Data System (ADS)

    Dussault, Jean-Pierre

    2005-10-01

    Recent efforts in differentiable non-linear programming have been focused on interior point methods, akin to penalty and barrier algorithms. In this paper, we address the classical equality constrained program solved using the simple quadratic loss penalty function/algorithm. The suggestion to use extrapolations to track the differentiable trajectory associated with penalized subproblems goes back to the classic monograph of Fiacco & McCormick. This idea was further developed by Gould who obtained a two-steps quadratically convergent algorithm using prediction steps and Newton correction. Dussault interpreted the prediction step as a combined extrapolation with respect to the penalty parameter and the residual of the first order optimality conditions. Extrapolation with respect to the residual coincides with a Newton step.We explore here higher-order extrapolations, thus higher-order Newton-like methods. We first consider high-order variants of the Newton-Raphson method applied to non-linear systems of equations. Next, we obtain improved asymptotic convergence results for the quadratic loss penalty algorithm by using high-order extrapolation steps.

  11. Efficient Determination of Free Energy Landscapes in Multiple Dimensions from Biased Umbrella Sampling Simulations Using Linear Regression.

    PubMed

    Meng, Yilin; Roux, Benoît

    2015-08-11

    The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost.

  12. Efficient Determination of Free Energy Landscapes in Multiple Dimensions from Biased Umbrella Sampling Simulations Using Linear Regression

    PubMed Central

    2015-01-01

    The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost. PMID:26574437

  13. Integral method for transient He II heat transfer in a semi-infinite domain

    NASA Astrophysics Data System (ADS)

    Baudouy, B.

    2002-05-01

    Integral methods are suited to solve a non-linear system of differential equations where the non-linearity can be found either in the differential equations or in the boundary conditions. Though they are approximate methods, they have proven to give simple solutions with acceptable accuracy for transient heat transfer in He II. Taking in account the temperature dependence of thermal properties, direct solutions are found without the need of adjusting a parameter. Previously, we have presented a solution for the clamped heat flux and in the present study this method is used to accommodate the clamped-temperature problem. In the case of constant thermal properties, this method yields results that are within a few percent of the exact solution for the heat flux at the axis origin. We applied this solution to analyze recovery from burnout and find an agreement within 10% at low heat flux, whereas at high heat flux the model deviates from the experimental data suggesting the need for a more refined thermal model.

  14. The large discretization step method for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1995-01-01

    A new method for the acceleration of linear and nonlinear time dependent calculations is presented. It is based on the Large Discretization Step (LDS) approximation, defined in this work, which employs an extended system of low accuracy schemes to approximate a high accuracy discrete approximation to a time dependent differential operator. Error bounds on such approximations are derived. These approximations are efficiently implemented in the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these algorithms the high and low accuracy schemes are interpreted as the same discretization of a time dependent operator on fine and coarse grids, respectively. Thus, a system of correction terms and corresponding equations are derived and solved on the coarse grid to yield the fine grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid time steps. The resulting methods are very general, simple to implement and may be used to accelerate many existing time marching schemes.

  15. Causal Inference and Explaining Away in a Spiking Network

    PubMed Central

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-01-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification. PMID:26621426

  16. Causal Inference and Explaining Away in a Spiking Network.

    PubMed

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-12-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification.

  17. Scalable Parallel Computation for Extended MHD Modeling of Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Glasser, Alan H.

    2008-11-01

    Parallel solution of a linear system is scalable if simultaneously doubling the number of dependent variables and the number of processors results in little or no increase in the computation time to solution. Two approaches have this property for parabolic systems: multigrid and domain decomposition. Since extended MHD is primarily a hyperbolic rather than a parabolic system, additional steps must be taken to parabolize the linear system to be solved by such a method. Such physics-based preconditioning (PBP) methods have been pioneered by Chac'on, using finite volumes for spatial discretization, multigrid for solution of the preconditioning equations, and matrix-free Newton-Krylov methods for the accurate solution of the full nonlinear preconditioned equations. The work described here is an extension of these methods using high-order spectral element methods and FETI-DP domain decomposition. Application of PBP to a flux-source representation of the physics equations is discussed. The resulting scalability will be demonstrated for simple wave and for ideal and Hall MHD waves.

  18. A Block-LU Update for Large-Scale Linear Programming

    DTIC Science & Technology

    1990-01-01

    linear programming problems. Results are given from runs on the Cray Y -MP. 1. Introduction We wish to use the simplex method [Dan63] to solve the...standard linear program, minimize cTx subject to Ax = b 1< x <U, where A is an m by n matrix and c, x, 1, u, and b are of appropriate dimension. The simplex...the identity matrix. The basis is used to solve for the search direction y and the dual variables 7r in the following linear systems: Bky = aq (1.2) and

  19. A comparison of Heuristic method and Llewellyn’s rules for identification of redundant constraints

    NASA Astrophysics Data System (ADS)

    Estiningsih, Y.; Farikhin; Tjahjana, R. H.

    2018-03-01

    Important techniques in linear programming is modelling and solving practical optimization. Redundant constraints are consider for their effects on general linear programming problems. Identification and reduce redundant constraints are for avoidance of all the calculations associated when solving an associated linear programming problems. Many researchers have been proposed for identification redundant constraints. This paper a compararison of Heuristic method and Llewellyn’s rules for identification of redundant constraints.

  20. Advanced statistics: linear regression, part I: simple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  1. The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.

    PubMed

    Pang, Haotian; Liu, Han; Vanderbei, Robert

    2014-02-01

    We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.

  2. A new Newton-like method for solving nonlinear equations.

    PubMed

    Saheya, B; Chen, Guo-Qing; Sui, Yun-Kang; Wu, Cai-Ying

    2016-01-01

    This paper presents an iterative scheme for solving nonline ar equations. We establish a new rational approximation model with linear numerator and denominator which has generalizes the local linear model. We then employ the new approximation for nonlinear equations and propose an improved Newton's method to solve it. The new method revises the Jacobian matrix by a rank one matrix each iteration and obtains the quadratic convergence property. The numerical performance and comparison show that the proposed method is efficient.

  3. An approximately factored incremental strategy for calculating consistent discrete aerodynamic sensitivity derivatives

    NASA Technical Reports Server (NTRS)

    Korivi, V. M.; Taylor, A. C., III; Newman, P. A.; Hou, G. J.-W.; Jones, H. E.

    1992-01-01

    An incremental strategy is presented for iteratively solving very large systems of linear equations, which are associated with aerodynamic sensitivity derivatives for advanced CFD codes. It is shown that the left-hand side matrix operator and the well-known factorization algorithm used to solve the nonlinear flow equations can also be used to efficiently solve the linear sensitivity equations. Two airfoil problems are considered as an example: subsonic low Reynolds number laminar flow and transonic high Reynolds number turbulent flow.

  4. Problem Solving with the Elementary Youngster.

    ERIC Educational Resources Information Center

    Swartz, Vicki

    This paper explores research on problem solving and suggests a problem-solving approach to elementary school social studies, using a culture study of the ancient Egyptians and King Tut as a sample unit. The premise is that problem solving is particularly effective in dealing with problems which do not have one simple and correct answer but rather…

  5. Control algorithms for dynamic attenuators.

    PubMed

    Hsieh, Scott S; Pelc, Norbert J

    2014-06-01

    The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods.

  6. The use of Galerkin finite-element methods to solve mass-transport equations

    USGS Publications Warehouse

    Grove, David B.

    1977-01-01

    The partial differential equation that describes the transport and reaction of chemical solutes in porous media was solved using the Galerkin finite-element technique. These finite elements were superimposed over finite-difference cells used to solve the flow equation. Both convection and flow due to hydraulic dispersion were considered. Linear and Hermite cubic approximations (basis functions) provided satisfactory results: however, the linear functions were computationally more efficient for two-dimensional problems. Successive over relaxation (SOR) and iteration techniques using Tchebyschef polynomials were used to solve the sparce matrices generated using the linear and Hermite cubic functions, respectively. Comparisons of the finite-element methods to the finite-difference methods, and to analytical results, indicated that a high degree of accuracy may be obtained using the method outlined. The technique was applied to a field problem involving an aquifer contaminated with chloride, tritium, and strontium-90. (Woodard-USGS)

  7. Solving rational matrix equations in the state space with applications to computer-aided control-system design

    NASA Technical Reports Server (NTRS)

    Packard, A. K.; Sastry, S. S.

    1986-01-01

    A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.

  8. Secondary Pre-Service Teachers' Algebraic Reasoning about Linear Equation Solving

    ERIC Educational Resources Information Center

    Alvey, Christina; Hudson, Rick A.; Newton, Jill; Males, Lorraine M.

    2016-01-01

    This study analyzes the responses of 12 secondary pre-service teachers on two tasks focused on reasoning when solving linear equations. By documenting the choices PSTs made while engaging in these tasks, we gain insight into how new teachers work mathematically, reason algebraically, communicate their thinking, and make pedagogical decisions. We…

  9. Synthesizing Strategies Creatively: Solving Linear Equations

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.; Tuba, Imre

    2015-01-01

    New strategies can ignite teachers' imagination to create new lessons or adapt lessons created by others. In this article, the authors present the experience of an algebra teacher and his students solving linear and literal equations and explain how the use of ideas found in past NCTM journals helped bring this lesson to life. The…

  10. A nearly-linear computational-cost scheme for the forward dynamics of an N-body pendulum

    NASA Technical Reports Server (NTRS)

    Chou, Jack C. K.

    1989-01-01

    The dynamic equations of motion of an n-body pendulum with spherical joints are derived to be a mixed system of differential and algebraic equations (DAE's). The DAE's are kept in implicit form to save arithmetic and preserve the sparsity of the system and are solved by the robust implicit integration method. At each solution point, the predicted solution is corrected to its exact solution within given tolerance using Newton's iterative method. For each iteration, a linear system of the form J delta X = E has to be solved. The computational cost for solving this linear system directly by LU factorization is O(n exp 3), and it can be reduced significantly by exploring the structure of J. It is shown that by recognizing the recursive patterns and exploiting the sparsity of the system the multiplicative and additive computational costs for solving J delta X = E are O(n) and O(n exp 2), respectively. The formulation and solution method for an n-body pendulum is presented. The computational cost is shown to be nearly linearly proportional to the number of bodies.

  11. A new neural network model for solving random interval linear programming problems.

    PubMed

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Maximal liquid bridges between horizontal cylinders

    NASA Astrophysics Data System (ADS)

    Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.

    2016-08-01

    We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.

  13. Predicting tidal currents in San Francisco Bay using a spectral model

    USGS Publications Warehouse

    Burau, Jon R.; Cheng, Ralph T.

    1988-01-01

    This paper describes the formulation of a spectral (or frequency based) model which solves the linearized shallow water equations. To account for highly variable basin bathymetry, spectral solutions are obtained using the finite element method which allows the strategic placement of the computation points in the specific areas of interest or in areas where the gradients of the dependent variables are expected to be large. Model results are compared with data using simple statistics to judge overall model performance in the San Francisco Bay estuary. Once the model is calibrated and verified, prediction of the tides and tidal currents in San Francisco Bay is accomplished by applying astronomical tides (harmonic constants deduced from field data) at the prediction time along the model boundaries.

  14. Further reduction of minimal first-met bad markings for the computationally efficient synthesis of a maximally permissive controller

    NASA Astrophysics Data System (ADS)

    Liu, GaiYun; Chao, Daniel Yuh

    2015-08-01

    To date, research on the supervisor design for flexible manufacturing systems focuses on speeding up the computation of optimal (maximally permissive) liveness-enforcing controllers. Recent deadlock prevention policies for systems of simple sequential processes with resources (S3PR) reduce the computation burden by considering only the minimal portion of all first-met bad markings (FBMs). Maximal permissiveness is ensured by not forbidding any live state. This paper proposes a method to further reduce the size of minimal set of FBMs to efficiently solve integer linear programming problems while maintaining maximal permissiveness using a vector-covering approach. This paper improves the previous work and achieves the simplest structure with the minimal number of monitors.

  15. Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Xie, Yu-Bo; Liu, Zheng-Yang; Wang, Qian-Jin; Sun, Guang-Hou; Zhang, Xue-Jin; Zhu, Yong-Yuan

    2016-03-01

    Optical nanoantennas, usually referring to metal structures with localized surface plasmon resonance, could efficiently convert confined optical energy to free-space light, and vice versa. But it is difficult to manipulate the confined visible light energy for its nanoscale spatial extent. Here, a simple method is proposed to solve this problem by controlling surface plasmon polaritons to indirectly manipulate the localized plasmons. As a proof of principle, we demonstrate an optical rotation device which is a grating with central circular polarization optical nanoantenna. It realized the arbitrary optical rotation of linear polarized light by controlling the retard of dual surface plasmon polaritons sources from both side grating structures. Furthermore, we use a two-parameter theoretical model to explain the experimental results.

  16. New formulations for tsunami runup estimation

    NASA Astrophysics Data System (ADS)

    Kanoglu, U.; Aydin, B.; Ceylan, N.

    2017-12-01

    We evaluate shoreline motion and maximum runup in two folds: One, we use linear shallow water-wave equations over a sloping beach and solve as initial-boundary value problem similar to the nonlinear solution of Aydın and Kanoglu (2017, Pure Appl. Geophys., https://doi.org/10.1007/s00024-017-1508-z). Methodology we present here is simple; it involves eigenfunction expansion and, hence, avoids integral transform techniques. We then use several different types of initial wave profiles with and without initial velocity, estimate shoreline properties and confirm classical runup invariance between linear and nonlinear theories. Two, we use the nonlinear shallow water-wave solution of Kanoglu (2004, J. Fluid Mech. 513, 363-372) to estimate maximum runup. Kanoglu (2004) presented a simple integral solution for the nonlinear shallow water-wave equations using the classical Carrier and Greenspan transformation, and further extended shoreline position and velocity to a simpler integral formulation. In addition, Tinti and Tonini (2005, J. Fluid Mech. 535, 33-64) defined initial condition in a very convenient form for near-shore events. We use Tinti and Tonini (2005) type initial condition in Kanoglu's (2004) shoreline integral solution, which leads further simplified estimates for shoreline position and velocity, i.e. algebraic relation. We then use this algebraic runup estimate to investigate effect of earthquake source parameters on maximum runup and present results similar to Sepulveda and Liu (2016, Coast. Eng. 112, 57-68).

  17. Does linear separability really matter? Complex visual search is explained by simple search

    PubMed Central

    Vighneshvel, T.; Arun, S. P.

    2013-01-01

    Visual search in real life involves complex displays with a target among multiple types of distracters, but in the laboratory, it is often tested using simple displays with identical distracters. Can complex search be understood in terms of simple searches? This link may not be straightforward if complex search has emergent properties. One such property is linear separability, whereby search is hard when a target cannot be separated from its distracters using a single linear boundary. However, evidence in favor of linear separability is based on testing stimulus configurations in an external parametric space that need not be related to their true perceptual representation. We therefore set out to assess whether linear separability influences complex search at all. Our null hypothesis was that complex search performance depends only on classical factors such as target-distracter similarity and distracter homogeneity, which we measured using simple searches. Across three experiments involving a variety of artificial and natural objects, differences between linearly separable and nonseparable searches were explained using target-distracter similarity and distracter heterogeneity. Further, simple searches accurately predicted complex search regardless of linear separability (r = 0.91). Our results show that complex search is explained by simple search, refuting the widely held belief that linear separability influences visual search. PMID:24029822

  18. A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong

    2013-02-01

    A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.

  19. Finite volume multigrid method of the planar contraction flow of a viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Moatssime, H. Al; Esselaoui, D.; Hakim, A.; Raghay, S.

    2001-08-01

    This paper reports on a numerical algorithm for the steady flow of viscoelastic fluid. The conservative and constitutive equations are solved using the finite volume method (FVM) with a hybrid scheme for the velocities and first-order upwind approximation for the viscoelastic stress. A non-uniform staggered grid system is used. The iterative SIMPLE algorithm is employed to relax the coupled momentum and continuity equations. The non-linear algebraic equations over the flow domain are solved iteratively by the symmetrical coupled Gauss-Seidel (SCGS) method. In both, the full approximation storage (FAS) multigrid algorithm is used. An Oldroyd-B fluid model was selected for the calculation. Results are reported for planar 4:1 abrupt contraction at various Weissenberg numbers. The solutions are found to be stable and smooth. The solutions show that at high Weissenberg number the domain must be long enough. The convergence of the method has been verified with grid refinement. All the calculations have been performed on a PC equipped with a Pentium III processor at 550 MHz. Copyright

  20. A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Yau, J. F.; Corten, H. T.

    1980-01-01

    A very simple and convenient method of analysis for studying two-dimensional mixed-mode crack problems in rectilinear anisotropic solids is presented. The analysis is formulated on the basis of conservation laws of anisotropic elasticity and of fundamental relationships in anisotropic fracture mechanics. The problem is reduced to a system of linear algebraic equations in mixed-mode stress intensity factors. One of the salient features of the present approach is that it can determine directly the mixed-mode stress intensity solutions from the conservation integrals evaluated along a path removed from the crack-tip region without the need of solving the corresponding complex near-field boundary value problem. Several examples with solutions available in the literature are solved to ensure the accuracy of the current analysis. This method is further demonstrated to be superior to other approaches in its numerical simplicity and computational efficiency. Solutions of more complicated and practical engineering problems dealing with the crack emanating from a circular hole in composites are presented also to illustrate the capacity of this method.

  1. Research on allocation efficiency of the daisy chain allocation algorithm

    NASA Astrophysics Data System (ADS)

    Shi, Jingping; Zhang, Weiguo

    2013-03-01

    With the improvement of the aircraft performance in reliability, maneuverability and survivability, the number of the control effectors increases a lot. How to distribute the three-axis moments into the control surfaces reasonably becomes an important problem. Daisy chain method is simple and easy to be carried out in the design of the allocation system. But it can not solve the allocation problem for entire attainable moment subset. For the lateral-directional allocation problem, the allocation efficiency of the daisy chain can be directly measured by the area of its subset of attainable moments. Because of the non-linear allocation characteristic, the subset of attainable moments of daisy-chain method is a complex non-convex polygon, and it is difficult to solve directly. By analyzing the two-dimensional allocation problems with a "micro-element" idea, a numerical calculation algorithm is proposed to compute the area of the non-convex polygon. In order to improve the allocation efficiency of the algorithm, a genetic algorithm with the allocation efficiency chosen as the fitness function is proposed to find the best pseudo-inverse matrix.

  2. Accurate electrostatic and van der Waals pull-in prediction for fully clamped nano/micro-beams using linear universal graphs of pull-in instability

    NASA Astrophysics Data System (ADS)

    Tahani, Masoud; Askari, Amir R.

    2014-09-01

    In spite of the fact that pull-in instability of electrically actuated nano/micro-beams has been investigated by many researchers to date, no explicit formula has been presented yet which can predict pull-in voltage based on a geometrically non-linear and distributed parameter model. The objective of present paper is to introduce a simple and accurate formula to predict this value for a fully clamped electrostatically actuated nano/micro-beam. To this end, a non-linear Euler-Bernoulli beam model is employed, which accounts for the axial residual stress, geometric non-linearity of mid-plane stretching, distributed electrostatic force and the van der Waals (vdW) attraction. The non-linear boundary value governing equation of equilibrium is non-dimensionalized and solved iteratively through single-term Galerkin based reduced order model (ROM). The solutions are validated thorough direct comparison with experimental and other existing results reported in previous studies. Pull-in instability under electrical and vdW loads are also investigated using universal graphs. Based on the results of these graphs, non-dimensional pull-in and vdW parameters, which are defined in the text, vary linearly versus the other dimensionless parameters of the problem. Using this fact, some linear equations are presented to predict pull-in voltage, the maximum allowable length, the so-called detachment length, and the minimum allowable gap for a nano/micro-system. These linear equations are also reduced to a couple of universal pull-in formulas for systems with small initial gap. The accuracy of the universal pull-in formulas are also validated by comparing its results with available experimental and some previous geometric linear and closed-form findings published in the literature.

  3. The Physics Workbook: A Needed Instructional Device.

    ERIC Educational Resources Information Center

    Brekke, Stewart E.

    2003-01-01

    Points out the importance of problem solving as a fundamental skill and how students struggle with problem solving in physics courses. Describes a workbook developed as a solution to students' struggles that features simple exercises and advanced problem solving. (Contains 12 references.) (Author/YDS)

  4. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

    NASA Astrophysics Data System (ADS)

    Toft, Anders; Roe-Poulsen, Bjarke; Christiansen, Rasmus; Knudsen, Torben

    2016-09-01

    This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based on the frequency of the sinusoidal input, the blade will start oscillating with a given gain, hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude. The system currently in use is based on frequency control, which involves some non-linearities that make the system difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods. The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model variants have been simulated in the MATLAB toolbox Simulink, which shows that the controller design based on the simple model performs adequately with the non-linear model. Moreover, the developed controller solves the robustness issue found in the existent solution and also reduces the needed energy for actuation as it always operates at the blade eigenfrequency.

  5. A feasible DY conjugate gradient method for linear equality constraints

    NASA Astrophysics Data System (ADS)

    LI, Can

    2017-09-01

    In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.

  6. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  7. Insights into the School Mathematics Tradition from Solving Linear Equations

    ERIC Educational Resources Information Center

    Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth

    2015-01-01

    In this article, we explore how the solving of linear equations is represented in English­-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…

  8. Instructional Supports for Representational Fluency in Solving Linear Equations with Computer Algebra Systems and Paper-and-Pencil

    ERIC Educational Resources Information Center

    Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou

    2018-01-01

    This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…

  9. Investigating High-School Students' Reasoning Strategies when They Solve Linear Equations

    ERIC Educational Resources Information Center

    Huntley, Mary Ann; Marcus, Robin; Kahan, Jeremy; Miller, Jane Lincoln

    2007-01-01

    A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third-year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from one problem that involved solving a set of three linear equations of…

  10. General purpose computer programs for numerically analyzing linear ac electrical and electronic circuits for steady-state conditions

    NASA Technical Reports Server (NTRS)

    Egebrecht, R. A.; Thorbjornsen, A. R.

    1967-01-01

    Digital computer programs determine steady-state performance characteristics of active and passive linear circuits. The ac analysis program solves the basic circuit parameters. The compiler program solves these circuit parameters and in addition provides a more versatile program by allowing the user to perform mathematical and logical operations.

  11. Solving large-scale fixed cost integer linear programming models for grid-based location problems with heuristic techniques

    NASA Astrophysics Data System (ADS)

    Noor-E-Alam, Md.; Doucette, John

    2015-08-01

    Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.

  12. Superfluidity in Strongly Interacting Fermi Systems with Applications to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Khodel, Vladimir

    The rotational dynamics and cooling history of neutron stars is influenced by the superfluid properties of nucleonic matter. In this thesis a novel separation technique is applied to the analysis of the gap equation for neutron matter. It is shown that the problem can be recast into two tasks: solving a simple system of linear integral equations for the shape functions of various components of the gap function and solving a system of non-linear algebraic equations for their scale factors. Important simplifications result from the fact that the ratio of the gap amplitude to the Fermi energy provides a small parameter in this problem. The relationship between the analytic structure of the shape functions and the density interval for the existence of superfluid gap is discussed. It is shown that in 1S0 channel the position of the first zero of the shape function gives an estimate of the upper critical density. The relation between the resonant behavior of the two-neutron interaction in this channel and the density dependence of the gap is established. The behavior of the gap in the limits of low and high densities is analyzed. Various approaches to calculation of the scale factors are considered: model cases, angular averaging, and perturbation theory. An optimization-based approach is proposed. The shape functions and scale factors for Argonne υ14 and υ18 potentials are determined in singlet and triplet channels. Dependence of the solution on the value of effective mass and medium polarization is studied.

  13. Algebraic approach to solve ttbar dilepton equations

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Lars

    2006-01-01

    The set of non-linear equations describing the Standard Model kinematics of the top quark an- tiqark production system in the dilepton decay channel has at most a four-fold ambiguity due to two not fully reconstructed neutrinos. Its most precise and robust solution is of major importance for measurements of top quark properties like the top quark mass and t t spin correlations. Simple algebraic operations allow to transform the non-linear equations into a system of two polynomial equations with two unknowns. These two polynomials of multidegree eight can in turn be an- alytically reduced to one polynomial with one unknown by means of resultants. The obtained univariate polynomial is of degree sixteen and the coefficients are free of any singularity. The number of its real solutions is determined analytically by means of Sturm’s theorem, which is as well used to isolate each real solution into a unique pairwise disjoint interval. The solutions are polished by seeking the sign change of the polynomial in a given interval through binary brack- eting. Further a new Ansatz - exploiting an accidental cancelation in the process of transforming the equations - is presented. It permits to transform the initial system of equations into two poly- nomial equations with two unknowns. These two polynomials of multidegree two can be reduced to one univariate polynomial of degree four by means of resultants. The obtained quartic equation can be solved analytically. The analytical solution has singularities which can be circumvented by the algebraic approach described above.

  14. Improved Simulation of Electrodiffusion in the Node of Ranvier by Mesh Adaptation.

    PubMed

    Dione, Ibrahima; Deteix, Jean; Briffard, Thomas; Chamberland, Eric; Doyon, Nicolas

    2016-01-01

    In neural structures with complex geometries, numerical resolution of the Poisson-Nernst-Planck (PNP) equations is necessary to accurately model electrodiffusion. This formalism allows one to describe ionic concentrations and the electric field (even away from the membrane) with arbitrary spatial and temporal resolution which is impossible to achieve with models relying on cable theory. However, solving the PNP equations on complex geometries involves handling intricate numerical difficulties related either to the spatial discretization, temporal discretization or the resolution of the linearized systems, often requiring large computational resources which have limited the use of this approach. In the present paper, we investigate the best ways to use the finite elements method (FEM) to solve the PNP equations on domains with discontinuous properties (such as occur at the membrane-cytoplasm interface). 1) Using a simple 2D geometry to allow comparison with analytical solution, we show that mesh adaptation is a very (if not the most) efficient way to obtain accurate solutions while limiting the computational efforts, 2) We use mesh adaptation in a 3D model of a node of Ranvier to reveal details of the solution which are nearly impossible to resolve with other modelling techniques. For instance, we exhibit a non linear distribution of the electric potential within the membrane due to the non uniform width of the myelin and investigate its impact on the spatial profile of the electric field in the Debye layer.

  15. The Use of Iterative Linear-Equation Solvers in Codes for Large Systems of Stiff IVPs (Initial-Value Problems) for ODEs (Ordinary Differential Equations).

    DTIC Science & Technology

    1984-04-01

    numerical solution, of sstem ot stiff Wh-f Cr ODs. Fro- qontl. a substantial portia of the total computationskwok and cooap required! to solve stiff...exep, possl- bly, foreciadalms of problem. That is% a syste of linewat o nonlinear algebrac equa- tion mumt be solved at auk step of the numerical ...onjugate gradient method [431 is a mall-know ezuze, have prove to be particularly -2- efecti for solving the linear stwem that &ise in the numerical

  16. A scalable parallel algorithm for multiple objective linear programs

    NASA Technical Reports Server (NTRS)

    Wiecek, Malgorzata M.; Zhang, Hong

    1994-01-01

    This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.

  17. Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process

    ERIC Educational Resources Information Center

    Yerushalmi, Edit; Magen, Esther

    2006-01-01

    Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…

  18. Amnestic mild cognitive impairment: functional MR imaging study of response in posterior cingulate cortex and adjacent precuneus during problem-solving tasks.

    PubMed

    Jin, Guangwei; Li, Kuncheng; Hu, Yingying; Qin, Yulin; Wang, Xiangqing; Xiang, Jie; Yang, Yanhui; Lu, Jie; Zhong, Ning

    2011-11-01

    To compare the blood oxygen level-dependent (BOLD) response, measured with functional magnetic resonance (MR) imaging, in the posterior cingulate cortex (PCC) and adjacent precuneus regions between healthy control subjects and patients with amnestic mild cognitive impairment (MCI) during problem-solving tasks. This study was approved by the institutional review board. Each subject provided written informed consent. Thirteen patients with amnestic MCI and 13 age- and sex-matched healthy control subjects participated in the study. The functional magnetic resonance (MR) imaging tasks were simplified 4 × 4-grid number placement puzzles that were divided into a simple task (using the row rule or the column rule to solve the puzzle) and a complex task (using both the row and column rules to solve the puzzle). Behavioral results and functional imaging results between the healthy control group and the amnestic MCI group were analyzed. The accuracy for the complex task in the healthy control group was significantly higher than that in the amnestic MCI group (P < .05). The healthy control group exhibited a deactivated BOLD signal intensity (SI) change in the bilateral PCC and adjacent precuneus regions during the complex task, whereas the amnestic MCI group showed activation. The positive linear correlations between the BOLD SI change in bilateral PCC and adjacent precuneus regions and in bilateral hippocampi in the amnestic MCI group were significant (P < .001), while in the healthy control group, they were not (P ≥ .23). These findings suggest that an altered BOLD response in amnestic MCI patients during complex tasks might be related to a decline in problem-solving ability and to memory impairment and, thus, may indicate a compensatory response to memory impairment. RSNA, 2011

  19. Novel Approach for Solving the Equation of Motion of a Simple Harmonic Oscillator. Classroom Notes

    ERIC Educational Resources Information Center

    Gauthier, N.

    2004-01-01

    An elementary method, based on the use of complex variables, is proposed for solving the equation of motion of a simple harmonic oscillator. The method is first applied to the equation of motion for an undamped oscillator and it is then extended to the more important case of a damped oscillator. It is finally shown that the method can readily be…

  20. Comparison of all atom, continuum, and linear fitting empirical models for charge screening effect of aqueous medium surrounding a protein molecule

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Sugiura, Junnnosuke; Nagayama, Kuniaki

    2002-05-01

    To investigate the role hydration plays in the electrostatic interactions of proteins, the time-averaged electrostatic potential of the B1 domain of protein G in an aqueous solution was calculated with full atomic molecular dynamics simulations that explicitly considers every atom (i.e., an all atom model). This all atom calculated potential was compared with the potential obtained from an electrostatic continuum model calculation. In both cases, the charge-screening effect was fairly well formulated with an effective relative dielectric constant which increased linearly with increasing charge-charge distance. This simulated linear dependence agrees with the experimentally determined linear relation proposed by Pickersgill. Cut-off approximations for Coulomb interactions failed to reproduce this linear relation. Correlation between the all atom model and the continuum models was found to be better than the respective correlation calculated for linear fitting to the two models. This confirms that the continuum model is better at treating the complicated shapes of protein conformations than the simple linear fitting empirical model. We have tried a sigmoid fitting empirical model in addition to the linear one. When weights of all data were treated equally, the sigmoid model, which requires two fitting parameters, fits results of both the all atom and the continuum models less accurately than the linear model which requires only one fitting parameter. When potential values are chosen as weighting factors, the fitting error of the sigmoid model became smaller, and the slope of both linear fitting curves became smaller. This suggests the screening effect of an aqueous medium within a short range, where potential values are relatively large, is smaller than that expected from the linear fitting curve whose slope is almost 4. To investigate the linear increase of the effective relative dielectric constant, the Poisson equation of a low-dielectric sphere in a high-dielectric medium was solved and charges distributed near the molecular surface were indicated as leading to the apparent linearity.

  1. Parameter estimation of Monod model by the Least-Squares method for microalgae Botryococcus Braunii sp

    NASA Astrophysics Data System (ADS)

    See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.

    2018-04-01

    This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.

  2. Cosmological Perturbation Theory and the Spherical Collapse model - I. Gaussian initial conditions

    NASA Astrophysics Data System (ADS)

    Fosalba, Pablo; Gaztanaga, Enrique

    1998-12-01

    We present a simple and intuitive approximation for solving the perturbation theory (PT) of small cosmic fluctuations. We consider only the spherically symmetric or monopole contribution to the PT integrals, which yields the exact result for tree-graphs (i.e. at leading order). We find that the non-linear evolution in Lagrangian space is then given by a simple local transformation over the initial conditions, although it is not local in Euler space. This transformation is found to be described by the spherical collapse (SC) dynamics, as it is the exact solution in the shearless (and therefore local) approximation in Lagrangian space. Taking advantage of this property, it is straightforward to derive the one-point cumulants, xi_J, for both the unsmoothed and smoothed density fields to arbitrary order in the perturbative regime. To leading-order this reproduces, and provides us with a simple explanation for, the exact results obtained by Bernardeau. We then show that the SC model leads to accurate estimates for the next corrective terms when compared with the results derived in the exact perturbation theory making use of the loop calculations. The agreement is within a few per cent for the hierarchical ratios S_J=xi_J/xi^J-1_2. We compare our analytic results with N-body simulations, which turn out to be in very good agreement up to scales where sigma~1. A similar treatment is presented to estimate higher order corrections in the Zel'dovich approximation. These results represent a powerful and readily usable tool to produce analytical predictions that describe the gravitational clustering of large-scale structure in the weakly non-linear regime.

  3. Linear SFM: A hierarchical approach to solving structure-from-motion problems by decoupling the linear and nonlinear components

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Huang, Shoudong; Dissanayake, Gamini

    2018-07-01

    This paper presents a novel hierarchical approach to solving structure-from-motion (SFM) problems. The algorithm begins with small local reconstructions based on nonlinear bundle adjustment (BA). These are then joined in a hierarchical manner using a strategy that requires solving a linear least squares optimization problem followed by a nonlinear transform. The algorithm can handle ordered monocular and stereo image sequences. Two stereo images or three monocular images are adequate for building each initial reconstruction. The bulk of the computation involves solving a linear least squares problem and, therefore, the proposed algorithm avoids three major issues associated with most of the nonlinear optimization algorithms currently used for SFM: the need for a reasonably accurate initial estimate, the need for iterations, and the possibility of being trapped in a local minimum. Also, by summarizing all the original observations into the small local reconstructions with associated information matrices, the proposed Linear SFM manages to preserve all the information contained in the observations. The paper also demonstrates that the proposed problem formulation results in a sparse structure that leads to an efficient numerical implementation. The experimental results using publicly available datasets show that the proposed algorithm yields solutions that are very close to those obtained using a global BA starting with an accurate initial estimate. The C/C++ source code of the proposed algorithm is publicly available at https://github.com/LiangZhaoPKUImperial/LinearSFM.

  4. A systematic linear space approach to solving partially described inverse eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Hu, Sau-Lon James; Li, Haujun

    2008-06-01

    Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.

  5. Laplacian versus topography in the solution of the linear gravimetric boundary value problem by means of successive approximations

    NASA Astrophysics Data System (ADS)

    Holota, Petr; Nesvadba, Otakar

    2017-04-01

    The aim of this paper is to discuss the solution of the linearized gravimetric boundary value problem by means of the method of successive approximations. We start with the relation between the geometry of the solution domain and the structure of Laplace's operator. Similarly as in other branches of engineering and mathematical physics a transformation of coordinates is used that offers a possibility to solve an alternative between the boundary complexity and the complexity of the coefficients of the partial differential equation governing the solution. Laplace's operator has a relatively simple structure in terms of ellipsoidal coordinates which are frequently used in geodesy. However, the physical surface of the Earth substantially differs from an oblate ellipsoid of revolution, even if it is optimally fitted. Therefore, an alternative is discussed. A system of general curvilinear coordinates such that the physical surface of the Earth is imbedded in the family of coordinate surfaces is used. Clearly, the structure of Laplace's operator is more complicated in this case. It was deduced by means of tensor calculus and in a sense it represents the topography of the physical surface of the Earth. Nevertheless, the construction of the respective Green's function is more simple, if the solution domain is transformed. This enables the use of the classical Green's function method together with the method of successive approximations for the solution of the linear gravimetric boundary value problem expressed in terms of new coordinates. The structure of iteration steps is analyzed and where useful also modified by means of the integration by parts. Comparison with other methods is discussed.

  6. Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method

    NASA Astrophysics Data System (ADS)

    Vasant, Pandian

    2011-06-01

    Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.

  7. Towards lexicographic multi-objective linear programming using grossone methodology

    NASA Astrophysics Data System (ADS)

    Cococcioni, Marco; Pappalardo, Massimo; Sergeyev, Yaroslav D.

    2016-10-01

    Lexicographic Multi-Objective Linear Programming (LMOLP) problems can be solved in two ways: preemptive and nonpreemptive. The preemptive approach requires the solution of a series of LP problems, with changing constraints (each time the next objective is added, a new constraint appears). The nonpreemptive approach is based on a scalarization of the multiple objectives into a single-objective linear function by a weighted combination of the given objectives. It requires the specification of a set of weights, which is not straightforward and can be time consuming. In this work we present both mathematical and software ingredients necessary to solve LMOLP problems using a recently introduced computational methodology (allowing one to work numerically with infinities and infinitesimals) based on the concept of grossone. The ultimate goal of such an attempt is an implementation of a simplex-like algorithm, able to solve the original LMOLP problem by solving only one single-objective problem and without the need to specify finite weights. The expected advantages are therefore obvious.

  8. Variance approach for multi-objective linear programming with fuzzy random of objective function coefficients

    NASA Astrophysics Data System (ADS)

    Indarsih, Indrati, Ch. Rini

    2016-02-01

    In this paper, we define variance of the fuzzy random variables through alpha level. We have a theorem that can be used to know that the variance of fuzzy random variables is a fuzzy number. We have a multi-objective linear programming (MOLP) with fuzzy random of objective function coefficients. We will solve the problem by variance approach. The approach transform the MOLP with fuzzy random of objective function coefficients into MOLP with fuzzy of objective function coefficients. By weighted methods, we have linear programming with fuzzy coefficients and we solve by simplex method for fuzzy linear programming.

  9. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  10. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

    NASA Astrophysics Data System (ADS)

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

    2018-02-01

    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  11. Linear solver performance in elastoplastic problem solution on GPU cluster

    NASA Astrophysics Data System (ADS)

    Khalevitsky, Yu. V.; Konovalov, A. V.; Burmasheva, N. V.; Partin, A. S.

    2017-12-01

    Applying the finite element method to severe plastic deformation problems involves solving linear equation systems. While the solution procedure is relatively hard to parallelize and computationally intensive by itself, a long series of large scale systems need to be solved for each problem. When dealing with fine computational meshes, such as in the simulations of three-dimensional metal matrix composite microvolume deformation, tens and hundreds of hours may be needed to complete the whole solution procedure, even using modern supercomputers. In general, one of the preconditioned Krylov subspace methods is used in a linear solver for such problems. The method convergence highly depends on the operator spectrum of a problem stiffness matrix. In order to choose the appropriate method, a series of computational experiments is used. Different methods may be preferable for different computational systems for the same problem. In this paper we present experimental data obtained by solving linear equation systems from an elastoplastic problem on a GPU cluster. The data can be used to substantiate the choice of the appropriate method for a linear solver to use in severe plastic deformation simulations.

  12. High profile students’ growth of mathematical understanding in solving linier programing problems

    NASA Astrophysics Data System (ADS)

    Utomo; Kusmayadi, TA; Pramudya, I.

    2018-04-01

    Linear program has an important role in human’s life. This linear program is learned in senior high school and college levels. This material is applied in economy, transportation, military and others. Therefore, mastering linear program is useful for provision of life. This research describes a growth of mathematical understanding in solving linear programming problems based on the growth of understanding by the Piere-Kieren model. Thus, this research used qualitative approach. The subjects were students of grade XI in Salatiga city. The subjects of this study were two students who had high profiles. The researcher generally chose the subjects based on the growth of understanding from a test result in the classroom; the mark from the prerequisite material was ≥ 75. Both of the subjects were interviewed by the researcher to know the students’ growth of mathematical understanding in solving linear programming problems. The finding of this research showed that the subjects often folding back to the primitive knowing level to go forward to the next level. It happened because the subjects’ primitive understanding was not comprehensive.

  13. Investigation of cellular detonation structure formation via linear stability theory and 2D and 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Borisov, S. P.; Kudryavtsev, A. N.

    2017-10-01

    Linear and nonlinear stages of the instability of a plane detonation wave (DW) and the subsequent process of formation of cellular detonation structure are investigated. A simple model with one-step irreversible chemical reaction is used. The linear analysis is employed to predict the DW front structure at the early stages of its formation. An emerging eigenvalue problem is solved with a global method using a Chebyshev pseudospectral method and the LAPACK software library. A local iterative shooting procedure is used for eigenvalue refinement. Numerical simulations of a propagation of a DW in plane and rectangular channels are performed with a shock capturing WENO scheme of 5th order. A special method of a computational domain shift is implemented in order to maintain the DW in the domain. It is shown that the linear analysis gives certain predictions about the DW structure that are in agreement with the numerical simulations of early stages of DW propagation. However, at later stages, a merger of detonation cells occurs so that their number is approximately halved. Computations of DW propagation in a square channel reveal two different types of spatial structure of the DW front, "rectangular" and "diagonal" types. A spontaneous transition from the rectangular to diagonal type of structure is observed during propagation of the DW.

  14. On the Convenience of Using the Complete Linearization Method in Modelling the BLR of AGN

    NASA Astrophysics Data System (ADS)

    Patriarchi, P.; Perinotto, M.

    The Complete Linearization Method (Mihalas, 1978) consists in the determination of the radiation field (at a set of frequency points), atomic level populations, temperature, electron density etc., by resolving the system of radiative transfer, thermal equilibrium, statistical equilibrium equations simultaneously and self-consistently. Since the system is not linear, it must be solved by iteration after linearization, using a perturbative method, starting from an initial guess solution. Of course the Complete Linearization Method is more time consuming than the previous one. But how great can this disadvantage be in the age of supercomputers? It is possible to approximately evaluate the CPU time needed to run a model by computing the number of multiplications necessary to solve the system.

  15. Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method

    NASA Astrophysics Data System (ADS)

    Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan

    2018-01-01

    Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.

  16. A linear programming manual

    NASA Technical Reports Server (NTRS)

    Tuey, R. C.

    1972-01-01

    Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

  17. Cuckoo Search with Lévy Flights for Weighted Bayesian Energy Functional Optimization in Global-Support Curve Data Fitting

    PubMed Central

    Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis

    2014-01-01

    The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way. PMID:24977175

  18. Cuckoo search with Lévy flights for weighted Bayesian energy functional optimization in global-support curve data fitting.

    PubMed

    Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis

    2014-01-01

    The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.

  19. Perceptual learning modules in mathematics: enhancing students' pattern recognition, structure extraction, and fluency.

    PubMed

    Kellman, Philip J; Massey, Christine M; Son, Ji Y

    2010-04-01

    Learning in educational settings emphasizes declarative and procedural knowledge. Studies of expertise, however, point to other crucial components of learning, especially improvements produced by experience in the extraction of information: perceptual learning (PL). We suggest that such improvements characterize both simple sensory and complex cognitive, even symbolic, tasks through common processes of discovery and selection. We apply these ideas in the form of perceptual learning modules (PLMs) to mathematics learning. We tested three PLMs, each emphasizing different aspects of complex task performance, in middle and high school mathematics. In the MultiRep PLM, practice in matching function information across multiple representations improved students' abilities to generate correct graphs and equations from word problems. In the Algebraic Transformations PLM, practice in seeing equation structure across transformations (but not solving equations) led to dramatic improvements in the speed of equation solving. In the Linear Measurement PLM, interactive trials involving extraction of information about units and lengths produced successful transfer to novel measurement problems and fraction problem solving. Taken together, these results suggest (a) that PL techniques have the potential to address crucial, neglected dimensions of learning, including discovery and fluent processing of relations; (b) PL effects apply even to complex tasks that involve symbolic processing; and (c) appropriately designed PL technology can produce rapid and enduring advances in learning. Copyright © 2009 Cognitive Science Society, Inc.

  20. An immersed-boundary method for flow–structure interaction in biological systems with application to phonation

    PubMed Central

    Luo, Haoxiang; Mittal, Rajat; Zheng, Xudong; Bielamowicz, Steven A.; Walsh, Raymond J.; Hahn, James K.

    2008-01-01

    A new numerical approach for modeling a class of flow–structure interaction problems typically encountered in biological systems is presented. In this approach, a previously developed, sharp-interface, immersed-boundary method for incompressible flows is used to model the fluid flow and a new, sharp-interface Cartesian grid, immersed boundary method is devised to solve the equations of linear viscoelasticity that governs the solid. The two solvers are coupled to model flow–structure interaction. This coupled solver has the advantage of simple grid generation and efficient computation on simple, single-block structured grids. The accuracy of the solid-mechanics solver is examined by applying it to a canonical problem. The solution methodology is then applied to the problem of laryngeal aerodynamics and vocal fold vibration during human phonation. This includes a three-dimensional eigen analysis for a multi-layered vocal fold prototype as well as two-dimensional, flow-induced vocal fold vibration in a modeled larynx. Several salient features of the aerodynamics as well as vocal-fold dynamics are presented. PMID:19936017

  1. On the nature of fast sausage waves in coronal loops

    NASA Astrophysics Data System (ADS)

    Bahari, Karam

    2018-05-01

    The effect of the parameters of coronal loops on the nature of fast sausage waves are investigated. To do this three models of the coronal loop considered, a simple loop model, a current-carrying loop model and a model with radially structured density called "Inner μ" profile. For all the models the Magnetohydrodynamic (MHD) equations solved analytically in the linear approximation and the restoring forces of oscillations obtained. The ratio of the magnetic tension force to the pressure gradient force obtained as a function of the distance from the axis of the loop. In the simple loop model for all values of the loop parameters the fast sausages wave have a mixed nature of Alfvénic and fast MHD waves, in the current-carrying loop model with thick annulus and low density contrast the fast sausage waves can be considered as purely Alfvénic wave in the core region of the loop, and in the "Inner μ" profile for each set of the parameters of the loop the wave can be considered as a purely Alfvénic wave in some regions of the loop.

  2. A simple derivation of the exact quasiparticle theory and its extension to arbitrary initial excited eigenstates.

    PubMed

    Ohno, Kaoru; Ono, Shota; Isobe, Tomoharu

    2017-02-28

    The quasiparticle (QP) energies, which are minus of the energies required by removing or produced by adding one electron from/to the system, corresponding to the photoemission or inverse photoemission (PE/IPE) spectra, are determined together with the QP wave functions, which are not orthonormal and even not linearly independent but somewhat similar to the normal spin orbitals in the theory of the configuration interaction, by self-consistently solving the QP equation coupled with the equation for the self-energy. The electron density, kinetic, and all interaction energies can be calculated using the QP wave functions. We prove in a simple way that the PE/IPE spectroscopy and therefore this QP theory can be applied to an arbitrary initial excited eigenstate. In this proof, we show that the energy-dependence of the self-energy is not an essential difficulty, and the QP picture holds exactly if there is no relaxation mechanism in the system. The validity of the present theory for some initial excited eigenstates is tested using the one-shot GW approximation for several atoms and molecules.

  3. Robust large-scale parallel nonlinear solvers for simulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their usemore » in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any existing linear solver, which makes it simple to write and easily portable. However, the method usually takes twice as long to solve as Newton-GMRES on general problems because it solves two linear systems at each iteration. In this paper, we discuss modifications to Bouaricha's method for a practical implementation, including a special globalization technique and other modifications for greater efficiency. We present numerical results showing computational advantages over Newton-GMRES on some realistic problems. We further discuss a new approach for dealing with singular (or ill-conditioned) matrices. In particular, we modify an algorithm for identifying a turning point so that an increasingly ill-conditioned Jacobian does not prevent convergence.« less

  4. Some Issues about the Introduction of First Concepts in Linear Algebra during Tutorial Sessions at the Beginning of University

    ERIC Educational Resources Information Center

    Grenier-Boley, Nicolas

    2014-01-01

    Certain mathematical concepts were not introduced to solve a specific open problem but rather to solve different problems with the same tools in an economic formal way or to unify several approaches: such concepts, as some of those of linear algebra, are presumably difficult to introduce to students as they are potentially interwoven with many…

  5. Watt-level dysprosium fiber laser at 315 μm with 73% slope efficiency

    NASA Astrophysics Data System (ADS)

    Woodward, R. I.; Majewski, M. R.; Bharathan, G.; Hudson, D. D.; Fuerbach, A.; Jackson, S. D.

    2018-04-01

    Rare-earth-doped fiber lasers are emerging as promising high-power mid-infrared sources for the 2.6-3.0 {\\mu}m and 3.3-3.8 {\\mu}m regions based on erbium and holmium ions. The intermediate wavelength range, however, remains vastly underserved, despite prospects for important manufacturing and defense applications. Here, we demonstrate the potential of dysprosium-doped fiber to solve this problem, with a simple in-band pumped grating-stabilized linear cavity generating up to 1.06 W at 3.15 {\\mu}m. A slope efficiency of 73% with respect to launched power (77% relative to absorbed power) is achieved: the highest value for any mid-infrared fiber laser to date, to the best of our knowledge. Opportunities for further power and efficiency scaling are also discussed.

  6. High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation

    NASA Astrophysics Data System (ADS)

    Anderson, R.; Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Quezada de Luna, M.; Rieben, R.; Tomov, V.

    2017-04-01

    In this work we present a FCT-like Maximum-Principle Preserving (MPP) method to solve the transport equation. We use high-order polynomial spaces; in particular, we consider up to 5th order spaces in two and three dimensions and 23rd order spaces in one dimension. The method combines the concepts of positive basis functions for discontinuous Galerkin finite element spatial discretization, locally defined solution bounds, element-based flux correction, and non-linear local mass redistribution. We consider a simple 1D problem with non-smooth initial data to explain and understand the behavior of different parts of the method. Convergence tests in space indicate that high-order accuracy is achieved. Numerical results from several benchmarks in two and three dimensions are also reported.

  7. Simulated parallel annealing within a neighborhood for optimization of biomechanical systems.

    PubMed

    Higginson, J S; Neptune, R R; Anderson, F C

    2005-09-01

    Optimization problems for biomechanical systems have become extremely complex. Simulated annealing (SA) algorithms have performed well in a variety of test problems and biomechanical applications; however, despite advances in computer speed, convergence to optimal solutions for systems of even moderate complexity has remained prohibitive. The objective of this study was to develop a portable parallel version of a SA algorithm for solving optimization problems in biomechanics. The algorithm for simulated parallel annealing within a neighborhood (SPAN) was designed to minimize interprocessor communication time and closely retain the heuristics of the serial SA algorithm. The computational speed of the SPAN algorithm scaled linearly with the number of processors on different computer platforms for a simple quadratic test problem and for a more complex forward dynamic simulation of human pedaling.

  8. Nonlinear Krylov and moving nodes in the method of lines

    NASA Astrophysics Data System (ADS)

    Miller, Keith

    2005-11-01

    We report on some successes and problem areas in the Method of Lines from our work with moving node finite element methods. First, we report on our "nonlinear Krylov accelerator" for the modified Newton's method on the nonlinear equations of our stiff ODE solver. Since 1990 it has been robust, simple, cheap, and automatic on all our moving node computations. We publicize further trials with it here because it should be of great general usefulness to all those solving evolutionary equations. Second, we discuss the need for reliable automatic choice of spatially variable time steps. Third, we discuss the need for robust and efficient iterative solvers for the difficult linearized equations (Jx=b) of our stiff ODE solver. Here, the 1997 thesis of Zulu Xaba has made significant progress.

  9. Highly Accurate Analytical Approximate Solution to a Nonlinear Pseudo-Oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Baisheng; Liu, Weijia; Lim, C. W.

    2017-07-01

    A second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.

  10. Higher Order Time Integration Schemes for the Unsteady Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.

  11. ELECTRONIC DIGITAL COMPUTER

    DOEpatents

    Stone, J.J. Jr.; Bettis, E.S.; Mann, E.R.

    1957-10-01

    The electronic digital computer is designed to solve systems involving a plurality of simultaneous linear equations. The computer can solve a system which converges rather rapidly when using Von Seidel's method of approximation and performs the summations required for solving for the unknown terms by a method of successive approximations.

  12. A Coupling Strategy of FEM and BEM for the Solution of a 3D Industrial Crack Problem

    NASA Astrophysics Data System (ADS)

    Kouitat Njiwa, Richard; Taha Niane, Ngadia; Frey, Jeremy; Schwartz, Martin; Bristiel, Philippe

    2015-03-01

    Analyzing crack stability in an industrial context is challenging due to the geometry of the structure. The finite element method is effective for defect-free problems. The boundary element method is effective for problems in simple geometries with singularities. We present a strategy that takes advantage of both approaches. Within the iterative solution procedure, the FEM solves a defect-free problem over the structure while the BEM solves the crack problem over a fictitious domain with simple geometry. The effectiveness of the approach is demonstrated on some simple examples which allow comparison with literature results and on an industrial problem.

  13. A Simple Syllogism-Solving Test: Empirical Findings and Implications for "g" Research

    ERIC Educational Resources Information Center

    Shikishima, Chizuru; Yamagata, Shinji; Hiraishi, Kai; Sugimoto, Yutaro; Murayama, Kou; Ando, Juko

    2011-01-01

    It has been reported that the ability to solve syllogisms is highly "g"-loaded. In the present study, using a self-administered shortened version of a syllogism-solving test, the "BAROCO Short," we examined whether robust findings generated by previous research regarding IQ scores were also applicable to "BAROCO…

  14. Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.

    2010-12-01

    Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.

  15. Comparative artificial neural network and partial least squares models for analysis of Metronidazole, Diloxanide, Spiramycin and Cliquinol in pharmaceutical preparations.

    PubMed

    Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M

    2014-09-15

    Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components' mixtures using easy and widely used UV spectrophotometer. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Collisionless kinetic theory of oblique tearing instabilities

    DOE PAGES

    Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.

    2018-02-15

    The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less

  17. Collisionless kinetic theory of oblique tearing instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.

    The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less

  18. Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2006-01-01

    A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.

  19. Collisionless kinetic theory of oblique tearing instabilities

    NASA Astrophysics Data System (ADS)

    Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.

    2018-02-01

    The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. We find that this stabilization is associated with the density-gradient-driven diamagnetic drift. The analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. A simple analytic estimate for the stability criterion is provided.

  20. Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter.

    PubMed

    Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei

    2013-08-01

    A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.

  1. Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter

    PubMed Central

    Fovargue, Daniel E.; Mitran, Sorin; Smith, Nathan B.; Sankin, Georgy N.; Simmons, Walter N.; Zhong, Pei

    2013-01-01

    A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model. PMID:23927200

  2. Comparative artificial neural network and partial least squares models for analysis of Metronidazole, Diloxanide, Spiramycin and Cliquinol in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Elkhoudary, Mahmoud M.; Abdel Salam, Randa A.; Hadad, Ghada M.

    2014-09-01

    Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components’ mixtures using easy and widely used UV spectrophotometer.

  3. Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.

    PubMed

    Balzani, Daniel; Deparis, Simone; Fausten, Simon; Forti, Davide; Heinlein, Alexander; Klawonn, Axel; Quarteroni, Alfio; Rheinbach, Oliver; Schröder, Joerg

    2016-10-01

    The accurate prediction of transmural stresses in arterial walls requires on the one hand robust and efficient numerical schemes for the solution of boundary value problems including fluid-structure interactions and on the other hand the use of a material model for the vessel wall that is able to capture the relevant features of the material behavior. One of the main contributions of this paper is the application of a highly nonlinear, polyconvex anisotropic structural model for the solid in the context of fluid-structure interaction, together with a suitable discretization. Additionally, the influence of viscoelasticity is investigated. The fluid-structure interaction problem is solved using a monolithic approach; that is, the nonlinear system is solved (after time and space discretizations) as a whole without splitting among its components. The linearized block systems are solved iteratively using parallel domain decomposition preconditioners. A simple - but nonsymmetric - curved geometry is proposed that is demonstrated to be suitable as a benchmark testbed for fluid-structure interaction simulations in biomechanics where nonlinear structural models are used. Based on the curved benchmark geometry, the influence of different material models, spatial discretizations, and meshes of varying refinement is investigated. It turns out that often-used standard displacement elements with linear shape functions are not sufficient to provide good approximations of the arterial wall stresses, whereas for standard displacement elements or F-bar formulations with quadratic shape functions, suitable results are obtained. For the time discretization, a second-order backward differentiation formula scheme is used. It is shown that the curved geometry enables the analysis of non-rotationally symmetric distributions of the mechanical fields. For instance, the maximal shear stresses in the fluid-structure interface are found to be higher in the inner curve that corresponds to clinical observations indicating a high plaque nucleation probability at such locations. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofeng, E-mail: xfyang@math.sc.edu; Han, Daozhi, E-mail: djhan@iu.edu

    2017-02-01

    In this paper, we develop a series of linear, unconditionally energy stable numerical schemes for solving the classical phase field crystal model. The temporal discretizations are based on the first order Euler method, the second order backward differentiation formulas (BDF2) and the second order Crank–Nicolson method, respectively. The schemes lead to linear elliptic equations to be solved at each time step, and the induced linear systems are symmetric positive definite. We prove that all three schemes are unconditionally energy stable rigorously. Various classical numerical experiments in 2D and 3D are performed to validate the accuracy and efficiency of the proposedmore » schemes.« less

  5. Reflection on solutions in the form of refutation texts versus problem solving: the case of 8th graders studying simple electric circuits

    NASA Astrophysics Data System (ADS)

    Safadi, Rafi'; Safadi, Ekhlass; Meidav, Meir

    2017-01-01

    This study compared students’ learning in troubleshooting and problem solving activities. The troubleshooting activities provided students with solutions to conceptual problems in the form of refutation texts; namely, solutions that portray common misconceptions, refute them, and then present the accepted scientific ideas. They required students to individually diagnose these solutions; that is, to identify the erroneous and correct parts of the solutions and explain in what sense they differed, and later share their work in whole class discussions. The problem solving activities required the students to individually solve these same problems, and later share their work in whole class discussions. We compared the impact of the individual work stage in the troubleshooting and problem solving activities on promoting argumentation in the subsequent class discussions, and the effects of these activities on students’ engagement in self-repair processes; namely, in learning processes that allowed the students to self-repair their misconceptions, and by extension on advancing their conceptual knowledge. Two 8th grade classes studying simple electric circuits with the same teacher took part. One class (28 students) carried out four troubleshooting activities and the other (31 students) four problem solving activities. These activities were interwoven into a twelve lesson unit on simple electric circuits that was spread over a period of 2 months. The impact of the troubleshooting activities on students’ conceptual knowledge was significantly higher than that of the problem solving activities. This result is consistent with the finding that the troubleshooting activities engaged students in self-repair processes whereas the problem solving activities did not. The results also indicated that diagnosing solutions to conceptual problems in the form of refutation texts, as opposed to solving these same problems, apparently triggered argumentation in subsequent class discussions, even though the teacher was unfamiliar with the best ways to conduct argumentative classroom discussions. We account for these results and suggest possible directions for future research.

  6. Non-linear control of the output stage of a solar microinverter

    NASA Astrophysics Data System (ADS)

    Lopez-Santos, Oswaldo; Garcia, Germain; Martinez-Salamero, Luis; Avila-Martinez, Juan C.; Seguier, Lionel

    2017-01-01

    This paper presents a proposal to control the output stage of a two-stage solar microinverter to inject real power into the grid. The input stage of the microinverter is used to extract the maximum available power of a photovoltaic module enforcing a power source behavior in the DC-link to feed the output stage. The work here reported is devoted to control a grid-connected power source inverter with a high power quality level at the grid side ensuring the power balance of the microinverter regulating the voltage of the DC-link. The proposed control is composed of a sinusoidal current reference generator and a cascade type controller composed by a current tracking loop and a voltage regulation loop. The current reference is obtained using a synchronized generator based on phase locked loop (PLL) which gives the shape, the frequency and phase of the current signal. The amplitude of the reference is obtained from a simple controller regulating the DC-link voltage. The tracking of the current reference is accomplished by means of a first-order sliding mode control law. The solution takes advantage of the rapidity and inherent robustness of the sliding mode current controller allowing a robust behavior in the regulation of the DC-link using a simple linear controller. The analytical expression to determine the power quality indicators of the micro-inverter's output is theoretically solved giving expressions relating the converter parameters. The theoretical approach is validated using simulation and experimental results.

  7. Adapting iterative algorithms for solving large sparse linear systems for efficient use on the CDC CYBER 205

    NASA Technical Reports Server (NTRS)

    Kincaid, D. R.; Young, D. M.

    1984-01-01

    Adapting and designing mathematical software to achieve optimum performance on the CYBER 205 is discussed. Comments and observations are made in light of recent work done on modifying the ITPACK software package and on writing new software for vector supercomputers. The goal was to develop very efficient vector algorithms and software for solving large sparse linear systems using iterative methods.

  8. Enhanced algorithms for stochastic programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, Alamuru S.

    1993-09-01

    In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean ofmore » a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.« less

  9. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  10. Control algorithms for dynamic attenuators

    PubMed Central

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-01-01

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Conclusions: Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods. PMID:24877818

  11. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task.

    PubMed

    Kinjo, Ken; Uchibe, Eiji; Doya, Kenji

    2013-01-01

    Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning.

  12. Solving transient acoustic boundary value problems with equivalent sources using a lumped parameter approach.

    PubMed

    Fahnline, John B

    2016-12-01

    An equivalent source method is developed for solving transient acoustic boundary value problems. The method assumes the boundary surface is discretized in terms of triangular or quadrilateral elements and that the solution is represented using the acoustic fields of discrete sources placed at the element centers. Also, the boundary condition is assumed to be specified for the normal component of the surface velocity as a function of time, and the source amplitudes are determined to match the known elemental volume velocity vector at a series of discrete time steps. Equations are given for marching-on-in-time schemes to solve for the source amplitudes at each time step for simple, dipole, and tripole source formulations. Several example problems are solved to illustrate the results and to validate the formulations, including problems with closed boundary surfaces where long-time numerical instabilities typically occur. A simple relationship between the simple and dipole source amplitudes in the tripole source formulation is derived so that the source radiates primarily in the direction of the outward surface normal. The tripole source formulation is shown to eliminate interior acoustic resonances and long-time numerical instabilities.

  13. Optimal blood glucose control in diabetes mellitus treatment using dynamic programming based on Ackerman’s linear model

    NASA Astrophysics Data System (ADS)

    Pradanti, Paskalia; Hartono

    2018-03-01

    Determination of insulin injection dose in diabetes mellitus treatment can be considered as an optimal control problem. This article is aimed to simulate optimal blood glucose control for patient with diabetes mellitus. The blood glucose regulation of diabetic patient is represented by Ackerman’s Linear Model. This problem is then solved using dynamic programming method. The desired blood glucose level is obtained by minimizing the performance index in Lagrange form. The results show that dynamic programming based on Ackerman’s Linear Model is quite good to solve the problem.

  14. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    NASA Technical Reports Server (NTRS)

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  15. Some Applications of Algebraic System Solving

    ERIC Educational Resources Information Center

    Roanes-Lozano, Eugenio

    2011-01-01

    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…

  16. Solving L-L Extraction Problems with Excel Spreadsheet

    ERIC Educational Resources Information Center

    Teppaitoon, Wittaya

    2016-01-01

    This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…

  17. Learning Problem-Solving Rules as Search through a Hypothesis Space

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Betts, Shawn; Anderson, John R.

    2016-01-01

    Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem…

  18. Developing Physics Concepts through Hands-On Problem Solving: A Perspective on a Technological Project Design

    ERIC Educational Resources Information Center

    Hong, Jon-Chao; Chen, Mei-Yung; Wong, Ashley; Hsu, Tsui-Fang; Peng, Chih-Chi

    2012-01-01

    In a contest featuring hands-on projects, college students were required to design a simple crawling worm using planning, self-monitoring and self-evaluation processes to solve contradictive problems. To enhance the efficiency of problem solving, one needs to practice meta-cognition based on an application of related scientific concepts. The…

  19. Rebecca Erikson – Solving Problems with Love for Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erikson, Rebecca

    Rebecca Erikson’s love for science began at a young age. Today, she’s a senior scientist at PNNL trying to solve problems that address national security concerns. Through one project, she developed a sleek, simple and inexpensive way to turn a cellphone into a high-powered, high-quality microscope that helps authorities determine if white powder that falls from an envelope is anthrax or something simple like baby powder. Listen as Rebecca describes her work in this Energy Department video.

  20. Coupled variational formulations of linear elasticity and the DPG methodology

    NASA Astrophysics Data System (ADS)

    Fuentes, Federico; Keith, Brendan; Demkowicz, Leszek; Le Tallec, Patrick

    2017-11-01

    This article presents a general approach akin to domain-decomposition methods to solve a single linear PDE, but where each subdomain of a partitioned domain is associated to a distinct variational formulation coming from a mutually well-posed family of broken variational formulations of the original PDE. It can be exploited to solve challenging problems in a variety of physical scenarios where stability or a particular mode of convergence is desired in a part of the domain. The linear elasticity equations are solved in this work, but the approach can be applied to other equations as well. The broken variational formulations, which are essentially extensions of more standard formulations, are characterized by the presence of mesh-dependent broken test spaces and interface trial variables at the boundaries of the elements of the mesh. This allows necessary information to be naturally transmitted between adjacent subdomains, resulting in coupled variational formulations which are then proved to be globally well-posed. They are solved numerically using the DPG methodology, which is especially crafted to produce stable discretizations of broken formulations. Finally, expected convergence rates are verified in two different and illustrative examples.

  1. Summer Proceedings 2016: The Center for Computing Research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carleton, James Brian; Parks, Michael L.

    Solving sparse linear systems from the discretization of elliptic partial differential equations (PDEs) is an important building block in many engineering applications. Sparse direct solvers can solve general linear systems, but are usually slower and use much more memory than effective iterative solvers. To overcome these two disadvantages, a hierarchical solver (LoRaSp) based on H2-matrices was introduced in [22]. Here, we have developed a parallel version of the algorithm in LoRaSp to solve large sparse matrices on distributed memory machines. On a single processor, the factorization time of our parallel solver scales almost linearly with the problem size for three-dimensionalmore » problems, as opposed to the quadratic scalability of many existing sparse direct solvers. Moreover, our solver leads to almost constant numbers of iterations, when used as a preconditioner for Poisson problems. On more than one processor, our algorithm has significant speedups compared to sequential runs. With this parallel algorithm, we are able to solve large problems much faster than many existing packages as demonstrated by the numerical experiments.« less

  2. Train repathing in emergencies based on fuzzy linear programming.

    PubMed

    Meng, Xuelei; Cui, Bingmou

    2014-01-01

    Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

  3. The most likely voltage path and large deviations approximations for integrate-and-fire neurons.

    PubMed

    Paninski, Liam

    2006-08-01

    We develop theory and numerical methods for computing the most likely subthreshold voltage path of a noisy integrate-and-fire (IF) neuron, given observations of the neuron's superthreshold spiking activity. This optimal voltage path satisfies a second-order ordinary differential (Euler-Lagrange) equation which may be solved analytically in a number of special cases, and which may be solved numerically in general via a simple "shooting" algorithm. Our results are applicable for both linear and nonlinear subthreshold dynamics, and in certain cases may be extended to correlated subthreshold noise sources. We also show how this optimal voltage may be used to obtain approximations to (1) the likelihood that an IF cell with a given set of parameters was responsible for the observed spike train; and (2) the instantaneous firing rate and interspike interval distribution of a given noisy IF cell. The latter probability approximations are based on the classical Freidlin-Wentzell theory of large deviations principles for stochastic differential equations. We close by comparing this most likely voltage path to the true observed subthreshold voltage trace in a case when intracellular voltage recordings are available in vitro.

  4. Numerical study of heat transfer and fluid flow for steady crystal growth in a vertical Bridgman device

    NASA Astrophysics Data System (ADS)

    Pohlman, Matthew Michael

    The study of heat transfer and fluid flow in a vertical Bridgman device is motivated by current industrial difficulties in growing crystals with as few defects as possible. For example, Gallium Arsenide (GaAs) is of great interest to the semiconductor industry but remains an uneconomical alternative to silicon because of the manufacturing problems. This dissertation is a two dimensional study of the fluid in an idealized Bridgman device. The model nonlinear PDEs are discretized using second order finite differencing. Newton's method solves the resulting nonlinear discrete equations. The large sparse linear systems involving the Jacobian are solved iteratively using the Generalized Minimum Residual method (GMRES). By adapting fast direct solvers for elliptic equations with simple boundary conditions, a good preconditioner is developed which is essential for GMRES to converge quickly. Trends of the fluid flow and heat transfer for typical ranges of the physical parameters are determined. Also, the size of the terms in the mathematical model are found by numerical investigation, in order to find what terms are in balance as the physical parameters vary. The results suggest the plausibility of simpler asymptotic solutions.

  5. Theory and computation of general force balance in non-axisymmetric tokamak equilibria

    NASA Astrophysics Data System (ADS)

    Park, Jong-Kyu; Logan, Nikolas; Wang, Zhirui; Kim, Kimin; Boozer, Allen; Liu, Yueqiang; Menard, Jonathan

    2014-10-01

    Non-axisymmetric equilibria in tokamaks can be effectively described by linearized force balance. In addition to the conventional isotropic pressure force, there are three important components that can strongly contribute to the force balance; rotational, anisotropic tensor pressure, and externally given forces, i.e. ∇ --> p + ρv-> . ∇ --> v-> + ∇ --> . <-->Π + f-> = j-> × B-> , especially in, but not limited to, high β and rotating plasmas. Within the assumption of nested flux surfaces, Maxwell equations and energy minimization lead to the modified-generalized Newcomb equation for radial displacements with simple algebraic relations for perpendicular and parallel displacements, including an inhomogeneous term if any of the forces are not explicitly dependent on displacements. The general perturbed equilibrium code (GPEC) solves this force balance consistent with energy and torque given by external perturbations. Local and global behaviors of solutions will be discussed when ∇ --> . <-->Π is solved by the semi-analytic code PENT and will be compared with MARS-K. Any first-principle transport code calculating ∇ --> . <-->Π or f-> , e.g. POCA, can also be incorporated without demanding iterations. This work was supported by DOE Contract DE-AC02-09CH11466.

  6. A hybrid approach for nonlinear computational aeroacoustics predictions

    NASA Astrophysics Data System (ADS)

    Sassanis, Vasileios; Sescu, Adrian; Collins, Eric M.; Harris, Robert E.; Luke, Edward A.

    2017-01-01

    In many aeroacoustics applications involving nonlinear waves and obstructions in the far-field, approaches based on the classical acoustic analogy theory or the linearised Euler equations are unable to fully characterise the acoustic field. Therefore, computational aeroacoustics hybrid methods that incorporate nonlinear wave propagation have to be constructed. In this study, a hybrid approach coupling Navier-Stokes equations in the acoustic source region with nonlinear Euler equations in the acoustic propagation region is introduced and tested. The full Navier-Stokes equations are solved in the source region to identify the acoustic sources. The flow variables of interest are then transferred from the source region to the acoustic propagation region, where the full nonlinear Euler equations with source terms are solved. The transition between the two regions is made through a buffer zone where the flow variables are penalised via a source term added to the Euler equations. Tests were conducted on simple acoustic and vorticity disturbances, two-dimensional jets (Mach 0.9 and 2), and a three-dimensional jet (Mach 1.5), impinging on a wall. The method is proven to be effective and accurate in predicting sound pressure levels associated with the propagation of linear and nonlinear waves in the near- and far-field regions.

  7. Integrating Retraction Modeling Into an Atlas-Based Framework for Brain Shift Prediction

    PubMed Central

    Chen, Ishita; Ong, Rowena E.; Simpson, Amber L.; Sun, Kay; Thompson, Reid C.

    2015-01-01

    In recent work, an atlas-based statistical model for brain shift prediction, which accounts for uncertainty in the intraoperative environment, has been proposed. Previous work reported in the literature using this technique did not account for local deformation caused by surgical retraction. It is challenging to precisely localize the retractor location prior to surgery and the retractor is often moved in the course of the procedure. This paper proposes a technique that involves computing the retractor-induced brain deformation in the operating room through an active model solve and linearly superposing the solution with the precomputed deformation atlas. As a result, the new method takes advantage of the atlas-based framework’s accounting for uncertainties while also incorporating the effects of retraction with minimal intraoperative computing. This new approach was tested using simulation and phantom experiments. The results showed an improvement in average shift correction from 50% (ranging from 14 to 81%) for gravity atlas alone to 80% using the active solve retraction component (ranging from 73 to 85%). This paper presents a novel yet simple way to integrate retraction into the atlas-based brain shift computation framework. PMID:23864146

  8. Inverse design of an isotropic suspended Kirchhoff rod: theoretical and numerical results on the uniqueness of the natural shape.

    PubMed

    Bertails-Descoubes, Florence; Derouet-Jourdan, Alexandre; Romero, Victor; Lazarus, Arnaud

    2018-04-01

    Solving the equations for Kirchhoff elastic rods has been widely explored for decades in mathematics, physics and computer science, with significant applications in the modelling of thin flexible structures such as DNA, hair or climbing plants. As demonstrated in previous experimental and theoretical studies, the natural curvature plays an important role in the equilibrium shape of a Kirchhoff rod, even in the simple case where the rod is isotropic and suspended under gravity. In this paper, we investigate the reverse problem: can we characterize the natural curvature of a suspended isotropic rod, given an equilibrium curve? We prove that although there exists an infinite number of natural curvatures that are compatible with the prescribed equilibrium, they are all equivalent in the sense that they correspond to a unique natural shape for the rod. This natural shape can be computed efficiently by solving in sequence three linear initial value problems, starting from any framing of the input curve. We provide several numerical experiments to illustrate this uniqueness result, and finally discuss its potential impact on non-invasive parameter estimation and inverse design of thin elastic rods.

  9. Inverse design of an isotropic suspended Kirchhoff rod: theoretical and numerical results on the uniqueness of the natural shape

    NASA Astrophysics Data System (ADS)

    Bertails-Descoubes, Florence; Derouet-Jourdan, Alexandre; Romero, Victor; Lazarus, Arnaud

    2018-04-01

    Solving the equations for Kirchhoff elastic rods has been widely explored for decades in mathematics, physics and computer science, with significant applications in the modelling of thin flexible structures such as DNA, hair or climbing plants. As demonstrated in previous experimental and theoretical studies, the natural curvature plays an important role in the equilibrium shape of a Kirchhoff rod, even in the simple case where the rod is isotropic and suspended under gravity. In this paper, we investigate the reverse problem: can we characterize the natural curvature of a suspended isotropic rod, given an equilibrium curve? We prove that although there exists an infinite number of natural curvatures that are compatible with the prescribed equilibrium, they are all equivalent in the sense that they correspond to a unique natural shape for the rod. This natural shape can be computed efficiently by solving in sequence three linear initial value problems, starting from any framing of the input curve. We provide several numerical experiments to illustrate this uniqueness result, and finally discuss its potential impact on non-invasive parameter estimation and inverse design of thin elastic rods.

  10. A "Reverse-Schur" Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design.

    PubMed

    Bardhan, Jaydeep P; Altman, Michael D; Tidor, B; White, Jacob K

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule's electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts-in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method.

  11. A “Reverse-Schur” Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design

    PubMed Central

    Bardhan, Jaydeep P.; Altman, Michael D.

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule’s electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts–in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method. PMID:23055839

  12. Algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations with the use of parallel computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moryakov, A. V., E-mail: sailor@orc.ru

    2016-12-15

    An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.

  13. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    NASA Astrophysics Data System (ADS)

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  14. A simple bias correction in linear regression for quantitative trait association under two-tail extreme selection.

    PubMed

    Kwan, Johnny S H; Kung, Annie W C; Sham, Pak C

    2011-09-01

    Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias.

  15. Practical Session: Simple Linear Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    Two exercises are proposed to illustrate the simple linear regression. The first one is based on the famous Galton's data set on heredity. We use the lm R command and get coefficients estimates, standard error of the error, R2, residuals …In the second example, devoted to data related to the vapor tension of mercury, we fit a simple linear regression, predict values, and anticipate on multiple linear regression. This pratical session is an excerpt from practical exercises proposed by A. Dalalyan at EPNC (see Exercises 1 and 2 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_4.pdf).

  16. AZTEC: A parallel iterative package for the solving linear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S.

    1996-12-31

    We describe a parallel linear system package, AZTEC. The package incorporates a number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or ILU within subdomains). Additionally, AZTEC allows for the reuse of previous preconditioning factorizations within Newton schemes for nonlinear methods. Currently, a number of different users are using this package to solve a variety of PDE applications.

  17. On the equivalence of Gaussian elimination and Gauss-Jordan reduction in solving linear equations

    NASA Technical Reports Server (NTRS)

    Tsao, Nai-Kuan

    1989-01-01

    A novel general approach to round-off error analysis using the error complexity concepts is described. This is applied to the analysis of the Gaussian Elimination and Gauss-Jordan scheme for solving linear equations. The results show that the two algorithms are equivalent in terms of our error complexity measures. Thus the inherently parallel Gauss-Jordan scheme can be implemented with confidence if parallel computers are available.

  18. A globally convergent LCL method for nonlinear optimization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedlander, M. P.; Saunders, M. A.; Mathematics and Computer Science

    2005-01-01

    For optimization problems with nonlinear constraints, linearly constrained Lagrangian (LCL) methods solve a sequence of subproblems of the form 'minimize an augmented Lagrangian function subject to linearized constraints.' Such methods converge rapidly near a solution but may not be reliable from arbitrary starting points. Nevertheless, the well-known software package MINOS has proved effective on many large problems. Its success motivates us to derive a related LCL algorithm that possesses three important properties: it is globally convergent, the subproblem constraints are always feasible, and the subproblems may be solved inexactly. The new algorithm has been implemented in Matlab, with an optionmore » to use either MINOS or SNOPT (Fortran codes) to solve the linearly constrained subproblems. Only first derivatives are required. We present numerical results on a subset of the COPS, HS, and CUTE test problems, which include many large examples. The results demonstrate the robustness and efficiency of the stabilized LCL procedure.« less

  19. Investigating Integer Restrictions in Linear Programming

    ERIC Educational Resources Information Center

    Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.

    2015-01-01

    Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…

  20. A Simple Label Switching Algorithm for Semisupervised Structural SVMs.

    PubMed

    Balamurugan, P; Shevade, Shirish; Sundararajan, S

    2015-10-01

    In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semisupervised structured classification deals with a small number of labeled examples and a large number of unlabeled structured data. In this work, we consider semisupervised structural support vector machines with domain constraints. The optimization problem, which in general is not convex, contains the loss terms associated with the labeled and unlabeled examples, along with the domain constraints. We propose a simple optimization approach that alternates between solving a supervised learning problem and a constraint matching problem. Solving the constraint matching problem is difficult for structured prediction, and we propose an efficient and effective label switching method to solve it. The alternating optimization is carried out within a deterministic annealing framework, which helps in effective constraint matching and avoiding poor local minima, which are not very useful. The algorithm is simple and easy to implement. Further, it is suitable for any structured output learning problem where exact inference is available. Experiments on benchmark sequence labeling data sets and a natural language parsing data set show that the proposed approach, though simple, achieves comparable generalization performance.

  1. Estimation of splitting functions from Earth's normal mode spectra using the neighbourhood algorithm

    NASA Astrophysics Data System (ADS)

    Pachhai, Surya; Tkalčić, Hrvoje; Masters, Guy

    2016-01-01

    The inverse problem for Earth structure from normal mode data is strongly non-linear and can be inherently non-unique. Traditionally, the inversion is linearized by taking partial derivatives of the complex spectra with respect to the model parameters (i.e. structure coefficients), and solved in an iterative fashion. This method requires that the earthquake source model is known. However, the release of energy in large earthquakes used for the analysis of Earth's normal modes is not simple. A point source approximation is often inadequate, and a more complete account of energy release at the source is required. In addition, many earthquakes are required for the solution to be insensitive to the initial constraints and regularization. In contrast to an iterative approach, the autoregressive linear inversion technique conveniently avoids the need for earthquake source parameters, but it also requires a number of events to achieve full convergence when a single event does not excite all singlets well. To build on previous improvements, we develop a technique to estimate structure coefficients (and consequently, the splitting functions) using a derivative-free parameter search, known as neighbourhood algorithm (NA). We implement an efficient forward method derived using the autoregresssion of receiver strips, and this allows us to search over a multiplicity of structure coefficients in a relatively short time. After demonstrating feasibility of the use of NA in synthetic cases, we apply it to observations of the inner core sensitive mode 13S2. The splitting function of this mode is dominated by spherical harmonic degree 2 axisymmetric structure and is consistent with the results obtained from the autoregressive linear inversion. The sensitivity analysis of multiple events confirms the importance of the Bolivia, 1994 earthquake. When this event is used in the analysis, as little as two events are sufficient to constrain the splitting functions of 13S2 mode. Apart from not requiring the knowledge of earthquake source, the newly developed technique provides an approximate uncertainty measure of the structure coefficients and allows us to control the type of structure solved for, for example to establish if elastic structure is sufficient.

  2. On improving linear solver performance: a block variant of GMRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A H; Dennis, J M; Jessup, E R

    2004-05-10

    The increasing gap between processor performance and memory access time warrants the re-examination of data movement in iterative linear solver algorithms. For this reason, we explore and establish the feasibility of modifying a standard iterative linear solver algorithm in a manner that reduces the movement of data through memory. In particular, we present an alternative to the restarted GMRES algorithm for solving a single right-hand side linear system Ax = b based on solving the block linear system AX = B. Algorithm performance, i.e. time to solution, is improved by using the matrix A in operations on groups of vectors.more » Experimental results demonstrate the importance of implementation choices on data movement as well as the effectiveness of the new method on a variety of problems from different application areas.« less

  3. Newton's method: A link between continuous and discrete solutions of nonlinear problems

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.

    1980-01-01

    Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.

  4. Rediscovery in a Course for Nonscientists: Use of Molecular Models to Solve Classical Structural Problems

    ERIC Educational Resources Information Center

    Wood, Gordon W.

    1975-01-01

    Describes exercises using simple ball and stick models which students with no chemistry background can solve in the context of the original discovery. Examples include the tartaric acid and benzene problems. (GS)

  5. Cosmological perturbations in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  6. (N+1)-dimensional fractional reduced differential transform method for fractional order partial differential equations

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Lu, Dianchen; Wang, Jun

    2017-07-01

    In this paper, we pursue the general form of the fractional reduced differential transform method (DTM) to (N+1)-dimensional case, so that fractional order partial differential equations (PDEs) can be resolved effectively. The most distinct aspect of this method is that no prescribed assumptions are required, and the huge computational exertion is reduced and round-off errors are also evaded. We utilize the proposed scheme on some initial value problems and approximate numerical solutions of linear and nonlinear time fractional PDEs are obtained, which shows that the method is highly accurate and simple to apply. The proposed technique is thus an influential technique for solving the fractional PDEs and fractional order problems occurring in the field of engineering, physics etc. Numerical results are obtained for verification and demonstration purpose by using Mathematica software.

  7. Rapid Design of Gravity Assist Trajectories

    NASA Technical Reports Server (NTRS)

    Carrico, J.; Hooper, H. L.; Roszman, L.; Gramling, C.

    1991-01-01

    Several International Solar Terrestrial Physics (ISTP) missions require the design of complex gravity assisted trajectories in order to investigate the interaction of the solar wind with the Earth's magnetic field. These trajectories present a formidable trajectory design and optimization problem. The philosophy and methodology that enable an analyst to design and analyse such trajectories are discussed. The so called 'floating end point' targeting, which allows the inherently nonlinear multiple body problem to be solved with simple linear techniques, is described. The combination of floating end point targeting with analytic approximations with a Newton method targeter to achieve trajectory design goals quickly, even for the very sensitive double lunar swingby trajectories used by the ISTP missions, is demonstrated. A multiconic orbit integration scheme allows fast and accurate orbit propagation. A prototype software tool, Swingby, built for trajectory design and launch window analysis, is described.

  8. Adaptive block online learning target tracking based on super pixel segmentation

    NASA Astrophysics Data System (ADS)

    Cheng, Yue; Li, Jianzeng

    2018-04-01

    Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.

  9. Computational method for the correction of proximity effect in electron-beam lithography (Poster Paper)

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Yuan; Owen, Gerry; Pease, Roger Fabian W.; Kailath, Thomas

    1992-07-01

    Dose correction is commonly used to compensate for the proximity effect in electron lithography. The computation of the required dose modulation is usually carried out using 'self-consistent' algorithms that work by solving a large number of simultaneous linear equations. However, there are two major drawbacks: the resulting correction is not exact, and the computation time is excessively long. A computational scheme, as shown in Figure 1, has been devised to eliminate this problem by the deconvolution of the point spread function in the pattern domain. The method is iterative, based on a steepest descent algorithm. The scheme has been successfully tested on a simple pattern with a minimum feature size 0.5 micrometers , exposed on a MEBES tool at 10 KeV in 0.2 micrometers of PMMA resist on a silicon substrate.

  10. Psychophysiological interaction between superior temporal gyrus (STG) and cerebellum: An fMRI study

    NASA Astrophysics Data System (ADS)

    Yusoff, A. N.; Teng, X. L.; Ng, S. B.; Hamid, A. I. A.; Mukari, S. Z. M.

    2016-03-01

    This study aimed to model the psychophysiological interaction (PPI) between the bilateral STG and cerebellum (lobule VI and lobule VII) during an arithmetic addition task. Eighteen young adults participated in this study. They were instructed to solve single-digit addition tasks in quiet and noisy backgrounds during an fMRI scan. Results showed that in both hemispheres, the response in the cerebellum was found to be linearly influenced by the activity in STG (vice-versa) for both in-quiet and in-noise conditions. However, the influence of the cerebellum on STG seemed to be modulated by noise. A two-way PPI model between STG and cerebellum is suggested. The connectivity between the two regions during a simple addition task in a noisy condition is modulated by the participants’ higher attention to perceive.

  11. Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace.

    PubMed

    Zhang, Cheng; Lai, Chun-Liang; Pettitt, B Montgomery

    The weighted histogram analysis method (WHAM) for free energy calculations is a valuable tool to produce free energy differences with the minimal errors. Given multiple simulations, WHAM obtains from the distribution overlaps the optimal statistical estimator of the density of states, from which the free energy differences can be computed. The WHAM equations are often solved by an iterative procedure. In this work, we use a well-known linear algebra algorithm which allows for more rapid convergence to the solution. We find that the computational complexity of the iterative solution to WHAM and the closely-related multiple Bennett acceptance ratio (MBAR) method can be improved by using the method of direct inversion in the iterative subspace. We give examples from a lattice model, a simple liquid and an aqueous protein solution.

  12. Analytical and experimental investigations of human spine flexure.

    NASA Technical Reports Server (NTRS)

    Moffatt, C. A.; Advani, S. H.; Lin, C.-J.

    1971-01-01

    The authors report on experiments to measure the resistance of fresh human spines to flexion in the upper lumbar and lower thoracic regions and evaluate results by using a combination of strength of materials theory and effects of shear and comparing with data reported by other authors. The test results indicate that the thoraco-lumbar spine behaves approximately as a linear elastic beam, without relaxation effects. The authors formulate a simple continuum dynamic model of the spine simulating aircraft ejection and solve the resulting boundary value problem to illustrate the importance of the flexural mode. A constant cross-section, the selected model is a sinusoidally curved elastic beam with an end mass subjected to a Heaviside axial acceleration at the other end. The paper presents transient response results for the spinal model axial and bending displacements and axial force.-

  13. Estimating kinetic mechanisms with prior knowledge I: Linear parameter constraints.

    PubMed

    Salari, Autoosa; Navarro, Marco A; Milescu, Mirela; Milescu, Lorin S

    2018-02-05

    To understand how ion channels and other proteins function at the molecular and cellular levels, one must decrypt their kinetic mechanisms. Sophisticated algorithms have been developed that can be used to extract kinetic parameters from a variety of experimental data types. However, formulating models that not only explain new data, but are also consistent with existing knowledge, remains a challenge. Here, we present a two-part study describing a mathematical and computational formalism that can be used to enforce prior knowledge into the model using constraints. In this first part, we focus on constraints that enforce explicit linear relationships involving rate constants or other model parameters. We develop a simple, linear algebra-based transformation that can be applied to enforce many types of model properties and assumptions, such as microscopic reversibility, allosteric gating, and equality and inequality parameter relationships. This transformation converts the set of linearly interdependent model parameters into a reduced set of independent parameters, which can be passed to an automated search engine for model optimization. In the companion article, we introduce a complementary method that can be used to enforce arbitrary parameter relationships and any constraints that quantify the behavior of the model under certain conditions. The procedures described in this study can, in principle, be coupled to any of the existing methods for solving molecular kinetics for ion channels or other proteins. These concepts can be used not only to enforce existing knowledge but also to formulate and test new hypotheses. © 2018 Salari et al.

  14. A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    NASA Astrophysics Data System (ADS)

    Liska, Sebastian; Colonius, Tim

    2017-02-01

    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.

  15. Numerical Calculation of Neoclassical Distribution Functions and Current Profiles in Low Collisionality, Axisymmetric Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.C. Lyons, S.C. Jardin, and J.J. Ramos

    2012-06-28

    A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f ) in the conventional banana regime for both ions and elec trons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h ). We work in a 4D phase space in which Ψ defines a flux surface, θ is the poloidal angle, v is the total velocity referenced to the mean flow velocity, and λ is the dimensionless magnetic moment parameter. We expand h inmore » finite elements in both v and λ . The Rosenbluth potentials, φ and ψ, which define the integral part of the collision operator, are expanded in Legendre series in cos χ , where χ is the pitch angle, Fourier series in cos θ , and finite elements in v . At each ψ , we solve a block tridiagonal system for hi (independent of fe ), then solve another block tridiagonal system for he (dependent on fi ). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia, et al., J. Comput. Phys. 37 , pp 183-204 (1980).] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D-C1 [S.C. Jardin, et al ., Computational Science & Discovery, 4 (2012).]).« less

  16. Learning Disorders: Know the Signs, How to Help

    MedlinePlus

    ... a child to read, write or do simple math. Understand the signs and what you can do. ... Dyscalculia. Dyscalculia is a learning disorder related to math concepts. Signs include difficulty solving even simple math ...

  17. Solving Two-Level Optimization Problems with Applications to Robust Design and Energy Markets

    DTIC Science & Technology

    2011-01-01

    additional a transportation system operator (TSO) who manages the congestion and 172 flows. The TSO’s linear program is as follows (where other...were tested are shown in Table 5.11 below. Node 1 Node 2 Producer A Producer B Producer C Producer D Transmission System Operator 174... Systems to Solve Problems that are Not Linear. Operational Research Quarterly , 26, 609–618. 9. Beale, E., & Tomlin, J. (1970). Special Facilities

  18. The application of MINIQUASI to thermal program boundary and initial value problems

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The feasibility of applying the solution techniques of Miniquasi to the set of equations which govern a thermoregulatory model is investigated. For solving nonlinear equations and/or boundary conditions, a Taylor Series expansion is required for linearization of both equations and boundary conditions. The solutions are iterative and in each iteration, a problem like the linear case is solved. It is shown that Miniquasi cannot be applied to the thermoregulatory model as originally planned.

  19. Optimal Artificial Boundary Condition Configurations for Sensitivity-Based Model Updating and Damage Detection

    DTIC Science & Technology

    2010-09-01

    matrix is used in many methods, like Jacobi or Gauss Seidel , for solving linear systems. Also, no partial pivoting is necessary for a strictly column...problems that arise during the procedure, which in general, converges to the solving of a linear system. The most common issue with the solution is the... iterative procedure to find an appropriate subset of parameters that produce an optimal solution commonly known as forward selection. Then, the

  20. AZTEC. Parallel Iterative method Software for Solving Linear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, S.; Shadid, J.; Tuminaro, R.

    1995-07-01

    AZTEC is an interactive library that greatly simplifies the parrallelization process when solving the linear systems of equations Ax=b where A is a user supplied n X n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. AZTEC is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparse unstructured matricesmore » for parallel solutions.« less

  1. A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems

    NASA Astrophysics Data System (ADS)

    Pan, Kejia; He, Dongdong; Hu, Hongling; Ren, Zhengyong

    2017-09-01

    In this paper, we develop a new extrapolation cascadic multigrid method, which makes it possible to solve three dimensional elliptic boundary value problems with over 100 million unknowns on a desktop computer in half a minute. First, by combining Richardson extrapolation and quadratic finite element (FE) interpolation for the numerical solutions on two-level of grids (current and previous grids), we provide a quite good initial guess for the iterative solution on the next finer grid, which is a third-order approximation to the FE solution. And the resulting large linear system from the FE discretization is then solved by the Jacobi-preconditioned conjugate gradient (JCG) method with the obtained initial guess. Additionally, instead of performing a fixed number of iterations as used in existing cascadic multigrid methods, a relative residual tolerance is introduced in the JCG solver, which enables us to obtain conveniently the numerical solution with the desired accuracy. Moreover, a simple method based on the midpoint extrapolation formula is proposed to achieve higher-order accuracy on the finest grid cheaply and directly. Test results from four examples including two smooth problems with both constant and variable coefficients, an H3-regular problem as well as an anisotropic problem are reported to show that the proposed method has much better efficiency compared to the classical V-cycle and W-cycle multigrid methods. Finally, we present the reason why our method is highly efficient for solving these elliptic problems.

  2. Groebner Basis Solutions to Satellite Trajectory Control by Pole Placement

    NASA Astrophysics Data System (ADS)

    Kukelova, Z.; Krsek, P.; Smutny, V.; Pajdla, T.

    2013-09-01

    Satellites play an important role, e.g., in telecommunication, navigation and weather monitoring. Controlling their trajectories is an important problem. In [1], an approach to the pole placement for the synthesis of a linear controller has been presented. It leads to solving five polynomial equations in nine unknown elements of the state space matrices of a compensator. This is an underconstrained system and therefore four of the unknown elements need to be considered as free parameters and set to some prior values to obtain a system of five equations in five unknowns. In [1], this system was solved for one chosen set of free parameters with the help of Dixon resultants. In this work, we study and present Groebner basis solutions to this problem of computation of a dynamic compensator for the satellite for different combinations of input free parameters. We show that the Groebner basis method for solving systems of polynomial equations leads to very simple solutions for all combinations of free parameters. These solutions require to perform only the Gauss-Jordan elimination of a small matrix and computation of roots of a single variable polynomial. The maximum degree of this polynomial is not greater than six in general but for most combinations of the input free parameters its degree is even lower. [1] B. Palancz. Application of Dixon resultant to satellite trajectory control by pole placement. Journal of Symbolic Computation, Volume 50, March 2013, Pages 79-99, Elsevier.

  3. Graph cuts via l1 norm minimization.

    PubMed

    Bhusnurmath, Arvind; Taylor, Camillo J

    2008-10-01

    Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization that can be solved effectively using interior point methods. This reformulation exposes connections between the graph cuts and other related continuous optimization problems. Eventually the problem is reduced to solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed procedure exploits the structure of these linear systems in a manner that is easily amenable to parallel implementations. Experimental results obtained by applying the procedure to graphs derived from image processing problems are provided.

  4. Application of Nearly Linear Solvers to Electric Power System Computation

    NASA Astrophysics Data System (ADS)

    Grant, Lisa L.

    To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.

  5. Open-Ended, Problem-Solving Investigations--Getting Started.

    ERIC Educational Resources Information Center

    Lock, Roger

    1991-01-01

    Ways in which linear lesson sequences can be modified to provide increased opportunities for open-ended activities especially with problem solving are considered. Examples drawn from chemistry and plant reproduction, seeds, and germination are given. (KR)

  6. ORACLS: A system for linear-quadratic-Gaussian control law design

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1978-01-01

    A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.

  7. GRIPs (Group Investigation Problems) for Introductory Physics

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.

    2006-12-01

    GRIPs lie somewhere between homework problems and simple labs: they are open-ended questions that require a mixture of problem-solving skills and hands-on experimentation to solve practical puzzles involving simple physical objects. In this talk, I will describe three GRIPs that I developed for a first-semester introductory calculus-based physics course based on the "Six Ideas That Shaped Physics" text. I will discuss the design of the three GRIPs we used this past fall, our experience in working with students on these problems, and students' response as reported on course evaluations.

  8. Operator Priming and Generalization of Practice in Adults' Simple Arithmetic

    ERIC Educational Resources Information Center

    Chen, Yalin; Campbell, Jamie I. D.

    2016-01-01

    There is a renewed debate about whether educated adults solve simple addition problems (e.g., 2 + 3) by direct fact retrieval or by fast, automatic counting-based procedures. Recent research testing adults' simple addition and multiplication showed that a 150-ms preview of the operator (+ or ×) facilitated addition, but not multiplication,…

  9. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    NASA Astrophysics Data System (ADS)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using Diffpack and MPI are also presented. Chapter 2 presents the overlapping domain decomposition method for solving PDEs. It is well known that these methods are suitable for parallel processing. The first part of the chapter covers the mathematical formulation of the method as well as algorithmic and implementational issues. The second part presents a serial and a parallel implementational framework within the programming environment of Diffpack. The chapter closes by showing how to solve two application examples with the overlapping domain decomposition method using Diffpack. Chapter 3 is a tutorial about how to incorporate the multigrid solver in Diffpack. The method is illustrated by examples such as a Poisson solver, a general elliptic problem with various types of boundary conditions and a nonlinear Poisson type problem. In chapter 4 the mixed finite element is introduced. Technical issues concerning the practical implementation of the method are also presented. The main difficulties of the efficient implementation of the method, especially in two and three space dimensions on unstructured grids, are presented and addressed in the framework of Diffpack. The implementational process is illustrated by two examples, namely the system formulation of the Poisson problem and the Stokes problem. Chapter 5 is closely related to chapter 4 and addresses the problem of how to solve efficiently the linear systems arising by the application of the mixed finite element method. The proposed method is block preconditioning. Efficient techniques for implementing the method within Diffpack are presented. Optimal block preconditioners are used to solve the system formulation of the Poisson problem, the Stokes problem and the bidomain model for the electrical activity in the heart. The subject of chapter 6 is systems of PDEs. Linear and nonlinear systems are discussed. Fully implicit and operator splitting methods are presented. Special attention is paid to how existing solvers for scalar equations in Diffpack can be used to derive fully implicit solvers for systems. The proposed techniques are illustrated in terms of two applications, namely a system of PDEs modelling pipeflow and a two-phase porous media flow. Stochastic PDEs is the topic of chapter 7. The first part of the chapter is a simple introduction to stochastic PDEs; basic analytical properties are presented for simple models like transport phenomena and viscous drag forces. The second part considers the numerical solution of stochastic PDEs. Two basic techniques are presented, namely Monte Carlo and perturbation methods. The last part explains how to implement and incorporate these solvers into Diffpack. Chapter 8 describes how to operate Diffpack from Python scripts. The main goal here is to provide all the programming and technical details in order to glue the programming environment of Diffpack with visualization packages through Python and in general take advantage of the Python interfaces. Chapter 9 attempts to show how to use numerical experiments to measure the performance of various PDE solvers. The authors gathered a rather impressive list, a total of 14 PDE solvers. Solvers for problems like Poisson, Navier--Stokes, elasticity, two-phase flows and methods such as finite difference, finite element, multigrid, and gradient type methods are presented. The authors provide a series of numerical results combining various solvers with various methods in order to gain insight into their computational performance and efficiency. In Chapter 10 the authors consider a computationally challenging problem, namely the computation of the electrical activity of the human heart. After a brief introduction on the biology of the problem the authors present the mathematical models involved and a numerical method for solving them within the framework of Diffpack. Chapter 11 and 12 are closely related; actually they could have been combined in a single chapter. Chapter 11 introduces several mathematical models used in finance, based on the Black--Scholes equation. Chapter 12 considers several numerical methods like Monte Carlo, lattice methods, finite difference and finite element methods. Implementation of these methods within Diffpack is presented in the last part of the chapter. Chapter 13 presents how the finite element method is used for the modelling and analysis of elastic structures. The authors describe the structural elements of Diffpack which include popular elements such as beams and plates and examples are presented on how to use them to simulate elastic structures. Chapter 14 describes an application problem, namely the extrusion of aluminum. This is a rather\\endcolumn complicated process which involves non-Newtonian flow, heat transfer and elasticity. The authors describe the systems of PDEs modelling the underlying process and use a finite element method to obtain a numerical solution. The implementation of the numerical method in Diffpack is presented along with some applications. The last chapter, chapter 15, focuses on mathematical and numerical models of systems of PDEs governing geological processes in sedimentary basins. The underlying mathematical model is solved using the finite element method within a fully implicit scheme. The authors discuss the implementational issues involved within Diffpack and they present results from several examples. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall the book is well written, the subject of each chapter is well presented and can serve as a reference for graduate students, researchers and engineers who are interested in the numerical solution of partial differential equations modelling various applications.

  10. A preconditioner for the finite element computation of incompressible, nonlinear elastic deformations

    NASA Astrophysics Data System (ADS)

    Whiteley, J. P.

    2017-10-01

    Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.

  11. On Solving Systems of Equations by Successive Reduction Using 2×2 Matrices

    ERIC Educational Resources Information Center

    Carley, Holly

    2014-01-01

    Usually a student learns to solve a system of linear equations in two ways: "substitution" and "elimination." While the two methods will of course lead to the same answer they are considered different because the thinking process is different. In this paper the author solves a system in these two ways to demonstrate the…

  12. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    NASA Astrophysics Data System (ADS)

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  13. A computational algorithm for spacecraft control and momentum management

    NASA Technical Reports Server (NTRS)

    Dzielski, John; Bergmann, Edward; Paradiso, Joseph

    1990-01-01

    Developments in the area of nonlinear control theory have shown how coordinate changes in the state and input spaces of a dynamical system can be used to transform certain nonlinear differential equations into equivalent linear equations. These techniques are applied to the control of a spacecraft equipped with momentum exchange devices. An optimal control problem is formulated that incorporates a nonlinear spacecraft model. An algorithm is developed for solving the optimization problem using feedback linearization to transform to an equivalent problem involving a linear dynamical constraint and a functional approximation technique to solve for the linear dynamics in terms of the control. The original problem is transformed into an unconstrained nonlinear quadratic program that yields an approximate solution to the original problem. Two examples are presented to illustrate the results.

  14. Ending up with Less: The Role of Working Memory in Solving Simple Subtraction Problems with Positive and Negative Answers

    ERIC Educational Resources Information Center

    Robert, Nicole D.; LeFevre, Jo-Anne

    2013-01-01

    Does solving subtraction problems with negative answers (e.g., 5-14) require different cognitive processes than solving problems with positive answers (e.g., 14-5)? In a dual-task experiment, young adults (N=39) combined subtraction with two working memory tasks, verbal memory and visual-spatial memory. All of the subtraction problems required…

  15. What Are the Signs of Alzheimer's Disease? | NIH MedlinePlus the Magazine

    MedlinePlus

    ... in behavior and personality Conduct tests of memory, problem solving, attention, counting, and language Carry out standard medical ... over and over having trouble paying bills or solving simple math problems getting lost losing things or putting them in ...

  16. Mathematics Literacy of Secondary Students in Solving Simultanenous Linear Equations

    NASA Astrophysics Data System (ADS)

    Sitompul, R. S. I.; Budayasa, I. K.; Masriyah

    2018-01-01

    This study examines the profile of secondary students’ mathematical literacy in solving simultanenous linear equations problems in terms of cognitive style of visualizer and verbalizer. This research is a descriptive research with qualitative approach. The subjects in this research consist of one student with cognitive style of visualizer and one student with cognitive style of verbalizer. The main instrument in this research is the researcher herself and supporting instruments are cognitive style tests, mathematics skills tests, problem-solving tests and interview guidelines. Research was begun by determining the cognitive style test and mathematics skill test. The subjects chosen were given problem-solving test about simultaneous linear equations and continued with interview. To ensure the validity of the data, the researcher conducted data triangulation; the steps of data reduction, data presentation, data interpretation, and conclusion drawing. The results show that there is a similarity of visualizer and verbalizer-cognitive style in identifying and understanding the mathematical structure in the process of formulating. There are differences in how to represent problems in the process of implementing, there are differences in designing strategies and in the process of interpreting, and there are differences in explaining the logical reasons.

  17. A new implementation of the CMRH method for solving dense linear systems

    NASA Astrophysics Data System (ADS)

    Heyouni, M.; Sadok, H.

    2008-04-01

    The CMRH method [H. Sadok, Methodes de projections pour les systemes lineaires et non lineaires, Habilitation thesis, University of Lille1, Lille, France, 1994; H. Sadok, CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm, Numer. Algorithms 20 (1999) 303-321] is an algorithm for solving nonsymmetric linear systems in which the Arnoldi component of GMRES is replaced by the Hessenberg process, which generates Krylov basis vectors which are orthogonal to standard unit basis vectors rather than mutually orthogonal. The iterate is formed from these vectors by solving a small least squares problem involving a Hessenberg matrix. Like GMRES, this method requires one matrix-vector product per iteration. However, it can be implemented to require half as much arithmetic work and less storage. Moreover, numerical experiments show that this method performs accurately and reduces the residual about as fast as GMRES. With this new implementation, we show that the CMRH method is the only method with long-term recurrence which requires not storing at the same time the entire Krylov vectors basis and the original matrix as in the GMRES algorithmE A comparison with Gaussian elimination is provided.

  18. Simple taper: Taper equations for the field forester

    Treesearch

    David R. Larsen

    2017-01-01

    "Simple taper" is set of linear equations that are based on stem taper rates; the intent is to provide taper equation functionality to field foresters. The equation parameters are two taper rates based on differences in diameter outside bark at two points on a tree. The simple taper equations are statistically equivalent to more complex equations. The linear...

  19. Using Simple Linear Regression to Assess the Success of the Montreal Protocol in Reducing Atmospheric Chlorofluorocarbons

    ERIC Educational Resources Information Center

    Nelson, Dean

    2009-01-01

    Following the Guidelines for Assessment and Instruction in Statistics Education (GAISE) recommendation to use real data, an example is presented in which simple linear regression is used to evaluate the effect of the Montreal Protocol on atmospheric concentration of chlorofluorocarbons. This simple set of data, obtained from a public archive, can…

  20. New Operational Matrices for Solving Fractional Differential Equations on the Half-Line

    PubMed Central

    2015-01-01

    In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. PMID:25996369

  1. New operational matrices for solving fractional differential equations on the half-line.

    PubMed

    Bhrawy, Ali H; Taha, Taha M; Alzahrani, Ebraheem O; Alzahrani, Ebrahim O; Baleanu, Dumitru; Alzahrani, Abdulrahim A

    2015-01-01

    In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.

  2. Solving a class of generalized fractional programming problems using the feasibility of linear programs.

    PubMed

    Shen, Peiping; Zhang, Tongli; Wang, Chunfeng

    2017-01-01

    This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.

  3. Noise correction on LANDSAT images using a spline-like algorithm

    NASA Technical Reports Server (NTRS)

    Vijaykumar, N. L. (Principal Investigator); Dias, L. A. V.

    1985-01-01

    Many applications using LANDSAT images face a dilemma: the user needs a certain scene (for example, a flooded region), but that particular image may present interference or noise in form of horizontal stripes. During automatic analysis, this interference or noise may cause false readings of the region of interest. In order to minimize this interference or noise, many solutions are used, for instane, that of using the average (simple or weighted) values of the neighboring vertical points. In the case of high interference (more than one adjacent line lost) the method of averages may not suit the desired purpose. The solution proposed is to use a spline-like algorithm (weighted splines). This type of interpolation is simple to be computer implemented, fast, uses only four points in each interval, and eliminates the necessity of solving a linear equation system. In the normal mode of operation, the first and second derivatives of the solution function are continuous and determined by data points, as in cubic splines. It is possible, however, to impose the values of the first derivatives, in order to account for shapr boundaries, without increasing the computational effort. Some examples using the proposed method are also shown.

  4. Low-Velocity Impact Response of Sandwich Beams with Functionally Graded Core

    NASA Technical Reports Server (NTRS)

    Apetre, N. A.; Sankar, B. V.; Ambur, D. R.

    2006-01-01

    The problem of low-speed impact of a one-dimensional sandwich panel by a rigid cylindrical projectile is considered. The core of the sandwich panel is functionally graded such that the density, and hence its stiffness, vary through the thickness. The problem is a combination of static contact problem and dynamic response of the sandwich panel obtained via a simple nonlinear spring-mass model (quasi-static approximation). The variation of core Young's modulus is represented by a polynomial in the thickness coordinate, but the Poisson's ratio is kept constant. The two-dimensional elasticity equations for the plane sandwich structure are solved using a combination of Fourier series and Galerkin method. The contact problem is solved using the assumed contact stress distribution method. For the impact problem we used a simple dynamic model based on quasi-static behavior of the panel - the sandwich beam was modeled as a combination of two springs, a linear spring to account for the global deflection and a nonlinear spring to represent the local indentation effects. Results indicate that the contact stiffness of thc beam with graded core Increases causing the contact stresses and other stress components in the vicinity of contact to increase. However, the values of maximum strains corresponding to the maximum impact load arc reduced considerably due to grading of thc core properties. For a better comparison, the thickness of the functionally graded cores was chosen such that the flexural stiffness was equal to that of a beam with homogeneous core. The results indicate that functionally graded cores can be used effectively to mitigate or completely prevent impact damage in sandwich composites.

  5. Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.

    2018-05-01

    We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.

  6. Using Programmable Calculators to Solve Electrostatics Problems.

    ERIC Educational Resources Information Center

    Yerian, Stephen C.; Denker, Dennis A.

    1985-01-01

    Provides a simple routine which allows first-year physics students to use programmable calculators to solve otherwise complex electrostatic problems. These problems involve finding electrostatic potential and electric field on the axis of a uniformly charged ring. Modest programing skills are required of students. (DH)

  7. Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Bodson, Marc; Acosta, Diana M.

    2009-01-01

    The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.

  8. Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems

    DOE PAGES

    Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; ...

    2012-01-01

    Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less

  9. Real-time adaptive finite element solution of time-dependent Kohn-Sham equation

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Hu, Guanghui; Liu, Di

    2015-01-01

    In our previous paper (Bao et al., 2012 [1]), a general framework of using adaptive finite element methods to solve the Kohn-Sham equation has been presented. This work is concerned with solving the time-dependent Kohn-Sham equations. The numerical methods are studied in the time domain, which can be employed to explain both the linear and the nonlinear effects. A Crank-Nicolson scheme and linear finite element space are employed for the temporal and spatial discretizations, respectively. To resolve the trouble regions in the time-dependent simulations, a heuristic error indicator is introduced for the mesh adaptive methods. An algebraic multigrid solver is developed to efficiently solve the complex-valued system derived from the semi-implicit scheme. A mask function is employed to remove or reduce the boundary reflection of the wavefunction. The effectiveness of our method is verified by numerical simulations for both linear and nonlinear phenomena, in which the effectiveness of the mesh adaptive methods is clearly demonstrated.

  10. An extended basis inexact shift-invert Lanczos for the efficient solution of large-scale generalized eigenproblems

    NASA Astrophysics Data System (ADS)

    Rewieński, M.; Lamecki, A.; Mrozowski, M.

    2013-09-01

    This paper proposes a technique, based on the Inexact Shift-Invert Lanczos (ISIL) method with Inexact Jacobi Orthogonal Component Correction (IJOCC) refinement, and a preconditioned conjugate-gradient (PCG) linear solver with multilevel preconditioner, for finding several eigenvalues for generalized symmetric eigenproblems. Several eigenvalues are found by constructing (with the ISIL process) an extended projection basis. Presented results of numerical experiments confirm the technique can be effectively applied to challenging, large-scale problems characterized by very dense spectra, such as resonant cavities with spatial dimensions which are large with respect to wavelengths of the resonating electromagnetic fields. It is also shown that the proposed scheme based on inexact linear solves delivers superior performance, as compared to methods which rely on exact linear solves, indicating tremendous potential of the 'inexact solve' concept. Finally, the scheme which generates an extended projection basis is found to provide a cost-efficient alternative to classical deflation schemes when several eigenvalues are computed.

  11. Solution of two-body relativistic bound state equations with confining plus Coulomb interactions

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.

  12. Parallel/distributed direct method for solving linear systems

    NASA Technical Reports Server (NTRS)

    Lin, Avi

    1990-01-01

    A new family of parallel schemes for directly solving linear systems is presented and analyzed. It is shown that these schemes exhibit a near optimal performance and enjoy several important features: (1) For large enough linear systems, the design of the appropriate paralleled algorithm is insensitive to the number of processors as its performance grows monotonically with them; (2) It is especially good for large matrices, with dimensions large relative to the number of processors in the system; (3) It can be used in both distributed parallel computing environments and tightly coupled parallel computing systems; and (4) This set of algorithms can be mapped onto any parallel architecture without any major programming difficulties or algorithmical changes.

  13. Non-linear eigensolver-based alternative to traditional SCF methods

    NASA Astrophysics Data System (ADS)

    Gavin, B.; Polizzi, E.

    2013-05-01

    The self-consistent procedure in electronic structure calculations is revisited using a highly efficient and robust algorithm for solving the non-linear eigenvector problem, i.e., H({ψ})ψ = Eψ. This new scheme is derived from a generalization of the FEAST eigenvalue algorithm to account for the non-linearity of the Hamiltonian with the occupied eigenvectors. Using a series of numerical examples and the density functional theory-Kohn/Sham model, it will be shown that our approach can outperform the traditional SCF mixing-scheme techniques by providing a higher converge rate, convergence to the correct solution regardless of the choice of the initial guess, and a significant reduction of the eigenvalue solve time in simulations.

  14. An efficient finite element technique for sound propagation in axisymmetric hard wall ducts carrying high subsonic Mach number flows

    NASA Technical Reports Server (NTRS)

    Tag, I. A.; Lumsdaine, E.

    1978-01-01

    The general non-linear three-dimensional equation for acoustic potential is derived by using a perturbation technique. The linearized axisymmetric equation is then solved by using a finite element algorithm based on the Galerkin formulation for a harmonic time dependence. The solution is carried out in complex number notation for the acoustic velocity potential. Linear, isoparametric, quadrilateral elements with non-uniform distribution across the duct section are implemented. The resultant global matrix is stored in banded form and solved by using a modified Gauss elimination technique. Sound pressure levels and acoustic velocities are calculated from post element solutions. Different duct geometries are analyzed and compared with experimental results.

  15. Digital program for solving the linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, B.

    1975-01-01

    A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.

  16. Linear decomposition approach for a class of nonconvex programming problems.

    PubMed

    Shen, Peiping; Wang, Chunfeng

    2017-01-01

    This paper presents a linear decomposition approach for a class of nonconvex programming problems by dividing the input space into polynomially many grids. It shows that under certain assumptions the original problem can be transformed and decomposed into a polynomial number of equivalent linear programming subproblems. Based on solving a series of liner programming subproblems corresponding to those grid points we can obtain the near-optimal solution of the original problem. Compared to existing results in the literature, the proposed algorithm does not require the assumptions of quasi-concavity and differentiability of the objective function, and it differs significantly giving an interesting approach to solving the problem with a reduced running time.

  17. Learning graph matching.

    PubMed

    Caetano, Tibério S; McAuley, Julian J; Cheng, Li; Le, Quoc V; Smola, Alex J

    2009-06-01

    As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.

  18. A Laboratory Study of Vortical Structures in Rotating Convection Plumes

    NASA Astrophysics Data System (ADS)

    Fu, Hao; Sun, Shiwei; Wang, Yuan; Zhou, Bowen; Thermal Turbulence Research Team

    2015-11-01

    A laboratory study of the columnar vortex structure in rotating Rayleigh-Bénard convection is conducted. A rectangular water tank is uniformly heated from below and cooled from above, with Ra = (6 . 35 +/- 0 . 77) ×107 , Ta = 9 . 84 ×107 , Pr = 7 . 34 . The columnar vortices are vertically aligned and quasi steady. Two 2D PIV systems were used to measure velocity field. One system performs horizontal scans at 9 different heights every 13.6s, covering 62% of the total depth. The other system scans vertically to obtain the vertical velocity profile. The measured vertical vorticity profiles of most vortices are quasi-linear with height while the vertical velocities are nearly uniform with only a small curvature. A simple model to deduce vertical velocity profile from vertical vorticity profile is proposed. Under quasi-steady and axisymmetric conditions, a ``vortex core'' assumption is introduced to simplify vertical vorticity equation. A linear ODE about vertical velocity is obtained whenever a vertical vorticity profile is given and solved with experimental data as input. The result is approximately in agreement with the measurement. This work was supported by Undergraduates Training Project (J1103410).

  19. Wave scattering from random sets of closely spaced objects through linear embedding via Green's operators

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; de Hon, B. P.; Tijhuis, A. G.

    2011-08-01

    In this paper we present the application of linear embedding via Green's operators (LEGO) to the solution of the electromagnetic scattering from clusters of arbitrary (both conducting and penetrable) bodies randomly placed in a homogeneous background medium. In the LEGO method the objects are enclosed within simple-shaped bricks described in turn via scattering operators of equivalent surface current densities. Such operators have to be computed only once for a given frequency, and hence they can be re-used to perform the study of many distributions comprising the same objects located in different positions. The surface integral equations of LEGO are solved via the Moments Method combined with Adaptive Cross Approximation (to save memory) and Arnoldi basis functions (to compress the system). By means of purposefully selected numerical experiments we discuss the time requirements with respect to the geometry of a given distribution. Besides, we derive an approximate relationship between the (near-field) accuracy of the computed solution and the number of Arnoldi basis functions used to obtain it. This result endows LEGO with a handy practical criterion for both estimating the error and keeping it in check.

  20. Automatic optimal filament segmentation with sub-pixel accuracy using generalized linear models and B-spline level-sets

    PubMed Central

    Xiao, Xun; Geyer, Veikko F.; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F.

    2016-01-01

    Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. PMID:27104582

  1. Correlation and simple linear regression.

    PubMed

    Eberly, Lynn E

    2007-01-01

    This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.

  2. Global dynamic optimization approach to predict activation in metabolic pathways.

    PubMed

    de Hijas-Liste, Gundián M; Klipp, Edda; Balsa-Canto, Eva; Banga, Julio R

    2014-01-06

    During the last decade, a number of authors have shown that the genetic regulation of metabolic networks may follow optimality principles. Optimal control theory has been successfully used to compute optimal enzyme profiles considering simple metabolic pathways. However, applying this optimal control framework to more general networks (e.g. branched networks, or networks incorporating enzyme production dynamics) yields problems that are analytically intractable and/or numerically very challenging. Further, these previous studies have only considered a single-objective framework. In this work we consider a more general multi-objective formulation and we present solutions based on recent developments in global dynamic optimization techniques. We illustrate the performance and capabilities of these techniques considering two sets of problems. First, we consider a set of single-objective examples of increasing complexity taken from the recent literature. We analyze the multimodal character of the associated non linear optimization problems, and we also evaluate different global optimization approaches in terms of numerical robustness, efficiency and scalability. Second, we consider generalized multi-objective formulations for several examples, and we show how this framework results in more biologically meaningful results. The proposed strategy was used to solve a set of single-objective case studies related to unbranched and branched metabolic networks of different levels of complexity. All problems were successfully solved in reasonable computation times with our global dynamic optimization approach, reaching solutions which were comparable or better than those reported in previous literature. Further, we considered, for the first time, multi-objective formulations, illustrating how activation in metabolic pathways can be explained in terms of the best trade-offs between conflicting objectives. This new methodology can be applied to metabolic networks with arbitrary topologies, non-linear dynamics and constraints.

  3. Measurement and characterization of slippage and slip-law using a rigorous analysis in dynamics of oscillating rheometer: Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Azese, Martin Ndi

    2018-02-01

    This article presents a rigorous calculation involving velocity slip of Newtonian fluid where we analyze and solve the unsteady Navier-Stokes equation with emphasis on its rheological implication. The goal of which is to model a simple yet effective non-invasive way of quantifying and characterizing slippage. Indeed this contrasts with previous techniques that exhibit inherent limitations whereby injecting foreign objects usually alter the flow. This problem is built on the Couette rheological flow system such that μ-Newton force and μ-stress are captured and processed to obtain wall slip. Our model leads to a linear partial differential equation and upon enforcing linear-Navier slip boundary conditions (BC) yields inhomogeneous and unsteady "Robin-type" BC. A dimensional analysis reveals salient dimensionless parameters: Roshko, Strouhal, and Reynolds while highlighting slip-numbers from BC. We also solve the slip-free case to corroborate and validate our results. Several graphs are generated showing slip effects, particularly, studying how slip-numbers, a key input, differentiate themselves to the outputs. We also confirm this in a graphical fashion by presenting the flow profile across channel width, velocity, and stress at both walls. A perturbation scheme is introduced to calculate long-time behavior when the system seats for long. More importantly, in the end, we justify the existence of a reverse mechanism, where an inverse transformation like Fourier transform uses the output data to retrieve slip-numbers and slip law, thus quantifying and characterizing slip. Therefore, we not only substantiate our analysis, but we also justify our claim, measurement and characterization, and theorize realizability of our proposition.

  4. Imaging electrical conductivity, permeability, and/or permittivity contrasts using the Born Scattering Inversion (BSI)

    NASA Astrophysics Data System (ADS)

    Darrh, A.; Downs, C. M.; Poppeliers, C.

    2017-12-01

    Born Scattering Inversion (BSI) of electromagnetic (EM) data is a geophysical imaging methodology for mapping weak conductivity, permeability, and/or permittivity contrasts in the subsurface. The high computational cost of full waveform inversion is reduced by adopting the First Born Approximation for scattered EM fields. This linearizes the inverse problem in terms of Born scattering amplitudes for a set of effective EM body sources within a 3D imaging volume. Estimation of scatterer amplitudes is subsequently achieved by solving the normal equations. Our present BSI numerical experiments entail Fourier transforming real-valued synthetic EM data to the frequency-domain, and minimizing the L2 residual between complex-valued observed and predicted data. We are testing the ability of BSI to resolve simple scattering models. For our initial experiments, synthetic data are acquired by three-component (3C) electric field receivers distributed on a plane above a single point electric dipole within a homogeneous and isotropic wholespace. To suppress artifacts, candidate Born scatterer locations are confined to a volume beneath the receiver array. Also, we explore two different numerical linear algebra algorithms for solving the normal equations: Damped Least Squares (DLS), and Non-Negative Least Squares (NNLS). Results from NNLS accurately recover the source location only for a large dense 3C receiver array, but fail when the array is decimated, or is restricted to horizontal component data. Using all receiver stations and all components per station, NNLS results are relatively insensitive to a sub-sampled frequency spectrum, suggesting that coarse frequency-domain sampling may be adequate for good target resolution. Results from DLS are insensitive to diminishing array density, but contain spatially oscillatory structure. DLS-generated images are consistently centered at the known point source location, despite an abundance of surrounding structure.

  5. Estimating linear temporal trends from aggregated environmental monitoring data

    USGS Publications Warehouse

    Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.

    2017-01-01

    Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.

  6. Effects of alcohol on a problem solving task.

    DOT National Transportation Integrated Search

    1972-03-01

    Twenty subjects were tested on two separate days on a simple problem-solving task. Half of the subjects received alcohol on the first day of testing and half on the second day of testing. A control group of 11 subjects was also tested on two days and...

  7. Guided Discovery, Visualization, and Technology Applied to the New Curriculum for Secondary Mathematics.

    ERIC Educational Resources Information Center

    Smith, Karan B.

    1996-01-01

    Presents activities which highlight major concepts of linear programming. Demonstrates how technology allows students to solve linear programming problems using exploration prior to learning algorithmic methods. (DDR)

  8. Embodied, Symbolic and Formal Thinking in Linear Algebra

    ERIC Educational Resources Information Center

    Stewart, Sepideh; Thomas, Michael O. J.

    2007-01-01

    Students often find their first university linear algebra experience very challenging. While coping with procedural aspects of the subject, solving linear systems and manipulating matrices, they may struggle with crucial conceptual ideas underpinning them, making it very difficult to progress in more advanced courses. This research has sought to…

  9. Branson: A Mini-App for Studying Parallel IMC, Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Alex

    This code solves the gray thermal radiative transfer (TRT) equations in parallel using simple opacities and Cartesian meshes. Although Branson solves the TRT equations it is not designed to model radiation transport: Branson contains simple physics and does not have a multigroup treatment, nor can it use physical material data. The opacities have are simple polynomials in temperature there is a limited ability to specify complex geometries and sources. Branson was designed only to capture the computational demands of production IMC codes, especially in large parallel runs. It was also intended to foster collaboration with vendors, universities and other DOEmore » partners. Branson is similar in character to the neutron transport proxy-app Quicksilver from LLNL, which was recently open-sourced.« less

  10. A numerical technique for linear elliptic partial differential equations in polygonal domains.

    PubMed

    Hashemzadeh, P; Fokas, A S; Smitheman, S A

    2015-03-08

    Integral representations for the solution of linear elliptic partial differential equations (PDEs) can be obtained using Green's theorem. However, these representations involve both the Dirichlet and the Neumann values on the boundary, and for a well-posed boundary-value problem (BVPs) one of these functions is unknown. A new transform method for solving BVPs for linear and integrable nonlinear PDEs usually referred to as the unified transform ( or the Fokas transform ) was introduced by the second author in the late Nineties. For linear elliptic PDEs, this method can be considered as the analogue of Green's function approach but now it is formulated in the complex Fourier plane instead of the physical plane. It employs two global relations also formulated in the Fourier plane which couple the Dirichlet and the Neumann boundary values. These relations can be used to characterize the unknown boundary values in terms of the given boundary data, yielding an elegant approach for determining the Dirichlet to Neumann map . The numerical implementation of the unified transform can be considered as the counterpart in the Fourier plane of the well-known boundary integral method which is formulated in the physical plane. For this implementation, one must choose (i) a suitable basis for expanding the unknown functions and (ii) an appropriate set of complex values, which we refer to as collocation points, at which to evaluate the global relations. Here, by employing a variety of examples we present simple guidelines of how the above choices can be made. Furthermore, we provide concrete rules for choosing the collocation points so that the condition number of the matrix of the associated linear system remains low.

  11. On the Forward Scattering of Microwave Breast Imaging

    PubMed Central

    Lui, Hoi-Shun; Fhager, Andreas; Persson, Mikael

    2012-01-01

    Microwave imaging for breast cancer detection has been of significant interest for the last two decades. Recent studies focus on solving the imaging problem using an inverse scattering approach. Efforts have mainly been focused on the development of the inverse scattering algorithms, experimental setup, antenna design and clinical trials. However, the success of microwave breast imaging also heavily relies on the quality of the forward data such that the tumor inside the breast volume is well illuminated. In this work, a numerical study of the forward scattering data is conducted. The scattering behavior of simple breast models under different polarization states and aspect angles of illumination are considered. Numerical results have demonstrated that better data contrast could be obtained when the breast volume is illuminated using cross-polarized components in linear polarization basis or the copolarized components in the circular polarization basis. PMID:22611371

  12. Fuzzy observer-based control for maximum power-point tracking of a photovoltaic system

    NASA Astrophysics Data System (ADS)

    Allouche, M.; Dahech, K.; Chaabane, M.; Mehdi, D.

    2018-04-01

    This paper presents a novel fuzzy control design method for maximum power-point tracking (MPPT) via a Takagi and Sugeno (TS) fuzzy model-based approach. A knowledge-dynamic model of the PV system is first developed leading to a TS representation by a simple convex polytopic transformation. Then, based on this exact fuzzy representation, a H∞ observer-based fuzzy controller is proposed to achieve MPPT even when we consider varying climatic conditions. A specified TS reference model is designed to generate the optimum trajectory which must be tracked to ensure maximum power operation. The controller and observer gains are obtained in a one-step procedure by solving a set of linear matrix inequalities (LMIs). The proposed method has been compared with some classical MPPT techniques taking into account convergence speed and tracking accuracy. Finally, various simulation and experimental tests have been carried out to illustrate the effectiveness of the proposed TS fuzzy MPPT strategy.

  13. Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism

    NASA Astrophysics Data System (ADS)

    Broedel, Johannes; Duhr, Claude; Dulat, Falko; Tancredi, Lorenzo

    2018-05-01

    We introduce a class of iterated integrals, defined through a set of linearly independent integration kernels on elliptic curves. As a direct generalisation of multiple polylogarithms, we construct our set of integration kernels ensuring that they have at most simple poles, implying that the iterated integrals have at most logarithmic singularities. We study the properties of our iterated integrals and their relationship to the multiple elliptic polylogarithms from the mathematics literature. On the one hand, we find that our iterated integrals span essentially the same space of functions as the multiple elliptic polylogarithms. On the other, our formulation allows for a more direct use to solve a large variety of problems in high-energy physics. We demonstrate the use of our functions in the evaluation of the Laurent expansion of some hypergeometric functions for values of the indices close to half integers.

  14. Renormalized charge in a two-dimensional model of colloidal suspension from hypernetted chain approach.

    PubMed

    Camargo, Manuel; Téllez, Gabriel

    2008-04-07

    The renormalized charge of a simple two-dimensional model of colloidal suspension was determined by solving the hypernetted chain approximation and Ornstein-Zernike equations. At the infinite dilution limit, the asymptotic behavior of the correlation functions is used to define the effective interactions between the components of the system and these effective interactions were compared to those derived from the Poisson-Boltzmann theory. The results we obtained show that, in contrast to the mean-field theory, the renormalized charge does not saturate, but exhibits a maximum value and then decays monotonically as the bare charge increases. The results also suggest that beyond the counterion layer near to the macroion surface, the ionic cloud is not a diffuse layer which can be handled by means of the linearized theory, as the two-state model claims, but a more complex structure is settled by the correlations between microions.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, S.H.; Pinho, A.S.S.; Silva, J.M. Hoff da

    In this work the exact Friedmann-Robertson-Walker equations for an Elko spinor field coupled to gravity in an Einstein-Cartan framework are presented. The torsion functions coupling the Elko field spin-connection to gravity can be exactly solved and the FRW equations for the system assume a relatively simple form. In the limit of a slowly varying Elko spinor field there is a relevant contribution to the field equations acting exactly as a time varying cosmological model Λ( t )=Λ{sub *}+3β H {sup 2}, where Λ{sub *} and β are constants. Observational data using distance luminosity from magnitudes of supernovae constraint the parametersmore » Ω {sub m} and β, which leads to a lower limit to the Elko mass. Such model mimics, then, the effects of a dark energy fluid, here sourced by the Elko spinor field. The density perturbations in the linear regime were also studied in the pseudo-Newtonian formalism.« less

  16. A fast, preconditioned conjugate gradient Toeplitz solver

    NASA Technical Reports Server (NTRS)

    Pan, Victor; Schrieber, Robert

    1989-01-01

    A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.

  17. Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth

    NASA Astrophysics Data System (ADS)

    Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda

    2017-04-01

    Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.

  18. PAF: A software tool to estimate free-geometry extended bodies of anomalous pressure from surface deformation data

    NASA Astrophysics Data System (ADS)

    Camacho, A. G.; Fernández, J.; Cannavò, F.

    2018-02-01

    We present a software package to carry out inversions of surface deformation data (any combination of InSAR, GPS, and terrestrial data, e.g., EDM, levelling) as produced by 3D free-geometry extended bodies with anomalous pressure changes. The anomalous structures are described as an aggregation of elementary cells (whose effects are estimated as coming from point sources) in an elastic half space. The linear inverse problem (considering some simple regularization conditions) is solved by means of an exploratory approach. This software represents the open implementation of a previously published methodology (Camacho et al., 2011). It can be freely used with large data sets (e.g. InSAR data sets) or with data coming from small control networks (e.g. GPS monitoring data), mainly in volcanic areas, to estimate the expected pressure bodies representing magmatic intrusions. Here, the software is applied to some real test cases.

  19. SCBUCKLE user's manual: Buckling analysis program for simple supported and clamped panels

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1993-01-01

    The program SCBUCKLE calculates the buckling loads and mode shapes of cylindrically curved, rectangular panels. The panel is assumed to have no imperfections. SCBUCKLE is capable of analyzing specially orthotropic symmetric panels (i.e., A(sub 16) = A(sub 26) = 0.0, D(sub 16) = D(sub 26) = 0.0, B(sub ij) = 0.0). The analysis includes first-order transverse shear theory and is capable of modeling sandwich panels. The analysis supports two types of boundary conditions: either simply supported or clamped on all four edges. The panel can be subjected to linearly varying normal loads N(sub x) and N(sub y) in addition to a constant shear load N(sub xy). The applied loads can be divided into two parts: a preload component; and a variable (eigenvalue-dependent) component. The analysis is based on the modified Donnell's equations for shallow shells. The governing equations are solved by Galerkin's method.

  20. Absence of periodic orbits in digital memcomputing machines with solutions

    NASA Astrophysics Data System (ADS)

    Di Ventra, Massimiliano; Traversa, Fabio L.

    2017-10-01

    In Traversa and Di Ventra [Chaos 27, 023107 (2017)] we argued, without proof, that if the non-linear dynamical systems with memory describing the class of digital memcomputing machines (DMMs) have equilibrium points, then no periodic orbits can emerge. In fact, the proof of such a statement is a simple corollary of a theorem already demonstrated in Traversa and Di Ventra [Chaos 27, 023107 (2017)]. Here, we point out how to derive such a conclusion. Incidentally, the same demonstration implies absence of chaos, a result we have already demonstrated in Di Ventra and Traversa [Phys. Lett. A 381, 3255 (2017)] using topology. These results, together with those in Traversa and Di Ventra [Chaos 27, 023107 (2017)], guarantee that if the Boolean problem the DMMs are designed to solve has a solution, the system will always find it, irrespective of the initial conditions.

  1. Coronal emission-line polarization from the statistical equilibrium of magnetic sublevels. II. Fe XIV 5303 A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, L.L.; Querfeld, C.W.; Rees, D.E.

    1982-04-15

    Coronal magnetic fields influence in the intensity and linear polarization of light scattered by coronal Fe XIV ions. To interpret polarization measurements of Fe XIV 5303 A coronal emission requires a detailed understanding of the dependence of the emitted Stokes vector on coronal magnetic field direction, electron density, and temperature and on height of origin. The required dependence is included in the solutions of statistical equilibrium for the ion which are solved explicitly for 34 magnetic sublevels in both the ground and four excited terms. The full solutions are reduced to equivalent simple analytic forms which clearly show the requiredmore » dependence on coronal conditions. The analytic forms of the reduced solutions are suitable for routine analysis of 5303 green line polarimetric data obtained at Pic du Midi and from the Solar Maximum Mission Coronagraph/Polarimeter.« less

  2. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning.

    PubMed

    Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-02-22

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.

  3. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning

    PubMed Central

    Zhang, Shang; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-01-01

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer. PMID:29470406

  4. A Self-Calibrating Radar Sensor System for Measuring Vital Signs.

    PubMed

    Huang, Ming-Chun; Liu, Jason J; Xu, Wenyao; Gu, Changzhan; Li, Changzhi; Sarrafzadeh, Majid

    2016-04-01

    Vital signs (i.e., heartbeat and respiration) are crucial physiological signals that are useful in numerous medical applications. The process of measuring these signals should be simple, reliable, and comfortable for patients. In this paper, a noncontact self-calibrating vital signs monitoring system based on the Doppler radar is presented. The system hardware and software were designed with a four-tiered layer structure. To enable accurate vital signs measurement, baseband signals in the radar sensor were modeled and a framework for signal demodulation was proposed. Specifically, a signal model identification method was formulated into a quadratically constrained l1 minimization problem and solved using the upper bound and linear matrix inequality (LMI) relaxations. The performance of the proposed system was comprehensively evaluated using three experimental sets, and the results indicated that this system can be used to effectively measure human vital signs.

  5. Finite Element Method Analysis of An Out Flow With Free Surface In Transition Zones

    NASA Astrophysics Data System (ADS)

    Saoula, R. Iddir S.; Mokhtar, K. Ait

    The object of this work is to present this part of the fluid mechanics that relates to out-flows of the fluid to big speeds in transitions. Results usually gotten by the classic processes can only have a qualitative aspect. The method fluently used for the count of these out-flows to big speeds is the one of characteristics, this approach remains interesting so much that doesn't appear within the out-flow of intersections of shock waves, as well as of reflections of these. In the simple geometry case, the method of finite differences satisfying result, But when the complexity of this geometry imposes itself, it is the method of finite elements that is proposed to solve this type of prob- lem, in particular for problems Trans critic. The goal of our work is to analyse free surface flows in channels no prismatic has oblong transverse section in zone of tran- sition. (Convergent, divergent). The basic mathematical model of this study is Saint Venant derivatives partial equations. To solve these equations we use the finite ele- ment method, the element of reference is the triangular element with 6 nodes which are quadratic in speed and linear in height (pressure). Our results and their obtains by others are very close to experimental results.

  6. Numerical simulation of the heat transfer at cooling a high-temperature metal cylinder by a flow of a gas-liquid medium

    NASA Astrophysics Data System (ADS)

    Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.

    2017-10-01

    The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.

  7. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    PubMed

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Unified Approach for Solving Nonlinear Regular Perturbation Problems

    ERIC Educational Resources Information Center

    Khuri, S. A.

    2008-01-01

    This article describes a simple alternative unified method of solving nonlinear regular perturbation problems. The procedure is based upon the manipulation of Taylor's approximation for the expansion of the nonlinear term in the perturbed equation. An essential feature of this technique is the relative simplicity used and the associated unified…

  9. Developing Problem-Solving Skills through Retrosynthetic Analysis and Clickers in Organic Chemistry

    ERIC Educational Resources Information Center

    Flynn, Alison B.

    2011-01-01

    A unique approach to teaching and learning problem-solving and critical-thinking skills in the context of retrosynthetic analysis is described. In this approach, introductory organic chemistry students, who typically see only simple organic structures, undertook partial retrosynthetic analyses of real and complex synthetic targets. Multiple…

  10. Solving Rational Expectations Models Using Excel

    ERIC Educational Resources Information Center

    Strulik, Holger

    2004-01-01

    Simple problems of discrete-time optimal control can be solved using a standard spreadsheet software. The employed-solution method of backward iteration is intuitively understandable, does not require any programming skills, and is easy to implement so that it is suitable for classroom exercises with rational-expectations models. The author…

  11. Problem-Solving in the Pre-Clinical Curriculum: The Uses of Computer Simulations.

    ERIC Educational Resources Information Center

    Michael, Joel A.; Rovick, Allen A.

    1986-01-01

    Promotes the use of computer-based simulations in the pre-clinical medical curriculum as a means of providing students with opportunities for problem solving. Describes simple simulations of skeletal muscle loads, complex simulations of major organ systems and comprehensive simulation models of the entire human body. (TW)

  12. A Navier-Strokes Chimera Code on the Connection Machine CM-5: Design and Performance

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.; Levit, Creon; Kwak, Dochan (Technical Monitor)

    1994-01-01

    We have implemented a three-dimensional compressible Navier-Stokes code on the Connection Machine CM-5. The code is set up for implicit time-stepping on single or multiple structured grids. For multiple grids and geometrically complex problems, we follow the 'chimera' approach, where flow data on one zone is interpolated onto another in the region of overlap. We will describe our design philosophy and give some timing results for the current code. A parallel machine like the CM-5 is well-suited for finite-difference methods on structured grids. The regular pattern of connections of a structured mesh maps well onto the architecture of the machine. So the first design choice, finite differences on a structured mesh, is natural. We use centered differences in space, with added artificial dissipation terms. When numerically solving the Navier-Stokes equations, there are liable to be some mesh cells near a solid body that are small in at least one direction. This mesh cell geometry can impose a very severe CFL (Courant-Friedrichs-Lewy) condition on the time step for explicit time-stepping methods. Thus, though explicit time-stepping is well-suited to the architecture of the machine, we have adopted implicit time-stepping. We have further taken the approximate factorization approach. This creates the need to solve large banded linear systems and creates the first possible barrier to an efficient algorithm. To overcome this first possible barrier we have considered two options. The first is just to solve the banded linear systems with data spread over the whole machine, using whatever fast method is available. This option is adequate for solving scalar tridiagonal systems, but for scalar pentadiagonal or block tridiagonal systems it is somewhat slower than desired. The second option is to 'transpose' the flow and geometry variables as part of the time-stepping process: Start with x-lines of data in-processor. Form explicit terms in x, then transpose so y-lines of data are in-processor. Form explicit terms in y, then transpose so z-lines are in processor. Form explicit terms in z, then solve linear systems in the z-direction. Transpose to the y-direction, then solve linear systems in the y-direction. Finally transpose to the x direction and solve linear systems in the x-direction. This strategy avoids inter-processor communication when differencing and solving linear systems, but requires a large amount of communication when doing the transposes. The transpose method is more efficient than the non-transpose strategy when dealing with scalar pentadiagonal or block tridiagonal systems. For handling geometrically complex problems the chimera strategy was adopted. For multiple zone cases we compute on each zone sequentially (using the whole parallel machine), then send the chimera interpolation data to a distributed data structure (array) laid out over the whole machine. This information transfer implies an irregular communication pattern, and is the second possible barrier to an efficient algorithm. We have implemented these ideas on the CM-5 using CMF (Connection Machine Fortran), a data parallel language which combines elements of Fortran 90 and certain extensions, and which bears a strong similarity to High Performance Fortran. We make use of the Connection Machine Scientific Software Library (CMSSL) for the linear solver and array transpose operations.

  13. Simple Test Functions in Meshless Local Petrov-Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.

    2016-01-01

    Two meshless local Petrov-Galerkin (MLPG) methods based on two different trial functions but that use a simple linear test function were developed for beam and column problems. These methods used generalized moving least squares (GMLS) and radial basis (RB) interpolation functions as trial functions. These two methods were tested on various patch test problems. Both methods passed the patch tests successfully. Then the methods were applied to various beam vibration problems and problems involving Euler and Beck's columns. Both methods yielded accurate solutions for all problems studied. The simple linear test function offers considerable savings in computing efforts as the domain integrals involved in the weak form are avoided. The two methods based on this simple linear test function method produced accurate results for frequencies and buckling loads. Of the two methods studied, the method with radial basis trial functions is very attractive as the method is simple, accurate, and robust.

  14. Block iterative restoration of astronomical images with the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don J.

    1987-01-01

    A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images.

  15. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.

    PubMed

    Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang

    2012-10-21

    A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose sorting method. By integrating a smart constraint adding/deleting scheme within the iteration framework, the new technique builds up an improved algorithm for solving the fluence map optimization with dose-volume constraints.

  16. Linear network representation of multistate models of transport.

    PubMed Central

    Sandblom, J; Ring, A; Eisenman, G

    1982-01-01

    By introducing external driving forces in rate-theory models of transport we show how the Eyring rate equations can be transformed into Ohm's law with potentials that obey Kirchhoff's second law. From such a formalism the state diagram of a multioccupancy multicomponent system can be directly converted into linear network with resistors connecting nodal (branch) points and with capacitances connecting each nodal point with a reference point. The external forces appear as emf or current generators in the network. This theory allows the algebraic methods of linear network theory to be used in solving the flux equations for multistate models and is particularly useful for making proper simplifying approximation in models of complex membrane structure. Some general properties of linear network representation are also deduced. It is shown, for instance, that Maxwell's reciprocity relationships of linear networks lead directly to Onsager's relationships in the near equilibrium region. Finally, as an example of the procedure, the equivalent circuit method is used to solve the equations for a few transport models. PMID:7093425

  17. The algebraic-hyperbolic approach to the linearized gravitational constraints on a Minkowski background

    NASA Astrophysics Data System (ADS)

    Winicour, Jeffrey

    2017-08-01

    An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed.

  18. Menu-Driven Solver Of Linear-Programming Problems

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Ferencz, D.

    1992-01-01

    Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

  19. A parallel solver for huge dense linear systems

    NASA Astrophysics Data System (ADS)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system: Linux/Unix Has the code been vectorized or parallelized?: Yes, includes MPI primitives. RAM: Tested for up to 190 GB Classification: 6.5 External routines: MPI ( http://www.mpi-forum.org/), BLAS ( http://www.netlib.org/blas/), PLAPACK ( http://www.cs.utexas.edu/~plapack/), POOCLAPACK ( ftp://ftp.cs.utexas.edu/pub/rvdg/PLAPACK/pooclapack.ps) (code for PLAPACK and POOCLAPACK is included in the distribution). Catalogue identifier of previous version: AEHU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 533 Does the new version supersede the previous version?: Yes Nature of problem: Huge scale dense systems of linear equations, Ax=B, beyond standard LAPACK capabilities. Solution method: The linear systems are solved by means of parallelized routines based on the LU factorization, using efficient secondary storage algorithms when the available main memory is insufficient. Reasons for new version: In many applications we need to guarantee a high accuracy in the solution of very large linear systems and we can do it by using double-precision arithmetic. Summary of revisions: Version 1.1 Can be used to solve linear systems using double-precision arithmetic. New version of the initialization routine. The user can choose the kind of arithmetic and the values of several parameters of the environment. Running time: About 5 hours to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors using double-precision arithmetic on an eight-node commodity cluster with a total of 64 Intel cores.

  20. Operator Factorization and the Solution of Second-Order Linear Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Robin, W.

    2007-01-01

    The theory and application of second-order linear ordinary differential equations is reviewed from the standpoint of the operator factorization approach to the solution of ordinary differential equations (ODE). Using the operator factorization approach, the general second-order linear ODE is solved, exactly, in quadratures and the resulting…

  1. The interplay between screening properties and colloid anisotropy: towards a reliable pair potential for disc-like charged particles.

    PubMed

    Agra, R; Trizac, E; Bocquet, L

    2004-12-01

    The electrostatic potential of a highly charged disc (clay platelet) in an electrolyte is investigated in detail. The corresponding non-linear Poisson-Boltzmann (PB) equation is solved numerically, and we show that the far-field behaviour (relevant for colloidal interactions in dilute suspensions) is exactly that obtained within linearized PB theory, with the surface boundary condition of a uniform potential. The latter linear problem is solved by a new semi-analytical procedure and both the potential amplitude (quantified by an effective charge) and potential anisotropy coincide closely within PB and linearized PB, provided the disc bare charge is high enough. This anisotropy remains at all scales; it is encoded in a function that may vary over several orders of magnitude depending on the azimuthal angle under which the disc is seen. The results allow to construct a pair potential for discs interaction, that is strongly orientation dependent.

  2. Flutter and Forced Response Analyses of Cascades using a Two-Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, O.

    1999-01-01

    Flutter and forced response analyses for a cascade of blades in subsonic and transonic flow is presented. The structural model for each blade is a typical section with bending and torsion degrees of freedom. The unsteady aerodynamic forces due to bending and torsion motions. and due to a vortical gust disturbance are obtained by solving unsteady linearized Euler equations. The unsteady linearized equations are obtained by linearizing the unsteady nonlinear equations about the steady flow. The predicted unsteady aerodynamic forces include the effect of steady aerodynamic loading due to airfoil shape, thickness and angle of attack. The aeroelastic equations are solved in the frequency domain by coupling the un- steady aerodynamic forces to the aeroelastic solver MISER. The present unsteady aerodynamic solver showed good correlation with published results for both flutter and forced response predictions. Further improvements are required to use the unsteady aerodynamic solver in a design cycle.

  3. Morse Code, Scrabble, and the Alphabet

    ERIC Educational Resources Information Center

    Richardson, Mary; Gabrosek, John; Reischman, Diann; Curtiss, Phyliss

    2004-01-01

    In this paper we describe an interactive activity that illustrates simple linear regression. Students collect data and analyze it using simple linear regression techniques taught in an introductory applied statistics course. The activity is extended to illustrate checks for regression assumptions and regression diagnostics taught in an…

  4. Attitude and practice of physical activity and social problem-solving ability among university students.

    PubMed

    Sone, Toshimasa; Kawachi, Yousuke; Abe, Chihiro; Otomo, Yuki; Sung, Yul-Wan; Ogawa, Seiji

    2017-04-04

    Effective social problem-solving abilities can contribute to decreased risk of poor mental health. In addition, physical activity has a favorable effect on mental health. These previous studies suggest that physical activity and social problem-solving ability can interact by helping to sustain mental health. The present study aimed to determine the association between attitude and practice of physical activity and social problem-solving ability among university students. Information on physical activity and social problem-solving was collected using a self-administered questionnaire. We analyzed data from 185 students who participated in the questionnaire surveys and psychological tests. Social problem-solving as measured by the Social Problem-Solving Inventory-Revised (SPSI-R) (median score 10.85) was the dependent variable. Multiple logistic regression analysis was employed to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for higher SPSI-R according to physical activity categories. The multiple logistic regression analysis indicated that the ORs (95% CI) in reference to participants who said they never considered exercising were 2.08 (0.69-6.93), 1.62 (0.55-5.26), 2.78 (0.86-9.77), and 6.23 (1.81-23.97) for participants who did not exercise but intended to start, tried to exercise but did not, exercised but not regularly, and exercised regularly, respectively. This finding suggested that positive linear association between physical activity and social problem-solving ability (p value for linear trend < 0.01). The present findings suggest that regular physical activity or intention to start physical activity may be an effective strategy to improve social problem-solving ability.

  5. A new modified conjugate gradient coefficient for solving system of linear equations

    NASA Astrophysics Data System (ADS)

    Hajar, N.; ‘Aini, N.; Shapiee, N.; Abidin, Z. Z.; Khadijah, W.; Rivaie, M.; Mamat, M.

    2017-09-01

    Conjugate gradient (CG) method is an evolution of computational method in solving unconstrained optimization problems. This approach is easy to implement due to its simplicity and has been proven to be effective in solving real-life application. Although this field has received copious amount of attentions in recent years, some of the new approaches of CG algorithm cannot surpass the efficiency of the previous versions. Therefore, in this paper, a new CG coefficient which retains the sufficient descent and global convergence properties of the original CG methods is proposed. This new CG is tested on a set of test functions under exact line search. Its performance is then compared to that of some of the well-known previous CG methods based on number of iterations and CPU time. The results show that the new CG algorithm has the best efficiency amongst all the methods tested. This paper also includes an application of the new CG algorithm for solving large system of linear equations

  6. Application of Linear and Non-Linear Harmonic Methods for Unsteady Transonic Flow

    NASA Astrophysics Data System (ADS)

    Gundevia, Rayomand

    This thesis explores linear and non-linear computational methods for solving unsteady flow. The eventual goal is to apply these methods to two-dimensional and three-dimensional flutter predictions. In this study the quasi-one-dimensional nozzle is used as a framework for understanding these methods and their limitations. Subsonic and transonic cases are explored as the back-pressure is forced to oscillate with known amplitude and frequency. A steady harmonic approach is used to solve this unsteady problem for which perturbations are said to be small in comparison to the mean flow. The use of a linearized Euler equations (LEE) scheme is good at capturing the flow characteristics but is limited by accuracy to relatively small amplitude perturbations. The introduction of time-averaged second-order terms in the Non-Linear Harmonic (NLH) method means that a better approximation of the mean-valued solution, upon which the linearization is based, can be made. The nonlinear time-accurate Euler solutions are used for comparison and to establish the regimes of unsteadiness for which these schemes fails. The usefulness of the LEE and NLH methods lie in the gains in computational efficiency over the full equations.

  7. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.

    PubMed

    Heidenreich, Elvio A; Ferrero, José M; Doblaré, Manuel; Rodríguez, José F

    2010-07-01

    Many problems in biology and engineering are governed by anisotropic reaction-diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction-diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.

  8. Thinking in Terms of Sensors: Personification of Self as an Object in Physics Problem Solving

    ERIC Educational Resources Information Center

    Tabor-Morris, A. E.

    2015-01-01

    How can physics teachers help students develop consistent problem solving techniques for both simple and complicated physics problems, such as those that encompass objects undergoing multiple forces (mechanical or electrical) as individually portrayed in free-body diagrams and/or phenomenon involving multiple objects, such as Doppler effect…

  9. Helping Students with Emotional and Behavioral Disorders Solve Mathematics Word Problems

    ERIC Educational Resources Information Center

    Alter, Peter

    2012-01-01

    The author presents a strategy for helping students with emotional and behavioral disorders become more proficient at solving math word problems. Math word problems require students to go beyond simple computation in mathematics (e.g., adding, subtracting, multiplying, and dividing) and use higher level reasoning that includes recognizing relevant…

  10. A Simple Derivation of Kepler's Laws without Solving Differential Equations

    ERIC Educational Resources Information Center

    Provost, J.-P.; Bracco, C.

    2009-01-01

    Proceeding like Newton with a discrete time approach of motion and a geometrical representation of velocity and acceleration, we obtain Kepler's laws without solving differential equations. The difficult part of Newton's work, when it calls for non-trivial properties of ellipses, is avoided by the introduction of polar coordinates. Then a simple…

  11. The Use of Procedural Knowledge in Simple Addition and Subtraction Problems

    ERIC Educational Resources Information Center

    Fayol, Michel; Thevenot, Catherine

    2012-01-01

    In a first experiment, adults were asked to solve one-digit additions, subtractions and multiplications. When the sign appeared 150 ms before the operands, addition and subtraction were solved faster than when the sign and the operands appeared simultaneously on screen. This priming effect was not observed for multiplication problems. A second…

  12. Sensitivity calculations for iteratively solved problems

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.

    1985-01-01

    The calculation of sensitivity derivatives of solutions of iteratively solved systems of algebraic equations is investigated. A modified finite difference procedure is presented which improves the accuracy of the calculated derivatives. The procedure is demonstrated for a simple algebraic example as well as an element-by-element preconditioned conjugate gradient iterative solution technique applied to truss examples.

  13. Duality of Mathematical Thinking When Making Sense of Simple Word Problems: Theoretical Essay

    ERIC Educational Resources Information Center

    Polotskaia, Elena; Savard, Annie; Freiman, Viktor

    2015-01-01

    This essay proposes a reflection on the learning difficulties and teaching approaches associated with arithmetic word problem solving. We question the development of word problem solving skills in the early grades of elementary school. We are trying to revive the discussion because first, the knowledge in question--reversibility of arithmetic…

  14. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.

    PubMed

    Richter, Christiane; Kotz, Frederik; Giselbrecht, Stefan; Helmer, Dorothea; Rapp, Bastian E

    2016-06-01

    The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier-Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier-Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier-Stokes equation for arbitrary channel cross-sections.

  15. Prediction of Sound Waves Propagating Through a Nozzle Without/With a Shock Wave Using the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2000-01-01

    The benchmark problems in Category 1 (Internal Propagation) of the third Computational Aeroacoustics (CAA) Work-shop sponsored by NASA Glenn Research Center are solved using the space-time conservation element and solution element (CE/SE) method. The first problem addresses the propagation of sound waves through a nearly choked transonic nozzle. The second one concerns shock-sound interaction in a supersonic nozzle. A quasi one-dimension CE/SE Euler solver for a nonuniform mesh is developed and employed to solve both problems. Numerical solutions are compared with the analytical solution for both problems. It is demonstrated that the CE/SE method is capable of solving aeroacoustic problems with/without shock waves in a simple way. Furthermore, the simple nonreflecting boundary condition used in the CE/SE method which is not based on the characteristic theory works very well.

  16. Evaluating forest management policies by parametric linear programing

    Treesearch

    Daniel I. Navon; Richard J. McConnen

    1967-01-01

    An analytical and simulation technique, parametric linear programing explores alternative conditions and devises an optimal management plan for each condition. Its application in solving policy-decision problems in the management of forest lands is illustrated in an example.

  17. Vervet monkeys use paths consistent with context-specific spatial movement heuristics.

    PubMed

    Teichroeb, Julie A

    2015-10-01

    Animal foraging routes are analogous to the computationally demanding "traveling salesman problem" (TSP), where individuals must find the shortest path among several locations before returning to the start. Humans approximate solutions to TSPs using simple heuristics or "rules of thumb," but our knowledge of how other animals solve multidestination routing problems is incomplete. Most nonhuman primate species have shown limited ability to route plan. However, captive vervets were shown to solve a TSP for six sites. These results were consistent with either planning three steps ahead or a risk-avoidance strategy. I investigated how wild vervet monkeys (Chlorocebus pygerythrus) solved a path problem with six, equally rewarding food sites; where site arrangement allowed assessment of whether vervets found the shortest route and/or used paths consistent with one of three simple heuristics to navigate. Single vervets took the shortest possible path in fewer than half of the trials, usually in ways consistent with the most efficient heuristic (the convex hull). When in competition, vervets' paths were consistent with different, more efficient heuristics dependent on their dominance rank (a cluster strategy for dominants and the nearest neighbor rule for subordinates). These results suggest that, like humans, vervets may solve multidestination routing problems by applying simple, adaptive, context-specific "rules of thumb." The heuristics that were consistent with vervet paths in this study are the same as some of those asserted to be used by humans. These spatial movement strategies may have common evolutionary roots and be part of a universal mental navigational toolkit. Alternatively, they may have emerged through convergent evolution as the optimal way to solve multidestination routing problems.

  18. Improving the Energy Market: Algorithms, Market Implications, and Transmission Switching

    NASA Astrophysics Data System (ADS)

    Lipka, Paula Ann

    This dissertation aims to improve ISO operations through a better real-time market solution algorithm that directly considers both real and reactive power, finds a feasible Alternating Current Optimal Power Flow solution, and allows for solving transmission switching problems in an AC setting. Most of the IEEE systems do not contain any thermal limits on lines, and the ones that do are often not binding. Chapter 3 modifies the thermal limits for the IEEE systems to create new, interesting test cases. Algorithms created to better solve the power flow problem often solve the IEEE cases without line limits. However, one of the factors that makes the power flow problem hard is thermal limits on the lines. The transmission networks in practice often have transmission lines that become congested, and it is unrealistic to ignore line limits. Modifying the IEEE test cases makes it possible for other researchers to be able to test their algorithms on a setup that is closer to the actual ISO setup. This thesis also examines how to convert limits given on apparent power---as is in the case in the Polish test systems---to limits on current. The main consideration in setting line limits is temperature, which linearly relates to current. Setting limits on real or apparent power is actually a proxy for using the limits on current. Therefore, Chapter 3 shows how to convert back to the best physical representation of line limits. A sequential linearization of the current-voltage formulation of the Alternating Current Optimal Power Flow (ACOPF) problem is used to find an AC-feasible generator dispatch. In this sequential linearization, there are parameters that are set to the previous optimal solution. Additionally, to improve accuracy of the Taylor series approximations that are used, the movement of the voltage is restricted. The movement of the voltage is allowed to be very large at the first iteration and is restricted further on each subsequent iteration, with the restriction corresponding to the accuracy and AC-feasiblity of the solution. This linearization was tested on the IEEE and Polish systems, which range from 14 to 3375 buses and 20 to 4161 transmission lines. It had an accuracy of 0.5% or less for all but the 30-bus system. It also solved in linear time with CPLEX, while the non-linear version solved in O(n1.11) to O(n1.39). The sequential linearization is slower than the nonlinear formulation for smaller problems, but faster for larger problems, and its linear computational time means it would continue solving faster for larger problems. A major consideration to implementing algorithms to solve the optimal generator dispatch is ensuring that the resulting prices from the algorithm will support the market. Since the sequential linearization is linear, it is convex, its marginal values are well-defined, and there is no duality gap. The prices and settlements obtained from the sequential linearization therefore can be used to run a market. This market will include extra prices and settlements for reactive power and voltage, compared to the present-day market, which is based on real power. An advantage of this is that there is a very clear pool that can be used for reactive power/voltage support payments, while presently there is not a clear pool to take them out of. This method also reveals how valuable reactive power and voltage are at different locations, which can enable better planning of reactive resource construction. Transmission switching increases the feasible region of the generator dispatch, which means there may be a better solution than without transmission switching. Power flows on transmission lines are not directly controllable; rather, the power flows according to how it is injected and the physical characteristics of the lines. Changing the network topology changes the physical characteristics, which changes the flows. This means that sets of generator dispatch that may have previously been infeasible due to the flow exceeding line constraints may be feasible, since the flows will be different and may meet line constraints. However, transmission switching is a mixed integer problem, which may have a very slow solution time. For economic switching, we examine a series of heuristics. We examine the congestion rent heuristic in detail and then examine many other heuristics at a higher level. Post-contingency corrective switching aims to fix issues in the power network after a line or generator outage. In Chapter 7, we show that using the sequential linear program with corrective switching helps solve voltage and excessive flow issues. (Abstract shortened by UMI.).

  19. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

    NASA Technical Reports Server (NTRS)

    Sloss, J. M.; Kranzler, S. K.

    1972-01-01

    The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

  20. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  1. VENVAL : a plywood mill cost accounting program

    Treesearch

    Henry Spelter

    1991-01-01

    This report documents a package of computer programs called VENVAL. These programs prepare plywood mill data for a linear programming (LP) model that, in turn, calculates the optimum mix of products to make, given a set of technologies and market prices. (The software to solve a linear program is not provided and must be obtained separately.) Linear programming finds...

  2. Analyzing Multilevel Data: An Empirical Comparison of Parameter Estimates of Hierarchical Linear Modeling and Ordinary Least Squares Regression

    ERIC Educational Resources Information Center

    Rocconi, Louis M.

    2011-01-01

    Hierarchical linear models (HLM) solve the problems associated with the unit of analysis problem such as misestimated standard errors, heterogeneity of regression and aggregation bias by modeling all levels of interest simultaneously. Hierarchical linear modeling resolves the problem of misestimated standard errors by incorporating a unique random…

  3. Iterative color-multiplexed, electro-optical processor.

    PubMed

    Psaltis, D; Casasent, D; Carlotto, M

    1979-11-01

    A noncoherent optical vector-matrix multiplier using a linear LED source array and a linear P-I-N photodiode detector array has been combined with a 1-D adder in a feedback loop. The resultant iterative optical processor and its use in solving simultaneous linear equations are described. Operation on complex data is provided by a novel color-multiplexing system.

  4. Schwarz maps of algebraic linear ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  5. A Computationally Efficient Parallel Levenberg-Marquardt Algorithm for Large-Scale Big-Data Inversion

    NASA Astrophysics Data System (ADS)

    Lin, Y.; O'Malley, D.; Vesselinov, V. V.

    2015-12-01

    Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a powerful tool for large-scale applications.

  6. On the parallel solution of parabolic equations

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Youcef

    1989-01-01

    Parallel algorithms for the solution of linear parabolic problems are proposed. The first of these methods is based on using polynomial approximation to the exponential. It does not require solving any linear systems and is highly parallelizable. The two other methods proposed are based on Pade and Chebyshev approximations to the matrix exponential. The parallelization of these methods is achieved by using partial fraction decomposition techniques to solve the resulting systems and thus offers the potential for increased time parallelism in time dependent problems. Experimental results from the Alliant FX/8 and the Cray Y-MP/832 vector multiprocessors are also presented.

  7. A two-qubit photonic quantum processor and its application to solving systems of linear equations

    PubMed Central

    Barz, Stefanie; Kassal, Ivan; Ringbauer, Martin; Lipp, Yannick Ole; Dakić, Borivoje; Aspuru-Guzik, Alán; Walther, Philip

    2014-01-01

    Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, we implement various instances of the quantum algorithm for solving of systems of linear equations. PMID:25135432

  8. Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Linderoth

    2011-11-06

    the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.

  9. Numerical solution of distributed order fractional differential equations

    NASA Astrophysics Data System (ADS)

    Katsikadelis, John T.

    2014-02-01

    In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

  10. Accelerate quasi Monte Carlo method for solving systems of linear algebraic equations through shared memory

    NASA Astrophysics Data System (ADS)

    Lai, Siyan; Xu, Ying; Shao, Bo; Guo, Menghan; Lin, Xiaola

    2017-04-01

    In this paper we study on Monte Carlo method for solving systems of linear algebraic equations (SLAE) based on shared memory. Former research demostrated that GPU can effectively speed up the computations of this issue. Our purpose is to optimize Monte Carlo method simulation on GPUmemoryachritecture specifically. Random numbers are organized to storein shared memory, which aims to accelerate the parallel algorithm. Bank conflicts can be avoided by our Collaborative Thread Arrays(CTA)scheme. The results of experiments show that the shared memory based strategy can speed up the computaions over than 3X at most.

  11. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    PubMed

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  12. A Simple Interactive Software Package for Plotting, Animating, and Calculating

    ERIC Educational Resources Information Center

    Engelhardt, Larry

    2012-01-01

    We introduce a new open source (free) software package that provides a simple, highly interactive interface for carrying out certain mathematical tasks that are commonly encountered in physics. These tasks include plotting and animating functions, solving systems of coupled algebraic equations, and basic calculus (differentiating and integrating…

  13. Solving Simple Kinetics without Integrals

    ERIC Educational Resources Information Center

    de la Pen~a, Lisandro Herna´ndez

    2016-01-01

    The solution of simple kinetic equations is analyzed without referencing any topic from differential equations or integral calculus. Guided by the physical meaning of the rate equation, a systematic procedure is used to generate an approximate solution that converges uniformly to the exact solution in the case of zero, first, and second order…

  14. Stimulating Mathematical Reasoning with Simple Open-Ended Tasks

    ERIC Educational Resources Information Center

    West, John

    2018-01-01

    The importance of mathematical reasoning is unquestioned and providing opportunities for students to become involved in mathematical reasoning is paramount. The open-ended tasks presented incorporate mathematical content explored through the contexts of problem solving and reasoning. This article presents a number of simple tasks that may be…

  15. A Heuristic Fast Method to Solve the Nonlinear Schroedinger Equation in Fiber Bragg Gratings with Arbitrary Shape Input Pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emami, F.; Hatami, M.; Keshavarz, A. R.

    2009-08-13

    Using a combination of Runge-Kutta and Jacobi iterative method, we could solve the nonlinear Schroedinger equation describing the pulse propagation in FBGs. By decomposing the electric field to forward and backward components in fiber Bragg grating and utilizing the Fourier series analysis technique, the boundary value problem of a set of coupled equations governing the pulse propagation in FBG changes to an initial condition coupled equations which can be solved by simple Runge-Kutta method.

  16. Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners

    DOE PAGES

    Li, Ruipeng; Saad, Yousef

    2017-08-01

    This study presents a parallel preconditioning method for distributed sparse linear systems, based on an approximate inverse of the original matrix, that adopts a general framework of distributed sparse matrices and exploits domain decomposition (DD) and low-rank corrections. The DD approach decouples the matrix and, once inverted, a low-rank approximation is applied by exploiting the Sherman--Morrison--Woodbury formula, which yields two variants of the preconditioning methods. The low-rank expansion is computed by the Lanczos procedure with reorthogonalizations. Numerical experiments indicate that, when combined with Krylov subspace accelerators, this preconditioner can be efficient and robust for solving symmetric sparse linear systems. Comparisonsmore » with pARMS, a DD-based parallel incomplete LU (ILU) preconditioning method, are presented for solving Poisson's equation and linear elasticity problems.« less

  17. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review)

    NASA Astrophysics Data System (ADS)

    Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.

    2012-11-01

    Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)

  18. An empirical investigation of methods for nonsymmetric linear systems

    NASA Technical Reports Server (NTRS)

    Sherman, A. H.

    1981-01-01

    The present investigation is concerned with a comparison of methods for solving linear algebraic systems which arise from finite difference discretizations of the elliptic convection-diffusion equation in a planar region Omega with Dirichlet boundary conditions. Such linear systems are typically of the form Ax = b where A is an N x N sparse nonsymmetric matrix. In a discussion of discretizations, it is assumed that a regular rectilinear mesh of width h has been imposed on Omega. The discretizations considered include central differences, upstream differences, and modified upstream differences. Six methods for solving Ax = b are considered. Three variants of Gaussian elimination have been chosen as representatives of state-of-the-art software for direct methods under different assumptions about pivoting. Three iterative methods are also included.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.

    Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within themore » Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.« less

  20. Robust distributed model predictive control of linear systems with structured time-varying uncertainties

    NASA Astrophysics Data System (ADS)

    Zhang, Langwen; Xie, Wei; Wang, Jingcheng

    2017-11-01

    In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.

  1. Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ruipeng; Saad, Yousef

    This study presents a parallel preconditioning method for distributed sparse linear systems, based on an approximate inverse of the original matrix, that adopts a general framework of distributed sparse matrices and exploits domain decomposition (DD) and low-rank corrections. The DD approach decouples the matrix and, once inverted, a low-rank approximation is applied by exploiting the Sherman--Morrison--Woodbury formula, which yields two variants of the preconditioning methods. The low-rank expansion is computed by the Lanczos procedure with reorthogonalizations. Numerical experiments indicate that, when combined with Krylov subspace accelerators, this preconditioner can be efficient and robust for solving symmetric sparse linear systems. Comparisonsmore » with pARMS, a DD-based parallel incomplete LU (ILU) preconditioning method, are presented for solving Poisson's equation and linear elasticity problems.« less

  2. The design and implementation of cost-effective algorithms for direct solution of banded linear systems on the vector processor system 32 supercomputer

    NASA Technical Reports Server (NTRS)

    Samba, A. S.

    1985-01-01

    The problem of solving banded linear systems by direct (non-iterative) techniques on the Vector Processor System (VPS) 32 supercomputer is considered. Two efficient direct methods for solving banded linear systems on the VPS 32 are described. The vector cyclic reduction (VCR) algorithm is discussed in detail. The performance of the VCR on a three parameter model problem is also illustrated. The VCR is an adaptation of the conventional point cyclic reduction algorithm. The second direct method is the Customized Reduction of Augmented Triangles' (CRAT). CRAT has the dominant characteristics of an efficient VPS 32 algorithm. CRAT is tailored to the pipeline architecture of the VPS 32 and as a consequence the algorithm is implicitly vectorizable.

  3. Recherche Empirique sur les Processes de reequilibrage de l'attention dans le traitement des problemes educatifs. (Empirical Study on the Process of Redirecting Attention in Educational Problem-Solving.)

    ERIC Educational Resources Information Center

    Wasserstein-Warnet, Marc M.

    2000-01-01

    Asserts that traditional strategies of problem-solving are inadequate and that a new method is needed. Suggests four ways to redirect attention in problem solving: overcoming an instant or linear perception of time, interacting between the problem's components and its whole, searching for the meaning or sense of a problem, and studying the…

  4. Neighboring extremals of dynamic optimization problems with path equality constraints

    NASA Technical Reports Server (NTRS)

    Lee, A. Y.

    1988-01-01

    Neighboring extremals of dynamic optimization problems with path equality constraints and with an unknown parameter vector are considered in this paper. With some simplifications, the problem is reduced to solving a linear, time-varying two-point boundary-value problem with integral path equality constraints. A modified backward sweep method is used to solve this problem. Two example problems are solved to illustrate the validity and usefulness of the solution technique.

  5. Fostering and Assessing Creativity in Technology Education

    ERIC Educational Resources Information Center

    Buelin-Biesecker, Jennifer Katherine

    2012-01-01

    This study compared the creative outcomes in student work resulting from two pedagogical approaches to creative problem solving activities. A secondary goal was to validate the Consensual Assessment Technique (CAT) as a means of assessing creativity. Linear models for problem solving and design processes serve as the current paradigm in classroom…

  6. Solving Large Problems with a Small Working Memory

    ERIC Educational Resources Information Center

    Pizlo, Zygmunt; Stefanov, Emil

    2013-01-01

    We describe an important elaboration of our multiscale/multiresolution model for solving the Traveling Salesman Problem (TSP). Our previous model emulated the non-uniform distribution of receptors on the human retina and the shifts of visual attention. This model produced near-optimal solutions of TSP in linear time by performing hierarchical…

  7. Ten-Year-Old Students Solving Linear Equations

    ERIC Educational Resources Information Center

    Brizuela, Barbara; Schliemann, Analucia

    2004-01-01

    In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…

  8. Selecting exposure measures in crash rate prediction for two-lane highway segments.

    PubMed

    Qin, Xiao; Ivan, John N; Ravishanker, Nalini

    2004-03-01

    A critical part of any risk assessment is identifying how to represent exposure to the risk involved. Recent research shows that the relationship between crash count and traffic volume is non-linear; consequently, a simple crash rate computed as the ratio of crash count to volume is not proper for comparing the safety of sites with different traffic volumes. To solve this problem, we describe a new approach for relating traffic volume and crash incidence. Specifically, we disaggregate crashes into four types: (1) single-vehicle, (2) multi-vehicle same direction, (3) multi-vehicle opposite direction, and (4) multi-vehicle intersecting, and define candidate exposure measures for each that we hypothesize will be linear with respect to each crash type. This paper describes initial investigation using crash and physical characteristics data for highway segments in Michigan from the Highway Safety Information System (HSIS). We use zero-inflated-Poisson (ZIP) modeling to estimate models for predicting counts for each of the above crash types as a function of the daily volume, segment length, speed limit and roadway width. We found that the relationship between crashes and the daily volume (AADT) is non-linear and varies by crash type, and is significantly different from the relationship between crashes and segment length for all crash types. Our research will provide information to improve accuracy of crash predictions and, thus, facilitate more meaningful comparison of the safety record of seemingly similar highway locations.

  9. Non-linear vibrations of sandwich viscoelastic shells

    NASA Astrophysics Data System (ADS)

    Benchouaf, Lahcen; Boutyour, El Hassan; Daya, El Mostafa; Potier-Ferry, Michel

    2018-04-01

    This paper deals with the non-linear vibration of sandwich viscoelastic shell structures. Coupling a harmonic balance method with the Galerkin's procedure, one obtains an amplitude equation depending on two complex coefficients. The latter are determined by solving a classical eigenvalue problem and two linear ones. This permits to get the non-linear frequency and the non-linear loss factor as functions of the displacement amplitude. To validate our approach, these relationships are illustrated in the case of a circular sandwich ring.

  10. Electronic band structure effects in the stopping of protons in copper [Electronic band structure non-linear effects in the stopping of protons in copper

    DOE PAGES

    Quashie, Edwin E.; Saha, Bidhan C.; Correa, Alfredo A.

    2016-10-05

    Here, we present an ab initio study of the electronic stopping power of protons in copper over a wide range of proton velocities v = 0.02–10a.u. where we take into account nonlinear effects. Time-dependent density functional theory coupled with molecular dynamics is used to study electronic excitations produced by energetic protons. A plane-wave pseudopotential scheme is employed to solve the time-dependent Kohn-Sham equations for a moving ion in a periodic crystal. The electronic excitations and the band structure determine the stopping power of the material and alter the interatomic forces for both channeling and off-channeling trajectories. Our off-channeling results aremore » in quantitative agreement with experiments, and at low velocity they unveil a crossover region of superlinear velocity dependence (with a power of ~1.5) in the velocity range v = 0.07–0.3a.u., which we associate to the copper crystalline electronic band structure. The results are rationalized by simple band models connecting two separate regimes. We find that the limit of electronic stopping v → 0 is not as simple as phenomenological models suggest and it is plagued by band-structure effects.« less

  11. Easy way to determine quantitative spatial resolution distribution for a general inverse problem

    NASA Astrophysics Data System (ADS)

    An, M.; Feng, M.

    2013-12-01

    The spatial resolution computation of a solution was nontrivial and more difficult than solving an inverse problem. Most geophysical studies, except for tomographic studies, almost uniformly neglect the calculation of a practical spatial resolution. In seismic tomography studies, a qualitative resolution length can be indicatively given via visual inspection of the restoration of a synthetic structure (e.g., checkerboard tests). An effective strategy for obtaining quantitative resolution length is to calculate Backus-Gilbert resolution kernels (also referred to as a resolution matrix) by matrix operation. However, not all resolution matrices can provide resolution length information, and the computation of resolution matrix is often a difficult problem for very large inverse problems. A new class of resolution matrices, called the statistical resolution matrices (An, 2012, GJI), can be directly determined via a simple one-parameter nonlinear inversion performed based on limited pairs of random synthetic models and their inverse solutions. The total procedure were restricted to forward/inversion processes used in the real inverse problem and were independent of the degree of inverse skill used in the solution inversion. Spatial resolution lengths can be directly given during the inversion. Tests on 1D/2D/3D model inversion demonstrated that this simple method can be at least valid for a general linear inverse problem.

  12. A simple and complete model for wind turbine wakes over complex terrain

    NASA Astrophysics Data System (ADS)

    Rommelfanger, Nick; Rajborirug, Mai; Luzzatto-Fegiz, Paolo

    2017-11-01

    Simple models for turbine wakes have been used extensively in the wind energy community, both as independent tools, as well as to complement more refined and computationally-intensive techniques. These models typically prescribe empirical relations for how the wake radius grows with downstream distance x and obtain the wake velocity at each x through the application of either mass conservation, or of both mass and momentum conservation (e.g. Katić et al. 1986; Frandsen et al. 2006; Bastankhah & Porté-Agel 2014). Since these models assume a global behavior of the wake (for example, linear spreading with x) they cannot respond to local changes in background flow, as may occur over complex terrain. Instead of assuming a global wake shape, we develop a model by relying on a local assumption for the growth of the turbulent interface. To this end, we introduce to wind turbine wakes the use of the entrainment hypothesis, which has been used extensively in other areas of geophysical fluid dynamics. We obtain two coupled ordinary differential equations for mass and momentum conservation, which can be readily solved with a prescribed background pressure gradient. Our model is in good agreement with published data for the development of wakes over complex terrain.

  13. Constructing general partial differential equations using polynomial and neural networks.

    PubMed

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A novel approach to solve nonlinear Fredholm integral equations of the second kind.

    PubMed

    Li, Hu; Huang, Jin

    2016-01-01

    In this paper, we present a novel approach to solve nonlinear Fredholm integral equations of the second kind. This algorithm is constructed by the integral mean value theorem and Newton iteration. Convergence and error analysis of the numerical solutions are given. Moreover, Numerical examples show the algorithm is very effective and simple.

  15. Brain Hyper-Connectivity and Operation-Specific Deficits during Arithmetic Problem Solving in Children with Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod

    2015-01-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who…

  16. Research Reporting Sections, Annual Meeting of the National Council of Teachers of Mathematics (57th, Boston, Massachusetts, April 18-21, 1979).

    ERIC Educational Resources Information Center

    Higgins, Jon L., Ed.

    This document provides abstracts of 20 research reports. Topics covered include: children's comprehension of simple story problems; field independence and group instruction; problem-solving competence and memory; spatial visualization and the use of manipulative materials; effects of games on mathematical skills; problem-solving ability and right…

  17. Strategies of Pre-Service Primary School Teachers for Solving Addition Problems with Negative Numbers

    ERIC Educational Resources Information Center

    Almeida, Rut; Bruno, Alicia

    2014-01-01

    This paper analyses the strategies used by pre-service primary school teachers for solving simple addition problems involving negative numbers. The findings reveal six different strategies that depend on the difficulty of the problem and, in particular, on the unknown quantity. We note that students use negative numbers in those problems they find…

  18. Problem Solving vs. Troubleshooting Tasks: The Case of Sixth-Grade Students Studying Simple Electric Circuits

    ERIC Educational Resources Information Center

    Safadi, Rafi'; Yerushalmi, Edit

    2014-01-01

    We compared the materialization of knowledge integration processes in class discussions that followed troubleshooting (TS) and problem-solving (PS) tasks and examined the impact of these tasks on students' conceptual understanding. The study was conducted in two sixth-grade classes taught by the same teacher, in six lessons that constituted a…

  19. Reflection on Solutions in the Form of Refutation Texts versus Problem Solving: The Case of 8th Graders Studying Simple Electric Circuits

    ERIC Educational Resources Information Center

    Safadi, Rafi; Safadi, Ekhlass; Meidav, Meir

    2017-01-01

    This study compared students' learning in troubleshooting and problem solving activities. The troubleshooting activities provided students with solutions to conceptual problems in the form of refutation texts; namely, solutions that portray common misconceptions, refute them, and then present the accepted scientific ideas. They required students…

  20. Engineering-Based Problem Solving in the Middle School: Design and Construction with Simple Machines

    ERIC Educational Resources Information Center

    English, Lyn D.; Hudson, Peter; Dawes, Les

    2013-01-01

    Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students' problem-solving skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students in the second year (grade 8) of a three-year longitudinal study explored…

  1. Introducing Algebraic Structures through Solving Equations: Vertical Content Knowledge for K-12 Mathematics Teachers

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2014-01-01

    Algebraic structures are a necessary aspect of algebraic thinking for K-12 students and teachers. An approach for introducing the algebraic structure of groups and fields through the arithmetic properties required for solving simple equations is summarized; the collective (not individual) importance of these axioms as a foundation for algebraic…

  2. Cone-Deciphered Modes of Problem Solving Action (MPSA Cone): Alternative Perspectives on Diversified Professions.

    ERIC Educational Resources Information Center

    Lai, Su-Huei

    A conceptual framework of the modes of problem-solving action has been developed on the basis of a simple relationship cone to assist individuals in diversified professions in inquiry and implementation of theory and practice in their professional development. The conceptual framework is referred to as the Cone-Deciphered Modes of Problem Solving…

  3. Building and Solving Odd-One-Out Classification Problems: A Systematic Approach

    ERIC Educational Resources Information Center

    Ruiz, Philippe E.

    2011-01-01

    Classification problems ("find the odd-one-out") are frequently used as tests of inductive reasoning to evaluate human or animal intelligence. This paper introduces a systematic method for building the set of all possible classification problems, followed by a simple algorithm for solving the problems of the R-ASCM, a psychometric test derived…

  4. A three-dimensional method-of-characteristics solute-transport model (MOC3D)

    USGS Publications Warehouse

    Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.

    1996-01-01

    This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection-dominated problems. Mass-balance errors are generally less than 10 percent, and tend to decrease and stabilize with time.

  5. A Spreadsheet in the Mathematics Classroom.

    ERIC Educational Resources Information Center

    Watkins, Will; Taylor, Monty

    1989-01-01

    Demonstrates how spreadsheets can be used to implement linear system solving algorithms in college mathematics classes. Lotus 1-2-3 is described, a linear system of equations is illustrated using spreadsheets, and the interplay between applications, computations, and theory is discussed. (four references) (LRW)

  6. On Polynomial Solutions of Linear Differential Equations with Polynomial Coefficients

    ERIC Educational Resources Information Center

    Si, Do Tan

    1977-01-01

    Demonstrates a method for solving linear differential equations with polynomial coefficients based on the fact that the operators z and D + d/dz are known to be Hermitian conjugates with respect to the Bargman and Louck-Galbraith scalar products. (MLH)

  7. Correlation and simple linear regression.

    PubMed

    Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

    2003-06-01

    In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

  8. Teaching the Concept of Breakdown Point in Simple Linear Regression.

    ERIC Educational Resources Information Center

    Chan, Wai-Sum

    2001-01-01

    Most introductory textbooks on simple linear regression analysis mention the fact that extreme data points have a great influence on ordinary least-squares regression estimation; however, not many textbooks provide a rigorous mathematical explanation of this phenomenon. Suggests a way to fill this gap by teaching students the concept of breakdown…

  9. The Linear Imperative: An Inventory and Conceptual Analysis of Students Overuse of Linearity

    ERIC Educational Resources Information Center

    Van Dooren, Wim; De Bock, Dirk; Janssens, Dirk; Verschaffel, Lieven

    2008-01-01

    The overreliance on linear methods in students' reasoning and problem solving has been documented and discussed by several scholars in the field. So far, however, there have been no attempts to assemble the evidence and to analyze it is a systematic way. This article provides an overview and a conceptual analysis of students' tendency to use…

  10. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  11. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.

  12. Linear analysis of auto-organization in Hebbian neural networks.

    PubMed

    Carlos Letelier, J; Mpodozis, J

    1995-01-01

    The self-organization of neurotopies where neural connections follow Hebbian dynamics is framed in terms of linear operator theory. A general and exact equation describing the time evolution of the overall synaptic strength connecting two neural laminae is derived. This linear matricial equation, which is similar to the equations used to describe oscillating systems in physics, is modified by the introduction of non-linear terms, in order to capture self-organizing (or auto-organizing) processes. The behavior of a simple and small system, that contains a non-linearity that mimics a metabolic constraint, is analyzed by computer simulations. The emergence of a simple "order" (or degree of organization) in this low-dimensionality model system is discussed.

  13. The median problems on linear multichromosomal genomes: graph representation and fast exact solutions.

    PubMed

    Xu, Andrew Wei

    2010-09-01

    In genome rearrangement, given a set of genomes G and a distance measure d, the median problem asks for another genome q that minimizes the total distance [Formula: see text]. This is a key problem in genome rearrangement based phylogenetic analysis. Although this problem is known to be NP-hard, we have shown in a previous article, on circular genomes and under the DCJ distance measure, that a family of patterns in the given genomes--represented by adequate subgraphs--allow us to rapidly find exact solutions to the median problem in a decomposition approach. In this article, we extend this result to the case of linear multichromosomal genomes, in order to solve more interesting problems on eukaryotic nuclear genomes. A multi-way capping problem in the linear multichromosomal case imposes an extra computational challenge on top of the difficulty in the circular case, and this difficulty has been underestimated in our previous study and is addressed in this article. We represent the median problem by the capped multiple breakpoint graph, extend the adequate subgraphs into the capped adequate subgraphs, and prove optimality-preserving decomposition theorems, which give us the tools to solve the median problem and the multi-way capping optimization problem together. We also develop an exact algorithm ASMedian-linear, which iteratively detects instances of (capped) adequate subgraphs and decomposes problems into subproblems. Tested on simulated data, ASMedian-linear can rapidly solve most problems with up to several thousand genes, and it also can provide optimal or near-optimal solutions to the median problem under the reversal/HP distance measures. ASMedian-linear is available at http://sites.google.com/site/andrewweixu .

  14. Tensor-GMRES method for large sparse systems of nonlinear equations

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1994-01-01

    This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.

  15. Control of non-linear actuator of artificial muscles for the use in low-cost robotics prosthetics limbs

    NASA Astrophysics Data System (ADS)

    Anis Atikah, Nurul; Yeng Weng, Leong; Anuar, Adzly; Chien Fat, Chau; Sahari, Khairul Salleh Mohamed; Zainal Abidin, Izham

    2017-10-01

    Currently, the methods of actuating robotic-based prosthetic limbs are moving away from bulky actuators to more fluid materials such as artificial muscles. The main disadvantages of these artificial muscles are their high cost of manufacturing, low-force generation, cumbersome and complex controls. A recent discovery into using super coiled polymer (SCP) proved to have low manufacturing costs, high force generation, compact and simple controls. Nevertheless, the non-linear controls still exists due to the nature of heat-based actuation, which is hysteresis. This makes position control difficult. Using electrically conductive devices allows for very quick heating, but not quick cooling. This research tries to solve the problem by using peltier devices, which can effectively heat and cool the SCP, hence giving way to a more precise control. The peltier device does not actively introduce more energy to a volume of space, which the coiled heating does; instead, it acts as a heat pump. Experiments were conducted to test the feasibility of using peltier as an actuating method on different diameters of nylon fishing strings. Based on these experiments, the performance characteristics of the strings were plotted, which could be used to control the actuation of the string efficiently in the future.

  16. Polynomial approximation of functions of matrices and its application to the solution of a general system of linear equations

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, Hillel

    1987-01-01

    During the process of solving a mathematical model numerically, there is often a need to operate on a vector v by an operator which can be expressed as f(A) while A is NxN matrix (ex: exp(A), sin(A), A sup -1). Except for very simple matrices, it is impractical to construct the matrix f(A) explicitly. Usually an approximation to it is used. In the present research, an algorithm is developed which uses a polynomial approximation to f(A). It is reduced to a problem of approximating f(z) by a polynomial in z while z belongs to the domain D in the complex plane which includes all the eigenvalues of A. This problem of approximation is approached by interpolating the function f(z) in a certain set of points which is known to have some maximal properties. The approximation thus achieved is almost best. Implementing the algorithm to some practical problem is described. Since a solution to a linear system Ax = b is x= A sup -1 b, an iterative solution to it can be regarded as a polynomial approximation to f(A) = A sup -1. Implementing the algorithm in this case is also described.

  17. Automatic optimal filament segmentation with sub-pixel accuracy using generalized linear models and B-spline level-sets.

    PubMed

    Xiao, Xun; Geyer, Veikko F; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F

    2016-08-01

    Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Adaptive Importance Sampling for Control and Inference

    NASA Astrophysics Data System (ADS)

    Kappen, H. J.; Ruiz, H. C.

    2016-03-01

    Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feynman-Kac PI and can be estimated using Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. We review the most commonly used methods in robotics and control. Within the PI theory, the question of how to compute becomes the question of importance sampling. Efficient importance samplers are state feedback controllers and the use of these requires an efficient representation. Learning and representing effective state-feedback controllers for non-linear stochastic control problems is a very challenging, and largely unsolved, problem. We show how to learn and represent such controllers using ideas from the cross entropy method. We derive a gradient descent method that allows to learn feed-back controllers using an arbitrary parametrisation. We refer to this method as the path integral cross entropy method or PICE. We illustrate this method for some simple examples. The PI control methods can be used to estimate the posterior distribution in latent state models. In neuroscience these problems arise when estimating connectivity from neural recording data using EM. We demonstrate the PI control method as an accurate alternative to particle filtering.

  19. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.

    PubMed

    Chung, Frank H

    2017-05-01

    For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.

  20. Solid oxide fuel cell simulation and design optimization with numerical adjoint techniques

    NASA Astrophysics Data System (ADS)

    Elliott, Louie C.

    This dissertation reports on the application of numerical optimization techniques as applied to fuel cell simulation and design. Due to the "multi-physics" inherent in a fuel cell, which results in a highly coupled and non-linear behavior, an experimental program to analyze and improve the performance of fuel cells is extremely difficult. This program applies new optimization techniques with computational methods from the field of aerospace engineering to the fuel cell design problem. After an overview of fuel cell history, importance, and classification, a mathematical model of solid oxide fuel cells (SOFC) is presented. The governing equations are discretized and solved with computational fluid dynamics (CFD) techniques including unstructured meshes, non-linear solution methods, numerical derivatives with complex variables, and sensitivity analysis with adjoint methods. Following the validation of the fuel cell model in 2-D and 3-D, the results of the sensitivity analysis are presented. The sensitivity derivative for a cost function with respect to a design variable is found with three increasingly sophisticated techniques: finite difference, direct differentiation, and adjoint. A design cycle is performed using a simple optimization method to improve the value of the implemented cost function. The results from this program could improve fuel cell performance and lessen the world's dependence on fossil fuels.

  1. Random variable transformation for generalized stochastic radiative transfer in finite participating slab media

    NASA Astrophysics Data System (ADS)

    El-Wakil, S. A.; Sallah, M.; El-Hanbaly, A. M.

    2015-10-01

    The stochastic radiative transfer problem is studied in a participating planar finite continuously fluctuating medium. The problem is considered for specular- and diffusly-reflecting boundaries with linear anisotropic scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions, that are represented by the probability-density function (PDF) of the solution process. In the RVT algorithm, a simple integral transformation to the input stochastic process (the extinction function of the medium) is applied. This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the transport equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity and transmissivity at the medium boundaries. In terms of the average reflectivity and transmissivity, the average of the partial heat fluxes for the generalized problem with internal source of radiation are obtained and represented graphically.

  2. Evaluation of Two Statistical Methods Provides Insights into the Complex Patterns of Alternative Polyadenylation Site Switching

    PubMed Central

    Li, Jie; Li, Rui; You, Leiming; Xu, Anlong; Fu, Yonggui; Huang, Shengfeng

    2015-01-01

    Switching between different alternative polyadenylation (APA) sites plays an important role in the fine tuning of gene expression. New technologies for the execution of 3’-end enriched RNA-seq allow genome-wide detection of the genes that exhibit significant APA site switching between different samples. Here, we show that the independence test gives better results than the linear trend test in detecting APA site-switching events. Further examination suggests that the discrepancy between these two statistical methods arises from complex APA site-switching events that cannot be represented by a simple change of average 3’-UTR length. In theory, the linear trend test is only effective in detecting these simple changes. We classify the switching events into four switching patterns: two simple patterns (3’-UTR shortening and lengthening) and two complex patterns. By comparing the results of the two statistical methods, we show that complex patterns account for 1/4 of all observed switching events that happen between normal and cancerous human breast cell lines. Because simple and complex switching patterns may convey different biological meanings, they merit separate study. We therefore propose to combine both the independence test and the linear trend test in practice. First, the independence test should be used to detect APA site switching; second, the linear trend test should be invoked to identify simple switching events; and third, those complex switching events that pass independence testing but fail linear trend testing can be identified. PMID:25875641

  3. Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models.

    PubMed

    Wilson, Machelle D; Sethi, Sunjay; Lein, Pamela J; Keil, Kimberly P

    2017-03-01

    The Sholl technique is widely used to quantify dendritic morphology. Data from such studies, which typically sample multiple neurons per animal, are often analyzed using simple linear models. However, simple linear models fail to account for intra-class correlation that occurs with clustered data, which can lead to faulty inferences. Mixed effects models account for intra-class correlation that occurs with clustered data; thus, these models more accurately estimate the standard deviation of the parameter estimate, which produces more accurate p-values. While mixed models are not new, their use in neuroscience has lagged behind their use in other disciplines. A review of the published literature illustrates common mistakes in analyses of Sholl data. Analysis of Sholl data collected from Golgi-stained pyramidal neurons in the hippocampus of male and female mice using both simple linear and mixed effects models demonstrates that the p-values and standard deviations obtained using the simple linear models are biased downwards and lead to erroneous rejection of the null hypothesis in some analyses. The mixed effects approach more accurately models the true variability in the data set, which leads to correct inference. Mixed effects models avoid faulty inference in Sholl analysis of data sampled from multiple neurons per animal by accounting for intra-class correlation. Given the widespread practice in neuroscience of obtaining multiple measurements per subject, there is a critical need to apply mixed effects models more widely. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A computer program to find the kernel of a polynomial operator

    NASA Technical Reports Server (NTRS)

    Gejji, R. R.

    1976-01-01

    This paper presents a FORTRAN program written to solve for the kernel of a matrix of polynomials with real coefficients. It is an implementation of Sain's free modular algorithm for solving the minimal design problem of linear multivariable systems. The structure of the program is discussed, together with some features as they relate to questions of implementing the above method. An example of the use of the program to solve a design problem is included.

  5. Profile of male-field dependent (FD) prospective teacher's reflective thinking in solving contextual mathematical problem

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.

  6. Complex Problem Solving: What It Is and What It Is Not

    PubMed Central

    Dörner, Dietrich; Funke, Joachim

    2017-01-01

    Computer-simulated scenarios have been part of psychological research on problem solving for more than 40 years. The shift in emphasis from simple toy problems to complex, more real-life oriented problems has been accompanied by discussions about the best ways to assess the process of solving complex problems. Psychometric issues such as reliable assessments and addressing correlations with other instruments have been in the foreground of these discussions and have left the content validity of complex problem solving in the background. In this paper, we return the focus to content issues and address the important features that define complex problems. PMID:28744242

  7. Surgery for left ventricular aneurysm: early and late survival after simple linear repair and endoventricular patch plasty.

    PubMed

    Lundblad, Runar; Abdelnoor, Michel; Svennevig, Jan Ludvig

    2004-09-01

    Simple linear resection and endoventricular patch plasty are alternative techniques to repair postinfarction left ventricular aneurysm. The aim of the study was to compare these 2 methods with regard to early mortality and long-term survival. We retrospectively reviewed 159 patients undergoing operations between 1989 and 2003. The epidemiologic design was of an exposed (simple linear repair, n = 74) versus nonexposed (endoventricular patch plasty, n = 85) cohort with 2 endpoints: early mortality and long-term survival. The crude effect of aneurysm repair technique versus endpoint was estimated by odds ratio, rate ratio, or relative risk and their 95% confidence intervals. Stratification analysis by using the Mantel-Haenszel method was done to quantify confounders and pinpoint effect modifiers. Adjustment for multiconfounders was performed by using logistic regression and Cox regression analysis. Survival curves were analyzed with the Breslow test and the log-rank test. Early mortality was 8.2% for all patients, 13.5% after linear repair and 3.5% after endoventricular patch plasty. When adjusted for multiconfounders, the risk of early mortality was significantly higher after simple linear repair than after endoventricular patch plasty (odds ratio, 4.4; 95% confidence interval, 1.1-17.8). Mean follow-up was 5.8 +/- 3.8 years (range, 0-14.0 years). Overall 5-year cumulative survival was 78%, 70.1% after linear repair and 91.4% after endoventricular patch plasty. The risk of total mortality was significantly higher after linear repair than after endoventricular patch plasty when controlled for multiconfounders (relative risk, 4.5; 95% confidence interval, 2.0-9.7). Linear repair dominated early in the series and patch plasty dominated later, giving a possible learning-curve bias in favor of patch plasty that could not be adjusted for in the regression analysis. Postinfarction left ventricular aneurysm can be repaired with satisfactory early and late results. Surgical risk was lower and long-term survival was higher after endoventricular patch plasty than simple linear repair. Differences in outcome should be interpreted with care because of the retrospective study design and the chronology of the 2 repair methods.

  8. The Implementation of Problem-Solving Based Laboratory Activities to Teach the Concept of Simple Harmonic Motion in Senior High School

    NASA Astrophysics Data System (ADS)

    Iradat, R. D.; Alatas, F.

    2017-09-01

    Simple harmonic motion is considered as a relatively complex concept to be understood by students. This study attempts to implement laboratory activities that focus on solving contextual problems related to the concept. A group of senior high school students participated in this pre-experimental method from a group’s pretest-posttest research design. Laboratory activities have had a positive impact on improving students’ scientific skills, such as, formulating goals, conducting experiments, applying laboratory tools, and collecting data. Therefore this study has added to the theoretical and practical knowledge that needs to be considered to teach better complicated concepts in physics learning.

  9. Helicons in uniform fields. I. Wave diagnostics with hodograms

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2018-03-01

    The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.

  10. Using Probabilistic Information in Solving Resource Allocation Problems for a Decentralized Firm

    DTIC Science & Technology

    1978-09-01

    deterministic equivalent form of HIQ’s problem (5) by an approach similar to the one used in stochastic programming with simple recourse. See Ziemba [38) or, in...1964). 38. Ziemba , W.T., "Stochastic Programs with Simple Recourse," Technical Report 72-15, Stanford University, Department of Operations Research

  11. Score Big! Pinball Project Teaches Simple Machine Basics

    ERIC Educational Resources Information Center

    Freeman, Matthew K.

    2009-01-01

    This article presents a design brief for a pinball game. The design brief helps students get a better grasp on the operation and uses of simple machines. It also gives them an opportunity to develop their problem-solving skills and use design skills to complete an interesting, fun product. (Contains 2 tables and 3 photos.)

  12. Knowledge Building and Mathematics: Shifting the Responsibility for Knowledge Advancement and Engagement

    ERIC Educational Resources Information Center

    Moss, Joan; Beatty, Ruth

    2010-01-01

    Three classrooms of Grade 4 students from different schools and diverse backgrounds collaborated in early algebra research to solve a series of linear and quadratic generalizing problems. Results revealed that high- and low-achieving students were able to solve problems of recognized difficulty. We discuss Knowledge Building principles and…

  13. Tying Theory To Practice: Cognitive Aspects of Computer Interaction in the Design Process.

    ERIC Educational Resources Information Center

    Mikovec, Amy E.; Dake, Dennis M.

    The new medium of computer-aided design requires changes to the creative problem-solving methodologies typically employed in the development of new visual designs. Most theoretical models of creative problem-solving suggest a linear progression from preparation and incubation to some type of evaluative study of the "inspiration." These…

  14. Original Recipes for Matrix Multiplication

    ERIC Educational Resources Information Center

    Hallman-Thrasher, Allyson; Litchfield, Erin T.; Dael, Kevin E.

    2016-01-01

    Matrices occupy an awkward spot in a typical algebra 2 textbook: sandwiched between solving linear systems and solving quadratics. Even teachers who do not base their course timeline and pacing on the class textbook may find a disconnect between how matrices are taught (procedurally) and how other topics are taught (conceptually or with real-world…

  15. Modelling Problem-Solving Situations into Number Theory Tasks: The Route towards Generalisation

    ERIC Educational Resources Information Center

    Papadopoulos, Ioannis; Iatridou, Maria

    2010-01-01

    This paper examines the way two 10th graders cope with a non-standard generalisation problem that involves elementary concepts of number theory (more specifically linear Diophantine equations) in the geometrical context of a rectangle's area. Emphasis is given on how the students' past experience of problem solving (expressed through interplay…

  16. Quantum Linear System Algorithm for Dense Matrices.

    PubMed

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-02

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that Ax=b. We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O(κ^{2}sqrt[n]polylog(n)/ε) for an n×n dimensional A with bounded spectral norm, where κ denotes the condition number of A, and ε is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A.

  17. A high-accuracy optical linear algebra processor for finite element applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  18. Solution of Volterra and Fredholm Classes of Equations via Triangular Orthogonal Function (A Combination of Right Hand Triangular Function and Left Hand Triangular Function) and Hybrid Orthogonal Function (A Combination of Sample Hold Function and Right Hand Triangular Function)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Anirban; Ganguly, Anindita; Chatterjee, Saumya Deep

    2018-04-01

    In this paper the authors have dealt with seven kinds of non-linear Volterra and Fredholm classes of equations. The authors have formulated an algorithm for solving the aforementioned equation types via Hybrid Function (HF) and Triangular Function (TF) piecewise-linear orthogonal approach. In this approach the authors have reduced integral equation or integro-differential equation into equivalent system of simultaneous non-linear equation and have employed either Newton's method or Broyden's method to solve the simultaneous non-linear equations. The authors have calculated the L2-norm error and the max-norm error for both HF and TF method for each kind of equations. Through the illustrated examples, the authors have shown that the HF based algorithm produces stable result, on the contrary TF-computational method yields either stable, anomalous or unstable results.

  19. Analysis of single-degree-of-freedom piezoelectric energy harvester with stopper by incremental harmonic balance method

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Wang, Xiaoman; Cheng, Yuan; Liu, Shaogang; Wu, Yanhong; Chai, Liqin; Liu, Yang; Cheng, Qianju

    2018-05-01

    Piecewise-linear structure can effectively broaden the working frequency band of the piezoelectric energy harvester, and improvement of its research can promote the practical process of energy collection device to meet the requirements for powering microelectronic components. In this paper, the incremental harmonic balance (IHB) method is introduced for the complicated and difficult analysis process of the piezoelectric energy harvester to solve these problems. After obtaining the nonlinear dynamic equation of the single-degree-of-freedom piecewise-linear energy harvester by mathematical modeling and the equation is solved based on the IHB method, the theoretical amplitude-frequency curve of open-circuit voltage is achieved. Under 0.2 g harmonic excitation, a piecewise-linear energy harvester is experimentally tested by unidirectional frequency-increasing scanning. The results demonstrate that the theoretical and experimental amplitudes have the same trend, and the width of the working band with high voltage output are 4.9 Hz and 4.7 Hz, respectively, and the relative error is 4.08%. The open-output peak voltage are 21.53 V and 18.25 V, respectively, and the relative error is 15.23%. Since the theoretical value is consistent with the experimental results, the theoretical model and the incremental harmonic balance method used in this paper are suitable for solving single-degree-of-freedom piecewise-linear piezoelectric energy harvester and can be applied to further parameter optimized design.

  20. Ranking Forestry Investments With Parametric Linear Programming

    Treesearch

    Paul A. Murphy

    1976-01-01

    Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.

Top