NASA Astrophysics Data System (ADS)
Kumar, Naveen; Kumar, Ashish
2018-07-01
A novel single-mode single-fiber (SMSF) MZI formed by cascading of two non-adiabatic fiber tapers, with stable and repeatable spectrum, has been found to be useful in sensing applications in recent times. A multimode interference based novel simulation approach is proposed to predict the sensing characteristics of SMSF-MZI and is validated with experimental observation. The proposed method includes solving of simultaneous non-homogenous equations for determining the amplitudes of the interfering modes excited in the tapered section of the interferometer. The simulated fringe pattern and the experimental spectral response converge to some important comprehension reported for the first time. A linear shift in output spectral response, of SMSF-MZI, due to change in optical path length induced by temperature/strain etc., is likely to be characterized by three modes interference occurring in the interference region of the interferometer. Whereas if the spectral shift starts saturating at moderately higher temperature/strain, then the formation of interference fringes are possibly governed by two modes interference. Further, it was also explained that a SMSF-MZI with variable fringe widths in its spectral pattern exhibits higher sensitivity than that of the SMSF-MZI having wavelength spectrum with uniform free spectral range. These findings are useful in selecting and predicting the sensitivity of a given SMSF-MZI, based on its spectrum, for sensing applications.
Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats
Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi
2015-01-01
Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed ‘jamming’ and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats’ response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats’ response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. PMID:26702045
Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats.
Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi
2015-12-22
Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed 'jamming' and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats' response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats' response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. © 2015 The Author(s).
Interference thinking in constructing students’ knowledge to solve mathematical problems
NASA Astrophysics Data System (ADS)
Jayanti, W. E.; Usodo, B.; Subanti, S.
2018-04-01
This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.
Compressed-sensing wavenumber-scanning interferometry
NASA Astrophysics Data System (ADS)
Bai, Yulei; Zhou, Yanzhou; He, Zhaoshui; Ye, Shuangli; Dong, Bo; Xie, Shengli
2018-01-01
The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FT as a standard algorithm for DRWSI.
Adaptive detection of noise signal according to Neumann-Pearson criterion
NASA Astrophysics Data System (ADS)
Padiryakov, Y. A.
1985-03-01
Optimum detection according to the Neumann-Pearson criterion is considered in the case of a random Gaussian noise signal, stationary during measurement, and a stationary random Gaussian background interference. Detection is based on two samples, their statistics characterized by estimates of their spectral densities, it being a priori known that sample A from the signal channel is either the sum of signal and interference or interference alone and sample B from the reference interference channel is an interference with the same spectral density as that of the interference in sample A for both hypotheses. The probability of correct detection is maximized on the average, first in the 2N-dimensional space of signal spectral density and interference spectral density readings, by fixing the probability of false alarm at each point so as to stabilize it at a constant level against variation of the interference spectral density. Deterministic decision rules are established. The algorithm is then reduced to equivalent detection in the N-dimensional space of the ratio of sample A readings to sample B readings.
Distributed information system on molecular spectroscopy
NASA Astrophysics Data System (ADS)
Bykov, A. D.; Fazliev, A. Z.; Kozodoev, A. V.; Privezentsev, A. I.; Sinitsa, L. N.; Tonkov, M. V.; Filippov, N. N.; Tretyakov, M. Yu.
2006-12-01
The urgency of creating the information-computational systems (ICS) on molecular spectroscopy follows from the circumstance that for some molecules the number of calculated energy levels counts hundreds of thousands, and the number of spectral lines sometimes reaches hundreds of millions. Publication of such data volumes in regular journals is inappropriate. Comparison of different calculated spectral characteristics or their comparison with experimental data beyond computer processing is hopeless. We find information systems to be an adequate form for holding such data volumes and a toolkit for handling them. Correct digital data processing requires appropriate sets of metadata arranged in the form of ontology of molecular spectroscopy. Our information system provides the data on spectral line parameters, water molecule energy levels, and absorption coefficients. Within this distributed IS one can solve two types of problems: manipulation with data and calculation of spectral functions. Among the latest experimental data in the IS there are data obtained at the Institute of Applied Physics RAS. To calculate the absorption coefficients for the molecules of carbonic acid gas, we take into consideration spectral line interference.
Impact of ageing on problem size and proactive interference in arithmetic facts solving.
Archambeau, Kim; De Visscher, Alice; Noël, Marie-Pascale; Gevers, Wim
2018-02-01
Arithmetic facts (AFs) are required when solving problems such as "3 × 4" and refer to calculations for which the correct answer is retrieved from memory. Currently, two important effects that modulate the performance in AFs have been highlighted: the problem size effect and the proactive interference effect. The aim of this study is to investigate possible age-related changes of the problem size effect and the proactive interference effect in AF solving. To this end, the performance of young and older adults was compared in a multiplication production task. Furthermore, an independent measure of proactive interference was assessed to further define the architecture underlying this effect in multiplication solving. The results indicate that both young and older adults were sensitive to the effects of interference and of the problem size. That is, both interference and problem size affected performance negatively: the time needed to solve a multiplication problem increases as the level of interference and the size of the problem increase. Regarding the effect of ageing, the problem size effect remains constant with age, indicating a preserved AF network in older adults. Interestingly, sensitivity to proactive interference in multiplication solving was less pronounced in older than in younger adults suggesting that part of the proactive interference has been overcome with age.
[Spatial domain display for interference image dataset].
Wang, Cai-Ling; Li, Yu-Shan; Liu, Xue-Bin; Hu, Bing-Liang; Jing, Juan-Juan; Wen, Jia
2011-11-01
The requirements of imaging interferometer visualization is imminent for the user of image interpretation and information extraction. However, the conventional researches on visualization only focus on the spectral image dataset in spectral domain. Hence, the quick show of interference spectral image dataset display is one of the nodes in interference image processing. The conventional visualization of interference dataset chooses classical spectral image dataset display method after Fourier transformation. In the present paper, the problem of quick view of interferometer imager in image domain is addressed and the algorithm is proposed which simplifies the matter. The Fourier transformation is an obstacle since its computation time is very large and the complexion would be even deteriorated with the size of dataset increasing. The algorithm proposed, named interference weighted envelopes, makes the dataset divorced from transformation. The authors choose three interference weighted envelopes respectively based on the Fourier transformation, features of interference data and human visual system. After comparing the proposed with the conventional methods, the results show the huge difference in display time.
NASA Astrophysics Data System (ADS)
Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka
2016-05-01
This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution. The sample pretreatment methods by sintering with magnesium oxide and oxidizing agents as well as a microwave acid digestion were applied. The feasibility, accuracy and precision of the analytical results were experimentally demonstrated by certified reference materials.
De Zan, M M; Gil García, M D; Culzoni, M J; Siano, R G; Goicoechea, H C; Martínez Galera, M
2008-02-01
The effect of piecewise direct standardization (PDS) and baseline correction approaches was evaluated in the performance of multivariate curve resolution (MCR-ALS) algorithm for the resolution of three-way data sets from liquid chromatography with diode-array detection (LC-DAD). First, eight tetracyclines (tetracycline, oxytetracycline, chlorotetracycline, demeclocycline, methacycline, doxycycline, meclocycline and minocycline) were isolated from 250 mL effluent wastewater samples by solid-phase extraction (SPE) with Oasis MAX 500 mg/6 mL cartridges and then separated on an Aquasil C18 150 mm x 4.6mm (5 microm particle size) column by LC and detected by DAD. Previous experiments, carried out with Milli-Q water samples, showed a considerable loss of the most polar analytes (minocycline, oxitetracycline and tetracycline) due to breakthrough. PDS was applied to overcome this important drawback. Conversion of chromatograms obtained from standards prepared in solvent was performed obtaining a high correlation with those corresponding to the real situation (r2 = 0.98). Although the enrichment and clean-up steps were carefully optimized, the sample matrix caused a large baseline drift, and also additive interferences were present at the retention times of the analytes. These problems were solved with the baseline correction method proposed by Eilers. MCR-ALS was applied to the corrected and uncorrected three-way data sets to obtain spectral and chromatographic profiles of each tetracycline, as well as those corresponding to the co-eluting interferences. The complexity of the calibration model built from uncorrected data sets was higher, as expected, and the quality of the spectral and chromatographic profiles was worse.
NASA Astrophysics Data System (ADS)
Schanen-Duport, Isabelle; Persegol, Dominique; Collomb, Virginie; Minier, Vincent; Haguenauer, Pierre
2017-11-01
Astronomical aperture synthesis requires to combine beams coming from telescopes, with constraints on mechanical and thermal stability, accuracy on the measurement of the interferences visibility. One adapted way for solving the problem is integrated planar optics. A first two telescope beam combiner made by ion exchange technique on glass substrate and build with symmetric Y-junction provides laboratory white light interferograms simultaneously with photometric calibration. In order to increase the interferometric signal without loss of photometric output, we propose to replace symmetric Y-junctions by asymmetric ones. In this paper, we report the conception, the manufacturing and the characterization of asymmetric Y-junction realized by ion exchange on glass substrate. The specific application of astronomical interferometry required the characterization of such component in term of spectral behavior, so we report the simulation and the measurement of asymmetric Y-junction response versus wavelength.
Sharpness of interference pattern of the 3-pole wiggler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dejus, Roger J., E-mail: dejus@aps.anl.gov; Kim, Kwang-Je
2016-07-27
Due to the small emittance, radiation from neighboring poles of a strong wiggler in future multi-bend achromat-based storage rings can exhibit sharp interference patterns. The spectral-angular distributions of the 3-pole wiggler for the proposed Advanced Photon Source (APS) upgrade were computed and prominent interference patterns were found. In this paper we provide an understanding of such interference patterns. The equations governing the interference pattern are described and computed spectral-angular distributions of a modeled 3-pole wiggler magnetic field using these equations are presented.
Sharpness of Interference Pattern of the 3-Pole Wiggler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dejus, Roger J.; Kim, Kwang-Je
2016-07-02
Due to the small emittance, radiation from neighboring poles of a strong wiggler in future multi-bend achromat-based storage rings can exhibit sharp interference patterns. The spectral-angular distributions of the 3-pole wiggler for the proposed Advanced Photon Source (APS) upgrade were computed and prominent interference patterns were found. In this paper we provide an understanding of such interference patterns. The equations governing the interference pattern are described and computed spectral-angular distributions of a modeled 3-pole wiggler magnetic field using these equations are presented.
EIT Imaging Regularization Based on Spectral Graph Wavelets.
Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut
2017-09-01
The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.
Interference graph-based dynamic frequency reuse in optical attocell networks
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan
2017-11-01
Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).
Influence of methane addition on selenium isotope sensitivity and their spectral interferences.
Floor, Geerke H; Millot, Romain; Iglesias, Mónica; Négrel, Philippe
2011-02-01
The measurements of stable selenium (Se) isotopic signatures by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) are very challenging, due to the presence of spectral interferences and the low abundance of Se in environmental samples. We systematically investigated the effect of methane addition on the signal of Se isotopes and their interferences. It is the first time that the effect of methane addition has been assessed for all Se isotopes and its potential interferences using hydride generator multi-collector inductively coupled plasma mass spectrometry (HG-MC-ICP-MS). Our results show that a small methane addition increases the sensitivity. However, the response differs between a hydride generator and a standard introduction system, which might be related to differences in the ionization processes. Both argon and hydrogen-based interferences, the most common spectral interferences on selenium isotopes in HG-MC-ICP-MS, decrease with increasing methane addition. Therefore, analyte-interference ratios and precision are improved. Methane addition has thus a high potential for the application to stable Se isotopes ratios by HG-MC-ICP-MS. Copyright © 2011 John Wiley & Sons, Ltd.
Interference-free coherence dynamics of gas-phase molecules using spectral focusing.
Wrzesinski, Paul J; Roy, Sukesh; Gord, James R
2012-10-08
Spectral focusing using broadband femtosecond pulses to achieve highly selective measurements has been employed for numerous applications in spectroscopy and microspectroscopy. In this work we highlight the use of spectral focusing for selective excitation and detection of gas-phase species. Furthermore, we demonstrate that spectral focusing, coupled with time-resolved measurements based upon probe delay, allows the observation of interference-free coherence dynamics of multiple molecules and gas-phase temperature making this technique ideal for gas-phase measurements of reacting flows and combustion processes.
Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M
2014-05-01
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.
2014-05-01
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet
2014-05-15
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
NASA Astrophysics Data System (ADS)
Vale, Maria Goreti R.; Welz, Bernhard
2002-12-01
The literature on the determination of Tl in environmental samples using electrothermal atomization (ETA) and vaporization (ETV) techniques has been reviewed with special attention devoted to potential interferences and their control. Chloride interference, which is due to the formation of the volatile monochloride in the condensed phase, is the most frequently observed problem. Due to its high dissociation energy (88 kcal/mol), TlCl is difficult to dissociate in the gas phase and is easily lost. The best means of controlling this interference in ETA is atomization under isothermal conditions according to the stabilized temperature platform furnace concept, and the use of reduced palladium as a modifier. An alternative approach appears to be the 'fast furnace' concept, wherein both the use of a modifier and the pyrolysis stage are omitted. This concept requires an efficient background correction system, and high-resolution continuum-source atomic absorption spectrometry (HR-CS AAS) appears to offer the best results. This chloride interference can also cause significant problems when ETV techniques are used. Among the spectral interferences found in the determination of thallium are those due to Pd, the most efficient modifier, and Fe, which is frequently found at high concentrations in environmental samples. Both interferences are due to nearby atomic lines, and are observed only when deuterium background correction and relatively high atomization temperatures are used. A more serious spectral interference is that due to the molecular absorption spectrum of SO 2, which has a maximum around the Tl line and exhibits a pronounced rotational fine structure. HR-CS AAS again showed the best performance in coping with this interference.
Chan, H L; Lin, J L; Huang, H H; Wu, C P
1997-09-01
A new technique for interference-term suppression in Wigner-Ville distribution (WVD) is proposed for the signal with 1/f spectrum shape. The spectral characteristic of the signal is altered by f alpha filtering before time-frequency analysis and compensated after analysis. With the utilization of the proposed technique in smoothed pseudo Wigner-Ville distribution, an excellent suppression of interference component can be achieved.
Reduction of polyatomic interferences in ICP-MS by collision/reaction cell (CRC-ICP-MS) techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eiden, Greg C; Barinaga, Charles J; Koppenaal, David W
2012-05-01
Polyatomic and other spectral interferences in plasma source mass spectrometry (PSMS) can be dramatically reduced using collision and reaction cells (CRC). These devices have been used for decades in fundamental studies of ion-molecule chemistry, but have only recently been applied to PSMS. Benefits of this approach as applied in inductively coupled plasma MS (ICP-MS) include interference reduction, isobar separation, and thermalization/focusing of ions. Novel ion-molecule chemistry schemes are now routinely designed and empirically evaluated with relative ease. These “chemical resolution” techniques can avert interferences requiring mass spectral resolutions of >600,000 (m/m). Purely physical ion beam processes, including collisional dampening andmore » collisional dissociation, are also employed to provide improved sensitivity, resolution, and spectral simplicity. CRC techniques are now firmly entrenched in current-day ICP-MS technology, enabling unprecedented flexibility and freedom from many spectral interferences. A significant body of applications has now been reported in the literature. CRC techniques are found to be most useful for specialized or difficult analytical needs and situations, and are employed in both single- and multi-element determination modes.« less
FIVQ algorithm for interference hyper-spectral image compression
NASA Astrophysics Data System (ADS)
Wen, Jia; Ma, Caiwen; Zhao, Junsuo
2014-07-01
Based on the improved vector quantization (IVQ) algorithm [1] which was proposed in 2012, this paper proposes a further improved vector quantization (FIVQ) algorithm for LASIS (Large Aperture Static Imaging Spectrometer) interference hyper-spectral image compression. To get better image quality, IVQ algorithm takes both the mean values and the VQ indices as the encoding rules. Although IVQ algorithm can improve both the bit rate and the image quality, it still can be further improved in order to get much lower bit rate for the LASIS interference pattern with the special optical characteristics based on the pushing and sweeping in LASIS imaging principle. In the proposed algorithm FIVQ, the neighborhood of the encoding blocks of the interference pattern image, which are using the mean value rules, will be checked whether they have the same mean value as the current processing block. Experiments show the proposed algorithm FIVQ can get lower bit rate compared to that of the IVQ algorithm for the LASIS interference hyper-spectral sequences.
Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths.
Kuo, Paulina S; Gerrits, Thomas; Verma, Varun B; Nam, Sae Woo
2016-11-01
We characterize an entangled-photon-pair source that produces signal and idler photons at 1533 nm and 1567 nm using fiber-assisted signal-photon spectroscopy. By erasing the polarization distinguishability, we observe interference between the two down-conversion paths. The observed interference signature is closely related to the spectral correlations between photons in a Hong-Ou-Mandel interferometer. These measurements suggest good indistinguishability between the two down-conversion paths, which is required for high entanglement visibility.
Intrinsic transmission magnetic circular dichroism spectra of GaMnAs
NASA Astrophysics Data System (ADS)
Terada, Hiroshi; Ohya, Shinobu; Tanaka, Masaaki
2018-03-01
Transmission magnetic circular dichroism (MCD) spectroscopy has been widely used to reveal the spin-dependent band structure of ferromagnetic semiconductors. In these previous studies, some band pictures have been proposed from the spectral shapes observed in transmission MCD; however, extrinsic signals originating from optical interference have not been appropriately considered. In this study, we calculate the MCD spectra taking into account the optical interference of the layered structure of samples and show that the spectral shape of MCD is strongly influenced by optical interference. To correctly understand the transmission MCD, we also calculate the intrinsic MCD spectra of GaMnAs that are not influenced by the optical interference. The spectral shape of the intrinsic MCD can be explained by the characteristic band structure of GaMnAs, that is, the spin-polarized valence band and the impurity band existing above the valence band top.
NASA Astrophysics Data System (ADS)
Bi, Yiming; Tang, Liang; Shan, Peng; Xie, Qiong; Hu, Yong; Peng, Silong; Tan, Jie; Li, Changwen
2014-08-01
Interference such as baseline drift and light scattering can degrade the model predictability in multivariate analysis of near-infrared (NIR) spectra. Usually interference can be represented by an additive and a multiplicative factor. In order to eliminate these interferences, correction parameters are needed to be estimated from spectra. However, the spectra are often mixed of physical light scattering effects and chemical light absorbance effects, making it difficult for parameter estimation. Herein, a novel algorithm was proposed to find a spectral region automatically that the interesting chemical absorbance and noise are low, that is, finding an interference dominant region (IDR). Based on the definition of IDR, a two-step method was proposed to find the optimal IDR and the corresponding correction parameters estimated from IDR. Finally, the correction was performed to the full spectral range using previously obtained parameters for the calibration set and test set, respectively. The method can be applied to multi target systems with one IDR suitable for all targeted analytes. Tested on two benchmark data sets of near-infrared spectra, the performance of the proposed method provided considerable improvement compared with full spectral estimation methods and comparable with other state-of-art methods.
NASA Astrophysics Data System (ADS)
Kim, Woo-Ju; Lee, Hak-Soon; Lee, Sang-Shin
2012-04-01
A compact silicon nitride grating coupler with flexible bandwidth was demonstrated taking advantage of a basic grating integrated with a serially connected multistage multimode interference (MMI) filter. The spectral response could be tailored by varying the order of the MMI filter, without affecting the basic grating structure. The dependence of the spectral response of the proposed device on the order of the MMI stage was thoroughly investigated. As regards the fabricated grating coupler with a four-stage MMI filter, the observed spectral bandwidth was efficiently altered from 53 to 21 nm in the ˜1550 nm spectral band.
NASA Technical Reports Server (NTRS)
Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.
1989-01-01
The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.
NASA Technical Reports Server (NTRS)
Degaudenzi, R.; Elia, C.; Viola, R.
1990-01-01
Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.
NASA Astrophysics Data System (ADS)
Mangia, Mauro; Pareschi, Fabio; Rovatti, Riccardo; Setti, Gianluca
This paper presents a way to cope with the need of simultaneously rejecting narrowband interference and multi-access interference in a UWB system based on direct-sequence CDMA. With this aim in mind, we rely on a closed-form expression of the system bit error probability in presence of both effects. By means of such a formula, we evaluate the effect of spectrum shaping techniques applied to the spreading sequences. The availability of a certain number of degrees of freedom in deciding the spectral profile allows us to cope with different configurations depending on the relative interfering power but also on the relative position of the signal center frequency and the narrowband interferer.
An MILP-based cross-layer optimization for a multi-reader arbitration in the UHF RFID system.
Choi, Jinchul; Lee, Chaewoo
2011-01-01
In RFID systems, the performance of each reader such as interrogation range and tag recognition rate may suffer from interferences from other readers. Since the reader interference can be mitigated by output signal power control, spectral and/or temporal separation among readers, the system performance depends on how to adapt the various reader arbitration metrics such as time, frequency, and output power to the system environment. However, complexity and difficulty of the optimization problem increase with respect to the variety of the arbitration metrics. Thus, most proposals in previous study have been suggested to primarily prevent the reader collision with consideration of one or two arbitration metrics. In this paper, we propose a novel cross-layer optimization design based on the concept of combining time division, frequency division, and power control not only to solve the reader interference problem, but also to achieve the multiple objectives such as minimum interrogation delay, maximum reader utilization, and energy efficiency. Based on the priority of the multiple objectives, our cross-layer design optimizes the system sequentially by means of the mixed-integer linear programming. In spite of the multi-stage optimization, the optimization design is formulated as a concise single mathematical form by properly assigning a weight to each objective. Numerical results demonstrate the effectiveness of the proposed optimization design.
An MILP-Based Cross-Layer Optimization for a Multi-Reader Arbitration in the UHF RFID System
Choi, Jinchul; Lee, Chaewoo
2011-01-01
In RFID systems, the performance of each reader such as interrogation range and tag recognition rate may suffer from interferences from other readers. Since the reader interference can be mitigated by output signal power control, spectral and/or temporal separation among readers, the system performance depends on how to adapt the various reader arbitration metrics such as time, frequency, and output power to the system environment. However, complexity and difficulty of the optimization problem increase with respect to the variety of the arbitration metrics. Thus, most proposals in previous study have been suggested to primarily prevent the reader collision with consideration of one or two arbitration metrics. In this paper, we propose a novel cross-layer optimization design based on the concept of combining time division, frequency division, and power control not only to solve the reader interference problem, but also to achieve the multiple objectives such as minimum interrogation delay, maximum reader utilization, and energy efficiency. Based on the priority of the multiple objectives, our cross-layer design optimizes the system sequentially by means of the mixed-integer linear programming. In spite of the multi-stage optimization, the optimization design is formulated as a concise single mathematical form by properly assigning a weight to each objective. Numerical results demonstrate the effectiveness of the proposed optimization design. PMID:22163743
Interference Processes During Reradiation of Attosecond Pulses of Electromagnetic Field by Graphene
NASA Astrophysics Data System (ADS)
Makarov, D. N.; Matveev, V. I.; Makarova, K. A.
2018-05-01
Interference spectra during reradiation of attosecond pulses of electromagnetic field by graphene sheets are considered. Analytical expressions for calculations of spectral distributions are derived. As an example, the interference spectra of a graphene sheet and a flat rectangular lattice are compared.
Numerical techniques for high-throughput reflectance interference biosensing
NASA Astrophysics Data System (ADS)
Sevenler, Derin; Ünlü, M. Selim
2016-06-01
We have developed a robust and rapid computational method for processing the raw spectral data collected from thin film optical interference biosensors. We have applied this method to Interference Reflectance Imaging Sensor (IRIS) measurements and observed a 10,000 fold improvement in processing time, unlocking a variety of clinical and scientific applications. Interference biosensors have advantages over similar technologies in certain applications, for example highly multiplexed measurements of molecular kinetics. However, processing raw IRIS data into useful measurements has been prohibitively time consuming for high-throughput studies. Here we describe the implementation of a lookup table (LUT) technique that provides accurate results in far less time than naive methods. We also discuss an additional benefit that the LUT method can be used with a wider range of interference layer thickness and experimental configurations that are incompatible with methods that require fitting the spectral response.
New Operational Matrices for Solving Fractional Differential Equations on the Half-Line
2015-01-01
In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. PMID:25996369
New operational matrices for solving fractional differential equations on the half-line.
Bhrawy, Ali H; Taha, Taha M; Alzahrani, Ebraheem O; Alzahrani, Ebrahim O; Baleanu, Dumitru; Alzahrani, Abdulrahim A
2015-01-01
In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.
A simple integrated ratiometric wavelength monitor based on multimode interference structure
NASA Astrophysics Data System (ADS)
Hatta, Agus Muhamad; Farrell, Gerald; Wang, Qian
2008-09-01
Wavelength measurement or monitoring can be implemented using a ratiometric power measurement technique. A ratiometric wavelength monitor normally consists of a Y-branch splitter with two arms: an edge filter arm with a well defined spectral response and a reference arm or alternatively, two edge filters arms with opposite slope spectral responses. In this paper, a simple configuration for an integrated ratiometric wavelength monitor based on a single multimode interference structure is proposed. By optimizing the length of the MMI and the two output port positions, opposite spectral responses for the two output ports can be achieved. The designed structure demonstrates a spectral response suitable for wavelength measurement with potentially a 10 pm resolution over a 100 nm wavelength range.
Using an interference spectrum as a short-range absolute rangefinder with fiber and wideband source
NASA Astrophysics Data System (ADS)
Hsieh, Tsung-Han; Han, Pin
2018-06-01
Recently, a new type of displacement instrument using spectral-interference has been found, which utilizes fiber and a wideband light source to produce an interference spectrum. In this work, we develop a method that measures the absolute air-gap distance by taking wavelengths at two interference spectra minima. The experimental results agree with the theoretical calculations. It is also utilized to produce and control the spectral switch, which is much easier than other previous methods using other control mechanisms. A scanning mode of this scheme for stepped surface measurement is suggested, which is verified by a standard thickness gauge test. Our scheme is different to one available on the market that may use a curve-fitting method, and some comparisons are made between our scheme and that one.
NASA Astrophysics Data System (ADS)
Ivanov, M. P.; Tolmachev, Yu. A.
2018-05-01
We consider the most feasible ways to significantly improve the sensitivity of spectroscopic methods for detection and measurement of trace concentrations of greenhouse gas molecules in the atmosphere. The proposed methods are based on combining light fluxes from a number of spectral components of the specified molecule on the same photodetector, taking into account the characteristic features of the transmission spectrum of devices utilizing multipath interference effects.
NASA Astrophysics Data System (ADS)
Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong
2018-04-01
We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.
Low Cost Solar Array Project: Composition Measurements by Analytical Photon Catalysis
NASA Technical Reports Server (NTRS)
Sutton, D. G.; Galvan, L.; Melzer, J.; Heidner, R. F., III
1979-01-01
The applicability of the photon catalysis technique for effecting composition analysis of silicon samples was assessed. Third quarter activities were devoted to the study of impurities in silicon matrices. The evaporation process was shown to be congruent; thus, the spectral analysis of the vapor yields the composition of the bulk sample. Qualitative analysis of metal impurities in silicon was demonstrated e part per million level. Only one atomic spectral interference was noted; however, it is imperative to maintain a leak tight system due to chemical and spectral interferences caused by the presence of even minute amounts of oxygen in the active nitrogen afterglow.
A Legendre tau-spectral method for solving time-fractional heat equation with nonlocal conditions.
Bhrawy, A H; Alghamdi, M A
2014-01-01
We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem.
A Legendre tau-Spectral Method for Solving Time-Fractional Heat Equation with Nonlocal Conditions
Bhrawy, A. H.; Alghamdi, M. A.
2014-01-01
We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem. PMID:25057507
NASA Astrophysics Data System (ADS)
Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa
2016-04-01
X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.
Constant-Envelope Waveform Design for Optimal Target-Detection and Autocorrelation Performances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata
2013-01-01
We propose an algorithm to directly synthesize in time-domain a constant-envelope transmit waveform that achieves the optimal performance in detecting an extended target in the presence of signal-dependent interference. This approach is in contrast to the traditional indirect methods that synthesize the transmit signal following the computation of the optimal energy spectral density. Additionally, we aim to maintain a good autocorrelation property of the designed signal. Therefore, our waveform design technique solves a bi-objective optimization problem in order to simultaneously improve the detection and autocorrelation performances, which are in general conflicting in nature. We demonstrate this compromising characteristics of themore » detection and autocorrelation performances with numerical examples. Furthermore, in the absence of the autocorrelation criterion, our designed signal is shown to achieve a near-optimum detection performance.« less
Gordon, Sherald H; Harry-O'kuru, Rogers E; Mohamed, Abdellatif A
2017-11-01
Infrared analysis of proteins and polysaccharides by the well known KBr disk technique is notoriously frustrated and defeated by absorbed water interference in the important amide and hydroxyl regions of spectra. This interference has too often been overlooked or ignored even when the resulting distortion is critical or even fatal, as in quantitative analyses of protein secondary structure, because the water has been impossible to measure or eliminate. Therefore, a new chemometric method was devised that corrects spectra of materials in KBr disks by mathematically eliminating the water interference. A new concept termed the Beer-Lambert law absorbance ratio (R-matrix) model was augmented with water concentration ratios computed via an exponential decay kinetic model of the water absorption process in KBr, which rendered the otherwise indeterminate system of linear equations determinate and thus possible to solve in a formal analytic manner. Consequently, the heretofore baffling KBr water elimination problem is now solved once and for all. Using the new formal solution, efforts to eliminate water interference from KBr disks in research will be defeated no longer. Resulting spectra of protein were much more accurate than attenuated total reflection (ATR) spectra corrected using the well-accepted Advanced ATR Correction Algorithm. Published by Elsevier B.V.
Kowalczyk, Marek
2017-07-01
Earlier research by the author revealed that material encoded incidentally in a speeded affective classification task and related to the demands of a divergent problem tends to be recalled worse in participants who solved the problem prior to encoding than in participants in the control, no-problem condition. The aim of the present experiment was to replicate this effect with a new, size-comparison orienting task, and to test for possible mechanisms of impaired recall. Participants either solved a problem before the orienting task or not, and classified each item in this task either once or three times. There was a reliable effect of impaired recall of problem-related items in the repetition condition, but not in the no-repetition condition. Solving the problem did not influence repetition priming for these items. These results support an account that attributes the impaired recall to inhibitory processes at learning and speak against a proactive interference explanation. However, they can be also accommodated by an account that refers to inefficient context cues and competitor interference at retrieval.
Algorithms for Solvents and Spectral Factors of Matrix Polynomials
1981-01-01
spectral factors of matrix polynomials LEANG S. SHIEHt, YIH T. TSAYt and NORMAN P. COLEMANt A generalized Newton method , based on the contracted gradient...of a matrix poly- nomial, is derived for solving the right (left) solvents and spectral factors of matrix polynomials. Two methods of selecting initial...estimates for rapid convergence of the newly developed numerical method are proposed. Also, new algorithms for solving complete sets of the right
NASA Astrophysics Data System (ADS)
Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan
2012-01-01
Despite major improvements in dental healthcare and oral hygiene, dental caries remains one of the most prevalent oral diseases and represents the primary cause of oral pain and tooth loss. The initial stages of dental caries are characterized by demineralization of enamel crystals and are difficult to diagnose. Near infrared (NIR) hyperspectral imaging is a new promising technique for detection of early changes in the surfaces of carious teeth. This noninvasive imaging technique can characterize and differentiate between the sound tooth surface and initial or advanced tooth caries. The absorbing and scattering properties of dental tissues reflect in distinct spectral features, which can be measured, quantified and used to accurately classify and map different dental tissues. Specular reflections from the tooth surface, which appear as bright spots, mostly located around the edges and the crests of the teeth, act as a noise factor which can significantly interfere with the spectral measurements and analysis of the acquired images, degrading the accuracy of the classification and diagnosis. Employing cross-polarized imaging setup can solve this problem, however has yet to be systematically evaluated, especially in broadband hyperspectral imaging setups. In this paper, we employ cross-polarized illumination setup utilizing state-of-the-art high-contrast broadband wire-grid polarizers in the spectral range from 900 nm to 1700 nm for hyperspectral imaging of natural and artificial carious lesions of various degrees.
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.
2015-07-01
In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.
NASA Astrophysics Data System (ADS)
Medjahdi, Yahia; Terré, Michel; Ruyet, Didier Le; Roviras, Daniel
2014-12-01
In this paper, we investigate the impact of timing asynchronism on the performance of multicarrier techniques in a spectrum coexistence context. Two multicarrier schemes are considered: cyclic prefix-based orthogonal frequency division multiplexing (CP-OFDM) with a rectangular pulse shape and filter bank-based multicarrier (FBMC) with physical layer for dynamic spectrum access and cognitive radio (PHYDYAS) and isotropic orthogonal transform algorithm (IOTA) waveforms. First, we present the general concept of the so-called power spectral density (PSD)-based interference tables which are commonly used for multicarrier interference characterization in spectrum sharing context. After highlighting the limits of this approach, we propose a new family of interference tables called `instantaneous interference tables'. The proposed tables give the interference power caused by a given interfering subcarrier on a victim one, not only as a function of the spectral distance separating both subcarriers but also with respect to the timing misalignment between the subcarrier holders. In contrast to the PSD-based interference tables, the accuracy of the proposed tables has been validated through different simulation results. Furthermore, due to the better frequency localization of both PHYDYAS and IOTA waveforms, FBMC technique is demonstrated to be more robust to timing asynchronism compared to OFDM one. Such a result makes FBMC a potential candidate for the physical layer of future cognitive radio systems.
Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan
2017-01-01
This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint. PMID:28869546
Temporal interference with frequency-controllable long photons from independent cold atomic sources
NASA Astrophysics Data System (ADS)
Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.
2018-01-01
The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.
Gennaro, Sylvain D.; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V.; Maier, Stefan A.; Oulton, Rupert F.
2014-01-01
Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode’s scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences. PMID:24781663
NASA Astrophysics Data System (ADS)
Bosworth, Bryan; Foster, Mark A.
2017-02-01
Photonic time-stretch microscopy (TSM) provides an ideal platform for high-throughput imaging flow cytometry, affording extremely high shutter speeds and frame rates with high sensitivity. In order to resolve weakly scattering cells in biofluid and solve the issue of signal-to-noise in cell labeling specificity of biomarkers in imaging flow cytometry, several quantitative phase (QP) techniques have recently been adapted to TSM. However, these techniques have relied primarily on sensitive free-space optical configurations to generate full electric field measurements. The present work draws from the field of ultrashort pulse characterization to leverage the coherence of the ultrashort optical pulses integral to all TSM systems in order to do self-referenced single-shot quantitative phase imaging in a TSM system. Self-referencing is achieved via spectral shearing interferometry in an exceptionally stable and straightforward Sagnac loop incorporating an electro-optic phase modulator and polarization-maintaining fiber that produce sheared and unsheared copies of the pulse train with an inter-pulse delay determined by polarization mode dispersion. The spectral interferogram then yields a squared amplitude and a phase derivative image that can be integrated for conventional phase. We apply this spectral shearing contrast microscope to acquire QP images on a high-speed flow microscope at 90-MHz line rates with <400 pixels per line. We also consider the extension of this technique to compressed sensing (CS) acquisition by intensity modulating the interference spectra with pseudorandom binary waveforms to reconstruct the images from a highly sub-Nyquist number of random inner products, providing a path to even higher operating rates and reduced data storage requirements.
De Visscher, Alice; Vogel, Stephan E; Reishofer, Gernot; Hassler, Eva; Koschutnig, Karl; De Smedt, Bert; Grabner, Roland H
2018-05-15
In the development of math ability, a large variability of performance in solving simple arithmetic problems is observed and has not found a compelling explanation yet. One robust effect in simple multiplication facts is the problem size effect, indicating better performance for small problems compared to large ones. Recently, behavioral studies brought to light another effect in multiplication facts, the interference effect. That is, high interfering problems (receiving more proactive interference from previously learned problems) are more difficult to retrieve than low interfering problems (in terms of physical feature overlap, namely the digits, De Visscher and Noël, 2014). At the behavioral level, the sensitivity to the interference effect is shown to explain individual differences in the performance of solving multiplications in children as well as in adults. The aim of the present study was to investigate the individual differences in multiplication ability in relation to the neural interference effect and the neural problem size effect. To that end, we used a paradigm developed by De Visscher, Berens, et al. (2015) that contrasts the interference effect and the problem size effect in a multiplication verification task, during functional magnetic resonance imaging (fMRI) acquisition. Forty-two healthy adults, who showed high variability in an arithmetic fluency test, participated in our fMRI study. In order to control for the general reasoning level, the IQ was taken into account in the individual differences analyses. Our findings revealed a neural interference effect linked to individual differences in multiplication in the left inferior frontal gyrus, while controlling for the IQ. This interference effect in the left inferior frontal gyrus showed a negative relation with individual differences in arithmetic fluency, indicating a higher interference effect for low performers compared to high performers. This region is suggested in the literature to be involved in resolution of proactive interference. Besides, no correlation between the neural problem size effect and multiplication performance was found. This study supports the idea that the interference due to similarities/overlap of physical traits (the digits) is crucial in memorizing arithmetic facts and in determining individual differences in arithmetic. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bratchikov, A. N.; Glukhov, I. P.
1992-02-01
An analysis is made of a theoretical model of an interference fiber channel for transmission of microwave signals. It is assumed that the channel consists of a multimode fiber waveguide with a step or graded refractive-index profile. A typical statistic of a longitudinal distribution of inhomogeneities is also assumed. Calculations are reported of the interference losses, the spectral profile of the output radio signal, the signal/noise ratio in the channel, and of the dependences of these parameters on: the type, diameter, and the length of the multimode fiber waveguide; the spectral width of the radiation source; the frequency offset between the interfering optical signals.
Observation of Multi-bunch Interference with Coherent Synchrotron Radiation
NASA Astrophysics Data System (ADS)
Billinghurst, B. E.; May, T.; Bergstrom, J.; DeJong, M.; Dallin, L.
2010-02-01
The observation of Multi-bunch interference with coherent synchrotron radiation at the Canadian Light Source is discussed along with the possibility that some of the spectral features are driven by the radiation impedance of the vacuum chamber.
Spectral filters for laser communications
NASA Technical Reports Server (NTRS)
Shaik, K.
1991-01-01
Optical communication systems must perform reliabily under strong background light interference. Since the transmitting lasers operate within a narrow spectral band, high signal to noise ratios can be achieved when narrowband spectral optical filters can be used to reject out of band light. Here, a set of general requirements for such filters are developed, and an overview is given of suitable spectral filter technologies for optical communication systems.
Acousto-optic filtering of lidar signals
NASA Technical Reports Server (NTRS)
Kolarov, G.; Deleva, A.; Mitsev, TS.
1992-01-01
The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.
USDA-ARS?s Scientific Manuscript database
Infrared analysis of proteins and polysaccharides by the well known KBr disk technique is notoriously frustrated and defeated by absorbed water interference in the important amide and hydroxyl regions of spectra. This interference has too often been overlooked or ignored even when the resulting dist...
ERIC Educational Resources Information Center
Quinn, Diane M.; Spencer, Steven J.
2001-01-01
Investigated whether stereotype threat would depress college women's math performance. In one test, men outperformed women when solving word problems, though women performed equally when problems were converted into numerical equivalents. In another test, participants solved difficult problems in high or reduced stereotype threat conditions. Women…
NASA Technical Reports Server (NTRS)
Glass, Christopher E.
1990-01-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
NASA Astrophysics Data System (ADS)
Glass, Christopher E.
1990-08-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
Super-Nyquist shaping and processing technologies for high-spectral-efficiency optical systems
NASA Astrophysics Data System (ADS)
Jia, Zhensheng; Chien, Hung-Chang; Zhang, Junwen; Dong, Ze; Cai, Yi; Yu, Jianjun
2013-12-01
The implementations of super-Nyquist pulse generation, both in a digital field using a digital-to-analog converter (DAC) or an optical filter at transmitter side, are introduced. Three corresponding signal processing algorithms at receiver are presented and compared for high spectral-efficiency (SE) optical systems employing the spectral prefiltering. Those algorithms are designed for the mitigation towards inter-symbol-interference (ISI) and inter-channel-interference (ICI) impairments by the bandwidth constraint, including 1-tap constant modulus algorithm (CMA) and 3-tap maximum likelihood sequence estimation (MLSE), regular CMA and digital filter with 2-tap MLSE, and constant multi-modulus algorithm (CMMA) with 2-tap MLSE. The principles and prefiltering tolerance are given through numerical and experimental results.
Spectral Analysis Tool 6.2 for Windows
NASA Technical Reports Server (NTRS)
Morgan, Feiming; Sue, Miles; Peng, Ted; Tan, Harry; Liang, Robert; Kinman, Peter
2006-01-01
Spectral Analysis Tool 6.2 is the latest version of a computer program that assists in analysis of interference between radio signals of the types most commonly used in Earth/spacecraft radio communications. [An earlier version was reported in Software for Analyzing Earth/Spacecraft Radio Interference (NPO-20422), NASA Tech Briefs, Vol. 25, No. 4 (April 2001), page 52.] SAT 6.2 calculates signal spectra, bandwidths, and interference effects for several families of modulation schemes. Several types of filters can be modeled, and the program calculates and displays signal spectra after filtering by any of the modeled filters. The program accommodates two simultaneous signals: a desired signal and an interferer. The interference-to-signal power ratio can be calculated for the filtered desired and interfering signals. Bandwidth-occupancy and link-budget calculators are included for the user s convenience. SAT 6.2 has a new software structure and provides a new user interface that is both intuitive and convenient. SAT 6.2 incorporates multi-tasking, multi-threaded execution, virtual memory management, and a dynamic link library. SAT 6.2 is designed for use on 32- bit computers employing Microsoft Windows operating systems.
Spectrally resolved laser interference microscopy
NASA Astrophysics Data System (ADS)
Butola, Ankit; Ahmad, Azeem; Dubey, Vishesh; Senthilkumaran, P.; Singh Mehta, Dalip
2018-07-01
We developed a new quantitative phase microscopy technique, namely, spectrally resolved laser interference microscopy (SR-LIM), with which it is possible to quantify multi-spectral phase information related to biological specimens without color crosstalk using a color CCD camera. It is a single shot technique where sequential switched on/off of red, green, and blue (RGB) wavelength light sources are not required. The method is implemented using a three-wavelength interference microscope and a customized compact grating based imaging spectrometer fitted at the output port. The results of the USAF resolution chart while employing three different light sources, namely, a halogen lamp, light emitting diodes, and lasers, are discussed and compared. The broadband light sources like the halogen lamp and light emitting diodes lead to stretching in the spectrally decomposed images, whereas it is not observed in the case of narrow-band light sources, i.e. lasers. The proposed technique is further successfully employed for single-shot quantitative phase imaging of human red blood cells at three wavelengths simultaneously without color crosstalk. Using the present technique, one can also use a monochrome camera, even though the experiments are performed using multi-color light sources. Finally, SR-LIM is not only limited to RGB wavelengths, it can be further extended to red, near infra-red, and infra-red wavelengths, which are suitable for various biological applications.
NASA Astrophysics Data System (ADS)
Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest
2016-11-01
Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.
NASA Astrophysics Data System (ADS)
Zhou, Yunfei; Cai, Hongzhi; Zhong, Liyun; Qiu, Xiang; Tian, Jindong; Lu, Xiaoxu
2017-05-01
In white light scanning interferometry (WLSI), the accuracy of profile measurement achieved with the conventional zero optical path difference (ZOPD) position locating method is closely related with the shape of interference signal envelope (ISE), which is mainly decided by the spectral distribution of illumination source. For a broadband light with Gaussian spectral distribution, the corresponding shape of ISE reveals a symmetric distribution, so the accurate ZOPD position can be achieved easily. However, if the spectral distribution of source is irregular, the shape of ISE will become asymmetric or complex multi-peak distribution, WLSI cannot work well through using ZOPD position locating method. Aiming at this problem, we propose time-delay estimation (TDE) based WLSI method, in which the surface profile information is achieved by using the relative displacement of interference signal between different pixels instead of the conventional ZOPD position locating method. Due to all spectral information of interference signal (envelope and phase) are utilized, in addition to revealing the advantage of high accuracy, the proposed method can achieve profile measurement with high accuracy in the case that the shape of ISE is irregular while ZOPD position locating method cannot work. That is to say, the proposed method can effectively eliminate the influence of source spectrum.
Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems
Saberi Nik, Hassan; Rebelo, Paulo
2014-01-01
We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM) is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results. PMID:25386624
Distraction during learning with hypermedia: difficult tasks help to keep task goals on track
Scheiter, Katharina; Gerjets, Peter; Heise, Elke
2014-01-01
In educational hypermedia environments, students are often confronted with potential sources of distraction arising from additional information that, albeit interesting, is unrelated to their current task goal. The paper investigates the conditions under which distraction occurs and hampers performance. Based on theories of volitional action control it was hypothesized that interesting information, especially if related to a pending goal, would interfere with task performance only when working on easy, but not on difficult tasks. In Experiment 1, 66 students learned about probability theory using worked examples and solved corresponding test problems, whose task difficulty was manipulated. As a second factor, the presence of interesting information unrelated to the primary task was varied. Results showed that students solved more easy than difficult probability problems correctly. However, the presence of interesting, but task-irrelevant information did not interfere with performance. In Experiment 2, 68 students again engaged in example-based learning and problem solving in the presence of task-irrelevant information. Problem-solving difficulty was varied as a first factor. Additionally, the presence of a pending goal related to the task-irrelevant information was manipulated. As expected, problem-solving performance declined when a pending goal was present during working on easy problems, whereas no interference was observed for difficult problems. Moreover, the presence of a pending goal reduced the time on task-relevant information and increased the time on task-irrelevant information while working on easy tasks. However, as revealed by mediation analyses these changes in overt information processing behavior did not explain the decline in problem-solving performance. As an alternative explanation it is suggested that goal conflicts resulting from pending goals claim cognitive resources, which are then no longer available for learning and problem solving. PMID:24723907
Goicoechea, Héctor C; Olivieri, Alejandro C; Tauler, Romà
2010-03-01
Correlation constrained multivariate curve resolution-alternating least-squares is shown to be a feasible method for processing first-order instrumental data and achieve analyte quantitation in the presence of unexpected interferences. Both for simulated and experimental data sets, the proposed method could correctly retrieve the analyte and interference spectral profiles and perform accurate estimations of analyte concentrations in test samples. Since no information concerning the interferences was present in calibration samples, the proposed multivariate calibration approach including the correlation constraint facilitates the achievement of the so-called second-order advantage for the analyte of interest, which is known to be present for more complex higher-order richer instrumental data. The proposed method is tested using a simulated data set and two experimental data systems, one for the determination of ascorbic acid in powder juices using UV-visible absorption spectral data, and another for the determination of tetracycline in serum samples using fluorescence emission spectroscopy.
A Review on Spectral Amplitude Coding Optical Code Division Multiple Access
NASA Astrophysics Data System (ADS)
Kaur, Navpreet; Goyal, Rakesh; Rani, Monika
2017-06-01
This manuscript deals with analysis of Spectral Amplitude Coding Optical Code Division Multiple Access (SACOCDMA) system. The major noise source in optical CDMA is co-channel interference from other users known as multiple access interference (MAI). The system performance in terms of bit error rate (BER) degrades as a result of increased MAI. It is perceived that number of users and type of codes used for optical system directly decide the performance of system. MAI can be restricted by efficient designing of optical codes and implementing them with unique architecture to accommodate more number of users. Hence, it is a necessity to design a technique like spectral direct detection (SDD) technique with modified double weight code, which can provide better cardinality and good correlation property.
Chebyshev polynomials in the spectral Tau method and applications to Eigenvalue problems
NASA Technical Reports Server (NTRS)
Johnson, Duane
1996-01-01
Chebyshev Spectral methods have received much attention recently as a technique for the rapid solution of ordinary differential equations. This technique also works well for solving linear eigenvalue problems. Specific detail is given to the properties and algebra of chebyshev polynomials; the use of chebyshev polynomials in spectral methods; and the recurrence relationships that are developed. These formula and equations are then applied to several examples which are worked out in detail. The appendix contains an example FORTRAN program used in solving an eigenvalue problem.
Broadening and collisional interference of lines in the IR spectra of ammonia. Theory
NASA Astrophysics Data System (ADS)
Cherkasov, M. R.
2016-06-01
The general theory of relaxation spectral shape parameters in the impact approximation (M. R. Cherkasov, J. Quant. Spectrosc. Radiat. Transfer 141, 73 (2014)) is adapted to the case of line broadening of infrared spectra of ammonia. Specific features of line broadening of parallel and perpendicular bands are discussed. It is shown that in both cases the spectrum consists of independently broadened singlets and doublets; however, the components of doublets can be affected by collisional interference. The paper is the first part of a cycle of studies devoted to the problems of spectral line broadening of ammonia.
Are Funny Groups Good at Solving Problems? A Methodological Evaluation and Some Preliminary Results.
ERIC Educational Resources Information Center
Pollio, Howard R.; Bainum, Charlene Kubo
1983-01-01
Observed college students (N=195) divided according to sex and measures of wittiness to determine the effects of humor on problem solving in groups. Results showed that group composition was not a crucial issue in problem-solving performance, but that humerous group interaction was, and did not interfere with ongoing task performance. (LLL)
Wavelength Scanning with a Tilting Interference Filter for Glow-Discharge Elemental Imaging.
Storey, Andrew P; Ray, Steven J; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M
2017-06-01
Glow discharges have long been used for depth profiling and bulk analysis of solid samples. In addition, over the past decade, several methods of obtaining lateral surface elemental distributions have been introduced, each with its own strengths and weaknesses. Challenges for each of these techniques are acceptable optical throughput and added instrumental complexity. Here, these problems are addressed with a tilting-filter instrument. A pulsed glow discharge is coupled to an optical system comprising an adjustable-angle tilting filter, collimating and imaging lenses, and a gated, intensified charge-coupled device (CCD) camera, which together provide surface elemental mapping of solid samples. The tilting-filter spectrometer is instrumentally simpler, produces less image distortion, and achieves higher optical throughput than a monochromator-based instrument, but has a much more limited tunable spectral range and poorer spectral resolution. As a result, the tilting-filter spectrometer is limited to single-element or two-element determinations, and only when the target spectral lines fall within an appropriate spectral range and can be spectrally discerned. Spectral interferences that result from heterogeneous impurities can be flagged and overcome by observing the spatially resolved signal response across the available tunable spectral range. The instrument has been characterized and evaluated for the spatially resolved analysis of glow-discharge emission from selected but representative samples.
[Research on Spectral Polarization Imaging System Based on Static Modulation].
Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng
2015-04-01
The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection.
Zhang, Jun; Zeng, Jie; Wang, Bo; Wang, Wen-juan; Liang, Da-kai; Liu, Xiao-ying
2016-03-01
Aiming at meeting the need of aluminum corrosion monitoring in aerospace field, a pre-load type fiber grating corrosion sensor based on an aluminum thin tube structure is proposed. The corrosion sensor of aluminum alloy structure in-service monitoring mechanism is studied, a theoretical model about the relation of FBG reflection spectral characteristics and aluminum thickness variation is also obtained. Optical fiber grating corrosion monitoring test system based on the capillary structure of aluminum alloy is constructed by acid-base environment. The problem of cross sensitivity of temperature and strain is solved by configuring an optical fiber grating which is not affected by strain and only sensitive to temperature inside the aluminum alloy tube. The results shows that he aluminum tube packaging design not only can sense the effects of corrosion on the mechanical properties, but also can interference shielding effect of corrosion on the tube optical fiber sensing device. With the deepening of the metal tube corrosion and aluminum alloy tube thickness gradually thinning, fiber grating reflective spectrum gradually shift to the short wavelength and the wall thickness and the grating center wavelength offset has a good monotonic relation. These characteristics can provide useful help to further research corrosion online monitoring based on optic fiber sensor.
Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.
2013-10-01
In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.
Interference coupling analysis based on a hybrid method: application to a radio telescope system
NASA Astrophysics Data System (ADS)
Xu, Qing-Lin; Qiu, Yang; Tian, Jin; Liu, Qi
2018-02-01
Working in a way that passively receives electromagnetic radiation from a celestial body, a radio telescope can be easily disturbed by external radio frequency interference as well as electromagnetic interference generated by electric and electronic components operating at the telescope site. A quantitative analysis of these interferences must be taken into account carefully for further electromagnetic protection of the radio telescope. In this paper, based on electromagnetic topology theory, a hybrid method that combines the Baum-Liu-Tesche (BLT) equation and transfer function is proposed. In this method, the coupling path of the radio telescope is divided into strong coupling and weak coupling sub-paths, and the coupling intensity criterion is proposed by analyzing the conditions in which the BLT equation simplifies to a transfer function. According to the coupling intensity criterion, the topological model of a typical radio telescope system is established. The proposed method is used to solve the interference response of the radio telescope system by analyzing subsystems with different coupling modes separately and then integrating the responses of the subsystems as the response of the entire system. The validity of the proposed method is verified numerically. The results indicate that the proposed method, compared with the direct solving method, reduces the difficulty and improves the efficiency of interference prediction.
Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing
2017-05-25
With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems.
Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing
2017-01-01
With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems. PMID:28587085
Impact of initial pulse shape on the nonlinear spectral compression in optical fibre
NASA Astrophysics Data System (ADS)
Boscolo, Sonia; Chaussard, Frederic; Andresen, Esben; Rigneault, Hervé; Finot, Christophe
2018-02-01
We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear propagation spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.
The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors
NASA Technical Reports Server (NTRS)
Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.
1992-01-01
We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.
Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei
2011-04-01
An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.
Wang, Xiao-Huan; Meng, Qing-Fen; Dong, Ya-Ping; Chen, Mei-Da; Li, Wu
2010-03-01
A rapid multi-element analysis method for clay mineral samples was described. This method utilized a polarized wave-length dispersive X-ray fluorescence spectrometer--Axios PW4400, which had a maximum tube power of 4 000 watts. The method was developed for the determination of As, Mn, Co, Cu, Cr, Dy, Ga, Mo, P, Pb, Rb, S, Sr, Ni, ,Cs, Ta, Th, Ti, U, V, Y, Zn, Zr, MgO, K2O, Na2O, CaO, Fe2O3, Al2O3, SiO2 and so on. Thirty elements in clay mineral species were measured by X-ray fluorescence spectrometry with pressed powder pellets. Spectral interferences, in particular the indirect interferences of each element, were studied. A method to distinguish the interference between each other periodic elements in element periodic table was put forward. The measuring conditions and existence were mainly investigated, and the selected background position as well as corrected spectral overlap for the trace elements were also discussed. It was found that the indirect spectral overlap line was the same important as direct spectral overlap line. Due to inducing the effect of indirect spectral overlap, some elements jlike Bi, Sn, W which do not need analysis were also added to the elements channel. The relative standard deviation (RSD) was in the range of 0.01% to 5.45% except three elements Mo, Cs and Ta. The detection limits, precisions and accuracies for most elements using this method can meet the requirements of sample analysis in clay mineral species.
DOT National Transportation Integrated Search
2016-10-14
Outline : : Interference Tolerance Mask (ITM) to Effective Isotropic Radiated Power (IRP) for the particular case of a single transmitter : : ITM() to IRP() for the general case of multiple transmitters : : Input parameters needed to solv...
LORENE: Spectral methods differential equations solver
NASA Astrophysics Data System (ADS)
Gourgoulhon, Eric; Grandclément, Philippe; Marck, Jean-Alain; Novak, Jérôme; Taniguchi, Keisuke
2016-08-01
LORENE (Langage Objet pour la RElativité NumériquE) solves various problems arising in numerical relativity, and more generally in computational astrophysics. It is a set of C++ classes and provides tools to solve partial differential equations by means of multi-domain spectral methods. LORENE classes implement basic structures such as arrays and matrices, but also abstract mathematical objects, such as tensors, and astrophysical objects, such as stars and black holes.
Buican, Tudor N.; Martin, John C.
1990-01-01
An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.
NASA Technical Reports Server (NTRS)
Mooney, Thomas A.; Smajkiewicz, Ali
1991-01-01
A set of ten interference filters for the UV and VIS spectral region were flown on the surface of the Long Duration Exposure Facility (LDEF) Tray B-8 along with earth radiation budget (ERB) components from the Eppley Laboratory. Transmittance changes and other degradation observed after the return of the filters to Barr are reported. Substrates, coatings, and (where applicable) cement materials are identified. In general, all filters except those containing lead compounds survived well. Metal dielectric filters for the UV developed large numbers of pinholes which caused an increase in transmittance. Band shapes and spectral positioning, however, did not change.
A method for testing the spectraltransmittance of infrared smoke interference
NASA Astrophysics Data System (ADS)
Lei, Hao; Zhang, Yazhou; Wang, Guangping; Wu, Jingli
2018-02-01
Infrared smoke is mainly used for shielding, blind, deception and recognition on the battlefield. The traditional shelter smoke is mainly placed in the friendly positions or positions between the friendly positions and enemy positions, to reduce the enemy observation post investigative capacity. The passive interference capability of the smoke depends on the infrared extinction ability of the smoke. The infrared transmittance test is an objective and accurate representation of the extinction ability of the smoke. In this paper, a method for testing the spectral transmittance of infrared smoke interference is introduced. The uncertainty of the measurement results is analyzed. The results show that this method can effectively obtain the spectral transmittance of the infrared smoke and uncertainty of the measurement is 7.16%, which can be effective for the smoke detection, smoke composition analysis, screening effect evaluation to provide test parameters support.
Bhimani, Chandni; Li, Luna; Liao, Lydia; Roth, Robyn G; Tinney, Elizabeth; Germaine, Pauline
2017-01-01
Contrast-enhanced spectral mammography (CESM) uses full field digital mammography with the added benefit of intravenous contrast administration to significantly reduce false-positive and false-negative results and improve specificity while maintaining high sensitivity. For CESM to fulfill its purpose, one should be aware of possible artifacts and other factors which may interfere with image quality, and attention should be taken to minimize these factors. This pictorial demonstration will depict types of artifacts detected and other factors that interfere with image acquisition in our practice since CESM implementation. Many of the artifacts and other factors we have encountered while using CESM have simple solutions to resolve them. The illustrated artifacts and other factors interfering with image quality will serve as a useful reference to anyone using CESM. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Carrier-envelope phase-controlled quantum interference in optical poling.
Adachi, Shunsuke; Kobayashi, Takayoshi
2005-04-22
We demonstrate the efficiency of the optical poling process that depends on the CE phase-controlled quantum interference. For the experiment we employed our noncollinear optical parametric amplifier system for the self-stabilization of the CE phase, with the f-to-2f spectral interferometry system to control the CE phase.
Yoshino, S; Oohata, G; Mizoguchi, K
2015-10-09
We report on dynamical interference between short-lived Rabi oscillations and long-lived coherent phonons in CuCl semiconductor microcavities resulting from the coupling between the two oscillations. The Fourier-transformed spectra of the time-domain signals obtained from semiconductor microcavities by using a pump-probe technique show that the intensity of the coherent longitudinal optical phonon of CuCl is enhanced by increasing that of the Rabi oscillation, which indicates that the coherent phonon is driven by the Rabi oscillation through the Fröhlich interaction. Moreover, as the Rabi oscillation frequency decreases upon crossing the phonon frequency, the spectral profile of the coherent phonon changes from a peak to a dip with an asymmetric structure. The continuous wavelet transformation reveals that these peak and dip structures originate from constructive and destructive interference between Rabi oscillations and coherent phonons, respectively. We demonstrate that the asymmetric spectral structures in relation to the frequency detuning are well reproduced by using a classical coupled oscillator model on the basis of dynamical Fano-like interference.
NASA Astrophysics Data System (ADS)
Yong, Cheng
2018-03-01
The method that direct determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by inductively coupled plasma atomic emission spectrometry (ICP-OES) was established, and the detection range includes 0.001% ∼ 0.100% of Fe, Cr, Ni, Cu, Mn, Mo, Pb, As, Co, P, Ti, Zn and 0.005% ∼ 0.100% of K, Na, Ca, Mg, Si, Al. That the influence of the matrix effects, spectral interferences and background continuum superposition in the high concentrations of vanadium ions and sulfate coexistence system had been studied, and then the following conclusions were obtained: the sulfate at this concentration had no effect on the determination, but the matrix effects or continuous background superposition which were generated by high concentration of vanadium ions had negative interference on the determination of potassium and sodium, and it produced a positive interference on the determination of the iron and other impurity elements, so that the impacts of high vanadium matrix were eliminated by the matrix matching and combining synchronous background correction measures. Through the spectral interference test, the paper classification summarized the spectral interferences of vanadium matrix and between the impurity elements, and the analytical lines, the background correction regions and working parameters of the spectrometer were all optimized. The technical performance index of the analysis method is that the background equivalent concentration -0.0003%(Na)~0.0004%(Cu), the detection limit of the element is 0.0001%∼ 0.0003%, RSD<10% when the element content is in the range from 0.001% to 0.007%, RSD< 20% even if the element content is in the range from 0.0001% to 0.001% that is beyond the scope of the method of detection, recoveries is 91.0% ∼ 110.0%.
Summary of water body extraction methods based on ZY-3 satellite
NASA Astrophysics Data System (ADS)
Zhu, Yu; Sun, Li Jian; Zhang, Chuan Yin
2017-12-01
Extracting from remote sensing images is one of the main means of water information extraction. Affected by spectral characteristics, many methods can be not applied to the satellite image of ZY-3. To solve this problem, we summarize the extraction methods for ZY-3 and analyze the extraction results of existing methods. According to the characteristics of extraction results, the method of WI& single band threshold and the method of texture filtering based on probability statistics are explored. In addition, the advantages and disadvantages of all methods are compared, which provides some reference for the research of water extraction from images. The obtained conclusions are as follows. 1) NIR has higher water sensitivity, consequently when the surface reflectance in the study area is less similar to water, using single band threshold method or multi band operation can obtain the ideal effect. 2) Compared with the water index and HIS optimal index method, object extraction method based on rules, which takes into account not only the spectral information of the water, but also space and texture feature constraints, can obtain better extraction effect, yet the image segmentation process is time consuming and the definition of the rules requires a certain knowledge. 3) The combination of the spectral relationship and water index can eliminate the interference of the shadow to a certain extent. When there is less small water or small water is not considered in further study, texture filtering based on probability statistics can effectively reduce the noises in result and avoid mixing shadows or paddy field with water in a certain extent.
Stability of compressible Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Chow, Chuen-Yen
1991-01-01
Compressible stability equations are solved using the spectral collocation method in an attempt to study the effects of temperature difference and compressibility on the stability of Taylor-Couette flow. It is found that the Chebyshev collocation spectral method yields highly accurate results using fewer grid points for solving stability problems. Comparisons are made between the result obtained by assuming small Mach number with a uniform temperature distribution and that based on fully incompressible analysis.
Power allocation for SWIPT in K-user interference channels using game theory
NASA Astrophysics Data System (ADS)
Wen, Zhigang; Liu, Ying; Liu, Xiaoqing; Li, Shan; Chen, Xianya
2018-12-01
A simultaneous wireless information and power transfer system in interference channels of multi-users is considered. In this system, each transmitter sends one data stream to its targeted receiver, which causes interference to other receivers. Since all transmitter-receiver links want to maximize their own average transmission rate, a power allocation problem under the transmit power constraints and the energy-harvesting constraints is developed. To solve this problem, we propose a game theory framework. Then, we convert the game into a variational inequalities problem by establishing the connection between game theory and variational inequalities and solve the variational inequalities problem. Through theoretical analysis, the existence and uniqueness of Nash equilibrium are both guaranteed by the theory of variational inequalities. A distributed iterative alternating optimization water-filling algorithm is derived, which is proved to converge. Numerical results show that the proposed algorithm reaches fast convergence and achieves a higher sum rate than the unaided scheme.
Simulation of interference between Earth stations and Earth-orbiting satellites
NASA Technical Reports Server (NTRS)
Bishop, D. F.
1994-01-01
It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.
Shear wave speed recovery in sonoelastography using crawling wave data.
Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley
2010-07-01
The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane.
Shear wave speed recovery in sonoelastography using crawling wave data
Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley
2010-01-01
The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane. PMID:20649204
Wang, Hanlin; Liu, Hongtao; Zhao, Qiang; Ni, Zhenjie; Zou, Ye; Yang, Jie; Wang, Lifeng; Sun, Yanqiu; Guo, Yunlong; Hu, Wenping; Liu, Yunqi
2017-08-01
Human eyes use retina photoreceptor cells to absorb and distinguish photons from different wavelengths to construct an image. Mimicry of such a process and extension of its spectral response into the near-infrared (NIR) is indispensable for night surveillance, retinal prosthetics, and medical imaging applications. Currently, NIR organic photosensors demand optical filters to reduce visible interference, thus making filter-free and anti-visible NIR imaging a challenging task. To solve this limitation, a filter-free and conformal, retina-inspired NIR organic photosensor is presented. Featuring an integration of photosensing and floating-gate memory modules, the device possesses an acute color distinguishing capability. In general, the retina-like photosensor transduces NIR (850 nm) into nonvolatile memory and acts as a dynamic photoswitch under green light (550 nm). In doing this, a filter-free but color-distinguishing photosensor is demonstrated that selectively converts NIR optical signals into nonvolatile memory. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
High-Resolution Remote Sensing Image Building Extraction Based on Markov Model
NASA Astrophysics Data System (ADS)
Zhao, W.; Yan, L.; Chang, Y.; Gong, L.
2018-04-01
With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.
Mathematics Anxiety and the Underprepared Student.
ERIC Educational Resources Information Center
Godbey, Cathy
This article discusses the symptoms and causes of math anxiety, and preventative measures that teachers can use to alleviate the stress some students experience in mathematics problem solving. Mathematics anxiety is defined as "feelings of tension and anxiety that interfere with the manipulation of numbers and the solving of mathematical problems…
Interference between extrinsic and intrinsic losses in x-ray absorption fine structure
NASA Astrophysics Data System (ADS)
Campbell, L.; Hedin, L.; Rehr, J. J.; Bardyszewski, W.
2002-02-01
The interference between extrinsic and intrinsic losses in x-ray absorption fine structure (XAFS) is treated within a Green's-function formalism, without explicit reference to final states. The approach makes use of a quasiboson representation of excitations and perturbation theory in the interaction potential between electrons and quasibosons. These losses lead to an asymmetric broadening of the main quasiparticle peak plus an energy-dependent satellite in the spectral function. The x-ray absorption spectra (XAS) is then given by a convolution of an effective spectral function over a one-electron cross section. It is shown that extrinsic and intrinsic losses tend to cancel near excitation thresholds, and correspondingly, the strength in the main peak increases. At high energies, the theory crosses over to the sudden approximation. These results thus explain the observed weakness of multielectron excitations in XAS. The approach is applied to estimate the many-body corrections to XAFS, beyond the usual mean-free path, using a phasor summation over the spectral function. The asymmetry of the spectral function gives rise to an additional many-body phase shift in the XAFS formula.
Self-spectral calibration for spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Zhang, Xianling; Gao, Wanrong; Bian, Haiyi; Chen, Chaoliang; Liao, Jiuling
2013-06-01
A different real-time self-wavelength calibration method for spectral domain optical coherence tomography is presented in which interference spectra measured from two arbitrary points on the tissue surface are used for calibration. The method takes advantages of two favorable conditions of optical coherence tomography (OCT) signal. First, the signal back-scattered from the tissue surface is generally much stronger than that from positions in the tissue interior, so the spectral component of the surface interference could be extracted from the measured spectrum. Second, the tissue surface is not a plane and a phase difference exists between the light reflected from two different points on the surface. Compared with the zero-crossing automatic method, the introduced method has the advantage of removing the error due to dispersion mismatch or the common phase error. The method is tested experimentally to demonstrate the improved signal-to-noise ratio, higher axial resolution, and slower sensitivity degradation with depth when compared to the use of the zero-crossing method and applied to two-dimensional cross-sectional images of human finger skin.
Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary
NASA Astrophysics Data System (ADS)
Zhou, Jianyang; Zhao, Daomu
2016-08-01
Based on the first-order Born approximation, the scattering of an electromagnetic plane wave from a relatively more realistic random medium, a quasi-homogeneous medium with semisoft boundary, has been investigated. The analytic expressions for the spectral density, the spectral degree of coherence and the spectral degree of polarization have been derived, and the effects of the characteristics of the medium and the polarization of the incident light wave on the far-zone scattered field are determined. The numerical simulations indicate that, with the increasing of the edge softness M of the medium, the spectral density presents a pattern with interference fringes, and the number, position and width of interference fringes can be modified by the parameter. It is also found that there is an obvious value saltation in the coherence profile. Besides, unlike the intensity and the coherence are significantly affected by the properties of the medium, the polarization of the scattered field is irrelevant to them due to the quasi-homogeneity and isotropy of the medium, and it is only connected with the polarization of the incident light.
NASA Astrophysics Data System (ADS)
Lin, Z.; Kim-Hak, D.; Popp, B. N.; Wallsgrove, N.; Kagawa-Viviani, A.; Johnson, J.
2017-12-01
Cavity ring-down spectroscopy (CRDS) is a technology based on the spectral absorption of gas molecules of interest at specific spectral regions. The CRDS technique enables the analysis of hydrogen and oxygen stable isotope ratios of water by directly measuring individual isotopologue absorption peaks such as H16OH, H18OH, and D16OH. Early work demonstrated that the accuracy of isotope analysis by CRDS and other laser-based absorption techniques could be compromised by spectral interference from organic compounds, in particular methanol and ethanol, which can be prevalent in ecologically-derived waters. There have been several methods developed by various research groups including Picarro to address the organic interference challenge. Here, we describe an organic fitter and a post-processing algorithm designed to improve the accuracy of the isotopic analysis of the "organic contaminated" water specifically for Picarro models L2130-i and L2140-i. To create the organic fitter, the absorption features of methanol around 7200 cm-1 were characterized and incorporated into spectral analysis. Since there was residual interference remaining after applying the organic fitter, a statistical model was also developed for post-processing correction. To evaluate the performance of the organic fitter and the postprocessing correction, we conducted controlled experiments on the L2130-i for two water samples with different isotope ratios blended with varying amounts of methanol (0-0.5%) and ethanol (0-5%). When the original fitter was not used for spectral analysis, the addition of 0.5% methanol changed the apparent isotopic composition of the water samples by +62‰ for δ18O values and +97‰ for δ2H values, and the addition of 5% ethanol changed the apparent isotopic composition by -0.5‰ for δ18O values and -3‰ for δ2H values. When the organic fitter was used for spectral analysis, the maximum methanol-induced errors were reduced to +4‰ for δ18O values and +5‰ for δ2H values, and the maximum ethanol-induced errors were unchanged. When the organic fitter was combined with the post-processing correction, up to 99.8% of the total methanol-induced errors and 96% of the total ethanol-induced errors could be corrected. The applicability of the algorithm to natural samples such as plant and soil waters will be investigated.
NASA Astrophysics Data System (ADS)
Franta, Daniel; Franta, Pavel; Vohánka, Jiří; Čermák, Martin; Ohlídal, Ivan
2018-05-01
Optical measurements of transmittance in the far infrared region performed on crystalline silicon wafers exhibit partially coherent interference effects appropriate for the determination of thicknesses of the wafers. The knowledge of accurate spectral and temperature dependencies of the optical constants of crystalline silicon in this spectral region is crucial for the determination of its thickness and vice versa. The recently published temperature dependent dispersion model of crystalline silicon is suitable for this purpose. Because the linear thermal expansion of crystalline silicon is known, the temperatures of the wafers can be determined with high precision from the evolution of the interference patterns at elevated temperatures.
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet
2004-01-01
We present a theoretical study of the spectral interferences in the spontaneous Raman scattering spectra of major combustion products in 30-atm fuel-rich hydrogen-air flames. An effective methodology is introduced to choose an appropriate line-shape model for simulating Raman spectra in high-pressure combustion environments. The Voigt profile with the additive approximation assumption was found to provide a reasonable model of the spectral line shape for the present analysis. The rotational/vibrational Raman spectra of H2, N2, and H2O were calculated using an anharmonic-oscillator model using the latest collisional broadening coefficients. The calculated spectra were validated with data obtained in a 10-atm fuel-rich H2-air flame and showed excellent agreement. Our quantitative spectral analysis for equivalence ratios ranging from 1.5 to 5.0 revealed substantial amounts of spectral cross-talk between the rotational H2 lines and the N2 O-/Q-branch; and between the vibrational H2O(0,3) line and the vibrational H2O spectrum. We also address the temperature dependence of the spectral cross-talk and extend our analysis to include a cross-talk compensation technique that removes the nterference arising from the H2 Raman spectra onto the N2, or H2O spectra.
A P-band SAR interference filter
NASA Technical Reports Server (NTRS)
Taylor, Victor B.
1992-01-01
The synthetic aperture radar (SAR) interference filter is an adaptive filter designed to reduce the effects of interference while minimizing the introduction of undesirable side effects. The author examines the adaptive spectral filter and the improvement in processed SAR imagery using this filter for Jet Propulsion Laboratory Airborne SAR (JPL AIRSAR) data. The quality of these improvements is determined through several data fidelity criteria, such as point-target impulse response, equivalent number of looks, SNR, and polarization signatures. These parameters are used to characterize two data sets, both before and after filtering. The first data set consists of data with the interference present in the original signal, and the second set consists of clean data which has been coherently injected with interference acquired from another scene.
RADIATIVE TRANSFER MODELING OF THE ENIGMATIC SCATTERING POLARIZATION IN THE SOLAR Na i D{sub 1} LINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belluzzi, Luca; Bueno, Javier Trujillo; Degl’Innocenti, Egidio Landi
2015-12-01
The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuousmore » distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D{sub 1} line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D{sub 1} line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D{sub 1} line without the need for ground-level polarization.« less
Interaction of Object Binding Cues in Binaural Masking Pattern Experiments.
Verhey, Jesko L; Lübken, Björn; van de Par, Steven
2016-01-01
Object binding cues such as binaural and across-frequency modulation cues are likely to be used by the auditory system to separate sounds from different sources in complex auditory scenes. The present study investigates the interaction of these cues in a binaural masking pattern paradigm where a sinusoidal target is masked by a narrowband noise. It was hypothesised that beating between signal and masker may contribute to signal detection when signal and masker do not spectrally overlap but that this cue could not be used in combination with interaural cues. To test this hypothesis an additional sinusoidal interferer was added to the noise masker with a lower frequency than the noise whereas the target had a higher frequency than the noise. Thresholds increase when the interferer is added. This effect is largest when the spectral interferer-masker and masker-target distances are equal. The result supports the hypothesis that modulation cues contribute to signal detection in the classical masking paradigm and that these are analysed with modulation bandpass filters. A monaural model including an across-frequency modulation process is presented that account for this effect. Interestingly, the interferer also affects dichotic thresholds indicating that modulation cues also play a role in binaural processing.
1982-05-13
11/03 laboratory mini- computer (Maynard, MA) Boxcar Amplifier: Model 162 Boxcar averager with model 164 input gates (Princeton Applied Research Corp...nn! Office Attn: Der A. B. Amster, Attn: Dv. I. P. Peebles Chemitry Division .%,!l3I1rg 1;4, Section D China Lake, California 93555 666 Summer
Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping
1999-01-01
Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.
[Research on improving spectrum resolution of optimized Wollaston prism array].
Zhang, Peng; Wang, Jian-Rong; Zhang, Guo-Chen; Hou, Wen
2011-11-01
In order to not affect the image quality of interference fringes on the basis of the structure by increasing the structure angle of Wollaston prism to improve spectrum resolution, the authors optimized the structure of Wollaston prism. Calculating the function of the splitting angle and the structure angle, analysis indicated that taking the isosceles triangle prism with the same nature of the second wedge-shaped prism after the Wollaston prism, which makes the o and e light parallel to the optical axis, and alpha=0 degrees, the imaging interference fringes are no longer affected by changes in the splitting angle. Several optimized Wollaston prisms were made as an array to improve the spectral resolution. Experiments used traditional and optimized Wollaston prism array to detect the spectrum of the 980 nm laser. Experimental data showed that using optimized Wollaston prism array gets a clearer contrast of interference fringes, and the spectral data with Fourier transform are more accurate with DSP.
Lazarus, Brynne E.; Germino, Matthew; Vander Veen, Jessica L.
2016-01-01
Application of stable isotopes of water to studies of plant–soil interactions often requires a substantial preparatory step of extracting water from samples without fractionating isotopes. Online heating is an emerging approach for this need, but is relatively untested and major questions of how to best deliver standards and assess interference by organics have not been evaluated. We examined these issues in our application of measuring woody stem xylem of sagebrush using a Picarro laser spectrometer with online induction heating. We determined (1) effects of cryogenic compared to induction-heating extraction, (2) effects of delivery of standards on filter media compared to on woody stem sections, and (3) spectral interference from organic compounds for these approaches (and developed a technique to do so). Our results suggest that matching sample and standard media improves accuracy, but that isotopic values differ with the extraction method in ways that are not due to spectral interference from organics.
Analysis of HF interference with application to digital communications
NASA Astrophysics Data System (ADS)
Gott, G. F.; Dutta, S.; Doany, P.
1983-08-01
Recent observations of HF spectral occupancy and the design of devices to overcome the effects of interference on digital communications are reported. Spectral occupancy was determined at a resolution bandwidth of 100 Hz in 50-kHz bands, corresponding to the optimum working frequency over 1000 km, at noon, midnight, dawn, and dusk; and the data are analyzed in terms of congestion and voice-band availability. The implications for DPSK, frequency-exchange FSK, and frequency-diversity FSK data-transmission systems are discussed. The findings were used in the design of three improved diversity combiners (Dutta, 1977), which were tested over a 140-km range and found to reduce interference-related losses. Even better results are predicted for a sixth-order diversity modem with a sophisticated hopping scheme, now under development. Preliminary congestion spectra for the entire HF band, obtained with a calibrated active vertical antenna at noon and midnight of the summer and winter solstices in 1980, are presented.
Spectral element multigrid. Part 2: Theoretical justification
NASA Technical Reports Server (NTRS)
Maday, Yvon; Munoz, Rafael
1988-01-01
A multigrid algorithm is analyzed which is used for solving iteratively the algebraic system resulting from tha approximation of a second order problem by spectral or spectral element methods. The analysis, performed here in the one dimensional case, justifies the good smoothing properties of the Jacobi preconditioner that was presented in Part 1 of this paper.
Optimal network modification for spectral radius dependent phase transitions
NASA Astrophysics Data System (ADS)
Rosen, Yonatan; Kirsch, Lior; Louzoun, Yoram
2016-09-01
The dynamics of contact processes on networks is often determined by the spectral radius of the networks adjacency matrices. A decrease of the spectral radius can prevent the outbreak of an epidemic, or impact the synchronization among systems of coupled oscillators. The spectral radius is thus tightly linked to network dynamics and function. As such, finding the minimal change in network structure necessary to reach the intended spectral radius is important theoretically and practically. Given contemporary big data resources such as large scale communication or social networks, this problem should be solved with a low runtime complexity. We introduce a novel method for the minimal decrease in weights of edges required to reach a given spectral radius. The problem is formulated as a convex optimization problem, where a global optimum is guaranteed. The method can be easily adjusted to an efficient discrete removal of edges. We introduce a variant of the method which finds optimal decrease with a focus on weights of vertices. The proposed algorithm is exceptionally scalable, solving the problem for real networks of tens of millions of edges in a short time.
Global optimization of multimode interference structure for ratiometric wavelength measurement
NASA Astrophysics Data System (ADS)
Wang, Qian; Farrell, Gerald; Hatta, Agus Muhamad
2007-07-01
The multimode interference structure is conventionally used as a splitter/combiner. In this paper, it is optimised as an edge filter for ratiometric wavelength measurement, which can be used in demodulation of fiber Bragg grating sensing. The global optimization algorithm-adaptive simulated annealing is introduced in the design of multimode interference structure including the length and width of the multimode waveguide section, and positions of the input and output waveguides. The designed structure shows a suitable spectral response for wavelength measurement and a good fabrication tolerance.
A systematic linear space approach to solving partially described inverse eigenvalue problems
NASA Astrophysics Data System (ADS)
Hu, Sau-Lon James; Li, Haujun
2008-06-01
Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.
Blank, Hartmut
2005-02-01
Traditionally, the causes of interference phenomena were sought in "real" or "hard" memory processes such as unlearning, response competition, or inhibition, which serve to reduce the accessibility of target items. I propose an alternative approach which does not deny the influence of such processes but highlights a second, equally important, source of interference-the conversion (Tulving, 1983) of accessible memory information into memory performance. Conversion is conceived as a problem-solving-like activity in which the rememberer tries to find solutions to a memory task. Conversion-based interference effects are traced to different conversion processes in the experimental and control conditions of interference designs. I present a simple theoretical model that quantitatively predicts the resulting amount of interference. In two paired-associate learning experiments using two different types of memory tests, these predictions were corroborated. Relations of the present approach to traditional accounts of interference phenomena and implications for eyewitness testimony are discussed.
Polychromator for the edge Thomson scattering system in ITER.
Yatsuka, E; Hatae, T; Fujie, D; Kurokawa, A; Kusama, Y
2012-10-01
A new type polychromator has been designed for the edge Thomson scattering system in ITER. Signal light is parallelly dispersed into two parts at the first interference filter. Spectral transmissivities for some spectral channels may enhance better than the conventional type polychromator. In the new type polychromator, the misalignment due to the machine accuracy is expected to be within the margin of APD area. In order to calibrate the spectral transmissivity using the dual-laser injection method during the plasma discharge, it is preferred that the spectral channels are separated at the geometric mean of the injected two wavelengths.
Temperature Dependence of Quasiparticle Spectral Weight and Coherence in High Tc Superconductors
NASA Astrophysics Data System (ADS)
He, Yang; Zhang, Jessie; Hoffman, Jennifer; Hoffman Lab Team
2014-03-01
Superconductivity arises from the Cooper pairing of quasiparticles on the Fermi surface. Understanding the formation of Cooper pairs is an essential step towards unveiling the mechanism of high Tc superconductivity. We compare scanning tunneling microscope investigations of the temperature dependence of quasiparticle spectral weight and quasiparticle interference in several families of high Tc materials. We calculate the coherent spectral weight related to superconductivity, despite the coexistence of competing orders. The relation between pairing temperature and coherent spectral weight is discussed. We acknowledge support by the New York Community Trust-George Merck Fund.
Spectral confocal reflection microscopy using a white light source
NASA Astrophysics Data System (ADS)
Booth, M.; Juškaitis, R.; Wilson, T.
2008-08-01
We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.
Skupsky, S.; Craxton, R.S.; Soures, J.
1990-10-02
In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temporal oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation. 16 figs.
Skupsky, Stanley; Craxton, R. Stephen; Soures, John
1990-01-01
In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temoral oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation.
Neural correlates of mathematical problem solving.
Lin, Chun-Ling; Jung, Melody; Wu, Ying Choon; She, Hsiao-Ching; Jung, Tzyy-Ping
2015-03-01
This study explores electroencephalography (EEG) brain dynamics associated with mathematical problem solving. EEG and solution latencies (SLs) were recorded as 11 neurologically healthy volunteers worked on intellectually challenging math puzzles that involved combining four single-digit numbers through basic arithmetic operators (addition, subtraction, division, multiplication) to create an arithmetic expression equaling 24. Estimates of EEG spectral power were computed in three frequency bands - θ (4-7 Hz), α (8-13 Hz) and β (14-30 Hz) - over a widely distributed montage of scalp electrode sites. The magnitude of power estimates was found to change in a linear fashion with SLs - that is, relative to a base of power spectrum, theta power increased with longer SLs, while alpha and beta power tended to decrease. Further, the topographic distribution of spectral fluctuations was characterized by more pronounced asymmetries along the left-right and anterior-posterior axes for solutions that involved a longer search phase. These findings reveal for the first time the topography and dynamics of EEG spectral activities important for sustained solution search during arithmetical problem solving.
NASA Astrophysics Data System (ADS)
Msimanga, Huggins Z.; Lam, Truong Thach Ho; Latinwo, Nathaniel; Song, Mihyang Kristy; Tavakoli, Newsha
2018-03-01
A calibration matrix has been developed and successfully applied to quantify actives in Children's Dimetapp®, a cough mixture whose active components suffer from heavy spectral interference. High-performance liquid chromatography/photodiode array instrument was used to identify the actives and any other UV-detectable excipients that might contribute to interferences. The instrument was also used to obtain reference data on the actives, instead of relying on the manufacturer's claims. Principal component analysis was used during the developmental stages of the calibration matrix to highlight any mismatch between the calibration and sample spectra, making certain that "apples" were not compared with "oranges". The prediction model was finally calculated using target factor analysis and partial least squares regression. In addition to the actives in Children's Dimetapp® (brompheniramine maleate, phenylephrine hydrogen chloride, and dextromethorphan hydrogen bromide), sodium benzoate was identified as the major and FD&C Blue #1, FD&C Red #40, and methyl anthranilate as minor spectral interferences. Model predictions were compared before and after the interferences were included into the calibration matrix. Before including interferences, the following results were obtained: brompheniramine maleate = 481.3 mg L- 1 ± 134% RE; phenylephrine hydrogen chloride = 1041 mg L- 1 ± 107% RE; dextromethorphan hydrogen bromide = 1571 mg L- 1 ± 107% RE, where % RE = percent relative error based on the reference HPLC data. After including interferences, the results were as follows: brompheniramine maleate = 196.3 mg L- 1 ± 4.4% RE; phenylephrine hydrogen chloride = 501.3 mg L- 1 ± 0.10% RE; dextromethorphan hydrogen bromide = 998.7 mg L- 1 ± 1.6% RE as detailed in Table 6.
Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity
NASA Technical Reports Server (NTRS)
Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor
2011-01-01
The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.
Some characteristics of the international space channel
NASA Technical Reports Server (NTRS)
Noack, T. L.; Poland, W. B., Jr.
1975-01-01
Some physical characteristics of radio transmission links and the technology of PCM modulation combine with the Radio Regulations of the International Telecommunications Union to define a communications channel having a determinable channel capacity, error rate, and sensitivity to interference. These characteristics and the corresponding limitations on EIRP, power flux density, and power spectral density for space service applications are described. The ITU regulations create a critical height of 1027 km where some parameters of the limitation rules change. The nature of restraints on power spectral density are discussed and an approach to a standardized representation of Necessary Bandwidth for the Space Services is described. It is shown that, given the PFD (power flux density) and PSD (power spectral density) limitations of radio regulations, the channel performance is determined by the ratio of effective receiving antenna aperture to system noise temperature. Based on this approach, the method for a quantitative trade-off between spectrum spreading and system performance is presented. Finally, the effects of radio frequency interference between standard systems is analyzed.
Compact transmission system using single-sideband modulation of light for quantum cryptography.
Duraffourg, L; Merolla, J M; Goedgebuer, J P; Mazurenko, Y; Rhodes, W T
2001-09-15
We report a new transmission that can be used for quantum key distribution. The system uses single-sideband-modulated light in an implementation of the BB84 quantum cryptography protocol. The system is formed by two integrated unbalanced Mach-Zehnder interferometers and is based on interference between phase-modulated sidebands in the spectral domain. Experiments show that high interference visibility can be obtained.
A spectral multi-domain technique applied to high-speed chemically reacting flows
NASA Technical Reports Server (NTRS)
Macaraeg, Michele G.; Streett, Craig L.; Hussaini, M. Yousuff
1989-01-01
The first applications of a spectral multidomain method for viscous compressible flow is presented. The method imposes a global flux balance condition at the interface so that high-order continuity of the solution is preserved. The global flux balance is imposed in terms of a spectral integral of the discrete equations across adjoining domains. Since the discretized equations interior to each domain solved are uncoupled from each other, and since the interface relation has a block structure, the solution scheme can be adapted to the particular requirements of each subdomain. The spectral multidomain technique presented is well-suited for the multiple scales associated with the chemically reacting and transition flows in hypersonic research. A nonstaggered multidomain discretization is used for the chemically reacting flow calculation, and the first implementation of a staggered multidomain mesh is presented for accurately solving the stability equation for a viscous compressible fluid.
ERIC Educational Resources Information Center
Nock, Matthew K.; Mendes, Wendy Berry
2008-01-01
It has been suggested that people engage in nonsuicidal self-injury (NSSI) because they (a) experience heightened physiological arousal following stressful events and use NSSI to regulate experienced distress and (b) have deficits in their social problem-solving skills that interfere with the performance of more adaptive social responses. However,…
General interference law for nonstationary, separable optical fields.
Manea, Vladimir
2009-09-01
An approach to the theory of partial coherence for nonstationary optical fields is presented. Starting with a spectral representation, a favorable decomposition of the optical signals is discussed that supports a natural extension of the mathematical formalism. The coherence functions are redefined, but still as temporal correlation functions, allowing the obtaining of a more general form of the interference law for partially coherent optical signals. The general theory is applied in some relevant particular cases of nonstationary interference, namely, with quasi-monochromatic beams of different frequencies and with phase-modulated quasi-monochromatic beams of similar frequency spectra. All the results of the general treatment are reducible to the ones given in the literature for the case of stationary interference.
Circumventing substrate interference in the Raman spectroscopic identification of blood stains.
McLaughlin, Gregory; Sikirzhytski, Vitali; Lednev, Igor K
2013-09-10
Raman spectroscopy has demonstrated remarkable capabilities in identifying blood in controlled laboratory conditions. However, substrate interference presents a significant challenge toward characterizing body fluid traces with Raman spectroscopy at a crime scene. Here, several possible solutions are explored, including the selection of laser excitation, isolating the signal of blood using spectral subtraction and using a favorable substrate for collection which minimizes interference. Simulated blood stain evidence was prepared and analyzed using a Raman microscope with variable laser capabilities. It is shown that the best approach for detecting blood depends on the nature of the substrate and the type of interference encountered. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hemispherical-field-of-view, nonimaging narrow-band spectral filter
NASA Technical Reports Server (NTRS)
Miles, R. B.; Webb, S. G.; Griffith, E. L.
1981-01-01
Two compound parabolic concentrators are used to create a 180-deg-field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.
Hemispherical-field-of-view, nonimaging narrow-band spectral filter.
Miles, R B; Webb, S G; Griffith, E L
1981-12-01
Two compound parabolic concentrators are used to create a 180 degrees -field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.
Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton
2012-07-30
A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).
McLaughlin, Joyce; Renzi, Daniel; Parker, Kevin; Wu, Zhe
2007-04-01
Two new experiments were created to characterize the elasticity of soft tissue using sonoelastography. In both experiments the spectral variance image displayed on a GE LOGIC 700 ultrasound machine shows a moving interference pattern that travels at a very small fraction of the shear wave speed. The goal of this paper is to devise and test algorithms to calculate the speed of the moving interference pattern using the arrival times of these same patterns. A geometric optics expansion is used to obtain Eikonal equations relating the moving interference pattern arrival times to the moving interference pattern speed and then to the shear wave speed. A cross-correlation procedure is employed to find the arrival times; and an inverse Eikonal solver called the level curve method computes the speed of the interference pattern. The algorithm is tested on data from a phantom experiment performed at the University of Rochester Center for Biomedical Ultrasound.
3D Display Using Conjugated Multiband Bandpass Filters
NASA Technical Reports Server (NTRS)
Bae, Youngsam; White, Victor E.; Shcheglov, Kirill
2012-01-01
Stereoscopic display techniques are based on the principle of displaying two views, with a slightly different perspective, in such a way that the left eye views only by the left eye, and the right eye views only by the right eye. However, one of the major challenges in optical devices is crosstalk between the two channels. Crosstalk is due to the optical devices not completely blocking the wrong-side image, so the left eye sees a little bit of the right image and the right eye sees a little bit of the left image. This results in eyestrain and headaches. A pair of interference filters worn as an optical device can solve the problem. The device consists of a pair of multiband bandpass filters that are conjugated. The term "conjugated" describes the passband regions of one filter not overlapping with those of the other, but the regions are interdigitated. Along with the glasses, a 3D display produces colors composed of primary colors (basis for producing colors) having the spectral bands the same as the passbands of the filters. More specifically, the primary colors producing one viewpoint will be made up of the passbands of one filter, and those of the other viewpoint will be made up of the passbands of the conjugated filter. Thus, the primary colors of one filter would be seen by the eye that has the matching multiband filter. The inherent characteristic of the interference filter will allow little or no transmission of the wrong side of the stereoscopic images.
NASA Astrophysics Data System (ADS)
Al-Bagawi, A. H.; Ahmad, W.; Saigl, Z. M.; Alwael, H.; Al-Harbi, E. A.; El-Shahawi, M. S.
2017-12-01
The most common problems in spectrophotometric determination of various complex species originate from the background spectral interference. Thus, the present study aimed to overcome the spectral matrix interference for the precise analysis and speciation of mercury(II) in water by dual-wavelength β-correction spectrophotometry using 4-(2-thiazolylazo) resorcinol (TAR) as chromogenic reagent. The principle was based on measuring the correct absorbance for the formed complex of mercury(II) ions with TAR reagent at 547 nm (lambda max). Under optimized conditions, a linear dynamic range of 0.1-2.0 μg mL- 1 with correlation coefficient (R2) of 0.997 were obtained with lower limits of detection (LOD) of 0.024 μg mL- 1 and limit of quantification (LOQ) of 0.081 μg mL- 1. The values of RSD and relative error (RE) obtained for β-correction method and single wavelength spectrophotometry were 1.3, 1.32% and 4.7, 5.9%, respectively. The method was validated in tap and sea water in terms of the data obtained from inductively coupled plasma-optical emission spectrometry (ICP-OES) using student's t and F tests. The developed methodology satisfactorily overcomes the spectral interference in trace determination and speciation of mercury(II) ions in water.
Effect of temporal and spectral noise features on gap detection behavior by calling green treefrogs.
Höbel, Gerlinde
2014-10-01
Communication plays a central role in the behavioral ecology of many animals, yet the background noise generated by large breeding aggregations may impair effective communication. A common behavioral strategy to ameliorate noise interference is gap detection, where signalers display primarily during lulls in the background noise. When attempting gap detection, signalers have to deal with the fact that the spacing and duration of silent gaps is often unpredictable, and that noise varies in its spectral composition and may thus vary in the degree in which it impacts communication. I conducted playback experiments to examine how male treefrogs deal with the problem that refraining from calling while waiting for a gap to appear limits a male's ability to attract females, yet producing calls during noise also interferes with effective sexual communication. I found that the temporal structure of noise (i.e., duration of noise and silent gap segments) had a stronger effect on male calling behavior than the spectral composition. Males placed calls predominantly during silent gaps and avoided call production during short, but not long, noise segments. This suggests that male treefrogs use a calling strategy that maximizes the production of calls without interference, yet allows for calling to persist if lulls in the background noise are infrequent. Copyright © 2014 Elsevier B.V. All rights reserved.
McBride, D M; Cherry, B J; Kee, D W; Neale, P L
1995-07-01
The study was conducted to clarify factors involved in dual-task finger-tapping interference. Left-handers, as assessed by hand-writing preference and left-hand baseline tapping advantage, tapped both alone and while solving anagrams. Even though the left-hand baseline tapping advantage was experimentally removed on some (adjusted) trials, greater left- than right-hand tapping interference was observed during concurrent task performance. This result coupled with previous findings for right-handed subjects [Kee and Cherry, Neuropsychologia, Vol. 28, pp. 313-316, 1990] indicates that lateralized interference effects are not merely due to initial baseline tapping differences as proposed by Willis and Goodwin [Neuropsychologia, Vol. 25, pp. 719-724, 1987].
EASI - EQUILIBRIUM AIR SHOCK INTERFERENCE
NASA Technical Reports Server (NTRS)
Glass, C. E.
1994-01-01
New research on hypersonic vehicles, such as the National Aero-Space Plane (NASP), has raised concerns about the effects of shock-wave interference on various structural components of the craft. State-of-the-art aerothermal analysis software is inadequate to predict local flow and heat flux in areas of extremely high heat transfer, such as the surface impingement of an Edney-type supersonic jet. EASI revives and updates older computational methods for calculating inviscid flow field and maximum heating from shock wave interference. The program expands these methods to solve problems involving the six shock-wave interference patterns on a two-dimensional cylindrical leading edge with an equilibrium chemically reacting gas mixture (representing, for example, the scramjet cowl of the NASP). The inclusion of gas chemistry allows for a more accurate prediction of the maximum pressure and heating loads by accounting for the effects of high temperature on the air mixture. Caloric imperfections and specie dissociation of high-temperature air cause shock-wave angles, flow deflection angles, and thermodynamic properties to differ from those calculated by a calorically perfect gas model. EASI contains pressure- and temperature-dependent thermodynamic and transport properties to determine heating rates, and uses either a calorically perfect air model or an 11-specie, 7-reaction reacting air model at equilibrium with temperatures up to 15,000 K for the inviscid flowfield calculations. EASI solves the flow field and the associated maximum surface pressure and heat flux for the six common types of shock wave interference. Depending on the type of interference, the program solves for shock-wave/boundary-layer interaction, expansion-fan/boundary-layer interaction, attaching shear layer or supersonic jet impingement. Heat flux predictions require a knowledge (from experimental data or relevant calculations) of a pertinent length scale of the interaction. Output files contain flow-field information for the various shock-wave interference patterns and their associated maximum surface pressure and heat flux predictions. EASI is written in FORTRAN 77 for a DEC VAX 8500 series computer using the VAX/VMS operating system, and requires 75K of memory. The program is available on a 9-track 1600 BPI magnetic tape in DEC VAX BACKUP format. EASI was developed in 1989. DEC, VAX, and VMS are registered trademarks of the Digital Equipment Corporation.
NASA Astrophysics Data System (ADS)
Matveev, V. I.; Makarov, D. N.
2017-01-01
The effect of defects in nanostructured targets on interference spectra at the reemission of attosecond electromagnetic pulses has been considered. General expressions have been obtained for calculations of spectral distributions for one-, two-, and three-dimensional multiatomic nanosystems consisting of identical complex atoms with defects such as bends, vacancies, and breaks. Changes in interference spectra by a linear chain with several removed atoms (chain with breaks) and by a linear chain with a bend have been calculated as examples allowing a simple analytical representation. Generalization to two- and three-dimensional nanosystems has been developed.
Inexpensive Audio Activities: Earbud-based Sound Experiments
NASA Astrophysics Data System (ADS)
Allen, Joshua; Boucher, Alex; Meggison, Dean; Hruby, Kate; Vesenka, James
2016-11-01
Inexpensive alternatives to a number of classic introductory physics sound laboratories are presented including interference phenomena, resonance conditions, and frequency shifts. These can be created using earbuds, economical supplies such as Giant Pixie Stix® wrappers, and free software available for PCs and mobile devices. We describe two interference laboratories (beat frequency and two-speaker interference) and two resonance laboratories (quarter- and half-wavelength). Lastly, a Doppler laboratory using rotating earbuds is explained. The audio signal captured by all experiments is analyzed on free spectral analysis software and many of the experiments incorporate the unifying theme of measuring the speed of sound in air.
Chakravarty, Usha; Mukhopadhyay, P K; Kuruvilla, A; Upadhyaya, B N; Bindra, K S
2017-05-01
A narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using an acousto-optic modulator and multimode interference filter (MMIF) in the linear bulk cavity resonator and an all-fiber ring cavity resonator has been demonstrated. Insertion of an MMIF in the linear cavity resonator using bulk components decreased the spectral bandwidth of the Q-switched signal by two orders of magnitude from 11 to less than 0.1 nm. Spectral tunability of more than 16 nm in the range from 1057 to 1073 nm has also been achieved by the combination of MMIF and a standard polarization controller (SPC). A decrease in the pulse duration with a decrease in the spectral bandwidth of the output signal has also been recorded. The pulse duration of the Q-switched signal was reduced from ∼305 to ∼240 ns by the introduction of the MMIF in the resonator at the same value of the input pump power. In the case of the all-fiber Q-switched ring cavity resonator, the spectral bandwidth of the Q-switched signal was reduced by two orders of magnitude from ∼17 to less than 0.1 nm due to the introduction of the MMIF in the resonator. The spectral tunability of more than 12 nm in the range from 1038 to 1050 nm was achieved by an MMIF and an SPC.
NASA Astrophysics Data System (ADS)
Yang, Jie; Messinger, David W.; Dube, Roger R.
2018-03-01
Bloodstain detection and discrimination from nonblood substances on various substrates are critical in forensic science as bloodstains are a critical source for confirmatory DNA tests. Conventional bloodstain detection methods often involve time-consuming sample preparation, a chance of harm to investigators, the possibility of destruction of blood samples, and acquisition of too little data at crime scenes either in the field or in the laboratory. An imaging method has the advantages of being nondestructive, noncontact, real-time, and covering a large field-of-view. The abundant spectral information provided by multispectral imaging makes it a potential presumptive bloodstain detection and discrimination method. This article proposes an interference filter (IF) based area scanning three-spectral-band crime scene imaging system used for forensic bloodstain detection and discrimination. The impact of large angle of views on the spectral shift of calibrated IFs is determined, for both detecting and discriminating bloodstains from visually similar substances on multiple substrates. Spectral features in the visible and near-infrared portion employed by the relative band depth method are used. This study shows that 1 ml bloodstain on black felt, gray felt, red felt, white cotton, white polyester, and raw wood can be detected. Bloodstains on the above substrates can be discriminated from cola, coffee, ketchup, orange juice, red wine, and green tea.
Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin
2016-03-04
Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications.
A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method
Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin
2016-01-01
Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications. PMID:26959020
Dual function microscope for quantitative DIC and birefringence imaging
NASA Astrophysics Data System (ADS)
Li, Chengshuai; Zhu, Yizheng
2016-03-01
A spectral multiplexing interferometry (SXI) method is presented for integrated birefringence and phase gradient measurement on label-free biological specimens. With SXI, the retardation and orientation of sample birefringence are simultaneously encoded onto two separate spectral carrier waves, generated by a crystal retarder oriented at a specific angle. Thus sufficient information for birefringence determination can be obtained from a single interference spectrum, eliminating the need for multiple acquisitions with mechanical rotation or electrical modulation. In addition, with the insertion of a Nomarski prism, the setup can then acquire quantitative differential interference contrast images. Red blood cells infected by malaria parasites are imaged for birefringence retardation as well as phase gradient. The results demonstrate that the SXI approach can achieve both quantitative phase imaging and birefringence imaging with a single, high-sensitivity system.
Devices based on surface plasmon interference filters
NASA Technical Reports Server (NTRS)
Wang, Yu (Inventor)
2001-01-01
Devices based on surface plasmon filters having at least one metal-dielectric interface to support surface plasmon waves. A multi-layer-coupled surface plasmon notch filter is provided to have more than two symmetric metal-dielectric interfaces coupled with one another to produce a transmission spectral window with desired spectral profile and bandwidth. Such notch filters can form various color filtering devices for color flat panel displays.
Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors
NASA Technical Reports Server (NTRS)
Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.
1991-01-01
The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.
Flat-topped broadband rugate filters.
Imenes, Anne G; McKenzie, David R
2006-10-20
A method of creating rugate interference filters that have flat-topped reflectance across an extended spectral region is presented. The method applies known relations from the classical coupled wave theory to develop a set of equations that gives the spatial frequency distribution of rugate cycles to achieve constant reflectance across a given spectral region. Two examples of the application of this method are discussed: a highly reflective coating for eye protection against harmful laser radiation incident from normal to 45 degrees , and a spectral beam splitter for efficient solar power conversion.
Kollarits, Dennis; Wappl, Christian; Ringler, Max
2017-01-30
Acoustic species recognition in anurans depends on spectral and temporal characteristics of the advertisement call. The recognition space of a species is shaped by the likelihood of heterospecific acoustic interference. The dendrobatid frogs Allobates talamancae (Cope, 1875) and Silverstoneia flotator (Dunn, 1931) occur syntopically in south-west Costa Rica. A previous study showed that these two species avoid acoustic interference by spectral stratification. In this study, the role of the temporal call structure in the advertisement call of A. talamancae was analyzed, in particular the internote-interval duration in providing species specific temporal cues. In playback trials, artificial advertisement calls with internote-intervals deviating up to ± 90 % from the population mean internote-interval were broadcast to vocally active territorial males. The phonotactic reactions of the males indicated that, unlike in closely related species, internote-interval duration is not a call property essential for species recognition in A. talamancae . However, temporal call structure may be used for species recognition when the likelihood of heterospecific interference is high. Also, the close-encounter courtship call of male A. talamancae is described.
Harel, Elad; Engel, Gregory S
2012-01-17
Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.
Harel, Elad; Engel, Gregory S.
2012-01-01
Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2. PMID:22215585
DNA conformation on surfaces measured by fluorescence self-interference.
Moiseev, Lev; Unlü, M Selim; Swan, Anna K; Goldberg, Bennett B; Cantor, Charles R
2006-02-21
The conformation of DNA molecules tethered to the surface of a microarray may significantly affect the efficiency of hybridization. Although a number of methods have been applied to determine the structure of the DNA layer, they are not very sensitive to variations in the shape of DNA molecules. Here we describe the application of an interferometric technique called spectral self-interference fluorescence microscopy to the precise measurement of the average location of a fluorescent label in a DNA layer relative to the surface and thus determine specific information on the conformation of the surface-bound DNA molecules. Using spectral self-interference fluorescence microscopy, we have estimated the shape of coiled single-stranded DNA, the average tilt of double-stranded DNA of different lengths, and the amount of hybridization. The data provide important proofs of concept for the capabilities of novel optical surface analytical methods of the molecular disposition of DNA on surfaces. The determination of DNA conformations on surfaces and hybridization behavior provide information required to move DNA interfacial applications forward and thus impact emerging clinical and biotechnological fields.
NASA Astrophysics Data System (ADS)
Zhu, Wei; Chen, Qianghua; Wang, Yanghong; Luo, Huifu; Wu, Huan; Ma, Binwu
2018-06-01
In the laser self-mixing interference vibration measurement system, the self mixing interference signal is usually weak so that it can be hardly distinguished from the environmental noise. In order to solve this problem, we present a self-mixing interference optical path with a pre-feedback mirror, a pre-feedback mirror is added between the object and the collimator lens, corresponding feedback light enters into the inner cavity of the laser and the interference by the pre-feedback mirror occurs. The pre-feedback system is established after that. The self-mixing interference theoretical model with a pre-feedback based on the F-P model is derived. The theoretical analysis shows that the amplitude of the intensity of the interference signal can be improved by 2-4 times. The influence factors of system are also discussed. The experiment results show that the amplitude of the signal is greatly improved, which agrees with the theoretical analysis.
Stable multi-domain spectral penalty methods for fractional partial differential equations
NASA Astrophysics Data System (ADS)
Xu, Qinwu; Hesthaven, Jan S.
2014-01-01
We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.
NASA Astrophysics Data System (ADS)
Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.
2015-10-01
In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.
Finite length filters with maximally confined spectral power
NASA Technical Reports Server (NTRS)
Knight, J. W.; Newman, C. E.
1975-01-01
The problem of finding a function which, in addition to being zero outside a specified range in x-space, has its spectral power well confined to a certain range in k-space is solved numerically. Properties of the solutions are also discussed.
Enhanced numerical analysis of three-color HgCdTe detectors
NASA Astrophysics Data System (ADS)
Jóźwikowski, K.; Rogalski, A.
2007-04-01
The performance of three-color HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-color detectors with two back-to-back junctions, three-color structure contain an absorber of intermediate wavelength placed between two junctions, and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. Three detector structures with different localizations of separating barriers are analyzed. The calculations results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. It is shown that the performance of the detector is critically dependent on the barrier's doping level and position in relation to the junction. This behavior is serious disadvantage of the considered three color detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.
Numerical analysis of three-colour HgCdTe detectors
NASA Astrophysics Data System (ADS)
Jóźwikowski, K.; Rogalski, A.
2007-12-01
The performance of three-colour HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-colour detectors with two back-to-back junctions, three-colour structure contains an absorber of intermediate wavelength placed between two junctions and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Three-detector structures with different localizations of separating barriers are analyzed. The calculation results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. It is shown that the performance of the detector is critically dependent on the barrier’s doping level and position in relation to the junction. This behaviour is serious disadvantage of the considered three-colour detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.
Modeling of the Light Speckle Field Structure Inside a Multilayer Human Skin Tissue
NASA Astrophysics Data System (ADS)
Barun, V. V.; Dik, S. K.; Ivanov, A. P.; Abramovich, N. D.
2013-11-01
We present an analytic method and the results of investigating the characteristics of the interference pattern formed by multiply scattered light in a multilayer biological tissue of the type of human skin at the wavelengths of the visible and neat IR spectral regions under laser irradiation. Calculations were performed with the use of the known solutions of the equations of radiation transfer in the biotissue and the relation between the theory of propagation of light in a scattering medium and the coherence theory. The radial structure of the light field in the depth of the human skin formed by coherent and incoherent radiation depending on its biophysical parameters has been investigated. The characteristic sizes of speckles in each layer of the skin have been estimated. The biophysical factors connected with the volume concentration of blood in the dermis and the degree of its oxygenation influencing the contrast of the speckle pattern in the dermis have been discussed. The possibility of formulating and solving inverse problems of biomedical optics on the restoration of blood parameters from measurements of speckle characteristics has been shown.
Discrete conservation properties for shallow water flows using mixed mimetic spectral elements
NASA Astrophysics Data System (ADS)
Lee, D.; Palha, A.; Gerritsma, M.
2018-03-01
A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.
A comparison of reliability of soil Cd determination by standard spectrometric methods
McBride, M.B.
2015-01-01
Inductively coupled plasma emission spectrometry (ICP-OES) is the most common method for determination of soil Cd, yet spectral and matrix interferences affect measurements at the available analytical wavelengths for this metal. This study evaluated the severity of the interference over a range of total soil Cd by comparing ICP-OES and ICP-MS measurements of Cd in acid digests. ICP-OES using the emission at 226.5 nm generally unable to quantify soil Cd at low (near-background) levels, and gave unreliable values compared to ICP-MS. Using the line at 228.nm, a marked positive bias in Cd measurement (relative to the 226.5 nm measurement) was attributable to As interference even at soil As concentrations below 10 mg/kg. This spectral interference in ICP-OES was severe in As-contaminated orchard soils, giving a false value for soil total Cd near 2 mg kg−1 when soil As was 100–150 mg kg−1. In attempting to avoid these ICP emission-specific interferences, we evaluated a method to estimate total soil Cd using 1 M HNO3 extraction followed by determination of Cd by flame atomic absorption (FAA), either with or without pre-concentration of Cd using an Aliquat-heptanone extractant. The 1 M HNO3 extracted an average of 82% of total soil Cd. The FAA method had no significant interferences, and estimated the total Cd concentrations in all soils tested with acceptable accuracy. For Cd-contaminated soils, the Aliquat-heptanone pre-concentration step was not necessary, as FAA sensitivity was adequate for quantification of extractable soil Cd and reliable estimation of total soil Cd. PMID:22031569
FDTD based model of ISOCT imaging for validation of nanoscale sensitivity (Conference Presentation)
NASA Astrophysics Data System (ADS)
Eid, Aya; Zhang, Di; Yi, Ji; Backman, Vadim
2017-02-01
Many of the earliest structural changes associated with neoplasia occur on the micro and nanometer scale, and thus appear histologically normal. Our group has established Inverse Spectroscopic OCT (ISOCT), a spectral based technique to extract nanoscale sensitive metrics derived from the OCT signal. Thus, there is a need to model light transport through relatively large volumes (< 50 um^3) of media with nanoscale level resolution. Finite Difference Time Domain (FDTD) is an iterative approach which directly solves Maxwell's equations to robustly estimate the electric and magnetic fields propagating through a sample. The sample's refractive index for every spatial voxel and wavelength are specified upon a grid with voxel sizes on the order of λ/20, making it an ideal modelling technique for nanoscale structure analysis. Here, we utilize the FDTD technique to validate the nanoscale sensing ability of ISOCT. The use of FDTD for OCT modelling requires three components: calculating the source beam as it propagates through the optical system, computing the sample's scattered field using FDTD, and finally propagating the scattered field back through the optical system. The principles of Fourier optics are employed to focus this interference field through a 4f optical system and onto the detector. Three-dimensional numerical samples are generated from a given refractive index correlation function with known parameters, and subsequent OCT images and mass density correlation function metrics are computed. We show that while the resolvability of the OCT image remains diffraction limited, spectral analysis allows nanoscale sensitive metrics to be extracted.
A numerical spectral approach to solve the dislocation density transport equation
NASA Astrophysics Data System (ADS)
Djaka, K. S.; Taupin, V.; Berbenni, S.; Fressengeas, C.
2015-09-01
A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme.
2007-03-01
Quadrature QPSK Quadrature Phase-Shift Keying RV Random Variable SHAC Single-Hop-Observation Auto- Correlation SINR Signal-to-Interference...The fast Fourier transform ( FFT ) accumulation method and the strip spectral correlation algorithm subdivide the support region in the bi-frequency...diamond shapes, while the strip spectral correlation algorithm subdivides the region into strips. Each strip covers a number of the FFT accumulation
Lateralization of high-frequency transposed stimuli under conditions of binaural interference
NASA Astrophysics Data System (ADS)
Bernstein, Leslie R.; Trahiotis, Constantine
2005-04-01
The purpose of this study was to determine whether binaural interference would occur if ITD-based extents of laterality were measured using high-frequency transposed stimuli as targets. The results of an earlier study [L. R. Bernstein and C. Trahiotis, J. Acoust. Soc. Am. 116, 3062-3069 (2004)], which focused on threshold-ITDs rather than extents of laterality, suggested that high-frequency transposed stimuli might be immune to binaural interference effects resulting from the addition of a spectrally-remote, low-frequency interferer. In contrast to the earlier findings, the data from this study indicate that high-frequency transposed targets can, indeed, be susceptible to binaural interference. High-frequency transposed targets, even when presented along with an interferer, yielded greater extents of ITD-based laterality than did Gaussian noise targets presented in isolation. That is, the enhanced potency of ITDs conveyed by transposed stimuli persisted even in the presence of a low-frequency interferer. Predictions made using an extension of the model of Heller and Trahiotis [L. M. Heller and C. Trahiotis, J. Acoust. Soc. Am. 99, 3632-3637 (1996)] accounted well for binaural interference obtained with conventional Gaussian noise targets but generally over-predicted the amounts of interference found with the transposed targets.
NASA Technical Reports Server (NTRS)
Pliutau, Denis; Prasad, Narasimha S.
2013-01-01
We performed comparative studies to establish favorable spectral regions and measurement wavelength combinations in alternative bands of CO2 and O2, for the sensing of CO2 mixing ratios (XCO2) in missions such as ASCENDS. The analysis employed several simulation approaches including separate layers calculations based on pre-analyzed atmospheric data from the modern-era retrospective analysis for research and applications (MERRA), and the line-byline radiative transfer model (LBLRTM) to obtain achievable accuracy estimates as a function of altitude and for the total path over an annual span of variations in atmospheric parameters. Separate layer error estimates also allowed investigation of the uncertainties in the weighting functions at varying altitudes and atmospheric conditions. The parameters influencing the measurement accuracy were analyzed independently and included temperature sensitivity, water vapor interferences, selection of favorable weighting functions, excitations wavelength stabilities and other factors. The results were used to identify favorable spectral regions and combinations of on / off line wavelengths leading to reductions in interferences and the improved total accuracy.
Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping.
Xiang, Meng; Fu, Songnian; Tang, Ming; Tang, Haoyuan; Shum, Perry; Liu, Deming
2014-07-14
The performance of Nyquist WDM superchannel using advanced modulation formats with coherent detection is degraded due to the existence of both inter-symbol interference (ISI) and inter-channel interference (ICI). Here, we propose and numerically investigate a Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping (RS-DSS), achieving a spectral efficiency up to 7.44 bit/s/Hz with 7% hard-decision forward error correction (HD-FEC) overhead. Compared with Nyquist WDM superchannel using 16QAM and RS-DSS, the proposed system has 1.4 dB improvement of required OSNR at BER = 10(-3) in the case of back-to-back (B2B) transmission. Furthermore, the range of launched optical power allowed beyond HD-FEC threshold is drastically increased from -6 dBm to 1.2 dBm, after 960 km SSMF transmission with EDFA-only. In particular, no more than 1.8 dB required OSNR penalty at BER = 10(-3) is achieved for the proposed system even with the phase difference between channels varying from 0 to 360 degree.
Topical meeting on optical interference coatings (OIC'2001): manufacturing problem.
Dobrowolski, J A; Browning, Stephen; Jacobson, Michael; Nadal, Maria
2002-06-01
Measurements are presented of the experimental filters submitted to the first optical thin-film manufacturing problem posed in conjunction with the Topical Meeting on Optical Interference Coatings, in which the object was to produce multilayers with spectral transmittance and reflectance curves that were as close as possible to the target values that were specified in the 400- to 600-nm spectral region. No limit was set on the overall thickness of the solutions or the number of layers used in their construction. The participants were free to use the coating materials of their choice. Six different groups submitted a total of 11 different filters for evaluation. Three different physical vapor deposition processes were used for the manufacture of the coatings: magnetron sputtering, ion-beam sputtering, and plasma-ion-assisted, electron-beam gun evaporation. The solutions ranged in metric thickness from 758 to 4226 nm and consisted of between 8 and 27 layers. For all but two of the samples submitted, the average rms departure of the measured transmittances and reflectances from the target values in the spectral region of interest was between 0.98% and 1.55%.
NASA Astrophysics Data System (ADS)
Nguyen, Lam
2017-05-01
The U.S. Army Research Laboratory (ARL) recently designed and tested a new prototype radar, the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar system, based on a stepped-frequency architecture to address issues associated with our previous impulse-based radars. This is a low-frequency ultra-wideband (UWB) radar with frequencies spanning from 300 to 2000 MHz. Mounted on a vehicle, the radar can be configured in either sidelooking or forward-looking synthetic aperture radar (SAR) mode. We recently conducted our first experiment at Yuma Proving Grounds (YPG). This paper summarizes the radar configurations, parameters, and SAR geometry. The radar data and other noise sources, to include the self-interference signals and radio-frequency interference (RFI) noise sources, are presented and characterized in both the raw (pre-focus) and SAR imagery domains. This paper also describes our signal processing techniques for extracting noise from radar data, as well as the SAR imaging algorithms for forming SAR imagery in both forward- and side-looking modes. Finally, this paper demonstrates our spectral recovery technique and results for a radar operating in a spectrally restricted environment.
Yeh, Yi-Jou; Black, Adam J; Akkin, Taner
2013-10-10
We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.
Apparatus and method for creating a photonic densely-accumulated ray-point
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2012-01-01
An optical apparatus includes an optical diffraction device configured for diffracting a predetermined wavelength of incident light onto adjacent optical focal points, and a photon detector for detecting a spectral characteristic of the predetermined wavelength. One of the optical focal points is a constructive interference point and the other optical focal point is a destructive interference point. The diffraction device, which may be a micro-zone plate (MZP) of micro-ring gratings or an optical lens, generates a constructive ray point using phase-contrasting of the destructive interference point. The ray point is located between adjacent optical focal points. A method of generating a densely-accumulated ray point includes directing incident light onto the optical diffraction device, diffracting the selected wavelength onto the constructive interference focal point and the destructive interference focal point, and generating the densely-accumulated ray point in a narrow region.
Generalized quantum interference of correlated photon pairs.
Kim, Heonoh; Lee, Sang Min; Moon, Han Seb
2015-05-07
Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source.
UV laser long-path absorption spectroscopy
NASA Technical Reports Server (NTRS)
Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf
1994-01-01
Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive absorption measurements some specific problems of those detectors have to be solved experimentally (i.e. fixed pattern noise, dark signal noise, nonuniform efficiency of individual elements, spatial sensitivity variations). In order to improve the low spatial resolution we performed laboratory studies using a multiple reflection cell to convert the long path technique to a real in situ point measurement. Under the conditions of field experiments in Julich residual absorbance signals at present are about 1.5x10(exp -4) corresponding to an OH detection sensitivity of 2x10(exp 6) OH/cm(exp 3) using a light path of 5.8 km. Total integration times for one measurement point vary between a few minutes and an hour.
Visible and shortwave infrared focal planes for remote sensing instruments
NASA Astrophysics Data System (ADS)
Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.
1984-01-01
The development of solid-state sensor technology for multispectral linear array (MLA) instruments is described. A buttable four-spectral-band linear-format CCD and a buttable two-spectral band linear-format short-wave IR CCD have been designed, and first samples have been demonstrated. In addition, first-sample four-band interference filters have been fabricated, and hybrid packaging technology is being developed. Based on this development work, the design and construction of focal planes for a Shuttle sortie MLA instrument have begun. This work involves a visible and near-IR focal plane with 2048 pixels x 4 spectral bands and a short-wave IR focal plane with 1024 pixels x 2 spectral bands.
Apodized RFI filtering of synthetic aperture radar images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter
2014-02-01
Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFImore » Filtering (ARF).« less
Excitation-emission fluorimeter based on linear interference filters.
Gouzman, Michael; Lifshitz, Nadia; Luryi, Serge; Semyonov, Oleg; Gavrilov, Dmitry; Kuzminskiy, Vyacheslav
2004-05-20
We describe the design, properties, and performance of an excitation-emission (EE) fluorimeter that enables spectral characterization of an object simultaneously with respect to both its excitation and its emission properties. Such devices require two wavelength-selecting elements, one in the optical path of the excitation broadband light to obtain tunable excitation and the other to analyze the resulting fluorescence. Existing EE instruments are usually implemented with two monochromators. The key feature of our EE fluorimeter is that it employs lightweight and compact linear interference filters (LIFs) as the wavelength-selection elements. The spectral tuning of both the excitation and the detection LIFs is achieved by their mechanical shift relative to each other by use of two computer-controlled linear step motors. The performance of the LIF-based EE fluorimeter is demonstrated with the fluorescent spectra of various dyes and their mixtures.
Braaf, Boy; de Boer, Johannes F
2017-03-20
Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.
Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope
Isailovic, Dragan; Xu, Yang; Copus, Tyler; Saraswat, Suraj; Nauli, Surya M.
2011-01-01
A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were spatially separated by the fluorescence spectra of the fluorophores present in them, providing detailed multi-colored spectral images of cells. Additionally, the grating-based spectral microscope enabled measurement of scattering and absorption spectra of unlabeled cells and stained tissue sections using darkfield and brightfield or DIC spectral microscopy, respectively. The presented spectral imaging methodology provides a readily affordable approach for multimodal spectral characterization of biological cells and other specimens. PMID:21639978
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis.
Herrera-Piad, Luis A; Haus, Joseph W; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M; Estudillo-Ayala, Julian M; Lopez-Dieguez, Yanelis; Rojas-Laguna, Roberto
2017-10-20
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis
Herrera-Piad, Luis A.; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M.; Lopez-Dieguez, Yanelis
2017-01-01
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material. PMID:29053570
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Doha, E. H.; Ezz-Eldien, S. S.; Van Gorder, Robert A.
2014-12-01
The Jacobi spectral collocation method (JSCM) is constructed and used in combination with the operational matrix of fractional derivatives (described in the Caputo sense) for the numerical solution of the time-fractional Schrödinger equation (T-FSE) and the space-fractional Schrödinger equation (S-FSE). The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations, which greatly simplifies the solution process. In addition, the presented approach is also applied to solve the time-fractional coupled Schrödinger system (T-FCSS). In order to demonstrate the validity and accuracy of the numerical scheme proposed, several numerical examples with their approximate solutions are presented with comparisons between our numerical results and those obtained by other methods.
A technique for phase correction in Fourier transform spectroscopy
NASA Astrophysics Data System (ADS)
Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.
2018-03-01
Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.
Quantitative polarized light microscopy using spectral multiplexing interferometry.
Li, Chengshuai; Zhu, Yizheng
2015-06-01
We propose an interferometric spectral multiplexing method for measuring birefringent specimens with simple configuration and high sensitivity. The retardation and orientation of sample birefringence are simultaneously encoded onto two spectral carrier waves, generated interferometrically by a birefringent crystal through polarization mixing. A single interference spectrum hence contains sufficient information for birefringence determination, eliminating the need for mechanical rotation or electrical modulation. The technique is analyzed theoretically and validated experimentally on cellulose film. System simplicity permits the possibility of mitigating system birefringence background. Further analysis demonstrates the technique's exquisite sensitivity as high as ∼20 pm for retardation measurement.
Iliev, Marin; Meier, Amanda K; Galloway, Benjamin; Adams, Daniel E; Squier, Jeff A; Durfee, Charles G
2014-07-28
We present a method using spectral interferometry (SI) to characterize a pulse in the presence of an incoherent background such as amplified spontaneous emission (ASE). The output of a regenerative amplifier is interfered with a copy of the pulse that has been converted using third-order cross-polarized wave generation (XPW). The ASE shows as a pedestal background in the interference pattern. The energy contrast between the short-pulse component and the ASE is retrieved. The spectra of the interacting beams are obtained through an improvement to the self-referenced spectral interferometry (SRSI) analysis.
Engineering calculations for the Delta S method of solving the orbital allotment problem
NASA Technical Reports Server (NTRS)
Kohnhorst, P. A.; Levis, C. A.; Walton, E. K.
1987-01-01
The method of calculating single-entry separation requirements for pairs of satellites is extended to include the interference on the top link as well as on the down link. Several heuristic models for analyzing the effects of shaped-beam antenna designs on required satellite separations are introduced and demonstrated with gain contour plots. The calculation of aggregate interference is extended to include the effects of up-link interference. The relationship between the single-entry C/I requirements, used in determining satellite separation constraints for various optimization procedures, and the aggregate C/I values of the resulting solutions is discussed.
Speech-Message Extraction from Interference Introduced by External Distributed Sources
NASA Astrophysics Data System (ADS)
Kanakov, V. A.; Mironov, N. A.
2017-08-01
The problem of this study involves the extraction of a speech signal originating from a certain spatial point and calculation of the intelligibility of the extracted voice message. It is solved by the method of decreasing the influence of interference from the speech-message sources on the extracted signal. This method is based on introducing the time delays, which depend on the spatial coordinates, to the recording channels. Audio records of the voices of eight different people were used as test objects during the studies. It is proved that an increase in the number of microphones improves intelligibility of the speech message which is extracted from interference.
West, A G; Goldsmith, G R; Matimati, I; Dawson, T E
2011-08-30
Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be included when reporting stable isotope data from IRIS. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Yang, Tao; Peng, Jing-xiao; Ho, Ho-pui; Song, Chun-yuan; Huang, Xiao-li; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei
2018-01-01
By using a preaggregated silver nanoparticle monolayer film and an infrared sensor card, we demonstrate a miniature spectrometer design that covers a broad wavelength range from visible to infrared with high spectral resolution. The spectral contents of an incident probe beam are reconstructed by solving a matrix equation with a smoothing simulated annealing algorithm. The proposed spectrometer offers significant advantages over current instruments that are based on Fourier transform and grating dispersion, in terms of size, resolution, spectral range, cost and reliability. The spectrometer contains three components, which are used for dispersion, frequency conversion and detection. Disordered silver nanoparticles in dispersion component reduce the fabrication complexity. An infrared sensor card in the conversion component broaden the operational spectral range of the system into visible and infrared bands. Since the CCD used in the detection component provides very large number of intensity measurements, one can reconstruct the final spectrum with high resolution. An additional feature of our algorithm for solving the matrix equation, which is suitable for reconstructing both broadband and narrowband signals, we have adopted a smoothing step based on a simulated annealing algorithm. This algorithm improve the accuracy of the spectral reconstruction.
Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Wei, Yuan; Li, Bowen; Wei, Xiaoming; Yu, Ying; Wong, Kenneth K. Y.
2018-02-01
The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability.
The spectral applications of Beer-Lambert law for some biological and dosimetric materials
NASA Astrophysics Data System (ADS)
Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.
2014-08-01
The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.
NASA Astrophysics Data System (ADS)
Kosmeier, S.; Langehanenberg, P.; von Bally, G.; Kemper, B.
2012-01-01
Due to the large coherence length of laser light, optical path length (OPL) resolution in laser based digital holographic microscopy suffers from parasitic interferences caused by multiple reflections within the experimental setup. Use of partially coherent light reduces this drawback but requires precise and stable matching of object and reference arm's OPLs and limits the spatial frequency of the interference pattern in off-axis holography. Here, we investigate if the noise properties of spectrally broadened light sources can be generated numerically. Therefore, holograms are coherently captured at different laser wavelengths and the corresponding reconstructed wave fields are numerically superimposed utilizing variable weightings. Gaussian and rectangular spectral shapes of the so synthesized field are analyzed with respect to the resulting noise level, which is quantified in OPL distributions of a reflective test target. Utilizing a Gaussian weighting, the noise level is found to be similar to the one obtained with the partially coherent light of a superluminescent diode. With a rectangular shaped synthesized spectrum, noise is reduced more efficient than with a Gaussian one. The applicability of the method in label-free cell analysis is demonstrated by quantitative phase contrast images obtained from living cancer cells.
Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols
2010-08-01
ar X iv :1 00 8. 31 96 v1 [ cs .I T ] 1 9 A ug 2 01 0 1 Coded DS - CDMA Systems with Iterative Channel Estimation and no Pilot Symbols Don...sequence code-division multiple-access ( DS - CDMA ) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding...amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS - CDMA systems
NASA Astrophysics Data System (ADS)
Bernstein, Leslie R.; Trahiotis, Constantine
2005-09-01
Our purpose in this study was to determine whether across-frequency binaural interference would occur if ITD-based extents of laterality were measured using high-frequency transposed stimuli as targets. The results of an earlier study [L. R. Bernstein and C. Trahiotis, J. Acoust. Soc. Am. 116, 3062-3069 (2004)], which focused on threshold-ITDs, rather than extents of laterality, suggested that high-frequency transposed stimuli might be ``immune'' to binaural interference effects resulting from the addition of a spectrally remote, low-frequency interferer. In contrast to the earlier findings, the data from this study indicate that high-frequency transposed targets are susceptible to binaural interference. Nevertheless, high-frequency transposed targets, even when presented along with an interferer, yielded greater extents of ITD-based laterality than did high-frequency Gaussian noise targets presented in isolation. That is, the ``enhanced potency'' of ITDs conveyed by transposed stimuli persisted, even in the presence of a low-frequency interferer. Predictions made using an extension of the model of Heller and Trahiotis [L. M. Heller and C. Trahiotis, J. Acoust. Soc. Am. 99, 3632-3637 (1996)] accounted well for across-frequency binaural interference obtained with conventional Gaussian noise targets but, in all but one case, overpredicted the amounts of interference found with the transposed targets.
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Zaky, M. A.
2015-01-01
In this paper, we propose and analyze an efficient operational formulation of spectral tau method for multi-term time-space fractional differential equation with Dirichlet boundary conditions. The shifted Jacobi operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided Caputo fractional derivatives are presented. By using these operational matrices, we propose a shifted Jacobi tau method for both temporal and spatial discretizations, which allows us to present an efficient spectral method for solving such problem. Furthermore, the error is estimated and the proposed method has reasonable convergence rates in spatial and temporal discretizations. In addition, some known spectral tau approximations can be derived as special cases from our algorithm if we suitably choose the corresponding special cases of Jacobi parameters θ and ϑ. Finally, in order to demonstrate its accuracy, we compare our method with those reported in the literature.
An inter-lighting interference cancellation scheme for MISO-VLC systems
NASA Astrophysics Data System (ADS)
Kim, Kyuntak; Lee, Kyujin; Lee, Kyesan
2017-08-01
In this paper, we propose an inter-lighting interference cancellation (ILIC) scheme to reduce the interference between adjacent light-emitting diodes (LEDs) and enhance the transmission capacity of multiple-input-single-output (MISO)-visible light communication (VLC) systems. In indoor environments, multiple LEDs have normally been used as lighting sources, allowing the design of MISO-VLC systems. To enhance the transmission capacity, different data should be simultaneously transmitted from each LED; however, that can lead to interference between adjacent LEDs. In that case, relatively low-received power signals are subjected to large interference because wireless optical systems generally use intensity modulation and direct detection. Thus, only the signal with the highest received power can be detected, while the other received signals cannot be detected. To solve this problem, we propose the ILIC scheme for MISO-VLC systems. The proposed scheme preferentially detects the highest received power signal, and this signal is referred as interference signal by an interference component generator. Then, relatively low-received power signal can be detected by cancelling the interference signal from the total received signals. Therefore, the performance of the proposed scheme can improve the total average bit error rate and throughput of a MISO-VLC system.
Interference of birefractive waves in CdGa2S4 crystals
NASA Astrophysics Data System (ADS)
Syrbu, N. N.; Tiron, A. V.; Parvan, V. I.; Zalamai, V. V.; Tiginyanu, I. M.
2015-04-01
In СdGа2S4 crystals the Fabry-Perot and birefringence interference spectra were investigated. Spectral dependences of refraction indexes for ordinary (no) and extraordinary (ne) light waves are defined. The spectral dependence Δn=ne-no from the short and long-wavelength parts of isotropic wavelength λ0=485.7 nm (300 K) is determined. It is established that at λ>λ0 Δn is positive and at λ<λ0 Δn is negative. Wavelength λ0=485.7 nm shifts with decreasing temperature to short-wavelengths. The phase difference of ordinary and extraordinary light waves for λ>λ0 and λ<λ0 was determined. The band in reflection spectra observed at the isotropic wavelength has a small halfwidth (∽3-5 Å). Another isotropic wavelength was found in the short-wavelength region (433 nm) for crystals obtained by iodine transport method.
Color representation and interpretation of special effect coatings.
Ferrero, A; Perales, E; Rabal, A M; Campos, J; Martínez-Verdú, F M; Chorro, E; Pons, A
2014-02-01
A representation of the color gamut of special effect coatings is proposed and shown for six different samples, whose colors were calculated from spectral bidirectional reflectance distribution function (BRDF) measurements at different geometries. The most important characteristic of the proposed representation is that it allows a straightforward understanding of the color shift to be done both in terms of conventional irradiation and viewing angles and in terms of flake-based parameters. A different line was proposed to assess the color shift of special effect coatings on a*,b*-diagrams: the absorption line. Similar to interference and aspecular lines (constant aspecular and irradiation angles, respectively), an absorption line is the locus of calculated color coordinates from measurement geometries with a fixed bistatic angle. The advantages of using the absorption lines to characterize the contributions to the spectral BRDF of the scattering at the absorption pigments and the reflection at interference pigments for different geometries are shown.
NASA Astrophysics Data System (ADS)
Poryvkina, Larisa; Aleksejev, Valeri; Babichenko, Sergey M.; Ivkina, Tatjana
2011-04-01
The NarTest fluorescent technique is aimed at the detection of analyte of interest in street samples by recognition of its specific spectral patterns in 3-dimentional Spectral Fluorescent Signatures (SFS) measured with NTX2000 analyzer without chromatographic or other separation of controlled substances from a mixture with cutting agents. The illicit drugs have their own characteristic SFS features which can be used for detection and identification of narcotics, however typical street sample consists of a mixture with cutting agents: adulterants and diluents. Many of them interfere the spectral shape of SFS. The expert system based on Artificial Neural Networks (ANNs) has been developed and applied for such pattern recognition in SFS of street samples of illicit drugs.
Effects of proton irradiation on thin-film materials for optical filters
NASA Astrophysics Data System (ADS)
Scaglione, Salvatore; Piegari, Angela; Sytchkova, Anna; Jakšić, Milko
2017-11-01
The behaviour of interference optical filters for space applications has been investigated under low energy proton irradiation. In order to understand the behaviour of the interference coating subjected to proton irradiation, the interaction of protons with coating and substrate was simulated by the SRIM code. A beam of protons of 60 KeV with an integrated fluence of 1013 p+/cm2 was used. The spectral transmittances of fused silica, TiO2 and HfO2 single layers and interference coatings were measured before and after irradiation and, according to simulations, no significant effects were detected in the visible-near infrared spectrum, while some variations appeared at shorter wavelengths.
A filter spectrometer concept for facsimile cameras
NASA Technical Reports Server (NTRS)
Jobson, D. J.; Kelly, W. L., IV; Wall, S. D.
1974-01-01
A concept which utilizes interference filters and photodetector arrays to integrate spectrometry with the basic imagery function of a facsimile camera is described and analyzed. The analysis considers spectral resolution, instantaneous field of view, spectral range, and signal-to-noise ratio. Specific performance predictions for the Martian environment, the Viking facsimile camera design parameters, and a signal-to-noise ratio for each spectral band equal to or greater than 256 indicate the feasibility of obtaining a spectral resolution of 0.01 micrometers with an instantaneous field of view of about 0.1 deg in the 0.425 micrometers to 1.025 micrometers range using silicon photodetectors. A spectral resolution of 0.05 micrometers with an instantaneous field of view of about 0.6 deg in the 1.0 to 2.7 micrometers range using lead sulfide photodetectors is also feasible.
Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying
2016-07-13
A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO₄(2-) in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05'40'' N, 120°31'32'' E) in October 2014. To detect chl-a, CDOM, carotenoids and SO₄(2-), the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO₄(2-). To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO₄(2-) concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO₄(2-) in the ocean.
Uniform high order spectral methods for one and two dimensional Euler equations
NASA Technical Reports Server (NTRS)
Cai, Wei; Shu, Chi-Wang
1991-01-01
Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.
Multidomain spectral solution of shock-turbulence interactions
NASA Technical Reports Server (NTRS)
Kopriva, David A.; Hussaini, M. Yousuff
1989-01-01
The use of a fitted-shock multidomain spectral method for solving the time-dependent Euler equations of gasdynamics is described. The multidomain method allows short spatial scale features near the shock to be resolved throughout the calculation. Examples presented are of a shock-plane wave, shock-hot spot and shock-vortex street interaction.
Multivariable passive RFID vapor sensors: roll-to-roll fabrication on a flexible substrate.
Potyrailo, Radislav A; Burns, Andrew; Surman, Cheryl; Lee, D J; McGinniss, Edward
2012-06-21
We demonstrate roll-to-roll (R2R) fabrication of highly selective, battery-free radio frequency identification (RFID) sensors on a flexible polyethylene terephthalate (PET) polymeric substrate. Selectivity of our developed RFID sensors is provided by measurements of their resonance impedance spectra, followed by the multivariate analysis of spectral features, and correlation of these spectral features to the concentrations of vapors of interest. The multivariate analysis of spectral features also provides the ability for the rejection of ambient interferences. As a demonstration of our R2R fabrication process, we employed polyetherurethane (PEUT) as a "classic" sensing material, extruded this sensing material as 25, 75, and 125-μm thick films, and thermally laminated the films onto RFID inlays, rapidly producing approximately 5000 vapor sensors. We further tested these RFID vapor sensors for their response selectivity toward several model vapors such as toluene, acetone, and ethanol as well as water vapor as an abundant interferent. Our RFID sensing concept features 16-bit resolution provided by the sensor reader, granting a highly desired independence from costly proprietary RFID memory chips with a low-resolution analog input. Future steps are being planned for field-testing of these sensors in numerous conditions.
NASA Astrophysics Data System (ADS)
Brown, Justin; Woolf, David; Hensley, Joel
2016-05-01
Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.
Chen, Peng; Yang, Yixin; Wang, Yong; Ma, Yuanliang
2018-05-08
When sensor position errors exist, the performance of recently proposed interference-plus-noise covariance matrix (INCM)-based adaptive beamformers may be severely degraded. In this paper, we propose a weighted subspace fitting-based INCM reconstruction algorithm to overcome sensor displacement for linear arrays. By estimating the rough signal directions, we construct a novel possible mismatched steering vector (SV) set. We analyze the proximity of the signal subspace from the sample covariance matrix (SCM) and the space spanned by the possible mismatched SV set. After solving an iterative optimization problem, we reconstruct the INCM using the estimated sensor position errors. Then we estimate the SV of the desired signal by solving an optimization problem with the reconstructed INCM. The main advantage of the proposed algorithm is its robustness against SV mismatches dominated by unknown sensor position errors. Numerical examples show that even if the position errors are up to half of the assumed sensor spacing, the output signal-to-interference-plus-noise ratio is only reduced by 4 dB. Beam patterns plotted using experiment data show that the interference suppression capability of the proposed beamformer outperforms other tested beamformers.
Interference techniques in fluorescence microscopy
NASA Astrophysics Data System (ADS)
Dogan, Mehmet
We developed a set of interference-based optical microscopy techniques to study biological structures through nanometer-scale axial localization of fluorescent biomarkers. Spectral self-interference fluorescence microscopy (SSFM) utilizes interference of direct and reflected waves emitted from fluorescent molecules in the vicinity of planar reflectors to reveal the axial position of the molecules. A comprehensive calculation algorithm based on Green's function formalism is presented to verify the validity of approximations used in a far-field approach that describes the emission of fluorescent markers near interfaces. Using the validated model, theoretical limits of axial localization were determined with emphasis given to numerical aperture (NA) dependence of localization uncertainty. SSFM was experimentally demonstrated in conformational analysis of nucleoproteins. In particular, interaction between surface-tethered 75-mer double strand DNA and integration host factor (IHF) protein was probed on Si-SiO2 substrates by determining the axial position of fluorescent labels attached to the free ends of DNA molecules. Despite its sub-nanometer precision axial localization capability, SSFM lacks high lateral resolution due to the low-NA requirement for planar reflectors. We developed a second technique, 4Pi-SSFM, which improves the lateral resolution of a conventional SSFM system by an order of magnitude while achieving nanometer-scale axial localization precision. Using two opposing high-NA objectives, fluorescence signal is interferometrically collected and spectral interference pattern is recorded. Axial position of emitters is found from analysis of the spectra. The 4Pi-SSFM technique was experimentally demonstrated by determining the surface profiles of fabricated glass surfaces and outer membranes of Shigella, a type of Gram-negative bacteria. A further discussion is presented to localize surface O antigen, which is an important oligosaccharide structure in the virulence mechanism of the Gram-negative bacteria, including E. coli and Shigella.
Investigation of deformation at a centrifugal compressor rotor in process of interference on shaft
NASA Astrophysics Data System (ADS)
Shamim, M. R.; Berezhnoi, D. V.
2016-11-01
In this paper, according to the finite element method, we had implemented “master- slave” method of contact interaction in elastic deformable bodies, with consider of the friction in the contact zone. We had compiled the orientation of solving extremum problems with inequality restrictions, projection algorithm, which called “the closest point projection algorithm”. Finally, an example, had brought to show the calculation of the rotor nozzle centrifugal compressor on the shaft with interference.
Tunable resonator-based devices for producing variable delays and narrow spectral linewidths
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor)
2006-01-01
Devices with two or more coupled resonators to produce narrow spectral responses due to interference of signals that transmit through the resonators and techniques for operating such devices to achieve certain operating characteristics are described. The devices may be optical devices where optical resonators such as whispering gallery mode resonators may be used. In one implementation, at least one of the coupled optical resonators is a tunable resonator and is tuned to change its resonance frequency to tune the spectral response of the device. The described devices and techniques may be applied in optical filters, optical delays, optical waveform generators, and other applications.
NASA Astrophysics Data System (ADS)
Dennis, K. J.; Rees-Owen, R. L.; Brooks, P. D.; Carter, J.; Dawson, T. E.
2014-12-01
The ability to measure the stable isotopic composition of plant and soil waters, surface waters and ambient atmospheric vapor is essential to understanding an ecosystem's water budget, including how water cycles between the air, plants and the subsurface. With the advent of laser-based spectroscopy, e.g., Cavity Ring-Down Spectroscopy (CRDS), the isotopic analysis of waters has become increasingly cost-effective and prevalent, with comparable precision to conventional isotope ratio mass spectrometry methods. However, early work [1,2] demonstrated that the accuracy of isotopic analysis by laser-absorption techniques could be compromised by the spectral interference from organic compounds, in particular methanol and ethanol [1], which are prevalent in ecologically-derived waters. Here we present results from the Picarro Micro-Combustion Module (MCM), which acts to destructively remove these interfering organic species from the analyzed water vapor stream by oxidizing them to CO2 and H2O. Analyzed samples include simulated plant water solutions, waters doped with varying concentrations of potentially problematic organic compounds, and actual plant water extracts. We find that the median offset between IRMS and a Picarro L2130-i outfitted with a MCM is less than 0.5 ‰ for δ18O and less than 1 ‰ for δD. In parallel to the destruction of organic contaminants, a software tool can also be used to assess the probability of spectral interference. This software performs a statistical analysis of spectral fit parameters, e.g., the shift in the spectral baseline, and compares unknown samples to clean standard waters. In general, the most common primary metabolites present in plant materials include the light organic acids, e.g., benzoic and formic acid. At low concentrations (0.1 and 1%) formic acid does not appear to interfere with the resolved absorption spectra for H2O, HDO and H218O. Similar tests will be conducted for benzoic acid. Conversely, although methanol and ethanol are only present in trace amounts in plants, these alcohols can cause large interferences even at the low concentrations (1% and 0.025% for ethanol and methanol, respectively). Using these results, we will propose when CRDS for ecologically-derived waters functions best. [1] Brand et al. (2009), RCM, 23 [2] West et al. (2010), RCM, 24
Generalized quantum interference of correlated photon pairs
Kim, Heonoh; Lee, Sang Min; Moon, Han Seb
2015-01-01
Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143
Double-Slit Interference Pattern for a Macroscopic Quantum System
NASA Astrophysics Data System (ADS)
Naeij, Hamid Reza; Shafiee, Afshin
2016-12-01
In this study, we solve analytically the Schrödinger equation for a macroscopic quantum oscillator as a central system coupled to two environmental micro-oscillating particles. Then, the double-slit interference patterns are investigated in two limiting cases, considering the limits of uncertainty in the position probability distribution. Moreover, we analyze the interference patterns based on a recent proposal called stochastic electrodynamics with spin. Our results show that when the quantum character of the macro-system is decreased, the diffraction pattern becomes more similar to a classical one. We also show that, depending on the size of the slits, the predictions of quantum approach could be apparently different with those of the aforementioned stochastic description.
Analysis of multimode fiber bundles for endoscopic spectral-domain optical coherence tomography
Risi, Matthew D.; Makhlouf, Houssine; Rouse, Andrew R.; Gmitro, Arthur F.
2016-01-01
A theoretical analysis of the use of a fiber bundle in spectral-domain optical coherence tomography (OCT) systems is presented. The fiber bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the OCT data. However, the multimode characteristic of the fibers in the fiber bundle affects the depth sensitivity of the imaging system. A description of light interference in a multimode fiber is presented along with numerical simulations and experimental studies to illustrate the theoretical analysis. PMID:25967012
Coupling finite element and spectral methods: First results
NASA Technical Reports Server (NTRS)
Bernardi, Christine; Debit, Naima; Maday, Yvon
1987-01-01
A Poisson equation on a rectangular domain is solved by coupling two methods: the domain is divided in two squares, a finite element approximation is used on the first square and a spectral discretization is used on the second one. Two kinds of matching conditions on the interface are presented and compared. In both cases, error estimates are proved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogane, S.; Shikama, T., E-mail: shikama@me.kyoto-u.ac.jp; Hasuo, M.
In magnetically confined torus plasmas, the local emission intensity, temperature, and flow velocity of atoms in the inboard and outboard scrape-off layers can be separately measured by a passive emission spectroscopy assisted by observation of the Zeeman splitting in their spectral line shape. To utilize this technique, a near-infrared interference spectrometer optimized for the observation of the helium 2{sup 3}S–2{sup 3}P transition spectral line (wavelength 1083 nm) has been developed. The applicability of the technique to actual torus devices is elucidated by calculating the spectral line shapes expected to be observed in LHD and QUEST (Q-shu University Experiment with Steadymore » State Spherical Tokamak). In addition, the Zeeman effect on the spectral line shape is measured using a glow-discharge tube installed in a superconducting magnet.« less
Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths.
Bruno, N; Martin, A; Guerreiro, T; Sanguinetti, B; Thew, R T
2014-07-14
We report on the generation of indistinguishable photon pairs at telecom wavelengths based on a type-II parametric down conversion process in a periodically poled potassium titanyl phosphate (PPKTP) crystal. The phase matching, pump laser characteristics and coupling geometry are optimised to obtain spectrally uncorrelated photons with high coupling efficiencies. Four photons are generated by a counter-propagating pump in the same crystal and anlysed via two photon interference experiments between photons from each pair source as well as joint spectral and g((2)) measurements. We obtain a spectral purity of 0.91 and coupling efficiencies around 90% for all four photons without any filtering. These pure indistinguishable photon sources at telecom wavelengths are perfectly adapted for quantum network demonstrations and other multi-photon protocols.
Sun, You-Wen; Liu, Wen-Qing; Wang, Shi-Mei; Huang, Shu-Hua; Yu, Xiao-Man
2011-10-01
A method of interference correction for nondispersive infrared multi-component gas analysis was described. According to the successive integral gas absorption models and methods, the influence of temperature and air pressure on the integral line strengths and linetype was considered, and based on Lorentz detuning linetypes, the absorption cross sections and response coefficients of H2O, CO2, CO, and NO on each filter channel were obtained. The four dimension linear regression equations for interference correction were established by response coefficients, the absorption cross interference was corrected by solving the multi-dimensional linear regression equations, and after interference correction, the pure absorbance signal on each filter channel was only controlled by the corresponding target gas concentration. When the sample cell was filled with gas mixture with a certain concentration proportion of CO, NO and CO2, the pure absorbance after interference correction was used for concentration inversion, the inversion concentration error for CO2 is 2.0%, the inversion concentration error for CO is 1.6%, and the inversion concentration error for NO is 1.7%. Both the theory and experiment prove that the interference correction method proposed for NDIR multi-component gas analysis is feasible.
Spectral multigrid methods for the solution of homogeneous turbulence problems
NASA Technical Reports Server (NTRS)
Erlebacher, G.; Zang, T. A.; Hussaini, M. Y.
1987-01-01
New three-dimensional spectral multigrid algorithms are analyzed and implemented to solve the variable coefficient Helmholtz equation. Periodicity is assumed in all three directions which leads to a Fourier collocation representation. Convergence rates are theoretically predicted and confirmed through numerical tests. Residual averaging results in a spectral radius of 0.2 for the variable coefficient Poisson equation. In general, non-stationary Richardson must be used for the Helmholtz equation. The algorithms developed are applied to the large-eddy simulation of incompressible isotropic turbulence.
Iterative spectral methods and spectral solutions to compressible flows
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Zang, T. A.
1982-01-01
A spectral multigrid scheme is described which can solve pseudospectral discretizations of self-adjoint elliptic problems in O(N log N) operations. An iterative technique for efficiently implementing semi-implicit time-stepping for pseudospectral discretizations of Navier-Stokes equations is discussed. This approach can handle variable coefficient terms in an effective manner. Pseudospectral solutions of compressible flow problems are presented. These include one dimensional problems and two dimensional Euler solutions. Results are given both for shock-capturing approaches and for shock-fitting ones.
NASA Astrophysics Data System (ADS)
Azarov, V. I.; Kramida, A.; Vokhmentsev, M. Ya.
2018-04-01
The article describes a Java program that can be used in a user-friendly way to visually identify spectral lines observed in complex spectra with theoretically predicted transitions between atomic or molecular energy levels. The program arranges various information about spectral lines and energy levels in such a way that line identification and determination of positions of experimentally observed energy levels become much easier tasks that can be solved fast and efficiently.
NASA Astrophysics Data System (ADS)
Wang, Ke-Yan; Li, Yun-Song; Liu, Kai; Wu, Cheng-Ke
2008-08-01
A novel compression algorithm for interferential multispectral images based on adaptive classification and curve-fitting is proposed. The image is first partitioned adaptively into major-interference region and minor-interference region. Different approximating functions are then constructed for two kinds of regions respectively. For the major interference region, some typical interferential curves are selected to predict other curves. These typical curves are then processed by curve-fitting method. For the minor interference region, the data of each interferential curve are independently approximated. Finally the approximating errors of two regions are entropy coded. The experimental results show that, compared with JPEG2000, the proposed algorithm not only decreases the average output bit-rate by about 0.2 bit/pixel for lossless compression, but also improves the reconstructed images and reduces the spectral distortion greatly, especially at high bit-rate for lossy compression.
NASA Astrophysics Data System (ADS)
Kim, Hyo-Su; Kim, Dong-Hoi
The dynamic channel allocation (DCA) scheme in multi-cell systems causes serious inter-cell interference (ICI) problem to some existing calls when channels for new calls are allocated. Such a problem can be addressed by advanced centralized DCA design that is able to minimize ICI. Thus, in this paper, a centralized DCA is developed for the downlink of multi-cell orthogonal frequency division multiple access (OFDMA) systems with full spectral reuse. However, in practice, as the search space of channel assignment for centralized DCA scheme in multi-cell systems grows exponentially with the increase of the number of required calls, channels, and cells, it becomes an NP-hard problem and is currently too complicated to find an optimum channel allocation. In this paper, we propose an ant colony optimization (ACO) based DCA scheme using a low-complexity ACO algorithm which is a kind of heuristic algorithm in order to solve the aforementioned problem. Simulation results demonstrate significant performance improvements compared to the existing schemes in terms of the grade of service (GoS) performance and the forced termination probability of existing calls without degrading the system performance of the average throughput.
Frequency-domain Hong-Ou-Mandel interference with linear optics.
Imany, Poolad; Odele, Ogaga D; Alshaykh, Mohammed S; Lu, Hsuan-Hao; Leaird, Daniel E; Weiner, Andrew M
2018-06-15
The Hong-Ou-Mandel (HOM) interference is one of the most fundamental quantum-mechanical effects that reveal a nonclassical behavior of single photons. Two identical photons that are incident on the input ports of an unbiased beam splitter always exit the beam splitter together from the same output port, an effect referred to as photon bunching. In this Letter, we utilize a single electro-optic phase modulator as a probabilistic frequency beam splitter, which we exploit to observe HOM interference between two photons that are in different spectral modes, yet are identical in other characteristics. Our approach enables linear optical quantum information processing protocols using the frequency degree of freedom in photons such as quantum computing techniques with linear optics.
IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network
NASA Astrophysics Data System (ADS)
Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook
2016-12-01
Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.
Roos, P A; Li, Xiaoqin; Smith, R P; Pipis, Jessica A; Fortier, T M; Cundiff, S T
2005-04-01
We demonstrate carrier-envelope phase stabilization of a mode-locked Ti:sapphire laser by use of quantum interference control of injected photocurrents in a semiconductor. No harmonic generation is required for this stabilization technique. Instead, interference between coexisting single- and two-photon absorption pathways in the semiconductor provides a phase comparison between different spectral components. The phase comparison, and the detection of the photocurrent that it produces, both occur within a single low-temperature-grown gallium arsenide sample. The carrier-envelope offset beat note fidelity is 30 dB in a 10-kHz resolution bandwidth. The out-of-loop phase-noise level is essentially identical to the best previous measurements with the standard self-referencing technique.
The Effect of a Pulsed Interference Signal on an Adaptive Array.
1981-04-01
eigenvectors exist.) Using a spectral decomp- osition formula [10,11], we may write e-kM in the form -kM -k(T- )-kpo 3 -kg i (e -k = e a : .iZ e eie i , (28...N 0 (No/T b) In addition, for this analysis we shall assume the interference power at the array output has the same effect on detector performance... Sensitive Adaptive Array," to appear in IEEE Trans. Antennas and Propagation. 7. R.T. Compton, Jr., "The Tripole Antenna - An Adaptive Array with Full
Optimization of an integrated wavelength monitor device
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald
2011-05-01
In this paper an edge filter based on multimode interference in an integrated waveguide is optimized for a wavelength monitoring application. This can also be used as a demodulation element in a fibre Bragg grating sensing system. A global optimization algorithm is presented for the optimum design of the multimode interference device, including a range of parameters of the multimode waveguide, such as length, width and position of the input and output waveguides. The designed structure demonstrates the desired spectral response for wavelength measurements. Fabrication tolerance is also analysed numerically for this structure.
Simple interrogator for optical fiber-based white light Fabry-Perot interferometers.
Yu, Zhihao; Tian, Zhipeng; Wang, Anbo
2017-02-15
In this Letter, we present the design of a simple signal interrogator for optical fiber-based white light Fabry-Perot (F-P) interferometers. With the hardware being composed of only a flat fused silica wafer and a CCD camera, this interrogator translates the spectral interference into a spatial interference pattern, and then demodulates the F-P cavity length with the use of a relatively simple demodulation algorithm. The concept is demonstrated experimentally in a fiber optic sensor with a sapphire wafer as the F-P cavity.
NASA Astrophysics Data System (ADS)
Potter, Andrea; McCune, Matthew A.; de, Ruma; Madjet, Mohamed E.; Chakraborty, Himadri S.
2010-09-01
Considering the photoionization of the Xe@C60 endohedral compound, we study in detail the ionization cross sections of various levels of the system at energies higher than the plasmon resonance region. Five classes of single-electron levels are identified depending on their spectral character. Each class engenders distinct oscillations in the cross section, emerging from the interference between active ionization modes specific to that class. Analysis of the cross sections based on their Fourier transforms unravels oscillation frequencies that carry unique fingerprints of the emitting level.
NASA Astrophysics Data System (ADS)
Lauinger, Norbert
1999-08-01
Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.
Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler.
Meischen, Sandra J; Van Pelt, Vincent J; Zarate, Eugene A; Stephens, Edward A
2004-01-01
Gaseous elemental and total (elemental + oxidized) mercury (Hg) in the flue gas from a coal-fired boiler was measured by a modified ultraviolet (UV) spectrometer. Challenges to Hg measurement were the spectral interferences from other flue gas components and that UV measures only elemental Hg. To eliminate interference from flue gas components, a cartridge filled with gold-coated sand removed elemental Hg from a flue gas sample. The Hg-free flue gas was the reference gas, eliminating the spectral interferences. To measure total Hg by UV, oxidized Hg underwent a gas-phase, thermal-reduction in a quartz cell heated to 750 degrees C. Simultaneously, hydrogen was added to flash react with the oxygen present forming water vapor and preventing Hg re-oxidation as it exits the cell. Hg concentration results are in parts per billion by volume Hg at the flue gas oxygen concentration. The modified Hg analyzer and the Ontario Hydro method concurrently measured Hg at a field test site. Measurements were made at a 700-MW steam turbine plant with scrubber units and selective catalytic reduction. The flue gas sampled downstream of the selective catalytic reduction contained 2100 ppm SO2 and 75 ppm NOx. Total Hg measured by the Hg analyzer was within 20% of the Ontario Hydro results.
Engineering calculations for solving the orbital allotment problem
NASA Technical Reports Server (NTRS)
Reilly, C.; Walton, E. K.; Mount-Campbell, C.; Caldecott, R.; Aebker, E.; Mata, F.
1988-01-01
Four approaches for calculating downlink interferences for shaped-beam antennas are described. An investigation of alternative mixed-integer programming models for satellite synthesis is summarized. Plans for coordinating the various programs developed under this grant are outlined. Two procedures for ordering satellites to initialize the k-permutation algorithm are proposed. Results are presented for the k-permutation algorithms. Feasible solutions are found for 5 of the 6 problems considered. Finally, it is demonstrated that the k-permutation algorithm can be used to solve arc allotment problems.
NASA Astrophysics Data System (ADS)
Dikmese, Sener; Srinivasan, Sudharsan; Shaat, Musbah; Bader, Faouzi; Renfors, Markku
2014-12-01
Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier (FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The optimization technique used for the resource allocation approach considered in this study utilizes the information obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms, including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case study using an 802.11-g WLAN scenario.
Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying
2016-01-01
A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO42− in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05′40′′ N, 120°31′32′′ E) in October 2014. To detect chl-a, CDOM, carotenoids and SO42−, the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO42−. To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO42− concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO42− in the ocean. PMID:27420071
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dion, Michael; Eiden, Greg; Farmer, Orville
2016-07-22
A developed technique that uses the intrinsic mass-based separation capability of a quadrupole mass spectrometer has been used to resolve spectral radiometric interference of two isotopes of the same element. In this work the starting sample was a combination of 137Cs and 134Cs and was (activity) dominated by 137Cs and this methodology separated and “implanted” 134Cs that was later quantified for spectral features and ac- tivity with traditional radiometric techniques. This work demonstrated a 134Cs/137Cs activity ratio enhancement of >4 orders of magnitude and complete removal of 137Cs spectral features from the implanted target mass (i.e., 134).
Sivaprakasam, Vasanthi; Lin, Horn-Bond; Huston, Alan L; Eversole, Jay D
2011-03-28
A two-wavelength laser-induced fluorescence (LIF) instrument has been developed and used to characterize individual biological aerosol particles, including biological warfare (BW) agent surrogates. Fluorescence in discrete spectral bands from widely different species, and also from similar species under different growth conditions were measured and compared. The two-wavelength excitation approach was found to increase discrimination among several biological materials, and especially with respect to diesel exhaust particles, a common interferent for LIF BW detection systems. The spectral characteristics of a variety of biological materials and ambient air components have been studied as a function of aerosol particle size and incident fluence.
Varbanova, Evelina K; Angelov, Plamen A; Stefanova, Violeta M
2016-11-01
In the present work the potential of a new ligand 3-Ethylamino-but-2-enoic acid phenylamide (representing the class of enaminones) for selective preconcentration of lanthanides (La, Ce, Eu, Gd and Er) from aqueous medium is examined. Liquid-liquid extraction parameters, such as pH of the water phase, type and volume of organic solvent, quantity of ligand and reaction time are optimized on model solutions. Recovery of lanthanides by re-extraction with nitric acid makes the LLE procedure compatible with Inductively Coupled Plasma Mass Spectrometry. Spectral and non-spectral interferences are studied. Two isotopes per element are measured (with exception of La) for dynamic evaluation of the potential risk of spectral interference in variable real samples. The selectivity of complex formation reaction towards concomitant alkali and alkali-earth elements eliminates the interferences from sample matrix. Subjecting the standards to the optimized extraction procedure in combination with Re as internal standard is recommended as calibration strategy. The accuracy of developed method is approved by analysis of CRM Bush branches and leaves (NCS DC 73348) and recovery of spiked water and plant samples. The method's limits of detection for both studied objects are in the ranges from 0.2 ((158)Gd) to 3.7 ((139)La) ngl(-1) and 0.02 ((158)Gd) to 0.37((139)La) ngg(-1) for waters and plants respectively. The studied compound is an effective new ligand for preconcentration/separation of lanthanides from aqueous medium by LLE and subsequent determination by ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.
Model-free simulations of turbulent reactive flows
NASA Technical Reports Server (NTRS)
Givi, Peyman
1989-01-01
The current computational methods for solving transport equations of turbulent reacting single-phase flows are critically reviewed, with primary attention given to those methods that lead to model-free simulations. In particular, consideration is given to direct numerical simulations using spectral (Galerkin) and pseudospectral (collocation) methods, spectral element methods, and Lagrangian methods. The discussion also covers large eddy simulations and turbulence modeling.
NASA Astrophysics Data System (ADS)
Kochiashvili, N.; Kochiashvili, I.; Natsvlishvili, R.; Vardosanidze, M.; Beradze, S.
2017-07-01
On the basis of UBVR photometric data, obtained in the Abastumani Observatory during 1991-1999, very interesting and unusual flare of EM Cep has been revealed. Duration of the flare was over two hours. We estimated the percentage of brightness increase during the flare and brightness decrease of the corresponding anti- flare and the minimum amount of the lost mass during this event. We have solved the light curves of the star using the Wilson-Devinney code. But the resulting fraction of calculated brightness of the companion star was not in accordance with spectral data. Then we decided to check the idea of a pulsating single star using new spectral data. Together with our Buyrakan colleagues we obtained and analyzed spectra of the star. We could not find spectral lines of a companion star or any traces of the radial velocities using this data. Hence, we concluded that we need the higher resolution spectra for final resolution of the matter. On the basis of the latest spectral data of Bulgarian astronomers they concluded that EM Cep is a single star. This makes it possible to suggest, that the question of stellar pulsation could be solved using additional photometric observations.
Two-Flux Green's Function Analysis for Transient Spectral Radiation in a Composite
NASA Technical Reports Server (NTRS)
Siegel, Robert
1996-01-01
An analysis is developed for obtaining transient temperatures in a two-layer semitransparent composite with spectrally dependent properties. Each external boundary of the composite is subjected to radiation and convection. The two-flux radiative transfer equations are solved by deriving a Green's function. This yields the local radiative heat source needed to numerically solve the transient energy equation. An advantage of the two-flux method is that isotropic scattering is included without added complexity. The layer refractive indices are larger than one. This produces internal reflections at the boundaries and the internal interface; the reflections are assumed diffuse. Spectral results using the Green's function method are verified by comparing with numerical solutions using the exact radiative transfer equations. Transient temperature distributions are given to illustrate the effect of radiative heating on one side of a composite with external convective cooling. The protection of a material from incident radiation is illustrated by adding scattering to the layer adjacent to the radiative source.
Matched spectral filter based on reflection holograms for analyte identification.
Cao, Liangcai; Gu, Claire
2009-12-20
A matched spectral filter set that provides automatic preliminary analyte identification is proposed and analyzed. Each matched spectral filter in the set containing the multiple spectral peaks corresponding to the Raman spectrum of a substance is capable of collecting the specified spectrum into the detector simultaneously. The filter set is implemented by multiplexed volume holographic reflection gratings. The fabrication of a matched spectral filter in an Fe:LiNbO(3) crystal is demonstrated to match the Raman spectrum of the sample Rhodamine 6G (R6G). An interference alignment method is proposed and used in the fabrication to ensure that the multiplexed gratings are in the same direction at a high angular accuracy of 0.0025 degrees . Diffused recording beams are used to control the bandwidth of the spectral peaks. The reflection spectrum of the filter is characterized using a modified Raman spectrometer. The result of the filter's reflection spectrum matches that of the sample R6G. A library of such matched spectral filters will facilitate a fast detection with a higher sensitivity and provide a capability for preliminary molecule identification.
Specialized Color Targets for Spectral Reflectance Reconstruction of Magnified Images
NASA Astrophysics Data System (ADS)
Kruschwitz, Jennifer D. T.
Digital images are used almost exclusively instead of film to capture visual information across many scientific fields. The colorimetric color representation within these digital images can be relayed from the digital counts produced by the camera with the use of a known color target. In image capture of magnified images, there is currently no reliable color target that can be used at multiple magnifications and give the user a solid understanding of the color ground truth within those images. The first part of this dissertation included the design, fabrication, and testing of a color target produced with optical interference coated microlenses for use in an off-axis illumination, compound microscope. An ideal target was designed to increase the color gamut for colorimetric imaging and provide the necessary "Block Dye" spectral reflectance profiles across the visible spectrum to reduce the number of color patches necessary for multiple filter imaging systems that rely on statistical models for spectral reflectance reconstruction. There are other scientific disciplines that can benefit from a specialized color target to determine the color ground truth in their magnified images and perform spectral estimation. Not every discipline has the luxury of having a multi-filter imaging system. The second part of this dissertation developed two unique ways of using an interference coated color mirror target: one that relies on multiple light-source angles, and one that leverages a dynamic color change with time. The source multi-angle technique would be used for the microelectronic discipline where the reconstructed spectral reflectance would be used to determine a dielectric film thickness on a silicon substrate, and the time varying technique would be used for a biomedical example to determine the thickness of human tear film.
Numerical solution of the quantum Lenard-Balescu equation for a non-degenerate one-component plasma
Scullard, Christian R.; Belt, Andrew P.; Fennell, Susan C.; ...
2016-09-01
We present a numerical solution of the quantum Lenard-Balescu equation using a spectral method, namely an expansion in Laguerre polynomials. This method exactly conserves both particles and kinetic energy and facilitates the integration over the dielectric function. To demonstrate the method, we solve the equilibration problem for a spatially homogeneous one-component plasma with various initial conditions. Unlike the more usual Landau/Fokker-Planck system, this method requires no input Coulomb logarithm; the logarithmic terms in the collision integral arise naturally from the equation along with the non-logarithmic order-unity terms. The spectral method can also be used to solve the Landau equation andmore » a quantum version of the Landau equation in which the integration over the wavenumber requires only a lower cutoff. We solve these problems as well and compare them with the full Lenard-Balescu solution in the weak-coupling limit. Finally, we discuss the possible generalization of this method to include spatial inhomogeneity and velocity anisotropy.« less
The use of spectral methods in bidomain studies.
Trayanova, N; Pilkington, T
1992-01-01
A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.
Nock, Matthew K; Mendes, Wendy Berry
2008-02-01
It has been suggested that people engage in nonsuicidal self-injury (NSSI) because they (a) experience heightened physiological arousal following stressful events and use NSSI to regulate experienced distress and (b) have deficits in their social problem-solving skills that interfere with the performance of more adaptive social responses. However, objective physiological and behavioral data supporting this model are lacking. The authors compared adolescent self-injurers (n = 62) with noninjurers (n = 30) and found that self-injurers showed higher physiological reactivity (skin conductance) during a distressing task, a poorer ability to tolerate this distress, and deficits in several social problem-solving abilities. These findings highlight the importance of attending to increased arousal, distress tolerance, and problem-solving skills in the assessment and treatment of NSSI.
Weagant, Scott; Chen, Vivian; Karanassios, Vassili
2011-11-01
A battery-operated, atmospheric pressure, self-igniting, planar geometry Ar-H(2) microplasma for elemental analysis of liquid microsamples is described. The inexpensive microplasma device (MPD) fabricated for this work was a hybrid plastic-quartz structure that was formed on chips with an area (roughly) equal to that of a small-sized postage stamp (MPD footprint, 12.5-mm width by 38-mm length). Plastic substrates were chosen due to their low cost, for rapid prototyping purposes, and for a speedy microplasma device evaluation. To enhance portability, the microplasma was operated from an 18-V rechargeable battery. To facilitate portability even further, it was demonstrated that the battery can be recharged by a portable solar panel. The battery-supplied dc voltage was converted to a high-voltage ac. The ~750-μm (diameter) and 12-mm (long) Ar-H(2) (3% H(2)) microplasma was formed by applying the high-voltage ac between two needle electrodes. Spectral interference from the electrode materials or from the plastic substrate was not observed. Operating conditions were found to be key to igniting and sustaining a microplasma that was simply "warm" to the touch (thus alleviating the need for cooling or other thermal management) and that had a stable background emission. A small-sized (900 μL internal volume) electrothermal vaporization system (40-W max power) was used for microsample introduction. Microplasma background emission in the spectral region between 200 and 850 nm obtained using a portable fiber-optic spectrometer is reported and the effect of the operating conditions is described. Analyte emission from microliter volumes of dilute single-element standard solutions of Cd, Cu, K, Li, Mg, Mn, Na, Pb, and Zn is documented. The majority of spectral lines observed for the elements tested were from neutral atoms. The relative lack of emission from ion lines simplified the spectra, thus facilitating the use of a portable spectrometer. Despite the relative spectral simplicity, some spectral interference effects were noted when running a multi-element solution. An example of how interference in the spectral domain can be resolved in the time domain using selective thermal vaporization is provided. Analytical utility and performance characteristics are reported; for example, K concentrations in diluted (~30 times) bottled water were determined to be 4.1 ± 1.0 μg/mL (4 μg/mL was the stated concentration), precision was about 25%, and the estimated detection limits were in the picogram range (or in nanograms per milliliter in relative units).
The Spectral Element Method for Geophysical Flows
NASA Astrophysics Data System (ADS)
Taylor, Mark
1998-11-01
We will describe SEAM, a Spectral Element Atmospheric Model. SEAM solves the 3D primitive equations used in climate modeling and medium range forecasting. SEAM uses a spectral element discretization for the surface of the globe and finite differences in the vertical direction. The model is spectrally accurate, as demonstrated by a variety of test cases. It is well suited for modern distributed-shared memory computers, sustaining over 24 GFLOPS on a 240 processor HP Exemplar. This performance has allowed us to run several interesting simulations in full spherical geometry at high resolution (over 22 million grid points).
On shifted Jacobi spectral method for high-order multi-point boundary value problems
NASA Astrophysics Data System (ADS)
Doha, E. H.; Bhrawy, A. H.; Hafez, R. M.
2012-10-01
This paper reports a spectral tau method for numerically solving multi-point boundary value problems (BVPs) of linear high-order ordinary differential equations. The construction of the shifted Jacobi tau approximation is based on conventional differentiation. This use of differentiation allows the imposition of the governing equation at the whole set of grid points and the straight forward implementation of multiple boundary conditions. Extension of the tau method for high-order multi-point BVPs with variable coefficients is treated using the shifted Jacobi Gauss-Lobatto quadrature. Shifted Jacobi collocation method is developed for solving nonlinear high-order multi-point BVPs. The performance of the proposed methods is investigated by considering several examples. Accurate results and high convergence rates are achieved.
Spectroelectrochemical Sensors: New Polymer Films for Improved Sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Laura K.; Seliskar, Carl J.; Bryan, Samuel A.
2014-10-31
The selectivity of an optical sensor can be improved by combining optical detection with electrochemical oxidation or reduction of the target analyte to change its spectral properties. The changing signal can distinguish the analyte from interferences with similar spectral properties that would otherwise interfere. The analyte is detected by measuring the intensity of the electrochemically modulated signal. In one form this spectroelectrochemical sensor consists of an optically transparent electrode (OTE) coated with a film that preconcentrates the target analyte. The OTE functions as an optical waveguide for attenuated total reflectance (ATR) spectroscopy, which detects the analyte by absorption. Sensitivity reliesmore » in part on a large change in molar absorptivity between the two oxidation states used for electrochemical modulation of the optical signal. A critical part of the sensor is the ion selective film. It should preconcentrate the analyte and exclude some interferences. At the same time the film must not interfere with the electrochemistry or the optical detection. Therefore, since the debut of the sensor’s concept one major focus of our group has been developing appropriate films for different analytes. Here we report the development of a series of quaternized poly(vinylpyridine)-co-styrene (QPVP-co-S) anion exchange films for use in spectroelectrochemical sensors to enable sensitive detection of target anionic analytes in complex samples. The films were either 10% or 20% styrene and were prepared with varying degrees of quaternized pyridine groups, up to 70%. Films were characterized with respect to thickness with spectroscopic ellipsometry, degree of quaternization with FTIR, and electrochemically and spectroelectrochemically using the anions ferrocyanide and pertechnetate.« less
Sarmiento-González, Alejandro; Marchante-Gayón, Juan Manuel; Tejerina-Lobo, José María; Paz-Jiménez, José; Sanz-Medel, Alfredo
2005-06-01
A sector field high-resolution (HR)-ICP-MS and an octapole reaction system (ORS)-ICP-MS have been compared for the simultaneous determination of traces of metals (Ti, V, Cr, Co, Ni, and Mo) released from dental implants and articular prostheses in human biological fluids. Optimum sample treatments were evaluated to minimize matrix effects in urine and whole blood. Urine samples were diluted tenfold with ultrapure water, whereas whole blood samples were digested with high-purity nitric acid and hydrogen peroxide and finally diluted tenfold with ultrapure water. In both matrices, internal standardization (Ga and Y) was employed to avoid potential matrix interferences and ICP-MS signal drift. Spectral interferences arising from the plasma gases or the major components of urine and whole blood were identified by (HR)-ICP-MS at 3,000 resolving power. The capabilities of (HR)-ICP-MS and (ORS)-ICP-MS for the removal of such spectral interferences were evaluated and compared. Results indicate that polyatomic interferences, which hamper the determination of such metallic elements in these biological samples, could be overcome by using a resolving power of 3,000. Using (ORS)-ICP-MS, all those elements could be quantified except Ti and V (due to the polyatomic ions 31P16O and 35Cl16O, respectively). The accuracy of the proposed methodologies by (HR)- and (ORS)-ICP-MS was checked against two reference materials. Good agreement between the given values and the concentrations obtained for all the analytes under scrutiny was found except for Ti and V when analyzed by (ORS)-ICP-MS.
The feasibility of well-logging measurements of arsenic levels using neutron-activation analysis
Oden, C.P.; Schweitzer, J.S.; McDowell, G.M.
2006-01-01
Arsenic is an extremely toxic metal, which poses a significant problem in many mining environments. Arsenic contamination is also a major problem in ground and surface waters. A feasibility study was conducted to determine if neutron-activation analysis is a practical method of measuring in situ arsenic levels. The response of hypothetical well-logging tools to arsenic was simulated using a readily available Monte Carlo simulation code (MCNP). Simulations were made for probes with both hyperpure germanium (HPGe) and bismuth germanate (BGO) detectors using accelerator and isotopic neutron sources. Both sources produce similar results; however, the BGO detector is much more susceptible to spectral interference than the HPGe detector. Spectral interference from copper can preclude low-level arsenic measurements when using the BGO detector. Results show that a borehole probe could be built that would measure arsenic concentrations of 100 ppm by weight to an uncertainty of 50 ppm in about 15 min. ?? 2006 Elsevier Ltd. All rights reserved.
Automated Removal of Bad-Baseline Spectra from ACSIS/HARP Heterodyne Time Series
NASA Astrophysics Data System (ADS)
Currie, M. J.
2013-10-01
Heterodyne time-series spectral data often exhibit distorted or noisy baselines. These are either transient due to external interference or pickup; or affect a receptor throughout an observation or extended period, possibly due to a poor cable connection. While such spectra can be excluded manually, this is time consuming and prone to omission, especially for the high-frequency interference affecting just one or two spectra in typically several to twenty thousand, yet can produce undesirable artifacts in the reduced spectral cube. Further astronomers have tended to reject an entire receptor if any of its spectra are suspect; as a consequence the reduced products have lower signal-to-noise, and enhanced graticule patterns due to the variable coverage and detector relative sensitivities. This paper illustrates some of the types of aberrant spectra for ACSIS/HARP on the James Clerk Maxwell Telescope and the algorithms used to identify and remove them, applied within the ORAC-DR pipeline, and compares an integrated map with and without baseline filtering.
AOTF microscope for imaging with increased speed and spectral versatility.
Wachman, E S; Niu, W; Farkas, D L
1997-01-01
We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284289
Shin, Hyunjin; Mutlu, Miray; Koomen, John M.; Markey, Mia K.
2007-01-01
Noise in mass spectrometry can interfere with identification of the biochemical substances in the sample. For example, the electric motors and circuits inside the mass spectrometer or in nearby equipment generate random noise that may distort the true shape of mass spectra. This paper presents a stochastic signal processing approach to analyzing noise from electrical noise sources (i.e., noise from instrumentation) in MALDI TOF mass spectrometry. Noise from instrumentation was hypothesized to be a mixture of thermal noise, 1/f noise, and electric or magnetic interference in the instrument. Parametric power spectral density estimation was conducted to derive the power distribution of noise from instrumentation with respect to frequencies. As expected, the experimental results show that noise from instrumentation contains 1/f noise and prominent periodic components in addition to thermal noise. These periodic components imply that the mass spectrometers used in this study may not be completely shielded from the internal or external electrical noise sources. However, according to a simulation study of human plasma mass spectra, noise from instrumentation does not seem to affect mass spectra significantly. In conclusion, analysis of noise from instrumentation using stochastic signal processing here provides an intuitive perspective on how to quantify noise in mass spectrometry through spectral modeling. PMID:19455245
Weak-field multiphoton femtosecond coherent control in the single-cycle regime.
Chuntonov, Lev; Fleischer, Avner; Amitay, Zohar
2011-03-28
Weak-field coherent phase control of atomic non-resonant multiphoton excitation induced by shaped femtosecond pulses is studied theoretically in the single-cycle regime. The carrier-envelope phase (CEP) of the pulse, which in the multi-cycle regime does not play any control role, is shown here to be a new effective control parameter that its effect is highly sensitive to the spectral position of the ultrabroad spectrum. Rationally chosen position of the ultrabroadband spectrum coherently induces several groups of multiphoton transitions from the ground state to the excited state of the system: transitions involving only absorbed photons as well as Raman transitions involving both absorbed and emitted photons. The intra-group interference is controlled by the relative spectral phase of the different frequency components of the pulse, while the inter-group interference is controlled jointly by the CEP and the relative spectral phase. Specifically, non-resonant two- and three-photon excitation is studied in a simple model system within the perturbative frequency-domain framework. The developed intuition is then applied to weak-field multiphoton excitation of atomic cesium (Cs), where the simplified model is verified by non-perturbative numerical solution of the time-dependent Schrödinger equation. We expect this work to serve as a basis for a new line of femtosecond coherent control experiments.
NASA Astrophysics Data System (ADS)
Beganović, Anel; Beć, Krzysztof B.; Henn, Raphael; Huck, Christian W.
2018-05-01
The applicability of two elimination techniques for interferences occurring in measurements with cells of short pathlength using Fourier transform near-infrared (FT-NIR) spectroscopy was evaluated. Due to the growing interest in the field of vibrational spectroscopy in aqueous biological fluids (e.g. glucose in blood), aqueous solutions of D-(+)-glucose were prepared and split into a calibration set and an independent validation set. All samples were measured with two FT-NIR spectrometers at various spectral resolutions. Moving average smoothing (MAS) and fast Fourier transform filter (FFT filter) were applied to the interference affected FT-NIR spectra in order to eliminate the interference pattern. After data pre-treatment, partial least squares regression (PLSR) models using different NIR regions were constructed using untreated (interference affected) spectra and spectra treated with MAS and FFT filter. The prediction of the independent validation set revealed information about the performance of the utilized interference elimination techniques, as well as the different NIR regions. The results showed that the combination band of water at approx. 5200 cm-1 is of great importance since its performance was superior to the one of the so-called first overtone of water at approx. 6800 cm-1. Furthermore, this work demonstrated that MAS and FFT filter are fast and easy-to-use techniques for the elimination of interference fringes in FT-NIR transmittance spectroscopy.
Petascale turbulence simulation using a highly parallel fast multipole method on GPUs
NASA Astrophysics Data System (ADS)
Yokota, Rio; Barba, L. A.; Narumi, Tetsu; Yasuoka, Kenji
2013-03-01
This paper reports large-scale direct numerical simulations of homogeneous-isotropic fluid turbulence, achieving sustained performance of 1.08 petaflop/s on GPU hardware using single precision. The simulations use a vortex particle method to solve the Navier-Stokes equations, with a highly parallel fast multipole method (FMM) as numerical engine, and match the current record in mesh size for this application, a cube of 40963 computational points solved with a spectral method. The standard numerical approach used in this field is the pseudo-spectral method, relying on the FFT algorithm as the numerical engine. The particle-based simulations presented in this paper quantitatively match the kinetic energy spectrum obtained with a pseudo-spectral method, using a trusted code. In terms of parallel performance, weak scaling results show the FMM-based vortex method achieving 74% parallel efficiency on 4096 processes (one GPU per MPI process, 3 GPUs per node of the TSUBAME-2.0 system). The FFT-based spectral method is able to achieve just 14% parallel efficiency on the same number of MPI processes (using only CPU cores), due to the all-to-all communication pattern of the FFT algorithm. The calculation time for one time step was 108 s for the vortex method and 154 s for the spectral method, under these conditions. Computing with 69 billion particles, this work exceeds by an order of magnitude the largest vortex-method calculations to date.
Gordon, Jeremy W.; Niles, David J.; Fain, Sean B.; Johnson, Kevin M.
2014-01-01
Purpose To develop a novel imaging technique to reduce the number of excitations and required scan time for hyperpolarized 13C imaging. Methods A least-squares based optimization and reconstruction is developed to simultaneously solve for both spatial and spectral encoding. By jointly solving both domains, spectral imaging can potentially be performed with a spatially oversampled single echo spiral acquisition. Digital simulations, phantom experiments, and initial in vivo hyperpolarized [1-13C]pyruvate experiments were performed to assess the performance of the algorithm as compared to a multi-echo approach. Results Simulations and phantom data indicate that accurate single echo imaging is possible when coupled with oversampling factors greater than six (corresponding to a worst case of pyruvate to metabolite ratio < 9%), even in situations of substantial T2* decay and B0 heterogeneity. With lower oversampling rates, two echoes are required for similar accuracy. These results were confirmed with in vivo data experiments, showing accurate single echo spectral imaging with an oversampling factor of 7 and two echo imaging with an oversampling factor of 4. Conclusion The proposed k-t approach increases data acquisition efficiency by reducing the number of echoes required to generate spectroscopic images, thereby allowing accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Magn Reson Med PMID:23716402
Power line interference attenuation in multi-channel sEMG signals: Algorithms and analysis.
Soedirdjo, S D H; Ullah, K; Merletti, R
2015-08-01
Electromyogram (EMG) recordings are often corrupted by power line interference (PLI) even though the skin is prepared and well-designed instruments are used. This study focuses on the analysis of some of the recent and classical existing digital signal processing approaches have been used to attenuate, if not eliminate, the power line interference from EMG signals. A comparison of the signal to interference ratio (SIR) of the output signals is presented, for four methods: classical notch filter, spectral interpolation, adaptive noise canceller with phase locked loop (ANC-PLL) and adaptive filter, applied to simulated multichannel monopolar EMG signals with different SIR. The effect of each method on the shape of the EMG signals is also analyzed. The results show that ANC-PLL method gives the best output SIR and lowest shape distortion compared to the other methods. Classical notch filtering is the simplest method but some information might be lost as it removes both the interference and the EMG signals. Thus, it is obvious that notch filter has the lowest performance and it introduces distortion into the resulting signals.
Camouflage target detection via hyperspectral imaging plus information divergence measurement
NASA Astrophysics Data System (ADS)
Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin
2016-01-01
Target detection is one of most important applications in remote sensing. Nowadays accurate camouflage target distinction is often resorted to spectral imaging technique due to its high-resolution spectral/spatial information acquisition ability as well as plenty of data processing methods. In this paper, hyper-spectral imaging technique together with spectral information divergence measure method is used to solve camouflage target detection problem. A self-developed visual-band hyper-spectral imaging device is adopted to collect data cubes of certain experimental scene before spectral information divergences are worked out so as to discriminate target camouflage and anomaly. Full-band information divergences are measured to evaluate target detection effect visually and quantitatively. Information divergence measurement is proved to be a low-cost and effective tool for target detection task and can be further developed to other target detection applications beyond spectral imaging technique.
The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan
1995-01-01
The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.
Emission spectra of selected SSME elements and materials
NASA Technical Reports Server (NTRS)
Tejwani, Gopal D.; Vandyke, David B.; Bircher, Felix E.; Gardner, Donald G.; Chenevert, Donald J.
1992-01-01
Stennis Space Center (SSC) is pursuing the advancement of experimental techniques and theoretical developments in the field of plume spectroscopy for application to rocket development testing programs and engine health monitoring. Exhaust plume spectral data for the Space Shuttle Main Engine (SSME) are routinely acquired. The usefulness of this data depends upon qualitative and quantitative interpretation of spectral features and their correlation with the engine performance. A knowledge of the emission spectral characteristics of effluent materials in the exhaust plume is essential. A study of SSME critical components and their materials identified 30 elements and 53 materials whose engine exhaust plume spectral might be required. The most important were evaluated using SSC's Diagnostic Testbed Facility Thruster (DTFT), a 1200-lbf, liquid oxygen/gaseous hydrogen rocket engine which very nearly replicates the temperature and pressure conditions of the SSME exhaust plume in the first Mach diamond. This report presents the spectral data for the 10 most important elements and 27 most important materials which are strongly to moderately emitting in the DTFT exhaust plume. The covered spectral range is 300 to 426 nm and the spectral resolution is 0.25 nm. Spectral line identification information is provided and line interference effects are considered.
NASA Astrophysics Data System (ADS)
Bratchikov, A. N.; Glukhov, I. P.
1991-03-01
The results are given of a statistical theory of the speckle generalized to interference channels used for the distribution of microwave signals using multimode fiber waveguides with step and graded refractive-index profiles. A method is described for estimating the mode noise level in the open and closed regimes with one longitudinal speckle. The influence of the degree of mode filtering, losses at microbends, and spectral properties of a laser source on the statistical properties and the mode noise level is demonstrated. Numerical estimates are obtained of the ratio of the powers of the signal and mode noise for interference channels with typical parameters of fiber waveguides and a qualitative description is given of the effect of the mode noise.
Method for rapidly determining a pulp kappa number using spectrophotometry
Chai, Xin-Sheng; Zhu, Jun Yong
2002-01-01
A system and method for rapidly determining the pulp kappa number through direct measurement of the potassium permanganate concentration in a pulp-permanganate solution using spectrophotometry. Specifically, the present invention uses strong acidification to carry out the pulp-permanganate oxidation reaction in the pulp-permanganate solution to prevent the precipitation of manganese dioxide (MnO.sub.2). Consequently, spectral interference from the precipitated MnO.sub.2 is eliminated and the oxidation reaction becomes dominant. The spectral intensity of the oxidation reaction is then analyzed to determine the pulp kappa number.
NASA Astrophysics Data System (ADS)
Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu
2018-01-01
Based on the study of earth infrared radiation and further requirement of anticloud interference ability for a spinning projectile's infrared attitude measurement, a compensation method of cloud infrared radiation interference is proposed. First, the theoretical model of infrared radiation interference is established by analyzing the generation mechanism and interference characteristics of cloud infrared radiation. Then, the influence of cloud infrared radiation on attitude angle is calculated in the following two situations. The first situation is the projectile in cloud, and the maximum of roll angle error can reach ± 20 deg. The second situation is the projectile outside of cloud, and it results in the inability to measure the projectile's attitude angle. Finally, a multisensor weighted fusion algorithm is proposed based on trust function method to reduce the influence of cloud infrared radiation. The results of semiphysical experiments show that the error of roll angle with a weighted fusion algorithm can be kept within ± 0.5 deg in the presence of cloud infrared radiation interference. This proposed method improves the accuracy of roll angle by nearly four times in attitude measurement and also solves the problem of low accuracy of infrared radiation attitude measurement in navigation and guidance field.
Model Order Reduction Algorithm for Estimating the Absorption Spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Beeumen, Roel; Williams-Young, David B.; Kasper, Joseph M.
The ab initio description of the spectral interior of the absorption spectrum poses both a theoretical and computational challenge for modern electronic structure theory. Due to the often spectrally dense character of this domain in the quantum propagator’s eigenspectrum for medium-to-large sized systems, traditional approaches based on the partial diagonalization of the propagator often encounter oscillatory and stagnating convergence. Electronic structure methods which solve the molecular response problem through the solution of spectrally shifted linear systems, such as the complex polarization propagator, offer an alternative approach which is agnostic to the underlying spectral density or domain location. This generality comesmore » at a seemingly high computational cost associated with solving a large linear system for each spectral shift in some discretization of the spectral domain of interest. In this work, we present a novel, adaptive solution to this high computational overhead based on model order reduction techniques via interpolation. Model order reduction reduces the computational complexity of mathematical models and is ubiquitous in the simulation of dynamical systems and control theory. The efficiency and effectiveness of the proposed algorithm in the ab initio prediction of X-ray absorption spectra is demonstrated using a test set of challenging water clusters which are spectrally dense in the neighborhood of the oxygen K-edge. On the basis of a single, user defined tolerance we automatically determine the order of the reduced models and approximate the absorption spectrum up to the given tolerance. We also illustrate that, for the systems studied, the automatically determined model order increases logarithmically with the problem dimension, compared to a linear increase of the number of eigenvalues within the energy window. Furthermore, we observed that the computational cost of the proposed algorithm only scales quadratically with respect to the problem dimension.« less
NASA Astrophysics Data System (ADS)
Malki, Abdelrafik; Gafsi, Rachid; Michel, Laurent; Labarrère, Michel; Lecoy, Pierre
1996-09-01
An optical fiber sensor based on the intermodal interference principle is integrated in a composite material to detect impacts and vibrations. Six fibers are integrated at the top of a carbon/epoxy composite panel so as to form a grid into the structure. Spectral and temporal responses to impacts and acoustic vibrations of the sensor are compared with a piezoelectric accelerometer. The tests proved the facility of integration and the high sensitivity of the device. The location of impacts is performed with this arrangement by measuring the arrival times of the front waves to the fibers.
Real-space mapping of Fano interference in plasmonic metamolecules.
Alonso-Gonzalez, Pablo; Schnell, Martin; Sarriugarte, Paulo; Sobhani, Heidar; Wu, Chihhui; Arju, Nihal; Khanikaev, Alexander; Golmar, Federico; Albella, Pablo; Arzubiaga, Libe; Casanova, Felix; Hueso, Luis E; Nordlander, Peter; Shvets, Gennady; Hillenbrand, Rainer
2011-09-14
An unprecedented control of the spectral response of plasmonic nanoantennas has recently been achieved by designing structures that exhibit Fano resonances. This new insight is paving the way for a variety of applications, such as biochemical sensing and surface-enhanced Raman spectroscopy. Here we use scattering-type near-field optical microscopy to map the spatial field distribution of Fano modes in infrared plasmonic systems. We observe in real space the interference of narrow (dark) and broad (bright) plasmonic resonances, yielding intensity and phase toggling between different portions of the plasmonic metamolecules when either their geometric sizes or the illumination wavelength is varied.
1987-01-01
due to interferences in the pollen. However, the identity of the interferents is presently unknown. A dried papaya leaf was treated with 10 ml of warm...Known amounts of DON, DAS, and T-2 were spiked on a blank (trichothecene-free) papaya leaf and left exposed in a bottle for 1 year. At the end of the year...Simple Trichothecenes from Leaf Sample after Prolonged Exposure ............... 35 12 Sample Analysis .............................. .... 37 6 MASS
NASA Technical Reports Server (NTRS)
Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.
1999-01-01
Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.
An active interference projector for the electro-optical test facility
NASA Astrophysics Data System (ADS)
Crowe, D. G.; Nowak, T. M.
1980-09-01
A projection system is described which can simulate emissions from flares, muzzle-flashes, shellbursts, and other emissive agents which may degrade the performance of electro-optical systems in the 0.5-15 micron spectral range. The simulation capability obtained will allow the apparent radiance and temporal characteristics of muzzleflashes and shellbursts to be mimicked at simulated ranges as close as 23 m within the Electro-Optical Test Facility. This demonstrates that tests of electro-optical system performance in the presence of interferers can be performed under laboratory conditions with higher repeatability and lower cost than field tests.
Neun, Barry W; Dobrovolskaia, Marina A
2018-01-01
Monitoring endotoxin contamination in drugs and medical devices is required to avoid pyrogenic response and septic shock in patients receiving these products. Endotoxin contamination of engineered nanomaterials and nanotechnology-based medical products represents a significant translational hurdle. Nanoparticles often interfere with an in vitro Limulus Amebocyte Lysate (LAL) assay commonly used in the pharmaceutical industry for the detection and quantification of endotoxin. Such interference challenges the preclinical development of nanotechnology-formulated drugs and medical devices containing engineered nanomaterials. Protocols for analysis of nanoparticles using LAL assays have been reported before. Here, we discuss considerations for selecting an LAL format and describe a few experimental approaches for overcoming nanoparticle interference with the LAL assays to obtain more accurate estimation of endotoxin contamination in nanotechnology-based products. The discussed approaches do not solve all types of nanoparticle interference with the LAL assays but could be used as a starting point to address the problem. This chapter also describes approaches to prevent endotoxin contamination in nanotechnology-formulated products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, Asticio; Center for Optics and Photonics, Universidad de Concepción, Casilla 4016, Concepción; Mar Sánchez-López, María del
Multiple-beam Fabry-Perot (FP) interferences occur in liquid crystal retarders (LCR) devoid of an antireflective coating. In this work, a highly accurate method to obtain the spectral retardance of such devices is presented. On the basis of a simple model of the LCR that includes FP effects and by using a voltage transfer function, we show how the FP features in the transmission spectrum can be used to accurately retrieve the ordinary and extraordinary spectral phase delays, and the voltage dependence of the latter. As a consequence, the modulation characteristics of the device are fully determined with high accuracy by meansmore » of a few off-state physical parameters which are wavelength-dependent, and a single voltage transfer function that is valid within the spectral range of characterization.« less
NASA Astrophysics Data System (ADS)
Wang, Yue'e.; Li, Zhi; Hu, Fangrong
2018-01-01
We designed a bilayer-double-H-metamaterials (BDHM) composed of two layers of metal and two layers of dielectric to analog a spectral response of electromagnetically induced transparency (EIT) at terahertz frequency. By changing the incident angle, the BDHM exhibits an EIT-like spectral response. The tunable spectral performances and modulation mechanism of the transparent peak are theoretically investigated using full-wave electromagnetic simulation software. The physical mechanism of the EIT-like effect is based on the constructive and destructive interference between the induced electrical dipoles. Our work provides a new way to realize the EIT-like effect only by changing the incident angles of the metamaterials. The potential applications include tunable filters, sensors, attenuators, switches, and so on.
Solid optical ring interferometer for high-throughput feedback-free spectral analysis and filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrak, B.; Peiris, M.; Muller, A., E-mail: mullera@usf.edu
2015-02-15
We describe a simple and inexpensive optical ring interferometer for use in high-resolution spectral analysis and filtering. It consists of a solid cuboid, reflection-coated on two opposite sides, in which constructive interference occurs for waves in a rhombic trajectory. Due to its monolithic design, the interferometer’s resonance frequencies are insensitive to environmental disturbances over time. Additional advantages are its simplicity of alignment, high-throughput, and feedback-free operation. If desired, it can be stabilized with a secondary laser without disturbance of the primary signal. We illustrate the use of the interferometer for the measurement of the spectral Mollow triplet from a quantummore » dot and characterize its long-term stability for filtering applications.« less
NASA Astrophysics Data System (ADS)
Sikder, Somali; Ghosh, Shila
2018-02-01
This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.
Spectral Demultiplexing in Holographic and Fluorescent On-chip Microscopy
NASA Astrophysics Data System (ADS)
Sencan, Ikbal; Coskun, Ahmet F.; Sikora, Uzair; Ozcan, Aydogan
2014-01-01
Lensfree on-chip imaging and sensing platforms provide compact and cost-effective designs for various telemedicine and lab-on-a-chip applications. In this work, we demonstrate computational solutions for some of the challenges associated with (i) the use of broadband, partially-coherent illumination sources for on-chip holographic imaging, and (ii) multicolor detection for lensfree fluorescent on-chip microscopy. Specifically, we introduce spectral demultiplexing approaches that aim to digitally narrow the spectral content of broadband illumination sources (such as wide-band light emitting diodes or even sunlight) to improve spatial resolution in holographic on-chip microscopy. We also demonstrate the application of such spectral demultiplexing approaches for wide-field imaging of multicolor fluorescent objects on a chip. These computational approaches can be used to replace e.g., thin-film interference filters, gratings or other optical components used for spectral multiplexing/demultiplexing, which can form a desirable solution for cost-effective and compact wide-field microscopy and sensing needs on a chip.
The effect of aberrated recording beams on reflecting Bragg gratings
NASA Astrophysics Data System (ADS)
SeGall, Marc; Ott, Daniel; Divliansky, Ivan; Glebov, Leonid B.
2013-03-01
The effect of aberrations present in the recording beams of a holographic setup is discussed regarding the period and spectral response of a reflecting volume Bragg grating. Imperfect recording beams result in spatially varying resonant wavelengths and the side lobes of the spectrum are washed out. Asymmetrical spectra, spectral broadening, and a reduction in peak diffraction efficiency may also be present, though these effects are less significant for gratings with wider spectral widths. Reflecting Bragg gratings (RBGs) are used as elements in a variety of applications including spectral beam combining1,2, mode locking3,4, longitudinal and transverse mode selection in lasers5,6, and sensing7,8. For applications requiring narrow spectral selectivity9, or large apertures10, these gratings must have a uniform period throughout the length of the recording medium, which may be on the order of millimeters. However, when using typical recording techniques such as two-beam interference for large aperture gratings and phase-mask recording of fiber gratings, aberrations from the optical elements in the system result in an imperfect grating structure11-13. In this paper we consider the effects of aberrations on large aperture gratings recorded in thick media using the two-beam interference technique. Previous works in analyzing the effects of aberrations have considered the effects of aberrations in a single recording plane where the beams perfectly overlap. Such an approach is valid for thin media (on the order of tens of microns), but for thick recording media (on the order of several millimeters) there will be a significant shift in the positions of the beams relative to each other as they traverse the recording medium. Therefore, the fringe pattern produced will not be constant throughout the grating if one or both beams have a non-uniform wavefront. Such non-uniform gratings may have a wider spectral width, a shifted resonant wavelength, or other problems. It is imperative therefore to know what the effects of aberrations will have on the properties of the RBGs. Thus, in this paper we consider the imperfect fringe pattern caused by the recording beams and its effect on the diffraction efficiency and spectral profile of the recorded reflecting volume Bragg gratings.
Steuerwald, Amy J.; Parsons, Patrick J.; Arnason, John G.; Chen, Zhen; Peterson, C. Matthew; Louis, Germaine M. Buck
2013-01-01
Analysis of human urine is commonly used in biomonitoring studies to assess exposure to essential (e.g., Cu, Zn, Se) and non-essential (Pb, Cd, Pt) trace elements. These data are also used in epidemiological studies to evaluate potential associations between trace element exposure and various health outcomes within a population. Today most trace element analyses are typically performed using quadrupole-based inductively coupled plasma mass spectrometry (Q-ICP-MS). However, there is always the potential for spectral interferences with Q-ICP-MS instrumentation, especially when analyzing human specimens that may contain medications and other exogenous substances. Moreover, such xenobiotics may be unknown to the investigators. In a recent study focusing on environmental exposures and endometriosis: Endometriosis: Natural History, Diagnosis, and Outcomes (ENDO Study), urine specimens (n=619) were collected from participating women upon enrollment into the study or prior to surgery or pelvic magnetic resonance imaging (MRI), and analyzed for 21 trace elements by Q-ICP-MS. Here we report on some anomalous results observed for Se and Pt with elevated concentrations up to several orders of magnitude greater than what might be expected based on established reference intervals. Further investigations using Sector Field (SF-) ICP-MS instrumentation led to identification of doubly charged and polyatomic gadolinium (Gd) species traced to a Gd-based contrast agent that was administered to some subjects just prior to urine collection. Specifically, interferences from Gd2+ and several minor polyatomics were identified as interferences on all of the major isotopes of Se including 74Se, 76Se, 77Se, 78Se, 80Se, and 82Se. While trace amounts of Pt were present in the urine, a number of Gd-containing polyatomic species were also evident as major interferences on all isotopes of Pt (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt), including Gd-chlorides, Gd-argides, and Gd-oxides. These observations underscore the importance of considering potential isobaric interferences when interpreting unusual trace element results for clinical specimens. PMID:27397951
X-ray radiation generated by a beam of relativistic electrons in composite structure
NASA Astrophysics Data System (ADS)
Blazhevich, S. V.; Noskov, A. V.
2018-04-01
The dynamic theory of coherent X-ray radiation generated by a beam of relativistic electrons in the three-layer structure consisting of an amorphous layer, a vacuum (air) layer and a single crystal has been developed. The phenomenon description is based on two main radiation mechanisms, namely, parametric X-ray radiation (PXR) and diffracted transition radiation (DTR). The possibility to increase the spectral-angular density of DTR under the condition of constructive interference of the transition radiation waves from different boundaries of such a structure has been demonstrated. It is shown that little changes in the layers thicknesses should not cause a considerable change in the interference picture, for example, the transition of constructive interference into destructive one. It means that in the considered process the conditions of constructive interference are enough stable to use them for increasing the intensity of X-ray source that can be created based on the interaction of relativistic electrons with such a structure.
An Analysis of the Effects of RFID Tags on Narrowband Navigation and Communication Receivers
NASA Technical Reports Server (NTRS)
LaBerge, E. F. Charles
2007-01-01
The simulated effects of the Radio Frequency Identification (RFID) tag emissions on ILS Localizer and ILS Glide Slope functions match the analytical models developed in support of DO-294B provided that the measured peak power levels are adjusted for 1) peak-to-average power ratio, 2) effective duty cycle, and 3) spectrum analyzer measurement bandwidth. When these adjustments are made, simulated and theoretical results are in extraordinarily good agreement. The relationships hold over a large range of potential interference-to-desired signal power ratios, provided that the adjusted interference power is significantly higher than the sum of the receiver noise floor and the noise-like contributions of all other interference sources. When the duty-factor adjusted power spectral densities are applied in the evaluation process described in Section 6 of DO-294B, most narrowband guidance and communications radios performance parameters are unaffected by moderate levels of RFID interference. Specific conclusions and recommendations are provided.
NASA Astrophysics Data System (ADS)
Chai, Xintao; Tang, Genyang; Peng, Ronghua; Liu, Shaoyong
2018-03-01
Full-waveform inversion (FWI) reconstructs the subsurface properties from acquired seismic data via minimization of the misfit between observed and simulated data. However, FWI suffers from considerable computational costs resulting from the numerical solution of the wave equation for each source at each iteration. To reduce the computational burden, constructing supershots by combining several sources (aka source encoding) allows mitigation of the number of simulations at each iteration, but it gives rise to crosstalk artifacts because of interference between the individual sources of the supershot. A modified Gauss-Newton FWI (MGNFWI) approach showed that as long as the difference between the initial and true models permits a sparse representation, the ℓ _1-norm constrained model updates suppress subsampling-related artifacts. However, the spectral-projected gradient ℓ _1 (SPGℓ _1) algorithm employed by MGNFWI is rather complicated that makes its implementation difficult. To facilitate realistic applications, we adapt a linearized Bregman (LB) method to sparsity-promoting FWI (SPFWI) because of the efficiency and simplicity of LB in the framework of ℓ _1-norm constrained optimization problem and compressive sensing. Numerical experiments performed with the BP Salt model, the Marmousi model and the BG Compass model verify the following points. The FWI result with LB solving ℓ _1-norm sparsity-promoting problem for the model update outperforms that generated by solving ℓ _2-norm problem in terms of crosstalk elimination and high-fidelity results. The simpler LB method performs comparably and even superiorly to the complicated SPGℓ _1 method in terms of computational efficiency and model quality, making the LB method a viable alternative for realistic implementations of SPFWI.
Spectral editing for in vivo 13C magnetic resonance spectroscopy
NASA Astrophysics Data System (ADS)
Xiang, Yun; Shen, Jun
2012-01-01
In vivo detection of carboxylic/amide carbons is a promising technique for studying cerebral metabolism and neurotransmission due to the very low RF power required for proton decoupling. In the carboxylic/amide region, however, there is severe spectral overlap between acetate C1 and glutamate C5, complicating studies that use acetate as an astroglia-specific substrate. There are no known in vivo MRS techniques that can spectrally resolve acetate C1 and glutamate C5 singlets. In this study, we propose to spectrally separate acetate C1 and glutamate C5 by a two-step J-editing technique after introducing homonuclear 13C- 13C scalar coupling between carboxylic/amide carbons and aliphatic carbons. By infusing [1,2- 13C 2]acetate instead of [1- 13C]acetate the acetate doublet can be spectrally edited because of the large separation between acetate C2 and glutamate C4 in the aliphatic region. This technique can be applied to studying acetate transport and metabolism in brain in the carboxylic/amide region without spectral interference.
Computerized recognition of persons by EEG spectral patterns.
Stassen, H H
1980-07-01
Modified techniques of communication theory in connection with multivariate statistical procedures were applied to a sample of 82 patients for the purpose of defining EEG spectral patterns and for solving the relevant classification problems. Ten measurements per patient were made and it could be shown that a subject can be characterized and be recognized by his EEG spectral pattern with high reliability and a confidence probability of almost 90%. This result is valid not only for normal adults but also for schizophrenic patients, implying a close relationship between the EEG spectral pattern and the individual person. At the moment the nature of this relationship is not clear; in particular the supposed relationship to psychopathology could not be proved.
A note on the accuracy of spectral method applied to nonlinear conservation laws
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang; Wong, Peter S.
1994-01-01
Fourier spectral method can achieve exponential accuracy both on the approximation level and for solving partial differential equations if the solutions are analytic. For a linear partial differential equation with a discontinuous solution, Fourier spectral method produces poor point-wise accuracy without post-processing, but still maintains exponential accuracy for all moments against analytic functions. In this note we assess the accuracy of Fourier spectral method applied to nonlinear conservation laws through a numerical case study. We find that the moments with respect to analytic functions are no longer very accurate. However the numerical solution does contain accurate information which can be extracted by a post-processing based on Gegenbauer polynomials.
NASA Astrophysics Data System (ADS)
Yarmohammadi, M.; Javadi, S.; Babolian, E.
2018-04-01
In this study a new spectral iterative method (SIM) based on fractional interpolation is presented for solving nonlinear fractional differential equations (FDEs) involving Caputo derivative. This method is equipped with a pre-algorithm to find the singularity index of solution of the problem. This pre-algorithm gives us a real parameter as the index of the fractional interpolation basis, for which the SIM achieves the highest order of convergence. In comparison with some recent results about the error estimates for fractional approximations, a more accurate convergence rate has been attained. We have also proposed the order of convergence for fractional interpolation error under the L2-norm. Finally, general error analysis of SIM has been considered. The numerical results clearly demonstrate the capability of the proposed method.
Common approach to solving SGEMP, DEMP, and ESD survivability
NASA Technical Reports Server (NTRS)
Ling, D.
1977-01-01
System Generated Electromagnetic Pulse (SGEMP) and Dispersed Electromagnetic Pulse DEMP) are nuclear generated spacecraft environments. Electrostatic discharge (ESD) is a natural spacecraft environment resulting from differential charging in magnetic substorms. All three phenomena, though differing in origin, result in the same problem to the spacecraft and that is Electromagnetic Interference (EMI). A common design approach utilizing a spacecraft structural Faraday Cage is presented which helps solve the EMI problem. Also, other system design techniques are discussed which minimize the magnitude of these environments through control of materials and electrical grounding configuration.
Aperiodic nanoplasmonic devices for directional colour filtering and sensing.
Davis, Matthew S; Zhu, Wenqi; Xu, Ting; Lee, Jay K; Lezec, Henri J; Agrawal, Amit
2017-11-07
Exploiting the wave-nature of light in its simplest form, periodic architectures have enabled a panoply of tunable optical devices with the ability to perform useful functions such as filtering, spectroscopy, and multiplexing. Here, we remove the constraint of structural periodicity to enhance, simultaneously, the performance and functionality of passive plasmonic devices operating at optical frequencies. By using a physically intuitive, first-order interference model of plasmon-light interactions, we demonstrate a simple and efficient route towards designing devices with flexible, multi-spectral optical response, fundamentally not achievable using periodic architectures. Leveraging this approach, we experimentally implement ultra-compact directional light-filters and colour-sorters exhibiting angle- or spectrally-tunable optical responses with high contrast, and low spectral or spatial crosstalk. Expanding the potential of aperiodic systems to implement tailored spectral and angular responses, these results hint at promising applications in solar-energy harvesting, optical signal multiplexing, and integrated sensing.
Acousto-optical tunable filter for combined wideband, spectral, and optical coherence microscopy.
Machikhin, Alexander S; Pozhar, Vitold E; Viskovatykh, Alexander V; Burmak, Ludmila I
2015-09-01
A multimodal technique for inspection of microscopic objects by means of wideband optical microscopy, spectral microscopy, and optical coherence microscopy is described, implemented, and tested. The key feature is the spectral selection of light in the output arm of an interferometer with use of the specialized imaging acousto-optical tunable filter. In this filter, two interfering optical beams are diffracted via the same ultrasound wave without destruction of interference image structure. The basic requirements for the acousto-optical tunable filter are defined, and mathematical formulas for calculation of its parameters are derived. Theoretical estimation of the achievable accuracy of the 3D image reconstruction is presented and experimental proofs are given. It is demonstrated that spectral imaging can also be accompanied by measurement of the quantitative reflectance spectra. Examples of inspection of optically transparent and nontransparent samples demonstrate the applicability of the technique.
NASA Technical Reports Server (NTRS)
Hochberg, Eric B. (Inventor); Baroth, Edmund C. (Inventor)
1994-01-01
An novel interferometric apparatus and method for measuring the topography of aspheric surfaces, without requiring any form of scanning or phase shifting. The apparatus and method of the present invention utilize a white-light interferometer, such as a white-light Twyman-Green interferometer, combined with a means for dispersing a polychromatic interference pattern, using a fiber-optic bundle and a disperser such as a prism for determining the monochromatic spectral intensities of the polychromatic interference pattern which intensities uniquely define the optical path differences or OPD between the surface under test and a reference surface such as a reference sphere. Consequently, the present invention comprises a snapshot approach to measuring aspheric surface topographies such as the human cornea, thereby obviating vibration sensitive scanning which would otherwise reduce the accuracy of the measurement. The invention utilizes a polychromatic interference pattern in the pupil image plane, which is dispersed on a point-wise basis, by using a special area-to-line fiber-optic manifold, onto a CCD or other type detector comprising a plurality of columns of pixels. Each such column is dedicated to a single point of the fringe pattern for enabling determination of the spectral content of the pattern. The auto-correlation of the dispersed spectrum of the fringe pattern is uniquely characteristic of a particular optical path difference between the surface under test and a reference surface.
Intuitive Interference in Probabilistic Reasoning
ERIC Educational Resources Information Center
Babai, Reuven; Brecher, Tali; Stavy, Ruth; Tirosh, Dina
2006-01-01
One theoretical framework which addresses students' conceptions and reasoning processes in mathematics and science education is the intuitive rules theory. According to this theory, students' reasoning is affected by intuitive rules when they solve a wide variety of conceptually non-related mathematical and scientific tasks that share some common…
Bell, Kathryn M; Higgins, Lorrin
2015-04-16
The purpose of the current study was to examine the joint influences of experiential avoidance and social problem solving on the link between childhood emotional abuse (CEA) and intimate partner violence (IPV). Experiential avoidance following CEA may interfere with a person's ability to effectively problem solve in social situations, increasing risk for conflict and interpersonal violence. As part of a larger study, 232 women recruited from the community completed measures assessing childhood emotional, physical, and sexual abuse, experiential avoidance, maladaptive social problem solving, and IPV perpetration and victimization. Final trimmed models indicated that CEA was indirectly associated with IPV victimization and perpetration via experiential avoidance and Negative Problem Orientation (NPO) and Impulsivity/Carelessness Style (ICS) social problem solving strategies. Though CEA was related to an Avoidance Style (AS) social problem solving strategy, this strategy was not significantly associated with IPV victimization or perpetration. Experiential avoidance had both a direct and indirect effect, via NPO and ICS social problem solving, on IPV victimization and perpetration. Findings suggest that CEA may lead some women to avoid unwanted internal experiences, which may adversely impact their ability to effectively problem solve in social situations and increase IPV risk.
Bell, Kathryn M.; Higgins, Lorrin
2015-01-01
The purpose of the current study was to examine the joint influences of experiential avoidance and social problem solving on the link between childhood emotional abuse (CEA) and intimate partner violence (IPV). Experiential avoidance following CEA may interfere with a person’s ability to effectively problem solve in social situations, increasing risk for conflict and interpersonal violence. As part of a larger study, 232 women recruited from the community completed measures assessing childhood emotional, physical, and sexual abuse, experiential avoidance, maladaptive social problem solving, and IPV perpetration and victimization. Final trimmed models indicated that CEA was indirectly associated with IPV victimization and perpetration via experiential avoidance and Negative Problem Orientation (NPO) and Impulsivity/Carelessness Style (ICS) social problem solving strategies. Though CEA was related to an Avoidance Style (AS) social problem solving strategy, this strategy was not significantly associated with IPV victimization or perpetration. Experiential avoidance had both a direct and indirect effect, via NPO and ICS social problem solving, on IPV victimization and perpetration. Findings suggest that CEA may lead some women to avoid unwanted internal experiences, which may adversely impact their ability to effectively problem solve in social situations and increase IPV risk. PMID:25893570
Pseudo-spectral methods applied to gravitational collapse.
NASA Astrophysics Data System (ADS)
Bonazzola, S.; Marck, J.-A.
The authors present codes for solving Newtonian gravitational collapse in spherical coordinates for the spherical, axial and true 3 D cases. The pseudo-spectral techniques are used. All quantities are expanded in Chebychev or Legendre polynomials or Fourier series for the periodic parts. The codes are able to handle in a rigorous way the pseudo-singularities τ = 0 and θ = 0, π. Illustrative results for each of the three cases are given.
NASA Technical Reports Server (NTRS)
Cunningham, A. M., Jr.
1973-01-01
The method presented uses a collocation technique with the nonplanar kernel function to solve supersonic lifting surface problems with and without interference. A set of pressure functions are developed based on conical flow theory solutions which account for discontinuities in the supersonic pressure distributions. These functions permit faster solution convergence than is possible with conventional supersonic pressure functions. An improper integral of a 3/2 power singularity along the Mach hyperbola of the nonplanar supersonic kernel function is described and treated. The method is compared with other theories and experiment for a variety of cases.
Spatial interference patterns in the dynamics of a 2D Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Bera, Jayanta; Roy, Utpal
2018-05-01
Bose-Einstein condensate has become a highly tunable physical system, which is proven to mimic a number of interesting physical phenomena in condensed matter physics. We study the dynamics of a two-dimensional Bose Einstein condensate (BEC) in the presence of a flat harmonic confinement and time-dependent sharp potential peak. Condensate density can be meticulously controlled with time by tuning the physically relevant parameters: frequency of the harmonic trap, width of the peaks, frequency of their oscillations, initial density etc. By engineering various trap profile, we solve the system, numerically, and explore the resulting spatial interference patters.
Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data
NASA Astrophysics Data System (ADS)
Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.
2017-12-01
We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).
NASA Astrophysics Data System (ADS)
Kuze, A.; Suto, H.; Shiomi, K.; Nakajima, M.
2012-12-01
Advantage of satellite observation is its ability to monitor long term and global distribution with a single instrument. Ozone observation from space has been successful for long term monitoring purposes. Monitoring gradual increase and distribution of greenhouse gases in the troposphere with sub-percent accuracy has become a challenging subject. Interference of cloud and aerosol in radiative transfer has to be corrected for troposphere measurement. Accurate O2-A band measurement can retrieve surface pressure and aerosol distribution property. We have selected a Fourier Transform spectrometer (FTS) to achieve high throughput and wide spectral coverage with uniform spectral resolution. On the other hand, it is difficult to modulate short wave such as 0.76μm and avoid micro vibration interference. Prelaunch, we took special care to select optical components of excellent surface quality and isolate vibration. Design parameters such as IFOV, spectral resolution, observation interval within limited satellite resources must be carefully optimized. Greenhouse gases Observing SATellite (GOSAT) has been providing global high spectral resolution data for almost 4 years. Instrument performance, radiometric calibration, radiative transfer calculation and laboratory spectroscopy are all important. The first step was to reduce bias of column-averaged dry air mole fractions (the Level 2 product) of CO2 and CH4 (XCO2 and XCH4) and validate using well calibrated data such as TCCON. After 2 years of operation, latitudinal distribution of zonal mean and seasonal variation at these sites can be measured with better than 2ppm accuracy. However, validations are limited to ideal conditions. Next step is to evaluate consistency of measured values from long periods since launch, different surface types, and various input radiance with different instrument gain. For long term radiometric calibration, we have uses vicarious, onboard solar diffuser, and lunar calibration data. Over the ocean we target sun glint (specular reflection) points, where the surface reflectance is not uniform or randomly distributed. Over the desert area, where surface reflectance is high and dust layers extend to high altitude, we have to use lower gain to avoid saturation and multiple scattering is complicated. For both ocean high albedo targets, validation data of XCO2 and XCH4 are limited. Validation by airplane become accurate but extrapolation is needed above flight attitude. Comparison of surface pressure between retrieved data and a priori model forecast fields is useful. For such kind of consistency, measurement must be very linear within wide dynamic range. After launch, we are re-evaluating the linearity of the detector, analog circuit and AD converters using a lab-model on the ground. Since launch, we have received feedback about the radiance spectra data from many data users of diverse institutes. We have gathered many calibration and validation data from international collaboration. We have modified the Level 1 algorithm and instrument calibrations several times. We are currently measuring the grid point of the Earth's surface, but the sampling for source and sink retrieval has not been optimized yet. We will present how we have solved problems, which portions of the instrument design we should modify, and items that we have not understood well yet.
Temporal overlap estimation based on interference spectrum in CARS microscopy
NASA Astrophysics Data System (ADS)
Zhang, Yongning; Jiang, Junfeng; Liu, Kun; Huang, Can; Wang, Shuang; Zhang, Xuezhi; Liu, Tiegen
2018-01-01
Coherent Anti-Stokes Raman Scattering (CARS) microscopy has attracted lots of attention because of the advantages, such as noninvasive, label-free, chemical specificity, intrinsic three-dimension spatial resolution and so on. However, the temporal overlap of pump and Stokes has not been solved owing to the ultrafast optical pulse used in CARS microscopy. We combine interference spectrum of residual pump in Stokes path and nonlinear Schrodinger equation (NLSE) to realize the temporal overlap of pump pulse and Stokes pulse. At first, based on the interference spectrum of pump pulse and residual pump in Stokes path, the optical delay is defined when optical path difference between pump path and Stokes path is zero. Then the relative optical delay between Stokes pulse and residual pump in PCF can be calculated by NLSE. According to the spectrum interference and NLSE, temporal overlap of pump pulse and Stokes pulse will be realized easily and the imaging speed will be improved in CARS microscopy.
Multiwavelength pyrometer for gray and non-gray surfaces in the presence of interfering radiation
NASA Technical Reports Server (NTRS)
Ng, Daniel L. P. (Inventor)
1994-01-01
A method and apparatus for detecting the temperature of gray and non-gray bodies in the presence of interfering radiation are presented. A gray body has a constant emissivity less than 1 and a non-gray body has an emissivity which varies with wavelength. The emissivity and reflectivity of the surface is determined over a range of wavelengths. Spectra are also measured of the extraneous interference radiation source and the surface of the object to be measured in the presence of the extraneous interference radiation source. An auxiliary radiation source is used to determine the reflectivity of the surface and also the emissivity. The measured spectrum of the surfaces in the presence of the extraneous interference radiation source is set equal to the emissivity of the surface multiplied by a Planck function containing a temperature term T plus the surface reflectivity multiplied by the spectrum of the extraneous interference radiation source. The equation is then solved for T to determine the temperature of the surface.
A fast and well-conditioned spectral method for singular integral equations
NASA Astrophysics Data System (ADS)
Slevinsky, Richard Mikael; Olver, Sheehan
2017-03-01
We develop a spectral method for solving univariate singular integral equations over unions of intervals by utilizing Chebyshev and ultraspherical polynomials to reformulate the equations as almost-banded infinite-dimensional systems. This is accomplished by utilizing low rank approximations for sparse representations of the bivariate kernels. The resulting system can be solved in O (m2 n) operations using an adaptive QR factorization, where m is the bandwidth and n is the optimal number of unknowns needed to resolve the true solution. The complexity is reduced to O (mn) operations by pre-caching the QR factorization when the same operator is used for multiple right-hand sides. Stability is proved by showing that the resulting linear operator can be diagonally preconditioned to be a compact perturbation of the identity. Applications considered include the Faraday cage, and acoustic scattering for the Helmholtz and gravity Helmholtz equations, including spectrally accurate numerical evaluation of the far- and near-field solution. The JULIA software package SingularIntegralEquations.jl implements our method with a convenient, user-friendly interface.
Nonlinear single-spin spectrum analyzer.
Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee
2013-03-15
Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.
NASA Astrophysics Data System (ADS)
Mundis, Nathan L.; Mavriplis, Dimitri J.
2017-09-01
The time-spectral method applied to the Euler and coupled aeroelastic equations theoretically offers significant computational savings for purely periodic problems when compared to standard time-implicit methods. However, attaining superior efficiency with time-spectral methods over traditional time-implicit methods hinges on the ability rapidly to solve the large non-linear system resulting from time-spectral discretizations which become larger and stiffer as more time instances are employed or the period of the flow becomes especially short (i.e. the maximum resolvable wave-number increases). In order to increase the efficiency of these solvers, and to improve robustness, particularly for large numbers of time instances, the Generalized Minimal Residual Method (GMRES) is used to solve the implicit linear system over all coupled time instances. The use of GMRES as the linear solver makes time-spectral methods more robust, allows them to be applied to a far greater subset of time-accurate problems, including those with a broad range of harmonic content, and vastly improves the efficiency of time-spectral methods. In previous work, a wave-number independent preconditioner that mitigates the increased stiffness of the time-spectral method when applied to problems with large resolvable wave numbers has been developed. This preconditioner, however, directly inverts a large matrix whose size increases in proportion to the number of time instances. As a result, the computational time of this method scales as the cube of the number of time instances. In the present work, this preconditioner has been reworked to take advantage of an approximate-factorization approach that effectively decouples the spatial and temporal systems. Once decoupled, the time-spectral matrix can be inverted in frequency space, where it has entries only on the main diagonal and therefore can be inverted quite efficiently. This new GMRES/preconditioner combination is shown to be over an order of magnitude more efficient than the previous wave-number independent preconditioner for problems with large numbers of time instances and/or large reduced frequencies.
Tensor calculus in polar coordinates using Jacobi polynomials
NASA Astrophysics Data System (ADS)
Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.
2016-11-01
Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il; Lomakin, V., E-mail: vlomakin@eng.ucsd.edu
2016-03-01
Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii)more » furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.« less
Facilitating the Authoring of Multimedia Social Problem Solving Skills Instructional Modules
ERIC Educational Resources Information Center
Boujarwah, Fatima A.
2012-01-01
Difficulties in social skills are generally considered defining characteristics of High-Functioning Autism (HFA). These difficulties interfere with the educational experiences and quality of life of individuals with HFA, and interventions must be highly individualized to be effective. I explore ways technologies may play a role in assisting…
Preactivation of Inhibitory Control Mechanisms Hinders Intuitive Reasoning
ERIC Educational Resources Information Center
Babai, Reuven; Eidelman, Rachel Rosanne; Stavy, Ruth
2012-01-01
Many students encounter difficulties in science and mathematics. Earlier research suggested that although intuitions are often needed to gain new ideas and concepts and to solve problems in science and mathematics, some of students' difficulties could stem from the interference of intuitive reasoning. The literature suggests that overcoming…
Adaptive wall wind tunnels: A selected, annotated bibliography
NASA Technical Reports Server (NTRS)
Tuttle, M. H.; Mineck, R. E.
1986-01-01
This bibliography, with abstracts, consists of 257 citations arranged in chronological order. Selection of the citations was made for their value to researchers working to solve problems associated with reducing wall interference by the design, development, and operation of adaptive wall test sections. Author, source, and subject indexes are included.
NASA Astrophysics Data System (ADS)
Goulay, Fabien; Schrader, Paul E.; López-Yglesias, Xerxes; Michelsen, Hope A.
2013-09-01
We measured spectrally and temporally resolved laser-induced incandescence signals from flame-generated soot at laser fluences of 0.01-3.5 J/cm2 and laser wavelengths of 532 and 1,064 nm. We recorded LII temporal profiles at 681.8 nm using a fast-gated detector and a spatially homogeneous and temporally smooth laser profile. Time-resolved emission spectra were used to identify and avoid spectral interferences and to infer soot temperatures. Soot temperatures reach a maximum of 4,415 ± 65 K at fluences ≥0.2 J/cm2 at 532 nm and 4,424 ± 80 K at fluences ≥0.3 J/cm2 at 1,064 nm. These temperatures are consistent with the sublimation temperature of C2 of 4,456.59 K. At fluences above 0.5 J/cm2 at 532 nm, the measured spectra yield an apparent higher temperature after the soot has fully vaporized but well within the laser pulse. This apparent temperature elevation at high fluence is explained by fluorescence interferences from molecules present in the flame. We also measured 3-color LII temporal profiles at detection wavelengths of 451.5, 681.8, and 854.8 nm. The temperatures inferred from these measurements agree well with those measured using spectrally resolved LII. The data discussed in this manuscript are archived as electronic supplementary material.
Acceleration spectra for subduction zone earthquakes
Boatwright, J.; Choy, G.L.
1989-01-01
We estimate the source spectra of shallow earthquakes from digital recordings of teleseismic P wave groups, that is, P+pP+sP, by making frequency dependent corrections for the attenuation and for the interference of the free surface. The correction for the interference of the free surface assumes that the earthquake radiates energy from a range of depths. We apply this spectral analysis to a set of 12 subduction zone earthquakes which range in size from Ms = 6.2 to 8.1, obtaining corrected P wave acceleration spectra on the frequency band from 0.01 to 2.0 Hz. Seismic moment estimates from surface waves and normal modes are used to extend these P wave spectra to the frequency band from 0.001 to 0.01 Hz. The acceleration spectra of large subduction zone earthquakes, that is, earthquakes whose seismic moments are greater than 1027 dyn cm, exhibit intermediate slopes where u(w)???w5/4 for frequencies from 0.005 to 0.05 Hz. For these earthquakes, spectral shape appears to be a discontinuous function of seismic moment. Using reasonable assumptions for the phase characteristics, we transform the spectral shape observed for large earthquakes into the time domain to fit Ekstrom's (1987) moment rate functions for the Ms=8.1 Michoacan earthquake of September 19, 1985, and the Ms=7.6 Michoacan aftershock of September 21, 1985. -from Authors
Golightly, D.W.; Dorrzapf, A.F.; Thomas, C.P.
1977-01-01
Sets of 5 Fe(I) lines and 3 Ti(I)Ti(II) line pairs have been characterized for precise spectrographic thermometry and manometry, respectively, in d.c. arcs of geologic materials. The recommended lines are free of spectral interferences, exhibit minimal self absorption within defined concentration intervals, and are useful for chemically-unaltered silicate rocks, arced in an argon-oxygen stream. The functional character of these lines in thermometry and manometry of d.c. arcs for evaluations of electrical parameter effects, for temporal studies, and for matrix-effect investigations on real samples is illustrated. ?? 1977.
Multimedia transmission in MC-CDMA using adaptive subcarrier power allocation and CFO compensation
NASA Astrophysics Data System (ADS)
Chitra, S.; Kumaratharan, N.
2018-02-01
Multicarrier code division multiple access (MC-CDMA) system is one of the most effective techniques in fourth-generation (4G) wireless technology, due to its high data rate, high spectral efficiency and resistance to multipath fading. However, MC-CDMA systems are greatly deteriorated by carrier frequency offset (CFO) which is due to Doppler shift and oscillator instabilities. It leads to loss of orthogonality among the subcarriers and causes intercarrier interference (ICI). Water filling algorithm (WFA) is an efficient resource allocation algorithm to solve the power utilisation problems among the subcarriers in time-dispersive channels. The conventional WFA fails to consider the effect of CFO. To perform subcarrier power allocation with reduced CFO and to improve the capacity of MC-CDMA system, residual CFO compensated adaptive subcarrier power allocation algorithm is proposed in this paper. The proposed technique allocates power only to subcarriers with high channel to noise power ratio. The performance of the proposed method is evaluated using random binary data and image as source inputs. Simulation results depict that the bit error rate performance and ICI reduction capability of the proposed modified WFA offered superior performance in both power allocation and image compression for high-quality multimedia transmission in the presence of CFO and imperfect channel state information conditions.
Wojcik, J; Litniewski, J; Nowicki, A
2011-10-01
The integral equations that describe scattering in the media with step-rise changing parameters have been numerically solved for the trabecular bone model. The model consists of several hundred discrete randomly distributed elements. The spectral distribution of scattering coefficients in subsequent orders of scattering has been presented. Calculations were carried on for the ultrasonic frequency ranging from 0.5 to 3 MHz. Evaluation of the contribution of the first, second, and higher scattering orders to total scattering of the ultrasounds in trabecular bone was done. Contrary to the approaches that use the μCT images of trabecular structure to modeling of the ultrasonic wave propagation condition, the 3D numerical model consisting of cylindrical elements mimicking the spatial matrix of trabeculae, was applied. The scattering, due to interconnections between thick trabeculae, usually neglected in trabecular bone models, has been included in calculations when the structure backscatter was evaluated. Influence of the absorption in subsequent orders of scattering is also addressed. Results show that up to 1.5 MHz, the influence of higher scattering orders on the total scattered field characteristic can be neglected while for the higher frequencies, the relatively high amplitude interference peaks in higher scattering orders clearly occur. © 2011 Acoustical Society of America
A semi-Lagrangian advection scheme for radioactive tracers in a regional spectral model
NASA Astrophysics Data System (ADS)
Chang, E.-C.; Yoshimura, K.
2015-06-01
In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.
Mental object rotation and the planning of hand movements.
Wohlschläger, A
2001-05-01
Recently, we showed that the simultaneous execution of rotational hand movements interferes with mental object rotation, provided that the axes of rotation coincide in space. We hypothesized that mental object rotation and the programming of rotational hand movements share a common process presumably involved in action planning. Two experiments are reported here that show that the mere planning of a rotational hand movement is sufficient to cause interference with mental object rotation. Subjects had to plan different spatially directed hand movements that they were asked to execute only after they had solved a mental object rotation task. Experiment 1 showed that mental object rotation was slower if hand movements were planned in a direction opposite to the presumed mental rotation direction, but only if the axes of hand rotation and mental object rotation were parallel in space. Experiment 2 showed that this interference occurred independent of the preparatory hand movements observed in Experiment 1. Thus, it is the planning of hand movements and not their preparation or execution that interferes with mental object rotation. This finding underlines the idea that mental object rotation is an imagined (covert) action, rather than a pure visual-spatial imagery task, and that the interference between mental object rotation and rotational hand movements is an interference between goals of actions.
NASA Astrophysics Data System (ADS)
LUO, Jianchun; WANG, Yunyu; YANG, Jun; RAN, hong; PENG, Xiaodong; HUANG, Ming; FENG, Hao; LIU, Meijun
2018-03-01
The vulnerability assessment of power grid is of great significance in the current research. Power system faces many kinds of uncertainty factors, and the disturbance caused by them has become one of the main factors which restrict the safe operation of power grid. To solve this problem, considering the anti-interference ability of the system when the system is disturbed and the effect of the system when the node is out of operation, a set of index to reflect the anti-interference ability and the influence of nodes are set up. On this basis, a new comprehensive vulnerability assessment method of nodes is put forward by using super efficiency data envelopment analysis to scientific integration. Finally, the simulative results of IEEE30-bus system indicated that the proposed model is rational and valid.
Design of a Mechanical-Tunable Filter Spectrometer for Noninvasive Glucose Measurement
NASA Astrophysics Data System (ADS)
Saptari, Vidi; Youcef-Toumi, Kamal
2004-05-01
The development of an accurate and reliable noninvasive near-infrared (NIR) glucose sensor hinges on the success in addressing the sensitivity and the specificity problems associated with the weak glucose signals and the overlapping NIR spectra. Spectroscopic hardware parameters most relevant to noninvasive blood glucose measurement are discussed, which include the optical throughput, integration time, spectral range, and the spectral resolution. We propose a unique spectroscopic system using a continuously rotating interference filter, which produces a signal-to-noise ratio of the order of 10^5 and is estimated to be the minimum required for successful in vivo glucose sensing. Using a classical least-squares algorithm and a spectral range between 2180 and 2312 nm, we extracted clinically relevant glucose concentrations in multicomponent solutions containing bovine serum albumin, triacetin, lactate, and urea.
47 CFR 101.113 - Transmitter power limitations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of harmful interference, the Commission may, after notice and opportunity for hearing, order a change... frequency band. (ii) The climate zones in Table 1 are defined for different geographic locations within the US as shown in Appendix 28 of the ITU Radio Regulations. Table 1 1 Climate zone e.i.r.p. Spectral...
47 CFR 101.113 - Transmitter power limitations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of harmful interference, the Commission may, after notice and opportunity for hearing, order a change... frequency band. (ii) The climate zones in Table 1 are defined for different geographic locations within the US as shown in Appendix 28 of the ITU Radio Regulations. Table 1 1 Climate zone e.i.r.p. Spectral...
47 CFR 101.113 - Transmitter power limitations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of harmful interference, the Commission may, after notice and opportunity for hearing, order a change... frequency band. (ii) The climate zones in Table 1 are defined for different geographic locations within the US as shown in Appendix 28 of the ITU Radio Regulations. Table 1 1 Climate zone e.i.r.p. Spectral...
47 CFR 101.113 - Transmitter power limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of harmful interference, the Commission may, after notice and opportunity for hearing, order a change... frequency band. (ii) The climate zones in Table 1 are defined for different geographic locations within the US as shown in Appendix 28 of the ITU Radio Regulations. Table 1 1 Climate zone e.i.r.p. Spectral...
When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...
NASA Astrophysics Data System (ADS)
Bao, Weijia; Qiao, Xueguang; Yin, Xunli; Rong, Qiangzhou; Wang, Ruohui; Yang, Hangzhou
2017-12-01
We demonstrate a compact fiber-optic quasi-Michelson interferometer (QMI) for micro-displacement measurement. The sensor comprises a micro-structure of a reflection taper tip containing a refractive index modification (RIM) as a coupling window over the interface between core and cladding of the fiber. Femtosecond laser-based direct inscription technique is used to achieve this window inscription and to induce large refractive index change. The RIM acts as a window for the strong coupling and recoupling of core-to-cladding modes. As the core and cladding modes are reflected at the taper tip and coupled back to lead-in fiber, a well-defined interference spectrum is achieved. The spectral intensity exhibits a high micro-bending sensitivity of 4 . 94 dB / μm because of the sensitivity to bending of recoupled intensity of cladding modes. In contrast, the spectral wavelength is insensitive to bending but linearly responds to temperature. The simultaneous measurements, including power-referenced for displacement and wavelength-referenced for temperature, were achieved by selective interference dip monitoring.
Photoionization in the time and frequency domain
NASA Astrophysics Data System (ADS)
Isinger, M.; Squibb, R. J.; Busto, D.; Zhong, S.; Harth, A.; Kroon, D.; Nandi, S.; Arnold, C. L.; Miranda, M.; Dahlström, J. M.; Lindroth, E.; Feifel, R.; Gisselbrecht, M.; L'Huillier, A.
2017-11-01
Ultrafast processes in matter, such as the electron emission after light absorption, can now be studied using ultrashort light pulses of attosecond duration (10-18 seconds) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40-electron volt energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.
Preconditioned conjugate residual methods for the solution of spectral equations
NASA Technical Reports Server (NTRS)
Wong, Y. S.; Zang, T. A.; Hussaini, M. Y.
1986-01-01
Conjugate residual methods for the solution of spectral equations are described. An inexact finite-difference operator is introduced as a preconditioner in the iterative procedures. Application of these techniques is limited to problems for which the symmetric part of the coefficient matrix is positive definite. Although the spectral equation is a very ill-conditioned and full matrix problem, the computational effort of the present iterative methods for solving such a system is comparable to that for the sparse matrix equations obtained from the application of either finite-difference or finite-element methods to the same problems. Numerical experiments are shown for a self-adjoint elliptic partial differential equation with Dirichlet boundary conditions, and comparison with other solution procedures for spectral equations is presented.
Passive athermalization of multimode interference devices for wavelength-locking applications.
Ruiz-Perez, Victor I; May-Arrioja, Daniel A; Guzman-Sepulveda, Jose R
2017-03-06
In this paper we demonstrate the passive, material-based athermalization of all-fiber architectures by cascading multimode interference (MMI) devices. In-line thermal compensation is achieved by including a liquid-core multimode section of variable length that allows ensuring temperature-independent operation while preserving the inherent filter-like spectral response of the MMI devices. The design of the temperature compensation unit is straightforward and its fabrication is simple. The applicability of our approach is experimentally verified by fabricating a wavelength-locked MMI laser with sensitivity of only -0.1 pm/°C, which is at least one order of magnitude lower than that achieved with other fiber optics devices.
Fiber-Optic Linear Displacement Sensor Based On Matched Interference Filters
NASA Astrophysics Data System (ADS)
Fuhr, Peter L.; Feener, Heidi C.; Spillman, William B.
1990-02-01
A fiber optic linear displacement sensor has been developed in which a pair of matched interference filters are used to encode linear position on a broadband optical signal as relative intensity variations. As the filters are displaced, the optical beam illuminates varying amounts of each filter. Determination of the relative intensities at each filter pairs' passband is based on measurements acquired with matching filters and photodetectors. Source power variation induced errors are minimized by basing determination of linear position on signal Visibility. A theoretical prediction of the sensor's performance is developed and compared with experiments performed in the near IR spectral region using large core multimode optical fiber.
NASA Astrophysics Data System (ADS)
Suljoti, E.; de Groot, F. M. F.; Nagasono, M.; Glatzel, P.; Hennies, F.; Deppe, M.; Pietzsch, A.; Sonntag, B.; Föhlisch, A.; Wurth, W.
2009-09-01
Symmetrical fluorescence yield profiles and asymmetrical electron yield profiles of the preresonances at the La NIV,V x-ray absorption edge are experimentally observed in LaPO4 nanoparticles. Theoretical studies show that they are caused by interference effects. The spin-orbit interaction and the giant resonance produce symmetry entangled intermediate states that activate coherent scattering and alter the spectral distribution of the oscillator strength. The scattering amplitudes of the electron and fluorescence decays are further modified by the spin-orbit coupling in the final 5p5ɛl and 5p54f1 states.
Tailoring mode interference in plasmon-induced transparency metamaterials
NASA Astrophysics Data System (ADS)
Liu, Meng; Yang, Quanlong; Xu, Quan; Chen, Xieyu; Tian, Zhen; Gu, Jianqiang; Ouyang, Chunmei; Zhang, Xueqian; Han, Jiaguang; Zhang, Weili
2018-05-01
We proposed an approach to tailor the mode interference effect in plasmon-induced transparency (PIT) metamaterials. Through introducing an extra coupling mode using an asymmetric structure configuration at terahertz (THz) frequencies, the well-known single-transparency-window PIT can be switched to dual-transparency-window PIT. Proof-of-concept subwavelength structures were fabricated and experimentally characterized. The measured results are in good agreement with the simulations, and well support our theoretical analysis. The presented research delivers a novel approach toward developing subwavelength devices with varies functionalities, such as ultra-slow group velocities, longitudinal pulse compression and light storage in the THz regime, which can also be extended to other spectral regimes.
Fabry-Perot enhanced Faraday rotation in graphene.
Ubrig, Nicolas; Crassee, Iris; Levallois, Julien; Nedoliuk, Ievgeniia O; Fromm, Felix; Kaiser, Michl; Seyller, Thomas; Kuzmenko, Alexey B
2013-10-21
We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of epitaxial multilayer graphene grown on the C-face of 6H-SiC, where the interference fringes are spectrally resolved and a Faraday rotation up to 0.15 radians (9°) is attained. Further, we discuss and compare other ways to increase the Faraday rotation using the principle of an optical cavity.
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohammed A.
2014-09-01
In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach
A New Reassigned Spectrogram Method in Interference Detection for GNSS Receivers.
Sun, Kewen; Jin, Tian; Yang, Dongkai
2015-09-02
Interference detection is very important for Global Navigation Satellite System (GNSS) receivers. Current work on interference detection in GNSS receivers has mainly focused on time-frequency (TF) analysis techniques, such as spectrogram and Wigner-Ville distribution (WVD), where the spectrogram approach presents the TF resolution trade-off problem, since the analysis window is used, and the WVD method suffers from the very serious cross-term problem, due to its quadratic TF distribution nature. In order to solve the cross-term problem and to preserve good TF resolution in the TF plane at the same time, in this paper, a new TF distribution by using a reassigned spectrogram has been proposed in interference detection for GNSS receivers. This proposed reassigned spectrogram method efficiently combines the elimination of the cross-term provided by the spectrogram itself according to its inherent nature and the improvement of the TF aggregation property achieved by the reassignment method. Moreover, a notch filter has been adopted in interference mitigation for GNSS receivers, where receiver operating characteristics (ROCs) are used as metrics for the characterization of interference mitigation performance. The proposed interference detection method by using a reassigned spectrogram is evaluated by experiments on GPS L1 signals in the disturbing scenarios in comparison to the state-of-the-art TF analysis approaches. The analysis results show that the proposed interference detection technique effectively overcomes the cross-term problem and also keeps good TF localization properties, which has been proven to be valid and effective to enhance the interference Sensors 2015, 15 22168 detection performance; in addition, the adoption of the notch filter in interference mitigation has shown a significant acquisition performance improvement in terms of ROC curves for GNSS receivers in jamming environments.
A New Reassigned Spectrogram Method in Interference Detection for GNSS Receivers
Sun, Kewen; Jin, Tian; Yang, Dongkai
2015-01-01
Interference detection is very important for Global Navigation Satellite System (GNSS) receivers. Current work on interference detection in GNSS receivers has mainly focused on time-frequency (TF) analysis techniques, such as spectrogram and Wigner–Ville distribution (WVD), where the spectrogram approach presents the TF resolution trade-off problem, since the analysis window is used, and the WVD method suffers from the very serious cross-term problem, due to its quadratic TF distribution nature. In order to solve the cross-term problem and to preserve good TF resolution in the TF plane at the same time, in this paper, a new TF distribution by using a reassigned spectrogram has been proposed in interference detection for GNSS receivers. This proposed reassigned spectrogram method efficiently combines the elimination of the cross-term provided by the spectrogram itself according to its inherent nature and the improvement of the TF aggregation property achieved by the reassignment method. Moreover, a notch filter has been adopted in interference mitigation for GNSS receivers, where receiver operating characteristics (ROCs) are used as metrics for the characterization of interference mitigation performance. The proposed interference detection method by using a reassigned spectrogram is evaluated by experiments on GPS L1 signals in the disturbing scenarios in comparison to the state-of-the-art TF analysis approaches. The analysis results show that the proposed interference detection technique effectively overcomes the cross-term problem and also keeps good TF localization properties, which has been proven to be valid and effective to enhance the interference detection performance; in addition, the adoption of the notch filter in interference mitigation has shown a significant acquisition performance improvement in terms of ROC curves for GNSS receivers in jamming environments. PMID:26364637
Fu, Li; Zhang, Yun; Wei, Zhe-Hao; Wang, Hong-Fei
2014-09-01
We report in this work detailed measurements of the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050 cm(-1)) of the air/liquid interfaces of R-(+)-limonene and S-(-)-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the RS racemic mixture (50/50 equal amount mixture), show that the corresponding molecular groups of the R and S enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit a spectral signature from the chiral response of the Cα-H stretching mode, and a spectral signature from the prochiral response of the CH(2) asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-(+)-limonene to S-(-)-limonene surfaces, and disappears for the RS racemic mixture surface. While the prochiral spectral feature of the CH(2) asymmetric stretching mode is the same for R-(+)-limonene and S-(-)-limonene surfaces, and also surprisingly remains the same for the RS racemic mixture surface. Therefore, the structures of the R-(+)-limonene and the S-(-)-limonene at the liquid interfaces are nevertheless not mirror images to each other, even though the corresponding groups have the same tilt angle from the interfacial normal, i.e., the R-(+)-limonene and the S-(-)-limonene at the surface are diastereomeric instead of enantiomeric. These results provide detailed information in understanding the structure and chirality of molecular interfaces and demonstrate the sensitivity and potential of SFG-VS as a unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface. © 2014 Wiley Periodicals, Inc.
Li, Xing; Gao, Yaru; Jiang, Shuna; Ma, Li; Liu, Chunxiang; Cheng, Chuanfu
2015-02-09
Using an L-shaped metal nanoslit to generate waves of the pure photonic and plasmonic modes simultaneously, we perform an experimental solution for the scattered imaging of the interference of the two waves. From the fringe data of interference, the amplitudes and the wavevector components of the two waves are obtained. The initial phases of the two waves are obtained from the phase map reconstructed with the interference of the scattered image and the reference wave in the interferometer. The difference in the wavevector components gives rise to an additional phase delay. We introduce the scattering theory under Kirchhoff's approximation to metal slit regime and explain the wavevector difference reasonably. The solution of the quantities is a comprehensive reflection of excitation, scattering and interference of the two waves. By decomposing the polarized incident field with respect to the slit element, the scattered image produced by slit of arbitrary shape can be solved with the nanoscale Huygens-Fresnel principle. This is demonstrated by the experimental intensity pattern and phase map produced by a ring-slit and its consistency with the calculated results.
Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) for spaceborne measurements of CO
NASA Astrophysics Data System (ADS)
Johnson, Brian R.; Kampe, Thomas U.; Cook, William B.; Miecznik, Grzegorz; Novelli, Paul C.; Snell, Hilary E.; Turner-Valle, Jennifer A.
2003-11-01
An instrument concept for an Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) has been developed for measuring tropospheric carbon monoxide (CO) from space. The concept is based upon a correlation technique similar in nature to multi-order Fabry-Perot (FP) interferometer or gas filter radiometer techniques, which simultaneously measure atmospheric emission from several infrared vibration-rotation lines of CO. Correlation techniques provide a multiplex advantage for increased throughput, high spectral resolution and selectivity necessary for profiling tropospheric CO. Use of unconventional multilayer interference filter designs leads to improvement in CO spectral line correlation compared with the traditional FP multi-order technique, approaching the theoretical performance of gas filter correlation radiometry. In this implementation, however, the gas cell is replaced with a simple, robust solid interference filter. In addition to measuring CO, the correlation filter technique can be applied to measurements of other important gases such as carbon dioxide, nitrous oxide and methane. Imaging the scene onto a 2-D detector array enables a limited range of spectral sampling owing to the field-angle dependence of the filter transmission function. An innovative anamorphic optical system provides a relatively large instrument field-of-view for imaging along the orthogonal direction across the detector array. An important advantage of the IMOFPS concept is that it is a small, low mass and high spectral resolution spectrometer having no moving parts. A small, correlation spectrometer like IMOFPS would be well suited for global observations of CO2, CO, and CH4 from low Earth or regional observations from Geostationary orbit. A prototype instrument is in development for flight demonstration on an airborne platform with potential applications to atmospheric chemistry, wild fire and biomass burning, and chemical dispersion monitoring.
External cavity diode laser setup with two interference filters
NASA Astrophysics Data System (ADS)
Martin, Alexander; Baus, Patrick; Birkl, Gerhard
2016-12-01
We present an external cavity diode laser setup using two identical, commercially available interference filters operated in the blue wavelength range around 450 nm. The combination of the two filters decreases the transmission width, while increasing the edge steepness without a significant reduction in peak transmittance. Due to the broad spectral transmission of these interference filters compared to the internal mode spacing of blue laser diodes, an additional locking scheme, based on Hänsch-Couillaud locking to a cavity, has been added to improve the stability. The laser is stabilized to a line in the tellurium spectrum via saturation spectroscopy, and single-frequency operation for a duration of two days is demonstrated by monitoring the error signal of the lock and the piezo drive compensating the length change of the external resonator due to air pressure variations. Additionally, transmission curves of the filters and the spectra of a sample of diodes are given.
Li, Chih-Ying; Waid-Ebbs, Julia; Velozo, Craig A.; Heaton, Shelley C.
2016-01-01
Primary Objective Social problem solving deficits characterize individuals with traumatic brain injury (TBI). Poor social problem solving interferes with daily functioning and productive lifestyles. Therefore, it is of vital importance to use the appropriate instrument to identify deficits in social problem solving for individuals with TBI. This study investigates factor structure and item-level psychometrics of the Social Problem Solving Inventory-Revised Short Form (SPSI-R:S), for adults with moderate and severe TBI. Research Design Secondary analysis of 90 adults with moderate and severe TBI who completed the SPSI-R:S. Methods and Procedures An exploratory factor analysis (EFA), principal components analysis (PCA) and Rasch analysis examined the factor structure and item-level psychometrics of the SPSI-R:S. Main Outcomes and Results The EFA showed three dominant factors, with positively worded items represented as the most definite factor. The other two factors are negative problem solving orientation and skills; and negative problem solving emotion. Rasch analyses confirmed the three factors are each unidimensional constructs. Conclusions The total score interpretability of the SPSI-R:S may be challenging due to the multidimensional structure of the total measure. Instead, we propose using three separate SPSI-R:S subscores to measure social problem solving for the TBI population. PMID:26052731
Li, Chih-Ying; Waid-Ebbs, Julia; Velozo, Craig A; Heaton, Shelley C
2016-01-01
Social problem-solving deficits characterise individuals with traumatic brain injury (TBI), and poor social problem solving interferes with daily functioning and productive lifestyles. Therefore, it is of vital importance to use the appropriate instrument to identify deficits in social problem solving for individuals with TBI. This study investigates factor structure and item-level psychometrics of the Social Problem Solving Inventory-Revised: Short Form (SPSI-R:S), for adults with moderate and severe TBI. Secondary analysis of 90 adults with moderate and severe TBI who completed the SPSI-R:S was performed. An exploratory factor analysis (EFA), principal components analysis (PCA) and Rasch analysis examined the factor structure and item-level psychometrics of the SPSI-R:S. The EFA showed three dominant factors, with positively worded items represented as the most definite factor. The other two factors are negative problem-solving orientation and skills; and negative problem-solving emotion. Rasch analyses confirmed the three factors are each unidimensional constructs. It was concluded that the total score interpretability of the SPSI-R:S may be challenging due to the multidimensional structure of the total measure. Instead, we propose using three separate SPSI-R:S subscores to measure social problem solving for the TBI population.
Pourmovahed, Zahra; Mazloomy Mahmoodabad, Seyed Saied; Zareei Mahmoodabadi, Hassan; Tavangar, Hossein; Yassini Ardekani, Seyed Mojtaba; Vaezi, Ali Akbar
2018-01-01
Objective: Problem-solving ability is one of the most important means of family stability that enables the families to understand their roles, functions, and performances. Self-efficacy deficiency in problem-solving runs through many families. This qualitative study was conducted to investigate and describe how couples solve problems in their families. Method: This study was conducted to detect couples' self-efficacy deficiency in problem-solving using purposive sampling method. Several deep semi-structured interviews based on McMaster model and observations were conducted by nine family therapists and psychiatrists on four couples (eight persons) living in Yazd (Iran).The interviews were performed, audio-recorded, and transcribed verbatim. The analysis was interpreted through directed content analysis methods. Results: Families in Yazd (Iran) made some attempts to solve their problems, but their efforts were not enough, and thus they suffered from self-efficacy deficiency, which included 8 categories. The main theme distilled from the data of 17 participants was self-efficacy deficiency, which included the following categories: avoidance, insolvency, interference from others, ineffective self-treatment, behavioral problems, stubbornness, superficiality, and denial. Conclusion: It is of paramount importance to identify self-efficacy deficiency in families and promote problem- solving programs to increase family stability. In the present study, the main deficiencies in problem-solving were detected.
A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers
NASA Astrophysics Data System (ADS)
Yang, Peiling; Ma, Jianxin; Zhang, Junyi
2018-06-01
In this paper, we have proposed a polarization-division multiplexing (PDM) single-sideband optical orthogonal frequency division multiplexing (SSB-OOFDM) scheme with signal-signal beat interference cancellation receivers with balanced detection (ICRBD). This system can double channel capacity and improve spectrum efficiency (SE) with the reduced guard band (GB) due to the PDM. Multiple input multiple output (MIMO) technique is used to solve polarization mode dispersion (PMD) associated with channel estimation and equalization. By simulation, we demonstrate the efficacy of the proposed technique for a 2 ×40 Gbit/s 16-QAM SSB-PDM-OOFDM system according to the error vector magnitude (EVM) and the constellation diagrams.
Strategies for Reducing Math Anxiety. Information Capsule. Volume 1102
ERIC Educational Resources Information Center
Blazer, Christie
2011-01-01
Approximately 93 percent of Americans indicate that they experience some level of math anxiety. Math anxiety is defined as negative emotions that interfere with the solving of mathematical problems. Studies have found that some students who perform poorly on math assessments actually have a full understanding of the concepts being tested; however,…
ERIC Educational Resources Information Center
Wilson, Carla F.
2013-01-01
Research indicates that mathematics anxiety interferes with solving math problems in everyday life as well as academic situations. In classrooms across the country, educators have utilized different methods to help students alleviate their irrational fears of completing even basic math problems. Critical constructivist educators have utilized…
The Bright Side of Being Blue: Depression as an Adaptation for Analyzing Complex Problems
ERIC Educational Resources Information Center
Andrews, Paul W.; Thomson, J. Anderson, Jr.
2009-01-01
Depression is the primary emotional condition for which help is sought. Depressed people often report persistent rumination, which involves analysis, and complex social problems in their lives. Analysis is often a useful approach for solving complex problems, but it requires slow, sustained processing, so disruption would interfere with problem…
Why Do Disadvantaged Filipino Children Find Word Problems in English Difficult?
ERIC Educational Resources Information Center
Bautista, Debbie; Mulligan, Joanne
2010-01-01
Young Filipino students are expected to solve mathematical word problems in English, a language that many encounter only in schools. Using individual interviews of 17 Filipino children, we investigated why word problems in English are difficult and the extent to which the language interferes with performance. Results indicate that children could…
Biochemical and Structural Studies of RNA Modification and Repair
ERIC Educational Resources Information Center
Chan, Chio Mui
2009-01-01
RNA modification, RNA interference, and RNA repair are important events in the cell. This thesis presents three projects related to these three fields. By using both biochemical and structural methods, we characterized enzymatic activities of pseudouridine synthase TruD, solved the structure of "A. aeolicus" GidA, and reconstituted a novel…
Takamura, Ayari; Watanabe, Ken; Akutsu, Tomoko; Ikegaya, Hiroshi; Ozawa, Takeaki
2017-09-19
Often in criminal investigations, discrimination of types of body fluid evidence is crucially important to ascertain how a crime was committed. Compared to current methods using biochemical techniques, vibrational spectroscopic approaches can provide versatile applicability to identify various body fluid types without sample invasion. However, their applicability is limited to pure body fluid samples because important signals from body fluids incorporated in a substrate are affected strongly by interference from substrate signals. Herein, we describe a novel approach to recover body fluid signals that are embedded in strong substrate interferences using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy and an innovative multivariate spectral processing. This technique supported detection of covert features of body fluid signals, and then identified origins of body fluid stains on substrates. We discriminated between ATR FT-IR spectra of postmortem blood (PB) and those of antemortem blood (AB) by creating a multivariate statistics model. From ATR FT-IR spectra of PB and AB stains on interfering substrates (polyester, cotton, and denim), blood-originated signals were extracted by a weighted linear regression approach we developed originally using principal components of both blood and substrate spectra. The blood-originated signals were finally classified by the discriminant model, demonstrating high discriminant accuracy. The present method can identify body fluid evidence independently of the substrate type, which is expected to promote the application of vibrational spectroscopic techniques in forensic body fluid analysis.
Spectral methods for the spin-2 equation near the cylinder at spatial infinity
NASA Astrophysics Data System (ADS)
Macedo, Rodrigo P.; Valiente Kroon, Juan A.
2018-06-01
We solve, numerically, the massless spin-2 equations, written in terms of a gauge based on the properties of conformal geodesics, in a neighbourhood of spatial infinity using spectral methods in both space and time. This strategy allows us to compute the solutions to these equations up to the critical sets where null infinity intersects with spatial infinity. Moreover, we use the convergence rates of the numerical solutions to read-off their regularity properties.
Galerkin Spectral Method for the 2D Solitary Waves of Boussinesq Paradigm Equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christou, M. A.; Christov, C. I.
2009-10-29
We consider the 2D stationary propagating solitary waves of the so-called Boussinesq Paradigm equation. The fourth- order elliptic boundary value problem on infinite interval is solved by a Galerkin spectral method. An iterative procedure based on artificial time ('false transients') and operator splitting is used. Results are obtained for the shapes of the solitary waves for different values of the dispersion parameters for both subcritical and supercritical phase speeds.
Polychromatic polarization microscope: bringing colors to a colorless world.
Shribak, Michael
2015-11-27
Interference of two combined white light beams produces Newton colors if one of the beams is retarded relative to the other by from 400 nm to 2000 nm. In this case the corresponding interfering spectral components are added as two scalars at the beam combination. If the retardance is below 400 nm the two-beam interference produces grey shades only. The interference colors are widely used for analyzing birefringent samples in mineralogy. However, many of biological structures have retardance <100 nm. Therefore, cells and tissues under a regular polarization microscope are seen as grey image, which contrast disappears at certain orientations. Here we are proposing for the first time using vector interference of polarized light in which the full spectrum colors are created at retardance of several nanometers, with the hue determined by orientation of the birefringent structure. The previously colorless birefringent images of organelles, cells, and tissues become vividly colored. This approach can open up new possibilities for the study of biological specimens with weak birefringent structures, diagnosing various diseases, imaging low birefringent crystals, and creating new methods for controlling colors of the light beam.
NASA Astrophysics Data System (ADS)
Nallala, Jayakrupakar; Gobinet, Cyril; Diebold, Marie-Danièle; Untereiner, Valérie; Bouché, Olivier; Manfait, Michel; Sockalingum, Ganesh Dhruvananda; Piot, Olivier
2012-11-01
Innovative diagnostic methods are the need of the hour that could complement conventional histopathology for cancer diagnosis. In this perspective, we propose a new concept based on spectral histopathology, using IR spectral micro-imaging, directly applied to paraffinized colon tissue array stabilized in an agarose matrix without any chemical pre-treatment. In order to correct spectral interferences from paraffin and agarose, a mathematical procedure is implemented. The corrected spectral images are then processed by a multivariate clustering method to automatically recover, on the basis of their intrinsic molecular composition, the main histological classes of the normal and the tumoral colon tissue. The spectral signatures from different histological classes of the colonic tissues are analyzed using statistical methods (Kruskal-Wallis test and principal component analysis) to identify the most discriminant IR features. These features allow characterizing some of the biomolecular alterations associated with malignancy. Thus, via a single analysis, in a label-free and nondestructive manner, main changes associated with nucleotide, carbohydrates, and collagen features can be identified simultaneously between the compared normal and the cancerous tissues. The present study demonstrates the potential of IR spectral imaging as a complementary modern tool, to conventional histopathology, for an objective cancer diagnosis directly from paraffin-embedded tissue arrays.
Combined dispersive/interference spectroscopy for producing a vector spectrum
Erskine, David J.
2002-01-01
A method of measuring the spectral properties of broadband waves that combines interferometry with a wavelength disperser having many spectral channels to produce a fringing spectrum. Spectral mapping, Doppler shifts, metrology of angles, distances and secondary effects such as temperature, pressure, and acceleration which change an interferometer cavity length can be measured accurately by a compact instrument using broadband illumination. Broadband illumination avoids the fringe skip ambiguities of monochromatic waves. The interferometer provides arbitrarily high spectral resolution, simple instrument response, compactness, low cost, high field of view and high efficiency. The inclusion of a disperser increases fringe visibility and signal to noise ratio over an interferometer used alone for broadband waves. The fringing spectrum is represented as a wavelength dependent 2-d vector, which describes the fringe amplitude and phase. Vector mathematics such as generalized dot products rapidly computes average broadband phase shifts to high accuracy. A Moire effect between the interferometer's sinusoidal transmission and the illumination heterodynes high resolution spectral detail to low spectral detail, allowing the use of a low resolution disperser. Multiple parallel interferometer cavities of fixed delay allow the instantaneous mapping of a spectrum, with an instrument more compact for the same spectral resolution than a conventional dispersive spectrometer, and not requiring a scanning delay.
NASA Astrophysics Data System (ADS)
Zhu, Yizheng; Li, Chengshuai
2016-03-01
Morphological assessment of spermatozoa is of critical importance for in vitro fertilization (IVF), especially intracytoplasmic sperm injection (ICSI)-based IVF. In ICSI, a single sperm cell is selected and injected into an egg to achieve fertilization. The quality of the sperm cell is found to be highly correlated to IVF success. Sperm morphology, such as shape, head birefringence and motility, among others, are typically evaluated under a microscope. Current observation relies on conventional techniques such as differential interference contrast microscopy and polarized light microscopy. Their qualitative nature, however, limits the ability to provide accurate quantitative analysis. Here, we demonstrate quantitative morphological measurement of sperm cells using two types of spectral interferometric techniques, namely spectral modulation interferometry and spectral multiplexing interferometry. Both are based on spectral-domain low coherence interferometry, which is known for its exquisite phase determination ability. While spectral modulation interferometry encodes sample phase in a single spectrum, spectral multiplexing interferometry does so for sample birefringence. Therefore they are capable of highly sensitive phase and birefringence imaging. These features suit well in the imaging of live sperm cells, which are small, dynamic objects with only low to moderate levels of phase and birefringence contrast. We will introduce the operation of both techniques and demonstrate their application to measuring the phase and birefringence morphology of sperm cells.
Gauge transformations for twisted spectral triples
NASA Astrophysics Data System (ADS)
Landi, Giovanni; Martinetti, Pierre
2018-05-01
It is extended to twisted spectral triples the fluctuations of the metric as bounded perturbations of the Dirac operator that arises when a spectral triple is exported between Morita equivalent algebras, as well as gauge transformations which are obtained by the action of the unitary endomorphisms of the module implementing the Morita equivalence. It is firstly shown that the twisted-gauged Dirac operators, previously introduced to generate an extra scalar field in the spectral description of the standard model of elementary particles, in fact follow from Morita equivalence between twisted spectral triples. The law of transformation of the gauge potentials turns out to be twisted in a natural way. In contrast with the non-twisted case, twisted fluctuations do not necessarily preserve the self-adjointness of the Dirac operator. For a self-Morita equivalence, conditions are obtained in order to maintain self-adjointness that are solved explicitly for the minimal twist of a Riemannian manifold.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
1995-01-01
A new numerical framework for solving conservation laws is being developed. This new framework differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to overcome several key limitations of the above traditional methods. A two-level scheme for solving the convection-diffusion equation is constructed and used to illuminate the major differences between the present method and those previously mentioned. This explicit scheme, referred to as the a-mu scheme, has two independent marching variables.
Utilizing Spectrum Efficiently (USE)
2011-02-28
18 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and...numerical results. 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and Spectral Efficiency In [60] multiple...supported at a given signal-to-interference ratio in asynchronous direct-sequence code-division multiple-access ( DS - CDMA ) sys- tems was examined. It was
Image quality, space-qualified UV interference filters
NASA Technical Reports Server (NTRS)
Mooney, Thomas A.
1992-01-01
The progress during the contract period is described. The project involved fabrication of image quality, space-qualified bandpass filters in the 200-350 nm spectral region. Ion-assisted deposition (IAD) was applied to produce stable, reasonably durable filter coatings on space compatible UV substrates. Thin film materials and UV transmitting substrates were tested for resistance to simulated space effects.
Speech Perception with Music Maskers by Cochlear Implant Users and Normal-Hearing Listeners
ERIC Educational Resources Information Center
Eskridge, Elizabeth N.; Galvin, John J., III; Aronoff, Justin M.; Li, Tianhao; Fu, Qian-Jie
2012-01-01
Purpose: The goal of this study was to investigate how the spectral and temporal properties in background music may interfere with cochlear implant (CI) and normal-hearing listeners' (NH) speech understanding. Method: Speech-recognition thresholds (SRTs) were adaptively measured in 11 CI and 9 NH subjects. CI subjects were tested while using their…
Hao Liu; J. Y. Zhu; X. S. Chai
2011-01-01
This study demonstrated two in situ UV-vis spectrophotometric methods for rapid and temporally resolved measurements of cellulase adsorption onto cellulosic and lignocellulosic substrates during enzymatic hydrolysis. The cellulase protein absorption peak at 280 nm was used for quantification. The spectral interferences from light scattering by small fibers (fines) and...
[Research on lateral shearing interferometer for field monitoring of natural gas pipeline leak].
Zhang, Xue-Feng; Gao, Yu-Bin
2012-09-01
Aimed at the mechanical scanning spectroscopy equipment with poor anti-interference and anti-jamming ability, which affects the accuracy of its natural gas pipeline leak detection in the wild, a new type of lateral shearing interferometer system was designed. The system uses a beam splitter to get optical path difference by a mechanical scanning part, and it cancel the introduction of external vibration interference through the linkage between the two beam splitterw. The interference intensity of interference fringes produced was calculated, and analysis of a rotating beam splitter corresponds to the angle of the optical path difference function, solving for the maximum angle of the forward rotation and reverse rotation, which is the maximum optical path range. Experiments using the gas tank deflated simulated natural gas pipeline leak process, in the interference conditions, and the test data of the type WQF530 spectrometer and the new type of lateral shearing interferometer system were comparedt. The experimental results show that the relative error of both systems is about 1% in indoor conditions without interference. However, in interference environment, the error of WQF530 type spectrometer becomes larger, more than 10%, but the error of the new type of lateral shearing interferometer system is still below 5%. The detection accuracy of the type WQF530 spectrometer decreased significantly due to the environment. Therefore, the seismic design of the system can effectively offset power deviation and half-width increases of center wavelength caused by external interference, and compared to conventional mechanical scanning interferometer devices the new system is more suitable for field detection.
NASA Astrophysics Data System (ADS)
Wu, Fei; Shao, Shihai; Tang, Youxi
2016-10-01
To enable simultaneous multicast downlink transmit and receive operations on the same frequency band, also known as full-duplex links between an access point and mobile users. The problem of minimizing the total power of multicast transmit beamforming is considered from the viewpoint of ensuring the suppression amount of near-field line-of-sight self-interference and guaranteeing prescribed minimum signal-to-interference-plus-noise-ratio (SINR) at each receiver of the multicast groups. Based on earlier results for multicast groups beamforming, the joint problem is easily shown to be NP-hard. A semidefinite relaxation (SDR) technique with linear program power adjust method is proposed to solve the NP-hard problem. Simulation shows that the proposed method is feasible even when the local receive antenna in nearfield and the mobile user in far-filed are in the same direction.
Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates.
Kreisel, A; Choubey, Peayush; Berlijn, T; Ku, W; Andersen, B M; Hirschfeld, P J
2015-05-29
We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi_{2}Sr_{2}CaCu_{2}O_{8} can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude "filter" theories on a microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.
Multi scales based sparse matrix spectral clustering image segmentation
NASA Astrophysics Data System (ADS)
Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin
2018-04-01
In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.
High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makita, M.; Karvinen, P.; Zhu, D.
We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 10 4. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less
Angular and Intensity Dependent Spectral Modulations in High Harmonics from N2
NASA Astrophysics Data System (ADS)
McFarland, Brian; Farrell, Joseph; Bucksbaum, Philip; Guehr, Markus
2009-05-01
The spectral amplitude and phase modulation of high harmonics (HHG) in molecules provides important clues to molecular structure and dynamics in strong laser fields. We have studied these effects in aligned N2. Earlier results of HHG experiments claimed that the spectral amplitude modulation was predominantly due to geometrical interference between the recombining electron and the highest occupied molecular orbital (HOMO) [1]. We report evidence that contradicts this simple view. We observe a phase jump accompanied by a spectral minimum for HHG in aligned N2. The minimum shifts to lower harmonics as the angle between the molecular axis and harmonic generation polarization increases, and shifts to higher harmonics with increasing harmonic generation intensity. The features observed cannot be fully explained by a geometrical model. We discuss alternative explanations involving multi orbital effects [2]. [0pt] [1] Lein et al., Phys. Rev. A, 66, 023805 (2002) [2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)
NASA Astrophysics Data System (ADS)
Hsueh, Yu-Li; Rogge, Matthew S.; Shaw, Wei-Tao; Kim, Jaedon; Yamamoto, Shu; Kazovsky, Leonid G.
2005-09-01
A simple and cost-effective upgrade of existing passive optical networks (PONs) is proposed, which realizes service overlay by novel spectral-shaping line codes. A hierarchical coding procedure allows processing simplicity and achieves desired long-term spectral properties. Different code rates are supported, and the spectral shape can be properly tailored to adapt to different systems. The computation can be simplified by quantization of trigonometric functions. DC balance is achieved by passing the dc residual between processing windows. The proposed line codes tend to introduce bit transitions to avoid long consecutive identical bits and facilitate receiver clock recovery. Experiments demonstrate and compare several different optimized line codes. For a specific tolerable interference level, the optimal line code can easily be determined, which maximizes the data throughput. The service overlay using the line-coding technique leaves existing services and field-deployed fibers untouched but fully functional, providing a very flexible and economic way to upgrade existing PONs.
High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation
Makita, M.; Karvinen, P.; Zhu, D.; ...
2015-10-16
We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 10 4. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less
NASA Astrophysics Data System (ADS)
Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria
2017-07-01
In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Kang, Le; Chen, Yan; Li, Gang; Wang, Lan; Hu, Chun; Yang, Peng
2018-03-01
A fluorescent 2,7-dimethoxy-substituted calix[4]carbazole (1) is facilely synthesized. The spectral behaviors of both the guest-induced switchable conformation of 1 and its abilities serving as the stabilizer and molecular carrier of curcumin are investigated. UV-vis, fluorescence and NMR spectral results show that upon binding to curcumin, the 1,3-alternate conformation of 1 is converted to be the cone one. The relative high association constant (6.4 × 106 M- 1) of 1 binding to curcumin enables it to stabilize the curcumin, to suppress its degradation, and to sustainably deliver it into the EYPC vesicles within 20 h. Moreover, the cytotoxicity assay shows that 1 does not interfere the antiproliferative activities of curcumin. All these properties endow 1 the potential capability of serving as the molecular drug carrier. Our current result may pave the way looking for more efficient fluorescent calixcarbazoles and thereof spectral utilities.
Spectral Correlation of Thermal and Magnetotelluric Responses in a 2D Geothermal System
NASA Astrophysics Data System (ADS)
Pacheco, M. A.
2008-05-01
A methodology of thermal response observations at regional scale in geothermal systems was implemented using magnetotelluric(MT) data that was analyzed by spectral correlation of EM anomalies. Local favorability indices were obtained enhancing the anomalies of thermal flow and their corresponding magnetotelluric responses related to a common source. A C++ code was developed to compute magnetotelluric and thermal responses using finite differences of a geothermal field model. The problem of thermal convection was solved numerically using the approach of Boussinesq and temperature and thermal flow profiles are obtained, also is solved to the equations of electromagnetic induction 2D that govern the wave equation for the H-polarization case in a two-dimensional model of the system. This methodology is useful to find thermal anomalies in conductive or resistive structures of a geothermal system, which is directly associated with the litology of the model such as magmatic chamber, basement and hydrothermal reservoir.
Motsa, S. S.; Magagula, V. M.; Sibanda, P.
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252
Motsa, S S; Magagula, V M; Sibanda, P
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Asymmetric lasing at spectral singularities
NASA Astrophysics Data System (ADS)
Jin, L.
2018-03-01
Scattering coefficients can diverge at spectral singularities. In such situation, the stationary solution becomes a laser solution with outgoing waves only. We explore a parity-time (PT )-symmetric non-Hermitian two-arm Aharonov-Bohm interferometer consisting of three coupled resonators enclosing synthetic magnetic flux. The synthetic magnetic flux does not break the PT symmetry, which protects the symmetric transmission. The features and conditions of symmetric, asymmetric, and unidirectional lasing at spectral singularities are discussed. We elucidate that lasing affected by the interference is asymmetric; asymmetric lasing is induced by the interplay between the synthetic magnetic flux and the system's non-Hermiticity. The product of the left and right transmissions is equal to that of the reflections. Our findings reveal that the synthetic magnetic flux affects light propagation, and the results can be applied in the design of lasing devices.
Narrow and Deep Fano Resonances in a Rod and Concentric Square Ring-Disk Nanostructures
Huo, Yanyan; Jia, Tianqing; Zhang, Yi; Zhao, Hua; Zhang, Shian; Feng, Donghai; Sun, Zhenrong
2013-01-01
Localized surface plasmon resonances (LSPRs) in metallic nanostructures have been studied intensely in the last decade. Fano interference is an important way to decrease the resonance linewidth and enhance the spectral detection resolution, but realizing a Fano lineshape with both a narrow linewidth and high spectral contrast-ratio is still challenging. Here we propose a metallic nanostructure consisting of a concentric square ring-disk (CSRD) nanostructure and an outside nanorod. Fano linewidth and spectral contrast ratio can be actively manipulated by adjusting the gap between the nanorod and CSRD, and by adjusting the gap between the ring and disk in CSRD. When the gap size in CSRD is reduced to 5 nm, the quadrupolar Fano linewidth is of 0.025 eV, with a contrast ratio of 80%, and the figure of merit reaches 15. PMID:24064596
Design and evaluation of a filter spectrometer concept for facsimile cameras
NASA Technical Reports Server (NTRS)
Kelly, W. L., IV; Jobson, D. J.; Rowland, C. W.
1974-01-01
The facsimile camera is an optical-mechanical scanning device which was selected as the imaging system for the Viking '75 lander missions to Mars. A concept which uses an interference filter-photosensor array to integrate a spectrometric capability with the basic imagery function of this camera was proposed for possible application to future missions. This paper is concerned with the design and evaluation of critical electronic circuits and components that are required to implement this concept. The feasibility of obtaining spectroradiometric data is demonstrated, and the performance of a laboratory model is described in terms of spectral range, angular and spectral resolution, and noise-equivalent radiance.
Practical layer designs for polarizing beam-splitter cubes.
von Blanckenhagen, Bernhard
2006-03-01
Liquid-crystal-on-silicon- (LCoS-) based digital projection systems require high-performance polarizing beam splitters. The classical beam-splitter cube with an immersed interference coating can fulfill these requirements. Practical layer designs can be generated by computer optimization using the classic MacNeille polarizer layer design as the starting layer design. Multilayer structures with 100 nm bandwidth covering the blue, green, or red spectral region and one design covering the whole visible spectral region are designed. In a second step these designs are realized by using plasma-ion-assisted deposition. The performance of the practical beam-splitter cubes is compared with the theoretical performance of the layer designs.
A NOVEL TECHNIQUE APPLYING SPECTRAL ESTIMATION TO JOHNSON NOISE THERMOMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N Dianne Bull; Britton Jr, Charles L; Roberts, Michael
Johnson noise thermometry (JNT) is one of many important measurements used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed in this document. Spectral estimation is a key component in the signal processing algorithm utilized for EMI removal and temperature calculation. Applying these techniques requires the simple addition of the electronics and signal processing tomore » existing resistive thermometers.« less
Features in the spectra of gamma-ray bursts
NASA Technical Reports Server (NTRS)
Stanek, Krzysztof Z.; Paczynski, Bohdan; Goodman, Jeremy
1993-01-01
Gravitational lensing of cosmological gamma-ray bursts by objects in the mass range about 10 exp 17 to 10 exp 20 g (femtolensing) may introduce complicated interference patterns that might be interpreted as absorption or emission lines in the bursts' spectra. This phenomenon, if detected, may be used as a unique probe of dark matter in the universe. The BATSE spectral data should allow one to detect such spectral features or to put significant upper limits on the cosmic density of a dark matter component that may be in the femtolensing range. Software to generate theoretical spectra has been developed, and it is accessible over the computer network with anonymous ftp.
NASA Astrophysics Data System (ADS)
Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2010-02-01
Near-infrared spectroscopy is a promising, rapidly developing, reliable and noninvasive technique, used extensively in the biomedicine and in pharmaceutical industry. With the introduction of acousto-optic tunable filters (AOTF) and highly sensitive InGaAs focal plane sensor arrays, real-time high resolution hyper-spectral imaging has become feasible for a number of new biomedical in vivo applications. However, due to the specificity of the AOTF technology and lack of spectral calibration standardization, maintaining long-term stability and compatibility of the acquired hyper-spectral images across different systems is still a challenging problem. Efficiently solving both is essential as the majority of methods for analysis of hyper-spectral images relay on a priori knowledge extracted from large spectral databases, serving as the basis for reliable qualitative or quantitative analysis of various biological samples. In this study, we propose and evaluate fast and reliable spectral calibration of hyper-spectral imaging systems in the short wavelength infrared spectral region. The proposed spectral calibration method is based on light sources or materials, exhibiting distinct spectral features, which enable robust non-rigid registration of the acquired spectra. The calibration accounts for all of the components of a typical hyper-spectral imaging system such as AOTF, light source, lens and optical fibers. The obtained results indicated that practical, fast and reliable spectral calibration of hyper-spectral imaging systems is possible, thereby assuring long-term stability and inter-system compatibility of the acquired hyper-spectral images.
The full spectrum of AdS5/CFT4 I: representation theory and one-loop Q-system
NASA Astrophysics Data System (ADS)
Marboe, Christian; Volin, Dmytro
2018-04-01
With the formulation of the quantum spectral curve for the AdS5/CFT4 integrable system, it became potentially possible to compute its full spectrum with high efficiency. This is the first paper in a series devoted to the explicit design of such computations, with no restrictions to particular subsectors being imposed. We revisit the representation theoretical classification of possible states in the spectrum and map the symmetry multiplets to solutions of the quantum spectral curve at zero coupling. To this end it is practical to introduce a generalisation of Young diagrams to the case of non-compact representations and define algebraic Q-systems directly on these diagrams. Furthermore, we propose an algorithm to explicitly solve such Q-systems that circumvents the traditional usage of Bethe equations and simplifies the computation effort. For example, our algorithm quickly obtains explicit analytic results for all 495 multiplets that accommodate single-trace operators in N=4 SYM with classical conformal dimension up to \\frac{13}{2} . We plan to use these results as the seed for solving the quantum spectral curve perturbatively to high loop orders in the next paper of the series.
NASA Astrophysics Data System (ADS)
Mason, P. R.
2004-05-01
Our knowledge of how chalcophile and siderophile elements partition in minerals is limited, mainly due to the lack of suitable techniques for their accurate in situ determination. Host minerals (e.g. sulphides) are typically of small size (<30 μ m) and highly heterogeneous in composition, requiring analysis of high spatial resolution. Concentrations of chalcophile elements in silicates and oxides are low (sub μ gg-1) and thus challenging to measure. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), offering high sensitivity and good spatial resolution (10-100 μ m) is thus highly suited for this purpose. Unfortunately, the widespread use of this technique has been limited by enhanced problems specific to chalcophile and siderophile elements. These include inaccuracy due to the presence of spectral interferences, elemental fractionation during ablation/ionization and the lack of suitable calibration standards. Polyatomic spectral interferences, present either as a background component (e.g. O2+, ArAr+) or based around the recombination of matrix elements with argon (e.g. ArS+, ArNi+) hinder accurate analysis. These depend upon the relative concentrations of major matrix components and trace elements to be measured and are significant in many relevant minerals (e.g. sulphides). The use of a collision and reaction cells in ICP-MS is a new method for selective interference attenuation, significantly improving detection limits for elements such as Fe, S and Se by between 1 and 4 orders of magnitude. ArNi+ and ArCu+ interferences in sulphides can be attenuated by at least an order of magnitude leading to improved accuracy for the measurement of the Platinum Group elements Rh and Ru. Sulphur isotopes can be measured interference-free at m/z=32 and 34 by eliminating background O2+. These improvements open up new possibilities for the use of LA-ICP-MS in trace element and isotopic studies at the lowest concentration levels or where sample preparation creates additional problems (e.g. NiS fire assay beads). I will give examples of applications for this technique in the study of ore minerals, meteorites and precipitates from hydrothermal vents.
Lasers' spectral and temporal profile can affect visual glare disability.
Beer, Jeremy M A; Freeman, David A
2012-12-01
Experiments measured the effects of laser glare on visual orientation and motion perception. Laser stimuli were varied according to spectral composition and temporal presentation as subjects identified targets' tilt (Experiment 1) and movement (Experiment 2). The objective was to determine whether the glare parameters would alter visual disruption. Three spectral profiles (monochromatic Green vs. polychromatic White vs. alternating Red-Green) were used to produce a ring of laser glare surrounding a target. Two experiments were performed to measure the minimum contrast required to report target orientation or motion direction. The temporal glare profile was also varied: the ring was illuminated either continuously or discontinuously. Time-averaged luminance of the glare stimuli was matched across all conditions. In both experiments, threshold (deltaL) values were approximately 0.15 log units higher in monochromatic Green than in polychromatic White conditions. In Experiment 2 (motion identification), thresholds were approximately 0.17 log units higher in rapidly flashing (6, 10, or 14 Hz) than in continuous exposure conditions. Monochromatic extended-source laser glare disrupted orientation and motion identification more than polychromatic glare. In the motion task, pulse trains faster than 6 Hz (but below flicker fusion) elevated thresholds more than continuous glare with the same time-averaged luminance. Under these conditions, alternating the wavelength of monochromatic glare over time did not aggravate disability relative to green-only glare. Repetitively flashing monochromatic laser glare induced occasional episodes of impaired motion identification, perhaps resulting from cognitive interference. Interference speckle might play a role in aggravating monochromatic glare effects.
A semi-Lagrangian advection scheme for radioactive tracers in the NCEP Regional Spectral Model (RSM)
NASA Astrophysics Data System (ADS)
Chang, E.-C.; Yoshimura, K.
2015-10-01
In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.
Broadband interference lithography at extreme ultraviolet and soft x-ray wavelengths.
Mojarad, Nassir; Fan, Daniel; Gobrecht, Jens; Ekinci, Yasin
2014-04-15
Manufacturing efficient and broadband optics is of high technological importance for various applications in all wavelength regimes. Particularly in the extreme ultraviolet and soft x-ray spectra, this becomes challenging due to the involved atomic absorption edges that rapidly change the optical constants in these ranges. Here we demonstrate a new interference lithography grating mask that can be used for nanopatterning in this spectral range. We demonstrate photolithography with cutting-edge resolution at 6.5 and 13.5 nm wavelengths, relevant to the semiconductor industry, as well as using 2.5 and 4.5 nm wavelength for patterning thick photoresists and fabricating high-aspect-ratio metal nanostructures for plasmonics and sensing applications.
Mirror-assisted coherent backscattering from the Mollow sidebands
NASA Astrophysics Data System (ADS)
Piovella, N.; Teixeira, R. Celistrino; Kaiser, R.; Courteille, Ph. W.; Bachelard, R.
2017-11-01
In front of a mirror, the radiation of weakly driven large disordered clouds presents an interference fringe in the backward direction, on top of an incoherent background. Although strongly driven atoms usually present little coherent scattering, we show here that the mirror-assisted version can produce high contrast fringes, for arbitrarily high saturation parameters. The contrast of the fringes oscillates with the Rabi frequency of the atomic transition and the distance between the mirror and the atoms, due to the coherent interference between the carrier and the Mollow sidebands of the saturated resonant fluorescence spectrum emitted by the atoms. The setup thus represents a powerful platform to study the spectral properties of ensembles of correlated scatterers.
Shot noise limited detection of OH using the technique of laser induced fluorescence
NASA Technical Reports Server (NTRS)
Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Kakos, S.; Morris, P. T.; Wang, C. C.
1984-01-01
Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluorescence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the shot-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.
Shot noise limited detection of OH using the technique of laser-induced fluorescence
NASA Technical Reports Server (NTRS)
Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Wang, C. C.; Kakos, S.; Morris, P. T.
1984-01-01
Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluoresence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the short-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.
Discrimination of dipicolinic acid and its interferents by femtosecond coherent Raman spectroscopy
NASA Astrophysics Data System (ADS)
Huang, Yu; Dogariu, Arthur; Avitzour, Yoav; Murawski, Robert K.; Pestov, Dmitry; Zhi, Miaochan; Sokolov, Alexei V.; Scully, Marlan O.
2006-12-01
Measurements of the beat frequencies between vibrational modes of dipicolinic acid (DPA) and a series of other molecules (interferents) are presented. The results were obtained from femtosecond time-resolved coherent Raman scattering, and the vibrational level spacings were determined from a Fourier transform of the signal versus probe pulse delay. The entire spectrum of the generated signal is recorded in order to demonstrate multimode excitation and to explain the variety of qualitatively different traces that can be obtained for the same molecule. Since the spectral signature of DPA is unique enough to be used for identification purposes, this technique has the potential to detect hazardous bacterial species, such as anthrax spores.
A Spectral Algorithm for Solving the Relativistic Vlasov-Maxwell Equations
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2001-01-01
A spectral method algorithm is developed for the numerical solution of the full six-dimensional Vlasov-Maxwell system of equations. Here, the focus is on the electron distribution function, with positive ions providing a constant background. The algorithm consists of a Jacobi polynomial-spherical harmonic formulation in velocity space and a trigonometric formulation in position space. A transform procedure is used to evaluate nonlinear terms. The algorithm is suitable for performing moderate resolution simulations on currently available supercomputers for both scientific and engineering applications.
2017-08-01
ER D C TR -1 7- 9 ERDC 6.1 Geospatial Research and Engineering (GRE) and ERDC 6.2 GRE ARTEMIS STO-R DRTSPORE Spectral Assessment of...The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC...published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. ERDC 6.1 Geospatial Research and Engineering (GRE) and
Spectral method for pricing options in illiquid markets
NASA Astrophysics Data System (ADS)
Pindza, Edson; Patidar, Kailash C.
2012-09-01
We present a robust numerical method to solve a problem of pricing options in illiquid markets. The governing equation is described by a nonlinear Black-Scholes partial differential equation (BS-PDE) of the reaction-diffusion-advection type. To discretise this BS-PDE numerically, we use a spectral method in the asset (spatial) direction and couple it with a fifth order RADAU method for the discretisation in the time direction. Numerical experiments illustrate that our approach is very efficient for pricing financial options in illiquid markets.
Research on hyperspectral dynamic scene and image sequence simulation
NASA Astrophysics Data System (ADS)
Sun, Dandan; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei
2016-10-01
This paper presents a simulation method of hyper-spectral dynamic scene and image sequence for hyper-spectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyper-spectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyper-spectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyper-spectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyper-spectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyper-spectral images are consistent with the theoretical analysis results.
Mercuri, Marco; Liu, Yao-Hong; Lorato, Ilde; Torfs, Tom; Bourdoux, Andre; Van Hoof, Chris
2017-06-01
A Doppler radar operating as a Phase-Locked-Loop (PLL) in frequency demodulator configuration is presented and discussed. The proposed radar presents a unique architecture, using a single channel mixer, and allows to detect contactless vital signs parameters while solving the null point issue and without requiring the small angle approximation condition. Spectral analysis, simulations, and experimental results are presented and detailed to demonstrate the feasibility and the operational principle of the proposed radar architecture.
Regularization of nonlinear decomposition of spectral x-ray projection images.
Ducros, Nicolas; Abascal, Juan Felipe Perez-Juste; Sixou, Bruno; Rit, Simon; Peyrin, Françoise
2017-09-01
Exploiting the x-ray measurements obtained in different energy bins, spectral computed tomography (CT) has the ability to recover the 3-D description of a patient in a material basis. This may be achieved solving two subproblems, namely the material decomposition and the tomographic reconstruction problems. In this work, we address the material decomposition of spectral x-ray projection images, which is a nonlinear ill-posed problem. Our main contribution is to introduce a material-dependent spatial regularization in the projection domain. The decomposition problem is solved iteratively using a Gauss-Newton algorithm that can benefit from fast linear solvers. A Matlab implementation is available online. The proposed regularized weighted least squares Gauss-Newton algorithm (RWLS-GN) is validated on numerical simulations of a thorax phantom made of up to five materials (soft tissue, bone, lung, adipose tissue, and gadolinium), which is scanned with a 120 kV source and imaged by a 4-bin photon counting detector. To evaluate the method performance of our algorithm, different scenarios are created by varying the number of incident photons, the concentration of the marker and the configuration of the phantom. The RWLS-GN method is compared to the reference maximum likelihood Nelder-Mead algorithm (ML-NM). The convergence of the proposed method and its dependence on the regularization parameter are also studied. We show that material decomposition is feasible with the proposed method and that it converges in few iterations. Material decomposition with ML-NM was very sensitive to noise, leading to decomposed images highly affected by noise, and artifacts even for the best case scenario. The proposed method was less sensitive to noise and improved contrast-to-noise ratio of the gadolinium image. Results were superior to those provided by ML-NM in terms of image quality and decomposition was 70 times faster. For the assessed experiments, material decomposition was possible with the proposed method when the number of incident photons was equal or larger than 10 5 and when the marker concentration was equal or larger than 0.03 g·cm -3 . The proposed method efficiently solves the nonlinear decomposition problem for spectral CT, which opens up new possibilities such as material-specific regularization in the projection domain and a parallelization framework, in which projections are solved in parallel. © 2017 American Association of Physicists in Medicine.
Hyperspectral Fluorescence and Reflectance Imaging Instrument
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; O'Neal, S. Duane; Lanoue, Mark; Russell, Jeffrey
2008-01-01
The system is a single hyperspectral imaging instrument that has the unique capability to acquire both fluorescence and reflectance high-spatial-resolution data that is inherently spatially and spectrally registered. Potential uses of this instrument include plant stress monitoring, counterfeit document detection, biomedical imaging, forensic imaging, and general materials identification. Until now, reflectance and fluorescence spectral imaging have been performed by separate instruments. Neither a reflectance spectral image nor a fluorescence spectral image alone yields as much information about a target surface as does a combination of the two modalities. Before this system was developed, to benefit from this combination, analysts needed to perform time-consuming post-processing efforts to co-register the reflective and fluorescence information. With this instrument, the inherent spatial and spectral registration of the reflectance and fluorescence images minimizes the need for this post-processing step. The main challenge for this technology is to detect the fluorescence signal in the presence of a much stronger reflectance signal. To meet this challenge, the instrument modulates artificial light sources from ultraviolet through the visible to the near-infrared part of the spectrum; in this way, both the reflective and fluorescence signals can be measured through differencing processes to optimize fluorescence and reflectance spectra as needed. The main functional components of the instrument are a hyperspectral imager, an illumination system, and an image-plane scanner. The hyperspectral imager is a one-dimensional (line) imaging spectrometer that includes a spectrally dispersive element and a two-dimensional focal plane detector array. The spectral range of the current imaging spectrometer is between 400 to 1,000 nm, and the wavelength resolution is approximately 3 nm. The illumination system consists of narrowband blue, ultraviolet, and other discrete wavelength light-emitting-diode (LED) sources and white-light LED sources designed to produce consistently spatially stable light. White LEDs provide illumination for the measurement of reflectance spectra, while narrowband blue and UV LEDs are used to excite fluorescence. Each spectral type of LED can be turned on or off depending on the specific remote-sensing process being performed. Uniformity of illumination is achieved by using an array of LEDs and/or an integrating sphere or other diffusing surface. The image plane scanner uses a fore optic with a field of view large enough to provide an entire scan line on the image plane. It builds up a two-dimensional image in pushbroom fashion as the target is scanned across the image plane either by moving the object or moving the fore optic. For fluorescence detection, spectral filtering of a narrowband light illumination source is sometimes necessary to minimize the interference of the source spectrum wings with the fluorescence signal. Spectral filtering is achieved with optical interference filters and absorption glasses. This dual spectral imaging capability will enable the optimization of reflective, fluorescence, and fused datasets as well as a cost-effective design for multispectral imaging solutions. This system has been used in plant stress detection studies and in currency analysis.
Mathematical programming formulations for satellite synthesis
NASA Technical Reports Server (NTRS)
Bhasin, Puneet; Reilly, Charles H.
1987-01-01
The problem of satellite synthesis can be described as optimally allotting locations and sometimes frequencies and polarizations, to communication satellites so that interference from unwanted satellite signals does not exceed a specified threshold. In this report, mathematical programming models and optimization methods are used to solve satellite synthesis problems. A nonlinear programming formulation which is solved using Zoutendijk's method and a gradient search method is described. Nine mixed integer programming models are considered. Results of computer runs with these nine models and five geographically compatible scenarios are presented and evaluated. A heuristic solution procedure is also used to solve two of the models studied. Heuristic solutions to three large synthesis problems are presented. The results of our analysis show that the heuristic performs very well, both in terms of solution quality and solution time, on the two models to which it was applied. It is concluded that the heuristic procedure is the best of the methods considered for solving satellite synthesis problems.
High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras.
Lapray, Pierre-Jean; Thomas, Jean-Baptiste; Gouton, Pierre
2017-06-03
Spectral filter arrays imaging exhibits a strong similarity with color filter arrays. This permits us to embed this technology in practical vision systems with little adaptation of the existing solutions. In this communication, we define an imaging pipeline that permits high dynamic range (HDR)-spectral imaging, which is extended from color filter arrays. We propose an implementation of this pipeline on a prototype sensor and evaluate the quality of our implementation results on real data with objective metrics and visual examples. We demonstrate that we reduce noise, and, in particular we solve the problem of noise generated by the lack of energy balance. Data are provided to the community in an image database for further research.
Active-passive data fusion algorithms for seafloor imaging and classification from CZMIL data
NASA Astrophysics Data System (ADS)
Park, Joong Yong; Ramnath, Vinod; Feygels, Viktor; Kim, Minsu; Mathur, Abhinav; Aitken, Jennifer; Tuell, Grady
2010-04-01
CZMIL will simultaneously acquire lidar and passive spectral data. These data will be fused to produce enhanced seafloor reflectance images from each sensor, and combined at a higher level to achieve seafloor classification. In the DPS software, the lidar data will first be processed to solve for depth, attenuation, and reflectance. The depth measurements will then be used to constrain the spectral optimization of the passive spectral data, and the resulting water column estimates will be used recursively to improve the estimates of seafloor reflectance from the lidar. Finally, the resulting seafloor reflectance cube will be combined with texture metrics estimated from the seafloor topography to produce classifications of the seafloor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Dr. Yanhua; McCandless, Andrew Bascom
The main objective of this project is to improve the performance and reliability of sensor networks in the smart grid through an active interference cancellation technique that can effectively eliminate broadband electromagnetic interference (EMI) and radio frequency interference (RFI). This noise cancellation provides real-time monitoring the RF environment and automatically optimization of the signal fidelity. To determine the feasibility of the proposed technique and quantify the level of improvement in key system parameters, such as data rate, signal bandwidth, and cost saving, the tasks carried out during Phase I were 1) defining the problem statement, 2) developing a design thatmore » will solve the sensors’ reliably problem, 3) carrying out initial testing with a prototype, and 4) developing an integrated photonic chip version that could be built in a follow-on Phase II effort. The technology demonstration was successfully proven the feasibility of a mission assured photonic sensor system (MAPSS) that will address a major interference problem in smart grid deployments. The significant results demonstrated from bench-top testing show that the technology is capable of maintaining the error free communication link in the presence of various type of interference. The technology’s wideband performance in GHz is also verified and would be suitable for sensors deploying throughout the smart grid system.« less
Autistic children and the object permanence task.
Adrien, J L; Tanguay, P; Barthélémy, C; Martineaú, J; Perrot, A; Hameury, L; Sauvage, D
1993-01-01
Many mentally retarded autistic children can understand the concept of object permanence, but, in comparison to developmental-age matched normal children, the behavioral strategies they employ in carrying out the Casati-Lezine Object Permanence Test are deficient and lead to failure. These deficiencies appear unrelated to interference of stereotypic or other bizarre behavior in task performance. Similar problem-solving deficiencies can be found in mentally retarded children who are not autistic, suggesting that the deficiencies themselves are less related to the social-communication deficits of autistic children, but more to the general problem-solving difficulties found in children with a lower developmental quotient. Nevertheless, the qualitative analysis of results shows a tendency in autistic children, despite their better developmental level, to use less coordinated and regular sequences to solve the task than normal or mentally retarded children.
Ramsey-type spectroscopy in the XUV spectral region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirri, A.; European Laboratory for Nonlinear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino; Sali, E.
2010-02-02
We report an experimental and theoretical investigation of Ramsey-type spectroscopy with high-order harmonic generation applied to autoionizing states of Krypton. The ionization yield, detected by an ion-mass spectrometer, shows the characteristic quantum interference pattern. The behaviour of the fringe contrast was interpreted on the basis of a simple analytic model, which reproduces the experimental data without any free parameter.
Frequency-Response Identification of XV-15 Tilt-Rotor Aircraft Dynamics.
1987-05-01
and the rotor interference with the other 2 aircraft elements are modeled in detail. Also modeled are numerous sub- system dynamics such as the engine ...scope and quality, as a dissertation for the degree of Doctor of Philosophy. (Electrical Engineering ) Approved for the University Com ittee on Graduate...Spectral Relationships .................................. 143 B.2 Numerical Study......................................... 149 B.3 Conclusions of
Vibration modes interference in the MEMS resonant pressure sensor
NASA Astrophysics Data System (ADS)
Zhang, Fangfang; Li, Anlin; Bu, Zhenxiang; Wang, Lingyun; Sun, Daoheng; Du, Xiaohui; Gu, Dandan
2017-11-01
A new type of coupled balanced-mass double-ended tuning fork resonator (CBDETF) pressure sensor is fabricated and tested. However, the low accuracy of the CBDETF pressure sensor is not satisfied to us. Based on systematic analysis and tests, the coupling effect between the operational mode and interference mode is considered to be the main cause for the sensor in accuracy. To solve this problem, the stiffness of the serpentine beams is increased to pull up the resonant frequency of the interfering mode and make it separate far from the operational mode. Finally, the accuracy of the CBDETF pressure sensor is improved from + /-0.5% to less than + /-0.03% of the Full Scale (F.S.).
Herrero-Foncubierta, Pilar; Cuerva, Juan M.; Miguel, Delia
2018-01-01
The development of new fluorescent probes for cellular imaging is currently a very active field because of the large potential in understanding cell physiology, especially targeting anomalous behaviours due to disease. In particular, red-emitting dyes are keenly sought, as the light in this spectral region presents lower interferences and a deeper depth of penetration in tissues. In this work, we have synthesized a red-emitting, dual probe for the multiplexed intracellular detection of biothiols and phosphate ions. We have prepared a fluorogenic construct involving a silicon-substituted fluorescein for red emission. The fluorogenic reaction is selectively started by the presence of biothiols. In addition, the released fluorescent moiety undergoes an excited-state proton transfer reaction promoted by the presence of phosphate ions, which modulates its fluorescence lifetime, τ, with the total phosphate concentration. Therefore, in a multidimensional approach, the intracellular levels of biothiols and phosphate can be detected simultaneously using a single fluorophore and with spectral clearing of cell autofluorescence interferences. We have applied this concept to different cell lines, including photoreceptor cells, whose levels of biothiols are importantly altered by light irradiation and other oxidants. PMID:29315248
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Xiaoxin; Li Xiaoying; Cui Liang
2011-08-15
Temporal coherence of individual signal or idler beam, determined by the spectral correlation property of photon pairs, is important for realizing quantum interference among independent sources. Based on spontaneous four-wave mixing in optical fibers, we study the effect of chirp on the temporal coherence property by introducing a different amount of chirp into either the pulsed pump or individual signal (idler) beam. The investigation shows that the pump chirp induces additional frequency correlation into photon pairs; the mutual spectral correlation of photon pairs and the coherence of individual beam can be characterized by measuring the intensity correlation function g{sup (2)}more » of the individual beam. To improve the coherence degree, the pump chirp should be minimized. Moreover, a Hong-Ou-Mandel-type two-photon interference experiment with the signal beams generated in two different fibers illustrates that the chirp of the individual signal (idler) beam does not change the temporal coherence degree, but affects the temporal mode matching. To achieve high visibility among multiple sources, apart from improving the coherence degree, mode matching should be optimized by managing the chirps of individual beams.« less
Frequency-bin entanglement of ultra-narrow band non-degenerate photon pairs
NASA Astrophysics Data System (ADS)
Rieländer, Daniel; Lenhard, Andreas; Jime`nez Farìas, Osvaldo; Máttar, Alejandro; Cavalcanti, Daniel; Mazzera, Margherita; Acín, Antonio; de Riedmatten, Hugues
2018-01-01
We demonstrate frequency-bin entanglement between ultra-narrowband photons generated by cavity enhanced spontaneous parametric down conversion. Our source generates photon pairs in widely non-degenerate discrete frequency modes, with one photon resonant with a quantum memory material based on praseodymium doped crystals and the other photon at telecom wavelengths. Correlations between the frequency modes are analyzed using phase modulators and narrowband filters before detection. We show high-visibility two photon interference between the frequency modes, allowing us to infer a coherent superposition of the modes. We develop a model describing the state that we create and use it to estimate optimal measurements to achieve a violation of the Clauser-Horne (CH) Bell inequality under realistic assumptions. With these settings we perform a Bell test and show a significant violation of the CH inequality, thus proving the entanglement of the photons. Finally we demonstrate the compatibility with a quantum memory material by using a spectral hole in the praseodymium (Pr) doped crystal as spectral filter for measuring high-visibility two-photon interference. This demonstrates the feasibility of combining frequency-bin entangled photon pairs with Pr-based solid state quantum memories.
In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy.
Ali, Esam M A; Edwards, Howell G M; Hargreaves, Michael D; Scowen, Ian J
2008-05-12
This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 microm. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.
NASA Technical Reports Server (NTRS)
Gunn, W. J.; Shigehisa, T.; Shepherd, W. T.
1976-01-01
An experiment was conducted in order to determine the relative effectiveness of several hypothetical jet engine noise treatments and to test hypothesis that speech interference, at least in part, mediates annoyance in a TV-viewing situation. Twenty-four subjects watched television in a simulated living room. Recorded jet flyover noises were presented in such a way as to create the illusion that aircraft were actually flying overhead. There were 27 stimuli (nine spectra at three overall levels) presented at an average rate of approximately one flight every 2 minutes. Subjects judged the annoyance value of individual stimuli using either a category rating method or magnitude estimation method in each of two 1-hour sessions. The spectral treatments most effective in reducing annoyance were at 1.6 Khz and 800 Hz, in that order. The degree of annoyance reduction resulting from all treatments was affected by the overall sound level of the stimuli, with the greatest reduction at the intermediate overall sound level, about 88 to 89 db(A), peak value. The results are interpreted as supporting the hypothesis that speech interference, at least in part, mediates annoyance with aircraft noise in a TV-viewing situation.
Jain, S C; Miller, J R
1976-04-01
A method, using an optimization scheme, has been developed for the interpretation of spectral albedo (or spectral reflectance) curves obtained from remotely sensed water color data. This method used a two-flow model of the radiation flow and solves for the albedo. Optimization fitting of predicted to observed reflectance data is performed by a quadratic interpolation method for the variables chlorophyll concentration and scattering coefficient. The technique is applied to airborne water color data obtained from Kawartha Lakes, Sargasso Sea, and Nova Scotia coast. The modeled spectral albedo curves are compared to those obtained experimentally, and the computed optimum water parameters are compared to ground truth values. It is shown that the backscattered spectral signal contains information that can be interpreted to give quantitative estimates of the chlorophyll concentration and turbidity in the waters studied.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Abd-Elhameed, W. M.
2005-09-01
We present a double ultraspherical spectral methods that allow the efficient approximate solution for the parabolic partial differential equations in a square subject to the most general inhomogeneous mixed boundary conditions. The differential equations with their boundary and initial conditions are reduced to systems of ordinary differential equations for the time-dependent expansion coefficients. These systems are greatly simplified by using tensor matrix algebra, and are solved by using the step-by-step method. Numerical applications of how to use these methods are described. Numerical results obtained compare favorably with those of the analytical solutions. Accurate double ultraspherical spectral approximations for Poisson's and Helmholtz's equations are also noted. Numerical experiments show that spectral approximation based on Chebyshev polynomials of the first kind is not always better than others based on ultraspherical polynomials.
NASA Astrophysics Data System (ADS)
Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.
2013-04-01
Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm and for reported H2O mole fractions between 0-4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Abd-Elhameed, W. M.; Bassuony, M. A.
2013-03-01
This paper is concerned with spectral Galerkin algorithms for solving high even-order two point boundary value problems in one dimension subject to homogeneous and nonhomogeneous boundary conditions. The proposed algorithms are extended to solve two-dimensional high even-order differential equations. The key to the efficiency of these algorithms is to construct compact combinations of Chebyshev polynomials of the third and fourth kinds as basis functions. The algorithms lead to linear systems with specially structured matrices that can be efficiently inverted. Numerical examples are included to demonstrate the validity and applicability of the proposed algorithms, and some comparisons with some other methods are made.
Numerical techniques in radiative heat transfer for general, scattering, plane-parallel media
NASA Technical Reports Server (NTRS)
Sharma, A.; Cogley, A. C.
1982-01-01
The study of radiative heat transfer with scattering usually leads to the solution of singular Fredholm integral equations. The present paper presents an accurate and efficient numerical method to solve certain integral equations that govern radiative equilibrium problems in plane-parallel geometry for both grey and nongrey, anisotropically scattering media. In particular, the nongrey problem is represented by a spectral integral of a system of nonlinear integral equations in space, which has not been solved previously. The numerical technique is constructed to handle this unique nongrey governing equation as well as the difficulties caused by singular kernels. Example problems are solved and the method's accuracy and computational speed are analyzed.
Oberacher, Herbert
2013-01-01
The “Critical Assessment of Small Molecule Identification” (CASMI) contest was aimed in testing strategies for small molecule identification that are currently available in the experimental and computational mass spectrometry community. We have applied tandem mass spectral library search to solve Category 2 of the CASMI Challenge 2012 (best identification for high resolution LC/MS data). More than 230,000 tandem mass spectra part of four well established libraries (MassBank, the collection of tandem mass spectra of the “NIST/NIH/EPA Mass Spectral Library 2012”, METLIN, and the ‘Wiley Registry of Tandem Mass Spectral Data, MSforID’) were searched. The sample spectra acquired in positive ion mode were processed. Seven out of 12 challenges did not produce putative positive matches, simply because reference spectra were not available for the compounds searched. This suggests that to some extent the limited coverage of chemical space with high-quality reference spectra is still a problem encountered in tandem mass spectral library search. Solutions were submitted for five challenges. Three compounds were correctly identified (kanamycin A, benzyldiphenylphosphine oxide, and 1-isopropyl-5-methyl-1H-indole-2,3-dione). In the absence of any reference spectrum, a false positive identification was obtained for 1-aminoanthraquinone by matching the corresponding sample spectrum to the structurally related compounds N-phenylphthalimide and 2-aminoanthraquinone. Another false positive result was submitted for 1H-benz[g]indole; for the 1H-benz[g]indole-specific sample spectra provided, carbazole was listed as the best matching compound. In this case, the quality of the available 1H-benz[g]indole-specific reference spectra was found to hamper unequivocal identification. PMID:24957994
Properties of solutions of the Kadomtsev-Petviashvili I equation
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A.
1994-09-01
The Kadomtsev-Petviashvili I (KPI) equation is considered as a useful laboratory for experimenting with new theoretical tools able to handle the specific features of integrable models in 2+1 dimensions. The linearized version of the KPI equation is first considered by solving the initial value problem for different classes of initial data. Properties of the solutions in different cases are analyzed in details. The obtained results are used as a guideline for studying the properties of the solution u(t,x,y) of the Kadomtsev-Petviashvili I (KPI) equation with given initial data u(0,x,y) belonging to the Schwartz space. The spectral theory associated to KPI is studied in the space of the Fourier transform of the solutions. The variables p={p1,p2} of the Fourier space are shown to be the most convenient spectral variables to use for spectral data. Spectral data are shown to decay rapidly at large p but to be discontinuous at p=0. Direct and inverse problems are solved with special attention to the behavior of all the quantities involved in the neighborhood of t=0 and p=0. It is shown in particular that the solution u(t,x,y) has a time derivative discontinuous at t=0 and that at any t≠0 it does not belong to the Schwartz space no matter how small in norm and rapidly decaying at large distances the initial data are chosen.
An HF and lower VHF spectrum assessment system exploiting instantaneously wideband capture
NASA Astrophysics Data System (ADS)
Barnes, Rod I.; Singh, Malkiat; Earl, Fred
2017-09-01
We report on a spectral environment evaluation and recording (SEER) system, for instantaneously wideband spectral capture and characterization in the HF and lower VHF band, utilizing a direct digital receiver coupled to a data recorder. The system is designed to contend with a wide variety of electromagnetic environments and to provide accurately calibrated spectral characterization and display from very short (ms) to synoptic scales. The system incorporates a novel RF front end involving automated gain and equalization filter selection which provides an analogue frequency-dependent gain characteristic that mitigates the high dynamic range found across the HF and lower VHF spectrum. The system accurately calibrates its own internal noise and automatically subtracts this from low variance, external spectral estimates, further extending the dynamic range over which robust characterization is possible. Laboratory and field experiments demonstrate that the implementation of these concepts has been effective. Sensitivity to varying antenna load impedance of the internal noise reduction process has been examined. Examples of software algorithms to provide extraction and visualization of spectral behavior over narrowband, wideband, short, and synoptic scales are provided. Application in HF noise spectral density monitoring, spectral signal strength assessment, and electromagnetic interference detection is possible with examples provided. The instantaneously full bandwidth collection provides some innovative applications, and this is demonstrated by the collection of discrete lightning emissions, which form fast ionograms called "flashagrams" in power-delay-frequency plots.
Frey, Laurent; Masarotto, Lilian; Armand, Marilyn; Charles, Marie-Lyne; Lartigue, Olivier
2015-05-04
Thin film Fabry-Perot filter arrays with high selectivity can be realized with a single patterning step, generating a spatial modulation of the effective refractive index in the optical cavity. In this paper, we investigate the ability of this technology to address two applications in the field of image sensors. First, the spectral tuning may be used to compensate the blue-shift of the filters in oblique incidence, provided the filter array is located in an image plane of an optical system with higher field of view than aperture angle. The technique is analyzed for various types of filters and experimental evidence is shown with copper-dielectric infrared filters. Then, we propose a design of a multispectral filter array with an extended spectral range spanning the visible and near-infrared range, using a single set of materials and realizable on a single substrate.
Cooled optical filters for Q-band infrared astronomy (15-40 μm)
NASA Astrophysics Data System (ADS)
Hawkins, Gary J.; Sherwood, Richard E.; Djotni, Karim; Threadgold, Timothy M.
2016-07-01
With a growing interest in mid- and far-infrared astronomy using cooled imaging and spectrometer instruments in highaltitude observatories and spaceflight telescopes, it is becoming increasingly important to characterise and assess the spectral performance of cooled multilayer filters across the Q-band atmospheric window. This region contains spectral features emitted by many astrophysical phenomena and objects fundamental to circumstellar and planetary formation theories. However extending interference filtering to isolate radiation at progressively longer wavelengths and improve photometric accuracy is an area of ongoing and challenging thin-film research. We have successfully fabricated cooled bandpass and edge filters with high durability for operation across the 15-30 μm Q-band region. In this paper we describe the rationale for selection of optical materials and properties of fabricated thin-film coatings for this region, together with FTIR spectral measurements and assessment of environmental durability.
NASA Astrophysics Data System (ADS)
Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa
2018-05-01
In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.
Processing Raman Spectra of High-Pressure Hydrogen Flames
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Kojima, Jun
2006-01-01
The Raman Code automates the analysis of laser-Raman-spectroscopy data for diagnosis of combustion at high pressure. On the basis of the theory of molecular spectroscopy, the software calculates the rovibrational and pure rotational Raman spectra of H2, O2, N2, and H2O in hydrogen/air flames at given temperatures and pressures. Given a set of Raman spectral data from measurements on a given flame and results from the aforementioned calculations, the software calculates the thermodynamic temperature and number densities of the aforementioned species. The software accounts for collisional spectral-line-broadening effects at pressures up to 60 bar (6 MPa). The line-broadening effects increase with pressure and thereby complicate the analysis. The software also corrects for spectral interference ("cross-talk") among the various chemical species. In the absence of such correction, the cross-talk is a significant source of error in temperatures and number densities. This is the first known comprehensive computer code that, when used in conjunction with a spectral calibration database, can process Raman-scattering spectral data from high-pressure hydrogen/air flames to obtain temperatures accurate to within 10 K and chemical-species number densities accurate to within 2 percent.
Rayleigh Scattering in Spectral Series with L-term Interference
NASA Astrophysics Data System (ADS)
Casini, R.; Manso Sainz, R.; del Pino Alemán, T.
2017-12-01
We derive a formalism to describe the scattering of polarized radiation over the full spectral range encompassed by atomic transitions belonging to the same spectral series (e.g., the H I Lyman and Balmer series, the UV multiplets of Fe I and Fe II). This allows us to study the role of radiation-induced coherence among the upper terms of the spectral series, and its contribution to Rayleigh scattering and the polarization of the solar continuum. We rely on previous theoretical results for the emissivity of a three-term atom of the Λ-type, taking into account partially coherent scattering, and generalize its expression in order to describe a “multiple Λ” atomic system underlying the formation of a spectral series. Our study shows that important polarization effects must be expected because of the combined action of partial frequency redistribution and radiation-induced coherence among the terms of the series. In particular, our model predicts the correct asymptotic limit of 100% polarization in the far wings of a complete (i.e., {{Δ }}L=0,+/- 1) group of transitions, which must be expected on the basis of the principle of spectroscopic stability.
New Galerkin operational matrices for solving Lane-Emden type equations
NASA Astrophysics Data System (ADS)
Abd-Elhameed, W. M.; Doha, E. H.; Saad, A. S.; Bassuony, M. A.
2016-04-01
Lane-Emden type equations model many phenomena in mathematical physics and astrophysics, such as thermal explosions. This paper is concerned with introducing third and fourth kind Chebyshev-Galerkin operational matrices in order to solve such problems. The principal idea behind the suggested algorithms is based on converting the linear or nonlinear Lane-Emden problem, through the application of suitable spectral methods, into a system of linear or nonlinear equations in the expansion coefficients, which can be efficiently solved. The main advantage of the proposed algorithm in the linear case is that the resulting linear systems are specially structured, and this of course reduces the computational effort required to solve such systems. As an application, we consider the solar model polytrope with n=3 to show that the suggested solutions in this paper are in good agreement with the numerical results.
NASA Technical Reports Server (NTRS)
Li, Can; Krotkov, Nickolay A.; Carn, Simon; Zhang, Yan; Spurr, Robert J. D.; Joiner, Joanna
2017-01-01
Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO2 emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new-generation OMI volcanic SO2 dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O3 absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO2 total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO2 Jacobians (i.e., the instrument sensitivity to a perturbation in the SO2 column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO2 absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of predefined SO2 profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50% reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (approximately 1700 kt total SO2/ and Sierra Negra in 2005 (greater than 1100DU maximum SO2), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO2. We also demonstrate that, despite the coarser spatial and spectral resolution of the Suomi National Polar-orbiting Partnership (Suomi-NPP) Ozone Mapping and Profiler Suite (OMPS) instrument, application of the new PCA algorithm to OMPS data produces highly consistent retrievals between OMI and OMPS. The new PCA algorithm is therefore capable of continuing the volcanic SO2 data record well into the future using current and future hyperspectral UV satellite instruments.
Broadband interferometric characterization of divergence and spatial chirp.
Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G
2015-09-01
We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).
Single-shot detection and direct control of carrier phase drift of midinfrared pulses.
Manzoni, Cristian; Först, Michael; Ehrke, Henri; Cavalleri, Andrea
2010-03-01
We introduce a scheme for single-shot detection and correction of the carrier-envelope phase (CEP) drift of femtosecond pulses at mid-IR wavelengths. Difference frequency mixing between the mid-IR field and a near-IR gate pulse generates a near-IR frequency-shifted pulse, which is then spectrally interfered with a replica of the gate pulse. The spectral interference pattern contains shot-to-shot information of the CEP of the mid-IR field, and it can be used for simultaneous correction of its slow drifts. We apply this technique to detect and compensate long-term phase drifts at 17 microm wavelength, reducing fluctuations to only 110 mrad over hours of operation.
NASA Astrophysics Data System (ADS)
Usanov, D. A.; Skripal, A. V.; Astakhov, E. I.; Dobdin, S. Y.
2018-04-01
The possibilities of self-mixing interferometry for measuring nanodisplacement of a probe included in a near-field scanning microwave microscope have been considered. The features of the formation of a laser interference signal at current modulation of the wavelength of laser radiation have been investigated. Experimental responses of a semiconductor laser system included in scanning microwave microscope to control nanodisplacement of the probe have been demonstrated.To register the nanodisplacement of the probe, it is proposed to use the method of determining the stationary phase of a laser interference signal by low-frequency spectrum of a semiconductor laser. The change of the amplitudes of the spectral components in the spectrum of the interference signal due to creation of the standing wave in the external resonator of the laser self-mixing system has been shown. The form of the interference signal at current modulation of the radiation wavelength was experimentally obtained when the probe moves with a step of 80 nm. The results of measuring nanodisplacements of an electromagnetic translator STANDA 8MVT40-13 have been demonstrated. Deviation of the nanodisplacement of the proposed method does not exceed 15%.
Nie, Xi-du; Fu, Liang
2015-11-01
This study established a method for determining Be, Cr, Ni, As, Cd, Sb, Sn, Tl, Hg and Pb, total 10 heavy metals in diatomite filter aid. The diatomite filter aid was digested by using the mixture acid of HNO₃ + HF+ H₃PO₄ in microwave system, 10 heavy metals elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). The interferences of mass spectrometry caused by the high silicon substrate were optimized, first the equipment parameters and isotopes of test metals were selected to eliminate these interferences, the methane was selected as reactant gas, and the mass spectral interferences were eliminated by dynamic reaction cell (DRC). Li, Sc, Y, In and Bi were selected as the internal standard elements to correct the interferences caused by matrix and the drift of sensitivity. The results show that the detection limits for analyte is in the range of 3.29-15.68 ng · L⁻¹, relative standard deviations (RSD) is less than 4.62%, and the recovery is in the range of 90.71%-107.22%. The current method has some advantages such as, high sensitivity, accurate, and precision, which can be used in diatomite filter aid quality control and safety estimations.
NASA Astrophysics Data System (ADS)
Kang, Shouxin; Zhang, Hao; Liu, Bo; Lin, Wei; Zhang, Ning; Miao, Yinping
2016-01-01
A dual-parameter sensor based on a fiber-optic interferometer consisting of a non-adiabatic fiber taper and a long-period fiber grating (LPFG) integrated with magnetic nanoparticle fluids has been proposed and experimentally demonstrated. Due to the Mach-Zehnder interference induced by the concatenation of the fiber taper and long-period grating, an interferometric spectrum could be acquired within the transmission resonance spectral envelope of the LPFG. Thanks to different magnetic field and temperature sensitivities of difference interference dips, simultaneous measurement of the magnetic field intensity and environmental temperature could be achieved. Moreover, due to the variation in coupling coefficients of the fiber taper and the LPFG in response to the change of the applied magnetic field intensity, some of the interference dips would exhibit opposite magnetic-field-intensity-dependent transmission loss variation behavior. Magnetic field intensity and temperature sensitivities of 0.017 31 dB Oe-1 and 0.0315 dB K-1, and -0.024 55 dB Oe-1 and -0.056 28 dB K-1 were experimentally acquired for the experimentally monitored interference dips.
Interference removals on Pd, Ru and Au with ICP-QQQ-MS in PGE RM
NASA Astrophysics Data System (ADS)
Nadeem Hussain Bokhari, Syed; Meisel, Thomas; Walkner, Christoph
2015-04-01
Gold and platinum group elements (PGE) are essential industrial precious metals with high world demand due to their unique properties. Struggle for natural exploration of PGE is on great pace and recycling from industrial wastes, electronics and catalytic convertor is on the rise for PGE supply chain. Along with these developments it is becoming more challenging for analytical chemists to determine gold and PGE out of complex matrix which causes severe interferences. The current state of art is online analysis coupled with chromatographic separation of interferences. The ICP-QQQ-MS Agilent 8800 has the capability of using multi tunes and mass shifts. We aim to remove interferences on Pd+ (for direct and isotope dilution analysis) Au+ and Ru+ in lieu of chemical separations. YO+, SrOH+, ZnAr+, NiAr+, ZrO+, CuAr+, MoO+ , Ru+and Cd+ are expected interferences on Pd+ while Au+ is interfered by TaO+, HfOH+, GdAr+ and 102Ru+ ,104Ru+ by 102Pd+ ,104Pd+ etc. Initial test were performed on pure solutions of 1mg/l (interfering elements): 1 ng/l (Pd, Ru & Au) respectively. The outcomes of initial tests were applied on PGE reference material (RM) WMG-1 and SARM-7 (digested with Na2O2 sintering). The results obtained show that YO+, SrOH+ interfere (104Pd,105Pd), 104 Ru+ on (104Pd), ZnAr+ has slight interference on (104Pd and106Pd), ZrO+, NiAr+, CuAr+ interferences are negligible, MoO+ has severe interference on (108Pd, 110Pd) and that Cd+ has severe isobaric interference on (106Pd,108Pd, 110Pd). These interference have been removed by formation of Pd(NH3)3+complex. The TaO+, HfOH+ and GdAr+ interferences on Au+ are best removed by formation of Au(NH3)+ and Au(NH3)2+ complexes. 102Pd+,104Pd+interference on 102Ru+ ,104Ru+ can be removed by formation of Ru(NH3)4+ and RuO+ compounds. The results obtained comply with certified values of RM. The developed method is being tested on low concentration PGE reference materials. References: Sugiyama, N. " Removal of complex spectral interferences on noble metal isotopes." Agilent 8800 ICP-QQQ Application Handbook, 2014, 42-46.
Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary Ann
2014-01-01
We introduce the Spectrum-averaged Harmonic Path (SHAPA) algorithm for estimation of heart rate (HR) and respiration rate (RR) with Impulse Radio Ultrawideband (IR-UWB) radar. Periodic movement of human torso caused by respiration and heart beat induces fundamental frequencies and their harmonics at the respiration and heart rates. IR-UWB enables capture of these spectral components and frequency domain processing enables a low cost implementation. Most existing methods of identifying the fundamental component either in frequency or time domain to estimate the HR and/or RR lead to significant error if the fundamental is distorted or cancelled by interference. The SHAPA algorithm (1) takes advantage of the HR harmonics, where there is less interference, and (2) exploits the information in previous spectra to achieve more reliable and robust estimation of the fundamental frequency in the spectrum under consideration. Example experimental results for HR estimation demonstrate how our algorithm eliminates errors caused by interference and produces 16% to 60% more valid estimates.
Butler, Christopher John; Yang, Po-Ya; Sankar, Raman; Lien, Yen-Neng; Lu, Chun-I; Chang, Luo-Yueh; Chen, Chia-Hao; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong
2016-09-28
Observations of quasiparticle interference have been used in recent years to examine exotic carrier behavior at the surfaces of emergent materials, connecting carrier dispersion and scattering dynamics to real-space features with atomic resolution. We observe quasiparticle interference in the strongly Rashba split 2DEG-like surface band found at the tellurium termination of BiTeBr and examine two mechanisms governing quasiparticle scattering: We confirm the suppression of spin-flip scattering by comparing measured quasiparticle interference with a spin-dependent elastic scattering model applied to the calculated spectral function. We also use atomically resolved STM maps to identify point defect lattice sites and spectro-microscopy imaging to discern their varying scattering strengths, which we understand in terms of the calculated orbital characteristics of the surface band. Defects on the Bi sublattice cause the strongest scattering of the predominantly Bi 6p derived surface band, with other defects causing nearly no scattering near the conduction band minimum.
Polarized Redundant-Baseline Calibration for 21 cm Cosmology Without Adding Spectral Structure
NASA Astrophysics Data System (ADS)
Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.
2018-04-01
21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly-constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally-smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.
Polarized redundant-baseline calibration for 21 cm cosmology without adding spectral structure
NASA Astrophysics Data System (ADS)
Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.
2018-07-01
21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.
NASA Astrophysics Data System (ADS)
Kiyashko, B. V.
1995-10-01
Partially coherent optical systems for signal processing are considered. The transfer functions are formed in these systems by interference of polarised light transmitted by an anisotropic medium. It is shown that such systems can perform various integral transformations of both optical and electric signals, in particular, two-dimensional Fourier and Fresnel transformations, as well as spectral analysis of weak light sources. It is demonstrated that such systems have the highest luminosity and vibration immunity among the systems with interference formation of transfer functions. An experimental investigation is reported of the application of these systems in the processing of signals from a linear hydroacoustic antenna array, and in measurements of the optical spectrum and of the intrinsic noise.
Alignment-stabilized interference filter-tuned external-cavity quantum cascade laser.
Kischkat, Jan; Semtsiv, Mykhaylo P; Elagin, Mikaela; Monastyrskyi, Grygorii; Flores, Yuri; Kurlov, Sergii; Peters, Sven; Masselink, W Ted
2014-12-01
A passively alignment-stabilized external cavity quantum cascade laser (EC-QCL) employing a "cat's eye"-type retroreflector and an ultra-narrowband transmissive interference filter for wavelength selection is demonstrated and experimentally investigated. Compared with conventional grating-tuned ECQCLs, the setup is nearly two orders of magnitude more stable against misalignment of the components, and spectral fluctuation is reduced by one order of magnitude, allowing for a simultaneously lightweight and fail-safe construction, suitable for applications outdoors and in space. It also allows for a substantially greater level of miniaturization and cost reduction. These advantages fit in well with the general properties of modern QCLs in the promise to deliver useful and affordable mid-infrared-light sources for a variety of spectroscopic and imaging applications.
Alonso-González, Pablo; Albella, Pablo; Golmar, Federico; Arzubiaga, Libe; Casanova, Félix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer
2013-01-14
We directly visualize and identify the capacitive coupling of infrared dimer antennas in the near field by employing scattering-type scanning near-field optical microscopy (s-SNOM). The coupling is identified by (i) resolving the strongly enhanced nano-localized near fields in the antenna gap and by (ii) tracing the red shift of the dimer resonance when compared to the resonance of the single antenna constituents. Furthermore, by modifying the illumination geometry we break the symmetry, providing a means to excite both the bonding and the "dark" anti-bonding modes. By spectrally matching both modes, their interference yields an enhancement or suppression of the near fields at specific locations, which could be useful in nanoscale coherent control applications.
Laser interference fringe tomography: a novel 3D imaging technique for pathology
NASA Astrophysics Data System (ADS)
Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan
2011-03-01
Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.
Dissipation-preserving spectral element method for damped seismic wave equations
NASA Astrophysics Data System (ADS)
Cai, Wenjun; Zhang, Huai; Wang, Yushun
2017-12-01
This article describes the extension of the conformal symplectic method to solve the damped acoustic wave equation and the elastic wave equations in the framework of the spectral element method. The conformal symplectic method is a variation of conventional symplectic methods to treat non-conservative time evolution problems, which has superior behaviors in long-time stability and dissipation preservation. To reveal the intrinsic dissipative properties of the model equations, we first reformulate the original systems in their equivalent conformal multi-symplectic structures and derive the corresponding conformal symplectic conservation laws. We thereafter separate each system into a conservative Hamiltonian system and a purely dissipative ordinary differential equation system. Based on the splitting methodology, we solve the two subsystems respectively. The dissipative one is cheaply solved by its analytic solution. While for the conservative system, we combine a fourth-order symplectic Nyström method in time and the spectral element method in space to cover the circumstances in realistic geological structures involving complex free-surface topography. The Strang composition method is adopted thereby to concatenate the corresponding two parts of solutions and generate the completed conformal symplectic method. A relative larger Courant number than that of the traditional Newmark scheme is found in the numerical experiments in conjunction with a spatial sampling of approximately 5 points per wavelength. A benchmark test for the damped acoustic wave equation validates the effectiveness of our proposed method in precisely capturing dissipation rate. The classical Lamb problem is used to demonstrate the ability of modeling Rayleigh wave in elastic wave propagation. More comprehensive numerical experiments are presented to investigate the long-time simulation, low dispersion and energy conservation properties of the conformal symplectic methods in both the attenuating homogeneous and heterogeneous media.
NASA Astrophysics Data System (ADS)
Ivanov, Victor; Osetrov, Evgenii
2018-02-01
In this paper, we investigate the possibility of applying various approaches to solving the problem of medium-term forecasting of daily passenger traffic volumes in the Moscow metro (MM): 1) on the basis of artificial neural networks (ANN); 2) using the singular-spectral analysis implemented in the package "Caterpillar"-SSA; 3) sharing the ANN and the "Caterpillar"-SSA approach. We demonstrate that the developed methods and algorithms allow us to conduct medium-term forecasting of passenger traffic in the MM with reasonable accuracy.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics.
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-10-07
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.
The enigmatic star EZ Pegasi - A mystery solved?
NASA Technical Reports Server (NTRS)
Howell, S. B.; Bopp, B. W.
1985-01-01
EZ Peg, a ninth-magnitude G star that has been classified by various authors as an irregular variable, a U Gem system, and a contact binary, is shown to have all the spectroscopic and photometric characteristics of an active-chromosphere RS CVn binary. It is suggested that the reported outburst of 1943, when the spectrum appeared to be that of a B star, never occurred. The strong Ca II H and K reversals, viewed with low spectral resolution, caused the photospheric Ca II absorption to appear abnormally weak, mimicking a much earlier spectral type.
White-Light, Dispersed-Fringe Interferometric Keratometer
NASA Technical Reports Server (NTRS)
Hochberg, Eric B.; Baroth, Edmund C.
1992-01-01
Proposed keratometer based on scheme involving spectral dispersal of white-light interference fringes. Instrument operates in "snapshot" mode: no scanning necessary, not necessary to immobilize patient's eye. Insensitive to vibration, involves no phase shifting, and has variable sensitivity. Intended primarily for use in medical assessments of human corneas, also used to measure shapes of animal corneas, lenses, and other aspherical or spherical reflective or partly reflective surfaces.
ERIC Educational Resources Information Center
Lowenstein, Joanna H.; Nittrouer, Susan
2015-01-01
Purpose: One task of childhood involves learning to optimally weight acoustic cues in the speech signal in order to recover phonemic categories. This study examined the extent to which spectral degradation, as associated with cochlear implants, might interfere. The 3 goals were to measure, for adults and children, (a) cue weighting with spectrally…
ERIC Educational Resources Information Center
Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.
2004-01-01
An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…
Kumar, B Santhosh; Sandhyamani, S; Nazeer, Shaiju S; Jayasree, R S
2015-02-01
Autofluorescence exhibited by tissues often interferes with immunofluorescence. Using imaging and spectral analysis, we observed remarkable reduction of autofluorescence of formalin fixed paraffin embedded tissues irradiated with light prior to incubation with immunofluorescent dyes. The technique of photobleaching offers significant improvement in the quality and specificity of immunofluorescence. This has the potential for better techniques for disease diagnosis.
Properties of multilayer filters
NASA Technical Reports Server (NTRS)
Baumeister, P. W.
1973-01-01
New methods were investigated of using optical interference coatings to produce bandpass filters for the spectral region 110 nm to 200 nm. The types of filter are: triple cavity metal dielectric filters; all dielectric reflection filters; and all dielectric Fabry Perot type filters. The latter two types use thorium fluoride and either cryolite films or magnesium fluoride films in the stacks. The optical properties of the thorium fluoride were also measured.
Spectral characterization of Dictyostelium autofluorescence.
Engel, Ruchira; Van Haastert, Peter J M; Visser, Antonie J W G
2006-03-01
Dictyostelium discoideum is used extensively as a model organism for the study of chemotaxis. In recent years, an increasing number of studies of Dictyostelium chemotaxis have made use of fluorescence-based techniques. One of the major factors that can interfere with the application of these techniques in cells is the cellular autofluorescence. In this study, the spectral properties of Dictyostelium autofluorescence have been characterized using fluorescence microscopy. Whole cell autofluorescence spectra obtained using spectral imaging microscopy show that Dictyostelium autofluorescence covers a wavelength range from approximately 500 to 650 nm with a maximum at approximately 510 nm, and thus, potentially interferes with measurements of green fluorescent protein (GFP) fusion proteins with fluorescence microscopy techniques. Further characterization of the spatial distribution, intensity, and brightness of the autofluorescence was performed with fluorescence confocal microscopy and fluorescence fluctuation spectroscopy (FFS). The autofluorescence in both chemotaxing and nonchemotaxing cells is localized in discrete areas. The high intensity seen in cells incubated in the growth medium HG5 reduces by around 50% when incubated in buffer, and can be further reduced by around 85% by photobleaching cells for 5-7 s. The average intensity and spatial distribution of the autofluorescence do not change with long incubations in the buffer. The cellular autofluorescence has a seven times lower molecular brightness than eGFP. The influence of autofluorescence in FFS measurements can be minimized by incubating cells in buffer during the measurements, pre-bleaching, and making use of low excitation intensities. The results obtained in this study thus offer guidelines to the design of future fluorescence studies of Dictyostelium. Microsc. Res. Tech. 69:168-174, 2006. (c) 2006 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Hu, Yaogai; Shen, Aiguo; Jiang, Tao; Ai, Yong; Hu, Jiming
2008-02-01
Thirty-two samples from the human gastric mucosa tissue, including 13 normal and 19 malignant tissue samples were measured by confocal Raman microspectroscopy. The low signal-to-background ratio spectra from human gastric mucosa tissues were obtained by this technique without any sample preparation. Raman spectral interferences include a broad featureless sloping background due to fluorescence and noise. They mask most Raman spectral feature and lead to problems with precision and quantitation of the original spectral information. A preprocessed algorithm based on wavelet analysis was used to reduce noise and eliminate background/baseline of Raman spectra. Comparing preprocessed spectra of malignant gastric mucosa tissues with those of counterpart normal ones, there were obvious spectral changes, including intensity increase at ˜1156 cm -1 and intensity decrease at ˜1587 cm -1. The quantitative criterion based upon the intensity ratio of the ˜1156 and ˜1587 cm -1 was extracted for classification of the normal and malignant gastric mucosa tissue samples. This could result in a new diagnostic method, which would assist the early diagnosis of gastric cancer.
Space grating optical structure of the retina and RGB-color vision.
Lauinger, Norbert
2017-02-01
Diffraction of light at the spatial cellular phase grating outer nuclear layer of the retina could produce Fresnel near-field interferences in three RGB diffraction orders accessible to photoreceptors (cones/rods). At perpendicular light incidence the wavelengths of the RGB diffraction orders in photopic vision-a fundamental R-wave with two G+B-harmonics-correspond to the peak wavelengths of the spectral brightness sensitivity curves of the cones at 559 nmR, 537 nmG, and 447 nmB. In scotopic vision the R+G diffraction orders optically fuse at 512 nm, the peak value of the rod's spectral brightness sensitivity curve. The diffractive-optical transmission system with sender (resonator), space waves, and receiver antennae converts the spectral light components involved in imaging into RGB space. The colors seen at objects are diffractive-optical products in the eye, as the German philosopher A. Schopenhauer predicted. They are second related to the overall illumination in object space. The RGB transmission system is the missing link optically managing the spectral tuning of the RGB photopigments.
NASA Astrophysics Data System (ADS)
Diamantopoulos, Theodore; Rowe, Kristopher; Diamessis, Peter
2017-11-01
The Collocation Penalty Method (CPM) solves a PDE on the interior of a domain, while weakly enforcing boundary conditions at domain edges via penalty terms, and naturally lends itself to high-order and multi-domain discretization. Such spectral multi-domain penalty methods (SMPM) have been used to solve the Navier-Stokes equations. Bounds for penalty coefficients are typically derived using the energy method to guarantee stability for time-dependent problems. The choice of collocation points and penalty parameter can greatly affect the conditioning and accuracy of a solution. Effort has been made in recent years to relate various high-order methods on multiple elements or domains under the umbrella of the Correction Procedure via Reconstruction (CPR). Most applications of CPR have focused on solving the compressible Navier-Stokes equations using explicit time-stepping procedures. A particularly important aspect which is still missing in the context of the SMPM is a study of the Helmholtz equation arising in many popular time-splitting schemes for the incompressible Navier-Stokes equations. Stability and convergence results for the SMPM for the Helmholtz equation will be presented. Emphasis will be placed on the efficiency and accuracy of high-order methods.
Color-word matching stroop task: separating interference and response conflict.
Zysset, S; Müller, K; Lohmann, G; von Cramon , D Y
2001-01-01
The Stroop interference task requires a person to respond to a specific dimension of a stimulus while suppressing a competing stimulus dimension. Previous PET and fMRI studies using the Color Stroop paradigm have shown increased activity in the "cognitive division" of the cingulate cortex. In our fMRI study with nine subjects, we used a Color-Word Matching Stroop task. A frontoparietal network, including structures in the lateral prefrontal cortex, the frontopolar region, the intraparietal sulcus, as well as the lateral occipitotemporal gyrus, was activated when contrasting the incongruent vs the neutral condition. However, no substantial activation in either the right or left hemisphere of the anterior cingulate cortex (ACC) was detected. In accordance with a series of recent articles, we argue that the ACC is not specifically involved in interference processes. The ACC seems rather involved in motor preparation processes which were controlled in the present Color-Word Matching Stroop task. We argue that the region around the banks of the inferior frontal sulcus is required to solve interference problems, a concept which can also be seen as a component of task set management. Copyright 2001 Academic Press.
Noise correction on LANDSAT images using a spline-like algorithm
NASA Technical Reports Server (NTRS)
Vijaykumar, N. L. (Principal Investigator); Dias, L. A. V.
1985-01-01
Many applications using LANDSAT images face a dilemma: the user needs a certain scene (for example, a flooded region), but that particular image may present interference or noise in form of horizontal stripes. During automatic analysis, this interference or noise may cause false readings of the region of interest. In order to minimize this interference or noise, many solutions are used, for instane, that of using the average (simple or weighted) values of the neighboring vertical points. In the case of high interference (more than one adjacent line lost) the method of averages may not suit the desired purpose. The solution proposed is to use a spline-like algorithm (weighted splines). This type of interpolation is simple to be computer implemented, fast, uses only four points in each interval, and eliminates the necessity of solving a linear equation system. In the normal mode of operation, the first and second derivatives of the solution function are continuous and determined by data points, as in cubic splines. It is possible, however, to impose the values of the first derivatives, in order to account for shapr boundaries, without increasing the computational effort. Some examples using the proposed method are also shown.
Predicting tidal currents in San Francisco Bay using a spectral model
Burau, Jon R.; Cheng, Ralph T.
1988-01-01
This paper describes the formulation of a spectral (or frequency based) model which solves the linearized shallow water equations. To account for highly variable basin bathymetry, spectral solutions are obtained using the finite element method which allows the strategic placement of the computation points in the specific areas of interest or in areas where the gradients of the dependent variables are expected to be large. Model results are compared with data using simple statistics to judge overall model performance in the San Francisco Bay estuary. Once the model is calibrated and verified, prediction of the tides and tidal currents in San Francisco Bay is accomplished by applying astronomical tides (harmonic constants deduced from field data) at the prediction time along the model boundaries.
Time domain simulation of the response of geometrically nonlinear panels subjected to random loading
NASA Technical Reports Server (NTRS)
Moyer, E. Thomas, Jr.
1988-01-01
The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.
NASA Astrophysics Data System (ADS)
Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.
2018-05-01
We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.
Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin
2018-02-22
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.
Zhang, Shang; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin
2018-01-01
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer. PMID:29470406
The spectral cell method in nonlinear earthquake modeling
NASA Astrophysics Data System (ADS)
Giraldo, Daniel; Restrepo, Doriam
2017-12-01
This study examines the applicability of the spectral cell method (SCM) to compute the nonlinear earthquake response of complex basins. SCM combines fictitious-domain concepts with the spectral-version of the finite element method to solve the wave equations in heterogeneous geophysical domains. Nonlinear behavior is considered by implementing the Mohr-Coulomb and Drucker-Prager yielding criteria. We illustrate the performance of SCM with numerical examples of nonlinear basins exhibiting physically and computationally challenging conditions. The numerical experiments are benchmarked with results from overkill solutions, and using MIDAS GTS NX, a finite element software for geotechnical applications. Our findings show good agreement between the two sets of results. Traditional spectral elements implementations allow points per wavelength as low as PPW = 4.5 for high-order polynomials. Our findings show that in the presence of nonlinearity, high-order polynomials (p ≥ 3) require mesh resolutions above of PPW ≥ 10 to ensure displacement errors below 10%.
Kolesnikova, Jelena; Miezitis, Solveiga; Osis, Guntars
2013-08-01
Drug-addicted patients exhibit various personality disorders that interfere with their adaptation to society, as well as their ability to participate in the rehabilitation process. The Latvian Rehabilitation Programme for drug addicts includes social problem-solving training to help patients reintegrate into society. However, the role of personality disorders has not been investigated in relation to this process. The aim of the study is to assess whether personality disorders predict changes in dimensions of social problem-solving after 6 months of rehabilitation for drug-addicted patients. The sample of this study consists of 31 drug-addicted patients from the Latvian rehabilitation centres aged 21-35 (females 21%, males 79%). Two inventories are used: the Social Problem-Solving Inventory--Revised (SPSI-R) and Millon(TM) Clinical Multiaxial Inventory--III (MCMI-III) adapted into Russian. Results of the study indicated that some MCMI-III personality disorders (Schizoid and Histrionic) negatively predicted SPSI-R Positive problem orientation, and narcissistic disorder positively predicted SPSI-R Avoidance style after 6 months in the Latvian Rehabilitation Programme. The other personality disorders did not predict social problem-solving dimensions. The results of the study suggest that some personality disorders are related to changes in social problem-solving dimensions for drug-addicted patients. Hence, it is important to consider the implications of particular personality disorders to facilitate the implementation of social problem-solving rehabilitation programmes.
Measurement technology of RF interference current in high current system
NASA Astrophysics Data System (ADS)
Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei
2018-06-01
Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.
A power allocation method for 2 × 2 VLC-MIMO indoor communication
NASA Astrophysics Data System (ADS)
Dai, Mingjun; Yuan, Jing; Feng, Renhai; Wang, Hui; Chen, Bin; Lin, Xiaohui
2016-08-01
Visible light communication (VLC) has been a promising field of optical communications which focuses on visible light spectrum that humans can see. Unlike existing studies which mainly discuss point-to-point communication, in this paper, we consider a VLC network, in particular a 2 × 2 system. Our focus is on dealing with interference in this network. The objective is to maximize the signal to interference plus noise ratio (SINR) of one receiver for a given SINR of another receiver. We formulate a power allocation optimization problem to deal with such interference, and introduce dichotomy to solve this optimization problem. Simulation results have twofold meaning: First, SINR_1 increases with the growth of SINR_2, which are the SINR of the two receivers, respectively. Second, our proposed scheme outperforms the classical time-division multiple access technique in terms of transmit powers of both light sources when the data rate for these two schemes are set to be identical for each user, respectively.
Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates
Kreisel, Andreas; Choubey, Peayush; Berlijn, Tom; ...
2015-05-27
We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov–de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi 2Sr 2CaCu 2O 8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude “filter” theories on a microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potentialmore » scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Furthermore, our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.« less
NASA Astrophysics Data System (ADS)
Avrutskiĭ, I. A.; Sychugov, V. A.
1989-02-01
The problem of reflection of light from the surface of an amplifying corrugated waveguide is solved. An increase in the waveguide gain increases considerably the reflection coefficient and reduces the spectral width of the reflection peak.
A spectral domain method for remotely probing stratified media
NASA Technical Reports Server (NTRS)
Schaubert, D. H.; Mittra, R.
1977-01-01
The problem of remotely probing a stratified, lossless, dielectric medium is formulated using the spectral domain method of probing. The response of the medium to a spectrum of plane waves incident at various angles is used to invert the unknown profile. For TE polarization, the electric field satisfies a Helmholtz equation. The inverse problem is solved by means of a new representation for the wave function. The principal step in this inversion is solving a second kind Fredholm equation which is very amenable to numerical computations. Several examples are presented including some which indicate that the method can be used with experimentally obtained data. When the fields exhibit a surface wave behavior, a unique inversion can be obtained only if information about the magnetic field is also available. In this case, the inversion is accomplished by a two-step procedure which employs a formula of Jost and Kohn. Some examples are presented, and an approach which greatly shortens the computations without greatly deteriorating the results is discussed.
Krylov Deferred Correction Accelerated Method of Lines Transpose for Parabolic Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Jun; Jingfang, Huang
2008-01-01
In this paper, a new class of numerical methods for the accurate and efficient solutions of parabolic partial differential equations is presented. Unlike traditional method of lines (MoL), the new {\\bf \\it Krylov deferred correction (KDC) accelerated method of lines transpose (MoL^T)} first discretizes the temporal direction using Gaussian type nodes and spectral integration, and symbolically applies low-order time marching schemes to form a preconditioned elliptic system, which is then solved iteratively using Newton-Krylov techniques such as Newton-GMRES or Newton-BiCGStab method. Each function evaluation in the Newton-Krylov method is simply one low-order time-stepping approximation of the error by solving amore » decoupled system using available fast elliptic equation solvers. Preliminary numerical experiments show that the KDC accelerated MoL^T technique is unconditionally stable, can be spectrally accurate in both temporal and spatial directions, and allows optimal time-step sizes in long-time simulations.« less
NASA Technical Reports Server (NTRS)
Santi, L. Michael
1986-01-01
Computational predictions of turbulent flow in sharply curved 180 degree turn around ducts are presented. The CNS2D computer code is used to solve the equations of motion for two-dimensional incompressible flows transformed to a nonorthogonal body-fitted coordinate system. This procedure incorporates the pressure velocity correction algorithm SIMPLE-C to iteratively solve a discretized form of the transformed equations. A multiple scale turbulence model based on simplified spectral partitioning is employed to obtain closure. Flow field predictions utilizing the multiple scale model are compared to features predicted by the traditional single scale k-epsilon model. Tuning parameter sensitivities of the multiple scale model applied to turn around duct flows are also determined. In addition, a wall function approach based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients is tested. Turn around duct flow characteristics utilizing this modified wall law are presented and compared to results based on a standard wall treatment.
Spectral Diffusion: An Algorithm for Robust Material Decomposition of Spectral CT Data
Clark, Darin P.; Badea, Cristian T.
2014-01-01
Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piece-wise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg/mL), gold (0.9 mg/mL), and gadolinium (2.9 mg/mL) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen. PMID:25296173
Spectral diffusion: an algorithm for robust material decomposition of spectral CT data.
Clark, Darin P; Badea, Cristian T
2014-11-07
Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piecewise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg mL(-1)), gold (0.9 mg mL(-1)), and gadolinium (2.9 mg mL(-1)) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen.
Tong, Yujin; Zhao, Yanbao; Li, Na; Ma, Yunsheng; Osawa, Masatoshi; Davies, Paul B; Ye, Shen
2010-07-21
In this paper, the results of the modeling calculations carried out for predicting the interference effects expected in the sum frequency generation (SFG) spectra of a specific thin-layer system, described in the accompanying paper, are tested by comparing them with the experimental spectra obtained for a real thin-layer film comprising an organic monolayer/variable thickness dielectric layer/gold substrate. In this system, two contributions to the SFG spectra arise, a resonant contribution from the organic film and a nonresonant contribution from the gold substrate. The modeling calculations are in excellent agreement with the experimental spectra over a wide range of thicknesses and for different polarization combinations. The introduction of another resonant monolayer adjacent to the gold substrate and with the molecules having a reverse orientation has a significant affect on the spectral shapes which is predicted. If a dielectric substrate such as CaF(2) is used instead of a gold substrate, only the spectral intensities vary with the film thickness but not the spectral shapes. The counterpropagating beam geometry will change both the thickness dependent spectral shapes and the intensity of different vibrational modes in comparison with a copropagating geometry. The influences of these experimental factors, i.e., the molecular orientational structure in the thin film, the nature of the substrate, and the selected incident beam geometry, on the experimental SFG spectra are quantitatively predicted by the calculations. The thickness effects on the signals from a SFG active monolayer contained in a thin liquid-layer cell of the type frequently used for in situ electrochemical measurements is also discussed. The modeling calculation is also valid for application to other thin-film systems comprising more than two resonant SFG active interfaces by appropriate choice of optical geometries and relevant optical properties.
Test of multi-object exoplanet search spectral interferometer
NASA Astrophysics Data System (ADS)
Zhang, Kai; Wang, Liang; Jiang, Haijiao; Zhu, Yongtian; Hou, Yonghui; Dai, Songxin; Tang, Jin; Tang, Zhen; Zeng, Yizhong; Chen, Yi; Wang, Lei; Hu, Zhongwen
2014-07-01
Exoplanet detection, a highlight in the current astronomy, will be part of puzzle in astronomical and astrophysical future, which contains dark energy, dark matter, early universe, black hole, galactic evolution and so on. At present, most of the detected Exoplanets are confirmed through methods of radial velocity and transit. Guo shoujing Telescope well known as LAMOST is an advanced multi-object spectral survey telescope equipped with 4000 fibers and 16 low resolution fiber spectrographs. To explore its potential in different astronomical activities, a new radial velocity method named Externally Dispersed Interferometry (EDI) is applied to serve Exoplanet detection through combining a fixed-delay interferometer with the existing spectrograph in medium spectral resolution mode (R=5,000-10,000). This new technology has an impressive feature to enhance radial velocity measuring accuracy of the existing spectrograph through installing a fixed-delay interferometer in front of spectrograph. This way produces an interference spectrum with higher sensitivity to Doppler Effect by interference phase and fixed delay. This relative system named Multi-object Exoplanet Search Spectral Interferometer (MESSI) is composed of a few parts, including a pair of multi-fiber coupling sockets, a remote control iodine subsystem, a multi-object fixed delay interferometer and the existing spectrograph. It covers from 500 to 550 nm and simultaneously observes up to 21 stars. Even if it's an experimental instrument at present, it's still well demonstrated in paper that how MESSI does explore an effective way to build its own system under the existing condition of LAMOST and get its expected performance for multi-object Exoplanet detection, especially instrument stability and its special data reduction. As a result of test at lab, inside temperature of its instrumental chamber is stable in a range of +/-0.5degree Celsius within 12 hours, and the direct instrumental stability without further observation correction is equivalent to be +/-50m/s every 20mins.
Laser- and Multi-Spectral Monitoring of Natural Objects from UAVs
NASA Astrophysics Data System (ADS)
Reiterer, Alexander; Frey, Simon; Koch, Barbara; Stemmler, Simon; Weinacker, Holger; Hoffmann, Annemarie; Weiler, Markus; Hergarten, Stefan
2016-04-01
The paper describes the research, development and evaluation of a lightweight sensor system for UAVs. The system is composed of three main components: (1) a laser scanning module, (2) a multi-spectral camera system, and (3) a processing/storage unit. All three components are newly developed. Beside measurement precision and frequency, the low weight has been one of the challenging tasks. The current system has a total weight of about 2.5 kg and is designed as a self-contained unit (incl. storage and battery units). The main features of the system are: laser-based multi-echo 3D measurement by a wavelength of 905 nm (totally eye save), measurement range up to 200 m, measurement frequency of 40 kHz, scanning frequency of 16 Hz, relative distance accuracy of 10 mm. The system is equipped with both GNSS and IMU. Alternatively, a multi-visual-odometry system has been integrated to estimate the trajectory of the UAV by image features (based on this system a calculation of 3D-coordinates without GNSS is possible). The integrated multi-spectral camera system is based on conventional CMOS-image-chips equipped with a special sets of band-pass interference filters with a full width half maximum (FWHM) of 50 nm. Good results for calculating the normalized difference vegetation index (NDVI) and the wide dynamic range vegetation index (WDRVI) have been achieved using the band-pass interference filter-set with a FWHM of 50 nm and an exposure times between 5.000 μs and 7.000 μs. The system is currently used for monitoring of natural objects and surfaces, like forest, as well as for geo-risk analysis (landslides). By measuring 3D-geometric and multi-spectral information a reliable monitoring and interpretation of the data-set is possible. The paper gives an overview about the development steps, the system, the evaluation and first results.
NASA Technical Reports Server (NTRS)
Batina, J. T.
1985-01-01
Unsteady transonic flow calculations for aerodynamically interfering airfoil configurations are performed as a first step toward solving the three dimensional canard wing interaction problem. These calculations are performed by extending the XTRAN2L two dimensional unsteady transonic small disturbance code to include an additional airfoil. Unsteady transonic forces due to plunge and pitch motions of a two dimensional canard and wing are presented. Results for a variety of canard wing separation distances reveal the effects of aerodynamic interference on unsteady transonic airloads. Aeroelastic analyses employing these unsteady airloads demonstrate the effects of aerodynamic interference on aeroelastic stability and flutter. For the configurations studied, increases in wing flutter speed result with the inclusion of the aerodynamically interfering canard.
NASA Technical Reports Server (NTRS)
Vemaganti, Gururaja R.
1994-01-01
This report presents computations for the Type 4 shock-shock interference flow under laminar and turbulent conditions using unstructured grids. Mesh adaptation was accomplished by remeshing, refinement, and mesh movement. Two two-equation turbulence models were used to analyze turbulent flows. The mean flow governing equations and the turbulence governing equations are solved in a coupled manner. The solution algorithm and the details pertaining to its implementation on unstructured grids are described. Computations were performed at two different freestream Reynolds numbers at a freestream Mach number of 11. Effects of the variation in the impinging shock location are studied. The comparison of the results in terms of wall heat flux and wall pressure distributions is presented.
Strong RFI observed in protected 21 cm band at Zurich observatory, Switzerland
NASA Astrophysics Data System (ADS)
Monstein, C.
2014-03-01
While testing a new antenna control software tool, the telescope was moved to the most western azimuth position pointing to our own building. While de-accelerating the telescope, the spectrometer showed strong broadband radio frequency interference (RFI) and two single-frequency carriers around 1412 and 1425 MHz, both of which are in the internationally protected band. After lengthy analysis it was found out, that the Webcam AXIS2000 was the source for both the broadband and single-frequency interference. Switching off the Webcam solved the problem immediately. So, for future observations of 21 cm radiation, all nearby electronics has to be switched off. Not only the Webcam but also all unused PCs, printers, networks, monitors etc.
NASA Astrophysics Data System (ADS)
Pavlov, Al. A.; Shevchenko, A. M.; Khotyanovsky, D. V.; Pavlov, A. A.; Shmakov, A. S.; Golubev, M. P.
2017-10-01
We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.
Active acoustic interference elicits echolocation changes in heterospecific bats.
Jones, Te K; Wohlgemuth, Melville J; Conner, William E
2018-06-27
Echolocating bats often forage in the presence of both conspecific and heterospecific individuals who have the potential to produce acoustic interference. Recent studies have shown that at least one bat species, the Brazilian free-tailed bat ( Tadarida brasiliensis ), produces specialized social signals that disrupt the sonar of conspecific competitors. We herein discuss the differences between passive and active jamming signals and test whether heterospecific jamming occurs in species overlapping spatiotemporally as well as whether such interference elicits a jamming avoidance response (JAR). We compare the capture rates of tethered moths and the echolocation parameters of big brown bats ( Eptesicus fuscus ) challenged with the playback of the jamming signal normally produced by Brazilian free-tailed bats and playback of deconstructed versions of this signal. There were no differences in the capture rates of targets with and without the jamming signal although significant changes in both spectral and temporal features of the bats' echolocation were observed. These changes are consistent with improvements of the signal-to-noise ratio in the presence of acoustic interference. Accordingly, we propose to expand the traditional definition of the JAR, stating that echolocation changes in response to interference should decrease similarity between the two signals, to include any change that increases the ability to separate returning echoes from active jamming stimuli originating from conspecific and heterospecific organisms. Flexibility in echolocation is an important characteristic for overcoming various forms of acoustic interference and may serve a purpose in interspecific interactions as well as intraspecific ones. © 2018. Published by The Company of Biologists Ltd.
Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation.
Pang, Zhaoguang; Zhang, Xinping
2011-04-08
We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.
Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation
NASA Astrophysics Data System (ADS)
Pang, Zhaoguang; Zhang, Xinping
2011-04-01
We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.
Solution of the two-dimensional spectral factorization problem
NASA Technical Reports Server (NTRS)
Lawton, W. M.
1985-01-01
An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.
Optimised Spectral Kurtosis for bearing diagnostics under electromagnetic interference
NASA Astrophysics Data System (ADS)
Smith, Wade A.; Fan, Zhiqi; Peng, Zhongxiao; Li, Huaizhong; Randall, Robert B.
2016-06-01
The selection of the optimal demodulation frequency band is a significant step in bearing fault diagnosis because it determines whether the fault information can be extracted from the demodulated signal via envelope analysis. Two well-known methods for selecting the demodulation band are the Fast Kurtogram, based on the kurtosis of the filtered time signal, and the Protrugram, which uses the kurtosis of the envelope (amplitude) spectrum. Although these two methods have been successfully applied in many cases, the authors have observed that they may fail in specific environments, such as in the presence of electromagnetic interference (EMI) or other impulsive masking signals. In this paper, a simple spectral kurtosis-based approach is proposed for selecting the best demodulation band to extract bearing fault-related impulsive content from vibration signals contaminated with strong EMI. The method is applied to vibration signals obtained from a planetary gearbox test rig with planet bearings seeded with inner and outer race faults. Results from the Fast Kurtogram and Protrugram methods are also included for comparison. The proposed approach is found to exhibit superior diagnostic performance in the presence of intense EMI. Another contribution of the paper is to introduce and explain the issue of EMI to the condition monitoring community. The paper outlines the characteristics of EMI arising from widely-used variable frequency drives, and these characteristics are used to simulate an EMI-contaminated vibration signal to further test the performance of the proposed approach. Although EMI has been acknowledged as a serious problem in many industrial cases, there have been very few studies showing its adverse effects on machine diagnostics. It is important for analysts to be able to identify EMI in measured vibration signals, lest it interfere with the analysis undertaken.
NASA Astrophysics Data System (ADS)
Volkov, L. V.; Larkin, A. I.
1994-04-01
Theoretical and experimental investigations are reported of the potential applications of quasi-cw partially coherent radiation in optical systems based on diffraction—interference principles. It is shown that the spectral characteristics of quasi-cw radiation influence the data-handling capabilities of a holographic correlator and of a partially coherent holographic system for data acquisition. Relevant experimental results are reported.
Discussion of a ``coherent artifact'' in four-wave mixing experiments
NASA Astrophysics Data System (ADS)
Ferwerda, Hedzer A.; Terpstra, Jacob; Wiersma, Douwe A.
1989-09-01
In this paper, we discuss the nonlinear optical effects that arise when stochastic light waves, with different correlation times, interfere in an absorbing medium. It is shown that four-wave mixing signals are generated in several directions that spectrally track the incoming light fields. This effect is particularly relevant to transient hole-burning experiments, where one of these signals could easily be misinterpreted as a genuine hole-burning feature.
Terahertz Characterization of DNA: Enabling a Novel Approach
2015-11-01
DNA in a more reliable and less procedurally complicated manner. The method involves the use of terahertz surface plasmon generated on the surface of...advantages are due to overlapping resonance when the plasmon frequency generated by a foil coincides with that of the biological material. The...interference of the impinging terahertz wave and surface plasmon produces spectral graphs, which can be analyzed to identify and characterize a DNA sample
Dynamics of fractional condensation of a substance on a probe for spectral analysis
NASA Astrophysics Data System (ADS)
Zakharov, Yu. A.; Kokorina, O. B.; Lysogorskiĭ, Yu. V.; Sevastianov, A. A.
2008-11-01
The fractional separation of trace metals on a cold tungsten probe from salt matrix vapor, which interferes with the spectral analysis, is studied. The spatial structure of the vapor flows of sodium chloride, potassium sulfate, and indium atoms is visualized at characteristic wavelengths as they interact with the probe. The vapor flow rate and the probe orientation were varied. It is found that the smoke of the matrix does not prevent the deposition of the metal on the probe because of spatial separation of these fractions and that the detrimental effect of thermal gas expansion and other factors is eliminated. The sensitivity of the atomic absorption analysis of indium impurities in these salts is increased by an order of magnitude.
Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerrits, Thomas; Stevens, Martin; Baek, Burm
We characterize a periodically poled KTP crystal that produces an entangled, two-mode, squeezed state with orthogonal polarizations, nearly identical, factorizable frequency modes, and few photons in unwanted frequency modes. We focus the pump beam to create a nearly circular joint spectral probability distribution between the two modes. After disentangling the two modes, we observe Hong-Ou-Mandel interference with a raw (background corrected) visibility of 86% (95%) when an 8.6 nm bandwidth spectral filter is applied. We measure second order photon correlations of the entangled and disentangled squeezed states with both superconducting nanowire single-photon detectors and photon-number-resolving transition-edge sensors. Both methods agreemore » and verify that the detected modes contain the desired photon number distributions.« less
NASA Astrophysics Data System (ADS)
Fenske, Roger; Näther, Dirk U.; Dennis, Richard B.; Smith, S. Desmond
2010-02-01
Commercial Fluorescence Lifetime Spectrometers have long suffered from the lack of a simple, compact and relatively inexpensive broad spectral band light source that can be flexibly employed for both quasi-steady state and time resolved measurements (using Time Correlated Single Photon Counting [TCSPC]). This paper reports the integration of an optically pumped photonic crystal fibre, supercontinuum source1 (Fianium model SC400PP) as a light source in Fluorescence Lifetime Spectrometers (Edinburgh Instruments FLS920 and Lifespec II), with single photon counting detectors (micro-channel plate photomultiplier and a near-infrared photomultiplier) covering the UV to NIR range. An innovative method of spectral selection of the supercontinuum source involving wedge interference filters is also discussed.
Plasmonic mode interferences and Fano resonances in Metal-Insulator- Metal nanostructured interface
Nicolas, Rana; Lévêque, Gaëtan; Marae-Djouda, Joseph; Montay, Guillame; Madi, Yazid; Plain, Jérôme; Herro, Ziad; Kazan, Michel; Adam, Pierre-Michel; Maurer, Thomas
2015-01-01
Metal-insulator-metal systems exhibit a rich underlying physics leading to a high degree of tunability of their spectral properties. We performed a systematic study on a metal-insulator-nanostructured metal system with a thin 6 nm dielectric spacer and showed how the nanoparticle sizes and excitation conditions lead to the tunability and coupling/decoupling of localized and delocalized plasmonic modes. We also experimentally evidenced a tunable Fano resonance in a broad spectral window 600 to 800 nm resulting from the interference of gap modes with white light broad band transmitted waves at the interface playing the role of the continuum. By varying the incident illumination angle shifts in the resonances give the possibility to couple or decouple the localized and delocalized modes and to induce a strong change of the asymmetric Fano profile. All these results were confirmed with a crossed comparison between experimental and theoretical measurements, confirming the nature of different modes. The high degree of control and tunability of this plasmonically rich system paves the way for designing and engineering of similar systems with numerous applications. In particular, sensing measurements were performed and a figure of merit of 3.8 was recorded ranking this sensor among the highest sensitive in this wavelength range. PMID:26399425
Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.
2016-01-01
We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264