Sample records for solving word problems

  1. Word Problem Solving in Contemporary Math Education: A Plea for Reading Comprehension Skills Training

    PubMed Central

    Boonen, Anton J. H.; de Koning, Björn B.; Jolles, Jelle; van der Schoot, Menno

    2016-01-01

    Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME. PMID:26925012

  2. Word Problem Solving in Contemporary Math Education: A Plea for Reading Comprehension Skills Training.

    PubMed

    Boonen, Anton J H; de Koning, Björn B; Jolles, Jelle; van der Schoot, Menno

    2016-01-01

    Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME.

  3. Using Technology to Meet the Developmental Needs of Deaf Students To Improve Their Mathematical Word Problem Solving Skills.

    ERIC Educational Resources Information Center

    Kelly, Ronald R.

    2003-01-01

    Presents "Project Solve," a web-based problem-solving instruction and guided practice for mathematical word problems. Discusses implications for college students for whom reading and comprehension of mathematical word problem solving are difficult, especially learning disabled students. (Author/KHR)

  4. Solving Word Problems using Schemas: A Review of the Literature

    PubMed Central

    Powell, Sarah R.

    2011-01-01

    Solving word problems is a difficult task for students at-risk for or with learning disabilities (LD). One instructional approach that has emerged as a valid method for helping students at-risk for or with LD to become more proficient at word-problem solving is using schemas. A schema is a framework for solving a problem. With a schema, students are taught to recognize problems as falling within word-problem types and to apply a problem solution method that matches that problem type. This review highlights two schema approaches for 2nd- and 3rd-grade students at-risk for or with LD: schema-based instruction and schema-broadening instruction. A total of 12 schema studies were reviewed and synthesized. Both types of schema approaches enhanced the word-problem skill of students at-risk for or with LD. Based on the review, suggestions are provided for incorporating word-problem instruction using schemas. PMID:21643477

  5. Cognitive Strategy Instruction for Teaching Word Problems to Primary-Level Struggling Students

    ERIC Educational Resources Information Center

    Pfannenstiel, Kathleen Hughes; Bryant, Diane Pedrotty; Bryant, Brian R.; Porterfield, Jennifer A.

    2015-01-01

    Students with mathematics difficulties and learning disabilities (LD) typically struggle with solving word problems. These students often lack knowledge about efficient, cognitive strategies to utilize when solving word problems. Cognitive strategy instruction has been shown to be effective in teaching struggling students how to solve word…

  6. Mathematical Word Problem Solving Ability of Children with Autism Spectrum Disorder and their Typically Developing Peers.

    PubMed

    Bae, Young Seh; Chiang, Hsu-Min; Hickson, Linda

    2015-07-01

    This study examined the difference between children with autism spectrum disorders (ASD) and children with typical development (TD) in mathematical word problem solving ability and the factors associated with these children's word problem-solving ability. A total of 20 children with ASD and 20 children with TD participated in this study. Independent sample t tests and Spearman's rho correlations were used for data analysis. This study found: (a) Children with TD had higher word problem solving ability than did children with ASD; (b) Sentence comprehension, math vocabulary, computation, and everyday mathematical knowledge were associated with word problem solving ability of children with ASD and children with TD; and (c) Children with TD had higher everyday mathematical knowledge than did children with ASD.

  7. Process Inquiry: Analysis of Oral Problem-Solving Skills in Mathematics of Engineering Students

    ERIC Educational Resources Information Center

    Trance, Naci John C.

    2013-01-01

    This paper presents another effort in determining the difficulty of engineering students in terms of solving word problems. Students were presented with word problems in algebra. Then, they were asked to solve the word problems orally; that is, before they presented their written solutions, they were required to explain how they understood the…

  8. The effects of using diagramming as a representational technique on high school students' achievement in solving math word problems

    NASA Astrophysics Data System (ADS)

    Banerjee, Banmali

    Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to students' accomplishments when solving word problems. Some studies have examined the effects of diagramming on students' abilities to solve word problems that only involved basic arithmetic operations. Other studies have investigated how instructional models that used technology influenced students' problem solving achievements. Still other studies have used schema-based instruction involving students with learning disabilities. No study has evaluated regular high school students' achievements in solving standard math word problems using a diagramming technique without technological aid. This study evaluated students' achievement in solving math word problems using a diagramming technique. Using a quasi-experimental experimental pretest-posttest research design, quantitative data were collected from 172 grade 11 Hispanic English language learners (ELLS) and African American learners whose first language is English (EFLLs) in 18 classes at an inner city high school in Northern New Jersey. There were 88 control and 84 experimental students. The pretest and posttest of each participating student and samples of the experimental students' class assignments provided the qualitative data for the study. The data from this study exhibited that the diagramming method of solving math word problems significantly improved student achievement in the experimental group (p<.01) compared to the control group. The study demonstrated that urban, high school, ELLs benefited from instruction that placed emphasis on the mathematical vocabulary and symbols used in word problems and that both ELLs and EFLLs improved their problem solving success through careful attention to the creation and labeling of diagrams to represent the mathematics involved in standard word problems. Although Learnertype (ELL, EFLL), Classtype (Bilingual and Mixed), and Gender (Female, Male) were not significant indicators of student achievement, there was significant interaction between Treatment and Classtype at the level of the Bilingual students ( p<.01) and between Treatment and Learnertype at the level of the ELLs (p<.01).

  9. Word Problem Solving of Students with Autistic Spectrum Disorders and Students with Typical Development

    ERIC Educational Resources Information Center

    Bae, Young Seh

    2013-01-01

    Mathematical Word Problem Solving of Students with Autistic Spectrum Disorders and Students with Typical Development Young Seh Bae This study investigated mathematical word problem solving and the factors associated with the solution paths adopted by two groups of participants (N=40), students with autism spectrum disorders (ASDs) and typically…

  10. The relation between children’s constructive play activities, spatial ability, and mathematical word problem-solving performance: a mediation analysis in sixth-grade students

    PubMed Central

    Oostermeijer, Meike; Boonen, Anton J. H.; Jolles, Jelle

    2014-01-01

    The scientific literature shows that constructive play activities are positively related to children’s spatial ability. Likewise, a close positive relation is found between spatial ability and mathematical word problem-solving performances. The relation between children’s constructive play and their performance on mathematical word problems is, however, not reported yet. The aim of the present study was to investigate whether spatial ability acted as a mediator in the relation between constructive play and mathematical word problem-solving performance in 128 sixth-grade elementary school children. This mediating role of spatial ability was tested by utilizing the current mediation approaches suggested by Preacher and Hayes (2008). Results showed that 38.16% of the variance in mathematical word problem-solving performance is explained by children’s constructive play activities and spatial ability. More specifically, spatial ability acted as a partial mediator, explaining 31.58% of the relation between constructive play and mathematical word problem-solving performance. PMID:25101038

  11. Using Self-Generated Drawings to Solve Arithmetic Word Problems.

    ERIC Educational Resources Information Center

    Van Essen, Gerard; Hamaker, Christiaan

    1990-01-01

    Results are presented from two intervention studies which investigate whether encouraging elementary students to generate drawings of arithmetic word problems facilitates problem-solving performance. Findings indicate that fifth graders (N=50) generated many drawings of word problems and improved problem solutions after the intervention, whereas…

  12. Three-M in Word Problem Solving

    ERIC Educational Resources Information Center

    Hajra, Sayonita Ghosh; Kofman, Victoria

    2018-01-01

    We describe three activities that help undergraduates (pre-service teachers) to develop scientific vocabulary on measurable attributes and units of measurement. Measurable attributes are important features in understanding a word problem and solving the problem. These activities help students comprehend word problems better by identifying…

  13. Working Memory Components as Predictors of Children's Mathematical Word Problem Solving

    ERIC Educational Resources Information Center

    Zheng, Xinhua; Swanson, H. Lee; Marcoulides, George A.

    2011-01-01

    This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N = 310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM,…

  14. When Best Intentions Go Awry: The Failures of Concrete Representations to Help Solve Probability Word Problems

    ERIC Educational Resources Information Center

    Beitzel, Brian D.; Staley, Richard K.; DuBois, Nelson F.

    2011-01-01

    Previous research has cast doubt on the efficacy of utilizing external representations as an aid to solving word problems. The present study replicates previous findings that concrete representations hinder college students' ability to solve probability word problems, and extends those findings to apply to a multimedia instructional context. Our…

  15. The Impact of Metacognitive Strategies and Self-Regulating Processes of Solving Math Word Problems

    ERIC Educational Resources Information Center

    Vula, Eda; Avdyli, Rrezarta; Berisha, Valbona; Saqipi, Blerim; Elezi, Shpetim

    2017-01-01

    This empirical study investigates the impact of metacognitive strategies and self-regulating processes in learners' achievement on solving math word problems. It specifically analyzes the impact of the linguistic factor and the number of steps and arithmetical operations that learners need to apply during the process of solving math word problems.…

  16. The Motivation of Secondary School Students in Mathematical Word Problem Solving

    ERIC Educational Resources Information Center

    Gasco, Javier; Villarroel, Jose-Domingo

    2014-01-01

    Introduction: Motivation is an important factor in the learning of mathematics. Within this area of education, word problem solving is central in most mathematics curricula of Secondary School. The objective of this research is to detect the differences in motivation in terms of the strategies used to solve word problems. Method: It analyzed the…

  17. Model Drawing Strategy for Fraction Word Problem Solving of Fourth-Grade Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Sharp, Emily; Shih Dennis, Minyi

    2017-01-01

    This study used a multiple probe across participants design to examine the effects of a model drawing strategy (MDS) intervention package on fraction comparing and ordering word problem-solving performance of three Grade 4 students. MDS is a form of cognitive strategy instruction for teaching word problem solving that includes explicit instruction…

  18. Mathematical Word Problem Solving Ability of Children with Autism Spectrum Disorder and Their Typically Developing Peers

    ERIC Educational Resources Information Center

    Bae, Young Seh; Chiang, Hsu-Min; Hickson, Linda

    2015-01-01

    This study examined the difference between children with autism spectrum disorders (ASD) and children with typical development (TD) in mathematical word problem solving ability and the factors associated with these children's word problem-solving ability. A total of 20 children with ASD and 20 children with TD participated in this study.…

  19. Working memory components that predict word problem solving: Is it merely a function of reading, calculation, and fluid intelligence?

    PubMed

    Fung, Wenson; Swanson, H Lee

    2017-07-01

    The purpose of this study was to assess whether the differential effects of working memory (WM) components (the central executive, phonological loop, and visual-spatial sketchpad) on math word problem-solving accuracy in children (N = 413, ages 6-10) are completely mediated by reading, calculation, and fluid intelligence. The results indicated that all three WM components predicted word problem solving in the nonmediated model, but only the storage component of WM yielded a significant direct path to word problem-solving accuracy in the fully mediated model. Fluid intelligence was found to moderate the relationship between WM and word problem solving, whereas reading, calculation, and related skills (naming speed, domain-specific knowledge) completely mediated the influence of the executive system on problem-solving accuracy. Our results are consistent with findings suggesting that storage eliminates the predictive contribution of executive WM to various measures Colom, Rebollo, Abad, & Shih (Memory & Cognition, 34: 158-171, 2006). The findings suggest that the storage component of WM, rather than the executive component, has a direct path to higher-order processing in children.

  20. The Use of a Bar Model Drawing to Teach Word Problem Solving to Students with Mathematics Difficulties

    ERIC Educational Resources Information Center

    Morin, Lisa L.; Watson, Silvana M. R.; Hester, Peggy; Raver, Sharon

    2017-01-01

    For students with mathematics difficulties (MD), math word problem solving is especially challenging. The purpose of this study was to examine the effects of a problem-solving strategy, bar model drawing, on the mathematical problem-solving skills of students with MD. The study extended previous research that suggested that schematic-based…

  1. Procedural versus Content-Related Hints for Word Problem Solving: An Exploratory Study

    ERIC Educational Resources Information Center

    Kock, W. D.; Harskamp, E. G.

    2016-01-01

    For primary school students, mathematical word problems are often more difficult to solve than straightforward number problems. Word problems require reading and analysis skills, and in order to explain their situational contexts, the proper mathematical knowledge and number operations have to be selected. To improve students' ability in solving…

  2. Error Analysis for Arithmetic Word Problems--A Case Study of Primary Three Students in One Singapore School

    ERIC Educational Resources Information Center

    Cheng, Lu Pien

    2015-01-01

    In this study, ways in which 9-year old students from one Singapore school solved 1-step and 2-step word problems based on the three semantic structures were examined. The students' work and diagrams provided insights into the range of errors in word problem solving for 1- step and 2-step word problems. In particular, the errors provided some…

  3. Characteristics of Students at Risk for Mathematics Difficulties Predicting Arithmetic Word Problem Solving Performance: The Role of Attention, Behavior, and Reading

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Corroy, Kelly Cozine; Dupuis, Danielle N.

    2013-01-01

    The purposes of this study were (a) to evaluate differences in arithmetic word problem solving between high and low at-risk students for mathematics difficulties (MD) and (b) to assess the influence of attention, behavior, reading, and socio-economic status (SES) in predicting the word problem solving performance of third-grade students with MD.…

  4. Using the Relational Paradigm: Effects on Pupils' Reasoning in Solving Additive Word Problems

    ERIC Educational Resources Information Center

    Polotskaia, Elena; Savard, Annie

    2018-01-01

    Pupils' difficulties in solving word problems continue to attract attention: while researchers highlight the importance of relational reasoning and modelling, school curricula typically use short word problems to develop pupils' knowledge of arithmetic operations and calculation strategies. The Relational Paradigm attributes the leading role in…

  5. The Influence of English-Korean Bilingualism in Solving Mathematics Word Problems.

    ERIC Educational Resources Information Center

    Whang, Woo-Hyung

    1996-01-01

    Purposeful sampling was used to select six English-Korean bilingual students to investigate language difficulties and cognitive processes in solving mathematics word problems. These six case studies revealed distinct patterns of difficulties in solving problems written in English and Korean, especially for students in transition stage. (Author/KMC)

  6. Text Comprehension and Oral Language as Predictors of Word-Problem Solving: Insights into Word-Problem Solving as a Form of Text Comprehension

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Gilbert, Jennifer K.; Fuchs, Douglas; Seethaler, Pamela M.; N. Martin, BrittanyLee

    2018-01-01

    This study was designed to deepen insights on whether word-problem (WP) solving is a form of text comprehension (TC) and on the role of language in WPs. A sample of 325 second graders, representing high, average, and low reading and math performance, was assessed on (a) start-of-year TC, WP skill, language, nonlinguistic reasoning, working memory,…

  7. Word Problem Strategy for Latino English Language Learners at Risk for Math Disabilities

    ERIC Educational Resources Information Center

    Orosco, Michael J.

    2014-01-01

    "English Language Learners" (ELLs) at risk for "math disabilities" (MD) are challenged in solving word problems for numerous reasons such as (a) learning English as a second language, (b) limited experience using math vocabulary, and (c) lack of strategies to improve word-problem-solving skills. As a result of these…

  8. Helping Students with Emotional and Behavioral Disorders Solve Mathematics Word Problems

    ERIC Educational Resources Information Center

    Alter, Peter

    2012-01-01

    The author presents a strategy for helping students with emotional and behavioral disorders become more proficient at solving math word problems. Math word problems require students to go beyond simple computation in mathematics (e.g., adding, subtracting, multiplying, and dividing) and use higher level reasoning that includes recognizing relevant…

  9. Language, Arithmetic Word Problems, and Deaf Students: Linguistic Strategies Used To Solve Tasks.

    ERIC Educational Resources Information Center

    Zevenbergen, Robyn; Hyde, Merv; Power, Des

    2001-01-01

    Examines the performance of deaf and hearing-impaired students in Queensland, Australia when solving arithmetic word problems. Subjects' solutions of word problems confirmed trends for learning students but their performance was delayed in comparison. Confirms other studies in which deaf and hearing-impaired students are delayed in their language…

  10. Examining How Students with Diverse Abilities Use Diagrams to Solve Mathematics Word Problems

    ERIC Educational Resources Information Center

    van Garderen, Delinda; Scheuermann, Amy; Jackson, Christa

    2013-01-01

    This study examined students' understanding of diagrams and their use of diagrams as tools to solve mathematical word problems. Students with learning disabilities (LD), typically achieving students, and gifted students in Grades 4 through 7 ("N" = 95) participated. Students were presented with novel mathematical word problem-solving…

  11. Word Problem Solving: A Schema Approach in Year 3

    ERIC Educational Resources Information Center

    van Klinken, Eduarda

    2012-01-01

    This article outlines how a Brisbane independent school, Clayfield College, improved the ability of its Year 3 students to solve addition and subtraction word problems by utilising a schematic approach. It was observed that while students could read the words in the text of a written problem, many had difficulty identifying the core information…

  12. Duality of Mathematical Thinking When Making Sense of Simple Word Problems: Theoretical Essay

    ERIC Educational Resources Information Center

    Polotskaia, Elena; Savard, Annie; Freiman, Viktor

    2015-01-01

    This essay proposes a reflection on the learning difficulties and teaching approaches associated with arithmetic word problem solving. We question the development of word problem solving skills in the early grades of elementary school. We are trying to revive the discussion because first, the knowledge in question--reversibility of arithmetic…

  13. Effects of computer-based graphic organizers to solve one-step word problems for middle school students with mild intellectual disability: A preliminary study.

    PubMed

    Sheriff, Kelli A; Boon, Richard T

    2014-08-01

    The purpose of this study was to examine the effects of computer-based graphic organizers, using Kidspiration 3© software, to solve one-step word problems. Participants included three students with mild intellectual disability enrolled in a functional academic skills curriculum in a self-contained classroom. A multiple probe single-subject research design (Horner & Baer, 1978) was used to evaluate the effectiveness of computer-based graphic organizers to solving mathematical one-step word problems. During the baseline phase, the students completed a teacher-generated worksheet that consisted of nine functional word problems in a traditional format using a pencil, paper, and a calculator. In the intervention and maintenance phases, the students were instructed to complete the word problems using a computer-based graphic organizer. Results indicated that all three of the students improved in their ability to solve the one-step word problems using computer-based graphic organizers compared to traditional instructional practices. Limitations of the study and recommendations for future research directions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effects of Cognitive Strategy Interventions on Word Problem Solving and Working Memory in Children with Math Disabilities

    ERIC Educational Resources Information Center

    Swanson, H. Lee; Lussier, Catherine; Orosco, Michael

    2011-01-01

    Although current categories of learning disabilities include as specific disabilities calculation and mathematical problem solving [see IDEA reauthorization, 2004, Sec. 300.8(c)(10)], the majority of research focuses on calculation disabilities. Previous studies have shown, however, that deficits in word problem solving difficulties are persistent…

  15. The Role of the Updating Function in Solving Arithmetic Word Problems

    ERIC Educational Resources Information Center

    Mori, Kanetaka; Okamoto, Masahiko

    2017-01-01

    We investigated how the updating function supports the integration process in solving arithmetic word problems. In Experiment 1, we measured reading time, that is, translation and integration times, when undergraduate and graduate students (n = 78) were asked to solve 2 types of problems: those containing only necessary information and those…

  16. Problem Solving Frameworks for Mathematics and Software Development

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel; Blake, Ashley

    2012-01-01

    In this research, we examine how problem solving frameworks differ between Mathematics and Software Development. Our methodology is based on the assumption that the words used frequently in a book indicate the mental framework of the author. We compared word frequencies in a sample of 139 books that discuss problem solving. The books were grouped…

  17. VStops: A Thinking Strategy and Visual Representation Approach in Mathematical Word Problem Solving toward Enhancing STEM Literacy

    ERIC Educational Resources Information Center

    Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi

    2014-01-01

    This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…

  18. Teaching Problem Solving to Students Receiving Tiered Interventions Using the Concrete-Representational-Abstract Sequence and Schema-Based Instruction

    ERIC Educational Resources Information Center

    Flores, Margaret M.; Hinton, Vanessa M.; Burton, Megan E.

    2016-01-01

    Mathematical word problems are the most common form of mathematics problem solving implemented in K-12 schools. Identifying key words is a frequent strategy taught in classrooms in which students struggle with problem solving and show low success rates in mathematics. Researchers show that using the concrete-representational-abstract (CRA)…

  19. An Exploratory Study Contrasting High- and Low-Achieving Students' Percent Word Problem Solving

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Star, Jon R.

    2012-01-01

    This study evaluated whether schema-based instruction (SBI), a promising method for teaching students to represent and solve mathematical word problems, impacted the learning of percent word problems. Of particular interest was the extent that SBI improved high- and low-achieving students' learning and to a lesser degree on the indirect effect of…

  20. Young Filipino Students Making Sense of Arithmetic Word Problems in English

    ERIC Educational Resources Information Center

    Bautista, Debbie; Mulligan, Joanne; Mitchelmore, Michael

    2009-01-01

    Young Filipino children are expected to solve mathematical word problems in English, a task which they typically encounter only in schools. In this exploratory study, task-based interviews were conducted with seven Filipino children from a public school. The children were asked to read and solve addition and subtraction word problems in English or…

  1. The effect of problem structure on problem-solving: an fMRI study of word versus number problems.

    PubMed

    Newman, Sharlene D; Willoughby, Gregory; Pruce, Benjamin

    2011-09-02

    It has long been thought that word problems are more difficult to solve than number/equation problems. However, recent findings have begun to bring this broadly believed idea into question. The current study examined the processing differences between these two types of problems. The behavioral results presented here failed to show an overwhelming advantage for number problems. In fact, there were more errors for the number problems than the word problems. The neuroimaging results reported demonstrate that there is significant overlap in the processing of what, on the surface, appears to be completely different problems that elicit different problem-solving strategies. Word and number problems rely on a general network responsible for problem-solving that includes the superior posterior parietal cortex, the horizontal segment of the intraparietal sulcus which is hypothesized to be involved in problem representation and calculation as well as the regions that have been linked to executive aspects of working memory such as the pre-SMA and basal ganglia. While overlap was observed, significant differences were also found primarily in language processing regions such as Broca's and Wernicke's areas for the word problems and the horizontal segment of the intraparietal sulcus for the number problems. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The Role of Cognitive Processes, Foundational Math Skill, and Calculation Accuracy and Fluency in Word-Problem Solving versus Pre-Algebraic Knowledge

    PubMed Central

    Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.

    2016-01-01

    The purpose of this study was to examine child-level pathways in development of pre-algebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of grade 2; calculation accuracy and calculation fluency at end of grade 2; and pre-algebraic knowledge and word-problem solving at end of grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than pre-algebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students’ foundational mathematics skills or cognitive processes. PMID:27786534

  3. It's Not a Math Lesson--We're Learning to Draw! Teachers' Use of Visual Representations in Instructing Word Problem Solving in Sixth Grade of Elementary School

    ERIC Educational Resources Information Center

    Boonen, Anton J. H.; Reed, Helen C.; Schoonenboom, Judith; Jolles, Jelle

    2016-01-01

    Non-routine word problem solving is an essential feature of the mathematical development of elementary school students worldwide. Many students experience difficulties in solving these problems due to erroneous problem comprehension. These difficulties could be alleviated by instructing students how to use visual representations that clarify the…

  4. Tutoring Mathematical Word Problems Using Solution Trees: Text Comprehension, Situation Comprehension, and Mathematization in Solving Story Problems. Research Report No. 8.

    ERIC Educational Resources Information Center

    Reusser, Kurt; And Others

    The main concern of this paper is on the psychological processes of how students understand and solve mathematical word problems, and on how this knowledge can be applied to computer-based tutoring. It is argued that only a better understanding of the psychological requirements for understanding and solving those problems will lead to…

  5. The Effects of Using Diagramming as a Representational Technique on High School Students' Achievement in Solving Math Word Problems

    ERIC Educational Resources Information Center

    Banerjee, Banmali

    2010-01-01

    Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to…

  6. Arithmetic Word-Problem-Solving in Huntington's Disease

    ERIC Educational Resources Information Center

    Allain, P.; Verny, C.; Aubin, G.; Pinon, K.; Bonneau, D.; Dubas, F.; Gall, D.L.

    2005-01-01

    The purpose of this study was to examine executive functioning in patients with Huntington's disease using an arithmetic word-problem-solving task including eight solvable problems of increasing complexity and four aberrant problems. Ten patients with Huntington's disease and 12 normal control subjects matched by age and education were tested.…

  7. Fostering Analogical Transfer: The Multiple Components Approach to Algebra Word Problem Solving in a Chemistry Context

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Yeung, Alexander Seeshing

    2012-01-01

    Holyoak and Koh (1987) and Holyoak (1984) propose four critical tasks for analogical transfer to occur in problem solving. A study was conducted to test this hypothesis by comparing a multiple components (MC) approach against worked examples (WE) in helping students to solve algebra word problems in chemistry classes. The MC approach incorporated…

  8. Effects of Cognitive Strategy Interventions and Cognitive Moderators on Word Problem Solving in Children at Risk for Problem Solving Difficulties

    ERIC Educational Resources Information Center

    Swanson, H. Lee; Lussier, Cathy; Orosco, Michael

    2013-01-01

    This study investigated the role of strategy instruction and cognitive abilities on word problem solving accuracy in children with math difficulties (MD). Elementary school children (N = 120) with and without MD were randomly assigned to 1 of 4 conditions: general-heuristic (e.g., underline question sentence), visual-schematic presentation…

  9. The Effects of Using Drawings in Developing Young Children's Mathematical Word Problem Solving: A Design Experiment with Third-Grade Hungarian Students

    ERIC Educational Resources Information Center

    Csikos, Csaba; Szitanyi, Judit; Kelemen, Rita

    2012-01-01

    The present study aims to investigate the effects of a design experiment developed for third-grade students in the field of mathematics word problems. The main focus of the program was developing students' knowledge about word problem solving strategies with an emphasis on the role of visual representations in mathematical modeling. The experiment…

  10. Constructing a Coherent Problem Model to Facilitate Algebra Problem Solving in a Chemistry Context

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Yeung, Alexander Seeshing; Phan, Huy P.

    2015-01-01

    An experiment using a sample of 11th graders compared text editing and worked examples approaches in learning to solve dilution and molarity algebra word problems in a chemistry context. Text editing requires students to assess the structure of a word problem by specifying whether the problem text contains sufficient, missing, or irrelevant…

  11. The Efficacy of Using Diagrams When Solving Probability Word Problems in College

    ERIC Educational Resources Information Center

    Beitzel, Brian D.; Staley, Richard K.

    2015-01-01

    Previous experiments have shown a deleterious effect of visual representations on college students' ability to solve total- and joint-probability word problems. The present experiments used conditional-probability problems, known to be more difficult than total- and joint-probability problems. The diagram group was instructed in how to use tree…

  12. Different Procedures for Solving Mathematical Word Problems in High School

    ERIC Educational Resources Information Center

    Gasco, Javier; Villarroel, Jose Domingo; Zuazagoitia, Dani

    2014-01-01

    The teaching and learning of mathematics cannot be understood without considering the resolution of word problems. These kinds of problems not only connect mathematical concepts with language (and therefore with reality) but also promote the learning related to other scientific areas. In primary school, problems are solved by using basic…

  13. The Effect of Using the TI-92 on Basic College Algebra Students' Ability To Solve Word Problems.

    ERIC Educational Resources Information Center

    Runde, Dennis C.

    As part of an effort to improve community college algebra students' ability to solve word problems, a study was undertaken at Florida's Manatee Community College to determine the effects of using heuristic instruction (i.e., providing general rules for solving different types of math problems) in combination with the TI-92 calculator. The TI-92…

  14. Student’s thinking process in solving word problems in geometry

    NASA Astrophysics Data System (ADS)

    Khasanah, V. N.; Usodo, B.; Subanti, S.

    2018-05-01

    This research aims to find out the thinking process of seventh grade of Junior High School in solve word problem solving of geometry. This research was descriptive qualitative research. The subject of the research was selected based on sex and differences in mathematical ability. Data collection was done based on student’s work test, interview, and observation. The result of the research showed that there was no difference of thinking process between male and female with high mathematical ability, and there were differences of thinking process between male and female with moderate and low mathematical ability. Also, it was found that male with moderate mathematical ability took a long time in the step of making problem solving plans. While female with moderate mathematical ability took a long time in the step of understanding the problems. The importance of knowing the thinking process of students in solving word problem solving were that the teacher knows the difficulties faced by students and to minimize the occurrence of the same error in problem solving. Teacher could prepare the right learning strategies which more appropriate with student’s thinking process.

  15. The role of cognitive processes, foundational math skill, and calculation accuracy and fluency in word-problem solving versus prealgebraic knowledge.

    PubMed

    Fuchs, Lynn S; Gilbert, Jennifer K; Powell, Sarah R; Cirino, Paul T; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Tolar, Tammy D

    2016-12-01

    The purpose of this study was to examine child-level pathways in development of prealgebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of Grade 2; calculation accuracy and calculation fluency at end of Grade 2; and prealgebraic knowledge and word-problem solving at end of Grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than prealgebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students' foundational mathematics skills or cognitive processes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Is Word-Problem Solving a Form of Text Comprehension?

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.

    2015-01-01

    This study's hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of…

  17. A Strategy for Improving US Middle School Student Mathematics Word Problem Solving Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.

    2004-01-01

    U.S. middle school students have difficulty understanding and solving mathematics word problems. Their mathematics performance on the Third International Mathematics and Science Study (TIMMS) is far below their international peers, and minority students are less likely than high socioeconomic status (SES) White/Asian students to be exposed to higher-level mathematics concepts. Research literature also indicates that when students use both In-School and Out-of-School knowledge and experiences to create authentic mathematics word problems, student achievement improves. This researcher developed a Strategy for improving mathematics problem solving performance and a Professional Development Model (PDM) to effectively implement the Strategy.

  18. The Effectiveness of Using the Model Method to Solve Word Problems

    ERIC Educational Resources Information Center

    Bao, Lei

    2016-01-01

    The aim of this study is to investigate whether the model method is effective to assist primary students to solve word problems. The model method not only provides students with an opportunity to interpret the problem by drawing the rectangular bar but also helps students to visually represent problem situations and relevant relationships on the…

  19. Syntactic Awareness and Arithmetic Word Problem Solving in Children with and without Learning Disabilities

    ERIC Educational Resources Information Center

    Peake, Christian; Jiménez, Juan E.; Rodríguez, Cristina; Bisschop, Elaine; Villarroel, Rebeca

    2015-01-01

    Arithmetic word problem (AWP) solving is a highly demanding task for children with learning disabilities (LD) since verbal and mathematical information have to be integrated. This study examines specifically how syntactic awareness (SA), the ability to manage the grammatical structures of language, affects AWP solving. Three groups of children in…

  20. Scaffold Seeking: A Reverse Design of Scaffolding in Computer-Supported Word Problem Solving

    ERIC Educational Resources Information Center

    Cheng, Hercy N. H.; Yang, Euphony F. Y.; Liao, Calvin C. Y.; Chang, Ben; Huang, Yana C. Y.; Chan, Tak-Wai

    2015-01-01

    Although well-designed scaffolding may assist students to accomplish learning tasks, its insufficient capability to dynamically assess students' abilities and to adaptively support them may result in the problem of overscaffolding. Our previous project has also shown that students using scaffolds to solve mathematical word problems for a long time…

  1. Video-Based Intervention in Teaching Fraction Problem-Solving to Students with Autism Spectrum Disorder.

    PubMed

    Yakubova, Gulnoza; Hughes, Elizabeth M; Hornberger, Erin

    2015-09-01

    The purpose of this study was to determine the effectiveness of a point-of-view video modeling intervention to teach mathematics problem-solving when working on word problems involving subtracting mixed fractions with uncommon denominators. Using a multiple-probe across students design of single-case methodology, three high school students with ASD completed the study. All three students demonstrated greater accuracy in solving fraction word problems and maintained accuracy levels at a 1-week follow-up.

  2. Thinking can cause forgetting: memory dynamics in creative problem solving.

    PubMed

    Storm, Benjamin C; Angello, Genna; Bjork, Elizabeth Ligon

    2011-09-01

    Research on retrieval-induced forgetting has shown that retrieval can cause the forgetting of related or competing items in memory (Anderson, Bjork, & Bjork, 1994). In the present research, we examined whether an analogous phenomenon occurs in the context of creative problem solving. Using the Remote Associates Test (RAT; Mednick, 1962), we found that attempting to generate a novel common associate to 3 cue words caused the forgetting of other strong associates related to those cue words. This problem-solving-induced forgetting effect occurred even when participants failed to generate a viable solution, increased in magnitude when participants spent additional time problem solving, and was positively correlated with problem-solving success on a separate set of RAT problems. These results implicate a role for forgetting in overcoming fixation in creative problem solving. (c) 2011 APA, all rights reserved.

  3. Students’ Representation in Mathematical Word Problem-Solving: Exploring Students’ Self-efficacy

    NASA Astrophysics Data System (ADS)

    Sahendra, A.; Budiarto, M. T.; Fuad, Y.

    2018-01-01

    This descriptive qualitative research aims at investigating student represented in mathematical word problem solving based on self-efficacy. The research subjects are two eighth graders at a school in Surabaya with equal mathematical ability consisting of two female students with high and low self-efficacy. The subjects were chosen based on the results of test of mathematical ability, documentation of the result of middle test in even semester of 2016/2017 academic year, and results of questionnaire of mathematics word problem in terms of self-efficacy scale. The selected students were asked to do mathematical word problem solving and be interviewed. The result of this study shows that students with high self-efficacy tend to use multiple representations of sketches and mathematical models, whereas students with low self-efficacy tend to use single representation of sketches or mathematical models only in mathematical word problem-solving. This study emphasizes that teachers should pay attention of student’s representation as a consideration of designing innovative learning in order to increase the self-efficacy of each student to achieve maximum mathematical achievement although it still requires adjustment to the school situation and condition.

  4. Are middle school mathematics teachers able to solve word problems without using variable?

    NASA Astrophysics Data System (ADS)

    Gökkurt Özdemir, Burçin; Erdem, Emrullah; Örnek, Tuğba; Soylu, Yasin

    2018-01-01

    Many people consider problem solving as a complex process in which variables such as x, y are used. Problems may not be solved by only using 'variable.' Problem solving can be rationalized and made easier using practical strategies. When especially the development of children at younger ages is considered, it is obvious that mathematics teachers should solve problems through concrete processes. In this context, middle school mathematics teachers' skills to solve word problems without using variables were examined in the current study. Through the case study method, this study was conducted with 60 middle school mathematics teachers who have different professional experiences in five provinces in Turkey. A test consisting of five open-ended word problems was used as the data collection tool. The content analysis technique was used to analyze the data. As a result of the analysis, it was seen that the most of the teachers used trial-and-error strategy or area model as the solution strategy. On the other hand, the teachers who solved the problems using variables such as x, a, n or symbols such as Δ, □, ○, * and who also felt into error by considering these solutions as without variable were also seen in the study.

  5. Word Problems: A "Meme" for Our Times.

    ERIC Educational Resources Information Center

    Leamnson, Robert N.

    1996-01-01

    Discusses a novel approach to word problems that involves linear relationships between variables. Argues that working stepwise through intermediates is the way our minds actually work and therefore this should be used in solving word problems. (JRH)

  6. Culturally and Linguistically Responsive Schema Intervention: Improving Word Problem Solving for English Language Learners with Mathematics Difficulty

    ERIC Educational Resources Information Center

    Driver, Melissa K.; Powell, Sarah R.

    2017-01-01

    Word problems are prevalent on high-stakes assessments, and success on word problems has implications for grade promotion and graduation. Unfortunately, English Language Learners (ELLs) continue to perform significantly below their native English-speaking peers on mathematics assessments featuring word problems. Little is known about the…

  7. The Model Method: Singapore Children's Tool for Representing and Solving Algebraic Word Problems

    ERIC Educational Resources Information Center

    Ng, Swee Fong; Lee, Kerry

    2009-01-01

    Solving arithmetic and algebraic word problems is a key component of the Singapore elementary mathematics curriculum. One heuristic taught, the model method, involves drawing a diagram to represent key information in the problem. We describe the model method and a three-phase theoretical framework supporting its use. We conducted 2 studies to…

  8. Factors Influencing Filipino Children's Solutions to Addition and Subtraction Word Problems

    ERIC Educational Resources Information Center

    Bautista, Debbie; Mitchelmore, Michael; Mulligan, Joanne

    2009-01-01

    Young Filipino children are expected to solve mathematical word problems in English, which is not their mother tongue. Because of this, it is often assumed that Filipino children have difficulties in solving problems because they cannot read or comprehend what they have read. This study tested this assumption by determining whether presenting word…

  9. Students' Mathematics Word Problem-Solving Achievement in a Computer-Based Story

    ERIC Educational Resources Information Center

    Gunbas, N.

    2015-01-01

    The purpose of this study was to investigate the effect of a computer-based story, which was designed in anchored instruction framework, on sixth-grade students' mathematics word problem-solving achievement. Problems were embedded in a story presented on a computer as computer story, and then compared with the paper-based version of the same story…

  10. Text Comprehension and Oral Language as Predictors of Word-Problem Solving: Insights into Word-Problem Solving as a Form of Text Comprehension

    PubMed Central

    Fuchs, Lynn S.; Gilbert, Jennifer K.; Fuchs, Douglas; Seethaler, Pamela M.; Martin, BrittanyLee N.

    2018-01-01

    This study was designed to deepen insights on whether word-problem (WP) solving is a form of text comprehension (TC) and on the role of language in WPs. A sample of 325 second graders, representing high, average, and low reading and math performance, was assessed on (a) start-of-year TC, WP skill, language, nonlinguistic reasoning, working memory, and foundational skill (word identification, arithmetic) and (b) year-end WP solving, WP-language processing (understanding WP statements, without calculation demands), and calculations. Multivariate, multilevel path analysis, accounting for classroom and school effects, indicated that TC was a significant and comparably strong predictor of all outcomes. Start-of-year language was a significantly stronger predictor of both year-end WP outcomes than of calculations, whereas start-of-year arithmetic was a significantly stronger predictor of calculations than of either WP measure. Implications are discussed in terms of WP solving as a form of TC and a theoretically coordinated approach, focused on language, for addressing TC and WP-solving instruction. PMID:29643723

  11. What relates newspaper, definite, and clothing? An article describing deficits in convergent problem solving and creativity following hippocampal damage

    PubMed Central

    Warren, David E.; Kurczek, Jake; Duff, Melissa C.

    2016-01-01

    Creativity relies on a diverse set of cognitive processes associated with distinct neural correlates, and one important aspect of creativity, divergent thinking, has been associated with the hippocampus. However, hippocampal contributions to another important aspect of creativity, convergent problem solving, have not been investigated. We tested the necessity of hippocampus for convergent problem solving using a neuropsychological method. Participants with amnesia due to hippocampal damage (N=5) and healthy normal comparison participants (N=5) were tested using a task that promoted solutions based on existing knowledge (Bowden and Jung-Beeman, 2003). During each trial, participants were given a list of three words (e.g., fly, man, place) and asked to respond with a word that could be combined with each of the three words (e.g., fire). The amnesic group produced significantly fewer correct responses than the healthy comparison group. These findings indicate that the hippocampus is necessary for normal convergent problem solving and that changes in the status of the hippocampus should affect convergent problem solving in the context of creative problem-solving across short intervals. This proposed contribution of the hippocampus to convergent problem solving is consistent with an expanded perspective on hippocampal function that acknowledges its role in cognitive processes beyond declarative memory. PMID:27010751

  12. Kindergarten Students Solving Mathematical Word Problems

    ERIC Educational Resources Information Center

    Johnson, Nickey Owen

    2013-01-01

    The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…

  13. Effects of Preventative Tutoring on the Mathematical Problem Solving of Third-Grade Students With Math and Reading Difficulties.

    PubMed

    Fuchs, Lynn S; Seethaler, Pamela M; Powell, Sarah R; Fuchs, Douglas; Hamlett, Carol L; Fletcher, Jack M

    2008-01-01

    This study assessed the effects of preventative tutoring on the math problem solving of third-grade students with math and reading difficulties. Students (n = 35) were assigned randomly to continue in their general education math program or to receive secondary preventative tutoring 3 times per week, 30 min per session, for 12 weeks. Schema-broadening tutoring taught students to (a) focus on the mathematical structure of 3 problem types; (b) recognize problems as belonging to those 3 problem-type schemas; (c) solve the 3 word-problem types; and (d) transfer solution methods to problems that include irrelevant information, 2-digit operands, missing information in the first or second positions in the algebraic equation, or relevant information in charts, graphs, and pictures. Also, students were taught to perform the calculation and algebraic skills foundational for problem solving. Analyses of variance revealed statistically significant effects on a wide range of word problems, with large effect sizes. Findings support the efficacy of the tutoring protocol for preventing word-problem deficits among third-grade students with math and reading deficits.

  14. Effects of Preventative Tutoring on the Mathematical Problem Solving of Third-Grade Students With Math and Reading Difficulties

    PubMed Central

    Fuchs, Lynn S.; Seethaler, Pamela M.; Powell, Sarah R.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.

    2009-01-01

    This study assessed the effects of preventative tutoring on the math problem solving of third-grade students with math and reading difficulties. Students (n = 35) were assigned randomly to continue in their general education math program or to receive secondary preventative tutoring 3 times per week, 30 min per session, for 12 weeks. Schema-broadening tutoring taught students to (a) focus on the mathematical structure of 3 problem types; (b) recognize problems as belonging to those 3 problem-type schemas; (c) solve the 3 word-problem types; and (d) transfer solution methods to problems that include irrelevant information, 2-digit operands, missing information in the first or second positions in the algebraic equation, or relevant information in charts, graphs, and pictures. Also, students were taught to perform the calculation and algebraic skills foundational for problem solving. Analyses of variance revealed statistically significant effects on a wide range of word problems, with large effect sizes. Findings support the efficacy of the tutoring protocol for preventing word-problem deficits among third-grade students with math and reading deficits. PMID:20209074

  15. How Can One Learn Mathematical Word Problems in a Second Language? A Cognitive Load Perspective

    ERIC Educational Resources Information Center

    Moussa-Inaty, Jase; Causapin, Mark; Groombridge, Timothy

    2015-01-01

    Language may ordinarily account for difficulties in solving word problems and this is particularly true if mathematical word problems are taught in a language other than one's native language. Research into cognitive load may offer a clear theoretical framework when investigating word problems because memory, specifically working memory, plays a…

  16. A Design To Improve Children's Competencies in Solving Mathematical Word Problems.

    ERIC Educational Resources Information Center

    Zimmerman, Helene

    A discrepancy exists between children's ability to compute and their ability to solve mathematical word problems. The literature suggests a variety of methods that have been attempted to improve this skill with varying success. The utilization of manipulatives, visualization, illustration, and emphasis on improving listening skills all were…

  17. Raise the Bar on Problem Solving

    ERIC Educational Resources Information Center

    Englard, Lisa

    2010-01-01

    In a 1981 diagnostic test, the Ministry of Education in Singapore found its country facing a challenge: Only 46 percent of students in grades 2-4 could solve word problems that were presented without such key words as "altogether" or "left." Yet today, according to results from the Trends in International Mathematics and…

  18. Teaching Students with Moderate Intellectual Disability to Solve Word Problems

    ERIC Educational Resources Information Center

    Browder, Diane M.; Spooner, Fred; Lo, Ya-yu; Saunders, Alicia F.; Root, Jenny R.; Ley Davis, Luann; Brosh, Chelsi R.

    2018-01-01

    This study evaluated an intervention developed through an Institute of Education Sciences-funded Goal 2 research project to teach students with moderate intellectual disability (moderate ID) to solve addition and subtraction word problems. The intervention involved modified schema-based instruction that embedded effective practices (e.g.,…

  19. Word Fluency: A Task Analysis.

    ERIC Educational Resources Information Center

    Laine, Matti

    It is suggested that models of human problem solving are useful in the analysis of word fluency (WF) test performance. In problem-solving terms, WF tasks would require the subject to define and clarify the conditions of the task (task acquisition), select and employ appropriate strategies, and monitor one's performance. In modern neuropsychology,…

  20. Does Early Algebraic Reasoning Differ as a Function of Students’ Difficulty with Calculations versus Word Problems?

    PubMed Central

    Powell, Sarah R.; Fuchs, Lynn S.

    2014-01-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2nd- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty. PMID:25309044

  1. Application of Graph Theory in an Intelligent Tutoring System for Solving Mathematical Word Problems

    ERIC Educational Resources Information Center

    Nabiyev, Vasif V.; Çakiroglu, Ünal; Karal, Hasan; Erümit, Ali K.; Çebi, Ayça

    2016-01-01

    This study is aimed to construct a model to transform word "motion problems" in to an algorithmic form in order to be processed by an intelligent tutoring system (ITS). First; categorizing the characteristics of motion problems, second; suggesting a model for the categories were carried out. In order to solve all categories of the…

  2. The Performance of Chinese Primary School Students on Realistic Arithmetic Word Problems

    ERIC Educational Resources Information Center

    Xin, Ziqiang; Lin, Chongde; Zhang, Li; Yan, Rong

    2007-01-01

    Compared with standard arithmetic word problems demanding only the direct use of number operations and computations, realistic problems are harder to solve because children need to incorporate "real-world" knowledge into their solutions. Using the realistic word problem testing materials developed by Verschaffel, De Corte, and Lasure…

  3. Socially Shared Metacognition of Dyads of Pupils in Collaborative Mathematical Problem-Solving Processes

    ERIC Educational Resources Information Center

    Iiskala, Tuike; Vauras, Marja; Lehtinen, Erno; Salonen, Pekka

    2011-01-01

    This study investigated how metacognition appears as a socially shared phenomenon within collaborative mathematical word-problem solving processes of dyads of high-achieving pupils. Four dyads solved problems of different difficulty levels. The pupils were 10 years old. The problem-solving activities were videotaped and transcribed in terms of…

  4. Problem-Solving Support for English Language Learners

    ERIC Educational Resources Information Center

    Wiest, Lynda R.

    2008-01-01

    Although word problems pose greater language demands, they also encourage more meaningful problem solving and mathematics understanding. With proper instructional support, a student-centered, investigative approach to contextualized problem solving benefits all students. This article presents a lesson built on an author-adapted version of the…

  5. Primary School Text Comprehension Predicts Mathematical Word Problem-Solving Skills in Secondary School

    ERIC Educational Resources Information Center

    Björn, Piia Maria; Aunola, Kaisa; Nurmi, Jari-Erik

    2016-01-01

    This longitudinal study aimed to investigate the extent to which primary school text comprehension predicts mathematical word problem-solving skills in secondary school among Finnish students. The participants were 224 fourth graders (9-10 years old at the baseline). The children's text-reading fluency, text comprehension and basic calculation…

  6. Contribution of Equal-Sign Instruction beyond Word-Problem Tutoring for Third-Grade Students with Mathematics Difficulty

    ERIC Educational Resources Information Center

    Powell, Sarah R.; Fuchs, Lynn S.

    2010-01-01

    Elementary school students often misinterpret the equal sign (=) as an operational rather than a relational symbol. Such misunderstanding is problematic because solving equations with missing numbers may be important for the development of higher order mathematics skills, including solving word problems. Research indicates equal-sign instruction…

  7. What relates newspaper, definite, and clothing? An article describing deficits in convergent problem solving and creativity following hippocampal damage.

    PubMed

    Warren, David E; Kurczek, Jake; Duff, Melissa C

    2016-07-01

    Creativity relies on a diverse set of cognitive processes associated with distinct neural correlates, and one important aspect of creativity, divergent thinking, has been associated with the hippocampus. However, hippocampal contributions to another important aspect of creativity, convergent problem solving, have not been investigated. We tested the necessity of hippocampus for convergent problem solving using a neuropsychological method. Participants with amnesia due to hippocampal damage (N = 5) and healthy normal comparison participants (N = 5) were tested using a task that promoted solutions based on existing knowledge (Bowden and Jung-Beeman, 2003). During each trial, participants were given a list of three words (e.g., fly, man, place) and asked to respond with a word that could be combined with each of the three words (e.g., fire). The amnesic group produced significantly fewer correct responses than the healthy comparison group. These findings indicate that the hippocampus is necessary for normal convergent problem solving and that changes in the status of the hippocampus should affect convergent problem solving in the context of creative problem-solving across short intervals. This proposed contribution of the hippocampus to convergent problem solving is consistent with an expanded perspective on hippocampal function that acknowledges its role in cognitive processes beyond declarative memory. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Use of Common-Sense Knowledge, Language and Reality in Mathematical Word Problem Solving

    ERIC Educational Resources Information Center

    Sepeng, Percy

    2014-01-01

    The study reported in this article sought to explore and observe how grade 9 learners solve real-wor(l)d problems (a) without real context and (b) without real meaning. Learners' abilities to make sense of the decontextualised word problems set in the real world were investigated with regard to learners' use of common sense in relation to problem…

  9. Dynamic Assessment of Algebraic Learning in Predicting Third Graders’ Development of Mathematical Problem Solving

    PubMed Central

    Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Craddock, Caitlin F.; Hamlett, Carol L.

    2008-01-01

    Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting 3rd graders’ development of mathematics problem solving. In the fall, 122 3rd-grade students were assessed on language, nonverbal reasoning, attentive behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students received 16 weeks of validated instruction on word problems or received 16 weeks of conventional instruction on word problems. Then, students were assessed on word-problem measures proximal and distal to instruction. Structural equation measurement models showed that DA measured a distinct dimension of pretreatment ability and that proximal and distal word-problem measures were needed to account for outcome. Structural equation modeling showed that instruction (conventional vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-intervention models for preventing and identifying learning disabilities. PMID:19884957

  10. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  11. An Investigation on Chinese Teachers' Realistic Problem Posing and Problem Solving Ability and Beliefs

    ERIC Educational Resources Information Center

    Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven

    2011-01-01

    In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…

  12. Are Middle School Mathematics Teachers Able to Solve Word Problems without Using Variable?

    ERIC Educational Resources Information Center

    Gökkurt Özdemir, Burçin; Erdem, Emrullah; Örnek, Tugba; Soylu, Yasin

    2018-01-01

    Many people consider problem solving as a complex process in which variables such as "x," "y" are used. Problems may not be solved by only using "variable." Problem solving can be rationalized and made easier using practical strategies. When especially the development of children at younger ages is considered, it is…

  13. Language, arithmetic word problems, and deaf students: Linguistic strategies used to solve tasks

    NASA Astrophysics Data System (ADS)

    Zevenbergen, Robyn; Hyde, Merv; Power, Des

    2001-12-01

    There has been limited examination of the intersection between language and arithmetic in the performance of deaf students, although some previous research has shown that deaf and hearing-impaired1 students are delayed in both their language acquisition and arithmetic performance. This paper examines the performance of deaf and hearing-impaired students in South-East Queensland, Australia, in solving arithmetic word problems. It was found that the subjects' solutions of word problems confirmed trends for hearing students, but that their performance was delayed in comparison. The results confirm other studies where deaf and hearing-impaired students are delayed in their language acquisition and this impacts on their capacity to successfully undertake the resolution of word problems.

  14. The Interference of Stereotype Threat with Women's Generation of Mathematical Problem-Solving Strategies.

    ERIC Educational Resources Information Center

    Quinn, Diane M.; Spencer, Steven J.

    2001-01-01

    Investigated whether stereotype threat would depress college women's math performance. In one test, men outperformed women when solving word problems, though women performed equally when problems were converted into numerical equivalents. In another test, participants solved difficult problems in high or reduced stereotype threat conditions. Women…

  15. A Comparison of Two Mathematics Problem-Solving Strategies: Facilitate Algebra-Readiness

    ERIC Educational Resources Information Center

    Xin, Yan Ping; Zhang, Dake; Park, Joo Young; Tom, Kinsey; Whipple, Amanda; Si, Luo

    2011-01-01

    The authors compared a conceptual model-based problem-solving (COMPS) approach with a general heuristic instructional approach for teaching multiplication-division word-problem solving to elementary students with learning problems (LP). The results indicate that only the COMPS group significantly improved, from pretests to posttests, their…

  16. Impact of Authenticity on Sense Making in Word Problem Solving

    ERIC Educational Resources Information Center

    Palm, Torulf

    2008-01-01

    The study presented in this paper seeks to investigate the impact of authenticity on the students' disposition to make necessary real world considerations in their word problem solving. The aim is also to gather information about the extent to which different reasons for the students' behaviors are responsible for not providing solutions that are…

  17. Using Explicit C-R-A Instruction to Teach Fraction Word Problem Solving to Low-Performing Asian English Learners

    ERIC Educational Resources Information Center

    Kim, Sun A.; Wang, Peishi; Michaels, Craig A.

    2015-01-01

    This article investigates the effects of fraction word problem-solving instruction involving explicit teaching of the concrete-representational-abstract sequence with culturally relevant teaching examples for 3 low-performing Asian immigrant English learners who spoke a language other than English at home. We used a multiple probe design across…

  18. Teacher-Designed Software for Interactive Linear Equations: Concepts, Interpretive Skills, Applications & Word-Problem Solving.

    ERIC Educational Resources Information Center

    Lawrence, Virginia

    No longer just a user of commercial software, the 21st century teacher is a designer of interactive software based on theories of learning. This software, a comprehensive study of straightline equations, enhances conceptual understanding, sketching, graphic interpretive and word problem solving skills as well as making connections to real-life and…

  19. Cognitive Correlates of Mathematical Achievement in Children with Cerebral Palsy and Typically Developing Children

    ERIC Educational Resources Information Center

    Jenks, Kathleen M.; van Lieshout, Ernest C. D. M.; de Moor, Jan M. H.

    2012-01-01

    Background: Remarkably few studies have investigated the nature and origin of learning difficulties in children with cerebral palsy (CP). Aims: To investigate math achievement in terms of word-problem solving ability in children with CP and controls. Because of the potential importance of reading for word-problem solving, we investigated reading…

  20. Learning to Solve Addition and Subtraction Word Problems in English as an Imported Language

    ERIC Educational Resources Information Center

    Verzosa, Debbie Bautista; Mulligan, Joanne

    2013-01-01

    This paper reports an intervention phase of a design study aimed to assist second-grade Filipino children in solving addition word problems in English, a language they primarily encounter only in school. With Filipino as the medium of instruction, an out-of-school pedagogical intervention providing linguistic and representational scaffolds was…

  1. Secondary School Students' Construction and Use of Mathematical Models in Solving Word Problems

    ERIC Educational Resources Information Center

    Llinares, Salvador; Roig, Ana Isabel

    2008-01-01

    This study focussed on how secondary school students construct and use mathematical models as conceptual tools when solving word problems. The participants were 511 secondary-school students who were in the final year of compulsory education (15-16 years old). Four levels of the development of constructing and using mathematical models were…

  2. The Association between Mathematical Word Problems and Reading Comprehension

    ERIC Educational Resources Information Center

    Vilenius-Tuohimaa, Piia Maria; Aunola, Kaisa; Nurmi, Jari-Erik

    2008-01-01

    This study aimed to investigate the interplay between mathematical word problem skills and reading comprehension. The participants were 225 children aged 9-10 (Grade 4). The children's text comprehension and mathematical word problem-solving performance was tested. Technical reading skills were investigated in order to categorise participants as…

  3. Teaching Fifth Grade Mathematical Concepts: Effects of Word Problems Used with Traditional Methods.

    ERIC Educational Resources Information Center

    Coy, Jessica

    The view of the researcher is that students in the upper elementary to middle school range need to increase their problem-solving skills by making logical deductions and organizing and structuring their thoughts through the use of word problems. Giving children a daily word problem challenged and introduced them to the lesson. This activity…

  4. Cognitive and Linguistic Predictors of Mathematical Word Problems With and Without Irrelevant Information.

    PubMed

    Wang, Amber Y; Fuchs, Lynn S; Fuchs, Douglas

    2016-12-01

    The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working memory capacity, and processing speed; in the spring, they were tested on a word-problem measure that included items with versus without irrelevant information. Significant predictors common to both forms of word problems were initial arithmetic and word problem-solving skill as well as language and working memory. Nonverbal reasoning predicted word problems with irrelevant information, but not word problems without irrelevant information. Findings are discussed in terms of implications for intervention and future research.

  5. The Effects of Schema-Broadening Instruction on Second Graders’ Word-Problem Performance and Their Ability to Represent Word Problems with Algebraic Equations: A Randomized Control Study

    PubMed Central

    Fuchs, Lynn S.; Zumeta, Rebecca O.; Schumacher, Robin Finelli; Powell, Sarah R.; Seethaler, Pamela M.; Hamlett, Carol L.; Fuchs, Douglas

    2010-01-01

    The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders’ word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which taught students to represent the structural, defining features of word problems with overarching equations. Intervention lasted 16 weeks. We pretested and posttested 270 students on measures of word-problem skill; analyses that accounted for the nested structure of the data indicated superior word-problem learning for SBI students. Descriptive analyses of students’ word-problem work indicated that SBI helped students represent the structure of word problems with algebraic equations, suggesting that SBI promoted this aspect of students’ emerging algebraic reasoning. PMID:20539822

  6. Reading-Enhanced Word Problem Solving: A Theoretical Model

    ERIC Educational Resources Information Center

    Capraro, Robert M.; Capraro, Mary Margaret; Rupley, William H.

    2012-01-01

    There is a reciprocal relationship between mathematics and reading cognition. Metacognitive training within reading-enhanced problem solving should facilitate students developing an awareness of what good readers do when reading for meaning in solving mathematical problems enabling them to apply these strategies. The constructs for each cognitive…

  7. The Effects of Dynamic Strategic Math on English Language Learners' Word Problem Solving

    ERIC Educational Resources Information Center

    Orosco, Michael J.; Swanson, H. Lee; O'Connor, Rollanda; Lussier, Cathy

    2013-01-01

    English language learners (ELLs) struggle with solving word problems for a number of reasons beyond math procedures or calculation challenges. As a result, ELLs may not only need math support but also reading and linguistic support. The purpose of this study was to assess the effectiveness of a math comprehension strategy called Dynamic Strategic…

  8. Mathematics Word Problem Solving: An Investigation into Schema-Based Instruction in a Computer-Mediated Setting and a Teacher-Mediated Setting with Mathematically Low-Performing Students

    ERIC Educational Resources Information Center

    Leh, Jayne

    2011-01-01

    Substantial evidence indicates that teacher-delivered schema-based instruction (SBI) facilitates significant increases in mathematics word problem solving (WPS) skills for diverse students; however research is unclear whether technology affordances facilitate superior gains in computer-mediated (CM) instruction in mathematics WPS when compared to…

  9. Experimental Intervention Studies on Word Problem Solving and Math Disabilities: A Selective Analysis of the Literature

    ERIC Educational Resources Information Center

    Zheng, Xinhua; Flynn, Lindsay J.; Swanson, H. Lee

    2013-01-01

    This article provides a quantitative synthesis of the published literature on word problem solving intervention studies for children with math disabilities (MD). Seven group and eight single-subject design studies met inclusion criteria. Mean effect sizes ("ES"s) for solution accuracy for group design studies were 0.95 (SE = 0.19) for…

  10. From Addition to Multiplication ... and Back: The Development of Students' Additive and Multiplicative Reasoning Skills

    ERIC Educational Resources Information Center

    Van Dooren, Wim; De Bock, Dirk; Verschaffel, Lieven

    2010-01-01

    This study builds on two lines of research that have so far developed largely separately: the use of additive methods to solve proportional word problems and the use of proportional methods to solve additive word problems. We investigated the development with age of both kinds of erroneous solution methods. We gave a test containing missing-value…

  11. Regressive Imagery in Creative Problem-Solving: Comparing Verbal Protocols of Expert and Novice Visual Artists and Computer Programmers

    ERIC Educational Resources Information Center

    Kozbelt, Aaron; Dexter, Scott; Dolese, Melissa; Meredith, Daniel; Ostrofsky, Justin

    2015-01-01

    We applied computer-based text analyses of regressive imagery to verbal protocols of individuals engaged in creative problem-solving in two domains: visual art (23 experts, 23 novices) and computer programming (14 experts, 14 novices). Percentages of words involving primary process and secondary process thought, plus emotion-related words, were…

  12. The Role of Cognitive Processes, Foundational Math Skill, and Calculation Accuracy and Fluency in Word-Problem Solving versus Prealgebraic Knowledge

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.

    2016-01-01

    The purpose of this study was to examine child-level pathways in development of prealgebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early…

  13. Effectiveness of Mathematical Word Problem Solving Interventions for Students with Learning Disabilities and Mathematics Difficulties: A Meta-Analysis

    ERIC Educational Resources Information Center

    Lein, Amy E.

    2016-01-01

    This meta-analysis synthesized the findings from 23 published and five unpublished experimental or quasi-experimental group design studies on word problem-solving instruction for K-12 students with learning disabilities (LD) and mathematics difficulties (MD). A secondary purpose of this meta-analysis was to analyze the relation between treatment…

  14. Working Memory and Literacy as Predictors of Performance on Algebraic Word Problems

    ERIC Educational Resources Information Center

    Lee, Kerry; Ng, Swee-Fong; Ng, Ee-Lynn; Lim, Zee-Ying

    2004-01-01

    Previous studies on individual differences in mathematical abilities have shown that working memory contributes to early arithmetic performance. In this study, we extended the investigation to algebraic word problem solving. A total of 151 10-year-olds were administered algebraic word problems and measures of working memory, intelligence quotient…

  15. Why Do Disadvantaged Filipino Children Find Word Problems in English Difficult?

    ERIC Educational Resources Information Center

    Bautista, Debbie; Mulligan, Joanne

    2010-01-01

    Young Filipino students are expected to solve mathematical word problems in English, a language that many encounter only in schools. Using individual interviews of 17 Filipino children, we investigated why word problems in English are difficult and the extent to which the language interferes with performance. Results indicate that children could…

  16. Working Memory Components and Problem-Solving Accuracy: Are There Multiple Pathways?

    ERIC Educational Resources Information Center

    Swanson, H. Lee; Fung, Wenson

    2016-01-01

    This study determined the working memory (WM) components (executive, phonological short-term memory [STM], and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy in elementary schoolchildren (N = 392). The battery of tests administered to assess mediators between WM and problem-solving included measures of…

  17. Math and Humane Education.

    ERIC Educational Resources Information Center

    DeRosa, Bill

    1986-01-01

    Describes an activity designed to improve students' skills at solving mathematical word problems through an awareness of the pet overpopulation problem. Uses the concept of cumulative female offspring as a focal point in assisting students to analyze and work through word problems. (ML)

  18. Cognitive and Linguistic Predictors of Mathematical Word Problems With and Without Irrelevant Information

    PubMed Central

    Fuchs, Lynn S.; Fuchs, Douglas

    2016-01-01

    The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working memory capacity, and processing speed; in the spring, they were tested on a word-problem measure that included items with versus without irrelevant information. Significant predictors common to both forms of word problems were initial arithmetic and word problem-solving skill as well as language and working memory. Nonverbal reasoning predicted word problems with irrelevant information, but not word problems without irrelevant information. Findings are discussed in terms of implications for intervention and future research. PMID:28190942

  19. Solving Tommy's Writing Problems.

    ERIC Educational Resources Information Center

    Burdman, Debra

    1986-01-01

    The article describes an approach by which word processing helps to solve some of the writing problems of learning disabled students. Aspects considered include prewriting, drafting, revising, and completing the story. (CL)

  20. An Evaluation of Curriculum-Based Measurement of Mathematics Word Problem--Solving Measures for Monitoring Third-Grade Students' Mathematics Competence

    ERIC Educational Resources Information Center

    Leh, Jayne M.; Jitendra, Asha K.; Caskie, Grace I. L.; Griffin, Cynthia C.

    2007-01-01

    The purpose of this study was to examine the tenability of a curriculum-based mathematical word problem-solving (WPS) measure as a progress-monitoring tool to index students' rate of growth or slope of achievement over time. Participants consisted of 58 third-grade students, who were assessed repeatedly over 16 school weeks. Students were measured…

  1. The Effect of Strategy on Problem Solving: An FMRI Study

    ERIC Educational Resources Information Center

    Newman, Sharlene D.; Pruce, Benjamin; Rusia, Akash; Burns, Thomas, Jr.

    2010-01-01

    fMRI was used to examine the differential effect of two problem-solving strategies. Participants were trained to use both a pictorial/spatial and a symbolic/algebraic strategy to solve word problems. While these two strategies activated similar cortical regions, a number of differences were noted in the level of activation. These differences…

  2. Adaptation of Social Problem Solving for Children Questionnaire in 6 Age Groups and its Relationships with Preschool Behavior Problems

    ERIC Educational Resources Information Center

    Dereli-Iman, Esra

    2013-01-01

    Social Problem Solving for Child Scale is frequently used to determine behavioral problems of children with their own word and to identify ways of conflict encountered in daily life, and interpersonal relationships in abroad. The primary purpose of this study was to adapt the Wally Child Social Problem-Solving Detective Game Test. In order to…

  3. The Acquisition of Problem-Solving Skills in Mathematics: How Animations Can Aid Understanding of Structural Problem Features and Solution Procedures

    ERIC Educational Resources Information Center

    Scheiter, Katharina; Gerjets, Peter; Schuh, Julia

    2010-01-01

    In this paper the augmentation of worked examples with animations for teaching problem-solving skills in mathematics is advocated as an effective instructional method. First, in a cognitive task analysis different knowledge prerequisites are identified for solving mathematical word problems. Second, it is argued that so called hybrid animations…

  4. Middle School Children's Problem-Solving Behavior: A Cognitive Analysis from a Reading Comprehension Perspective

    ERIC Educational Resources Information Center

    Pape, Stephen J.

    2004-01-01

    Many children read mathematics word problems and directly translate them to arithmetic operations. More sophisticated problem solvers transform word problems into object-based or mental models. Subsequent solutions are often qualitatively different because these models differentially support cognitive processing. Based on a conception of problem…

  5. Strategy Choice in Solving Arithmetic Word Problems: Are There Differences between Students with Learning Disabilities, G-V Poor Performance, and Typical Achievement Students?

    ERIC Educational Resources Information Center

    Gonzalez, Juan E. Jimenez; Espinel, Ana Isabel Garcia

    2002-01-01

    A study was designed to test whether there are differences between Spanish children (ages 7-9) with arithmetic learning disabilities (n=60), garden-variety (G-V) poor performance (n=44), and typical children (n=44) in strategy choice when solving arithmetic word problems. No significant differences were found between children with dyscalculia and…

  6. Performance in Mathematical Problem Solving as a Function of Comprehension and Arithmetic Skills

    ERIC Educational Resources Information Center

    Voyer, Dominic

    2011-01-01

    Many factors influence a student's performance in word (or textbook) problem solving in class. Among them is the comprehension process the pupils construct during their attempt to solve the problem. The comprehension process may include some less formal representations, based on pupils' real-world knowledge, which support the construction of a…

  7. Schema-Based Instruction with Concrete and Virtual Manipulatives to Teach Problem Solving to Students with Autism

    ERIC Educational Resources Information Center

    Root, Jenny R.; Browder, Diane M.; Saunders, Alicia F.; Lo, Ya-yu

    2017-01-01

    The current study evaluated the effects of modified schema-based instruction on the mathematical word problem solving skills of three elementary students with autism spectrum disorders and moderate intellectual disability. Participants learned to solve compare problem type with themes that related to their interests and daily experiences. In…

  8. Effect of Causal Stories in Solving Mathematical Story Problems

    ERIC Educational Resources Information Center

    Smith, Glenn Gordon; Gerretson, Helen; Olkun, Sinan; Joutsenlahti, Jorma

    2010-01-01

    This study investigated whether infusing "causal" story elements into mathematical word problems improves student performance. In one experiment in the USA and a second in USA, Finland and Turkey, undergraduate elementary education majors worked word problems in three formats: 1) standard (minimal verbiage), 2) potential causation…

  9. Fundamentals of the Design and the Operation of an Intelligent Tutoring System for the Learning of the Arithmetical and Algebraic Way of Solving Word Problems

    ERIC Educational Resources Information Center

    Arnau, David; Arevalillo-Herraez, Miguel; Puig, Luis; Gonzalez-Calero, Jose Antonio

    2013-01-01

    Designers of interactive learning environments with a focus on word problem solving usually have to compromise between the amount of resolution paths that a user is allowed to follow and the quality of the feedback provided. We have built an intelligent tutoring system (ITS) that is able to both track the user's actions and provide adequate…

  10. Coping Strategies Applied to Comprehend Multistep Arithmetic Word Problems by Students with Above-Average Numeracy Skills and Below-Average Reading Skills

    ERIC Educational Resources Information Center

    Nortvedt, Guri A.

    2011-01-01

    This article discusses how 13-year-old students with above-average numeracy skills and below-average reading skills cope with comprehending word problems. Compared to other students who are proficient in numeracy and are skilled readers, these students are more disadvantaged when solving single-step and multistep arithmetic word problems. The…

  11. The Effects of Differing Presentations of Mathematical Word Problems Upon the Achievement of Tenth Grade Students.

    ERIC Educational Resources Information Center

    Sherrill, James M.

    Described is a study concerned with the mode of presentation of printed mathematical word problems. Tenth grade students were given twenty word problems to solve, presented in one of three ways: (1) prose only, (2) prose with an accurate picture included, or (3) prose with a distorted picture. Experimental results showed that the group with an…

  12. Everyday problem solving in African Americans and European Americans with Alzheimer's disease: an exploratory study.

    PubMed

    Ripich, Danielle N; Fritsch, Thomas; Ziol, Elaine

    2002-03-01

    In this exploratory study, we compared the performance of 10 African American and 26 European American persons with early- to mid-stage Alzheimer's disease (AD) to 20 nondemented elderly (NE), using a shortened version of the Test of Problem Solving (TOPS). The TOPS measures verbal reasoning to solve everyday problems in five areas: explaining inferences, determining causes, answering negative why questions, determining solutions, and avoiding problems. Six linguistic measures were also examined: total utterances, abandoned utterances, length of utterances, maze words, questions, and total words. NE performed better than AD subjects on all but one measure of verbal reasoning ability. AD subjects also showed a trend to use more total utterances and abandoned utterances than NE. For the AD group, no ethnic differences were found for verbal reasoning or linguistic measures. The findings from this preliminary investigation suggest that, compared to European Americans, African American persons with AD demonstrate similar everyday problem solving and linguistic skills. Thus, assessments such as TOPS that examine everyday problem solving may be a useful nonbiased evaluation tool for persons with AD in these two ethnic groups.

  13. I Can Problem Solve (ICPS): A Cognitive Approach to Preventing Early High Risk Behaviors.

    ERIC Educational Resources Information Center

    Shure, Myrna B.; And Others

    This outline presents a program designed to teach children "how" to think, not what to think--so as to help them solve typical interpersonal problems with peers and adults. Through games, stories, puppets, illustrations, and role plays, children learn a pre-problem solving vocabulary, feeling word concepts, and ways to arrive at solutions to…

  14. The Effect of Dynamic and Interactive Mathematics Learning Environments (DIMLE), Supporting Multiple Representations, on Perceptions of Elementary Mathematics Pre-Service Teachers in Problem Solving Process

    ERIC Educational Resources Information Center

    Ozdemir, S.; Reis, Z. Ayvaz

    2013-01-01

    Mathematics is an important discipline, providing crucial tools, such as problem solving, to improve our cognitive abilities. In order to solve a problem, it is better to envision and represent through multiple means. Multiple representations can help a person to redefine a problem with his/her own words in that envisioning process. Dynamic and…

  15. The contribution of general cognitive abilities and number abilities to different aspects of mathematics in children.

    PubMed

    Träff, Ulf

    2013-10-01

    This study examined the relative contributions of general cognitive abilities and number abilities to word problem solving, calculation, and arithmetic fact retrieval in a sample of 134 children aged 10 to 13 years. The following tasks were administered: listening span, visual matrix span, verbal fluency, color naming, Raven's Progressive Matrices, enumeration, number line estimation, and digit comparison. Hierarchical multiple regressions demonstrated that number abilities provided an independent contribution to fact retrieval and word problem solving. General cognitive abilities contributed to problem solving and calculation. All three number tasks accounted for a similar amount of variance in fact retrieval, whereas only the number line estimation task contributed unique variance in word problem solving. Verbal fluency and Raven's matrices accounted for an equal amount of variance in problem solving and calculation. The current findings demonstrate, in accordance with Fuchs and colleagues' developmental model of mathematical learning (Developmental Psychology, 2010, Vol. 46, pp. 1731-1746), that both number abilities and general cognitive abilities underlie 10- to 13-year-olds' proficiency in problem solving, whereas only number abilities underlie arithmetic fact retrieval. Thus, the amount and type of cognitive contribution to arithmetic proficiency varies between the different aspects of arithmetic. Furthermore, how closely linked a specific aspect of arithmetic is to the whole number representation systems is not the only factor determining the amount and type of cognitive contribution in 10- to 13-year-olds. In addition, the mathematical complexity of the task appears to influence the amount and type of cognitive support. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Eye-Tracking Study of Complexity in Gas Law Problems

    ERIC Educational Resources Information Center

    Tang, Hui; Pienta, Norbert

    2012-01-01

    This study, part of a series investigating students' use of online tools to assess problem solving, uses eye-tracking hardware and software to explore the effect of problem difficulty and cognitive processes when students solve gas law word problems. Eye movements are indices of cognition; eye-tracking data typically include the location,…

  17. Algebra Word Problem Solving Approaches in a Chemistry Context: Equation Worked Examples versus Text Editing

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Yeung, Alexander Seeshing

    2013-01-01

    Text editing directs students' attention to the problem structure as they classify whether the texts of word problems contain sufficient, missing or irrelevant information for working out a solution. Equation worked examples emphasize the formation of a coherent problem structure to generate a solution. Its focus is on the construction of three…

  18. Investigating the Effect of Complexity Factors in Stoichiometry Problems Using Logistic Regression and Eye Tracking

    ERIC Educational Resources Information Center

    Tang, Hui; Kirk, John; Pienta, Norbert J.

    2014-01-01

    This paper includes two experiments, one investigating complexity factors in stoichiometry word problems, and the other identifying students' problem-solving protocols by using eye-tracking technology. The word problems used in this study had five different complexity factors, which were randomly assigned by a Web-based tool that we developed. The…

  19. Effectiveness of Word Solving: Integrating Morphological Problem-Solving within Comprehension Instruction for Middle School Students

    ERIC Educational Resources Information Center

    Goodwin, Amanda P.

    2016-01-01

    This study explores the effectiveness of integrating morphological instruction within comprehension strategy instruction. Participants were 203 students (N = 117 fifth-grade; 86 sixth-grade) from four urban schools who were randomly assigned to the intervention (N = 110; morphological problem-solving within comprehension strategy instruction) or…

  20. Effectiveness of Small-Group Tutoring Interventions for Improving the Mathematical Problem-Solving Performance of Third-Grade Students with Mathematics Difficulties: A Randomized Experiment

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Dupuis, Danielle N.; Rodriguez, Michael C.

    2012-01-01

    The present research assessed the efficacy of two tutoring protocols for improving the mathematics outcomes of at-risk third-grade students. Results indicated that students in the schema-based instruction (SBI) group outperformed students in the control group on word problem solving performance after 30 hours of problem-solving experience, but the…

  1. Effects of Modified Schema-Based Instruction on Real-World Algebra Problem Solving of Students with Autism Spectrum Disorder and Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Root, Jenny Rose

    2016-01-01

    The current study evaluated the effects of modified schema-based instruction (SBI) on the algebra problem solving skills of three middle school students with autism spectrum disorder and moderate intellectual disability (ASD/ID). Participants learned to solve two types of group word problems: missing-whole and missing-part. The themes of the word…

  2. The Process of Probability Problem Solving: Use of External Visual Representations

    ERIC Educational Resources Information Center

    Zahner, Doris; Corter, James E.

    2010-01-01

    We investigate the role of external inscriptions, particularly those of a spatial or visual nature, in the solution of probability word problems. We define a taxonomy of external visual representations used in probability problem solving that includes "pictures," "spatial reorganization of the given information," "outcome listings," "contingency…

  3. Problem-Solving: Scaling the "Brick Wall"

    ERIC Educational Resources Information Center

    Benson, Dave

    2011-01-01

    Across the primary and secondary phases, pupils are encouraged to use and apply their knowledge, skills, and understanding of mathematics to solve problems in a variety of forms, ranging from single-stage word problems to the challenge of extended rich tasks. Amongst many others, Cockcroft (1982) emphasised the importance and relevance of…

  4. Minimalism as a Guiding Principle: Linking Mathematical Learning to Everyday Knowledge

    ERIC Educational Resources Information Center

    Inoue, Noriyuki

    2008-01-01

    Studies report that students often fail to consider familiar aspects of reality in solving mathematical word problems. This study explored how different features of mathematical problems influence the way that undergraduate students employ realistic considerations in mathematical problem solving. Incorporating familiar contents in the word…

  5. Following the Template: Transferring Modeling Skills to Nonstandard Problems

    ERIC Educational Resources Information Center

    Tyumeneva, Yu. A.; Goncharova, M. V.

    2017-01-01

    This study seeks to analyze how students apply a mathematical modeling skill that was previously learned by solving standard word problems to the solution of word problems with nonstandard contexts. During the course of an experiment involving 106 freshmen, we assessed how well they were able to transfer the mathematical modeling skill that is…

  6. Executive Functions Underlying Multiplicative Reasoning: Problem Type Matters

    ERIC Educational Resources Information Center

    Agostino, Alba; Johnson, Janice; Pascual-Leone, Juan

    2010-01-01

    We investigated the extent to which inhibition, updating, shifting, and mental-attentional capacity ("M"-capacity) contribute to children's ability to solve multiplication word problems. A total of 155 children in Grades 3-6 (8- to 13-year-olds) completed a set of multiplication word problems at two levels of difficulty: one-step and multiple-step…

  7. The Contributions of Working Memory and Executive Functioning to Problem Representation and Solution Generation in Algebraic Word Problems

    ERIC Educational Resources Information Center

    Lee, Kerry; Ng, Ee Lynn; Ng, Swee Fong

    2009-01-01

    Solving algebraic word problems involves multiple cognitive phases. The authors used a multitask approach to examine the extent to which working memory and executive functioning are associated with generating problem models and producing solutions. They tested 255 11-year-olds on working memory (Counting Recall, Letter Memory, and Keep Track),…

  8. The Effect of Contextual and Conceptual Rewording on Mathematical Problem-Solving Performance

    ERIC Educational Resources Information Center

    Haghverdi, Majid; Wiest, Lynda R.

    2016-01-01

    This study shows how separate and combined contextual and conceptual problem rewording can positively influence student performance in solving mathematical word problems. Participants included 80 seventh-grade Iranian students randomly assigned in groups of 20 to three experimental groups involving three types of rewording and a control group. All…

  9. Preservice Middle and High School Mathematics Teachers' Strategies When Solving Proportion Problems

    ERIC Educational Resources Information Center

    Arican, Muhammet

    2018-01-01

    The purpose of this study was to investigate eight preservice middle and high school mathematics teachers' solution strategies when solving single and multiple proportion problems. Real-world missing-value word problems were used in an interview setting to collect information about preservice teachers' (PSTs) reasoning about proportional…

  10. Syntactic Awareness and Arithmetic Word Problem Solving in Children With and Without Learning Disabilities.

    PubMed

    Peake, Christian; Jiménez, Juan E; Rodríguez, Cristina; Bisschop, Elaine; Villarroel, Rebeca

    2015-01-01

    Arithmetic word problem (AWP) solving is a highly demanding task for children with learning disabilities (LD) since verbal and mathematical information have to be integrated. This study examines specifically how syntactic awareness (SA), the ability to manage the grammatical structures of language, affects AWP solving. Three groups of children in elementary education were formed: children with arithmetic learning disabilities (ALD), children with reading learning disabilities (RLD), and children with comorbid arithmetic and reading learning disabilities (ARLD). Mediation analysis confirmed that SA was a mediator variable for both groups of children with reading disabilities when solving AWPs, but not for children in the ALD group. All groups performed below the control group in the problem solving task. When SA was controlled for, semantic structure and position of the unknown set were variables that affected both groups with ALD. Specifically, children with ALD only were more affected by the place of the unknown set. © Hammill Institute on Disabilities 2014.

  11. Reflective thinking in solving an algebra problem: a case study of field independent-prospective teacher

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag

    2017-10-01

    Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.

  12. Is Word-Problem Solving a Form of Text Comprehension?

    PubMed Central

    Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.

    2015-01-01

    This study’s hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of the 2nd grade, children (n = 206; on average, 7 years, 6 months) were assessed on general language comprehension, working memory, nonlinguistic reasoning, processing speed (a control variable), and foundational skill (arithmetic for WPs; word reading for text comprehension). In spring, they were assessed on WP-specific language comprehension, WPs, and text comprehension. Path analytic mediation analysis indicated that effects of general language comprehension on text comprehension were entirely direct, whereas effects of general language comprehension on WPs were partially mediated by WP-specific language. By contrast, effects of working memory and reasoning operated in parallel ways for both outcomes. PMID:25866461

  13. A Study on the Application of Creative Problem Solving Teaching to Statistics Teaching

    ERIC Educational Resources Information Center

    Hu, Ridong; Xiaohui, Su; Shieh, Chich-Jen

    2017-01-01

    Everyone would encounter the life issue of solving complicated problems generated by economic behaviors among all activities for making a living. Various life problems encountered therefore could be generalized by economic statistics. In other words, a lot of important events in daily life are related to economic statistics. For this reason,…

  14. Effectiveness of Schema-Based Instruction for Improving Seventh-Grade Students' Proportional Reasoning: A Randomized Experiment

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Star, Jon R.; Dupuis, Danielle N.; Rodriguez, Michael C.

    2013-01-01

    This study examined the effect of schema-based instruction (SBI) on 7th-grade students' mathematical problem-solving performance. SBI is an instructional intervention that emphasizes the role of mathematical structure in word problems and also provides students with a heuristic to self-monitor and aid problem solving. Using a…

  15. Video-Based Intervention in Teaching Fraction Problem-Solving to Students with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Yakubova, Gulnoza; Hughes, Elizabeth M.; Hornberger, Erin

    2015-01-01

    The purpose of this study was to determine the effectiveness of a point-of-view video modeling intervention to teach mathematics problem-solving when working on word problems involving subtracting mixed fractions with uncommon denominators. Using a multiple-probe across students design of single-case methodology, three high school students with…

  16. A Review of the Effects of Visual-Spatial Representations and Heuristics on Word Problem Solving in Middle School Mathematics

    ERIC Educational Resources Information Center

    Kribbs, Elizabeth E.; Rogowsky, Beth A.

    2016-01-01

    Mathematics word-problems continue to be an insurmountable challenge for many middle school students. Educators have used pictorial and schematic illustrations within the classroom to help students visualize these problems. However, the data shows that pictorial representations can be more harmful than helpful in that they only display objects or…

  17. Teaching High School Students with Learning Disabilities to Use Model Drawing Strategy to Solve Fraction and Percentage Word Problems

    ERIC Educational Resources Information Center

    Dennis, Minyi Shih; Knight, Jacqueline; Jerman, Olga

    2016-01-01

    This article describes how to teach fraction and percentage word problems using a model-drawing strategy. This cognitive strategy places emphasis on explicitly teaching students how to draw a schematic diagram to represent the qualitative relations described in the problem, and how to formulate the solution based on the schematic diagram. The…

  18. Errors Made by Elementary Fourth Grade Students When Modelling Word Problems and the Elimination of Those Errors through Scaffolding

    ERIC Educational Resources Information Center

    Ulu, Mustafa

    2017-01-01

    This study aims to identify errors made by primary school students when modelling word problems and to eliminate those errors through scaffolding. A 10-question problem-solving achievement test was used in the research. The qualitative and quantitative designs were utilized together. The study group of the quantitative design comprises 248…

  19. A Comparison of Updating Processes in Children Good or Poor in Arithmetic Word Problem-Solving

    ERIC Educational Resources Information Center

    Passolunghi, Maria Chiara; Pazzaglia, Francesca

    2005-01-01

    This study examines the updating ability of poor or good problem solvers. Seventy-eight fourth-graders, 43 good and 35 poor arithmetic word problem-solvers, performed the Updating Test used in Palladino et al. [Palladino, P., Cornoldi, C., De Beni, R., and Pazzaglia F. (2002). Working memory and updating processes in reading comprehension. Memory…

  20. Contribution of Equal-Sign Instruction beyond Word-Problem Tutoring for Third-Grade Students with Mathematics Difficulty.

    PubMed

    Powell, Sarah R; Fuchs, Lynn S

    2010-05-01

    Elementary school students often misinterpret the equal sign (=) as an operational rather than a relational symbol. Such misunderstanding is problematic because solving equations with missing numbers may be important for higher-order mathematics skills including word problems. Research indicates equal-sign instruction can alter how typically-developing students use the equal sign, but no study has examined effects for students with mathematics difficulty (MD) or how equal-sign instruction contributes to word-problem skill for students with or without MD. The present study assessed the efficacy of equal-sign instruction within word-problem tutoring. Third-grade students with MD (n = 80) were assigned to word-problem tutoring, word-problem tutoring plus equal-sign instruction (combined) tutoring, or no-tutoring control. Combined tutoring produced better improvement on equal sign tasks and open equations compared to the other 2 conditions. On certain forms of word problems, combined tutoring but not word-problem tutoring alone produced better improvement than control. When compared at posttest to 3(rd)-grade students without MD on equal sign tasks and open equations, only combined tutoring students with MD performed comparably.

  1. Use of Computer-Based Case Studies in a Problem-Solving Curriculum.

    ERIC Educational Resources Information Center

    Haworth, Ian S.; And Others

    1997-01-01

    Describes the use of three case studies, on computer, to enhance problem solving and critical thinking among doctoral pharmacy students in a physical chemistry course. Students are expected to use specific computer programs, spreadsheets, electronic mail, molecular graphics, word processing, online literature searching, and other computer-based…

  2. Diagramming Word Problems: A Strategic Approach for Instruction

    ERIC Educational Resources Information Center

    van Garderen, Delinda; Scheuermann, Amy M.

    2015-01-01

    While often recommended as a strategy to use in order to solve word problems, drawing a diagram is a complex process that requires a good depth of understanding. Many middle school students with learning disabilities (LD) often struggle to use diagrams in an effective and efficient manner. This article presents information for teaching middle…

  3. The semantic system is involved in mathematical problem solving.

    PubMed

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Individual differences in solving arithmetic word problems

    PubMed Central

    2013-01-01

    Background With the present functional magnetic resonance imaging (fMRI) study at 3 T, we investigated the neural correlates of visualization and verbalization during arithmetic word problem solving. In the domain of arithmetic, visualization might mean to visualize numbers and (intermediate) results while calculating, and verbalization might mean that numbers and (intermediate) results are verbally repeated during calculation. If the brain areas involved in number processing are domain-specific as assumed, that is, that the left angular gyrus (AG) shows an affinity to the verbal domain, and that the left and right intraparietal sulcus (IPS) shows an affinity to the visual domain, the activation of these areas should show a dependency on an individual’s cognitive style. Methods 36 healthy young adults participated in the fMRI study. The participants habitual use of visualization and verbalization during solving arithmetic word problems was assessed with a short self-report assessment. During the fMRI measurement, arithmetic word problems that had to be solved by the participants were presented in an event-related design. Results We found that visualizers showed greater brain activation in brain areas involved in visual processing, and that verbalizers showed greater brain activation within the left angular gyrus. Conclusions Our results indicate that cognitive styles or preferences play an important role in understanding brain activation. Our results confirm, that strong visualizers use mental imagery more strongly than weak visualizers during calculation. Moreover, our results suggest that the left AG shows a specific affinity to the verbal domain and subserves number processing in a modality-specific way. PMID:23883107

  5. Problem Solving Concretely with the Word "Like"

    ERIC Educational Resources Information Center

    Yee, Sean

    2013-01-01

    While the average teenager's conversation may seem inundated with the word "like", in the mathematics classroom, teenagers use it with purpose. Linguists study the word "like" to understand and categorize comparative statements. By overlapping linguistics and mathematics education within the frame of cognitive science, this study found that high…

  6. Memory Inhibition as a Critical Factor Preventing Creative Problem Solving

    ERIC Educational Resources Information Center

    Gómez-Ariza, Carlos J.; del Prete, Francesco; Prieto del Val, Laura; Valle, Tania; Bajo, M. Teresa; Fernandez, Angel

    2017-01-01

    The hypothesis that reduced accessibility to relevant information can negatively affect problem solving in a remote associate test (RAT) was tested by using, immediately before the RAT, a retrieval practice procedure to hinder access to target solutions. The results of 2 experiments clearly showed that, relative to baseline, target words that had…

  7. Improvement of Word Problem Solving and Basic Mathematics Competencies in Students with Attention Deficit/Hyperactivity Disorder and Mathematical Learning Difficulties

    ERIC Educational Resources Information Center

    González-Castro, Paloma; Cueli, Marisol; Areces, Débora; Rodríguez, Celestino; Sideridis, Georgios

    2016-01-01

    Problem solving represents a salient deficit in students with mathematical learning difficulties (MLD) primarily caused by difficulties with informal and formal mathematical competencies. This study proposes a computerized intervention tool, the integrated dynamic representation (IDR), for enhancing the early learning of basic mathematical…

  8. Word-Problem-Solving Strategy for Minority Students at Risk for Math Difficulties

    ERIC Educational Resources Information Center

    Kong, Jennifer E.; Orosco, Michael J.

    2016-01-01

    Minority students at risk for math difficulties (MD) struggle with word problems for various reasons beyond procedural or calculation challenges. As a result, these students require support in reading and language development in addition to math. The purpose of this study was to assess the effectiveness of a math comprehension strategy based on a…

  9. Proportional Reasoning Word Problem Performance for Middle School Students with High-Incidence Disabilities (HID)

    ERIC Educational Resources Information Center

    Brawand, Anne Eichorn

    2013-01-01

    Schema-based instruction (SBI) was used to examine the solving of proportional reasoning word problems for middle school students with high-incidence disabilities (HID). Seventh- and eighth-grade students with HID participated in the study. Students were randomly assigned to one of three groups. A multiple-baseline-across-groups design was…

  10. Cognitive Skills Used to Solve Mathematical Word Problems and Numerical Operations: A Study of 6- to 7-Year-Old Children

    ERIC Educational Resources Information Center

    Bjork, Isabel Maria; Bowyer-Crane, Claudine

    2013-01-01

    This study investigates the relationship between skills that underpin mathematical word problems and those that underpin numerical operations, such as addition, subtraction, division and multiplication. Sixty children aged 6-7 years were tested on measures of mathematical ability, reading accuracy, reading comprehension, verbal intelligence and…

  11. Preservice Teachers' Algebraic Reasoning and Symbol Use on a Multistep Fraction Word Problem

    ERIC Educational Resources Information Center

    Cullen, Amanda L.; Tobias, Jennifer M.; Safak, Elif; Kirwan, J. Vince; Wessman-Enzinger, Nicole M.; Wickstrom, Megan H.; Baek, Jae M.

    2017-01-01

    Previous research on preservice teachers' understanding of fractions and algebra has focused on one or the other. To extend this research, we examined 85 undergraduate elementary education majors and middle school mathematics education majors' solutions and solution paths (i.e., the ways or methods in which preservice teachers solve word problems)…

  12. Knowledge acquisition from natural language for expert systems based on classification problem-solving methods

    NASA Technical Reports Server (NTRS)

    Gomez, Fernando

    1989-01-01

    It is shown how certain kinds of domain independent expert systems based on classification problem-solving methods can be constructed directly from natural language descriptions by a human expert. The expert knowledge is not translated into production rules. Rather, it is mapped into conceptual structures which are integrated into long-term memory (LTM). The resulting system is one in which problem-solving, retrieval and memory organization are integrated processes. In other words, the same algorithm and knowledge representation structures are shared by these processes. As a result of this, the system can answer questions, solve problems or reorganize LTM.

  13. Putting Two and Two Together: Middle School Students' Morphological Problem-Solving Strategies for Unknown Words

    ERIC Educational Resources Information Center

    Pacheco, Mark B.; Goodwin, Amanda P.

    2013-01-01

    Adolescents often use root word and affix knowledge to figure out unknown words. Anglin (1993) found that younger readers favor the Part-to-Whole strategy, and Tyler and Nagy (1989) confirmed the importance of root-word knowledge for middle school students. This study seeks to understand the different strategies middle school readers use so that…

  14. Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment.

    PubMed

    Tik, Martin; Sladky, Ronald; Luft, Caroline Di Bernardi; Willinger, David; Hoffmann, André; Banissy, Michael J; Bhattacharya, Joydeep; Windischberger, Christian

    2018-04-17

    Finding creative solutions to difficult problems is a fundamental aspect of human culture and a skill highly needed. However, the exact neural processes underlying creative problem solving remain unclear. Insightful problem solving tasks were shown to be a valid method for investigating one subcomponent of creativity: the Aha!-moment. Finding insightful solutions during a remote associates task (RAT) was found to elicit specific cortical activity changes. Considering the strong affective components of Aha!-moments, as manifested in the subjectively experienced feeling of relief following the sudden emergence of the solution of the problem without any conscious forewarning, we hypothesized the subcortical dopaminergic reward network to be critically engaged during Aha. To investigate those subcortical contributions to insight, we employed ultra-high-field 7 T fMRI during a German Version of the RAT. During this task, subjects were exposed to word triplets and instructed to find a solution word being associated with all the three given words. They were supposed to press a button as soon as they felt confident about their solution without further revision, allowing us to capture the exact event of Aha!-moment. Besides the finding on cortical involvement of the left anterior middle temporal gyrus (aMTG), here we showed for the first time robust subcortical activity changes related to insightful problem solving in the bilateral thalamus, hippocampus, and the dopaminergic midbrain comprising ventral tegmental area (VTA), nucleus accumbens (NAcc), and caudate nucleus. These results shed new light on the affective neural mechanisms underlying insightful problem solving. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  15. Arithmetic learning with the use of graphic organiser

    NASA Astrophysics Data System (ADS)

    Sai, F. L.; Shahrill, M.; Tan, A.; Han, S. H.

    2018-01-01

    For this study, Zollman’s four corners-and-a-diamond mathematics graphic organiser embedded with Polya’s Problem Solving Model was used to investigate secondary school students’ performance in arithmetic word problems. This instructional learning tool was used to help students break down the given information into smaller units for better strategic planning. The participants were Year 7 students, comprised of 21 male and 20 female students, aged between 11-13 years old, from a co-ed secondary school in Brunei Darussalam. This study mainly adopted a quantitative approach to investigate the types of differences found in the arithmetic word problem pre- and post-tests results from the use of the learning tool. Although the findings revealed slight improvements in the overall comparisons of the students’ test results, the in-depth analysis of the students’ responses in their activity worksheets shows a different outcome. Some students were able to make good attempts in breaking down the key points into smaller information in order to solve the word problems.

  16. Contribution of Equal-Sign Instruction beyond Word-Problem Tutoring for Third-Grade Students with Mathematics Difficulty

    PubMed Central

    Powell, Sarah R.; Fuchs, Lynn S.

    2010-01-01

    Elementary school students often misinterpret the equal sign (=) as an operational rather than a relational symbol. Such misunderstanding is problematic because solving equations with missing numbers may be important for higher-order mathematics skills including word problems. Research indicates equal-sign instruction can alter how typically-developing students use the equal sign, but no study has examined effects for students with mathematics difficulty (MD) or how equal-sign instruction contributes to word-problem skill for students with or without MD. The present study assessed the efficacy of equal-sign instruction within word-problem tutoring. Third-grade students with MD (n = 80) were assigned to word-problem tutoring, word-problem tutoring plus equal-sign instruction (combined) tutoring, or no-tutoring control. Combined tutoring produced better improvement on equal sign tasks and open equations compared to the other 2 conditions. On certain forms of word problems, combined tutoring but not word-problem tutoring alone produced better improvement than control. When compared at posttest to 3rd-grade students without MD on equal sign tasks and open equations, only combined tutoring students with MD performed comparably. PMID:20640240

  17. Enhancing Arithmetic and Word-Problem Solving Skills Efficiently by Individualized Computer-Assisted Practice

    ERIC Educational Resources Information Center

    Schoppek, Wolfgang; Tulis, Maria

    2010-01-01

    The fluency of basic arithmetical operations is a precondition for mathematical problem solving. However, the training of skills plays a minor role in contemporary mathematics instruction. The authors proposed individualization of practice as a means to improve its efficiency, so that the time spent with the training of skills is minimized. As a…

  18. Effects of Singapore's Model Method on Elementary Student Problem Solving Performance: Single Subject Research

    ERIC Educational Resources Information Center

    Mahoney, Kevin

    2012-01-01

    This research investigation examined the effects of Singapore's Model Method, also known as "model drawing" or "bar modeling" on the word problem-solving performance of American third and fourth grade students. Employing a single-case design, a researcher-designed teaching intervention was delivered to a child in third…

  19. Middle School Deaf Students' Problem-Solving Behaviors and Strategy Use

    ERIC Educational Resources Information Center

    Lee, ChongMin

    2010-01-01

    The purpose of this research is to describe and understand the ways in which deaf middle school students understood and solved compare word problems, and to examine their overall strategy use in learning mathematics. The participants in the study were deaf middle school students, attending a residential state school for the deaf. Most of them used…

  20. Evaluation of the Effectiveness of a Tablet Computer Application (App) in Helping Students with Visual Impairments Solve Mathematics Problems

    ERIC Educational Resources Information Center

    Beal, Carole R.; Rosenblum, L. Penny

    2018-01-01

    Introduction: The authors examined a tablet computer application (iPad app) for its effectiveness in helping students studying prealgebra to solve mathematical word problems. Methods: Forty-three visually impaired students (that is, those who are blind or have low vision) completed eight alternating mathematics units presented using their…

  1. Dividing Fractions Using an Area Model: A Look at In-Service Teachers' Understanding

    ERIC Educational Resources Information Center

    Lamberg, Teruni; Wiest, Lynda R.

    2015-01-01

    The paper reports an investigation into how a group of elementary and middle school teachers collectively attempted to solve and understand a fraction division problem using an area model. Solving the word problem required that teachers determine how many two-thirds fit into three-fourths. The teachers struggled to conceptualise fraction division,…

  2. Does Cognitive Strategy Training on Word Problems Compensate for Working Memory Capacity in Children with Math Difficulties?

    ERIC Educational Resources Information Center

    Swanson, H. Lee

    2014-01-01

    Cognitive strategies are important tools for children with math difficulties (MD) in learning to solve word problems. The effectiveness of strategy training, however, depends on working memory capacity (WMC). Thus, children with MD but with relatively higher WMC are more likely to benefit from strategy training, whereas children with lower WMC may…

  3. The Effects of Cognitive Style and Piagetian Logical Reasoning on Solving a Propositional Relation Algebra Word Problem.

    ERIC Educational Resources Information Center

    Nasser, Ramzi; Carifio, James

    The purpose of this study was to find out whether students perform differently on algebra word problems that have certain key context features and entail proportional reasoning, relative to their level of logical reasoning and their degree of field dependence/independence. Field-independent students tend to restructure and break stimuli into parts…

  4. Un-Building Blocks: A Model of Reverse Engineering and Applicable Heuristics

    DTIC Science & Technology

    2015-12-01

    CONCLUSIONS The machine does not isolate man from the great problems of nature but plunges him more deeply into them. Antoine de Saint-Exupery— Wind ...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Reverse engineering is the problem -solving activity that ensues when one takes a...Douglas Moses, Vice Provost for Academic Affairs iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Reverse engineering is the problem -solving

  5. Executive Functions Contribute Uniquely to Reading Competence in Minority Youth.

    PubMed

    Jacobson, Lisa A; Koriakin, Taylor; Lipkin, Paul; Boada, Richard; Frijters, Jan C; Lovett, Maureen W; Hill, Dina; Willcutt, Erik; Gottwald, Stephanie; Wolf, Maryanne; Bosson-Heenan, Joan; Gruen, Jeffrey R; Mahone, E Mark

    Competent reading requires various skills beyond those for basic word reading (i.e., core language skills, rapid naming, phonological processing). Contributing "higher-level" or domain-general processes include information processing speed and executive functions (working memory, strategic problem solving, attentional switching). Research in this area has relied on largely Caucasian samples, with limited representation of children from racial or ethnic minority groups. This study examined contributions of executive skills to reading competence in 761 children of minority backgrounds. Hierarchical linear regressions examined unique contributions of executive functions (EF) to word reading, fluency, and comprehension. EF contributed uniquely to reading performance, over and above reading-related language skills; working memory contributed uniquely to all components of reading; while attentional switching, but not problem solving, contributed to isolated and contextual word reading and reading fluency. Problem solving uniquely predicted comprehension, suggesting that this skill may be especially important for reading comprehension in minority youth. Attentional switching may play a unique role in development of reading fluency in minority youth, perhaps as a result of the increased demand for switching between spoken versus written dialects. Findings have implications for educational and clinical practice with regard to reading instruction, remedial reading intervention, and assessment of individuals with reading difficulty.

  6. Microcomputers and Preschoolers.

    ERIC Educational Resources Information Center

    Evans, Dina

    Preschool children can benefit by working with microcomputers. Thinking skills are enhanced by software games that focus on logic, memory, problem solving, and pattern recognition. Counting, sequencing, and matching games develop mathematics skills, and word games focusing on basic letter symbol and word recognition develop language skills.…

  7. Extraction of a group-pair relation: problem-solving relation from web-board documents.

    PubMed

    Pechsiri, Chaveevan; Piriyakul, Rapepun

    2016-01-01

    This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.

  8. Calculation and Word Problem-Solving Skills in Primary Grades--Impact of Cognitive Abilities and Longitudinal Interrelations with Task-persistent Behaviour

    ERIC Educational Resources Information Center

    Jõgi, Anna-Liisa; Kikas, Eve

    2016-01-01

    Background: Primary school math skills form a basis for academic success down the road. Different math skills have different antecedents and there is a reason to believe that more complex math tasks require better self-regulation. Aims: The study aimed to investigate longitudinal interrelations of calculation and problem-solving skills, and…

  9. "I like It Instead of Maths": How Pupils with Moderate Learning Difficulties in Scottish Primary Special Schools Intuitively Solved Mathematical Word Problems

    ERIC Educational Resources Information Center

    Moscardini, Lio

    2010-01-01

    This study by Lio Moscardini of the University of Strathclyde shows how a group of 24 children in three Scottish primary schools for pupils with moderate learning difficulties responded to word problems following their teachers' introduction to the principles of Cognitively Guided Instruction (CGI). CGI is a professional development programme in…

  10. Achievement of First-, Second-, and Third-Grade Students on Multiplication and Division Word Problems in Two Different Solution Environments.

    ERIC Educational Resources Information Center

    O'Brien, Aileen; Cabral, Sheryl Ann

    This is a project in an emerging line of research investigating children's informed knowledge of mathematics questions. The purpose of this study was to analyze the ability of students who had not received multiplication or division instruction to solve multiplication and division word problems. The study consisted of videotaped interviews with 89…

  11. Clue Insensitivity in Remote Associates Test Problem Solving

    ERIC Educational Resources Information Center

    Smith, Steven M.; Sifonis, Cynthia M.; Angello, Genna

    2012-01-01

    Does spreading activation from incidentally encountered hints cause incubation effects? We used Remote Associates Test (RAT) problems to examine effects of incidental clues on impasse resolution. When solution words were seen incidentally 3-sec before initially unsolved problems were retested, more problems were resolved (Experiment 1). When…

  12. Design and Diagnosis Problem Solving with Multifunctional Technical Knowledge Bases

    DTIC Science & Technology

    1992-09-29

    STRUCTURE METHODOLOGY Design problem solving is a complex activity involving a number of subtasks. and a number of alternative methods potentially available...Conference on Artificial Intelligence. London: The British Computer Society, pp. 621-633. Friedland, P. (1979). Knowledge-based experimental design ...Computing Milieuxl: Management of Computing and Information Systems- -ty,*m man- agement General Terms: Design . Methodology Additional Key Words and Phrases

  13. The Role of Executive Function in Arithmetic Problem-Solving Processes: A Study of Third Graders

    ERIC Educational Resources Information Center

    Viterbori, Paola; Traverso, Laura; Usai, M. Carmen

    2017-01-01

    This study investigated the roles of different executive function (EF) components (inhibition, shifting, and working memory) in 2-step arithmetic word problem solving. A sample of 139 children aged 8 years old and regularly attending the 3rd grade of primary school were tested on 6 EF tasks measuring different EF components, a reading task and a…

  14. The Study on Network Examinational Database based on ASP Technology

    NASA Astrophysics Data System (ADS)

    Zhang, Yanfu; Han, Yuexiao; Zhou, Yanshuang

    This article introduces the structure of the general test base system based on .NET technology, discussing the design of the function modules and its implementation methods. It focuses on key technology of the system, proposing utilizing the WEB online editor control to solve the input problem and regular expression to solve the problem HTML code, making use of genetic algorithm to optimize test paper and the automated tools of WORD to solve the problem of exporting papers and others. Practical effective design and implementation technology can be used as reference for the development of similar systems.

  15. Using Psychometric Technology in Educational Assessment: The Case of a Schema-Based Isomorphic Approach to the Automatic Generation of Quantitative Reasoning Items

    ERIC Educational Resources Information Center

    Arendasy, Martin; Sommer, Markus

    2007-01-01

    This article deals with the investigation of the psychometric quality and constructs validity of algebra word problems generated by means of a schema-based version of the automatic min-max approach. Based on review of the research literature in algebra word problem solving and automatic item generation this new approach is introduced as a…

  16. Executive Functions Contribute Uniquely to Reading Competence in Minority Youth

    PubMed Central

    Jacobson, Lisa A.; Koriakin, Taylor; Lipkin, Paul; Boada, Richard; Frijters, Jan; Lovett, Maureen; Hill, Dina; Willcutt, Erik; Gottwald, Stephanie; Wolf, Maryanne; Bosson-Heenan, Joan; Gruen, Jeffrey R.; Mahone, E. Mark

    2018-01-01

    Competent reading requires various skills beyond those for basic word reading (i.e., core language skills, rapid naming, phonological processing). Contributing “higher-level” or domain-general processes include information processing speed and executive functions (working memory, strategic problem solving, attentional switching). Research in this area has relied on largely Caucasian samples, with limited representation of children from racial or ethnic minority groups. This study examined contributions of executive skills to reading competence in 761 children of minority backgrounds. Hierarchical linear regressions examined unique contributions of executive functions (EF) to word reading, fluency, and comprehension. EF contributed uniquely to reading performance, over and above reading-related language skills; working memory contributed uniquely to all components of reading; while attentional switching, but not problem solving, contributed to isolated and contextual word reading and reading fluency. Problem solving uniquely predicted comprehension, suggesting that this skill may be especially important for reading comprehension in minority youth. Attentional switching may play a unique role in development of reading fluency in minority youth, perhaps as a result of the increased demand for switching between spoken versus written dialects. Findings have implications for educational and clinical practice with regard to reading instruction, remedial reading intervention, and assessment of individuals with reading difficulty. PMID:26755569

  17. Studies in interactive communication. II - The effects of four communication modes on the linguistic performance of teams during cooperative problem solving

    NASA Technical Reports Server (NTRS)

    Chapanis, A.; Parrish, R. N.; Ochsman, R. B.; Weeks, G. D.

    1977-01-01

    Two-man teams solved credible, 'real world' problems for which computer assistance has been or could be useful. Conversations were carried on in one of four modes of communication: typewriting, handwriting, voice, and natural unrestricted communication. Performance was assessed on three classes of dependent measures: time to solution, behavioral measures of activity, and linguistic measures. Significant differences among the communication modes were found in each of the three classes. This paper is concerned mainly with the results of the linguistic analyses. Linguistic performance was assessed with 182 measures, most of which turned out to be redundant and some of which were useless or meaningless. Those that remain show that although problems can be solved faster in the oral modes than in the hard-copy modes, the oral modes are characterized by many more messages, sentences, words, and unique words; much higher communication rates; but lower type-token ratios. Although a number of significant problem and job-role effects were found, there were relatively few significant interactions of modes with thsse variables. It appears, therefore, that the mode effects hold for both problems and for both job roles assigned to the subjects.

  18. The Effects of a Modified Learning Strategy on the Multiple Step Mathematical Word Problem Solving Ability of Middle School Students with High-Functioning Autism or Asperger's Syndrome

    ERIC Educational Resources Information Center

    Schaefer Whitby, Peggy J.

    2009-01-01

    Children with HFA/AS are outperformed by their neuro-typical peers on mathematical problem solving skills even though they have average-to-above-average intelligence (Dickerson Mayes & Calhoun, 2003b); have average-to-above-average computation skills (Chiang & Lin, 2007); and, are educated in the general education setting (Twenty Eighth…

  19. Intellectual Abilities That Discriminate Good and Poor Problem Solvers.

    ERIC Educational Resources Information Center

    Meyer, Ruth Ann

    1981-01-01

    This study compared good and poor fourth-grade problem solvers on a battery of 19 "reference" tests for verbal, induction, numerical, word fluency, memory, perceptual speed, and simple visualization abilities. Results suggest verbal, numerical, and especially induction abilities are important to successful mathematical problem solving.…

  20. The impact of perceived self-efficacy on mental time travel and social problem solving.

    PubMed

    Brown, Adam D; Dorfman, Michelle L; Marmar, Charles R; Bryant, Richard A

    2012-03-01

    Current models of autobiographical memory suggest that self-identity guides autobiographical memory retrieval. Further, the capacity to recall the past and imagine one's self in the future (mental time travel) can influence social problem solving. We examined whether manipulating self-identity, through an induction task in which students were led to believe they possessed high or low self-efficacy, impacted episodic specificity and content of retrieved and imagined events, as well as social problem solving. Compared to individuals in the low self efficacy group, individuals in the high self efficacy group generated past and future events with greater (a) specificity, (b) positive words, and (c) self-efficacious statements, and also performed better on social problem solving indices. A lack of episodic detail for future events predicted poorer performance on social problem solving tasks. Strategies that increase perceived self-efficacy may help individuals to selectively construct a past and future that aids in negotiating social problems. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Perceptions of Ability to Program or to Use a Word Processor.

    ERIC Educational Resources Information Center

    Colley, Ann; And Others

    1996-01-01

    This study examined 117 undergraduates' perceptions of ability at computer programming and word processing. In particular, it rated the importance of prior experience factors, keyboarding skills, and personal attributes such as enjoyment of problem solving. Those were discovered, in general, to be more important than formal training or aptitude in…

  2. Linguistic Skills Involved in Learning to Spell: An Australian Study

    ERIC Educational Resources Information Center

    Daffern, Tessa

    2017-01-01

    Being able to accurately spell in Standard English requires efficient coordination of multiple knowledge sources. Therefore, spelling is a word-formation problem-solving process that can be difficult to learn. The present study uses Triple Word Form Theory as a conceptual framework to analyse Standard English spelling performance levels of…

  3. Factor Structure and Item Level Psychometrics of the Social Problem Solving Inventory Revised-Short Form in Traumatic Brain Injury

    PubMed Central

    Li, Chih-Ying; Waid-Ebbs, Julia; Velozo, Craig A.; Heaton, Shelley C.

    2016-01-01

    Primary Objective Social problem solving deficits characterize individuals with traumatic brain injury (TBI). Poor social problem solving interferes with daily functioning and productive lifestyles. Therefore, it is of vital importance to use the appropriate instrument to identify deficits in social problem solving for individuals with TBI. This study investigates factor structure and item-level psychometrics of the Social Problem Solving Inventory-Revised Short Form (SPSI-R:S), for adults with moderate and severe TBI. Research Design Secondary analysis of 90 adults with moderate and severe TBI who completed the SPSI-R:S. Methods and Procedures An exploratory factor analysis (EFA), principal components analysis (PCA) and Rasch analysis examined the factor structure and item-level psychometrics of the SPSI-R:S. Main Outcomes and Results The EFA showed three dominant factors, with positively worded items represented as the most definite factor. The other two factors are negative problem solving orientation and skills; and negative problem solving emotion. Rasch analyses confirmed the three factors are each unidimensional constructs. Conclusions The total score interpretability of the SPSI-R:S may be challenging due to the multidimensional structure of the total measure. Instead, we propose using three separate SPSI-R:S subscores to measure social problem solving for the TBI population. PMID:26052731

  4. Factor structure and item level psychometrics of the Social Problem Solving Inventory-Revised: Short Form in traumatic brain injury.

    PubMed

    Li, Chih-Ying; Waid-Ebbs, Julia; Velozo, Craig A; Heaton, Shelley C

    2016-01-01

    Social problem-solving deficits characterise individuals with traumatic brain injury (TBI), and poor social problem solving interferes with daily functioning and productive lifestyles. Therefore, it is of vital importance to use the appropriate instrument to identify deficits in social problem solving for individuals with TBI. This study investigates factor structure and item-level psychometrics of the Social Problem Solving Inventory-Revised: Short Form (SPSI-R:S), for adults with moderate and severe TBI. Secondary analysis of 90 adults with moderate and severe TBI who completed the SPSI-R:S was performed. An exploratory factor analysis (EFA), principal components analysis (PCA) and Rasch analysis examined the factor structure and item-level psychometrics of the SPSI-R:S. The EFA showed three dominant factors, with positively worded items represented as the most definite factor. The other two factors are negative problem-solving orientation and skills; and negative problem-solving emotion. Rasch analyses confirmed the three factors are each unidimensional constructs. It was concluded that the total score interpretability of the SPSI-R:S may be challenging due to the multidimensional structure of the total measure. Instead, we propose using three separate SPSI-R:S subscores to measure social problem solving for the TBI population.

  5. Using speakers' referential intentions to model early cross-situational word learning.

    PubMed

    Frank, Michael C; Goodman, Noah D; Tenenbaum, Joshua B

    2009-05-01

    Word learning is a "chicken and egg" problem. If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers' intended meanings. To the beginning learner, however, both individual word meanings and speakers' intentions are unknown. We describe a computational model of word learning that solves these two inference problems in parallel, rather than relying exclusively on either the inferred meanings of utterances or cross-situational word-meaning associations. We tested our model using annotated corpus data and found that it inferred pairings between words and object concepts with higher precision than comparison models. Moreover, as the result of making probabilistic inferences about speakers' intentions, our model explains a variety of behavioral phenomena described in the word-learning literature. These phenomena include mutual exclusivity, one-trial learning, cross-situational learning, the role of words in object individuation, and the use of inferred intentions to disambiguate reference.

  6. An exploratory study of the relationship between changes in emotion and cognitive processes and treatment outcome in borderline personality disorder.

    PubMed

    McMain, Shelley; Links, Paul S; Guimond, Tim; Wnuk, Susan; Eynan, Rahel; Bergmans, Yvonne; Warwar, Serine

    2013-01-01

    This exploratory study examined specific emotion processes and cognitive problem-solving processes in individuals with borderline personality disorder (BPD), and assessed the relationship of these changes to treatment outcome. Emotion and cognitive problem-solving processes were assessed using the Toronto Alexithymia Scale, the Linguistic Inquiry Word Count, the Derogatis Affect Balance Scale, and the Problem Solving Inventory. Participants who showed greater improvements in affect balance, problem solving, and the ability to identify and describe emotions showed greater improvements on treatment outcome, with affect balance remaining statistically significant under the most conservative conditions. The results provide preliminary evidence to support the theory that specific improvements in emotion and cognitive processes are associated with positive treatment outcomes (symptom distress, interpersonal functioning) in BPD. The implications for treatment are discussed.

  7. Learner-Centered Teaching and Improving Learning by Writing Down the Statement of Problems in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Aurora, Tarlok

    2005-04-01

    In a calculus-based introductory physics course, students were assigned to write the statements of word problems (along with the accompanying diagrams if any), analyze these, identify important concepts/equations and try to solve these end-of- chapter homework problems. They were required to bring to class their written assignment until the chapter was completed in lecture. These were quickly checked at the beginning of the class. In addition, re-doing selected solved examples in the textbook were assigned as homework. Where possible, students were asked to look for similarities between the solved-examples and the end-of-the-chapter problems, or occasionally these were brought to the students' attention. It was observed that many students were able to solve several of the solved-examples on the test even though the instructor had not solved these in class. This was seen as an improvement over the previous years. It made the students more responsible for their learning. Another benefit was that it alleviated the problems previously created by many students not bringing the textbooks to class. It allowed more time for problem solving/discussions in class.

  8. Gender Differences in Solution of Algebraic Word Problems Containing Irrelevant Information.

    ERIC Educational Resources Information Center

    Low, Renae; Over, Ray

    1993-01-01

    Female tenth graders (n=217) were less likely than male tenth graders (n=219) to identify missing or irrelevant information in algebra problems. Female eleventh graders (n=234) were less likely than male eleventh graders (n=287) to solve problems with irrelevant information. Results indicate sex differences in knowledge of problem structure. (SLD)

  9. Teaching between Desks

    ERIC Educational Resources Information Center

    Ermeling, Bradley A.; Graff-Ermeling, Genevieve

    2014-01-01

    Watch one of the Japan videos from the Trends in International Mathematics and Science Study (TIMSS)--more specifically, mathematics video 3 on solving inequalities1--and you'll see that after giving his students a word problem to solve, the 8th grade math teacher strolls among the students' desks for almost 15 minutes, leaning over to see what…

  10. Performance and Difficulties of Students in Formulating and Solving Quadratic Equations with One Unknown

    ERIC Educational Resources Information Center

    Didis, Makbule Gozde; Erbas, Ayhan Kursat

    2015-01-01

    This study attempts to investigate the performance of tenth-grade students in solving quadratic equations with one unknown, using symbolic equation and word-problem representations. The participants were 217 tenth-grade students, from three different public high schools. Data was collected through an open-ended questionnaire comprising eight…

  11. A Computational Model of Word Segmentation from Continuous Speech Using Transitional Probabilities of Atomic Acoustic Events

    ERIC Educational Resources Information Center

    Rasanen, Okko

    2011-01-01

    Word segmentation from continuous speech is a difficult task that is faced by human infants when they start to learn their native language. Several studies indicate that infants might use several different cues to solve this problem, including intonation, linguistic stress, and transitional probabilities between subsequent speech sounds. In this…

  12. Number Words in Young Children's Conceptual and Procedural Knowledge of Addition, Subtraction and Inversion

    ERIC Educational Resources Information Center

    Canobi, Katherine H.; Bethune, Narelle E.

    2008-01-01

    Three studies addressed children's arithmetic. First, 50 3- to 5-year-olds judged physical demonstrations of addition, subtraction and inversion, with and without number words. Second, 20 3- to 4-year-olds made equivalence judgments of additions and subtractions. Third, 60 4- to 6-year-olds solved addition, subtraction and inversion problems that…

  13. Variations in Both-Addends-Unknown Problems

    ERIC Educational Resources Information Center

    Champagne, Zachary M.; Schoen, Robert; Riddell, Claire M.

    2014-01-01

    Early elementary school students are expected to solve twelve distinct types of word problems. A math researcher and two teachers pose a structure for thinking about one problem type that has not been studied as closely as the other eleven. In this article, the authors share some of their discoveries with regard to the variety of…

  14. Principles for Framing a Healthy Food System.

    PubMed

    Hamm, Michael W

    2009-07-01

    Wicked problems are most simply defined as ones that are impossible to solve. In other words, the range of complex interacting influences and effects; the influence of human values in all their range; and the constantly changing conditions in which the problem exists guarantee that what we strive to do is improve the situation rather than solve the wicked problem. This does not mean that we cannot move a long way toward resolving the problem but simply that there is no clean endpoint. This commentary outlines principles that could be used in moving us toward a healthy food system within the framework of it presenting as a wicked problem.

  15. No Solutions: Resisting Certainty in Water Supply Management

    NASA Astrophysics Data System (ADS)

    Cockerill, K.; Armstrong, M.; Richter, J.; Okie, J. G.

    2017-12-01

    Although most scholars and water managers implicitly understand that managing water resources is an ongoing need, both popular and academic literature routinely use the words `solution' and `solve' in discussing water management concerns. The word `solution' reflects a quest for certainty, stability, permanence. A focus on `solving' creates a simplistic expectation that some person or institution is responsible for implementing a solution and that once `solved' the issue no longer requires attention. The reality, however, is water management is a wicked problem, meaning it is amorphous, involves multiple definitions, is embedded in complex systems, and hence is intractable. By definition, wicked problems defy solution. Our interdisciplinary project integrates research from across a broad spectrum of biological, physical, and social sciences. We find that framing a problem in terms of `solving' affects how people think, feel, behave toward the problem. Further, our work suggests that the prevalence of solution- based language has simultaneously generated expectations that science / scientists can predict and control biophysical systems and that science is not to be trusted because it has failed to deliver on previous promises to permanently `solve' events like floods or droughts. Hydrologic systems, are, of course highly uncertain. Hence, reiterating a simplistic insistence on `solving' water management concerns may result in decreased public attention to or support for more complex policy discussions that could provide long-term management strategies. Using the language of `solutions' with expectations of certainty sets hydrologic researchers and water managers up to fail. Managing water is a social responsibility and it will require consistent attention in the future, just as it has throughout human history. Scientists have a key role to play in explaining how various hydrologic systems function, but they should not be expected to `solve' pressing water management needs. Rather, reconsidering the language used to frame water management concerns can help us recognize our own culpability in creating water problems and our responsibility in continuously managing this most essential resource.

  16. Creating an Online Laboratory

    DTIC Science & Technology

    2015-03-18

    Problem (TSP) to solve, a canonical computer science problem that involves identifying the shortest itinerary for a hypothetical salesman traveling among a...also created working versions of the travelling salesperson problem , prisoners’ dilemma, public goods game, ultimatum game, word ladders, and...the task within networks of others performing the task. Thus, we built five problems which could be embedded in networks: the traveling salesperson

  17. Word Problems versus Image-Rich Problems: An Analysis of Effects of Task Characteristics on Students' Performance on Contextual Mathematics Problems

    ERIC Educational Resources Information Center

    Hoogland, Kees; Pepin, Birgit; de Koning, Jaap; Bakker, Arthur; Gravemeijer, Koeno

    2018-01-01

    This article reports on a "post hoc" study using a randomised controlled trial with 31,842 students in the Netherlands and an instrument consisting of 21 paired problems. The trial showed a variability in the differences of students' results in solving contextual mathematical problems with either a descriptive or a depictive…

  18. The Food Code in the Yakut Culture: Semantics and Functions

    ERIC Educational Resources Information Center

    Gabysheva, Luiza Lvovna

    2016-01-01

    The relevance of researching the issue of a specific cultural meaning for a word in a folklore text is based on its being insufficiently studied and due to the importance for solving the problem of the folklore language semantic features. Yakut nominations for dairy products, which are the key words in the language of the Sakha people's folklore,…

  19. Teaching Mathematical Word Problem Solving: The Quality of Evidence for Strategy Instruction Priming the Problem Structure

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Petersen-Brown, Shawna; Lein, Amy E.; Zaslofsky, Anne F.; Kunkel, Amy K.; Jung, Pyung-Gang; Egan, Andrea M.

    2015-01-01

    This study examined the quality of the research base related to strategy instruction priming the underlying mathematical problem structure for students with learning disabilities and those at risk for mathematics difficulties. We evaluated the quality of methodological rigor of 18 group research studies using the criteria proposed by Gersten et…

  20. THE APPLICATION OF ENGLISH-WORD MORPHOLOGY TO AUTOMATIC INDEXING AND EXTRACTING. ANNUAL SUMMARY REPORT.

    ERIC Educational Resources Information Center

    DOLBY, J.L.; AND OTHERS

    THE STUDY IS CONCERNED WITH THE LINGUISTIC PROBLEM INVOLVED IN TEXT COMPRESSION--EXTRACTING, INDEXING, AND THE AUTOMATIC CREATION OF SPECIAL-PURPOSE CITATION DICTIONARIES. IN SPITE OF EARLY SUCCESS IN USING LARGE-SCALE COMPUTERS TO AUTOMATE CERTAIN HUMAN TASKS, THESE PROBLEMS REMAIN AMONG THE MOST DIFFICULT TO SOLVE. ESSENTIALLY, THE PROBLEM IS TO…

  1. Understanding Problem-Solving Errors by Students with Learning Disabilities in Standards-Based and Traditional Curricula

    ERIC Educational Resources Information Center

    Bouck, Emily C.; Bouck, Mary K.; Joshi, Gauri S.; Johnson, Linley

    2016-01-01

    Students with learning disabilities struggle with word problems in mathematics classes. Understanding the type of errors students make when working through such mathematical problems can further describe student performance and highlight student difficulties. Through the use of error codes, researchers analyzed the type of errors made by 14 sixth…

  2. MONTO: A Machine-Readable Ontology for Teaching Word Problems in Mathematics

    ERIC Educational Resources Information Center

    Lalingkar, Aparna; Ramnathan, Chandrashekar; Ramani, Srinivasan

    2015-01-01

    The Indian National Curriculum Framework has as one of its objectives the development of mathematical thinking and problem solving ability. However, recent studies conducted in Indian metros have expressed concern about students' mathematics learning. Except in some private coaching academies, regular classroom teaching does not include problem…

  3. ALPS: A Linear Program Solver

    NASA Technical Reports Server (NTRS)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  4. Memory inhibition as a critical factor preventing creative problem solving.

    PubMed

    Gómez-Ariza, Carlos J; Del Prete, Francesco; Prieto Del Val, Laura; Valle, Tania; Bajo, M Teresa; Fernandez, Angel

    2017-06-01

    The hypothesis that reduced accessibility to relevant information can negatively affect problem solving in a remote associate test (RAT) was tested by using, immediately before the RAT, a retrieval practice procedure to hinder access to target solutions. The results of 2 experiments clearly showed that, relative to baseline, target words that had been competitors during selective retrieval were much less likely to be provided as solutions in the RAT, demonstrating that performance in the problem-solving task was strongly influenced by the predetermined accessibility status of the solutions in memory. Importantly, this was so even when participants were unaware of the relationship between the memory and the problem-solving procedures in the experiments. This finding is consistent with an inhibitory account of retrieval-induced forgetting effects and, more generally, constitutes support for the idea that the activation status of mental representations originating in a given task (e.g., episodic memory) can unwittingly have significant consequences for a different, unrelated task (e.g., problem solving). (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Using Verbal Protocol Data to Reflect the Quality of Problem Representation in Solving Algebra Word Problems.

    ERIC Educational Resources Information Center

    Bull, Elizabeth Kay

    The goal of this study was to find a way to quantify three criteria of representational quality, described by Greeno, so that it would be possible to examine statistically the relationship between representational quality and other variables related to problem solution. The sample consisted of 18 college students, 84 percent of whom had…

  6. Effects of Video-Based and Applied Problems on the Procedural Math Skills of Average- and Low-Achieving Adolescents.

    ERIC Educational Resources Information Center

    Bottge, Brian A.; Heinrichs, Mary; Chan, Shih-Yi; Mehta, Zara Dee; Watson, Elizabeth

    2003-01-01

    This study examined effects of video-based, anchored instruction and applied problems on the ability of 11 low-achieving (LA) and 26 average-achieving (AA) eighth graders to solve computation and word problems. Performance for both groups was higher during anchored instruction than during baseline, but no differences were found between instruction…

  7. The Relation between Students' Math and Reading Ability and Their Mathematics, Physics, and Chemistry Examination Grades in Secondary Education

    ERIC Educational Resources Information Center

    Korpershoek, Hanke; Kuyper, Hans; van der Werf, Greetje

    2015-01-01

    Word problems are math- or science-related problems presented in the context of a story or real-life scenario. Literature suggests that, to solve these problems, advanced reading skills are required, in addition to content-related skills in, for example, mathematics. In the present study, we investigated the relation between students' reading…

  8. The King and Prisoner Puzzle: A Way of Introducing the Components of Logical Structures

    ERIC Educational Resources Information Center

    Roh, Kyeong Hah; Lee, Yong Hah; Tanner, Austin

    2016-01-01

    The purpose of this paper is to provide issues related to student understanding of logical components that arise when solving word problems. We designed a logic problem called the King and Prisoner Puzzle--a linguistically simple, yet logically challenging problem. In this paper, we describe various student solutions to the puzzle and discuss the…

  9. Cognitive Profiles of Mathematical Problem Solving Learning Disability for Different Definitions of Disability

    PubMed Central

    Tolar, Tammy D.; Fuchs, Lynn; Fletcher, Jack M.; Fuchs, Douglas; Hamlett, Carol L.

    2014-01-01

    Three cohorts of third-grade students (N = 813) were evaluated on achievement, cognitive abilities, and behavioral attention according to contrasting research traditions in defining math learning disability (LD) status: low achievement versus extremely low achievement and IQ-achievement discrepant versus strictly low-achieving LD. We use methods from these two traditions to form math problem solving LD groups. To evaluate group differences, we used MANOVA-based profile and canonical analyses to control for relations among the outcomes and regression to control for group definition variables. Results suggest that basic arithmetic is the key distinguishing characteristic that separates low-achieving problem solvers (including LD, regardless of definition) from typically achieving students. Word problem solving is the key distinguishing characteristic that separates IQ-achievement-discrepant from strictly low-achieving LD students, favoring the IQ-achievement-discrepant students. PMID:24939971

  10. Quantitative Literacy across the Curriculum: Integrating Skills from English Composition, Mathematics, and the Substantive Disciplines

    ERIC Educational Resources Information Center

    Miller, Jane E.

    2010-01-01

    Quantitative literacy is an important proficiency that pertains to "word problems" from science, history, and other fields. Unfortunately, teaching how to solve such problems often is relegated to math courses alone. This article examines how quantitative literacy also involves concepts and skills from English composition and the substantive…

  11. Visual Representations in Mathematics Teaching: An Experiment with Students

    ERIC Educational Resources Information Center

    Debrenti, Edith

    2015-01-01

    General problem-solving skills are of central importance in school mathematics achievement. Word problems play an important role not just in mathematical education, but in general education as well. Meaningful learning and understanding are basic aspects of all kinds of learning and it is even more important in the case of learning mathematics. In…

  12. Elementary Students' Spontaneous Metacognitive Functions in Different Types of Mathematical Problems

    ERIC Educational Resources Information Center

    Mokos, Evagelos; Kafoussi, Sonia

    2013-01-01

    Metacognition is the mind's ability to monitor and control itself or, in other words, the ability to know about our knowing (Dunlosky & Bjork, 2008). In mathematics education, the importance of the investigation of students' metacognition during their mathematical activity has been focused on the area of mathematics problem solving. This study…

  13. Predicting Development of Mathematical Word Problem Solving Across the Intermediate Grades

    PubMed Central

    Tolar, Tammy D.; Fuchs, Lynn; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.

    2012-01-01

    This study addressed predictors of the development of word problem solving (WPS) across the intermediate grades. At beginning of 3rd grade, 4 cohorts of students (N = 261) were measured on computation, language, nonverbal reasoning skills, and attentive behavior and were assessed 4 times from beginning of 3rd through end of 5th grade on 2 measures of WPS at low and high levels of complexity. Language skills were related to initial performance at both levels of complexity and did not predict growth at either level. Computational skills had an effect on initial performance in low- but not high-complexity problems and did not predict growth at either level of complexity. Attentive behavior did not predict initial performance but did predict growth in low-complexity, whereas it predicted initial performance but not growth for high-complexity problems. Nonverbal reasoning predicted initial performance and growth for low-complexity WPS, but only growth for high-complexity WPS. This evidence suggests that although mathematical structure is fixed, different cognitive resources may act as limiting factors in WPS development when the WPS context is varied. PMID:23325985

  14. [The application of new technologies to solving maths problems for students with learning disabilities: the 'underwater school'].

    PubMed

    Miranda-Casas, A; Marco-Taverner, R; Soriano-Ferrer, M; Melià de Alba, A; Simó-Casañ, P

    2008-01-01

    Different procedures have demonstrated efficacy to teach cognitive and metacognitive strategies to problem solving in mathematics. Some studies have used computer-based problem solving instructional programs. To analyze in students with learning disabilities the efficacy of a cognitive strategies training for problem solving, with three instructional delivery formats: a teacher-directed program (T-D), a computer-assisted instructional (CAI) program, and a combined program (T-D + CAI). Forty-four children with mathematics learning disabilities, between 8 and 10 years old participated in this study. The children were randomly assigned to one of the three instructional formats and a control group without cognitive strategies training. In the three instructional conditions which were compared all the students learnt problems solving linguistic and visual cognitive strategies trough the self-instructional procedure. Several types of measurements were used for analysing the possible differential efficacy of the three instructional methods implemented: solving problems tests, marks in mathematics, internal achievement responsibility scale, and school behaviours teacher ratings. Our findings show that the T-D training group and the T-D + CAI group improved significantly on math word problem solving and on marks in Maths from pre- to post-testing. In addition, the results indicated that the students of the T-D + CAI group solved more real-life problems and developed more internal attributions compared to both control and CAI groups. Finally, with regard to school behaviours, improvements in school adjustment and learning problems were observed in the students of the group with a combined instructional format (T-D + CAI).

  15. Modifying a Social Problem-Solving Program With the Input of Individuals With Intellectual Disabilities and Their Staff

    PubMed Central

    Ailey, Sarah H.; Friese, Tanya R.; Nezu, Arthur M.

    2016-01-01

    Social problem-solving programs have shown success in reducing aggressive/challenging behaviors among individuals with intellectual disabilities in clinical settings, but have not been adapted for health promotion in community settings. We modified a social problem-solving program for the community setting of the group home. Multiple sequential methods were used to seek advice from community members on making materials understandable and on intervention delivery. A committee of group home supervisory staff gave advice on content and delivery. Cognitive interviews with individuals with intellectual disabilities and residential staff provided input on content wording and examples. Piloting the program provided experience with content and delivery. The process provides lessons on partnering with vulnerable populations and community stakeholders to develop health programs. PMID:22753149

  16. Cognitive mechanisms underlying third graders' arithmetic skills: Expanding the pathways to mathematics model.

    PubMed

    Träff, Ulf; Olsson, Linda; Skagerlund, Kenny; Östergren, Rickard

    2018-03-01

    A modified pathways to mathematics model was used to examine the cognitive mechanisms underlying arithmetic skills in third graders. A total of 269 children were assessed on tasks tapping the four pathways and arithmetic skills. A path analysis showed that symbolic number processing was directly supported by the linguistic and approximate quantitative pathways. The direct contribution from the four pathways to arithmetic proficiency varied; the linguistic pathway supported single-digit arithmetic and word problem solving, whereas the approximate quantitative pathway supported only multi-digit calculation. The spatial processing and verbal working memory pathways supported only arithmetic word problem solving. The notion of hierarchical levels of arithmetic was supported by the results, and the different levels were supported by different constellations of pathways. However, the strongest support to the hierarchical levels of arithmetic were provided by the proximal arithmetic skills. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The research on medical image classification algorithm based on PLSA-BOW model.

    PubMed

    Cao, C H; Cao, H L

    2016-04-29

    With the rapid development of modern medical imaging technology, medical image classification has become more important for medical diagnosis and treatment. To solve the existence of polysemous words and synonyms problem, this study combines the word bag model with PLSA (Probabilistic Latent Semantic Analysis) and proposes the PLSA-BOW (Probabilistic Latent Semantic Analysis-Bag of Words) model. In this paper we introduce the bag of words model in text field to image field, and build the model of visual bag of words model. The method enables the word bag model-based classification method to be further improved in accuracy. The experimental results show that the PLSA-BOW model for medical image classification can lead to a more accurate classification.

  18. Small

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya, Joseph

    Representing the Center on Nanostructuring for Efficient Energy Conversion (CNEEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of CNEEC is to understand how nanostructuring can enhance efficiency for energymore » conversion and solve fundamental cross-cutting problems in advanced energy conversion and storage systems.« less

  19. Process-based Assignment-Setting Change for Support of Overcoming Bottlenecks in Learning by Problem-Posing in Arithmetic Word Problems

    NASA Astrophysics Data System (ADS)

    Supianto, A. A.; Hayashi, Y.; Hirashima, T.

    2017-02-01

    Problem-posing is well known as an effective activity to learn problem-solving methods. Monsakun is an interactive problem-posing learning environment to facilitate arithmetic word problems learning for one operation of addition and subtraction. The characteristic of Monsakun is problem-posing as sentence-integration that lets learners make a problem of three sentences. Monsakun provides learners with five or six sentences including dummies, which are designed through careful considerations by an expert teacher as a meaningful distraction to the learners in order to learn the structure of arithmetic word problems. The results of the practical use of Monsakun in elementary schools show that many learners have difficulties in arranging the proper answer at the high level of assignments. The analysis of the problem-posing process of such learners found that their misconception of arithmetic word problems causes impasses in their thinking and mislead them to use dummies. This study proposes a method of changing assignments as a support for overcoming bottlenecks of thinking. In Monsakun, the bottlenecks are often detected as a frequently repeated use of a specific dummy. If such dummy can be detected, it is the key factor to support learners to overcome their difficulty. This paper discusses how to detect the bottlenecks and to realize such support in learning by problem-posing.

  20. P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems

    NASA Technical Reports Server (NTRS)

    Kang, Kab S.

    2002-01-01

    The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning

  1. Supervised guiding long-short term memory for image caption generation based on object classes

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cao, Zhiguo; Xiao, Yang; Qi, Xinyuan

    2018-03-01

    The present models of image caption generation have the problems of image visual semantic information attenuation and errors in guidance information. In order to solve these problems, we propose a supervised guiding Long Short Term Memory model based on object classes, named S-gLSTM for short. It uses the object detection results from R-FCN as supervisory information with high confidence, and updates the guidance word set by judging whether the last output matches the supervisory information. S-gLSTM learns how to extract the current interested information from the image visual se-mantic information based on guidance word set. The interested information is fed into the S-gLSTM at each iteration as guidance information, to guide the caption generation. To acquire the text-related visual semantic information, the S-gLSTM fine-tunes the weights of the network through the back-propagation of the guiding loss. Complementing guidance information at each iteration solves the problem of visual semantic information attenuation in the traditional LSTM model. Besides, the supervised guidance information in our model can reduce the impact of the mismatched words on the caption generation. We test our model on MSCOCO2014 dataset, and obtain better performance than the state-of-the- art models.

  2. Fast words boundaries localization in text fields for low quality document images

    NASA Astrophysics Data System (ADS)

    Ilin, Dmitry; Novikov, Dmitriy; Polevoy, Dmitry; Nikolaev, Dmitry

    2018-04-01

    The paper examines the problem of word boundaries precise localization in document text zones. Document processing on a mobile device consists of document localization, perspective correction, localization of individual fields, finding words in separate zones, segmentation and recognition. While capturing an image with a mobile digital camera under uncontrolled capturing conditions, digital noise, perspective distortions or glares may occur. Further document processing gets complicated because of its specifics: layout elements, complex background, static text, document security elements, variety of text fonts. However, the problem of word boundaries localization has to be solved at runtime on mobile CPU with limited computing capabilities under specified restrictions. At the moment, there are several groups of methods optimized for different conditions. Methods for the scanned printed text are quick but limited only for images of high quality. Methods for text in the wild have an excessively high computational complexity, thus, are hardly suitable for running on mobile devices as part of the mobile document recognition system. The method presented in this paper solves a more specialized problem than the task of finding text on natural images. It uses local features, a sliding window and a lightweight neural network in order to achieve an optimal algorithm speed-precision ratio. The duration of the algorithm is 12 ms per field running on an ARM processor of a mobile device. The error rate for boundaries localization on a test sample of 8000 fields is 0.3

  3. Apollo experience report: Voice communications techniques and performance

    NASA Technical Reports Server (NTRS)

    Dabbs, J. H.; Schmidt, O. L.

    1972-01-01

    The primary performance requirement of the spaceborne Apollo voice communications system is percent word intelligibility, which is related to other link/channel parameters. The effect of percent word intelligibility on voice channel design and a description of the verification procedures are included. Development and testing performance problems and the techniques used to solve the problems are also discussed. Voice communications performance requirements should be comprehensive and verified easily; the total system must be considered in component design, and the necessity of voice processing and the associated effect on noise, distortion, and cross talk should be examined carefully.

  4. Investigating the Effect of Complexity Factors in Gas Law Problems

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Kirk, John; Pienta, Norbert J.; Tang, Hui

    2012-01-01

    Undergraduate students were asked to complete gas law questions using a Web-based tool as a first step in our understanding of the role of cognitive load in chemistry word questions and in helping us assess student problem-solving. Each question contained five different complexity factors, which were randomly assigned by the tool so that a…

  5. Reflections on Language and Mathematics Problem Solving: A Case Study of a Bilingual First-Grade Teacher

    ERIC Educational Resources Information Center

    Musanti, Sandra I.; Celedon-Pattichis, Sylvia; Marshall, Mary E.

    2009-01-01

    This case study investigates a professional development initiative in which a first-grade bilingual teacher engages in learning and teaching Cognitively Guided Instruction, a framework for understanding student thinking through context-rich word-problem lessons. The study explores (a) the impact of classroom-based professional development on a…

  6. An Ethnographic Study of the Computational Strategies of a Group of Young Street Vendors in Beirut.

    ERIC Educational Resources Information Center

    Jurdak, Murad; Shahin, Iman

    1999-01-01

    Examines the computational strategies of 10 young street vendors in Beirut by describing, comparing, and analyzing computational strategies used in solving three types of problems: (1) transactions in the workplace; (2) word problems; and (3) computation exercises in a school-like setting. Indicates that vendors' use of semantically-based mental…

  7. Anodal Transcranial Direct Current Stimulation of the Prefrontal Cortex Enhances Complex Verbal Associative Thought

    ERIC Educational Resources Information Center

    Cerruti, Carlo; Schlaug, Gottfried

    2009-01-01

    The remote associates test (RAT) is a complex verbal task with associations to both creative thought and general intelligence. RAT problems require not only lateral associations and the internal production of many words but a convergent focus on a single answer. Complex problem-solving of this sort may thus require both substantial verbal…

  8. The diminishing criterion model for metacognitive regulation of time investment.

    PubMed

    Ackerman, Rakefet

    2014-06-01

    According to the Discrepancy Reduction Model for metacognitive regulation, people invest time in cognitive tasks in a goal-driven manner until their metacognitive judgment, either judgment of learning (JOL) or confidence, meets their preset goal. This stopping rule should lead to judgments above the goal, regardless of invested time. However, in many tasks, time is negatively correlated with JOL and confidence, with low judgments after effortful processing. This pattern has often been explained as stemming from bottom-up fluency effects on the judgments. While accepting this explanation for simple tasks, like memorizing pairs of familiar words, the proposed Diminishing Criterion Model (DCM) challenges this explanation for complex tasks, like problem solving. Under the DCM, people indeed invest effort in a goal-driven manner. However, investing more time leads to increasing compromise on the goal, resulting in negative time-judgment correlations. Experiment 1 exposed that with word-pair memorization, negative correlations are found only with minimal fluency and difficulty variability, whereas in problem solving, they are found consistently. As predicted, manipulations of low incentives (Experiment 2) and time pressure (Experiment 3) in problem solving revealed greater compromise as more time was invested in a problem. Although intermediate confidence ratings rose during the solving process, the result was negative time-confidence correlations (Experiments 3, 4, and 5), and this was not eliminated by the opportunity to respond "don't know" (Experiments 4 and 5). The results suggest that negative time-judgment correlations in complex tasks stem from top-down regulatory processes with a criterion that diminishes with invested time. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Learning From Physics Instruction

    ERIC Educational Resources Information Center

    Shavelson, Richard J.

    1973-01-01

    Extends P. E. Jonson's studies of physics learning by analyzing, on the basis of a 12-student control group, 24 high-school students' word associations, aptitude scores, and achievement results during instruction. Indicated a positive relationship between problem-solving ability and meaningful concept formation. (CC)

  10. How Readability Factors Are Differentially Associated with Performance for Students of Different Backgrounds When Solving Mathematics Word Problems

    ERIC Educational Resources Information Center

    Walkington, Candace; Clinton, Virginia; Shivraj, Pooja

    2018-01-01

    The link between reading and mathematics achievement is well known, and an important question is whether readability factors in mathematics problems are differentially impacting student groups. Using 20 years of data from the National Assessment of Educational Progress and the Trends in International Mathematics and Science Study, we examine how…

  11. Developing Animated Cartoons for Economic Teaching

    ERIC Educational Resources Information Center

    Zhang, Yu Aimee

    2012-01-01

    Purpose: A picture is worth a thousand words. Multimedia teaching materials have been widely adopted by teachers in Physics, Biotechnology, Psychology, Religion, Analytical Science, and Economics nowadays. To assist with engaging students in their economic study, increase learning efficiency and understanding, solve misconception problems,…

  12. Strategy Instruction in Mathematics.

    ERIC Educational Resources Information Center

    Goldman, Susan R.

    1989-01-01

    Experiments in strategy instruction for mathematics have been conducted using three models (direct instruction, self-instruction, and guided learning) applied to the tasks of computation and word problem solving. Results have implications for effective strategy instruction for learning disabled students. It is recommended that strategy instruction…

  13. A New Strategic Approach to Technology Transfer

    USDA-ARS?s Scientific Manuscript database

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  14. Effects of topiramate on language functions in newly diagnosed pediatric epileptic patients.

    PubMed

    Kim, Sun Jun; Kim, Moon Yeon; Choi, Yoon Mi; Song, Mi Kyoung

    2014-09-01

    The aim of this study was to characterize the effects of topiramate on language functions in newly diagnosed pediatric epileptic patients. Thirty-eight newly diagnosed epileptic patients were assessed using standard language tests. Data were collected before and after beginning topiramate during which time a monotherapy treatment regimen was maintained. Language tests included the Test of Language Problem Solving Abilities, a Korean version of the Peabody Picture Vocabulary Test. We used language tests in the Korean version because all the patients were spoken Korean exclusively in their families. All the language parameters of Test of Language Problem Solving Abilities worsened after initiation of topiramate (determine cause, 13.2 ± 4.8 to 11.2 ± 4.3; problem solving, 14.8 ± 6.0 to 12.8 ± 5.0; predicting, 9.8 ± 3.6 to 8.8 ± 4.6). Patients given topiramate exhibited a shortened mean length of utterance in words during response (determine cause, 4.8 ± 0.9 to 4.3 ± 0.7; making inference, 4.5 ± 0.8 to 4.1 ± 1.1; predicting, 5.2 ± 1.0 to 4.7 ± 0.6; P < 0.05), provided ambiguous answers during the testing, exhibited difficulty in selecting appropriate words, took more time to provide answers, and used incorrect grammar. However, there were no statistically significant changes in the receptive language of patients after taking topiramate (95.4 ± 20.4 to 100.8 ± 19.1). Our data suggest that topiramate may have negative effects on problem-solving abilities in children. We recommend performing language tests should be considered in children being treated with topiramate. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Executive Functions Contribute Uniquely to Reading Competence in Minority Youth

    ERIC Educational Resources Information Center

    Jacobson, Lisa A.; Koriakin, Taylor; Lipkin, Paul; Boada, Richard; Frijters, Jan C.; Lovett, Maureen W.; Hill, Dina; Willcutt, Erik; Gottwald, Stephanie; Wolf, Maryanne; Bosson-Heenan, Joan; Gruen, Jeffrey R.; Mahone, E. Mark

    2017-01-01

    Competent reading requires various skills beyond those for basic word reading (i.e., core language skills, rapid naming, phonological processing). Contributing "higher-level" or domain-general processes include information processing speed and executive functions (working memory, strategic problem solving, attentional switching).…

  16. Comments and Criticism: Comment on "Identification of Student Misconceptions in Genetics Problem Solving via Computer Program."

    ERIC Educational Resources Information Center

    Smith, Mike U.

    1991-01-01

    Criticizes an article by Browning and Lehman (1988) for (1) using "gene" instead of allele, (2) misusing the word "misconception," and (3) the possible influences of the computer environment on the results of the study. (PR)

  17. Cognitive Strategies, Working Memory, and Growth in Word Problem Solving in Children With Math Difficulties.

    PubMed

    Swanson, H Lee; Lussier, Catherine M; Orosco, Michael J

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on word problem solving accuracy in children with (n = 100) and without (n = 92) math difficulties (MD). Within classrooms, children in Grades 2 and 3 were randomly assigned to one of four treatment conditions: verbal-only strategies (e.g., underlining question sentence), verbal + visual strategies, visual-only strategies (e.g., correctly placing numbers in diagrams), or untreated control. Strategy interventions included 20 sessions in both Year 1 and Year 2. The intent-to-treat as well as the "as-treated" analyses showed that treatment effects were significantly moderated by WMC. In general, treatment outcomes were higher when WMC was set to a high rather than low level. When set to a relatively high WMC level, children with MD performed significantly better under visual-only strategy conditions and children without MD performed better under verbal + visual conditions when compared to control conditions. © Hammill Institute on Disabilities 2013.

  18. Cognitive Predictors of Achievement Growth in Mathematics: A Five Year Longitudinal Study

    PubMed Central

    Geary, David C.

    2011-01-01

    The study's goal was to identify the beginning of first grade quantitative competencies that predict mathematics achievement start point and growth through fifth grade. Measures of number, counting, and arithmetic competencies were administered in early first grade and used to predict mathematics achievement through fifth (n = 177), while controlling for intelligence, working memory, and processing speed. Multilevel models revealed intelligence, processing speed, and the central executive component of working memory predicted achievement or achievement growth in mathematics and, as a contrast domain, word reading. The phonological loop was uniquely predictive of word reading and the visuospatial sketch pad of mathematics. Early fluency in processing and manipulating numerical set size and Arabic numerals, accurate use of sophisticated counting procedures for solving addition problems, and accuracy in making placements on a mathematical number line were uniquely predictive of mathematics achievement. Use of memory-based processes to solve addition problems predicted mathematics and reading achievement but in different ways. The results identify the early quantitative competencies that uniquely contribute to mathematics learning. PMID:21942667

  19. Do different types of school mathematics development depend on different constellations of numerical versus general cognitive abilities?

    PubMed

    Fuchs, Lynn S; Geary, David C; Compton, Donald L; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Bryant, Joan D; Schatschneider, Christopher

    2010-11-01

    The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (N = 280; mean age = 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations, and word problems in fall and then reassessed on procedural calculations and word problems in spring. Development was indexed by latent change scores, and the interplay between numerical and domain-general abilities was analyzed by multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of procedural calculations and word problems development. Yet, for procedural calculations development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for word problems development, the set of domain-general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive.

  20. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    PubMed

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  1. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties

    PubMed Central

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil’s Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children’s LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions. PMID:26090806

  2. Autobiographical memory, interpersonal problem solving, and suicidal behavior in adolescent inpatients.

    PubMed

    Arie, Miri; Apter, Alan; Orbach, Israel; Yefet, Yael; Zalsman, Gil; Zalzman, Gil

    2008-01-01

    The aim of the study was to test Williams' (Williams JMG. Depression and the specificity of autobiographical memory. In: Rubin D, ed. Remembering Our Past: Studies in Autobiographical Memory. London: Cambridge University Press; 1996:244-267.) theory of suicidal behavior in adolescents and young adults by examining the relationship among suicidal behaviors, defective ability to retrieve specific autobiographical memories, impaired interpersonal problem solving, negative life events, repression, and hopelessness. Twenty-five suicidal adolescent and young adult inpatients (16.5 y +/- 2.5) were compared with 25 nonsuicidal adolescent and young adult inpatients (16.5 y +/- 2.5) and 25 healthy controls. Autobiographical memory was tested by a word association test; problem solving by the means-ends problem solving technique; negative life events by the Coddington scale; repression by the Life Style Index; hopelessness by the Beck scale; suicidal risk by the Plutchik scale, and suicide attempt by clinical history. Impairment in the ability to produce specific autobiographical memories, difficulties with interpersonal problem solving, negative life events, and repression were all associated with hopelessness and suicidal behavior. There were significant correlations among all the variables except for repression and negative life events. These findings support Williams' notion that generalized autobiographical memory is associated with deficits in interpersonal problem solving, negative life events, hopelessness, and suicidal behavior. The finding that defects in autobiographical memory are associated with suicidal behavior in adolescents and young adults may lead to improvements in the techniques of cognitive behavioral therapy in this age group.

  3. The relation between language and arithmetic in bilinguals: insights from different stages of language acquisition

    PubMed Central

    Van Rinsveld, Amandine; Brunner, Martin; Landerl, Karin; Schiltz, Christine; Ugen, Sonja

    2015-01-01

    Solving arithmetic problems is a cognitive task that heavily relies on language processing. One might thus wonder whether this language-reliance leads to qualitative differences (e.g., greater difficulties, error types, etc.) in arithmetic for bilingual individuals who frequently have to solve arithmetic problems in more than one language. The present study investigated how proficiency in two languages interacts with arithmetic problem solving throughout language acquisition in adolescents and young adults. Additionally, we examined whether the number word structure that is specific to a given language plays a role in number processing over and above bilingual proficiency. We addressed these issues in a German–French educational bilingual setting, where there is a progressive transition from German to French as teaching language. Importantly, German and French number naming structures differ clearly, as two-digit number names follow a unit-ten order in German, but a ten-unit order in French. We implemented a transversal developmental design in which bilingual pupils from grades 7, 8, 10, 11, and young adults were asked to solve simple and complex additions in both languages. The results confirmed that language proficiency is crucial especially for complex addition computation. Simple additions in contrast can be retrieved equally well in both languages after extended language practice. Additional analyses revealed that over and above language proficiency, language-specific number word structures (e.g., unit-ten vs. ten-unit) also induced significant modulations of bilinguals' arithmetic performances. Taken together, these findings support the view of a strong relation between language and arithmetic in bilinguals. PMID:25821442

  4. On the adaptive function of children's and adults' false memories.

    PubMed

    Howe, Mark L; Wilkinson, Samantha; Garner, Sarah R; Ball, Linden J

    2016-09-01

    Recent research has shown that memory illusions can successfully prime both children's and adults' performance on complex, insight-based problems (compound remote associates tasks or CRATs). The current research aimed to clarify the locus of these priming effects. Like before, Deese-Roediger-McDermott (DRM) lists were selected to prime subsequent CRATs such that the critical lures were also the solution words to a subset of the CRATs participants attempted to solve. Unique to the present research, recognition memory tests were used and participants were either primed during the list study phase, during the memory test phase, or both. Across two experiments, primed problems were solved more frequently and significantly faster than unprimed problems. Moreover, when participants were primed during the list study phase, subsequent solution times and rates were considerably superior to those produced by those participants who were simply primed at test. Together, these are the first results to show that false-memory priming during encoding facilitates problem-solving in both children and adults.

  5. On the adaptive function of children's and adults’ false memories

    PubMed Central

    Howe, Mark L.; Wilkinson, Samantha; Garner, Sarah R.; Ball, Linden J.

    2016-01-01

    ABSTRACT Recent research has shown that memory illusions can successfully prime both children's and adults' performance on complex, insight-based problems (compound remote associates tasks or CRATs). The current research aimed to clarify the locus of these priming effects. Like before, Deese–Roediger–McDermott (DRM) lists were selected to prime subsequent CRATs such that the critical lures were also the solution words to a subset of the CRATs participants attempted to solve. Unique to the present research, recognition memory tests were used and participants were either primed during the list study phase, during the memory test phase, or both. Across two experiments, primed problems were solved more frequently and significantly faster than unprimed problems. Moreover, when participants were primed during the list study phase, subsequent solution times and rates were considerably superior to those produced by those participants who were simply primed at test. Together, these are the first results to show that false-memory priming during encoding facilitates problem-solving in both children and adults. PMID:26230151

  6. Developing Multimedia Supplementary Materials to Support Learning Beginning Level Chinese Characters

    ERIC Educational Resources Information Center

    Xu, Lisha

    2017-01-01

    Studies investigating beginner Chinese learners' character learning strategies found that learners considered orthographic knowledge the most useful factor (Ke, 1998; Shen, 2005). Orthographic recognition correlates with character identification and production and can be used by advanced learners to solve word identification problems (Everson,…

  7. A Tight Squeeze

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2008-01-01

    The Storage Networking Industry Association (SNIA) does not mince words when describing the looming data storage problem. In its 2007 report, "Solving the Coming Archive Crisis--the 100-Year Dilemma," the trade group asserts that the volume of disparate digital information sources being kept online for long-term preservation is overwhelming and…

  8. Early Mathematics Fluency with CCSSM

    ERIC Educational Resources Information Center

    Matney, Gabriel T.

    2014-01-01

    To develop second-grade students' confidence and ease, this author presents examples of learning tasks (Number of the Day, Word Problem Solving, and Modeling New Mathematical Ideas) that align with Common Core State Standards for Mathematics and that build mathematical fluency to promote students' creative expression of mathematical…

  9. An associative account of the development of word learning.

    PubMed

    Sloutsky, Vladimir M; Yim, Hyungwook; Yao, Xin; Dennis, Simon

    2017-09-01

    Word learning is a notoriously difficult induction problem because meaning is underdetermined by positive examples. How do children solve this problem? Some have argued that word learning is achieved by means of inference: young word learners rely on a number of assumptions that reduce the overall hypothesis space by favoring some meanings over others. However, these approaches have difficulty explaining how words are learned from conversations or text, without pointing or explicit instruction. In this research, we propose an associative mechanism that can account for such learning. In a series of experiments, 4-year-olds and adults were presented with sets of words that included a single nonsense word (e.g. dax). Some lists were taxonomic (i.,e., all items were members of a given category), some were associative (i.e., all items were associates of a given category, but not members), and some were mixed. Participants were asked to indicate whether the nonsense word was an animal or an artifact. Adults exhibited evidence of learning when lists consisted of either associatively or taxonomically related items. In contrast, children exhibited evidence of word learning only when lists consisted of associatively related items. These results present challenges to several extant models of word learning, and a new model based on the distinction between syntagmatic and paradigmatic associations is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Computer-Based Instruction Research: Implications for Design.

    ERIC Educational Resources Information Center

    Ross, Steven M.; And Others

    The development and evaluation of several microcomputer-based strategies designed to facilitate learning how to solve mathematics word problems by personalizing examples in accord with individuals' background and interests are described in this paper. The first of two studies conducted with fifth and sixth grade students to evaluate these…

  11. The Contribution of Domain-Specific Knowledge in Predicting Students' Proportional Word Problem Solving Performance

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Lein, Amy E.; Star, Jon R.; Dupuis, Danielle N.

    2013-01-01

    Proportional thinking, which requires understanding fractions, ratios, and proportions, is an area of mathematics that is cognitively challenging for many children and adolescents (Fujimura, 2001; Lamon, 2007; Lobato, Ellis, Charles, & Zbiek, 2010; National Mathematics Advisory Panel [NMAP], 2008) and "transcends topical barriers in adult…

  12. Beyond Literacy in an Uncertain World.

    ERIC Educational Resources Information Center

    Delker, Paul V.

    Media statements and pronouncements by leaders in various sectors throughout the nation confirm that literacy still means the ability to work with the printed or written word. It is also evident that the term literacy includes more than reading. Literacy encompasses writing, speaking and listening, computing, and even problem-solving skills.…

  13. Mathematical Modeling with MyMaps and Spreadsheets

    ERIC Educational Resources Information Center

    Weber, Victoria; Fortune, Nicholas; Williams, Derek; Whitehead, Ashley

    2016-01-01

    Software programs such as Tinkerplots ® or Geometer's Sketchpad ® can help students solve problems in mathematics classes, but may not be available to them after high school. In contrast, many students who become familiar with Internet tools and programs in office packages (word processing, spreadsheets, etc.) may use them daily to enhance their…

  14. "Explicame tu Respuesta": Supporting the Development of Mathematical Discourse in Emergent Bilingual Kindergarten Students

    ERIC Educational Resources Information Center

    Celedon-Pattichis, Sylvia; Turner, Erin E.

    2012-01-01

    This study investigated Spanish-speaking kindergarten students' participation in mathematical discourse as they solved and discussed a range of word problems. Specifically, we draw upon sociocultural perspectives on mathematics learning to frame mathematical discourse and to examine specific teacher and student actions that seemed to support the…

  15. Successfully Transitioning to Linear Equations

    ERIC Educational Resources Information Center

    Colton, Connie; Smith, Wendy M.

    2014-01-01

    The Common Core State Standards for Mathematics (CCSSI 2010) asks students in as early as fourth grade to solve word problems using equations with variables. Equations studied at this level generate a single solution, such as the equation x + 10 = 25. For students in fifth grade, the Common Core standard for algebraic thinking expects them to…

  16. Mission: Define Computer Literacy. The Illinois-Wisconsin ISACS Computer Coordinators' Committee on Computer Literacy Report (May 1985).

    ERIC Educational Resources Information Center

    Computing Teacher, 1985

    1985-01-01

    Defines computer literacy and describes a computer literacy course which stresses ethics, hardware, and disk operating systems throughout. Core units on keyboarding, word processing, graphics, database management, problem solving, algorithmic thinking, and programing are outlined, together with additional units on spreadsheets, simulations,…

  17. Curriculum Study, Curriculum History, and Curriculum Theory: The Reason of Reason

    ERIC Educational Resources Information Center

    Popkewitz, Thomas S.

    2009-01-01

    This paper explores the intersection of curriculum studies/curriculum history/curriculum theory through the study of systems of reason that order reflection and action. Words about "learning", "empowerment", "problem-solving", "self-realization", "community", and so on, are not merely there in order that educators should "grasp" some reality to…

  18. Improving the Fraction Word Problem Solving of Students with Mathematics Learning Disabilities: Interactive Computer Application

    ERIC Educational Resources Information Center

    Shin, Mikyung; Bryant, Diane P.

    2017-01-01

    Students with mathematics learning disabilities (MLD) have a weak understanding of fraction concepts and skills, which are foundations of algebra. Such students might benefit from computer-assisted instruction that utilizes evidence-based instructional components (cognitive strategies, feedback, virtual manipulatives). As a pilot study using a…

  19. Myth #8: Reading Is More Important than Math.

    ERIC Educational Resources Information Center

    Literacy Beat, 1988

    1988-01-01

    Adeptness in abstractions and analysis--the language of math--is at least as important as adeptness at reading words for individuals in business and industry. Mathematics literacy stimulates the problem-solving and critical thinking skills that the workplace now demands. A National Assessment of Educational Progress study found that about half of…

  20. Dialogic Ruptures: An Ethical Imperative

    ERIC Educational Resources Information Center

    Arndt, Sonja

    2017-01-01

    Dialogue is promoted as a key strategy to "solve" the "problem" of diversity in educational settings. Yet, "[w]hen we select words … We usually take them from other utterances, and mainly from utterances that are kindred to ours in genre, that is in theme, composition or style" (p. 87, emphasis in the original). This…

  1. Creating Meaning through Multimodality: Multiliteracies Assessment and Photo Projects for Online Portfolios

    ERIC Educational Resources Information Center

    Schmerbeck, Nicola; Lucht, Felecia

    2017-01-01

    Actively engaged in online media, learners today are surrounded by texts overtly and covertly transmitted by visual images, sound effects, and voices as well as the written word. Language learning portfolios can engage students in the literacy-oriented learning processes of interpretation, collaboration, and problem solving as outlined by Kern…

  2. Initial implementation of The National Map

    USGS Publications Warehouse

    Roth, K.

    2003-01-01

    The development of The National Map is "national" in the broadest sense of the word. Although the U.S. Geological Survey is taking the lead, local governments, states, and regions are active and essential partners in the process, contributing, for example, data updates, problem-solving data integration, and map development from multiple data layers.

  3. Solving the Actuation Problem: Merger and Immigration in Eastern Pennsylvania.

    ERIC Educational Resources Information Center

    Herold, Ruth

    1997-01-01

    Uses interview and telephone survey data to demonstrate that the merger of the vowels in words such as "cot" and "caught," traditionally considered a defining characteristics of the speech of western Pennsylvania, is well established in the mining towns of eastern Pennsylvania. Notes that the data indicate that the merger arose…

  4. The Interactive Effects of Self-Perceptions and Job Requirements on Creative Problem Solving

    ERIC Educational Resources Information Center

    Robinson-Morral, Erika J.; Reiter-Palmon, Roni; Kaufman, James C.

    2013-01-01

    Over the years, researchers have focused on ways to facilitate creativity in the workplace by looking at individual factors and organizational factors that affect employee creativity (Woodman, Sawyer, & Griffin, [Woodman, R.W., 1993]). In many cases, the factors that affect creativity are examined independently. In other words, it is uncommon…

  5. Evaluating Computer Integration in the Elementary School: A Step-by-Step Guide.

    ERIC Educational Resources Information Center

    Mowe, Richard

    This handbook was written to enable elementary school educators to conduct formative evaluations of their computer integrated instruction (CII) programs in minimum time. CII is defined as the use of computer software, such as word processing, database, and graphics programs, to help students solve problems or work more productively. The first…

  6. The Better Boat Challenge

    ERIC Educational Resources Information Center

    Schomburg, Aaron

    2008-01-01

    "On your mark, get set, go!" Elementary students love to hear these words as they participate in the annual Third Grade Better Boat Challenge. This highly motivational project started a few years ago as the author was developing the third-grade science curriculum to include a study that revolved around models, design, and problem solving. It has…

  7. Multimedia Cai Program for Students with Mathematics Difficulties

    ERIC Educational Resources Information Center

    Seo, You-Jin; Bryant, Diane

    2012-01-01

    This study investigated the effectiveness of "Math Explorer" at enhancing the word problem-solving skills of students with mathematics difficulties (MD). The study, which had a multiple-probe-across-subjects design, was conducted over 18 weeks. Four students with MD in Grades 2 and 3 participated. All students were able to use the four-step…

  8. Journal of Undergraduate Psychological Research, Vol. 1, No. 1.

    ERIC Educational Resources Information Center

    Ladd, Sandra L., Ed.; Hughmanick, Michael, Ed.

    1974-01-01

    Articles resulting from studies conducted by college undergraduates in all areas of experimental psychology are provided, together with abstracts of other papers authored by students in the field of study. The articles are: The Influence of SET on Solving Hidden-Word Problems by Lana I. Boutacoff; Violation of Personal Space in Deviant Adolescents…

  9. The Association between Students' Number Knowledge and Social Disadvantage at School Entry

    ERIC Educational Resources Information Center

    Gould, Peter

    2014-01-01

    At the start of the Kindergarten year in New South Wales (NSW) government schools, teachers gather information on several aspects of children's number knowledge to guide their teaching programs. This includes knowledge of the sequence of words used for counting, numeral identification, and using counting to solve problems. This study investigated…

  10. Grounded for life: creative symbol-grounding for lexical invention

    NASA Astrophysics Data System (ADS)

    Veale, Tony; Al-Najjar, Khalid

    2016-04-01

    One of the challenges of linguistic creativity is to use words in a way that is novel and striking and even whimsical, to convey meanings that remain stubbornly grounded in the very same world of familiar experiences as serves to anchor the most literal and unimaginative language. The challenge remains unmet by systems that merely shuttle or arrange words to achieve novel arrangements without concern as to how those arrangements are to spur the processes of meaning construction in a listener. In this paper we explore a problem of lexical invention that cannot be solved without a model - explicit or implicit - of the perceptual grounding of language: the invention of apt new names for colours. To solve this problem here we shall call upon the notion of a linguistic readymade, a phrase that is wrenched from its original context of use to be given new meaning and new resonance in new settings. To ensure that our linguistic readymades - which owe a great deal to Marcel Duchamp's notion of found art - are anchored in a consensus model of perception, we introduce the notion of a lexicalised colour stereotype.

  11. Normative data for Chinese compound remote associate problems.

    PubMed

    Wu, Ching-Lin; Chen, Hsueh-Chih

    2017-12-01

    The Remote Associates Test (RAT) is a well-known measure of creativity, with each item on the RAT is composed of three unrelated stimulus words. The participant's task is to find an answer in the form of a word that could combine with each of the stimulus words, thus forming three new actual nouns. Researchers have modified the RAT to develop compound remote associate problems that emphasize combining vocabulary to form compound words. In the field of creativity research for Mandarin speakers, the Chinese RAT has been widely applied for over 10 years. The original RAT, compound remote associate problems, and Chinese RAT have various common advantages, such as being convenient to use and having objective scoring; additionally, the development of items for certain tests is easy and satisfies the requirements of psychological assessments in terms of the quantity of items. Currently, many language editions of the RAT and compound remote associate problems already exist. In particular, the English and Italian versions of these tests already have derived normative data. Because approximately 20% of the world's population are native Mandarin speakers, and because increasing numbers of people are choosing Mandarin as a second language, the need to increase Mandarin-language resources is growing; however, normative data for the Chinese RAT still do not exist. To address this issue, in the present study we developed Chinese compound remote associate problems and analyzed the passing rates by items, problem solving times, and various normative data, using the responses of 253 subjects in three experiments.

  12. Three Modes of Hydrogeophysical Investigation: Puzzles, Mysteries, and Conundrums

    NASA Astrophysics Data System (ADS)

    Ferre, P. A.

    2011-12-01

    In an article in the New Yorker in 2007, Malcolm Gladwell discussed the distinction that national security expert Gregory Treverton has made between puzzles and mysteries. Specifically, puzzles are problems that we understand and that will eventually be solved when we amass enough information. (Think crossword puzzles.) Mysteries are problems for which we have the necessary information, but it is often overwhelmed by irrelevant or misleading input. To solve a mystery, we require improved analysis. (Think find-a-word.) Gladwell goes on to explain that, in the national security realm, the Cold War was a puzzle while the current national security condition is a mystery. I will discuss the past, current, and future trajectories of hydrogeophysics in terms of puzzles and mysteries. I will also add a third class of problem: conundrums - those for which we lack sufficient information about their structure to know how to solve them. A conundrum is a mystery with an unexpected twist. I hope to make the case that the future growth of hydrogeophysics lies in our ability to address this more challenging and more interesting class of problem.

  13. Calculation and word problem-solving skills in primary grades - Impact of cognitive abilities and longitudinal interrelations with task-persistent behaviour.

    PubMed

    Jõgi, Anna-Liisa; Kikas, Eve

    2016-06-01

    Primary school math skills form a basis for academic success down the road. Different math skills have different antecedents and there is a reason to believe that more complex math tasks require better self-regulation. The study aimed to investigate longitudinal interrelations of calculation and problem-solving skills, and task-persistent behaviour in Grade 1 and Grade 3, and the effect of non-verbal intelligence, linguistic abilities, and executive functioning on math skills and task persistence. Participants were 864 students (52.3% boys) from 33 different schools in Estonia. Students were tested twice - at the end of Grade1 and at the end of Grade 3. Calculation and problem-solving skills, and teacher-rated task-persistent behaviour were measured at both time points. Non-verbal intelligence, linguistic abilities, and executive functioning were measured in Grade 1. Cross-lagged structural equation modelling indicated that calculation skills depend on previous math skills and linguistic abilities, while problem-solving skills require also non-verbal intelligence, executive functioning, and task persistence. Task-persistent behaviour in Grade 3 was predicted by previous problem-solving skills, linguistic abilities, and executive functioning. Gender and mother's educational level were added as covariates. The findings indicate that math skills and self-regulation are strongly related in primary grades and that solving complex tasks requires executive functioning and task persistence from children. Findings support the idea that instructional practices might benefit from supporting self-regulation in order to gain domain-specific, complex skill achievement. © 2015 The British Psychological Society.

  14. Acquiring Information from Wider Scope to Improve Event Extraction

    DTIC Science & Technology

    2012-05-01

    solve all the problems might be hard or even impossible: Word sense disambiguation is already a hard NLP task, and normalizing different expressions...blindfolded woman seen being shot in the head by a hooded militant on a video obtained but not aired by the Arab television station Al-Jazeera. She...imbalance Why are we interested in unsupervised topic features? There is a problem that arises in the evaluation of almost all the tasks in NLP , concerning

  15. Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities.

    PubMed

    Swanson, H Lee

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on problem solving solution accuracy in children with and without math disabilities (MD). Children in grade 3 (N = 204) with and without MD subdivided into high and low WMC were randomly assigned to 1 of 4 conditions: verbal strategies (e.g., underlining question sentence), visual strategies (e.g., correctly placing numbers in diagrams), verbal + visual strategies, and an untreated control. The dependent measures for training were problem solving accuracy and two working memory transfer measures (operation span and visual-spatial span). Three major findings emerged: (1) strategy instruction facilitated solution accuracy but the effects of strategy instruction were moderated by WMC, (2) some strategies yielded higher post-test scores than others, but these findings were qualified as to whether children were at risk for MD, and (3) strategy training on problem solving measures facilitated transfer to working memory measures. The main findings were that children with MD, but high WM spans, were more likely to benefit from strategy conditions on target and transfer measures than children with lower WMC. The results suggest that WMC moderates the influence of cognitive strategies on both the targeted and non-targeted measures.

  16. Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities

    PubMed Central

    Swanson, H. Lee

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on problem solving solution accuracy in children with and without math disabilities (MD). Children in grade 3 (N = 204) with and without MD subdivided into high and low WMC were randomly assigned to 1 of 4 conditions: verbal strategies (e.g., underlining question sentence), visual strategies (e.g., correctly placing numbers in diagrams), verbal + visual strategies, and an untreated control. The dependent measures for training were problem solving accuracy and two working memory transfer measures (operation span and visual-spatial span). Three major findings emerged: (1) strategy instruction facilitated solution accuracy but the effects of strategy instruction were moderated by WMC, (2) some strategies yielded higher post-test scores than others, but these findings were qualified as to whether children were at risk for MD, and (3) strategy training on problem solving measures facilitated transfer to working memory measures. The main findings were that children with MD, but high WM spans, were more likely to benefit from strategy conditions on target and transfer measures than children with lower WMC. The results suggest that WMC moderates the influence of cognitive strategies on both the targeted and non-targeted measures. PMID:26300803

  17. The influence of eating psychopathology on autobiographical memory specificity and social problem-solving.

    PubMed

    Ridout, Nathan; Matharu, Munveen; Sanders, Elizabeth; Wallis, Deborah J

    2015-08-30

    The primary aim was to examine the influence of subclinical disordered eating on autobiographical memory specificity (AMS) and social problem solving (SPS). A further aim was to establish if AMS mediated the relationship between eating psychopathology and SPS. A non-clinical sample of 52 females completed the autobiographical memory test (AMT), where they were asked to retrieve specific memories of events from their past in response to cue words, and the means-end problem-solving task (MEPS), where they were asked to generate means of solving a series of social problems. Participants also completed the Eating Disorders Inventory (EDI) and Hospital Anxiety and Depression Scale. After controlling for mood, high scores on the EDI subscales, particularly Drive-for-Thinness, were associated with the retrieval of fewer specific and a greater proportion of categorical memories on the AMT and with the generation of fewer and less effective means on the MEPS. Memory specificity fully mediated the relationship between eating psychopathology and SPS. These findings have implications for individuals exhibiting high levels of disordered eating, as poor AMS and SPS are likely to impact negatively on their psychological wellbeing and everyday social functioning and could represent a risk factor for the development of clinically significant eating disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Lexical Category Acquisition via Nonadjacent Dependencies in Context: Evidence of Developmental Change and Individual Differences

    ERIC Educational Resources Information Center

    Sandoval, Michelle

    2014-01-01

    Lexical categories like noun and verb are foundational to language acquisition, but these categories do not come neatly packaged for the infant language learner. Some have proposed that infants can begin to solve this problem by tracking the frequent nonadjacent word (or morpheme) contexts of these categories. However, nonadjacent relationships…

  19. Roles of Attention Shifting and Inhibitory Control in Fourth-Grade Reading Comprehension

    ERIC Educational Resources Information Center

    Kieffer, Michael J.; Vukovic, Rose K.; Berry, Daniel

    2013-01-01

    Executive functioning (EF) refers to a set of higher order, core cognitive processes that facilitate planning, problem solving, and the initiation and maintenance of goal-directed behavior. Although recent research has established the importance of EF for word reading development in early childhood, few studies have investigated the role of EF in…

  20. Meta-Representation in an Algebra I Classroom

    ERIC Educational Resources Information Center

    Izsak, Andrew; Caglayan, Gunhan; Olive, John

    2009-01-01

    We describe how 1 Algebra I teacher and her 8th-grade students used meta-representational knowledge when generating and evaluating equations to solve word problems. Analyzing data from a sequence of 4 lessons, we found that the teacher and her students used criteria for evaluating equations, in addition to other types of knowledge (e.g., different…

  1. Effects of a Mathematics Fluency Program on Mathematics Performance of Students with Challenging Behaviors

    ERIC Educational Resources Information Center

    Whitney, Todd; Hirn, Regina G.; Lingo, Amy S.

    2016-01-01

    In the present study, we examined the effects of a fluency-building mathematics program called Great Leaps Math on fluency of basic addition mathematics facts zero to nine and word problem solving using a multiple probe design across participants. Three elementary students with challenging behaviors and mathematics difficulty participated in the…

  2. Comparison of the Effects of Computer-Based Practice and Conceptual Understanding Interventions on Mathematics Fact Retention and Generalization

    ERIC Educational Resources Information Center

    Kanive, Rebecca; Nelson, Peter M.; Burns, Matthew K.; Ysseldyke, James

    2014-01-01

    The authors' purpose was to determine the effects of computer-based practice and conceptual interventions on computational fluency and word-problem solving of fourth- and fifth-grade students with mathematics difficulties. A randomized pretest-posttest control group design found that students assigned to the computer-based practice intervention…

  3. Investigating a Link between Pre-Calculus Students' Uses of Graphing Calculators and Their Understanding of Mathematical Symbols

    ERIC Educational Resources Information Center

    Kenney, Rachael H.

    2014-01-01

    This study examined ways in which students make use of a graphing calculator and how use relates to comfort and understanding with mathematical symbols. Analysis involved examining students' words and actions in problem solving to identify evidence of algebraic insight. Findings suggest that some symbols and symbolic structures had strong…

  4. Price Analysis and the Serials Situation: Trying to Solve an Age-Old Problem.

    ERIC Educational Resources Information Center

    Meyers, Barbara; Fleming, Janice L.

    1991-01-01

    Discussion of journal pricing and its effects on academic libraries focuses on data from the Optical Society of America's pricing study that used price per 1,000 words as a quantitative evaluative tool. Data collection methodology is described, and implications of the results for library collection development are suggested. (eight references)…

  5. Relationship between the Learning Hierarchy and Academic Achievement on Strategies Used by Third-Grade Students When Solving Multiplication Word Problems

    ERIC Educational Resources Information Center

    Kanive, Rebecca A.

    2016-01-01

    Distinguishing between sources of variability in mathematics performance may contribute to a more comprehensive theory of mathematics skills. Research has examined student differences based upon scores on achievement tests, which provide overall proficiency, but may not provide the detailed information for identifying and remediating difficulties.…

  6. Research on aviation unsafe incidents classification with improved TF-IDF algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yanhua; Zhang, Zhiyuan; Huo, Weigang

    2016-05-01

    The text content of Aviation Safety Confidential Reports contains a large number of valuable information. Term frequency-inverse document frequency algorithm is commonly used in text analysis, but it does not take into account the sequential relationship of the words in the text and its role in semantic expression. According to the seven category labels of civil aviation unsafe incidents, aiming at solving the problems of TF-IDF algorithm, this paper improved TF-IDF algorithm based on co-occurrence network; established feature words extraction and words sequential relations for classified incidents. Aviation domain lexicon was used to improve the accuracy rate of classification. Feature words network model was designed for multi-documents unsafe incidents classification, and it was used in the experiment. Finally, the classification accuracy of improved algorithm was verified by the experiments.

  7. Using sound to solve syntactic problems: the role of phonology in grammatical category assignments.

    PubMed

    Kelly, M H

    1992-04-01

    One ubiquitous problem in language processing involves the assignment of words to the correct grammatical category, such as noun or verb. In general, semantic and syntactic cues have been cited as the principal information for grammatical category assignment, to the neglect of possible phonological cues. This neglect is unwarranted, and the following claims are made: (a) Numerous correlations between phonology and grammatical class exist, (b) some of these correlations are large and can pervade the entire lexicon of a language and hence can involve thousands of words, (c) experiments have repeatedly found that adults and children have learned these correlations, and (d) explanations for how these correlations arose can be proposed and evaluated. Implications of these phenomena for language representation and processing are discussed.

  8. Comprehension and computation in Bayesian problem solving

    PubMed Central

    Johnson, Eric D.; Tubau, Elisabet

    2015-01-01

    Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on “transparent” Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point. PMID:26283976

  9. The use of multiple representations and visualizations in student learning of introductory physics: An example from work and energy

    NASA Astrophysics Data System (ADS)

    Zou, Xueli

    In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.

  10. Effects of Training on Pre-Service Special Educators' Abilities to Co-Teach Math Vocabulary in Preparation for Inclusion Settings

    ERIC Educational Resources Information Center

    Harris, Paulette Proctor; Pollingue, Alice B.; Hearrington, Doug; Holmes, Arthur

    2014-01-01

    New special education teachers often struggle to teach children the mathematics vocabulary necessary to understand and effectively solve math word problems. The authors designed and implemented a pilot program to prepare pre-service teachers majoring in special education to implement the Camelot Learning Math Intervention Program (CLMIP). We met…

  11. How the Relational Paradigm Can Transform the Teaching and Learning of Mathematics: Experiment in Quebec

    ERIC Educational Resources Information Center

    Polotskaia, Elena

    2017-01-01

    The main goal of this paper is to show how Vasily Davydov's powerful ideas about the nature of mathematical thinking and learning can transform the teaching and learning of additive word problem solving. The name Vasily Davydov is well known in the field of mathematics education in Russia. However, the transformative value of Davydov's theoretical…

  12. Are Patterns Important? An Investigation of the Relationships between Proficiencies in Patterns, Computation, Executive Functioning, and Algebraic Word Problems

    ERIC Educational Resources Information Center

    Lee, Kerry; Ng, Swee Fong; Bull, Rebecca; Pe, Madeline Lee; Ho, Ringo Ho Moon

    2011-01-01

    Although mathematical pattern tasks are often found in elementary school curricula and are deemed a building block for algebra, a recent report (National Mathematics Advisory Panel, 2008) suggests the resources devoted to its teaching and assessment need to be rebalanced. We examined whether children's developing proficiency in solving algebraic…

  13. Development of a Math-Learning App for Students with Visual Impairments

    ERIC Educational Resources Information Center

    Beal, Carole R.; Rosenblum, L. Penny

    2015-01-01

    The project was conducted to make an online tutoring program for math word problem solving accessible to students with visual impairments (VI). An online survey of teachers of students with VI (TVIs) guided the decision to provide the math content in the form of an iPad app, accompanied by print and braille materials. The app includes audio…

  14. The New York City Subways: The First Ten Years. A Library Research Exercise Using a Computer.

    ERIC Educational Resources Information Center

    Machalow, Robert

    This document presents a library research exercise developed at York College which uses the Apple IIe microcomputer and word processing software--the Applewriter--to teach library research skills. Unlike some other library research exercises on disk, this program allows the student to decide on alternative approaches to solving the given problem:…

  15. Three-dimensional electrical impedance tomography: a topology optimization approach.

    PubMed

    Mello, Luís Augusto Motta; de Lima, Cícero Ribeiro; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez; Silva, Emílio Carlos Nelli

    2008-02-01

    Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.

  16. The Problem Solving Method in Teaching Physics in Elementary School

    NASA Astrophysics Data System (ADS)

    Jandrić, Gordana Hajduković; Obadović, Dušanka Ž.; Stojanović, Maja

    2010-01-01

    The most of the teachers ask if there is a "best" known way to teach. The most effective teaching method depends on the specific goals of the course and the needs of the students. An investigation has been carried out to compare the effect of teaching selected physics topics using problem-solving method on the overall achievements of the acquired knowledge and teaching the same material by traditional teaching method. The investigation was performed as a pedagogical experiment of the type of parallel groups with randomly chosen sample of students attending grades eight. The control and experimental groups were equalized in the relevant pedagogical parameters. The obtained results were treated statistically. The comparison showed a significant difference in respect of the speed of acquiring knowledge, the problem-solving teaching being advantageous over traditional methodDo not replace the word "abstract," but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your "Enter" key. You may want to print this page and refer to it as a style sample before you begin working on your paper.

  17. Memorizing: a test of untrained mildly mentally retarded children's problem-solving.

    PubMed

    Belmont, J M; Ferretti, R P; Mitchell, D W

    1982-09-01

    Forty untrained mildly mentally retarded and 32 untrained nonretarded junior high school students were given eight trails of practice on a self-paced memory problem with lists of letters or words. For each trail a new list was presented, requiring ordered recall of terminal list items followed by ordered recall of initial items. Subgroups of solvers and nonsolvers were identified at each IQ level by a criterion of strict recall accuracy. Direct measures of mnemonic activity showed that over trails, solvers at both IQ levels increasingly fit a theoretically ideal memorization method. At neither IQ level did nonsolvers show similar inventions. On early trials, for both IQ levels, fit to the ideal method was uncorrelated with recall accuracy. On late trials fit and recall were highly correlated at each IQ level and across levels. The results support a problem-solving theory of individual differences in retarded and nonretarded children's memory performances.

  18. Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman

    2012-01-01

    In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.

  19. Neural Correlates of Learning from Induced Insight: A Case for Reward-Based Episodic Encoding

    PubMed Central

    Kizilirmak, Jasmin M.; Thuerich, Hannes; Folta-Schoofs, Kristian; Schott, Björn H.; Richardson-Klavehn, Alan

    2016-01-01

    Experiencing insight when solving problems can improve memory formation for both the problem and its solution. The underlying neural processes involved in this kind of learning are, however, thus far insufficiently understood. Here, we conceptualized insight as the sudden understanding of a novel relationship between known stimuli that fits into existing knowledge and is accompanied by a positive emotional response. Hence, insight is thought to comprise associative novelty, schema congruency, and intrinsic reward, all of which are separately known to enhance memory performance. We examined the neural correlates of learning from induced insight with functional magnetic resonance imaging (fMRI) using our own version of the compound-remote-associates-task (CRAT) in which each item consists of three clue words and a solution word. (Pseudo-)Solution words were presented after a brief period of problem-solving attempts to induce either sudden comprehension (CRA items) or continued incomprehension (control items) at a specific time point. By comparing processing of the solution words of CRA with control items, we found induced insight to elicit activation of the rostral anterior cingulate cortex/medial prefrontal cortex (rACC/mPFC) and left hippocampus. This pattern of results lends support to the role of schema congruency (rACC/mPFC) and associative novelty (hippocampus) in the processing of induced insight. We propose that (1) the mPFC not only responds to schema-congruent information, but also to the detection of novel schemata, and (2) that the hippocampus responds to a form of associative novelty that is not just a novel constellation of familiar items, but rather comprises a novel meaningful relationship between the items—which was the only difference between our insight and no insight conditions. To investigate episodic long-term memory encoding, we compared CRA items whose solution word was recognized 24 h after encoding to those with forgotten solutions. We found activation in the left striatum and parts of the left amygdala, pointing to a potential role of brain reward circuitry in the encoding of the solution words. We propose that learning from induced insight mainly relies on the amygdala evaluating the internal value (as an affective evaluation) of the suddenly comprehended information, and striatum-dependent reward-based learning. PMID:27847490

  20. Neural Correlates of Learning from Induced Insight: A Case for Reward-Based Episodic Encoding.

    PubMed

    Kizilirmak, Jasmin M; Thuerich, Hannes; Folta-Schoofs, Kristian; Schott, Björn H; Richardson-Klavehn, Alan

    2016-01-01

    Experiencing insight when solving problems can improve memory formation for both the problem and its solution. The underlying neural processes involved in this kind of learning are, however, thus far insufficiently understood. Here, we conceptualized insight as the sudden understanding of a novel relationship between known stimuli that fits into existing knowledge and is accompanied by a positive emotional response. Hence, insight is thought to comprise associative novelty, schema congruency, and intrinsic reward, all of which are separately known to enhance memory performance. We examined the neural correlates of learning from induced insight with functional magnetic resonance imaging (fMRI) using our own version of the compound-remote-associates-task (CRAT) in which each item consists of three clue words and a solution word. (Pseudo-)Solution words were presented after a brief period of problem-solving attempts to induce either sudden comprehension (CRA items) or continued incomprehension (control items) at a specific time point. By comparing processing of the solution words of CRA with control items, we found induced insight to elicit activation of the rostral anterior cingulate cortex/medial prefrontal cortex (rACC/mPFC) and left hippocampus. This pattern of results lends support to the role of schema congruency (rACC/mPFC) and associative novelty (hippocampus) in the processing of induced insight. We propose that (1) the mPFC not only responds to schema-congruent information, but also to the detection of novel schemata, and (2) that the hippocampus responds to a form of associative novelty that is not just a novel constellation of familiar items, but rather comprises a novel meaningful relationship between the items-which was the only difference between our insight and no insight conditions. To investigate episodic long-term memory encoding, we compared CRA items whose solution word was recognized 24 h after encoding to those with forgotten solutions. We found activation in the left striatum and parts of the left amygdala, pointing to a potential role of brain reward circuitry in the encoding of the solution words. We propose that learning from induced insight mainly relies on the amygdala evaluating the internal value (as an affective evaluation) of the suddenly comprehended information, and striatum-dependent reward-based learning.

  1. Shifting senses in lexical semantic development

    PubMed Central

    Rabagliati, Hugh; Marcus, Gary F.; Pylkkänen, Liina

    2010-01-01

    Most words are associated with multiple senses. A DVD can be round (when describing a disc), and a DVD can be an hour long (when describing a movie), and in each case DVD means something different. The possible senses of a word are often predictable, and also constrained, as words cannot take just any meaning: for example, although a movie can be an hour long, it cannot sensibly be described as round (unlike a DVD). Learning the scope and limits of word meaning is vital for the comprehension of natural language, but poses a potentially difficult learnability problem for children. By testing what senses children are willing to assign to a variety of words, we demonstrate that, in comprehension, the problem is solved using a productive learning strategy. Children are perfectly capable of assigning different senses to a word; indeed they are essentially adult-like at assigning licensed meanings. But difficulties arise in determining which senses are assignable: children systematically overestimate the possible senses of a word, allowing meanings that adults rule unlicensed (e.g., taking round movie to refer to a disc). By contrast, this strategy does not extend to production, in which children use licensed, but not unlicensed, senses. Children’s productive comprehension strategy suggests an early emerging facility for using context in sense resolution (a difficult task for natural language processing algorithms), but leaves an intriguing question as to the mechanisms children use to learn a restricted, adult-like set of senses. PMID:20638655

  2. Latest Highlights from our Direct Measurement Video Collection

    NASA Astrophysics Data System (ADS)

    Vonk, M.; Bohacek, P. H.

    2014-12-01

    Recent advances in technology have made videos much easier to produce, edit, store, transfer, and view. This has spawned an explosion in a production of a wide variety of different types of pedagogical videos. But with the exception of student-made videos (which are often of poor quality) almost all of the educational videos being produced are passive. No matter how compelling the content, students are expected to simply sit and watch them. Because we feel that being engaged and active are necessary components of student learning, we have been working to create a free online library of Direct Measurement Videos (DMV's). These videos are short high-quality videos of real events, shot in a way that allows students to make measurements directly from the video. Instead of handing students a word problem about a car skidding on ice, we actually show them the car skidding on ice. We then ask them to measure the important quantities, make calculations based on those measurements and solve for unknowns. DMV's are more interesting than their word problem equivalents and frequently inspire further questions about the physics of the situation or about the uncertainty of the measurement in ways that word problems almost never do. We feel that it is simply impossible to a video of a roller coaster or a rocket and then argue that word problems are better. In this talk I will highlight some new additions to our DMV collection. This work is supported by NSF TUES award #1245268

  3. A Mixed Integer Efficient Global Optimization Framework: Applied to the Simultaneous Aircraft Design, Airline Allocation and Revenue Management Problem

    NASA Astrophysics Data System (ADS)

    Roy, Satadru

    Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network problem consisting of 94 decision variables including 33 integer and 61 continuous type variables. This application problem is a representation of an interacting group of systems and provides key challenges to the optimization framework to solve the MINLP problem, as reflected by the presence of a moderate number of integer and continuous type design variables and expensive analysis tool. The result indicates simultaneously solving the subspaces could lead to significant improvement in the fleet-level objective of the airline when compared to the previously developed sequential subspace decomposition approach. In developing the approach to solve the MINLP/MDNLP challenge problem, several test problems provided the ability to explore performance of the framework. While solving these test problems, the framework showed that it could solve other MDNLP problems including categorically discrete variables, indicating that the framework could have broader application than the new aircraft design-fleet allocation-revenue management problem.

  4. Statistical mechanics of budget-constrained auctions

    NASA Astrophysics Data System (ADS)

    Altarelli, F.; Braunstein, A.; Realpe-Gomez, J.; Zecchina, R.

    2009-07-01

    Finding the optimal assignment in budget-constrained auctions is a combinatorial optimization problem with many important applications, a notable example being in the sale of advertisement space by search engines (in this context the problem is often referred to as the off-line AdWords problem). On the basis of the cavity method of statistical mechanics, we introduce a message-passing algorithm that is capable of solving efficiently random instances of the problem extracted from a natural distribution, and we derive from its properties the phase diagram of the problem. As the control parameter (average value of the budgets) is varied, we find two phase transitions delimiting a region in which long-range correlations arise.

  5. Wang OIS glossary package for reformatting documents telecommunicated to the OIS system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markow, S.R.

    1983-12-09

    Documents that are composed on a computer and then transmitted by telecommunications into a Wang Office Information System (OIS) word processing system need to be reformatted and cleaned up before they can be used properly as word processing documents suitable for further revisions or additions. This report describes a group of glossary entries created for the Wang OIS which simplifies the job of cleaning up telecommunicated documents. This glossary is a semi-automated process designed to eliminate most of the tedious work needed to be performed in removing extra spaces and returns, adjusting formats, moving material, repagination, using tabs or indents,more » and similar problems. The report briefly discusses the problems, describes the glossary approach to solving them, and gives instructions for actually using the glossary entries.« less

  6. Amatchmethod Based on Latent Semantic Analysis for Earthquakehazard Emergency Plan

    NASA Astrophysics Data System (ADS)

    Sun, D.; Zhao, S.; Zhang, Z.; Shi, X.

    2017-09-01

    The structure of the emergency plan on earthquake is complex, and it's difficult for decision maker to make a decision in a short time. To solve the problem, this paper presents a match method based on Latent Semantic Analysis (LSA). After the word segmentation preprocessing of emergency plan, we carry out keywords extraction according to the part-of-speech and the frequency of words. Then through LSA, we map the documents and query information to the semantic space, and calculate the correlation of documents and queries by the relation between vectors. The experiments results indicate that the LSA can improve the accuracy of emergency plan retrieval efficiently.

  7. Observational Word Learning: Beyond Propose-But-Verify and Associative Bean Counting.

    PubMed

    Roembke, Tanja; McMurray, Bob

    2016-04-01

    Learning new words is difficult. In any naming situation, there are multiple possible interpretations of a novel word. Recent approaches suggest that learners may solve this problem by tracking co-occurrence statistics between words and referents across multiple naming situations (e.g. Yu & Smith, 2007), overcoming the ambiguity in any one situation. Yet, there remains debate around the underlying mechanisms. We conducted two experiments in which learners acquired eight word-object mappings using cross-situational statistics while eye-movements were tracked. These addressed four unresolved questions regarding the learning mechanism. First, eye-movements during learning showed evidence that listeners maintain multiple hypotheses for a given word and bring them all to bear in the moment of naming. Second, trial-by-trial analyses of accuracy suggested that listeners accumulate continuous statistics about word/object mappings, over and above prior hypotheses they have about a word. Third, consistent, probabilistic context can impede learning, as false associations between words and highly co-occurring referents are formed. Finally, a number of factors not previously considered in prior analysis impact observational word learning: knowledge of the foils, spatial consistency of the target object, and the number of trials between presentations of the same word. This evidence suggests that observational word learning may derive from a combination of gradual statistical or associative learning mechanisms and more rapid real-time processes such as competition, mutual exclusivity and even inference or hypothesis testing.

  8. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design

    PubMed Central

    Van Regenmortel, Marc H. V.

    2018-01-01

    Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems. PMID:29387066

  9. Posture Affects How Robots and Infants Map Words to Objects

    PubMed Central

    Morse, Anthony F.; Benitez, Viridian L.; Belpaeme, Tony; Cangelosi, Angelo; Smith, Linda B.

    2015-01-01

    For infants, the first problem in learning a word is to map the word to its referent; a second problem is to remember that mapping when the word and/or referent are again encountered. Recent infant studies suggest that spatial location plays a key role in how infants solve both problems. Here we provide a new theoretical model and new empirical evidence on how the body – and its momentary posture – may be central to these processes. The present study uses a name-object mapping task in which names are either encountered in the absence of their target (experiments 1–3, 6 & 7), or when their target is present but in a location previously associated with a foil (experiments 4, 5, 8 & 9). A humanoid robot model (experiments 1–5) is used to instantiate and test the hypothesis that body-centric spatial location, and thus the bodies’ momentary posture, is used to centrally bind the multimodal features of heard names and visual objects. The robot model is shown to replicate existing infant data and then to generate novel predictions, which are tested in new infant studies (experiments 6–9). Despite spatial location being task-irrelevant in this second set of experiments, infants use body-centric spatial contingency over temporal contingency to map the name to object. Both infants and the robot remember the name-object mapping even in new spatial locations. However, the robot model shows how this memory can emerge –not from separating bodily information from the word-object mapping as proposed in previous models of the role of space in word-object mapping – but through the body’s momentary disposition in space. PMID:25785834

  10. A Play on Words: Using Cognitive Computing as a Basis for AI Solvers in Word Puzzles

    NASA Astrophysics Data System (ADS)

    Manzini, Thomas; Ellis, Simon; Hendler, James

    2015-12-01

    In this paper we offer a model, drawing inspiration from human cognition and based upon the pipeline developed for IBM's Watson, which solves clues in a type of word puzzle called syllacrostics. We briefly discuss its situation with respect to the greater field of artificial general intelligence (AGI) and how this process and model might be applied to other types of word puzzles. We present an overview of a system that has been developed to solve syllacrostics.

  11. Metaphors we think with: the role of metaphor in reasoning.

    PubMed

    Thibodeau, Paul H; Boroditsky, Lera

    2011-02-23

    The way we talk about complex and abstract ideas is suffused with metaphor. In five experiments, we explore how these metaphors influence the way that we reason about complex issues and forage for further information about them. We find that even the subtlest instantiation of a metaphor (via a single word) can have a powerful influence over how people attempt to solve social problems like crime and how they gather information to make "well-informed" decisions. Interestingly, we find that the influence of the metaphorical framing effect is covert: people do not recognize metaphors as influential in their decisions; instead they point to more "substantive" (often numerical) information as the motivation for their problem-solving decision. Metaphors in language appear to instantiate frame-consistent knowledge structures and invite structurally consistent inferences. Far from being mere rhetorical flourishes, metaphors have profound influences on how we conceptualize and act with respect to important societal issues. We find that exposure to even a single metaphor can induce substantial differences in opinion about how to solve social problems: differences that are larger, for example, than pre-existing differences in opinion between Democrats and Republicans.

  12. From Discrete 1 to 10 towards Continuous 0 to 10: The Continuum Approach to Estimating the Distribution of Happiness in a Nation

    ERIC Educational Resources Information Center

    Kalmijn, Wim

    2013-01-01

    Happiness is often measured in surveys using responses to a single question with a limited number of response options, such as "very happy", "fairly happy" and "not too happy". There is much variety in the wording and number of response options used, which limits comparability across surveys. To solve this problem, descriptive statistics of the…

  13. Introducing social cues in multimedia learning: The role of pedagogic agents' image and language in a scientific lesson

    NASA Astrophysics Data System (ADS)

    Moreno, Roxana Arleen

    The present dissertation tested the hypothesis that software pedagogical agents can promote constructivist learning in a discovery-based multimedia environment. In a preliminary study, students who received a computer-based lesson on environmental science performed better on subsequent tests of problem solving and motivation when they learned with the mediation of a fictional agent compared to when they learned the same material from text. In order to investigate further the basis for this personal agent effect, I varied whether the agent's words were presented as speech or on-screen text and whether or not the agent's image appeared on the screen. Both with a fictional agent (Experiment 1) and a video of a human face (Experiment 2), students performed better on tests of retention, problem-solving transfer, and program ratings when words were presented as speech rather than on-screen text (producing a modality effect) but visual presence of the agent did not affect test performance (producing no image effect). Next, I varied whether or not the agent's words were presented in conversational style (i.e., as dialogue) or formal style (i.e., as monologue) both using speech (Experiment 3) and on-screen text (Experiment 4). In both experiments, there was a dialogue effect in which conversational-style produced better retention and transfer performance. Students who learned with conversational-style text rated the program more favorably than those who learned with monologue-style text. The results support cognitive principles of multimedia learning which underlie the understanding of a computer lesson about a complex scientific system.

  14. FRAMES-2.0 Software System: Providing Password Protection and Limited Access to Models and Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Gene; Pelton, Mitch A.

    2007-08-09

    One of the most important concerns for regulatory agencies is the concept of reproducibility (i.e., reproducibility means credibility) of an assessment. One aspect of reproducibility deals with tampering of the assessment. In other words, when multiple groups are engaged in an assessment, it is important to lock down the problem that is to be solved and/or to restrict the models that are to be used to solve the problem. The objective of this effort is to provide the U.S. Nuclear Regulatory Commission (NRC) with a means to limit user access to models and to provide a mechanism to constrain themore » conceptual site models (CSMs) when appropriate. The purpose is to provide the user (i.e., NRC) with the ability to “lock down” the CSM (i.e., picture containing linked icons), restrict access to certain models, or both.« less

  15. The Semantic Retrieval of Spatial Data Service Based on Ontology in SIG

    NASA Astrophysics Data System (ADS)

    Sun, S.; Liu, D.; Li, G.; Yu, W.

    2011-08-01

    The research of SIG (Spatial Information Grid) mainly solves the problem of how to connect different computing resources, so that users can use all the resources in the Grid transparently and seamlessly. In SIG, spatial data service is described in some kinds of specifications, which use different meta-information of each kind of services. This kind of standardization cannot resolve the problem of semantic heterogeneity, which may limit user to obtain the required resources. This paper tries to solve two kinds of semantic heterogeneities (name heterogeneity and structure heterogeneity) in spatial data service retrieval based on ontology, and also, based on the hierarchical subsumption relationship among concept in ontology, the query words can be extended and more resource can be matched and found for user. These applications of ontology in spatial data resource retrieval can help to improve the capability of keyword matching, and find more related resources.

  16. The Double-System Architecture for Trusted OS

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Li, Yu; Zhan, Jing

    With the development of computer science and technology, current secure operating systems failed to respond to many new security challenges. Trusted operating system (TOS) is proposed to try to solve these problems. However, there are no mature, unified architectures for the TOS yet, since most of them cannot make clear of the relationship between security mechanism and the trusted mechanism. Therefore, this paper proposes a double-system architecture (DSA) for the TOS to solve the problem. The DSA is composed of the Trusted System (TS) and the Security System (SS). We constructed the TS by establishing a trusted environment and realized related SS. Furthermore, we proposed the Trusted Information Channel (TIC) to protect the information flow between TS and SS. In a word, the double system architecture we proposed can provide reliable protection for the OS through the SS with the supports provided by the TS.

  17. Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics

    DTIC Science & Technology

    2012-02-24

    AND SUBTITLE Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics 6. AUTHORS Marian O...Maximum 200 words) Results of our earlier research in the realm of quantum optics were extended in order to solve the challenging technical problems of...efficient methods of generating UV light via quantum coherence. 14. SUBJECT TERMS Quantum coherence, quantum optics, lasers 15. NUMBER OF PAGES 15

  18. Fast max-margin clustering for unsupervised word sense disambiguation in biomedical texts

    PubMed Central

    Duan, Weisi; Song, Min; Yates, Alexander

    2009-01-01

    Background We aim to solve the problem of determining word senses for ambiguous biomedical terms with minimal human effort. Methods We build a fully automated system for Word Sense Disambiguation by designing a system that does not require manually-constructed external resources or manually-labeled training examples except for a single ambiguous word. The system uses a novel and efficient graph-based algorithm to cluster words into groups that have the same meaning. Our algorithm follows the principle of finding a maximum margin between clusters, determining a split of the data that maximizes the minimum distance between pairs of data points belonging to two different clusters. Results On a test set of 21 ambiguous keywords from PubMed abstracts, our system has an average accuracy of 78%, outperforming a state-of-the-art unsupervised system by 2% and a baseline technique by 23%. On a standard data set from the National Library of Medicine, our system outperforms the baseline by 6% and comes within 5% of the accuracy of a supervised system. Conclusion Our system is a novel, state-of-the-art technique for efficiently finding word sense clusters, and does not require training data or human effort for each new word to be disambiguated. PMID:19344480

  19. Analytical and Computational Properties of Distributed Approaches to MDO

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia M.; Lewis, Robert Michael

    2000-01-01

    Historical evolution of engineering disciplines and the complexity of the MDO problem suggest that disciplinary autonomy is a desirable goal in formulating and solving MDO problems. We examine the notion of disciplinary autonomy and discuss the analytical properties of three approaches to formulating and solving MDO problems that achieve varying degrees of autonomy by distributing the problem along disciplinary lines. Two of the approaches-Optimization by Linear Decomposition and Collaborative Optimization-are based on bi-level optimization and reflect what we call a structural perspective. The third approach, Distributed Analysis Optimization, is a single-level approach that arises from what we call an algorithmic perspective. The main conclusion of the paper is that disciplinary autonomy may come at a price: in the bi-level approaches, the system-level constraints introduced to relax the interdisciplinary coupling and enable disciplinary autonomy can cause analytical and computational difficulties for optimization algorithms. The single-level alternative we discuss affords a more limited degree of autonomy than that of the bi-level approaches, but without the computational difficulties of the bi-level methods. Key Words: Autonomy, bi-level optimization, distributed optimization, multidisciplinary optimization, multilevel optimization, nonlinear programming, problem integration, system synthesis

  20. Environmental/Biomedical Terminology Index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually groupedmore » as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).« less

  1. Generating Circuit Tests by Exploiting Designed Behavior

    DTIC Science & Technology

    1988-12-01

    is the classic example. ’The primary expert I have talked with is Gordon Robinson of GenRad Inc. I have studied Gor- don’s problem-solving methods on ...Associate Professor of Management Science Thesis Supervisor Accepted by Arthur C. Smith, Chairman Committee on Graduate StudentsOTIC ~M2 7 Un7 ON ...STATEMENT (of tie abstract entered In Block 20, It different fre Report) IS. SUPPLEMENTARY NOTES None 19. KEY WORDS (Continue on reverse aide it

  2. A Personal Intelligent Mentor for Promoting Metacognition in Solving Logic Word Puzzles.

    ERIC Educational Resources Information Center

    Baylor, Amy L.; Kozbe, Barcin

    This paper describes a Personal Intelligent Mentor (PIM) that facilitates metacognitive development in the domain of solving logic word puzzles. Metacognition is an important aspect for critical thinking skills. High school students must develop logical and critical thinking abilities as a prerequisite for higher-level math and computer…

  3. Comparing different kinds of words and word-word relations to test an habituation model of priming.

    PubMed

    Rieth, Cory A; Huber, David E

    2017-06-01

    Huber and O'Reilly (2003) proposed that neural habituation exists to solve a temporal parsing problem, minimizing blending between one word and the next when words are visually presented in rapid succession. They developed a neural dynamics habituation model, explaining the finding that short duration primes produce positive priming whereas long duration primes produce negative repetition priming. The model contains three layers of processing, including a visual input layer, an orthographic layer, and a lexical-semantic layer. The predicted effect of prime duration depends both on this assumed representational hierarchy and the assumption that synaptic depression underlies habituation. The current study tested these assumptions by comparing different kinds of words (e.g., words versus non-words) and different kinds of word-word relations (e.g., associative versus repetition). For each experiment, the predictions of the original model were compared to an alternative model with different representational assumptions. Experiment 1 confirmed the prediction that non-words and inverted words require longer prime durations to eliminate positive repetition priming (i.e., a slower transition from positive to negative priming). Experiment 2 confirmed the prediction that associative priming increases and then decreases with increasing prime duration, but remains positive even with long duration primes. Experiment 3 replicated the effects of repetition and associative priming using a within-subjects design and combined these effects by examining target words that were expected to repeat (e.g., viewing the target word 'BACK' after the prime phrase 'back to'). These results support the originally assumed representational hierarchy and more generally the role of habituation in temporal parsing and priming. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Learning scientific and medical terminology with a mnemonic strategy using an illogical association technique.

    PubMed

    Brahler, C Jayne; Walker, Diane

    2008-09-01

    For students pursuing careers in medical fields, knowledge of technical and medical terminology is prerequisite to being able to solve problems in their respective disciplines and professions. The Dean Vaughn Medical Terminology 350 Total Retention System, also known as Medical Terminology 350 (25), is a mnemonic instructional and learning strategy that combines mental imagery and keyword mnemonic elaboration processes to help students recall the scientific meaning of Greek and Latin word parts. High school students in Anatomy and Physiology classes at a career technology center were divided into experimental (Medical Terminology 350), control (rote memorization), or combination (Medical Terminology 350 and rote memorization) groups and completed pre- and posttests of standardized word recall tests. Students in the Dean Vaughn Medical Terminology 350 Total Retention System group achieved significantly greater pre- to posttest word recall improvement compared with students in both the rote memorization (P

  5. Fundamental differences between optimization code test problems in engineering applications

    NASA Technical Reports Server (NTRS)

    Eason, E. D.

    1984-01-01

    The purpose here is to suggest that there is at least one fundamental difference between the problems used for testing optimization codes and the problems that engineers often need to solve; in particular, the level of precision that can be practically achieved in the numerical evaluation of the objective function, derivatives, and constraints. This difference affects the performance of optimization codes, as illustrated by two examples. Two classes of optimization problem were defined. Class One functions and constraints can be evaluated to a high precision that depends primarily on the word length of the computer. Class Two functions and/or constraints can only be evaluated to a moderate or a low level of precision for economic or modeling reasons, regardless of the computer word length. Optimization codes have not been adequately tested on Class Two problems. There are very few Class Two test problems in the literature, while there are literally hundreds of Class One test problems. The relative performance of two codes may be markedly different for Class One and Class Two problems. Less sophisticated direct search type codes may be less likely to be confused or to waste many function evaluations on Class Two problems. The analysis accuracy and minimization performance are related in a complex way that probably varies from code to code. On a problem where the analysis precision was varied over a range, the simple Hooke and Jeeves code was more efficient at low precision while the Powell code was more efficient at high precision.

  6. A Corpus-Based Approach for Automatic Thai Unknown Word Recognition Using Boosting Techniques

    NASA Astrophysics Data System (ADS)

    Techo, Jakkrit; Nattee, Cholwich; Theeramunkong, Thanaruk

    While classification techniques can be applied for automatic unknown word recognition in a language without word boundary, it faces with the problem of unbalanced datasets where the number of positive unknown word candidates is dominantly smaller than that of negative candidates. To solve this problem, this paper presents a corpus-based approach that introduces a so-called group-based ranking evaluation technique into ensemble learning in order to generate a sequence of classification models that later collaborate to select the most probable unknown word from multiple candidates. Given a classification model, the group-based ranking evaluation (GRE) is applied to construct a training dataset for learning the succeeding model, by weighing each of its candidates according to their ranks and correctness when the candidates of an unknown word are considered as one group. A number of experiments have been conducted on a large Thai medical text to evaluate performance of the proposed group-based ranking evaluation approach, namely V-GRE, compared to the conventional naïve Bayes classifier and our vanilla version without ensemble learning. As the result, the proposed method achieves an accuracy of 90.93±0.50% when the first rank is selected while it gains 97.26±0.26% when the top-ten candidates are considered, that is 8.45% and 6.79% improvement over the conventional record-based naïve Bayes classifier and the vanilla version. Another result on applying only best features show 93.93±0.22% and up to 98.85±0.15% accuracy for top-1 and top-10, respectively. They are 3.97% and 9.78% improvement over naive Bayes and the vanilla version. Finally, an error analysis is given.

  7. Onboard shuttle on-line software requirements system: Prototype

    NASA Technical Reports Server (NTRS)

    Kolkhorst, Barbara; Ogletree, Barry

    1989-01-01

    The prototype discussed here was developed as proof of a concept for a system which could support high volumes of requirements documents with integrated text and graphics; the solution proposed here could be extended to other projects whose goal is to place paper documents in an electronic system for viewing and printing purposes. The technical problems (such as conversion of documentation between word processors, management of a variety of graphics file formats, and difficulties involved in scanning integrated text and graphics) would be very similar for other systems of this type. Indeed, technological advances in areas such as scanning hardware and software and display terminals insure that some of the problems encountered here will be solved in the near-term (less than five years). Examples of these solvable problems include automated input of integrated text and graphics, errors in the recognition process, and the loss of image information which results from the digitization process. The solution developed for the Online Software Requirements System is modular and allows hardware and software components to be upgraded or replaced as industry solutions mature. The extensive commercial software content allows the NASA customer to apply resources to solving the problem and maintaining documents.

  8. When People Complain Using Communication, Negotiation and Problem Solving to Resolve Complaints

    DTIC Science & Technology

    1991-06-01

    with the na- ers, helped us and them to maintain self -es- tional security mission of U.S. Forces. Ex- teem and self -confidence. cept for locally...element. Distribution Storage and Retrieval 5-3 USAREUR personnel who find themselves This does not mean that staff who self -evalu- with complaint...commit 3ou to any and summarizing - condensing the content aAio.Adti seL resposes onlys wnmaize elements into fewer words. Other feedback orre fi x ne

  9. How to Chair Effective Meetings: A Guide to Group Problem Solving,

    DTIC Science & Technology

    1975-01-01

    Physical Aids: 1. Felt-tip pens 2. Tablets 3. Pencils 4. Three-hole punch 5. Paper clips 6. Masking tape 7. Stapler 8. Water and glasses 9. Ash trays...basic ideas in the speaker’s own words - on large sheets of paper in full view of the group. The other group members have a responsibility under this...agenda handout or placed on chalkboard or paper pad) 2. Other handouts 3. Sign to identify meeting room 4. Name cards (tents) for participants, if needed

  10. Merlin - Massively parallel heterogeneous computing

    NASA Technical Reports Server (NTRS)

    Wittie, Larry; Maples, Creve

    1989-01-01

    Hardware and software for Merlin, a new kind of massively parallel computing system, are described. Eight computers are linked as a 300-MIPS prototype to develop system software for a larger Merlin network with 16 to 64 nodes, totaling 600 to 3000 MIPS. These working prototypes help refine a mapped reflective memory technique that offers a new, very general way of linking many types of computer to form supercomputers. Processors share data selectively and rapidly on a word-by-word basis. Fast firmware virtual circuits are reconfigured to match topological needs of individual application programs. Merlin's low-latency memory-sharing interfaces solve many problems in the design of high-performance computing systems. The Merlin prototypes are intended to run parallel programs for scientific applications and to determine hardware and software needs for a future Teraflops Merlin network.

  11. Object recognition in images via a factor graph model

    NASA Astrophysics Data System (ADS)

    He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu

    2018-04-01

    Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.

  12. The influence of achievement goals on the constructive activity of low achievers during collaborative problem solving.

    PubMed

    Gabriele, Anthony J

    2007-03-01

    Previous research on small-group learning has found that level of constructive activity (solving or explaining how to solve problems using ideas stated or implied in the explanation provided by a partner) was a better predictor of post-test achievement than either a student's prior achievement or the quality of help received (Webb, Troper, & Fall, 1995). The purpose of this study was to extend this research by examining the influence of additional factors, in particular, achievement goals and comprehension monitoring, on low achieving students' constructive activity after receiving help from a high achieving peer. Thirty-two low achieving upper elementary students from an urban school district in the mid-west of the United States were paired with high achieving partners. Videotape data from a previously reported study on peer collaboration were transcribed and reanalyzed. In that study, dyads were randomly assigned instructions designed to induce either a learning or performance goal and were videotaped as they worked together to solve a set of mathematical word problems. The following day, students were individually post-tested on problems similar to the ones worked on in pairs. Consistent with previous research, low achieving students' level of constructive activity predicted post-test performance. In addition, constructive activity was found to mediate the relationship between achievement goals and learning. However, achievement goals were not related to low achievers constructive use of help. Instead, achievement goals were related to low achievers' relative accuracy in comprehension monitoring, which in turn was related to level of constructive activity. The meaning of these results for understanding the processes by which low achievers learn from peer help and implications for classroom practice are discussed.

  13. "Playing with Words": Effects of an Anagram Solving Game-Like Application for Primary Education Students

    ERIC Educational Resources Information Center

    Panagiotakopoulos, Chris T.; Sarris, Menelaos E.

    2013-01-01

    The present study reports the basic characteristics of a game-like application entitled "Playing with Words-PwW". PwW is a single-user application where a word must be guessed given an anagram of that word. Anagrams are presented from a predefined word list and users can repeatedly try to guess the word, from which the anagram is…

  14. Selected Topics from LVCSR Research for Asian Languages at Tokyo Tech

    NASA Astrophysics Data System (ADS)

    Furui, Sadaoki

    This paper presents our recent work in regard to building Large Vocabulary Continuous Speech Recognition (LVCSR) systems for the Thai, Indonesian, and Chinese languages. For Thai, since there is no word boundary in the written form, we have proposed a new method for automatically creating word-like units from a text corpus, and applied topic and speaking style adaptation to the language model to recognize spoken-style utterances. For Indonesian, we have applied proper noun-specific adaptation to acoustic modeling, and rule-based English-to-Indonesian phoneme mapping to solve the problem of large variation in proper noun and English word pronunciation in a spoken-query information retrieval system. In spoken Chinese, long organization names are frequently abbreviated, and abbreviated utterances cannot be recognized if the abbreviations are not included in the dictionary. We have proposed a new method for automatically generating Chinese abbreviations, and by expanding the vocabulary using the generated abbreviations, we have significantly improved the performance of spoken query-based search.

  15. The importance of situation-specific encodings: analysis of a simple connectionist model of letter transposition effects

    NASA Astrophysics Data System (ADS)

    Fang, Shin-Yi; Smith, Garrett; Tabor, Whitney

    2018-04-01

    This paper analyses a three-layer connectionist network that solves a translation-invariance problem, offering a novel explanation for transposed letter effects in word reading. Analysis of the hidden unit encodings provides insight into two central issues in cognitive science: (1) What is the novelty of claims of "modality-specific" encodings? and (2) How can a learning system establish a complex internal structure needed to solve a problem? Although these topics (embodied cognition and learnability) are often treated separately, we find a close relationship between them: modality-specific features help the network discover an abstract encoding by causing it to break the initial symmetries of the hidden units in an effective way. While this neural model is extremely simple compared to the human brain, our results suggest that neural networks need not be black boxes and that carefully examining their encoding behaviours may reveal how they differ from classical ideas about the mind-world relationship.

  16. The role of competing knowledge structures in undermining learning: Newton's second and third laws

    NASA Astrophysics Data System (ADS)

    Low, David J.; Wilson, Kate F.

    2017-01-01

    We investigate the development of student understanding of Newton's laws using a pre-instruction test (the Force Concept Inventory), followed by a series of post-instruction tests and interviews. While some students' somewhat naive, pre-existing models of Newton's third law are largely eliminated following a semester of teaching, we find that a particular inconsistent model is highly resilient to, and may even be strengthened by, instruction. If test items contain words that cue students to think of Newton's second law, then students are more likely to apply a "net force" approach to solving problems, even if it is inappropriate to do so. Additional instruction, reinforcing physical concepts in multiple settings and from multiple sources, appears to help students develop a more connected and consistent level of understanding. We recommend explicitly encouraging students to check their work for consistency with physical principles, along with the standard checks for dimensionality and order of magnitude, to encourage reflective and rigorous problem solving.

  17. Perceptual learning modules in mathematics: enhancing students' pattern recognition, structure extraction, and fluency.

    PubMed

    Kellman, Philip J; Massey, Christine M; Son, Ji Y

    2010-04-01

    Learning in educational settings emphasizes declarative and procedural knowledge. Studies of expertise, however, point to other crucial components of learning, especially improvements produced by experience in the extraction of information: perceptual learning (PL). We suggest that such improvements characterize both simple sensory and complex cognitive, even symbolic, tasks through common processes of discovery and selection. We apply these ideas in the form of perceptual learning modules (PLMs) to mathematics learning. We tested three PLMs, each emphasizing different aspects of complex task performance, in middle and high school mathematics. In the MultiRep PLM, practice in matching function information across multiple representations improved students' abilities to generate correct graphs and equations from word problems. In the Algebraic Transformations PLM, practice in seeing equation structure across transformations (but not solving equations) led to dramatic improvements in the speed of equation solving. In the Linear Measurement PLM, interactive trials involving extraction of information about units and lengths produced successful transfer to novel measurement problems and fraction problem solving. Taken together, these results suggest (a) that PL techniques have the potential to address crucial, neglected dimensions of learning, including discovery and fluent processing of relations; (b) PL effects apply even to complex tasks that involve symbolic processing; and (c) appropriately designed PL technology can produce rapid and enduring advances in learning. Copyright © 2009 Cognitive Science Society, Inc.

  18. A strategy for quantum algorithm design assisted by machine learning

    NASA Astrophysics Data System (ADS)

    Bang, Jeongho; Ryu, Junghee; Yoo, Seokwon; Pawłowski, Marcin; Lee, Jinhyoung

    2014-07-01

    We propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum-classical hybrid simulator, where a ‘quantum student’ is being taught by a ‘classical teacher’. In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem, assisted by a classical main-feedback system. Our method is applicable for designing quantum oracle-based algorithms. We chose, as a case study, an oracle decision problem, called a Deutsch-Jozsa problem. We showed by using Monte Carlo simulations that our simulator can faithfully learn a quantum algorithm for solving the problem for a given oracle. Remarkably, the learning time is proportional to the square root of the total number of parameters, rather than showing the exponential dependence found in the classical machine learning-based method.

  19. The role of expressive writing in math anxiety.

    PubMed

    Park, Daeun; Ramirez, Gerardo; Beilock, Sian L

    2014-06-01

    Math anxiety is a negative affective reaction to situations involving math. Previous work demonstrates that math anxiety can negatively impact math problem solving by creating performance-related worries that disrupt the working memory needed for the task at hand. By leveraging knowledge about the mechanism underlying the math anxiety-performance relationship, we tested the effectiveness of a short expressive writing intervention that has been shown to reduce intrusive thoughts and improve working memory availability. Students (N = 80) varying in math anxiety were asked to sit quietly (control group) prior to completing difficulty-matched math and word problems or to write about their thoughts and feelings regarding the exam they were about to take (expressive writing group). For the control group, high math-anxious individuals (HMAs) performed significantly worse on the math problems than low math-anxious students (LMAs). In the expressive writing group, however, this difference in math performance across HMAs and LMAs was significantly reduced. Among HMAs, the use of words related to anxiety, cause, and insight in their writing was positively related to math performance. Expressive writing boosts the performance of anxious students in math-testing situations. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Rule-based Approach on Extraction of Malay Compound Nouns in Standard Malay Document

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Zamri; Kamal Ismail, Normaly; Rawi, Mohd Izani Mohamed

    2017-08-01

    Malay compound noun is defined as a form of words that exists when two or more words are combined into a single syntax and it gives a specific meaning. Compound noun acts as one unit and it is spelled separately unless an established compound noun is written closely from two words. The basic characteristics of compound noun can be seen in the Malay sentences which are the frequency of that word in the text itself. Thus, this extraction of compound nouns is significant for the following research which is text summarization, grammar checker, sentiments analysis, machine translation and word categorization. There are many research efforts that have been proposed in extracting Malay compound noun using linguistic approaches. Most of the existing methods were done on the extraction of bi-gram noun+noun compound. However, the result still produces some problems as to give a better result. This paper explores a linguistic method for extracting compound Noun from stand Malay corpus. A standard dataset are used to provide a common platform for evaluating research on the recognition of compound Nouns in Malay sentences. Therefore, an improvement for the effectiveness of the compound noun extraction is needed because the result can be compromised. Thus, this study proposed a modification of linguistic approach in order to enhance the extraction of compound nouns processing. Several pre-processing steps are involved including normalization, tokenization and tagging. The first step that uses the linguistic approach in this study is Part-of-Speech (POS) tagging. Finally, we describe several rules-based and modify the rules to get the most relevant relation between the first word and the second word in order to assist us in solving of the problems. The effectiveness of the relations used in our study can be measured using recall, precision and F1-score techniques. The comparison of the baseline values is very essential because it can provide whether there has been an improvement in the result.

  1. Gene Kranz Visits Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On October 19, 2006, former NASA director of Mission Operations Gene Kranz was a keynote speaker at the Marshall Space Flight Center's (MSFC's) 2006 Annual Safety Day program. The best selling author of 'Failure Is Not An Option' and past Apollo flight director was featured during a morning session called 'Coffee and Kranz'. Marshall employees hung on his every word as he told the fascinating story of Apollo 13. Kranz was the acting flight director during the Apollo 13 mission, a mission that seemed doomed to fail due to an onboard explosion. Kranz and his flight control team worked around the clock relentlessly, solving problem after problem, until the crew was returned safely to Earth.

  2. Around Marshall

    NASA Image and Video Library

    2006-10-19

    On October 19, 2006, former NASA director of Mission Operations Gene Kranz was a keynote speaker at the Marshall Space Flight Center’s (MSFC’s) 2006 Annual Safety Day program. The best selling author of “Failure Is Not An Option” and past Apollo flight director was featured during a morning session called “Coffee and Kranz”. Marshall employees hung on his every word as he told the fascinating story of Apollo 13. Kranz was the acting flight director during the Apollo 13 mission, a mission that seemed doomed to fail due to an onboard explosion. Kranz and his flight control team worked around the clock relentlessly, solving problem after problem, until the crew was returned safely to Earth.

  3. EFFECTS OF MEDICAL DISPUTES ON INTERNET COMMUNICATIONS OF NEGATIVE EMOTIONS AND NEGATIVE ONLINE WORD-OF-MOUTH.

    PubMed

    Lee, Yi-Chih; Wu, Wei-Li

    2015-08-01

    Emotions play an important role in human behavior. Negative emotions resulting from medical disputes are problems for medical personnel to solve but also have a significant impact on a hospital's reputation and people's trust in the hospital. One medical dispute case was chosen from an Internet news source to assess the correlation between people's negative emotions and negative online word-of-mouth. Convenience sampling was used in school faculties and university students who had shared their medical treatment experiences online were the research participants. A total of 221 Taiwanese participants volunteered (158 women, 63 men; ages: 26.7% under 19, 22.6% 20-29, 30.8% 30-39,19.9% over 40). Four negative emotions were measured using rating scales: uncertainty, anger, disappointment, and sadness. Four negative online word-of-mouth measures were: venting, advice search, helping receiver, and revenge. A modeled relationship was assessed by partial least square method (PLS). Then, people's positive emotions were further analyzed to assess changes after spreading negative word-of-mouth. The results showed that uncertainty had a positive effect on venting and advice search. People who felt anger or regret spread word-of-mouth in order to help the receiver. Disappointment may trigger the revenge behavior of negative word-of-mouth. Negative emotions could be relieved after engaging in the behavior of helping the receiver.

  4. Word Learning Emerges from the Interaction of Online Referent Selection and Slow Associative Learning

    ERIC Educational Resources Information Center

    McMurray, Bob; Horst, Jessica S.; Samuelson, Larissa K.

    2012-01-01

    Classic approaches to word learning emphasize referential ambiguity: In naming situations, a novel word could refer to many possible objects, properties, actions, and so forth. To solve this, researchers have posited constraints, and inference strategies, but assume that determining the referent of a novel word is isomorphic to learning. We…

  5. Faster Bit-Parallel Algorithms for Unordered Pseudo-tree Matching and Tree Homeomorphism

    NASA Astrophysics Data System (ADS)

    Kaneta, Yusaku; Arimura, Hiroki

    In this paper, we consider the unordered pseudo-tree matching problem, which is a problem of, given two unordered labeled trees P and T, finding all occurrences of P in T via such many-one embeddings that preserve node labels and parent-child relationship. This problem is closely related to tree pattern matching problem for XPath queries with child axis only. If m > w , we present an efficient algorithm that solves the problem in O(nm log(w)/w) time using O(hm/w + mlog(w)/w) space and O(m log(w)) preprocessing on a unit-cost arithmetic RAM model with addition, where m is the number of nodes in P, n is the number of nodes in T, h is the height of T, and w is the word length. We also discuss a modification of our algorithm for the unordered tree homeomorphism problem, which corresponds to a tree pattern matching problem for XPath queries with descendant axis only.

  6. TRUMP; transient and steady state temperature distribution. [IBM360,370; CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, andmore » among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.IBM360,370;CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC); OS/360 (IBM360), OS/370 (IBM370), SCOPE 2.1.5 (CDC7600); As dimensioned, the program requires 400K bytes of storage on an IBM370 and 145,100 (octal) words on a CDC7600.« less

  7. Error Analysis Of Students Working About Word Problem Of Linear Program With NEA Procedure

    NASA Astrophysics Data System (ADS)

    Santoso, D. A.; Farid, A.; Ulum, B.

    2017-06-01

    Evaluation and assessment is an important part of learning. In evaluation process of learning, written test is still commonly used. However, the tests usually do not following-up by further evaluation. The process only up to grading stage not to evaluate the process and errors which done by students. Whereas if the student has a pattern error and process error, actions taken can be more focused on the fault and why is that happen. NEA procedure provides a way for educators to evaluate student progress more comprehensively. In this study, students’ mistakes in working on some word problem about linear programming have been analyzed. As a result, mistakes are often made students exist in the modeling phase (transformation) and process skills (process skill) with the overall percentage distribution respectively 20% and 15%. According to the observations, these errors occur most commonly due to lack of precision of students in modeling and in hastiness calculation. Error analysis with students on this matter, it is expected educators can determine or use the right way to solve it in the next lesson.

  8. A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.

    PubMed

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2016-12-01

    Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Sentiments Analysis of Reviews Based on ARCNN Model

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyu; Xu, Ming; Xu, Jian; Zheng, Ning; Yang, Tao

    2017-10-01

    The sentiments analysis of product reviews is designed to help customers understand the status of the product. The traditional method of sentiments analysis relies on the input of a fixed feature vector which is performance bottleneck of the basic codec architecture. In this paper, we propose an attention mechanism with BRNN-CNN model, referring to as ARCNN model. In order to have a good analysis of the semantic relations between words and solves the problem of dimension disaster, we use the GloVe algorithm to train the vector representations for words. Then, ARCNN model is proposed to deal with the problem of deep features training. Specifically, BRNN model is proposed to investigate non-fixed-length vectors and keep time series information perfectly and CNN can study more connection of deep semantic links. Moreover, the attention mechanism can automatically learn from the data and optimize the allocation of weights. Finally, a softmax classifier is designed to complete the sentiment classification of reviews. Experiments show that the proposed method can improve the accuracy of sentiment classification compared with benchmark methods.

  10. Does Calculation or Word-Problem Instruction Provide A Stronger Route to Pre-Algebraic Knowledge?

    PubMed Central

    Fuchs, Lynn S.; Powell, Sarah R.; Cirino, Paul T.; Schumacher, Robin F.; Marrin, Sarah; Hamlett, Carol L.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.

    2014-01-01

    The focus of this study was connections among 3 aspects of mathematical cognition at 2nd grade: calculations, word problems, and pre-algebraic knowledge. We extended the literature, which is dominated by correlational work, by examining whether intervention conducted on calculations or word problems contributes to improved performance in the other domain and whether intervention in either or both domains contributes to pre-algebraic knowledge. Participants were 1102 children in 127 2nd-grade classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation intervention, word-problem intervention, and business-as-usual control. Intervention, which lasted 17 weeks, was designed to provide research-based linkages between arithmetic calculations or arithmetic word problems (depending on condition) to pre-algebraic knowledge. Multilevel modeling suggested calculation intervention improved calculation but not word-problem outcomes; word-problem intervention enhanced word-problem but not calculation outcomes; and word-problem intervention provided a stronger route than calculation intervention to pre-algebraic knowledge. PMID:25541565

  11. Understanding Coreference in a System for Solving Physics Word Problems.

    NASA Astrophysics Data System (ADS)

    Bulko, William Charles

    In this thesis, a computer program (BEATRIX) is presented which takes as input an English statement of a physics problem and a figure associated with it, understands the two kinds of input in combination, and produces a data structure containing a model of the physical objects described and the relationships between them. BEATRIX provides a mouse-based graphic interface with which the user sketches a picture and enters English sentences; meanwhile, BEATRIX creates a neutral internal representation of the picture similar to the which might be produced as the output of a vision system. It then parses the text and the picture representation, resolves the references between objects common to the two data sources, and produces a unified model of the problem world. The correctness and completeness of this model has been validated by applying it as input to a physics problem-solving program currently under development. Two descriptions of a world are said to be coreferent when they contain references to overlapping sets of objects. Resolving coreferences to produce a correct world model is a common task in scientific and industrial problem-solving: because English is typically not a good language for expressing spatial relationships, people in these fields frequently use diagrams to supplement textual descriptions. Elementary physics problems from college-level textbooks provide a useful and convenient domain for exploring the mechanisms of coreference. Because flexible, opportunistic control is necessary in order to recognize coreference and to act upon it, the understanding module of BEATRIX uses a blackboard control structure. The blackboard knowledge sources serve to identify physical objects in the picture, parse the English text, and resolve coreferences between the two. We believed that BEATRIX demonstrates a control structure and collection of knowledge that successfully implements understanding of text and picture by computer. We also believe that this organization can be applied successfully to similar understanding tasks in domains other than physics problem -solving, where data such as the output from vision systems and speech understanders can be used in place of text and pictures.

  12. Teaching mathematical word problem solving: the quality of evidence for strategy instruction priming the problem structure.

    PubMed

    Jitendra, Asha K; Petersen-Brown, Shawna; Lein, Amy E; Zaslofsky, Anne F; Kunkel, Amy K; Jung, Pyung-Gang; Egan, Andrea M

    2015-01-01

    This study examined the quality of the research base related to strategy instruction priming the underlying mathematical problem structure for students with learning disabilities and those at risk for mathematics difficulties. We evaluated the quality of methodological rigor of 18 group research studies using the criteria proposed by Gersten et al. and 10 single case design (SCD) research studies using criteria suggested by Horner et al. and the What Works Clearinghouse. Results indicated that 14 group design studies met the criteria for high-quality or acceptable research, whereas SCD studies did not meet the standards for an evidence-based practice. Based on these findings, strategy instruction priming the mathematics problem structure is considered an evidence-based practice using only group design methodological criteria. Implications for future research and for practice are discussed. © Hammill Institute on Disabilities 2013.

  13. Word learning emerges from the interaction of online referent selection and slow associative learning

    PubMed Central

    McMurray, Bob; Horst, Jessica S.; Samuelson, Larissa K.

    2013-01-01

    Classic approaches to word learning emphasize the problem of referential ambiguity: in any naming situation the referent of a novel word must be selected from many possible objects, properties, actions, etc. To solve this problem, researchers have posited numerous constraints, and inference strategies, but assume that determining the referent of a novel word is isomorphic to learning. We present an alternative model in which referent selection is an online process that is independent of long-term learning. This two timescale approach creates significant power in the developing system. We illustrate this with a dynamic associative model in which referent selection is simulated as dynamic competition between competing referents, and learning is simulated using associative (Hebbian) learning. This model can account for a range of findings including the delay in expressive vocabulary relative to receptive vocabulary, learning under high degrees of referential ambiguity using cross-situational statistics, accelerating (vocabulary explosion) and decelerating (power-law) learning rates, fast-mapping by mutual exclusivity (and differences in bilinguals), improvements in familiar word recognition with development, and correlations between individual differences in speed of processing and learning. Five theoretical points are illustrated. 1) Word learning does not require specialized processes – general association learning buttressed by dynamic competition can account for much of the literature. 2) The processes of recognizing familiar words are not different than those that support novel words (e.g., fast-mapping). 3) Online competition may allow the network (or child) to leverage information available in the task to augment performance or behavior despite what might be relatively slow learning or poor representations. 4) Even associative learning is more complex than previously thought – a major contributor to performance is the pruning of incorrect associations between words and referents. 5) Finally, the model illustrates that learning and referent selection/word recognition, though logically distinct, can be deeply and subtly related as phenomena like speed of processing and mutual exclusivity may derive in part from the way learning shapes the system. As a whole, this suggests more sophisticated ways of describing the interaction between situation- and developmental-time processes and points to the need for considering such interactions as a primary determinant of development and processing in children. PMID:23088341

  14. Analysis of junior high school students' attempt to solve a linear inequality problem

    NASA Astrophysics Data System (ADS)

    Taqiyuddin, Muhammad; Sumiaty, Encum; Jupri, Al

    2017-08-01

    Linear inequality is one of fundamental subjects within junior high school mathematics curricula. Several studies have been conducted to asses students' perform on linear inequality. However, it can hardly be found that linear inequality problems are in the form of "ax + b < dx + e" with "a, d ≠ 0", and "a ≠ d" as it can be seen on the textbook used by Indonesian students and several studies. This condition leads to the research questions concerning students' attempt on solving a simple linear inequality problem in this form. In order to do so, the written test was administered to 58 students from two schools in Bandung followed by interviews. The other sources of the data are from teachers' interview and mathematics books used by students. After that, the constant comparative method was used to analyse the data. The result shows that the majority approached the question by doing algebraic operations. Interestingly, most of them did it incorrectly. In contrast, algebraic operations were correctly used by some of them. Moreover, the others performed expected-numbers solution, rewriting the question, translating the inequality into words, and blank answer. Furthermore, we found that there is no one who was conscious of the existence of all-numbers solution. It was found that this condition is reasonably due to how little the learning components concern about why a procedure of solving a linear inequality works and possibilities of linear inequality solution.

  15. Integrating Micro-computers with a Centralized DBMS: ORACLE, SEED AND INGRES

    NASA Technical Reports Server (NTRS)

    Hoerger, J.

    1984-01-01

    Users of ADABAS, a relational-like data base management system (ADABAS) with its data base programming language (NATURAL) are acquiring microcomputers with hopes of solving their individual word processing, office automation, decision support, and simple data processing problems. As processor speeds, memory sizes, and disk storage capacities increase, individual departments begin to maintain "their own" data base on "their own" micro-computer. This situation can adversely affect several of the primary goals set for implementing a centralized DBMS. In order to avoid this potential problem, these micro-computers must be integrated with the centralized DBMS. An easy to use and flexible means for transferring logic data base files between the central data base machine and micro-computers must be provided. Some of the problems encounted in an effort to accomplish this integration and possible solutions are discussed.

  16. Iranian bilingual students reported use of language switching when doing mathematics

    NASA Astrophysics Data System (ADS)

    Parvanehnezhad, Zahra; Clarkson, Philip

    2008-04-01

    Teachers are often unaware that bilingual students often switch between their languages when doing mathematics. Little research has been undertaken into this phenomenon. Results are reported here from a study of language switching by sixteen Year 4/5 Iranian bilingual students as they solved mathematical problems in an interview situation. Reasons given for switching between English and their L1 language (Persian or Farsi) were the difficulty of the problem, familiarity with particular numbers or words they used habitually in Persian, and being in the Persian school or interview environment. It seems likely that these Iranian bilingual students will continue to use some form of language switching to help them understand and complete mathematical tasks in mainstream classrooms.

  17. Remembering Larkin

    NASA Astrophysics Data System (ADS)

    Varlamov, Andrei

    2013-06-01

    Knowing Anatoly Ivanovich - Tolya for his friends and colleagues - for years I can't recall him ever writing mathematical expressions on a sheet of paper as he was usually solving problems in his head. Tolya was Homo Sapiens in its true, literal sense of this word. A side observer would hardly notice his mastery and deep understanding of modern methods of theoretical physics and mathematics as there were no piles of paper speckled with math symbols on his desk. But there was a blackboard in his office, all covered with fragments of problems he was discussing with various coauthors. He was famous among his students and coauthors for "falling asleep" in the chair in his office and then writing the solution on the board immediately after awakening...

  18. Self-help memory training for healthy older adults in a residential care center: specific and transfer effects on performance and beliefs.

    PubMed

    Cavallini, Elena; Bottiroli, Sara; Capotosto, Emanuela; De Beni, Rossana; Pavan, Giorgio; Vecchi, Tomaso; Borella, Erika

    2015-08-01

    Cognitive flexibility has repeatedly been shown to improve after training programs in community-dwelling older adults, but few studies have focused on healthy older adults living in other settings. This study investigated the efficacy of self-help training for healthy older adults in a residential care center on memory tasks they practiced (associative and object list learning tasks) and any transfer to other tasks (grocery lists, face-name learning, figure-word pairing, word lists, and text learning). Transfer effects on everyday life (using a problem-solving task) and on participants' beliefs regarding their memory (efficacy and control) were also examined. With the aid of a manual, the training adopted a learner-oriented approach that directly encouraged learners to generalize strategic behavior to new tasks. The maintenance of any training benefits was assessed after 6 months. The study involved 34 residential care center residents (aged 70-99 years old) with no cognitive impairments who were randomly assigned to two programs: the experimental group followed the self-help training program, whereas the active control group was involved in general cognitive stimulation activities. Training benefits emerged in the trained group for the tasks that were practiced. Transfer effects were found in memory and everyday problem-solving tasks and on memory beliefs. The effects of training were generally maintained in both practiced and unpracticed memory tasks. These results demonstrate that learner-oriented self-help training enhances memory performance and memory beliefs, in the short term at least, even in residential care center residents. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Longitudinal Mediators of Achievement in Mathematics and Reading in Typical and Atypical Development

    PubMed Central

    Barnes, Marcia A.; Raghubar, Kimberly P.; English, Lianne; Williams, Jeffrey M.; Taylor, Heather; Landry, Susan

    2014-01-01

    Longitudinal studies of neurodevelopmental disorders that are diagnosed at or before birth and which are associated with specific learning difficulties at school-age provide one method for investigating developmental precursors of later-emerging academic disabilities. Spina bifida myelomeningocele (SBM) is a neurodevelopmental disorder associated with particular problems in mathematics, in contrast to well-developed word reading. Children with SBM (n = 30) and typically developing children (n = 35) were used to determine whether cognitive abilities measured at 36 and 60 months of age mediated the effect of group on mathematical and reading achievement outcomes at 8.5 and 9.5 years of age. A series of multiple mediator models showed that: visual-spatial working memory at 36 months and phonological awareness at 60 months partially mediated the effect of group on math calculations; phonological awareness partially mediated the effect of group on small addition and subtraction problems on a test of math fluency; and visual-spatial working memory mediated the effect of group on a test of math problem solving. Groups did not differ on word reading, and phonological awareness was the only mediator for reading fluency and reading comprehension. The findings are discussed with reference to theories of mathematical development and disability and with respect to both common and differing cognitive correlates of math and reading. PMID:24269579

  20. The program LOPT for least-squares optimization of energy levels

    NASA Astrophysics Data System (ADS)

    Kramida, A. E.

    2011-02-01

    The article describes a program that solves the least-squares optimization problem for finding the energy levels of a quantum-mechanical system based on a set of measured energy separations or wavelengths of transitions between those energy levels, as well as determining the Ritz wavelengths of transitions and their uncertainties. The energy levels are determined by solving the matrix equation of the problem, and the uncertainties of the Ritz wavenumbers are determined from the covariance matrix of the problem. Program summaryProgram title: LOPT Catalogue identifier: AEHM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19 254 No. of bytes in distributed program, including test data, etc.: 427 839 Distribution format: tar.gz Programming language: Perl v.5 Computer: PC, Mac, Unix workstations Operating system: MS Windows (XP, Vista, 7), Mac OS X, Linux, Unix (AIX) RAM: 3 Mwords or more Word size: 32 or 64 Classification: 2.2 Nature of problem: The least-squares energy-level optimization problem, i.e., finding a set of energy level values that best fits the given set of transition intervals. Solution method: The solution of the least-squares problem is found by solving the corresponding linear matrix equation, where the matrix is constructed using a new method with variable substitution. Restrictions: A practical limitation on the size of the problem N is imposed by the execution time, which scales as N and depends on the computer. Unusual features: Properly rounds the resulting data and formats the output in a format suitable for viewing with spreadsheet editing software. Estimates numerical errors resulting from the limited machine precision. Running time: 1 s for N=100, or 60 s for N=400 on a typical PC.

  1. Implicit memory. Retention without remembering.

    PubMed

    Roediger, H L

    1990-09-01

    Explicit measures of human memory, such as recall or recognition, reflect conscious recollection of the past. Implicit tests of retention measure transfer (or priming) from past experience on tasks that do not require conscious recollection of recent experiences for their performance. The article reviews research on the relation between explicit and implicit memory. The evidence points to substantial differences between standard explicit and implicit tests, because many variables create dissociations between these tests. For example, although pictures are remembered better than words on explicit tests, words produce more priming than do pictures on several implicit tests. These dissociations may implicate different memory systems that subserve distinct memorial functions, but the present argument is that many dissociations can be understood by appealing to general principles that apply to both explicit and implicit tests. Phenomena studied under the rubric of implicit memory may have important implications in many other fields, including social cognition, problem solving, and cognitive development.

  2. Cross-language opinion lexicon extraction using mutual-reinforcement label propagation.

    PubMed

    Lin, Zheng; Tan, Songbo; Liu, Yue; Cheng, Xueqi; Xu, Xueke

    2013-01-01

    There is a growing interest in automatically building opinion lexicon from sources such as product reviews. Most of these methods depend on abundant external resources such as WordNet, which limits the applicability of these methods. Unsupervised or semi-supervised learning provides an optional solution to multilingual opinion lexicon extraction. However, the datasets are imbalanced in different languages. For some languages, the high-quality corpora are scarce or hard to obtain, which limits the research progress. To solve the above problems, we explore a mutual-reinforcement label propagation framework. First, for each language, a label propagation algorithm is applied to a word relation graph, and then a bilingual dictionary is used as a bridge to transfer information between two languages. A key advantage of this model is its ability to make two languages learn from each other and boost each other. The experimental results show that the proposed approach outperforms baseline significantly.

  3. Visual thinking in action: visualizations as used on whiteboards.

    PubMed

    Walny, Jagoda; Carpendale, Sheelagh; Riche, Nathalie Henry; Venolia, Gina; Fawcett, Philip

    2011-12-01

    While it is still most common for information visualization researchers to develop new visualizations from a data- or taskdriven perspective, there is growing interest in understanding the types of visualizations people create by themselves for personal use. As part of this recent direction, we have studied a large collection of whiteboards in a research institution, where people make active use of combinations of words, diagrams and various types of visuals to help them further their thought processes. Our goal is to arrive at a better understanding of the nature of visuals that are created spontaneously during brainstorming, thinking, communicating, and general problem solving on whiteboards. We use the qualitative approaches of open coding, interviewing, and affinity diagramming to explore the use of recognizable and novel visuals, and the interplay between visualization and diagrammatic elements with words, numbers and labels. We discuss the potential implications of our findings on information visualization design. © 2011 IEEE

  4. The Measurand: The Problem of Frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkham, Harold

    The conceptual entity that metrologists term the measurand is a model selected to represent the physical entity being measured. In a world of digital measurements, it should be defined first mathematically, and only then put into words. Human linguistic processes lack the precision required when all we do is use labels. In this paper, reactive power and frequency are used as examples. The act of measurement finds the values of the coef-ficients of the model. In other words, it solves an equation. In a digital instrument, information about the quality of the fit between the physical entity being measured andmore » the conceptual model is often available. In essence the instrument can comment on the selection of the model. This comment should be reported as part of the statement of the result of the measurement, along with the declared value and the uncertainty.« less

  5. Optimization of block-floating-point realizations for digital controllers with finite-word-length considerations.

    PubMed

    Wu, Jun; Hu, Xie-he; Chen, Sheng; Chu, Jian

    2003-01-01

    The closed-loop stability issue of finite-precision realizations was investigated for digital controllers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resulting from using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.

  6. Consciousness and abilities of dream characters observed during lucid dreaming.

    PubMed

    Tholey, P

    1989-04-01

    A description of several phenomenological experiments is given. These were done to investigate of which cognitive accomplishments dream characters are capable in lucid dreams. Nine male experienced lucid dreamers participated as subjects. They were directed to set different tasks to dream characters they met while lucid dreaming. Dream characters were asked to draw or write, to name unknown words, to find rhyme words, to make verses, and to solve arithmetic problems. Part of the dream characters actually agreed to perform the tasks and were successful, although the arithmetic accomplishments were poor. From the phenomenological findings, nothing contradicts the assumption that dream characters have consciousness in a specific sense. Herefrom the conclusion was drawn, that in lucid dream therapy communication with dream characters should be handled as if they were rational beings. Finally, several possibilities of assessing the question, whether dream characters possess consciousness, can be examined with the aid of psychophysiological experiments.

  7. Cross-Language Opinion Lexicon Extraction Using Mutual-Reinforcement Label Propagation

    PubMed Central

    Lin, Zheng; Tan, Songbo; Liu, Yue; Cheng, Xueqi; Xu, Xueke

    2013-01-01

    There is a growing interest in automatically building opinion lexicon from sources such as product reviews. Most of these methods depend on abundant external resources such as WordNet, which limits the applicability of these methods. Unsupervised or semi-supervised learning provides an optional solution to multilingual opinion lexicon extraction. However, the datasets are imbalanced in different languages. For some languages, the high-quality corpora are scarce or hard to obtain, which limits the research progress. To solve the above problems, we explore a mutual-reinforcement label propagation framework. First, for each language, a label propagation algorithm is applied to a word relation graph, and then a bilingual dictionary is used as a bridge to transfer information between two languages. A key advantage of this model is its ability to make two languages learn from each other and boost each other. The experimental results show that the proposed approach outperforms baseline significantly. PMID:24260190

  8. Children's patterns of reasoning about reading and addition concepts.

    PubMed

    Farrington-Flint, Lee; Canobi, Katherine H; Wood, Clare; Faulkner, Dorothy

    2010-06-01

    Children's reasoning was examined within two educational contexts (word reading and addition) so as to understand the factors that contribute to relational reasoning in the two domains. Sixty-seven 5- to 7-year-olds were given a series of related words to read or single-digit addition items to solve (interspersed with unrelated items). The frequency, accuracy, and response times of children's self-reports on the conceptually related items provided a measure of relational reasoning, while performance on the unrelated addition and reading items provided a measure of procedural skill. The results indicated that the children's ability to use conceptual relations to solve both reading and addition problems enhanced speed and accuracy levels, increased with age, and was related to procedural skill. However, regression analyses revealed that domain-specific competencies can best explain the use of conceptual relations in both reading and addition. Moreover, a cluster analysis revealed that children differ according to the academic domain in which they first apply conceptual relations and these differences are related to individual variation in their procedural skills within these particular domains. These results highlight the developmental significance of relational reasoning in the context of reading and addition and underscore the importance of concept-procedure links in explaining children's literacy and arithmetical development.

  9. A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    NASA Technical Reports Server (NTRS)

    Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric

    2014-01-01

    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.

  10. Affix Meaning Knowledge in First Through Third Grade Students.

    PubMed

    Apel, Kenn; Henbest, Victoria Suzanne

    2016-04-01

    We examined grade-level differences in 1st- through 3rd-grade students' performance on an experimenter-developed affix meaning task (AMT) and determined whether AMT performance explained unique variance in word-level reading and reading comprehension, beyond other known contributors to reading development. Forty students at each grade level completed an assessment battery that included measures of phonological awareness, receptive vocabulary, word-level reading, reading comprehension, and affix meaning knowledge. On the AMT, 1st-grade students were significantly less accurate than 2nd- and 3rd-grade students; there was no significant difference in performance between the 2nd- and 3rd-grade students. Regression analyses revealed that the AMT accounted for 8% unique variance of students' performance on word-level reading measures and 6% unique variance of students' performance on the reading comprehension measure, after age, phonological awareness, and receptive vocabulary were explained. These results provide initial information on the development of affix meaning knowledge via an explicit measure in 1st- through 3rd-grade students and demonstrate that affix meaning knowledge uniquely contributes to the development of reading abilities above other known literacy predictors. These findings provide empirical support for how students might use morphological problem solving to read unknown multimorphemic words successfully.

  11. Navier-Stokes Simulation of Homogeneous Turbulence on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Wu, C. T.; Ferziger, J. H.; Chapman, D. R.; Rogallo, R. S.

    1984-01-01

    A computer code which solves the Navier-Stokes equations for three dimensional, time-dependent, homogenous turbulence has been written for the CYBER 205. The code has options for both 64-bit and 32-bit arithmetic. With 32-bit computation, mesh sizes up to 64 (3) are contained within core of a 2 million 64-bit word memory. Computer speed timing runs were made for various vector lengths up to 6144. With this code, speeds a little over 100 Mflops have been achieved on a 2-pipe CYBER 205. Several problems encountered in the coding are discussed.

  12. Effects of a Multitier Support System on Calculation, Word Problem, and Prealgebraic Performance Among At-Risk Learners.

    PubMed

    Powell, Sarah R; Fuchs, Lynn S; Cirino, Paul T; Fuchs, Douglas; Compton, Donald L; Changas, Paul C

    2015-07-01

    The focus of the present study was enhancing word-problem and calculation achievement in ways that support pre-algebraic thinking among 2 nd -grade students at risk for mathematics difficulty. Intervention relied on a multi-tier support system (i.e., responsiveness-to-intervention or RTI) in which at-risk students participate in general classroom instruction and receive supplementary small-group tutoring. Participants were 265 students in 110 classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation RTI, word-problem RTI, and business-as-usual control. Intervention lasted 17 weeks. Multilevel modeling indicated that calculation RTI improved calculation but not word-problem outcomes; word-problem RTI enhanced proximal word-problem outcomes as well as performance on some calculation outcomes; and word-problem RTI provided a stronger route than calculation RTI to pre-algebraic knowledge.

  13. Effects of a Multitier Support System on Calculation, Word Problem, and Prealgebraic Performance Among At-Risk Learners

    PubMed Central

    Powell, Sarah R.; Fuchs, Lynn S.; Cirino, Paul T.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.

    2014-01-01

    The focus of the present study was enhancing word-problem and calculation achievement in ways that support pre-algebraic thinking among 2nd-grade students at risk for mathematics difficulty. Intervention relied on a multi-tier support system (i.e., responsiveness-to-intervention or RTI) in which at-risk students participate in general classroom instruction and receive supplementary small-group tutoring. Participants were 265 students in 110 classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation RTI, word-problem RTI, and business-as-usual control. Intervention lasted 17 weeks. Multilevel modeling indicated that calculation RTI improved calculation but not word-problem outcomes; word-problem RTI enhanced proximal word-problem outcomes as well as performance on some calculation outcomes; and word-problem RTI provided a stronger route than calculation RTI to pre-algebraic knowledge. PMID:26097244

  14. Leadership rounds to reduce health care-associated infections.

    PubMed

    Knobloch, Mary Jo; Chewning, Betty; Musuuza, Jackson; Rees, Susan; Green, Christopher; Patterson, Erin; Safdar, Nasia

    2018-03-01

    Evidence-based guidelines exist to reduce health care-associated infections (HAIs). Leadership rounds are one tool leaders can use to ensure compliance with guidelines, but have not been studied specifically for the reduction of HAIs. This study examines HAI leadership rounds at one facility. We explored unit-based HAI leadership rounds led by 2 hospital leaders at a large academic hospital. Leadership rounds were observed on 19 units, recorded, and coded to identify themes. Themes were linked to the Consolidated Framework for Implementation Research and used to guide interviews with frontline staff members. Staff members disclosed unit-specific problems and readily engaged in problem-solving with top hospital leaders. These themes appeared over 350 times within 22 rounds. Findings revealed that leaders used words that demonstrated fallibility and modeled curiosity, 2 factors associated with learning climate and psychologic safety. These 2 themes appeared 115 and 142 times, respectively. The flexible nature of the rounds appeared to be conducive for reflection and evaluation, which was coded 161 times. Each interaction between leaders and frontline staff can foster psychologic safety, which can lead to open problem-solving to reduce barriers to implementation. Discovering specific communication and structural factors that contribute to psychologic safety may be powerful in reducing HAIs. Published by Elsevier Inc.

  15. Embedding Number-Combinations Practice Within Word-Problem Tutoring

    PubMed Central

    Powell, Sarah R.; Fuchs, Lynn S.; Fuchs, Douglas

    2012-01-01

    Two aspects of mathematics with which students with mathematics learning difficulty (MLD) often struggle are word problems and number-combination skills. This article describes a math program in which students receive instruction on using algebraic equations to represent the underlying problem structure for three word-problem types. Students also learn counting strategies for answering number combinations that they cannot retrieve from memory. Results from randomized-control trials indicated that embedding the counting strategies for number combinations produces superior word-problem and number-combination outcomes for students with MLD beyond tutoring programs that focus exclusively on number combinations or word problems. PMID:22661880

  16. Embedding Number-Combinations Practice Within Word-Problem Tutoring.

    PubMed

    Powell, Sarah R; Fuchs, Lynn S; Fuchs, Douglas

    2010-09-01

    Two aspects of mathematics with which students with mathematics learning difficulty (MLD) often struggle are word problems and number-combination skills. This article describes a math program in which students receive instruction on using algebraic equations to represent the underlying problem structure for three word-problem types. Students also learn counting strategies for answering number combinations that they cannot retrieve from memory. Results from randomized-control trials indicated that embedding the counting strategies for number combinations produces superior word-problem and number-combination outcomes for students with MLD beyond tutoring programs that focus exclusively on number combinations or word problems.

  17. From the bench to bedside to babies: translational medicine made possible by funding multidisciplinary team science.

    PubMed

    Woodruff, Teresa K

    2013-10-01

    In 2005, The National Institutes of Health (NIH) called upon the scientific community to identify the most intractable problems in science and medicine and describe how we would solve these problems using teams. Our group was one of 8 research communities awarded an 'interdisciplinary research consortium (IRC) grant.' Using the infrastructure of this large, multi-institute grant and a team science approach, we set out to solve the problem of fertility loss in young female cancer patients-work that was not easily funded through other mechanisms. The word 'oncofertility' was coined specifically for the IRC to reflect the intimate partnership between oncology care and fertility care for these patients-two disciplines that would no longer function at arms' length, but as an integrated unit. Catalyzed by the IRC funding mechanism, interdisciplinary teams worked together in unique ways to create a 'bench to bedside to baby' outcome. The grant has now ended, and remarkably, so have the most intractable parts of the original problem. As we look back on what worked and look forward to tackling the next set of fertility-related questions, we are confident that this very special NIH funding mechanism made a meaningful difference in the lives of women and their future children. NIH and the public would be well-served by supporting clinical problem-based, multidisciplinary team science approaches to catalyze fundamental biomedical breakthroughs and create new intellectual environments in which changes in clinical practice and standard of care can be implemented.

  18. Effects of methylphenidate on the persistence of ADHD boys following failure experiences.

    PubMed

    Milich, R; Carlson, C L; Pelham, W E; Licht, B G

    1991-10-01

    We examined the effects of methylphenidate on the task persistence of 21 boys with attention-deficit hyperactivity disorder (ADHD), after they had been exposed to both solvable and insolvable problems. The boys attempted to solve 10 different find-a-word puzzles on each of 4 days, involving the crossing of medication (placebo vs. 0.3 mg/kg) and prior task difficulty (solvable vs. insolvable). The results revealed that medication prevented the decrement in performance following the insolvable problems that was evident with the placebo days. In addition, on medication compared with placebo, the boys were more likely to make external attributions for failure and internal attributions for success. The results are discussed in terms of the impact of medication on ADHD boys' performance as mediated by cognitive-motivational state mechanisms.

  19. Analysis of problem solving on project based learning with resource based learning approach computer-aided program

    NASA Astrophysics Data System (ADS)

    Kuncoro, K. S.; Junaedi, I.; Dwijanto

    2018-03-01

    This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.

  20. libFLASM: a software library for fixed-length approximate string matching.

    PubMed

    Ayad, Lorraine A K; Pissis, Solon P P; Retha, Ahmad

    2016-11-10

    Approximate string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length approximate string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size. Fixed-length approximate string matching is a generalisation of approximate string matching and, hence, has numerous direct applications in computational molecular biology and elsewhere. We present and make available libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching under both the edit and the Hamming distance models. Moreover we describe how fixed-length approximate string matching is applied to solve real problems by incorporating libFLASM into established applications for multiple circular sequence alignment as well as single and structured motif extraction. Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular sequences representing regulatory or functional regions. The comparison of the performance of the library to other algorithms show how it is competitive, especially with increasing distance thresholds. Fixed-length approximate string matching is a generalisation of the classic approximate string matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching. The extensive experimental results presented here suggest that other applications could benefit from using libFLASM, and thus further maintenance and development of libFLASM is desirable.

  1. Do word-problem features differentially affect problem difficulty as a function of students' mathematics difficulty with and without reading difficulty?

    PubMed

    Powell, Sarah R; Fuchs, Lynn S; Fuchs, Douglas; Cirino, Paul T; Fletcher, Jack M

    2009-01-01

    This study examined whether and, if so, how word-problem features differentially affect problem difficulty as a function of mathematics difficulty (MD) status: no MD (n = 109), MD only (n = 109), or MD in combination with reading difficulties (MDRD; n = 109). The problem features were problem type (total, difference, or change) and position of missing information in the number sentence representing the word problem (first, second, or third position). Students were assessed on 14 word problems near the beginning of third grade. Consistent with the hypothesis that mathematical cognition differs as a function of MD subtype, problem type affected problem difficulty differentially for MDRD versus MD-only students; however, the position of missing information in word problems did not. Implications for MD subtyping and for instruction are discussed.

  2. Cognitive and Linguistic Predictors of Mathematical Word Problems with and without Irrelevant Information

    ERIC Educational Resources Information Center

    Wang, Amber Y.; Fuchs, Lynn S.; Fuchs, Douglas

    2016-01-01

    The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working…

  3. From Grapheme to Phonological Output: Performance of Adults Who Stutter on a Word Jumble Task

    PubMed Central

    McGill, Megann; Sussman, Harvey; Byrd, Courtney T.

    2016-01-01

    Purpose The purpose of the present study was to extend previous research by analyzing the ability of adults who stutter to use phonological working memory in conjunction with lexical access to perform a word jumble task. Method Forty English words consisting of 3-, 4-, 5-, and 6-letters (n = 10 per letter length category) were randomly jumbled using a web-based application. During the experimental task, 26 participants were asked to silently manipulate the scrambled letters to form a real word. Each vocal response was coded for accuracy and speech reaction time (SRT). Results Adults who stutter attempted to solve fewer word jumble stimuli than adults who do not stutter at the 4-letter, 5-letter, and 6-letter lengths. Additionally, adults who stutter were significantly less accurate solving word jumble tasks at the 4-letter, 5-letter, and 6-letter lengths compared to adults who do not stutter. At the longest word length (6-letter), SRT was significantly slower for the adults who stutter than the fluent controls. Conclusion Results of the current study lend further support to the notion that differences in various aspects of phonological processing, including vision-to-sound conversions, sub-vocal stimulus manipulation, and/or lexical access are compromised in adults who stutter. PMID:26963917

  4. Examining the Latent Structure of the Delis-Kaplan Executive Function System.

    PubMed

    Karr, Justin E; Hofer, Scott M; Iverson, Grant L; Garcia-Barrera, Mauricio A

    2018-05-04

    The current study aimed to determine whether the Delis-Kaplan Executive Function System (D-KEFS) taps into three executive function factors (inhibition, shifting, fluency) and to assess the relationship between these factors and tests of executive-related constructs less often measured in latent variable research: reasoning, abstraction, and problem solving. Participants included 425 adults from the D-KEFS standardization sample (20-49 years old; 50.1% female; 70.1% White). Eight alternative measurement models were compared based on model fit, with test scores assigned a priori to three factors: inhibition (Color-Word Interference, Tower), shifting (Trail Making, Sorting, Design Fluency), and fluency (Verbal/Design Fluency). The Twenty Questions, Word Context, and Proverb Tests were predicted in separate structural models. The three-factor model fit the data well (CFI = 0.938; RMSEA = 0.047), although a two-factor model, with shifting and fluency merged, fit similarly well (CFI = 0.929; RMSEA = 0.048). A bifactor model fit best (CFI = 0.977; RMSEA = 0.032) and explained the most variance in shifting indicators, but rarely converged among 5,000 bootstrapped samples. When the three first-order factors simultaneously predicted the criterion variables, only shifting was uniquely predictive (p < .05; R2 = 0.246-0.408). The bifactor significantly predicted all three criterion variables (p < .001; R2 = 0.141-242). Results supported a three-factor D-KEFS model (i.e., inhibition, shifting, and fluency), although shifting and fluency were highly related (r = 0.696). The bifactor showed superior fit, but converged less often than other models. Shifting best predicted tests of reasoning, abstraction, and problem solving. These findings support the validity of D-KEFS scores for measuring executive-related constructs and provide a framework through which clinicians can interpret D-KEFS results.

  5. Toward Solving the Problem of Problem Solving: An Analysis Framework

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  6. Does understanding relational terminology mediate effects of intervention on compare word problems?

    PubMed

    Schumacher, Robin F; Fuchs, Lynn S

    2012-04-01

    The purpose of this study was to assess whether understanding relational terminology (i.e., more, less, and fewer) mediates the effects of intervention on compare word problems. Second-grade classrooms (N=31) were randomly assigned to one of three conditions: researcher-designed word-problem intervention, researcher-designed calculation intervention, or business-as-usual (teacher-designed) control. Students in word-problem intervention classrooms received instruction on the compare problem type, which included a focus on understanding relational terminology within compare word problems. Analyses, which accounted for variance associated with classroom clustering, indicated that (a) compared with the calculation intervention and business-as-usual conditions, word-problem intervention significantly increased performance on all three subtypes of compare problems and on understanding relational terminology, and (b) the intervention effect was fully mediated by students' understanding of relational terminology for one subtype of compare problems and partially mediated by students' understanding of relational terminology for the other two subtypes. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    PubMed

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  8. Color-word matching stroop task: separating interference and response conflict.

    PubMed

    Zysset, S; Müller, K; Lohmann, G; von Cramon , D Y

    2001-01-01

    The Stroop interference task requires a person to respond to a specific dimension of a stimulus while suppressing a competing stimulus dimension. Previous PET and fMRI studies using the Color Stroop paradigm have shown increased activity in the "cognitive division" of the cingulate cortex. In our fMRI study with nine subjects, we used a Color-Word Matching Stroop task. A frontoparietal network, including structures in the lateral prefrontal cortex, the frontopolar region, the intraparietal sulcus, as well as the lateral occipitotemporal gyrus, was activated when contrasting the incongruent vs the neutral condition. However, no substantial activation in either the right or left hemisphere of the anterior cingulate cortex (ACC) was detected. In accordance with a series of recent articles, we argue that the ACC is not specifically involved in interference processes. The ACC seems rather involved in motor preparation processes which were controlled in the present Color-Word Matching Stroop task. We argue that the region around the banks of the inferior frontal sulcus is required to solve interference problems, a concept which can also be seen as a component of task set management. Copyright 2001 Academic Press.

  9. Longitudinal mediators of achievement in mathematics and reading in typical and atypical development.

    PubMed

    Barnes, Marcia A; Raghubar, Kimberly P; English, Lianne; Williams, Jeffrey M; Taylor, Heather; Landry, Susan

    2014-03-01

    Longitudinal studies of neurodevelopmental disorders that are diagnosed at or before birth and are associated with specific learning difficulties at school-age provide one method for investigating developmental precursors of later-emerging academic disabilities. Spina bifida myelomeningocele (SBM) is a neurodevelopmental disorder associated with particular problems in mathematics, in contrast to well-developed word reading. Children with SBM (n=30) and typically developing children (n=35) were used to determine whether cognitive abilities measured at 36 and 60 months of age mediated the effect of group on mathematical and reading achievement outcomes at 8.5 and 9.5 years of age. A series of multiple mediator models showed that: visual-spatial working memory at 36 months and phonological awareness at 60 months partially mediated the effect of group on math calculations, phonological awareness partially mediated the effect of group on small addition and subtraction problems on a test of math fluency, and visual-spatial working memory mediated the effect of group on a test of math problem solving. Groups did not differ on word reading, and phonological awareness was the only mediator for reading fluency and reading comprehension. The findings are discussed with reference to theories of mathematical development and disability and with respect to both common and differing cognitive correlates of math and reading. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Resources in Technology: Problem-Solving.

    ERIC Educational Resources Information Center

    Technology Teacher, 1986

    1986-01-01

    This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)

  11. Pupils' over-reliance on linearity: a scholastic effect?

    PubMed

    Van Dooren, Wim; De Bock, Dirk; Janssens, Dirk; Verschaffel, Lieven

    2007-06-01

    From upper elementary education on, children develop a tendency to over-use linearity. Particularly, it is found that many pupils assume that if a figure enlarges k times, the area enlarges k times too. However, most research was conducted with traditional, school-like word problems. This study examines whether pupils also over-use linearity if non-linear problems are embedded in meaningful, authentic performance tasks instead of traditional, school-like word problems, and whether this experience influences later behaviour. Ninety-three sixth graders from two primary schools in Flanders, Belgium. Pupils received a pre-test with traditional word problems. Those who made a linear error on the non-linear area problem were subjected to individual interviews. They received one new non-linear problem, in the S-condition (again a traditional, scholastic word problem), D-condition (the same word problem with a drawing) or P-condition (a meaningful performance-based task). Shortly afterwards, pupils received a post-test, containing again a non-linear word problem. Most pupils from the S-condition displayed linear reasoning during the interview. Offering drawings (D-condition) had a positive effect, but presenting the problem as a performance task (P-condition) was more beneficial. Linear reasoning was nearly absent in the P-condition. Remarkably, at the post-test, most pupils from all three groups again applied linear strategies. Pupils' over-reliance on linearity seems partly elicited by the school-like word problem format of test items. Pupils perform much better if non-linear problems are offered as performance tasks. However, a single experience does not change performances on a comparable word problem test afterwards.

  12. Executive functions, parental punishment, and aggression: Direct and moderated relations.

    PubMed

    Fatima, Shameem; Sharif, Imran

    2017-12-01

    The main focus of the current study was to assess whether executive functions (EFs) moderate the effect of parental punishment on adolescent aggression. The sample were 370 participants (53% girls, 47% boys) enrolled at secondary and higher secondary levels and ranged in age between 13-19 years (M = 15.5, SD = 1.3). Participants were assessed on a self-report measure of aggression and two punishment measures, in addition to a demographic sheet. Then, they were individually assessed on four tests taken from the Delis-Kaplan Executive Functions System (D-KEFS) namely Trial Making Test (TMT), Design Fluency Test (DFT), Color Word Interference Test (CWIT), and Card Sorting Test (CST) to assess cognitive flexibility, nonverbal fluency, inhibition, and problem-solving ability, respectively. Correlation coefficients indicated that all four executive functioning measures and the two punishment measures were significantly correlated with aggression. Moderation analysis indicated that all EFs moderated the relationship between physical punishment and aggression, and only inhibition and problem-solving ability, but not cognitive flexibility and nonverbal fluency, moderated the relations between symbolic punishment and aggression. The findings support the hypothesis that EFs are protective personal factors that promote healthy adolescent adjustment in the presence of challenging environmental factors.

  13. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  14. Mexican American family processes: nurturing, support, and socialization.

    PubMed

    Niska, K J

    1999-04-01

    The purpose of this ethnographic study with Mexican American families was to document characteristics of Mexican American family processes of nurturing, support, and socialization. Audiotaped conversations with participants were transcribed verbatim in Spanish or English. Content analysis was used to derive characteristics of family processes. Family nurturing was characterized by being kin-based and intimate in nature. Family support was kin-based, with material support oriented toward household needs; with emotional support grounded in shared stories, problem solving, and prayer; and with informational support offered in consejos (wisdom sayings and words of advice), stories, and guidance. Family socialization was kin-based, hierarchical, and ritualistic.

  15. A new cognitive rehabilitation programme for patients with multiple sclerosis: the 'MS-line! Project'.

    PubMed

    Gich, Jordi; Freixenet, Jordi; Garcia, Rafael; Vilanova, Joan Carles; Genís, David; Silva, Yolanda; Montalban, Xavier; Ramió-Torrentà, Lluís

    2015-09-01

    Cognitive rehabilitation is often delayed in multiple sclerosis (MS). To develop a free and specific cognitive rehabilitation programme for MS patients to be used from early stages that does not interfere with daily living activities. MS-line!, cognitive rehabilitation materials consisting of written, manipulative and computer-based materials with difficulty levels developed by a multidisciplinary team. Mathematical, problem-solving and word-based exercises were designed. Physical materials included spatial, coordination and reasoning games. Computer-based material included logic and reasoning, working memory and processing speed games. Cognitive rehabilitation exercises that are specific for MS patients have been successfully developed. © The Author(s), 2014.

  16. Selective Cooperation in Early Childhood – How to Choose Models and Partners

    PubMed Central

    Hermes, Jonas; Behne, Tanya; Studte, Kristin; Zeyen, Anna-Maria; Gräfenhain, Maria; Rakoczy, Hannes

    2016-01-01

    Cooperation is essential for human society, and children engage in cooperation from early on. It is unclear, however, how children select their partners for cooperation. We know that children choose selectively whom to learn from (e.g. preferring reliable over unreliable models) on a rational basis. The present study investigated whether children (and adults) also choose their cooperative partners selectively and what model characteristics they regard as important for cooperative partners and for informants about novel words. Three- and four-year-old children (N = 64) and adults (N = 14) saw contrasting pairs of models differing either in physical strength or in accuracy (in labeling known objects). Participants then performed different tasks (cooperative problem solving and word learning) requiring the choice of a partner or informant. Both children and adults chose their cooperative partners selectively. Moreover they showed the same pattern of selective model choice, regarding a wide range of model characteristics as important for cooperation (preferring both the strong and the accurate model for a strength-requiring cooperation tasks), but only prior knowledge as important for word learning (preferring the knowledgeable but not the strong model for word learning tasks). Young children’s selective model choice thus reveals an early rational competence: They infer characteristics from past behavior and flexibly consider what characteristics are relevant for certain tasks. PMID:27505043

  17. Child-Level Predictors of Responsiveness to Evidence-Based Mathematics Intervention.

    PubMed

    Powell, Sarah R; Cirino, Paul T; Malone, Amelia S

    2017-07-01

    We identified child-level predictors of responsiveness to 2 types of mathematics (calculation and word-problem) intervention among 2nd-grade children with mathematics difficulty. Participants were 250 children in 107 classrooms in 23 schools pretested on mathematics and general cognitive measures and posttested on mathematics measures. We assigned classrooms randomly assigned to calculation intervention, word-problem intervention, or business-as-usual control. Intervention lasted 17 weeks. Path analyses indicated that scores on working memory and language comprehension assessments moderated responsiveness to calculation intervention. No moderators were identified for responsiveness to word-problem intervention. Across both intervention groups and the control group, attentive behavior predicted both outcomes. Initial calculation skill predicted the calculation outcome, and initial language comprehension predicted word-problem outcomes. These results indicate that screening for calculation intervention should include a focus on working memory, language comprehension, attentive behavior, and calculations. Screening for word-problem intervention should focus on attentive behavior and word problems.

  18. Diagnostic articulation tables

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. G.

    2002-09-01

    In recent years, considerable progress has been made in the development of instrumental methods for general speech quality and intelligibility evaluation on the basis of modeling the auditory perception of speech and measuring the signal-to-noise ratio. Despite certain advantages (fast measurement procedures with a low labor consumption), these methods are not universal and, in essence, secondary, because they rely on the calibration based on subjective-statistical measurements. At the same time, some specific problems of speech quality evaluation, such as the diagnostics of the factors responsible for the deviation of the speech quality from standard (e.g., accent features of a speaker or individual voice distortions), can be solved by psycholinguistic methods. This paper considers different kinds of diagnostic articulation tables: tables of minimal pairs of monosyllabic words (DRT) based on the Jacobson differential features, tables consisting of multisyllabic quartets of Russian words (the choice method), and tables of incomplete monosyllables of the _VC/CV_ type (the supplementary note method). Comparative estimates of the tables are presented along with the recommendations concerning their application.

  19. The impact of uncertainty on optimal emission policies

    NASA Astrophysics Data System (ADS)

    Botta, Nicola; Jansson, Patrik; Ionescu, Cezar

    2018-05-01

    We apply a computational framework for specifying and solving sequential decision problems to study the impact of three kinds of uncertainties on optimal emission policies in a stylized sequential emission problem.We find that uncertainties about the implementability of decisions on emission reductions (or increases) have a greater impact on optimal policies than uncertainties about the availability of effective emission reduction technologies and uncertainties about the implications of trespassing critical cumulated emission thresholds. The results show that uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies. In other words, delaying emission reductions to the point in time when effective technologies will become available is suboptimal when these uncertainties are accounted for rigorously. By contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make early emission reductions less rewarding.

  20. Case Study: Students’ Symbolic Manipulation in Calculus Among UTHM Students

    NASA Astrophysics Data System (ADS)

    Ali, Maselan; Sufahani, Suliadi; Ahmad, Wan N. A. W.; Ghazali Kamardan, M.; Saifullah Rusiman, Mohd; Che-Him, Norziha

    2018-04-01

    Words are symbols representing certain aspects of mathematics. The main purpose of this study is to gain insight into students’ symbolic manipulation in calculus among UTHM students. This study make use the various methods in collecting data which are documentation, pilot study, written test and follow up individual interviews. Hence, the results analyzed and interpreted based on action-process-object-schema framework which is based on Piaget’s ideas of reflective abstraction, the concept of relational and instrumental understanding and the zone of proximal development idea. The students’ reply in the interview session is analyzed and then the overall performance is discussed briefly to relate with the students flexibility in symbolic manipulation in linking to the graphical idea, the students interpretation towards different symbolic structure in calculus and the problem that related to overgeneralization in their calculus problems solving.

  1. Problem-solving variability in older spouses: how is it linked to problem-, person-, and couple-characteristics?

    PubMed

    Hoppmann, Christiane A; Blanchard-Fields, Fredda

    2011-09-01

    Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.

  2. Resource Letter RPS-1: Research in problem solving

    NASA Astrophysics Data System (ADS)

    Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.

    2004-09-01

    This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.

  3. A supramodal brain substrate of word form processing--an fMRI study on homonym finding with auditory and visual input.

    PubMed

    Balthasar, Andrea J R; Huber, Walter; Weis, Susanne

    2011-09-02

    Homonym processing in German is of theoretical interest as homonyms specifically involve word form information. In a previous study (Weis et al., 2001), we found inferior parietal activation as a correlate of successfully finding a homonym from written stimuli. The present study tries to clarify the underlying mechanism and to examine to what extend the previous homonym effect is dependent on visual in contrast to auditory input modality. 18 healthy subjects were examined using an event-related functional magnetic resonance imaging paradigm. Participants had to find and articulate a homonym in relation to two spoken or written words. A semantic-lexical task - oral naming from two-word definitions - was used as a control condition. When comparing brain activation for solved homonym trials to both brain activation for unsolved homonyms and solved definition trials we obtained two activations patterns, which characterised both auditory and visual processing. Semantic-lexical processing was related to bilateral inferior frontal activation, whereas left inferior parietal activation was associated with finding the correct homonym. As the inferior parietal activation during successful access to the word form of a homonym was independent of input modality, it might be the substrate of access to word form knowledge. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The Impossibility of "Real-Life" Word Problems (According to Bakhtin, Lacan, Zizek and Baudrillard)

    ERIC Educational Resources Information Center

    Gerofsky, Susan

    2010-01-01

    In recent years a great deal of work on mathematical word problems has focused on efforts to bring more of "real life" into the problems themselves and students' uptake of these problems. Following on from earlier studies of the word problem as a pedagogical and literary genre, the author argues that we cannot unproblematically assume an ability…

  5. NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition.

    PubMed

    Tsai, Richard Tzong-Han; Sung, Cheng-Lung; Dai, Hong-Jie; Hung, Hsieh-Chuan; Sung, Ting-Yi; Hsu, Wen-Lian

    2006-12-18

    Biomedical named entity recognition (Bio-NER) is a challenging problem because, in general, biomedical named entities of the same category (e.g., proteins and genes) do not follow one standard nomenclature. They have many irregularities and sometimes appear in ambiguous contexts. In recent years, machine-learning (ML) approaches have become increasingly common and now represent the cutting edge of Bio-NER technology. This paper addresses three problems faced by ML-based Bio-NER systems. First, most ML approaches usually employ singleton features that comprise one linguistic property (e.g., the current word is capitalized) and at least one class tag (e.g., B-protein, the beginning of a protein name). However, such features may be insufficient in cases where multiple properties must be considered. Adding conjunction features that contain multiple properties can be beneficial, but it would be infeasible to include all conjunction features in an NER model since memory resources are limited and some features are ineffective. To resolve the problem, we use a sequential forward search algorithm to select an effective set of features. Second, variations in the numerical parts of biomedical terms (e.g., "2" in the biomedical term IL2) cause data sparseness and generate many redundant features. In this case, we apply numerical normalization, which solves the problem by replacing all numerals in a term with one representative numeral to help classify named entities. Third, the assignment of NE tags does not depend solely on the target word's closest neighbors, but may depend on words outside the context window (e.g., a context window of five consists of the current word plus two preceding and two subsequent words). We use global patterns generated by the Smith-Waterman local alignment algorithm to identify such structures and modify the results of our ML-based tagger. This is called pattern-based post-processing. To develop our ML-based Bio-NER system, we employ conditional random fields, which have performed effectively in several well-known tasks, as our underlying ML model. Adding selected conjunction features, applying numerical normalization, and employing pattern-based post-processing improve the F-scores by 1.67%, 1.04%, and 0.57%, respectively. The combined increase of 3.28% yields a total score of 72.98%, which is better than the baseline system that only uses singleton features. We demonstrate the benefits of using the sequential forward search algorithm to select effective conjunction feature groups. In addition, we show that numerical normalization can effectively reduce the number of redundant and unseen features. Furthermore, the Smith-Waterman local alignment algorithm can help ML-based Bio-NER deal with difficult cases that need longer context windows.

  6. Students’ difficulties in probabilistic problem-solving

    NASA Astrophysics Data System (ADS)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  7. HFEM3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Chester J

    Software solves the three-dimensional Poisson equation div(k(grad(u)) = f, by the finite element method for the case when material properties, k, are distributed over hierarchy of edges, facets and tetrahedra in the finite element mesh. Method is described in Weiss, CJ, Finite element analysis for model parameters distributed on a hierarchy of geometric simplices, Geophysics, v82, E155-167, doi:10.1190/GEO2017-0058.1 (2017). A standard finite element method for solving Poisson’s equation is augmented by including in the 3D stiffness matrix additional 2D and 1D stiffness matrices representing the contributions from material properties associated with mesh faces and edges, respectively. The resulting linear systemmore » is solved iteratively using the conjugate gradient method with Jacobi preconditioning. To minimize computer storage for program execution, the linear solver computes matrix-vector contractions element-by-element over the mesh, without explicit storage of the global stiffness matrix. Program output vtk compliant for visualization and rendering by 3rd party software. Program uses dynamic memory allocation and as such there are no hard limits on problem size outside of those imposed by the operating system and configuration on which the software is run. Dimension, N, of the finite element solution vector is constrained by the the addressable space in 32-vs-64 bit operating systems. Total storage requirements for the problem. Total working space required for the program is approximately 13*N double precision words.« less

  8. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    NASA Astrophysics Data System (ADS)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  9. Age differences in everyday problem-solving effectiveness: older adults select more effective strategies for interpersonal problems.

    PubMed

    Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi

    2007-01-01

    Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.

  10. Spontaneous gestures influence strategy choices in problem solving.

    PubMed

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  11. Too upset to think: the interplay of borderline personality features, negative emotions, and social problem solving in the laboratory.

    PubMed

    Dixon-Gordon, Katherine L; Chapman, Alexander L; Lovasz, Nathalie; Walters, Kris

    2011-10-01

    Borderline personality disorder (BPD) is associated with poor social problem solving and problems with emotion regulation. In this study, the social problem-solving performance of undergraduates with high (n = 26), mid (n = 32), or low (n = 29) levels of BPD features was assessed with the Social Problem-Solving Inventory-Revised and using the means-ends problem-solving procedure before and after a social rejection stressor. The high-BP group, but not the low-BP group, showed a significant reduction in relevant solutions to social problems and more inappropriate solutions following the negative emotion induction. Increases in self-reported negative emotions during the emotion induction mediated the relationship between BP features and reductions in social problem-solving performance. In addition, the high-BP group demonstrated trait deficits in social problem solving on the Social Problem-Solving Inventory-Revised. These findings suggest that future research must examine social problem solving under differing emotional conditions, and that clinical interventions to improve social problem solving among persons with BP features should focus on responses to emotional contexts.

  12. Attentional Cuing in Math Word Problems for Girls At-Risk for ADHD and Their Peers in General Education Settings

    ERIC Educational Resources Information Center

    Kercood, Suneeta; Zentall, Sydney S.; Vinh, Megan; Tom-Wright, Kinsey

    2012-01-01

    The purpose of this theoretically-based study was to examine the effects of yellow-highlighting "relevant" words and units within math word problems. Initial differences were documented between 10 girls at-risk for ADHD and 10 comparisons on the performance of group and individual assessments of math computations and word problems, as had…

  13. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  14. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

    ERIC Educational Resources Information Center

    Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

    2016-01-01

    The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

  15. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

    NASA Astrophysics Data System (ADS)

    Palacio-Cayetano, Joycelin

    "Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.

  16. Methods and means used in programming intelligent searches of technical documents

    NASA Technical Reports Server (NTRS)

    Gross, David L.

    1993-01-01

    In order to meet the data research requirements of the Safety, Reliability & Quality Assurance activities at Kennedy Space Center (KSC), a new computer search method for technical data documents was developed. By their very nature, technical documents are partially encrypted because of the author's use of acronyms, abbreviations, and shortcut notations. This problem of computerized searching is compounded at KSC by the volume of documentation that is produced during normal Space Shuttle operations. The Centralized Document Database (CDD) is designed to solve this problem. It provides a common interface to an unlimited number of files of various sizes, with the capability to perform any diversified types and levels of data searches. The heart of the CDD is the nature and capability of its search algorithms. The most complex form of search that the program uses is with the use of a domain-specific database of acronyms, abbreviations, synonyms, and word frequency tables. This database, along with basic sentence parsing, is used to convert a request for information into a relational network. This network is used as a filter on the original document file to determine the most likely locations for the data requested. This type of search will locate information that traditional techniques, (i.e., Boolean structured key-word searching), would not find.

  17. A Joint Probabilistic Classification Model of Relevant and Irrelevant Sentences in Mathematical Word Problems

    ERIC Educational Resources Information Center

    Cetintas, Suleyman; Si, Luo; Xin, Yan Ping; Zhang, Dake; Park, Joo Young; Tzur, Ron

    2010-01-01

    Estimating the difficulty level of math word problems is an important task for many educational applications. Identification of relevant and irrelevant sentences in math word problems is an important step for calculating the difficulty levels of such problems. This paper addresses a novel application of text categorization to identify two types of…

  18. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    ERIC Educational Resources Information Center

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  19. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    PubMed

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  20. Approximation algorithms for planning and control

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; Dean, Thomas

    1989-01-01

    A control system operating in a complex environment will encounter a variety of different situations, with varying amounts of time available to respond to critical events. Ideally, such a control system will do the best possible with the time available. In other words, its responses should approximate those that would result from having unlimited time for computation, where the degree of the approximation depends on the amount of time it actually has. There exist approximation algorithms for a wide variety of problems. Unfortunately, the solution to any reasonably complex control problem will require solving several computationally intensive problems. Algorithms for successive approximation are a subclass of the class of anytime algorithms, algorithms that return answers for any amount of computation time, where the answers improve as more time is allotted. An architecture is described for allocating computation time to a set of anytime algorithms, based on expectations regarding the value of the answers they return. The architecture described is quite general, producing optimal schedules for a set of algorithms under widely varying conditions.

  1. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    NASA Astrophysics Data System (ADS)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  2. Using a general problem-solving strategy to promote transfer.

    PubMed

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. Revising explanatory models to accommodate anomalous genetic phenomena: Problem solving in the context of discovery

    NASA Astrophysics Data System (ADS)

    Hafner, Robert; Stewart, Jim

    Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).

  4. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving

    PubMed Central

    Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.

    2016-01-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604

  5. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving.

    PubMed

    Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M

    2016-12-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.

  6. Errors analysis of problem solving using the Newman stage after applying cooperative learning of TTW type

    NASA Astrophysics Data System (ADS)

    Rr Chusnul, C.; Mardiyana, S., Dewi Retno

    2017-12-01

    Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.

  7. Rejection Sensitivity and Depression: Indirect Effects Through Problem Solving.

    PubMed

    Kraines, Morganne A; Wells, Tony T

    2017-01-01

    Rejection sensitivity (RS) and deficits in social problem solving are risk factors for depression. Despite their relationship to depression and the potential connection between them, no studies have examined RS and social problem solving together in the context of depression. As such, we examined RS, five facets of social problem solving, and symptoms of depression in a young adult sample. A total of 180 participants completed measures of RS, social problem solving, and depressive symptoms. We used bootstrapping to examine the indirect effect of RS on depressive symptoms through problem solving. RS was positively associated with depressive symptoms. A negative problem orientation, impulsive/careless style, and avoidance style of social problem solving were positively associated with depressive symptoms, and a positive problem orientation was negatively associated with depressive symptoms. RS demonstrated an indirect effect on depressive symptoms through two social problem-solving facets: the tendency to view problems as threats to one's well-being and an avoidance problem-solving style characterized by procrastination, passivity, or overdependence on others. These results are consistent with prior research that found a positive association between RS and depression symptoms, but this is the first study to implicate specific problem-solving deficits in the relationship between RS and depression. Our results suggest that depressive symptoms in high RS individuals may result from viewing problems as threats and taking an avoidant, rather than proactive, approach to dealing with problems. These findings may have implications for problem-solving interventions for rejection sensitive individuals.

  8. The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework

    ERIC Educational Resources Information Center

    Carlson, Marilyn P.; Bloom, Irene

    2005-01-01

    This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…

  9. Mathematical Problem Solving: A Review of the Literature.

    ERIC Educational Resources Information Center

    Funkhouser, Charles

    The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…

  10. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  11. Learning problem-solving skills in a distance education physics course

    NASA Astrophysics Data System (ADS)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  12. Bilingual College Writers' Collaborative Writing of Word Problems

    ERIC Educational Resources Information Center

    Esquinca, Alberto

    2011-01-01

    Numerous researchers have studied bilingual students' performance on word problems given that reading and writing these requires that they draw on linguistic and mathematical knowledge (Barwell, 2009a, 2009b). Some researchers have studied how bilinguals write word problems in the second language, but few have considered how bilinguals use their…

  13. Feature and Region Selection for Visual Learning.

    PubMed

    Zhao, Ji; Wang, Liantao; Cabral, Ricardo; De la Torre, Fernando

    2016-03-01

    Visual learning problems, such as object classification and action recognition, are typically approached using extensions of the popular bag-of-words (BoWs) model. Despite its great success, it is unclear what visual features the BoW model is learning. Which regions in the image or video are used to discriminate among classes? Which are the most discriminative visual words? Answering these questions is fundamental for understanding existing BoW models and inspiring better models for visual recognition. To answer these questions, this paper presents a method for feature selection and region selection in the visual BoW model. This allows for an intermediate visualization of the features and regions that are important for visual learning. The main idea is to assign latent weights to the features or regions, and jointly optimize these latent variables with the parameters of a classifier (e.g., support vector machine). There are four main benefits of our approach: 1) our approach accommodates non-linear additive kernels, such as the popular χ(2) and intersection kernel; 2) our approach is able to handle both regions in images and spatio-temporal regions in videos in a unified way; 3) the feature selection problem is convex, and both problems can be solved using a scalable reduced gradient method; and 4) we point out strong connections with multiple kernel learning and multiple instance learning approaches. Experimental results in the PASCAL VOC 2007, MSR Action Dataset II and YouTube illustrate the benefits of our approach.

  14. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    PubMed Central

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467

  15. Background Adjusted Alignment-Free Dissimilarity Measures Improve the Detection of Horizontal Gene Transfer.

    PubMed

    Tang, Kujin; Lu, Yang Young; Sun, Fengzhu

    2018-01-01

    Horizontal gene transfer (HGT) plays an important role in the evolution of microbial organisms including bacteria. Alignment-free methods based on single genome compositional information have been used to detect HGT. Currently, Manhattan and Euclidean distances based on tetranucleotide frequencies are the most commonly used alignment-free dissimilarity measures to detect HGT. By testing on simulated bacterial sequences and real data sets with known horizontal transferred genomic regions, we found that more advanced alignment-free dissimilarity measures such as CVTree and [Formula: see text] that take into account the background Markov sequences can solve HGT detection problems with significantly improved performance. We also studied the influence of different factors such as evolutionary distance between host and donor sequences, size of sliding window, and host genome composition on the performances of alignment-free methods to detect HGT. Our study showed that alignment-free methods can predict HGT accurately when host and donor genomes are in different order levels. Among all methods, CVTree with word length of 3, [Formula: see text] with word length 3, Markov order 1 and [Formula: see text] with word length 4, Markov order 1 outperform others in terms of their highest F 1 -score and their robustness under the influence of different factors.

  16. Principal visual word discovery for automatic license plate detection.

    PubMed

    Zhou, Wengang; Li, Houqiang; Lu, Yijuan; Tian, Qi

    2012-09-01

    License plates detection is widely considered a solved problem, with many systems already in operation. However, the existing algorithms or systems work well only under some controlled conditions. There are still many challenges for license plate detection in an open environment, such as various observation angles, background clutter, scale changes, multiple plates, uneven illumination, and so on. In this paper, we propose a novel scheme to automatically locate license plates by principal visual word (PVW), discovery and local feature matching. Observing that characters in different license plates are duplicates of each other, we bring in the idea of using the bag-of-words (BoW) model popularly applied in partial-duplicate image search. Unlike the classic BoW model, for each plate character, we automatically discover the PVW characterized with geometric context. Given a new image, the license plates are extracted by matching local features with PVW. Besides license plate detection, our approach can also be extended to the detection of logos and trademarks. Due to the invariance virtue of scale-invariant feature transform feature, our method can adaptively deal with various changes in the license plates, such as rotation, scaling, illumination, etc. Promising results of the proposed approach are demonstrated with an experimental study in license plate detection.

  17. Statistical Segmentation of Tone Sequences Activates the Left Inferior Frontal Cortex: A Near-Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Abla, Dilshat; Okanoya, Kazuo

    2008-01-01

    Word segmentation, that is, discovering the boundaries between words that are embedded in a continuous speech stream, is an important faculty for language learners; humans solve this task partly by calculating transitional probabilities between sounds. Behavioral and ERP studies suggest that detection of sequential probabilities (statistical…

  18. An experience sampling study of learning, affect, and the demands control support model.

    PubMed

    Daniels, Kevin; Boocock, Grahame; Glover, Jane; Holland, Julie; Hartley, Ruth

    2009-07-01

    The demands control support model (R. A. Karasek & T. Theorell, 1990) indicates that job control and social support enable workers to engage in problem solving. In turn, problem solving is thought to influence learning and well-being (e.g., anxious affect, activated pleasant affect). Two samples (N = 78, N = 106) provided data up to 4 times per day for up to 5 working days. The extent to which job control was used for problem solving was assessed by measuring the extent to which participants changed aspects of their work activities to solve problems. The extent to which social support was used to solve problems was assessed by measuring the extent to which participants discussed problems to solve problems. Learning mediated the relationship between changing aspects of work activities to solve problems and activated pleasant affect. Learning also mediated the relationship between discussing problems to solve problems and activated pleasant affect. The findings indicated that how individuals use control and support to respond to problem-solving demands is associated with organizational and individual phenomena, such as learning and affective well-being.

  19. What Does (and Doesn't) Make Analogical Problem Solving Easy? A Complexity-Theoretic Perspective

    ERIC Educational Resources Information Center

    Wareham, Todd; Evans, Patricia; van Rooij, Iris

    2011-01-01

    Solving new problems can be made easier if one can build on experiences with other problems one has already successfully solved. The ability to exploit earlier problem-solving experiences in solving new problems seems to require several cognitive sub-abilities. Minimally, one needs to be able to retrieve relevant knowledge of earlier solved…

  20. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    ERIC Educational Resources Information Center

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  1. Generalization of Social Skills: Strategies and Results of a Training Program in Problem Solving Skills.

    ERIC Educational Resources Information Center

    Paraschiv, Irina; Olley, J. Gregory

    This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…

  2. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    ERIC Educational Resources Information Center

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  3. Investigating Problem-Solving Perseverance Using Lesson Study

    ERIC Educational Resources Information Center

    Bieda, Kristen N.; Huhn, Craig

    2017-01-01

    Problem solving has long been a focus of research and curriculum reform (Kilpatrick 1985; Lester 1994; NCTM 1989, 2000; CCSSI 2010). The importance of problem solving is not new, but the Common Core introduced the idea of making sense of problems and persevering in solving them (CCSSI 2010, p. 6) as an aspect of problem solving. Perseverance is…

  4. Modeling operation of mechanism of holistic management of technological processes at enterprise

    NASA Astrophysics Data System (ADS)

    Igorevich Shanin, Igor; Aleksandrovna Boris, Olga

    2018-03-01

    Enterprises applying modeling and technological process management approaches represent a sector of a new innovative economic system. First of all, they are innovators using innovative proposals and various resources to solve practical problems. Their work leads to balanced positive technological changes. In other words, they constitute industrial entrepreneurship with innovative goals and vice versa - innovative entrepreneurship with industrial objectives. It should be noted that the mechanism of holistic management of technological processes at the enterprise combines a traditional industrial organization of production, an innovative and technological enterprise. The enterprise borrows industrial targets from the latter one, an innovative component - from innovative activity and entrepreneurial approaches to holistic management - from a commercial firm.

  5. Problem-solving deficits in Iranian people with borderline personality disorder.

    PubMed

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.

  6. Impulsivity as a mediator in the relationship between problem solving and suicidal ideation.

    PubMed

    Gonzalez, Vivian M; Neander, Lucía L

    2018-03-15

    This study examined whether three facets of impulsivity previously shown to be associated with suicidal ideation and attempts (negative urgency, lack of premeditation, and lack of perseverance) help to account for the established association between problem solving deficits and suicidal ideation. Emerging adult college student drinkers with a history of at least passive suicidal ideation (N = 387) completed measures of problem solving, impulsivity, and suicidal ideation. A path analysis was conducted to examine the mediating role of impulsivity variables in the association between problem solving (rational problem solving, positive and negative problem orientation, and avoidance style) and suicidal ideation. Direct and indirect associations through impulsivity, particularly negative urgency, were found between problem solving and severity of suicidal ideation. Interventions aimed at teaching problem solving skills, as well as self-efficacy and optimism for solving life problems, may help to reduce impulsivity and suicidal ideation. © 2018 Wiley Periodicals, Inc.

  7. A Development of a System Enables Character Input and PC Operation via Voice for a Physically Disabled Person with a Speech Impediment

    NASA Astrophysics Data System (ADS)

    Tanioka, Toshimasa; Egashira, Hiroyuki; Takata, Mayumi; Okazaki, Yasuhisa; Watanabe, Kenzi; Kondo, Hiroki

    We have designed and implemented a PC operation support system for a physically disabled person with a speech impediment via voice. Voice operation is an effective method for a physically disabled person with involuntary movement of the limbs and the head. We have applied a commercial speech recognition engine to develop our system for practical purposes. Adoption of a commercial engine reduces development cost and will contribute to make our system useful to another speech impediment people. We have customized commercial speech recognition engine so that it can recognize the utterance of a person with a speech impediment. We have restricted the words that the recognition engine recognizes and separated a target words from similar words in pronunciation to avoid misrecognition. Huge number of words registered in commercial speech recognition engines cause frequent misrecognition for speech impediments' utterance, because their utterance is not clear and unstable. We have solved this problem by narrowing the choice of input down in a small number and also by registering their ambiguous pronunciations in addition to the original ones. To realize all character inputs and all PC operation with a small number of words, we have designed multiple input modes with categorized dictionaries and have introduced two-step input in each mode except numeral input to enable correct operation with small number of words. The system we have developed is in practical level. The first author of this paper is physically disabled with a speech impediment. He has been able not only character input into PC but also to operate Windows system smoothly by using this system. He uses this system in his daily life. This paper is written by him with this system. At present, the speech recognition is customized to him. It is, however, possible to customize for other users by changing words and registering new pronunciation according to each user's utterance.

  8. Improving mathematical problem solving skills through visual media

    NASA Astrophysics Data System (ADS)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  9. The Relationship between Students' Problem Posing and Problem Solving Abilities and Beliefs: A Small-Scale Study with Chinese Elementary School Children

    ERIC Educational Resources Information Center

    Limin, Chen; Van Dooren, Wim; Verschaffel, Lieven

    2013-01-01

    The goal of the present study is to investigate the relationship between pupils' problem posing and problem solving abilities, their beliefs about problem posing and problem solving, and their general mathematics abilities, in a Chinese context. Five instruments, i.e., a problem posing test, a problem solving test, a problem posing questionnaire,…

  10. An Investigation of the Effects on Students' Attitudes, Beliefs, and Abilities in Problem Solving and Mathematics after One Year of a Systematic Approach to the Learning of Problem Solving.

    ERIC Educational Resources Information Center

    Higgins, Karen M.

    This study investigated the effects of Oregon's Lane County "Problem Solving in Mathematics" (PSM) materials on middle-school students' attitudes, beliefs, and abilities in problem solving and mathematics. The instructional approach advocated in PSM includes: the direct teaching of five problem-solving skills, weekly challenge problems,…

  11. Does Calculation or Word-Problem Instruction Provide a Stronger Route to Prealgebraic Knowledge?

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Powell, Sarah R.; Cirino, Paul T.; Schumacher, Robin F.; Marrin, Sarah; Hamlett, Carol L.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.

    2014-01-01

    The focus of this study was connections among 3 aspects of mathematical cognition at 2nd grade: calculations, word problems, and prealgebraic knowledge. We extended the literature, which is dominated by correlational work, by examining whether intervention conducted on calculations or word problems contributes to improved performance in the other…

  12. Student’s scheme in solving mathematics problems

    NASA Astrophysics Data System (ADS)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono

    2018-03-01

    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  13. Factors of Problem-Solving Competency in a Virtual Chemistry Environment: The Role of Metacognitive Knowledge about Strategies

    ERIC Educational Resources Information Center

    Scherer, Ronny; Tiemann, Rudiger

    2012-01-01

    The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…

  14. Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process

    ERIC Educational Resources Information Center

    Yerushalmi, Edit; Magen, Esther

    2006-01-01

    Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…

  15. The Problem-Solving Process in Physics as Observed When Engineering Students at University Level Work in Groups

    ERIC Educational Resources Information Center

    Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta

    2015-01-01

    The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…

  16. Social Problem Solving and Depressive Symptoms Over Time: A Randomized Clinical Trial of Cognitive Behavioral Analysis System of Psychotherapy, Brief Supportive Psychotherapy, and Pharmacotherapy

    PubMed Central

    Klein, Daniel N.; Leon, Andrew C.; Li, Chunshan; D’Zurilla, Thomas J.; Black, Sarah R.; Vivian, Dina; Dowling, Frank; Arnow, Bruce A.; Manber, Rachel; Markowitz, John C.; Kocsis, James H.

    2011-01-01

    Objective Depression is associated with poor social problem-solving, and psychotherapies that focus on problem-solving skills are efficacious in treating depression. We examined the associations between treatment, social problem solving, and depression in a randomized clinical trial testing the efficacy of psychotherapy augmentation for chronically depressed patients who failed to fully respond to an initial trial of pharmacotherapy (Kocsis et al., 2009). Method Participants with chronic depression (n = 491) received Cognitive Behavioral Analysis System of Psychotherapy (CBASP), which emphasizes interpersonal problem-solving, plus medication; Brief Supportive Psychotherapy (BSP) plus medication; or medication alone for 12 weeks. Results CBASP plus pharmacotherapy was associated with significantly greater improvement in social problem solving than BSP plus pharmacotherapy, and a trend for greater improvement in problem solving than pharmacotherapy alone. In addition, change in social problem solving predicted subsequent change in depressive symptoms over time. However, the magnitude of the associations between changes in social problem solving and subsequent depressive symptoms did not differ across treatment conditions. Conclusions It does not appear that improved social problem solving is a mechanism that uniquely distinguishes CBASP from other treatment approaches. PMID:21500885

  17. Implementing thinking aloud pair and Pólya problem solving strategies in fractions

    NASA Astrophysics Data System (ADS)

    Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.

    2017-12-01

    This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.

  18. Artificial intelligence within the chemical laboratory.

    PubMed

    Winkel, P

    1994-01-01

    Various techniques within the area of artificial intelligence such as expert systems and neural networks may play a role during the problem-solving processes within the clinical biochemical laboratory. Neural network analysis provides a non-algorithmic approach to information processing, which results in the ability of the computer to form associations and to recognize patterns or classes among data. It belongs to the machine learning techniques which also include probabilistic techniques such as discriminant function analysis and logistic regression and information theoretical techniques. These techniques may be used to extract knowledge from example patients to optimize decision limits and identify clinically important laboratory quantities. An expert system may be defined as a computer program that can give advice in a well-defined area of expertise and is able to explain its reasoning. Declarative knowledge consists of statements about logical or empirical relationships between things. Expert systems typically separate declarative knowledge residing in a knowledge base from the inference engine: an algorithm that dynamically directs and controls the system when it searches its knowledge base. A tool is an expert system without a knowledge base. The developer of an expert system uses a tool by entering knowledge into the system. Many, if not the majority of problems encountered at the laboratory level are procedural. A problem is procedural if it is possible to write up a step-by-step description of the expert's work or if it can be represented by a decision tree. To solve problems of this type only small expert system tools and/or conventional programming are required.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms

    PubMed Central

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an “aha” moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving. PMID:26528222

  20. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    PubMed

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  1. Understanding Undergraduates’ Problem-Solving Processes †

    PubMed Central

    Nehm, Ross H.

    2010-01-01

    Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710

  2. Thinking Process of Naive Problem Solvers to Solve Mathematical Problems

    ERIC Educational Resources Information Center

    Mairing, Jackson Pasini

    2017-01-01

    Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…

  3. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    ERIC Educational Resources Information Center

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  4. Social Problem Solving, Conduct Problems, and Callous-Unemotional Traits in Children

    ERIC Educational Resources Information Center

    Waschbusch, Daniel A.; Walsh, Trudi M.; Andrade, Brendan F.; King, Sara; Carrey, Normand J.

    2007-01-01

    This study examined the association between social problem solving, conduct problems (CP), and callous-unemotional (CU) traits in elementary age children. Participants were 53 children (40 boys and 13 girls) aged 7-12 years. Social problem solving was evaluated using the Social Problem Solving Test-Revised, which requires children to produce…

  5. Personality, problem solving, and adolescent substance use.

    PubMed

    Jaffee, William B; D'Zurilla, Thomas J

    2009-03-01

    The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving skills could be one such mechanism. More specifically, we sought to determine whether problem solving mediates, moderates, or both mediates and moderates the relationship between different personality traits and substance use. Three hundred and seven adolescents were administered the Substance Use Profile Scale, the Social Problem-Solving Inventory-Revised, and the Personality Experiences Inventory to assess personality, social problem-solving ability, and substance use, respectively. Results showed that the dimension of rational problem solving (i.e., effective problem-solving skills) significantly mediated the relationship between hopelessness and lifetime alcohol and marijuana use. The theoretical and clinical implications of these results were discussed.

  6. Enhancing chemistry problem-solving achievement using problem categorization

    NASA Astrophysics Data System (ADS)

    Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

    The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.

  7. Decision-Making and Problem-Solving Approaches in Pharmacy Education

    PubMed Central

    Martin, Lindsay C.; Holdford, David A.

    2016-01-01

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care. PMID:27170823

  8. Decision-Making and Problem-Solving Approaches in Pharmacy Education.

    PubMed

    Martin, Lindsay C; Donohoe, Krista L; Holdford, David A

    2016-04-25

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.

  9. Social problem-solving in Chinese baccalaureate nursing students.

    PubMed

    Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia

    2016-11-01

    To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  10. Problem Solving and Chemical Equilibrium: Successful versus Unsuccessful Performance.

    ERIC Educational Resources Information Center

    Camacho, Moises; Good, Ron

    1989-01-01

    Describes the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Lists 27 behavioral tendencies of successful and unsuccessful problem solvers. Discusses several implications for a problem solving theory, think-aloud techniques, adequacy of the chemistry domain, and chemistry instruction.…

  11. Worry and problem-solving skills and beliefs in primary school children.

    PubMed

    Parkinson, Monika; Creswell, Cathy

    2011-03-01

    To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.

  12. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course

    NASA Astrophysics Data System (ADS)

    Mushlihuddin, R.; Nurafifah; Irvan

    2018-01-01

    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  13. Effects of Training in Problem Solving on the Problem-Solving Abilities of Gifted Fourth Graders: A Comparison of the Future Problem Solving and Instrumental Enrichment Programs.

    ERIC Educational Resources Information Center

    Dufner, Hillrey A.; Alexander, Patricia A.

    The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…

  14. Social problem-solving among adolescents treated for depression.

    PubMed

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S

    2010-01-01

    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    PubMed Central

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  16. Tense and Aspect in Word Problems about Motion: Diagram, Gesture, and the Felt Experience of Time

    ERIC Educational Resources Information Center

    de Freitas, Elizabeth; Zolkower, Betina

    2015-01-01

    Word problems about motion contain various conjugated verb forms. As students and teachers grapple with such word problems, they jointly operationalize diagrams, gestures, and language. Drawing on findings from a 3-year research project examining the social semiotics of classroom interaction, we show how teachers and students use gesture and…

  17. Redefining the Whole: Common Errors in Elementary Preservice Teachers' Self-Authored Word Problems for Fraction Subtraction

    ERIC Educational Resources Information Center

    Dixon, Juli K.; Andreasen, Janet B.; Avila, Cheryl L.; Bawatneh, Zyad; Deichert, Deana L.; Howse, Tashana D.; Turner, Mercedes Sotillo

    2014-01-01

    A goal of this study was to examine elementary preservice teachers' (PSTs) ability to contextualize and decontextualize fraction subtraction by asking them to write word problems to represent fraction subtraction expressions and to choose prewritten word problems to support given fraction subtraction expressions. Three themes emerged from the…

  18. Assessing the Effect of Language Demand in Bundles of Math Word Problems

    ERIC Educational Resources Information Center

    Banks, Kathleen; Jeddeeni, Ahmad; Walker, Cindy M.

    2016-01-01

    Differential bundle functioning (DBF) analyses were conducted to determine whether seventh and eighth grade second language learners (SLLs) had lower probabilities of answering bundles of math word problems correctly that had heavy language demands, when compared to non-SLLs of equal math proficiency. Math word problems on each of four test forms…

  19. Word Frequency, Function Words and the Second Gavagai Problem

    ERIC Educational Resources Information Center

    Hochmann, Jean-Remy

    2013-01-01

    The classic gavagai problem exemplifies the difficulty to identify the referent of a novel word uttered in a foreign language. Here, we consider the reverse problem: identifying the referential part of a label. Assuming "gavagai" indicates a rabbit in a foreign language, it may very well mean ""a" rabbit" or ""that" rabbit". How can a learner know…

  20. Additive Relations Word Problems in the South African Curriculum and Assessment Policy Standard at Foundation Phase

    ERIC Educational Resources Information Center

    Roberts, Nicky

    2016-01-01

    Drawing on a literature review of classifications developed by each of Riley, Verschaffel and Carpenter and their respective research groups, a refined typology of additive relations word problems is proposed and then used as analytical tool to classify the additive relations word problems in South African Curriculum and Assessment Policy Standard…

Top