Khalil, Y F
2018-06-01
This quantitative research aims to compare environmental and human health impacts associated with two recycling technologies of CFRP waste. The 'baseline' recycling technology is the conventional thermolysis process via pyrolysis and the 'alternative' recycling technology is an emerging chemical treatment via solvolysis using supercritical water (SCW) to digest the thermoset matrix. Two Gate-to-Gate recycling models are developed using GaBi LCA platform. The selected functional unit (FU) is 1 kg CFRP waste and the geographical boundary of this comparative LCIA is defined to be within the U.S. The results of this comparative assessment brought to light new insights about the environmental and human health impacts of CFRP waste recycling via solvolysis using SCW and, therefore, helped close a gap in the current state of knowledge about sustainability of SCW-based solvolysis as compared to pyrolysis. Two research questions are posed to identify whether solvolysis recycling offers more environmental and human health gains relative to the conventional pyrolysis recycling. These research questions lay the basis for formulating two null hypotheses (H 0,1 and H 0,2 ) and their associated research hypotheses (H 1,1 and H 1,2 ). LCIA results interpretation included 'base case' scenarios, 'sensitivity studies,' and 'scenarios analysis.' The results revealed that: (a) recycling via solvolysis using SCW exhibits no gains in environmental and human health impacts relative to those impacts associated with recycling via pyrolysis and (b) use of natural gas in lieu of electricity for pyrolyzer's heating reduces the environmental and human health impacts by 37% (lowest) and up to 95.7% (highest). It is recommended that on-going experimental efforts that focus only on identifying the best solvent for solvolysis-based recycling should also consider quantification of the energy intensity as well as environmental and human health impacts of the proposed solvents. Copyright © 2018 Elsevier Ltd. All rights reserved.
Treatability Study of Pentaborane(9)
NASA Technical Reports Server (NTRS)
McDonald, Joseph K.; Wright, Jeffery S.; Gaines, Donald F.
2000-01-01
Procedures for the safe destruction of liquid pentaborane(9), B5H9, by solvolysis were investigated. The objective of the study was to establish the optimum conditions for a pilot plant operation that would use water, or alcohol, or water-alcohol mixtures as the solvolysis reagent Small amounts of B5H9 sprayed from a syringe will not necessarily enflame, nor will a small pool on a spot plate. Therefore, a procedure was developed to reproducibly demonstrate the flammability of B5H9 In these tests every sample of neat B5H9 ignited and burned with a very sooty flame till the sample was consumed. The spontaneous self-ignition of B5H9 was quenched by the addition of small concentrations of the ethers THF (tetrahydrofuran) or DME (1,2-dimethoxy ethane). It was found that 10% (volume) of either provided total quenching with a large margin of safety. When these stabilized solutions were exposed to air, they decomposed and evaporated leaving a residue that was identified by NMR analysis as boric acid. Most of the laboratory solvolysis experiments used the 90% B5H9, 10% THF solution. This mixture was safer to handle and its solvolysis reactivity was virtually identical to that of 100% B5H9. Reaction rates were analyzed by measurement of hydrogen evolved during the solvolysis reactions. In terms of the minimum overall complete reaction time, the data indicate that 50150 alcohol/water is the optimum solvolysis reagent. This reaction produced a mixture of boric acid, B(OH)3, and triethoxyborane, B(OEt)3 [Et = C2H5], and mixed exchange derivatives thereof.
Treatability Study of Pentaborane(9)
NASA Technical Reports Server (NTRS)
McDonald, Joseph K.; Wright, Jeffery S.; Gaines, Donald F.
2000-01-01
Procedures for the safe destruction of liquid pentaborane(9), B5H9, by solvolysis were investigated. The objective of the study was to establish the optimum conditions for a pilot plant operation that would use water, or alcohol, or water-alcohol mixtures as the solvolysis reagent. Small amounts of B5H9 sprayed from a syringe will not necessarily enflame, nor will a small pool on a spot plate. Therefore, a procedure was developed to reproducibly demonstrate the flammability of B5H9. In these tests every sample of neat B5H9 ignited and burned with a very sooty flame till the sample was consumed. The spontaneous self-ignition of B5H9 was quenched by the addition of small concentrations of ethers THF (tetrahydrofuran) or DME (1,2-dimethoxy ethane). It was found that ten percent (volume) of either provided total quenching with a large margin of safety. When these stabilized solutions were exposed to air, they decomposed and evaporated leaving a residue that was identified by nuclear magnetic resonance (NMR) analysis as boric acid. Most of the laboratory solvolysis experiments used the 90 percent B5H9, 10 percent THF solution. This mixture was safer to handle and its solvolysis reactivity was virtually identical to that of 100 percent B5H9. Reaction rates were analyzed by measurement of hydrogen evolved during the solvolysis reactions. In terms of the minimum overall complete reaction time, the data indicate that 50/50 alcohol/water is the optimum solvolysis reagent. This reaction produced a mixture of boric acid, B(OH)3, and triethoxyborane, B(OEt)3[Et = C2H5], and mixed exchange derivatives thereof.
Absence of S[subscript N]1 Involvement in the Solvolysis of Secondary Alkyl Compounds
ERIC Educational Resources Information Center
Murphy, Thomas J.
2009-01-01
There are significant contradictions in undergraduate organic chemistry textbooks as to the mechanism of nucleophilic substitution reactions at saturated secondary carbons. Some texts say that only the S[subscript N]2 mechanism operates, others say that solvolysis reactions go entirely by the S[subscript N]1 mechanism, while most texts say that…
Analysis of the Nucleophilic Solvation Effects in Isopropyl Chlorothioformate Solvolysis
D’Souza, Malcolm J.; Mahon, Brian P.; Kevill, Dennis N.
2010-01-01
Correlation of the solvent effects through application of the extended Grunwald-Winstein equation to the solvolysis of isopropyl chlorothioformate results in a sensitivity value of 0.38 towards changes in solvent nucleophilicity (l) and a sensitivity value of 0.72 towards changes in solvent ionizing power (m). This tangible l value coupled with the negative entropies of activation observed indicates a favorable predisposition towards a modest rear-side nucleophilic solvation of a developing carbocation. Only in 100% ethanol was the bimolecular pathway dominant. These observations are very different from those obtained for the solvolysis of isopropyl chloroformate, where dual reaction channels were proposed, with the addition-elimination reaction favored in the more nucleophilic solvents and a unimolecular fragmentation-ionization mechanism favored in the highly ionizing solvents. PMID:20717524
Detailed Analysis for the Solvolysis of Isopropenyl Chloroformate
D’Souza, Malcolm John; Shuman, Kevin Edward; Omondi, Arnold Ochieng; Kevill, Dennis Neil
2011-01-01
The specific rates of solvolysis (including those obtained from the literature) of isopropenyl chloroformate (1) are analyzed using the extended Grunwald-Winstein equation, involving the NT scale of solvent nucleophilicity (S-methyldibenzothiophenium ion) combined with a YCl scale based on 1-adamantyl chloride solvolysis. A similarity model approach, using phenyl chloroformate solvolyses for comparison, indicated a dominant bimolecular carbonyl-addition mechanism for the solvolyses of 1 in all solvents except 97% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). An extensive evaluation of the outcomes acquired through the application of the extended Grunwald-Winstein equation resulted in the proposal of an addition-elimination mechanism dominating in most of the solvents, but in 97-70% HFIP, and 97% 2,2,2-trifluoroethanol (TFE), it is proposed that a superimposed unimolecular (SN1) type ionization is making a significant contribution. PMID:21881623
From Solvolysis to Self-Assembly*
Stang, Peter J.
2009-01-01
My sojourn from classical physical-organic chemistry and solvolysis to self-assembly and supramolecular chemistry, over the last forty years, is described. My contributions to unsaturated reactive intermediates, namely vinyl cations and unsaturated carbenes, along with my decade long involvement with polyvalent iodine chemistry, especially alkynyliodonium salts, as well as my more recent research with metal-ligand, coordination driven and directed self-assembly of finite supramolecular ensembles are discussed. PMID:19111062
Correlation of the rates of solvolysis of neopentyl chloroformate-a recommended protecting agent.
D'Souza, Malcolm J; Carter, Shannon E; Kevill, Dennis N
2011-02-15
The specific rates of solvolysis of neopentyl chloroformate (1) have been determined in 21 pure and binary solvents at 45.0 °C. In most solvents the values are essentially identical to those for ethyl and n-propyl chloroformates. However, in aqueous-1,1,1,3,3,3-hexafluoro-2-propanol mixtures (HFIP) rich in fluoroalcohol, 1 solvolyses appreciably faster than the other two substrates. Linear free energy relationship (LFER) comparison of the specific rates of solvolysis of 1 with those for phenyl chloroformate and those for n-propyl chloroformate are helpful in the mechanistic considerations, as is also the treatment in terms of the Extended Grunwald-Winstein equation. It is proposed that the faster reaction for 1 in HFIP rich solvents is due to the influence of a 1,2-methyl shift, leading to a tertiary alkyl cation, outweighing the only weak nucleophilic solvation of the cation possible in these low nucleophilicity solvents.
Zajac, Marianna; Sobczak, Agnieszka; Malinka, Wiesław; Redzicka, Aleksandra
2010-01-01
The first-order reaction of solvolysis of N-[2-(4-o-fluorophenylpiperazin-1-yl)ethyl]-2,5-dimethyl-1-phenylpyrrole-3,4-dicarboximide (PDI) was investigated as a function of pH at 333, 328, 323, 318 and 308 K in the pH range 1.11 - 12.78. The decomposition of PDI was followed by the HPLC method (Nucleosil 10-C8 column (250 x 4 mm I.D., dp = 10 microm), mobile phase: 0.018 mol/L ammonia acetate - acetonitrile (40: 60 v/v), UV detector: 240 nm, flow rate: 1 mL/min. Specific acid-base catalysis involves solvolysis of the undissociated molecules of PDI catalyzed by hydroxide ions and spontaneous solvolysis of the undissociated and monoprotonated forms of PDI under the influence of solvents. The thermodynamic parameters of the reactions--activation energy (E(a)), enthalpy (DH(#)), entropy (DS(#))--were calculated.
Correlation of the Rates of Solvolysis of Neopentyl Chloroformate—A Recommended Protecting Agent
D’Souza, Malcolm J.; Carter, Shannon E.; Kevill, Dennis N.
2011-01-01
The specific rates of solvolysis of neopentyl chloroformate (1) have been determined in 21 pure and binary solvents at 45.0 °C. In most solvents the values are essentially identical to those for ethyl and n-propyl chloroformates. However, in aqueous-1,1,1,3,3,3-hexafluoro-2-propanol mixtures (HFIP) rich in fluoroalcohol, 1 solvolyses appreciably faster than the other two substrates. Linear free energy relationship (LFER) comparison of the specific rates of solvolysis of 1 with those for phenyl chloroformate and those for n-propyl chloroformate are helpful in the mechanistic considerations, as is also the treatment in terms of the Extended Grunwald-Winstein equation. It is proposed that the faster reaction for 1 in HFIP rich solvents is due to the influence of a 1,2-methyl shift, leading to a tertiary alkyl cation, outweighing the only weak nucleophilic solvation of the cation possible in these low nucleophilicity solvents. PMID:21541050
Kinetic evaluation of the solvolysis of isobutyl chloro- and chlorothioformate esters
McAneny, Matthew J; Choi, Song Hee
2011-01-01
Summary The specific rates of solvolysis of isobutyl chloroformate (1) are reported at 40.0 °C and those for isobutyl chlorothioformate (2) are reported at 25.0 °C, in a variety of pure and binary aqueous organic mixtures with wide ranging nucleophilicity and ionizing power. For 1, we also report the first-order rate constants determined at different temperatures in pure ethanol (EtOH), methanol (MeOH), 80% EtOH, and in both 97% and 70% 2,2,2-trifluoroethanol (TFE). The enthalpy (ΔH≠) and entropy (ΔS≠) of activation values obtained from Arrhenius plots for 1 in these five solvents are reported. The specific rates of solvolysis were analyzed using the extended Grunwald–Winstein equation. Results obtained from correlation analysis using this linear free energy relationship (LFER) reinforce our previous suggestion that side-by-side addition–elimination and ionization mechanisms operate, and the relative importance is dependent on the type of chloro- or chlorothioformate substrate and the solvent. PMID:21647255
Grunwald-Winstein Analysis - Isopropyl Chloroformate Solvolysis Revisited
D’Souza, Malcolm J.; Reed, Darneisha N.; Erdman, Kevin J.; Kyong, Jin Burm; Kevill, Dennis N.
2009-01-01
Specific rates of solvolysis at 25 °C for isopropyl chloroformate (1) in 24 solvents of widely varying nucleophilicity and ionizing power, plus literature values for studies in water and formic acid, are reported. Previously published solvolytic rate constants at 40.0 °C are supplemented with two additional values in the highly ionizing fluoroalcohols. These rates are now are analyzed using the one and two-term Grunwald-Winstein Equations. In the more ionizing solvents including ten fluoroalcohols negligible sensitivities towards changes in solvent nucleophilicity (l) and very low sensitivities towards changes in solvent ionizing power (m) values are obtained, evocative to those previously observed for 1-adamantyl and 2-adamantyl chloroformates 2 and 3. These observations are rationalized in terms of a dominant solvolysis-decomposition with loss of the CO2 molecule. In nine of the more nucleophilic pure alchohols and aqueous solutions an association-dissociation mechanism is believed to be operative. Deficiencies in the acid production indicate 2-33% isopropyl chloride formation, with the higher values in less nucleophilic solvents. PMID:19399225
Solvolysis kinetics of three components of biomass using polyhydric alcohols as solvents.
Shi, Yan; Xia, Xueying; Li, Jingdan; Wang, Jing; Zhao, Tiantian; Yang, Hongmin; Jiang, Jianchun; Jiang, Xiaoxiang
2016-12-01
The solvolysis behavior and reaction kinetics of the three components of biomass (cellulose, hemicelluloses and lignin) liquefied in polyhydric alcohols (PEG 400 or glycerol) were investigated in this paper. Three stages were observed during the solvolysis process and the main degradation stage could be further divided into two zones. The influences of solvents on the liquefaction process of three main components were compared. Based on Starink and Malek methods, kinetic parameters and mechanism functions were obtained. The derived average activation energy of cellulose, hemicellulose and lignin were 108.73, 95.66 and 94.13kJmol -1 in PEG 400, while the values were 102.16, 77.43 and 89.10kJmol -1 in glycerol, respectively. Higher efficiency was observed when using glycerol as solvent, which could be ascribed to the higher polarity value of glycerol. The conversion curves calculated with obtained mechanism models and kinetic parameters were in good agreement with the experimental data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Facile solvolysis of a surprisingly twisted tertiary amide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomfield, Aaron J.; Chaudhuri, Subhajyoti; Mercado, Brandon Q.
2016-01-05
In this study, a bicyclo[2.2.2]octane derivative containing both a tertiary amide and a methyl ester was shown crystallographically to adopt a conformation in which the amide is in the cis configuration, which is sterically disfavored, but electronically favored. The steric strain induces a significant torsion (15.9°) of the amide, thereby greatly increasing the solvolytic lability of the amide to the extent that we see competitive amide solvolysis in the presence of the normally more labile methyl ester also present in the molecule.
NASA Astrophysics Data System (ADS)
Markovic, Bojan; Vladimirov, Sote; Cudina, Olivera; Savic, Vladimir; Karljikovic-Rajic, Katarina
2010-02-01
A novel topical corticosteroid FA-21-PhP, 2-phenoxypropionate ester of fluocinolone acetonide, has been synthesized in order to investigate the possibility of decreasing systemic side effects. In this study model system for in vitro solvolytic reaction of FA-21-PhP has been analyzed in ethanol/water (90:10, v/v) with excess of sodium hydrogen carbonate. The selected conditions have been used as in vitro model for activation of corticosteroid C-21 ester prodrug. The second-order derivative spectrophotometric method (DS) using zero-crossing technique was developed for monitoring ternary mixture of solvolysis. Fluocinolone acetonide (FA) as a solvolyte was determined in the mixture in the concentration range 0.062-0.312 mM using amplitude 2D 274.96. Experimentally determined LOD value was 0.0295 mM. The accuracy of proposed DS method was confirmed with HPLC referent method. Peak area of parent ester FA-21-PhP was used for solvolysis monitoring to ensure the initial stage of changes. Linear relationship in HPLC assay for parent ester was obtained in the concentration range 0.054-0.54 mM, with experimentally determined LOD value of 0.0041 mM. Investigated solvolytic reaction in the presence of excess of NaHCO 3 proceeded via a pseudo-first-order kinetic with significant correlation coefficients 0.9891 and 0.9997 for DS and HPLC, respectively. The values of solvolysis rate constant calculated according to DS and HPLC methods are in good accordance 0.038 and 0.043 h -1, respectively.
Lee, Yelin; Park, Kyoung-Ho; Seong, Mi Hye; Kyong, Jin Burm; Kevill, Dennis N.
2011-01-01
The specific rates of solvolysis of isobutyl fluoroformate (1) have been measured at 40.0 °C in 22 pure and binary solvents. These results correlated well with the extended Grunwald-Winstein (G-W) equation, which incorporated the NT solvent nucleophilicity scale and the YCl solvent ionizing power scale. The sensitivities (l and m-values) to changes in solvent nucleophilicity and solvent ionizing power, and the kF/kCl values are very similar to those observed previously for solvolyses of n-octyl fluoroformate, consistent with the additional step of an addition-elimination pathway being rate-determining. The solvent deuterium isotope effect value (kMeOH/kMeOD) for methanolysis of 1 was determined, and for solvolyses in ethanol, methanol, 80% ethanol, and 70% TFE, the values of the enthalpy and the entropy of activation for the solvolysis of 1 were also determined. The results are compared with those reported earlier for isobutyl chloroformate (2) and other alkyl haloformate esters and mechanistic conclusions are drawn. PMID:22174633
Preparation of the 3-monosulphates of cholic acid, chenodeoxycholic acid and deoxycholic acid.
Haslewood, E S; Haslewood, G A
1976-01-01
1. The 3-sulphates of cholic, chenodeoxycholic and deoxycholic acids were prepared as crystalline disodium salts. 2. The method described shows that it is possible to prepare specific sulphate esters of polyhydroxy bile acids and to remove protecting acyl groups without removing the sulphate. 3. A study of bile acid sulphate solvolysis showed that none of the usual methods give the original bile acid in major yield in a single step. 4. An understanding of the preparation, properties and methods of solvolysis of bile acid sulphates is basic for investigations of cholestasis and liver disease. PMID:938488
Løhre, Camilla; Vik Halleraker, Hilde; Barth, Tanja
2017-01-01
The interest and on-going research on utilisation of lignin as feedstock for production of renewable and sustainable aromatics is expanding and shows great potential. This study investigates the applicability of semi-continuously organosolv extracted lignin in Lignin-to-Liquid (LtL) solvolysis, using formic acid as hydrogen donor and water as solvent under high temperature–high pressure (HTHP) conditions. The high purity of the organosolv lignin provides high conversion yields at up to 94% based on lignin mass input. The formic acid input is a dominating parameter in lignin conversion. Carbon balance calculations of LtL-solvolysis experiments also indicate that formic acid can give a net carbon contribution to the bio-oils, in addition to its property as hydrogenation agent. Compound specific quantification of the ten most abundant components in the LtL-oils describe up to 10% of the bio-oil composition, and reaction temperature is shown to be the dominating parameter for the structures present. The structural and quantitative results from this study identify components of considerable value in the LtL-oil, and support the position of this oil as a potentially important source of building blocks for the chemical and pharmaceutical industry. PMID:28124994
Kevill, Dennis N.; Koyoshi, Fumie; D’Souza, Malcolm J.
2007-01-01
Additional specific rates of solvolysis are determined for phenyl chloroformate. These values are combined with literature values to give a total of 49 data points, which are used within simple and extended Grunwald-Winstein treatments. Literature values are also brought together to allow treatments in more solvents than previously for three N-aryl-N-methylcarbamoyl chlorides, phenyl chlorothionoformate, phenyl chlorodithioformate, and N,N-diphenylcarbamoyl chloride. For the last two listed, moderately strong evidence for a meaningful inclusion of a term governed by the aromatic ring parameter (I) was indicated. No evidence was found requiring inclusion of this parameter for ionization reactions with only one aromatic ring on the nitrogen of carbamoyl chlorides or for the solvolyses of the chloroformate or chlorothionoformate proceeding by an addition-elimination (association-dissociation) mechanism.
Iodine(III) Derivatives as Halogen Bonding Organocatalysts.
Heinen, Flemming; Engelage, Elric; Dreger, Alexander; Weiss, Robert; Huber, Stefan M
2018-03-26
Hypervalent iodine(III) derivatives are known as versatile reagents in organic synthesis, but there is only one previous report on their use as Lewis acidic organocatalysts. Herein, we present first strong indications for the crucial role of halogen bonding in this kind of catalyses. To this end, the solvolysis of benzhydryl chloride and the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone served as benchmark reactions for halide abstraction and the activation of neutral compounds. Iodolium compounds (cyclic diaryl iodonium species) were used as activators or catalysts, and we were able to markedly reduce or completely switch off their activity by sterically blocking one or two of their electrophilic axes. Compared with previously established bidentate cationic halogen bond donors, the monodentate organoiodine derivatives used herein are at least similarly active (in the Diels-Alder reaction) or even decidedly more active (in benzhydryl chloride solvolysis). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seong, Mi Hye; Kyong, Jin Burm; Lee, Young Hoon; Kevill, Dennis N.
2009-01-01
The specific rates of solvolysis of ethyl fluoroformate have been measured at 24.2 °C in 21 pure and binary solvents. These give a satisfactory correlation over the full range of solvents when the extended Grunwald-Winstein equation is applied. The sensitivities to changes in the NT solvent nucleophilicity scale and the YCl solvent ionizing power scale, and the kF/kCl values are very similar to those for solvolyses of n-octyl fluoroformate, consistent with the addition step of an addition-elimination pathway being rate-determining. For methanolysis, a solvent deuterium isotope effect of 3.10 is compatible with the incorporation of general-base catalysis into the substitution process. For five representative solvents, studies were made at several temperatures and activation parameters determined. The results are also compared with those reported earlier for ethyl chloroformate and mechanistic conclusions are drawn. PMID:19399229
D’Souza, Malcolm J.; Shuman, Kevin E.; Carter, Shannon E.; Kevill, Dennis N.
2008-01-01
Specific rates of solvolysis at 25 °C for p-nitrophenyl chloroformate (1) are analyzed using the extended (two-term) Grunwald-Winstein equation. For 39 solvents, the sensitivities (l = 1.68±0.06 and m = 0.46±0.04) towards changes in solvent nucleophilicity (l) and solvent ionizing power (m) obtained, are similar to those previously observed for phenyl chloroformate (2) and p-methoxyphenyl chloroformate (3). The observations incorporating new kinetic data in several fluoroalcohol-containing mixtures, are rationalized in terms of the reaction being sensitive to substituent effects and the mechanism of reaction involving the addition (association) step of an addition-elimination (association-dissociation) pathway being rate-determining. The l/m ratios obtained for 1, 2, and 3, are also compared to the previously published l/m ratios for benzyl chloroformate (4) and p-nitrobenzyl chloroformate (5). PMID:19330071
Optimised deconjugation of androgenic steroid conjugates in bovine urine.
Pedersen, Mikael; Frandsen, Henrik L; Andersen, Jens H
2017-04-01
After administration of steroids to animals the steroids are partially metabolised in the liver and kidney to phase 2 metabolites, i.e., glucuronic acid or sulphate conjugates. During analysis these conjugated metabolites are normally deconjugated enzymatically with aryl sulphatase and glucuronidase resulting in free steroids in the extract. It is well known that some sulphates are not deconjugated using aryl sulphatase; instead, for example, solvolysis can be used for deconjugation of these aliphatic sulphates. The effectiveness of solvolysis on androgenic steroid sulphates was tested with selected aliphatic steroid sulphates (boldenone sulphate, nortestosteron sulphate and testosterone sulphate), and the method was validated for analysis of androgenic steroids in bovine urine using free steroids, steroid sulphates and steroid glucuronides as standards. Glucuronidase and sulphuric acid in ethyl acetate were used for deconjugation and the extract was purified by solid-phase extraction. The final extract was evaporated to dryness, re-dissolved and analysed by LC-MS/MS.
RATES OF SOLVOLYSIS OF SOME DEUTERATED 2-PHENYLETHYL p-TOLUENESULFONATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, W.H. Jr.; Asperger, S.; Edison, D.H.
1958-05-20
Rates of solvolysis of 2-phenylethyl (Ia), b 2/ (Ic) p-toluenesulfonates were determined in formic and in acetic acid. In formolysis Ia and Ic react at the same rate, but Ia reacts 17 plus or minus 2% faster than Ib. In acetolysis small effects are observed with both deuterated com. pounds: Ia is 3 plus or minus 1% faster than Ib and 4 plus or minus 3% faster than Ic. The formates and acetates produced in the solvolyses were converted to the corresponding 2phenylethanols II. Comparison of the infrared spectra of the products with those of synthetic mixture of IIb andmore » IIc revealed that ca. 45% phenyl migration had occurred in the formolysis and ca. 10% phenyl migration in acetolysis. These results suggest that phenyl participation predominates in formolysis, but is unimportant in acetolysis. The nature of the transition state in phenyl- participation reactions and the factors contributing to secondary deuterium isotope effects are discussed. (auth)« less
Kevill, Dennis Neil; Kim, Chang-Bae; D'Souza, Malcolm John
2018-03-01
A Grunwald-Winstein treatment of the specific rates of solvolysis of α-bromoisobutyrophenone in 100% methanol and in several aqueous ethanol, methanol, acetone, 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) mixtures gives a good logarithmic correlation against a linear combination of N T (solvent nucleophilicity) and Y Br (solvent ionizing power) values. The l and m sensitivity values are compared to those previously reported for α-bromoacetophenone and to those obtained from parallel treatments of literature specific rate values for the solvolyses of several tertiary mesylates containing a C(=O)R group attached at the α-carbon. Kinetic data obtained earlier by Pasto and Sevenair for the solvolyses of the same substrate in 75% aqueous ethanol (by weight) in the presence of silver perchlorate and perchloric acid are analyzed using multiple regression analysis.
Onset of hydrogen bonded collective network of water in 1,4-dioxane.
Luong, Trung Quan; Verma, Pramod Kumar; Mitra, Rajib Kumar; Havenith, Martina
2011-12-22
We have studied the evolution of water hydrogen bonded collective network dynamics in mixtures of 1,4-dioxane (Dx) as the mole fraction of water (X(w)) increases from 0.005 to 0.54. The inter- and intramolecular vibrations of water have been observed using terahertz time domain spectroscopy (THz-TDS) in the frequency range 0.4-1.4 THz (13-47 cm(-1)) and Fourier transform infrared (FTIR) spectroscopy in the far-infrared (30-650 cm(-1)) and mid-infrared (3000-3700 cm(-1)) regions. These results have been correlated with the reactivity of water in these mixtures as determined by kinetic studies of the solvolysis reaction of benzoyl chloride (BzCl). Our studies show an onset of intermolecular hydrogen bonded water network dynamics beyond X(w) ≥ 0.1. At the same concentration, we observe a rapid increase of the rate constant of solvolysis of BzCl in water-Dx mixtures. Our results establish a correlation between the onset of collective hydrogen bonded network with the solvation dynamics and the activity of clustered water.
Study of the Kinetics of an S[subscript N]1 Reaction by Conductivity Measurement
ERIC Educational Resources Information Center
Marzluff, Elaine M.; Crawford, Mary A.; Reynolds, Helen
2011-01-01
Substitution reactions, a central part of organic chemistry, provide a model system in physical chemistry to study reaction rates and mechanisms. Here, the use of inexpensive and readily available commercial conductivity probes coupled with computer data acquisition for the study of the temperature and solvent dependence of the solvolysis of…
ERIC Educational Resources Information Center
Danen, Wayne C.; Blecha, M. Therese, Sr.
1982-01-01
Background information and experimental procedures are provided for three lecture-demonstrations (involving hydrolysis of tetra-butyl chloride) illustrating: (1) common-ion or mass law effect; (2) effect of changing ionizing power of a solvent on a solvolysis reaction; and (3) collecting/plotting data to illustrate a first-order reaction.…
Enhanced Oxidation and Solvolysis Reactions in Chemically Inert Microheterogeneous Systems.
1987-01-13
Mackay, Adv.Coll.Interf.Sc{. 15, 131 (1981) 11 C. Bodea and J. Silberg , "Recent Advances in the Chemistry of Phenothiazines" in "Advances in Heterocyclic... Chemistry ", A.R. Katritzky and A.J. Boulton, , eds., Vol. 9, Academic Press, New York, 1968, p. 321 12 A.M. Braun, M.-A. Gilson, M. Krieg, M.-T
Enhanced Oxidation and Solvolysis Reactions in Chemically Inert Microheterogeneous Systems.
1986-01-15
has been found in a O/W microemulsion containing sodium lauryl sulfate , cyclohexane, n-butanol and water. SHORT TERM PROJECTS New O/W and W/O...microemulsion containing lauryl acid sodium salt, cyclohexane, n-butanol and water towards hydrogen peroxide has been tested. Kinetic measurements...using hydrogen peroxide The system lauryl acid sodium salt, cyclohexane, n-butanol, water has been selected as one of those potentially compatible
Ravi, Arthi; Hassan, Syed Zahid; Vanikrishna, Ajithkumar N; Sureshan, Kana M
2017-04-04
Triflates of myo-inositol undergo facile solvolysis in DMSO and DMF yielding S N 2 products substituted with O-nucleophiles; DMF showed slower kinetics. Axial O-triflate undergoes faster substitution than equatorial O-triflate. By exploiting this difference in kinetics, solvent-tuning and sequence-controlled nucleophilysis, rapid synthesis of three azido-inositols of myo-configuration from myo-inositol itself has been achieved.
Structure and gene cluster of the O-antigen of Escherichia coli O54.
Naumenko, Olesya I; Guo, Xi; Senchenkova, Sof'ya N; Geng, Peng; Perepelov, Andrei V; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A
2018-06-15
Mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O54 afforded an O-polysaccharide, which was studied by sugar analysis, solvolysis with anhydrous trifluoroacetic acid, and 1 H and 13 C NMR spectroscopy. Solvolysis cleaved predominantly the linkage of β-d-Ribf and, to a lesser extent, that of β-d-GlcpNAc, whereas the other linkages, including the linkage of α-l-Rhap, were stable under selected conditions (40 °C, 5 h). The following structure of the O-polysaccharide was established: →4)-α-d-GalpA-(1 → 2)-α-l-Rhap-(1 → 2)-β-d-Ribf-(1 → 4)-β-d-Galp-(1 → 3)-β-d-GlcpNAc-(1→ The O-antigen gene cluster of E. coli O54 was analyzed and found to be consistent in general with the O-polysaccharide structure established but there were two exceptions: i) in the cluster, there were genes for phosphoserine phosphatase and serine transferase, which have no apparent role in the O-polysaccharide synthesis, and ii) no ribofuranosyltransferase gene was present in the cluster. Both uncommon features are shared by some other enteric bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kormin, Shaharuddin; Rus, Anika Zafiah M.; Azahari, M. Shafiq M.
2017-09-01
Liquefaction is known to be an effective method for converting biomass into a biopolyol. The biomass liquefaction of oil palm fruit waste (PFW) in the presence of liquefaction solvent/polyhydric alcohol (PA): polyethylene glycol 400 (PEG400) using sulfuric acid as catalyst was studied. For all experiments, the liquefaction was conducted at 150°C and atmospheric pressure. The mass ratio of OPFW to liquefaction solvents used in all the experiments was, 1/3. Thermogravimetric analyses (TGA) were used to analyze their biopolyol and residue behaviors. It was found that thermal stability of oil palm mesocarp fibre (PM), oil palm shell (PS) and oil palm kernel (PK) fibre exhibited the first degradation of hard segment at (232, 104, 230°C) and the second degradation of soft segment at (314, 226, 412°C) as compared to PM, PS and PK residue which (229, 102, 227°C) of hard segment and (310, 219, 299°C) of segment, respectively. This behavior of thermal degradation of the hard segment and soft segment of biopolyol was changes after undergo solvolysis liquefaction process. The result analysis showed that the resulting biopolyol and its residue was suitable monomer for polyurethane (PU) synthesis for the production of PU foams.
Rhenium(VII) Catalysis of Prins Cyclization Reactions
Tadpetch, Kwanruthai; Rychnovsky, Scott D.
2009-01-01
The rhenium(VII) complex O3ReOSiPh3 are particularly effective catalyst for Prins cyclizations using aromatic and α,β-unsaturated aldehydes. The reaction conditions are mild and the highly substituted 4-hydroxy tetrahydropyran products are formed stereoselectively. Rhenium(VII) complexes appear to spontaneously form esters with alcohols and to directly activate electron rich alcohols for solvolysis. Re2O7 and perrhenic acid were equally effective in catalyzing these cyclizations. PMID:18816133
DiLabio, Gino A; Ingold, K U
2004-03-05
Brown and Okamoto (J. Am. Chem. Soc. 1958, 80, 4979) derived their electrophilic substitutent constants, sigma(p)+, from the relative rates of solvolysis of ring-substituted cumyl chlorides in an acetone/water solvent mixture. Application of the Hammett equation to the rates for the meta-substituted cumyl chlorides, where there could be no resonance interaction with the developing carbocation, gave a slope, rho(+) = -4.54 ( identical with 6.2 kcal/mol free energy). Rates for the para-substituted chlorides were then used to obtain sigma(p)+ values. We have calculated gas-phase C-Cl heterolytic bond dissociation enthalpy differences, Delta BDE(het) (= BDE(het)(4-YC(6)H(4)CMe(2)Cl) - BDE(het)(C(6)H(5)CMe(2)Cl)), for 16 of the 4-Y substituents employed by Brown and Okamoto. The plot of Delta BDE(het) vs sigma(p)+ gave rho(+) (SD) = 16.3 (2.3) kcal/mol, i.e., a rho(+) value roughly 2.5 times greater than experiment. Inclusion of solvation (water) energies, calculated using three continuum solvent models, reduced rho(+) and SD. The computationally least expensive model used, SM5.42R (Li et al. Theor. Chem. Acc. 1999, 103, 9) gave the best agreement with experiment. This model yielded rho(+) (SD) = 7.7 (0.9) kcal/mol, i.e., a rho(+) value that is only 24% larger than experiment.
NASA Astrophysics Data System (ADS)
Kormin, Shaharuddin; Rus, Anika Zafiah M.; Azahari, M. Shafiq M.
2017-08-01
Liquefied oil palm mesocarp fibre (LOPMF) is a promising natural material that can be used as biopolyol of polyurethane foam. The aim of this study was to utilizing solvolysis liquefaction conversion technology of oil palm mesocarp fibre (OPMF) for polyurethane (PU) foam. LOPMF was obtained with liquefaction of fibre in polyhydric alchohol (PA) such as ethylene glycol (EG), polyethylene glycol (PEG) and glycerol (GLY) as liquefaction solvent and sulphuric acid (H2SO4) in three different OPMF/PA ratio (1/2, 1/3 and 1/4) in conventional glass reactor. During the liquefaction, cellulose, semi-cellulose and lignin are decomposed, which results in changes of acid value and hydroxyl value. Liquefied OPMF and residues were characterized by Fourier transform infrared (FT-IR) spectroscopy. The results revealed that almost 50% of the OPMF converted into biopolyol product within 2 hours with OPMF/PA ratio of 1/4. Biopolyol produced under different condition showed viscosities from 210 to 450 Pa.s. The hydroxyl and acid values of the liquefied OPMF varied with the liquefied conditions. It was observed that with an increase in the liquefaction solvent (PA) amount in the mixture resulted in a high acid value and hydroxyl value for the OPMF. High reaction temperature combining with low OPMF material to solvent ratio resulted low hydroxyl number of LOPMF. The result in this study showed that biopolyol was suitable monomer for polyurethane synthesis.
D’Souza, Malcolm J.; Sandosky, Brandon; Fernandez-Bueno, Gabriel A.; McAneny, Matthew J.; Kevill, Dennis N.
2014-01-01
To provide insight and to identify the occurrence of mechanistic changes in relation to variance in solvent-type, the solvent effects on the rates of solvolysis of three substrates, 2,2,2-trichloro-1,1-dimethylethyl chloroformate, 2,2,2-trichloroethyl chloroformate, and 1-chloroethyl chloroformate, are analyzed using linear free energy relationships (LFERs) such as the extended Grunwald-Winstein equation, and a similarity-based LFER model approach that is based on the solvolysis of phenyl chloroformate. At 25.0 °C, in four common solvents, the α-chloroethyl chloroformate was found to react considerably faster than the two β,β,β-trichloro-substituted analogs. This immense rate enhancement can be directly related to the proximity of the electron-withdrawing α-chlorine atom to the carbonyl carbon reaction center. In the thirteen solvents studied, 1-chloroethyl chloroformate was found to strictly follow a carbonyl addition process, with the addition-step being rate-determining. For the two β,β,β-trichloro-substrates, in aqueous mixtures that are very rich in a fluoroalcohol component, there is compelling evidence for the occurrence of side-by-side addition-elimination and ionization mechanisms, with the ionization pathway being predominant. The presence of the two methyl groups on the α-carbon of 2,2,2-trichloro-1,1-dimethylethyl chloroformate has additive steric and stereoelectronic implications, causing its rate of reaction to be significantly slower than that of 2,2,2-trichloroethyl chloroformate. PMID:24812595
Pretreatment of different biological matrices for exogenous testosterone analysis: a review.
Pizzato, Edna Carolina; Filonzi, Marcelo; Rosa, Hemerson Silva da; de Bairros, André Valle
2017-11-01
The presence of exogenous testosterone has been monitored mainly in the urine and blood. However, other biological matrices such as hair, nail, and saliva samples can be used successfully for in vivo measurement. Chromatographic analysis requires pretreatment to obtain free testosterone and its metabolites. Among the pretreatment procedures, digestion, hydrolysis and solvolysis steps are conducted to reach the analytical purpose. Digestion assay is indicated for hair and nail samples. First, it is recommended to perform the decontamination step. After that, alkaline solution (NaOH), organic solvents and other reagents can be added to the samples and incubated under determined conditions for the digestion step. Hydrolysis assay is recommended to urine and blood samples. Acid hydrolysis cleaves conjugated testosterone and its metabolites using HCl or H 2 SO 4 solution at appropriate time and temperature. However, there is formation of interferent compounds, degradation of dehydroepiandrosterone and decrease of peak resolution for epitestosterone. Enzymatic hydrolysis is an alternative technique able to promote free testosterone and its metabolites with low degradation. It is important to establish the best conditions according to the biological fluid and the amount of the sample. Sulfatase enzyme is recommended together with β-glucuronidase to cleave sulfoconjugate steroids. Solvolysis assay is similar to acid hydrolysis, but organic solvents are responsible to promote steroid deconjugation. Other approaches such as combination of different pretreatments, surface response or ultrasonic energy have been used to obtain the total of free steroids. So, the biological matrix defines the best procedure for pretreatment to achieve the analytical purpose, knowing its advantages and limitations.
Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters
D’Souza, Malcolm J.; Givens, Aaron F.; Lorchak, Peter A.; Greenwood, Abigail E.; Gottschall, Stacey L.; Carter, Shannon E.; Kevill, Dennis N.
2013-01-01
At 25.0 °C the specific rates of solvolysis for allyl and vinyl chloroformates have been determined in a wide mix of pure and aqueous organic mixtures. In all the solvents studied, vinyl chloroformate was found to react significantly faster than allyl chloroformate. Multiple correlation analyses of these rates are completed using the extended (two-term) Grunwald-Winstein equation with incorporation of literature values for solvent nucleophilicity (NT) and solvent ionizing power (YCl). Both substrates were found to solvolyze by similar dual bimolecular carbonyl-addition and unimolecular ionization channels, each heavily dependent upon the solvents nucleophilicity and ionizing ability. PMID:23549265
Release of volatile mercury from vascular plants
NASA Technical Reports Server (NTRS)
Siegel, S. M.; Puerner, N. J.; Speitel, T. W.
1974-01-01
Volatile, organic solvent soluble mercury has been found in leaves and seeds of several angiosperms. Leaves of garlic vine, avocado, and haole-koa release mercury in volatile form rapidly at room temperature. In garlic vine, the most active release is temperature dependent, but does not parallel the vapor-pressure temperature relationship for mercury. Mercury can be trapped in nitric-perchloric acid digestion fluid, or n-hexane, but is lost from the hexane unless the acid mixture is present. Seeds of haole-koa also contain extractable mercury but volatility declines in the series n-hexane (90%), methanol (50%), water (10%). This suggests that reduced volatility may accompany solvolysis in the more polar media.
Kyong, Jin Burm; Lee, Yelin; D’Souza, Malcolm John; Kevill, Dennis Neil; Kevill, Dennis Neil
2012-01-01
The “parent” tertiary alkyl chloroformate, tert-butyl chloroformate, is unstable, but the tert-butyl chlorothioformate (1) is of increased stability and a kinetic investigation of the solvolyses is presented. Analyses in terms of the simple and extended Grunwald-Winstein equations are carried out. The original one-term equation satisfactorily correlates the data with a sensitivity towards changes in solvent ionizing power of 0.73 ±0.03. When the two-term equation is applied, the sensitivity towards changes in solvent nucleophilicity of 0.13 ± 0.09 is associated with a high (0.17) probability that the term that it governs is not statistically significant. PMID:23538747
Algarra, Andrés G; Basallote, Manuel G; Fernandez-Trujillo, M J; Llusar, Rosa; Pino-Chamorro, Jose A; Sorribes, Ivan; Vicent, Cristian
2010-04-21
The synthesis, crystal structure and solution characterization of the cubane-type [Mo(3)(FeCl)S(4)(dmpe)(3)Cl(3)] (1) (dmpe = 1,2-bis(dimethylphophane-ethane)) cluster are reported and the ligand substitution processes of chloride by thiophenolate investigated. The kinetics and the intimate mechanism of these substitutions reveal that compound 1 undergoes a number of Fe and Mo site specific ligand substitution reactions in acetonitrile solutions. In particular, PhS(-) coordination at the tetrahedral Fe site proceeds in a single resolved kinetic step whereas such substitutions at the Mo sites proceed more slowly. The effect of the presence of acids in the reaction media is also investigated and reveals that an acid excess hinders substitution reactions both at the Fe and Mo sites; however, an acid-promoted solvolysis of the Fe-Cl bonds is observed. Electrospray ionization (ESI) and tandem (ESI-MS/MS) mass spectrometry allow the identification of all the reaction intermediates proposed on the basis of stopped-flow measurements. The distinctive site specific reactivity made it possible to isolate two new clusters of the Mo(3)FeS(4)(4+) family featuring mixed chlorine/thiophenolate ligands, namely Mo(3)S(4)(FeSPh)(dmpe)(3)Cl(3) (2) and [Mo(3)S(4)(FeSPh)(dmpe)(3)(SPh)(3)] (3). A detailed computational study has also been carried out to understand the details of the mechanism of substitution at the M-Cl (M = Mo and Fe) bonds as well as the solvolysis at the Fe-Cl sites, with particular emphasis on the role of acids on the substitution process. The results of the calculations are in agreement with the experimental observations, thus justifying the non-existence of an accelerating effect of acids on the thiophenolate substitution reaction, which differs from previous proposals for the Fe(4)S(4) and MoFe(3)S(4) clusters and some related compounds.
Separator for alkaline batteries and method of making same
NASA Technical Reports Server (NTRS)
Hoyt, H. E.; Pfluger, H. L. (Inventor)
1970-01-01
The preparation of membranes suitable for use as separators in concentrated alkaline battery cells by selective solvolysis of copolymers of methacrylate esters with acrylate esters followed by addition of a base and to the resultant products is described. The method of making copolymers by first copolymerizing a methacrylate ester (or esters) with a more readily hydrolyzable ester, followed by a selective saponification whereby the methacrylate ester moieties remain essentially intact and the readily hydrolyzable ester moiety is suponified and to the partial or complete neutralization of the relatively brittle copolymer acid with a base to make membranes which are sufficiently flexible in the dry state so that they may be wrapped around electrodes without damage by handling is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortright, Randy; Rozmiarek, Bob; Van Straten, Matt
The principal objective of this project was to develop a fully integrated catalytic process that efficiently converts lignocellulosic feedstocks (e.g. bagasse, corn stover, and loblolly pine) into aromatic-rich fuels and chemicals. Virent led this effort with key feedstock support from Iowa State University. Within this project, Virent leveraged knowledge of catalytic processing of sugars and biomass to investigate two liquefaction technologies (Reductive Catalytic Liquefaction (USA Patent No. 9,212,320, 2015) and Solvolysis (USA Patent No. 9,157,030, 2015) (USA Patent No. 9,157,031, 2015)) that take advantage of proprietary catalysts at temperatures less than 300°C in the presence of unique solvent molecules generatedmore » in-situ within the liquefaction processes.« less
Poly(ethylene terephthalate)-based carbons as electrode material in supercapacitors
NASA Astrophysics Data System (ADS)
Domingo-García, M.; Fernández, J. A.; Almazán-Almazán, M. C.; López-Garzón, F. J.; Stoeckli, F.; Centeno, T. A.
A systematic study by complementary techniques shows that PET-waste from plastic vessels is a competitive precursor of carbon electrodes for supercapacitors. PET derived-activated carbons follow the general trends observed for highly porous carbons and display specific capacitances at low current density as high as 197 F g -1 in 2 M H 2SO 4 aqueous electrolyte and 98 F g -1 in the aprotic medium 1 M (C 2H 5) 4NBF 4/acetonitrile. Additionally, high performance has also been achieved at high current densities, which confirms the potential of this type of materials for electrical energy storage. A new method based on the basic solvolysis of PET-waste and the subsequent carbonization seems to be an interesting alternative to obtain porous carbons with enhanced properties for supercapacitors.
D’Souza, Malcolm J.; Knapp, Jaci A.; Fernandez-Bueno, Gabriel A.; Kevill, Dennis N.
2012-01-01
The specific rates of solvolysis of 2-butyn-1-yl-chloroformate (1) and 2-methoxyphenyl chloroformate (2) are studied at 25.0 °C in a series of binary aqueousorganic mixtures. The rates of reaction obtained are then analyzed using the extended Grunwald-Winstein (G-W) equation and the results are compared to previously published G-W analyses for phenyl chloroformate (3), propargyl chloroformate (4), p-methoxyphenyl choroformate (5), and p-nitrophenyl chloroformate (6). For 1, the results indicate that dual side-by-side addition-elimination and ionization pathways are occurring in some highly ionizing solvents due to the presence of the electron-donating γ-methyl group. For 2, the analyses indicate that the dominant mechanism is a bimolecular one where the formation of a tetrahedral intermediate is rate-determining. PMID:22312278
Reaction between the Pt(II)-complexes and the amino acids of the β-amyloid peptide
NASA Astrophysics Data System (ADS)
Novato, Willian T. G.; Stroppa, Pedro Henrique F.; Da Silva, Adilson D.; Botezine, Naiara P.; Machado, Flávia C.; Costa, Luiz Antônio S.; Dos Santos, Hélio F.
2017-01-01
Reaction between [Pt(ophen)Cl2] and HIS was monitored and the solvolysis (k1) and Cl/HIS ligand exchange (k2) rate constants obtained. The k1 and k2 were (6.2 ± 0.4) × 10-5 s-1 and 52.8 × 10-2 M-1 s-1, respectively. The corresponding calculated values were 47.5 × 10-5 s-1 and 52.2 × 10-2 M-1 s-1, in agreement with the experiment. Calculations were used to establish the reactivity order for a set of amino acids: MET ∼ LYS ∼ HIS(ε) > GLU ∼ ASP >> ASN ∼ GLN. In spite of the similar reactivity among MET, LYS and HIS, the thermodynamics suggests the reactions with LYS and HIS more favorable than with MET. Therefore, N-containing amino acids should be potential targets of Pt(II)-complexes in β-amyloid.
Kevill, Dennis N.; Park, Young Hoon; Park, Byoung-Chun; D’Souza, Malcolm J.
2012-01-01
The specific rates of solvolysis of chloromethyl phenyl sulfide [(phenylthio)methyl chloride] and its p-chloro-derivative have been determined at 0.0 °C in a wide range of hydroxylic solvents, including several containing a fluroalcohol. Treatment in terms of a two-term Grunwald-Winstein equation, incorporating terms based on solvent ionizing power (YCl) and solvent nucleophilicity (NT) suggest a mechanism similar to that for the solvolyses of tert-butyl chloride, involving in the rate-determining step a nucleophilic solvation of the incipient carbocation in an ionization process. A previous suggestion, that a third-term governed by the aromatic ring parameter (I) is required, is shown both for the new and for the previously studied related substrates to be an artifact, resulting from an appreciable degree of multicollinearity between I values and a linear combination of NT and YCl values. PMID:22711999
Synthesis and characterization of an anomeric sulfur analogue of CMP-sialic acid.
Cohen, S B; Halcomb, R L
2000-09-22
alpha-2,3-Sialyltransferase catalyzes the transfer of sialic acid from CMP-sialic acid (1) to a lactose acceptor. An analogue of 1 was synthesized in which the anomeric oxygen atom was replaced with a sulfur atom (1S). The key step in the synthesis of 1S was a tetrazole-promoted coupling of a cytidine-5'-phosphoramidite with a glycosyl thiol of a protected sialic acid. Compounds 1 and 1S were characterized for their activity in a sialyl transfer assay. The rate of solvolysis in aqueous buffer of analogue 1S was 50-fold slower than that of 1. Analogue 1S was found to be substrate for alpha-2,3-sialyltransferase. The K(m) of 1S was just 3-fold higher than that of 1, while the k(cat) of 1S was 2 orders of magnitude lower compared to 1.
Flowthrough Reductive Catalytic Fractionation of Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Eric M.; Stone, Michael L.; Katahira, Rui
2017-11-01
Reductive catalytic fractionation (RCF) has emerged as a leading biomass fractionation and lignin valorization strategy. Here, flowthrough reactors were used to investigate RCF of poplar. Most RCF studies to date have been conducted in batch, but a flow-based process enables the acquisition of intrinsic kinetic and mechanistic data essential to accelerate the design, optimization, and scale-up of RCF processes. Time-resolved product distributions and yields obtained from experiments with different catalyst loadings were used to identify and deconvolute events during solvolysis and hydrogenolysis. Multi-bed RCF experiments provided unique insights into catalyst deactivation, showing that leaching, sintering, and surface poisoning are causesmore » for decreased catalyst performance. The onset of catalyst deactivation resulted in higher concentrations of unsaturated lignin intermediates and increased occurrence of repolymerization reactions, producing high-molecular-weight species. Overall, this study demonstrates the concept of flowthrough RCF, which will be vital for realistic scale-up of this promising approach.« less
Tuulmets, Ants; Hagu, Hannes; Salmar, Siim; Cravotto, Giancarlo; Järv, Jaak
2007-03-29
The kinetics of KCN-catalyzed benzoin condensation of benzaldehyde in water and ethanol-water binary mixtures was investigated both under ultrasound at 22 kHz and without sonication. Thermodynamic activation parameters were calculated from kinetic data obtained at 35, 50, and 65 degrees C. Evidence that ultrasound can retard reactions is reported and hence a direct proof that sonochemical processes occur in the bulk solution. Former results and literature data for ester hydrolyses and tert-butyl chloride solvolysis are involved in the discussion. A quantitative relationship between sonication effects and the hydrophobicity of reagents is presented for the first time. Ultrasound affects hydrophobic interactions with the solvent, which are not manifested in conventional kinetics. When it suppresses the stabilization of the encounter complexes between reagents, sonication hinders the reaction but accelerates it when it perturbs the hydrophobic stabilization of the ground state of a reagent.
Pfrommer, Johannes; Lublow, Michael; Azarpira, Anahita; Göbel, Caren; Lücke, Marcel; Steigert, Alexander; Pogrzeba, Martin; Menezes, Prashanth W; Fischer, Anna; Schedel-Niedrig, Thomas; Driess, Matthias
2014-05-12
In regard to earth-abundant cobalt water oxidation catalysts, very recent findings show the reorganization of the materials to amorphous active phases under catalytic conditions. To further understand this concept, a unique cobalt-substituted crystalline zinc oxide (Co:ZnO) precatalyst has been synthesized by low-temperature solvolysis of molecular heterobimetallic Co(4-x)Zn(x) O4 (x = 1-3) precursors in benzylamine. Its electrophoretic deposition onto fluorinated tin oxide electrodes leads after oxidative conditioning to an amorphous self-supported water-oxidation electrocatalyst, which was observed by HR-TEM on FIB lamellas of the EPD layers. The Co-rich hydroxide-oxidic electrocatalyst performs at very low overpotentials (512 mV at pH 7; 330 mV at pH 12), while chronoamperometry shows a stable catalytic current over several hours. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
D’Souza, Malcolm J.; Kevill, Dennis N.
2014-01-01
Chloroformates are important laboratory and industrial chemicals with almost one hundred listed in the catalogs of leading suppliers. They are, for example, of prime importance as protecting groups in peptide synthesis. In some instances, the more stable fluoroformate is preferred. In recent years, the specific rates of solvolysis (k) for chloroformates and fluoroformates in solvents of widely ranging nucleophilicity and ionizing power have been studied. Analysis of these rates using the extended (two-term) Grunwald-Winstein equation has led to important information concerning reaction mechanism. Also assisting in this effort have been studies of kinetic solvent isotope effects (KSIE), of leaving group effects (especially kF/kCl ratios), and of entropies of activation from studies of specific rate variations with temperature. For solvolyses of chloroformate esters, two mechanisms (addition-elimination and ionization) are commonly encountered. For solvolyses of fluoroformates, mainly because of a strong C–F bond, the ionization pathway is rare and the addition-elimination pathway is in most situations the one encountered. PMID:25364780
Ritter, Helmut; Tabatabai, Monir; Herrmann, Markus
2016-01-01
We describe the synthesis of bromo-tert-butyloxycarbonyl (Br-t-BOC)-amino-protected monomers 2-((1-bromo-2-methylpropan-2-yl)oxycarbonylamino)ethyl (meth)acrylate 3a,b. For this purpose, 2-isocyanatoethyl (meth)acrylate 1a,b was reacted with 1-bromo-2-methylpropan-2-ol (2a). The free radical polymerization of (Br-t-BOC)-aminoethyl (meth)acrylates 3a,b yielded poly((Br-t-BOC)-aminoethyl (meth)acrylate) 6a,b bearing protected amino side groups. The subsequent solvolysis of the Br-t-BOC function led to the new polymers poly(2-aminoethyl (meth)acrylate) 8a,b with protonated free amino groups. The monomers and the resulting polymers were thoroughly characterized by (1)H NMR, IR, GPC and DSC methods. The kinetics of the deprotection step was followed by (1)H NMR spectroscopy. The solvent polarity and neighboring group effects on the kinetics of deprotection are discussed.
Bruice, Thomas C.; Maskiewicz, Richard; Job, Robert
1975-01-01
The iron-sulfur cluster compounds Fe4S4(SR)4-2 [where —SR = —SCH3, —S—C(CH3)3, and —S— CH2—CH(CH3)2] have been found to represent the base species of weak acids of pKa comparable to that of carboxylic acids. The acid species Fe4S4(SR)4H- is most subject to reaction with O2 and to acid-catalyzed solvolysis, while the base species Fe4S4(SR)4-2 most readily undergoes ligand exchange. The kinetics for hydrolysis of the isobutyl mercaptide cluster salt has been investigated in detail and a mechanism involving the stepwise process [Formula: see text] has been proposed. The importance of the acid-base equilibria in determining the reactivity of the iron-sulfur clusters and its possible importance as a factor in the determination of the potentials of ferredoxins and high potential iron protein are discussed. PMID:16592211
Fast cleavage of phycocyanobilin from phycocyanin for use in food colouring.
Roda-Serrat, Maria Cinta; Christensen, Knud Villy; El-Houri, Rime Bahij; Fretté, Xavier; Christensen, Lars Porskjær
2018-02-01
Phycocyanins from cyanobacteria are possible sources for new natural blue colourants. Their chromophore, phycocyanobilin (PCB), was cleaved from the apoprotein by solvolysis in alcohols and alcoholic aqueous solutions. In all cases two PCB isomers were obtained, while different solvent adducts were formed upon the use of different reagents. The reaction is believed to take place via two competing pathways, a concerted E2 elimination and a S N 2 nucleophilic substitution. Three cleavage methods were compared in terms of yield and purity: conventional reflux, sealed vessel heated in an oil bath, and microwave assisted reaction. The sealed vessel method is a new approach for fast cleavage of PCB from phycocyanin and gave at 120°C the same yield within 30min compared to 16h by the conventional reflux method (P<0.05). In addition the sealed vessel method resulted in improved purity compared to the other methods. Microwave irradiation increased product degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Goto, Junya; Santorelli, Michael
Recycling systems are classified into those employing typically three methods, and the progress of each method is described. In mechanical recycling, powders of phenolic materials are recovered via a mechanical process and reused as fillers or additives in virgin materials. The effects to flowability, curability, and mechanical properties of the materials are explained. In feedstock recycling, monomers, oligomers, or oils are recovered via chemical processes and reused as feedstock. Pyrolysis, solvolysis or hydrolysis, and supercritical or subcritical fluid technology will also be introduced. When using a subcritical fluid of phenol, the recycled material maintains excellent properties similar to the virgin material, and a demonstration plant has been constructed to carry out mass production development. In energy recovery, wastes of phenolic materials are used as an alternative solid fuel to coal because they are combustible and have good calorific value. Industrial wastes of these have been in practical use in a cement plant. Finally, it is suggested that the best recycling method should be selected according to the purpose or situation, because every recycling method has both strengths and weaknesses. Therefore, quantitative and objective evaluation methods in recycling are desirable and should be established.
A Photo-Favorskii Ring Contraction Reaction: The Effect of Ring Size
Kammath, Viju Balachandran; Šolomek, Tomáš; Ngoy, Bokolombe Pitchou; Heger, Dominik; Klán, Petr; Rubina, Marina; Givens, Richard S.
2012-01-01
The effect of ring size on the photo-Favorskii induced ring-contraction reaction of the hydroxybenzocycloalkanonyl acetate and mesylate esters (7a–d, 8a–c) has provided new insight into the mechanism of the rearrangement. By monotonically decreasing the ring size in these cyclic derivatives, the increasing ring strain imposed on the formation of the elusive bicyclic spirocyclopropanone 20 results in a divergence away from rearrangement and toward solvolysis. Cycloalkanones of seven or eight carbons undergo a highly efficient photo-Favorskii rearrangement with ring contraction paralleling the photochemistry of p-hydroxyphenacyl esters. In contrast, the five-carbon ring does not rearrange but is diverted to the photosolvolysis channel avoiding the increased strain energy that would accompany the formation of the spirobicyclic ketone, the “Favorskii intermediate 20”. The six-carbon analogue demonstrates the bifurcation in reaction channels, yielding a solvent-sensitive mixture of both. Employing a combination of time-resolved absorption measurements, quantum yield determinations, isotopic labeling, and solvent variation studies coupled with theoretical treatment, a more comprehensive mechanistic description of the rearrangement has emerged. PMID:22686289
Shallow temperature differences along the Deep Creek Range front, Idaho
NASA Astrophysics Data System (ADS)
Ore, H. T.; Wiegand, G. H.
1990-02-01
The extent of the solvolysis reaction of a tertiary butyl chloride solution placed in vials buried about 1.2 m below the ground surface is dependent on average temperature at that depth over the period of burial. This method is herein used to indicate differences in shallow temperature from the western flank of the Basin and Range Deep Creek Range front, about 5 km westward into Rockland Valley in southeastern Idaho. Ninety-three samples, distributed to allow determination of lateral and vertical sample-site variation in total reaction amount, were analyzed after being in place for 3 months. Results from two sample lines, 3.5 km apart, show that subsurface total reaction amount declines slightly for the first 1.6 km away from the mountain front, rises abruptly to several times initial reaction, slowly declines for the next several km, then tends to slowly rise again. Plots of extent of reaction vs distance for the two traverses are nearly parallel; in both the abrupt increase in total reaction coincides with a line of springs, suggesting that hydrologic activity is at least related to the effects noted.
An approach to the systematic analysis of urinary steroids
Menini, E.; Norymberski, J. K.
1965-01-01
1. Human urine, its extracts, extracts of urine pretreated with enzyme preparations containing β-glucuronidase and steroid sulphatase or β-glucuronidase alone, and products derived from the specific solvolysis of urinary steroid sulphates, were submitted to the following sequence of operations: reduction with borohydride; oxidation with a glycol-cleaving agent (bismuthate or periodate); separation of the products into ketones and others; oxidation of each fraction with tert.-butyl chromate, resolution of the end products by means of paper chromatography or gas–liquid chromatography or both. 2. Qualitative experiments indicated the kind of information the method and some of its modifications can provide. Quantitative experiments were restricted to the direct treatment of urine by the basic procedure outlined. It was partly shown and partly argued that the quantitative results were probably as informative about the composition of the major neutral urinary steroids (and certainly about their presumptive secretory precursors) as those obtained by a number of established analytical procedures. 3. A possible extension of the scope of the reported method was indicated. 4. A simple technique was introduced for the quantitative deposition of a solid sample on to a gas–liquid-chromatographic column. PMID:14333557
Stereoinversion of tertiary alcohols to tertiary-alkyl isonitriles and amines.
Pronin, Sergey V; Reiher, Christopher A; Shenvi, Ryan A
2013-09-12
The SN2 reaction (bimolecular nucleophilic substitution) is a well-known chemical transformation that can be used to join two smaller molecules together into a larger molecule or to exchange one functional group for another. The SN2 reaction proceeds in a very predictable manner: substitution occurs with inversion of stereochemistry, resulting from the 'backside attack' of the electrophilic carbon by the nucleophile. A significant limitation of the SN2 reaction is its intolerance for tertiary carbon atoms: whereas primary and secondary alcohols are viable precursor substrates, tertiary alcohols and their derivatives usually either fail to react or produce stereochemical mixtures of products. Here we report the stereochemical inversion of chiral tertiary alcohols with a nitrogenous nucleophile facilitated by a Lewis-acid-catalysed solvolysis. The method is chemoselective against secondary and primary alcohols, thereby complementing the selectivity of the SN2 reaction. Furthermore, this method for carbon-nitrogen bond formation mimics a putative biosynthetic step in the synthesis of marine terpenoids and enables their preparation from the corresponding terrestrial terpenes. We expect that the general attributes of the methodology will allow chiral tertiary alcohols to be considered viable substrates for stereoinversion reactions.
D’Souza, Malcolm J.; Kevill, Dennis N.
2014-01-01
The replacement of oxygen within a chloroformate ester (ROCOCl) by sulfur can lead to a chlorothioformate (RSCOCl), a chlorothionoformate (ROCSCl), or a chlorodithioformate (RSCSCl). Phenyl chloroformate (PhOCOCl) reacts over the full range of solvents usually included in Grunwald-Winstein equation studies of solvolysis by an addition-elimination (A-E) pathway. At the other extreme, phenyl chlorodithioformate (PhSCSCl) reacts across the range by an ionization pathway. The phenyl chlorothioformate (PhSCOCl) and phenyl chlorothionoformate (PhOCSCl) react at remarkably similar rates in a given solvent and there is a dichotomy of behavior with the A-E pathway favored in solvents such as ethanol-water and the ionization mechanism favored in aqueous solvents rich in fluoroalcohol. Alkyl esters behave similarly but with increased tendency to ionization as the alkyl group goes from 1° to 2° to 3°. N,N-Disubstituted carbamoyl halides favor the ionization pathway as do also the considerably faster reacting thiocarbamoyl chlorides. The tendency towards ionization increases as, within the three contributing structures of the resonance hybrid for the formed cation, the atoms carrying positive charge (other than the central carbon) change from oxygen to sulfur to nitrogen, consistent with the relative stabilities of species with positive charge on these atoms. PMID:25310653
Mechanistic Studies of the Solvolyses of Carbamoyl Chlorides and Related Reactions
D’Souza, Malcolm J.; Kevill, Dennis N.
2016-01-01
Carbamoyl chlorides are important intermediates, both in the research laboratory and in industrial scale syntheses. The most studied and used are the disubstituted derivatives, incorporating either aryl or alkyl groups (Ar2NCOCl or R2NCOCl). Sometimes, the groups are tied back to give a ring and piperidino- and morpholino-derivatives are commonly encountered. Some studies have been made with two different groups attached. Solvolyses tend to occur at the carbonyl carbon, with replacement of the chloride ion. Studies of both rate and products are reviewed and the solvolysis reactions are usually SN1, although addition of an amine leads to a superimposable bimolecular component. Many of the studies under solvolytic conditions include the application of the extended Grunwald–Winstein equation. The monosubstituted derivatives (ArNHCOCl or RNHCOCl) are less studied. They are readily prepared by the addition of HCl to an isocyanate. In acetonitrile, they decompose to set up and reach equilibrium with the isocyanate (ArNCO or RNCO) and HCl. Considering that the structurally related formyl chloride (HOCOCl) is highly unstable (with formation of HCl + CO2), the unsubstituted carbamoyl chloride (H2NCOCl) is remarkably stable. Recommended synthetic procedures require it to survive reaction temperatures in the 300–400 °C range. There has been very little study of its reactions. PMID:26784185
Mechanistic Studies of the Solvolyses of Carbamoyl Chlorides and Related Reactions.
D'Souza, Malcolm J; Kevill, Dennis N
2016-01-15
Carbamoyl chlorides are important intermediates, both in the research laboratory and in industrial scale syntheses. The most studied and used are the disubstituted derivatives, incorporating either aryl or alkyl groups (Ar2NCOCl or R2NCOCl). Sometimes, the groups are tied back to give a ring and piperidino- and morpholino-derivatives are commonly encountered. Some studies have been made with two different groups attached. Solvolyses tend to occur at the carbonyl carbon, with replacement of the chloride ion. Studies of both rate and products are reviewed and the solvolysis reactions are usually SN1, although addition of an amine leads to a superimposable bimolecular component. Many of the studies under solvolytic conditions include the application of the extended Grunwald-Winstein equation. The monosubstituted derivatives (ArNHCOCl or RNHCOCl) are less studied. They are readily prepared by the addition of HCl to an isocyanate. In acetonitrile, they decompose to set up and reach equilibrium with the isocyanate (ArNCO or RNCO) and HCl. Considering that the structurally related formyl chloride (HOCOCl) is highly unstable (with formation of HCl + CO2), the unsubstituted carbamoyl chloride (H2NCOCl) is remarkably stable. Recommended synthetic procedures require it to survive reaction temperatures in the 300-400 °C range. There has been very little study of its reactions.
Yoshida, Tatsusada; Hirozumi, Koji; Harada, Masataka; Hitaoka, Seiji; Chuman, Hiroshi
2011-06-03
The rate of hydrogen atom abstraction from phenolic compounds by a radical is known to be often linear with the Hammett substitution constant σ(+), defined using the S(N)1 solvolysis rates of substituted cumyl chlorides. Nevertheless, a physicochemical reason for the above "empirical fact" has not been fully revealed. The transition states of complexes between the 2,2-diphenyl-1-picrylhydrazyl radical (dpph·) and a series of para-substituted phenols were determined by DFT (Density Functional Theory) calculations, and then the activation energy as well as the homolytic bond dissociation energy of the O-H bond and charge distribution in the transition state were calculated. The heterolytic bond dissociation energy of the C-Cl bond and charge distribution in the corresponding para-substituted cumyl chlorides were calculated in parallel. Excellent correlations among σ(+), charge distribution, and activation and bond dissociation energies revealed quantitatively that there is a strong similarity between the two reactions, showing that the electron-deficiency of the π-electron system conjugated with a substituent plays a crucial role in determining rates of the two reactions. The results provide a new insight into and physicochemical understanding of σ(+) in the hydrogen abstraction from substituted phenols by a radical.
Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renders, Tom; Van den Bosch, Sander; Vangeel, Thijs
One of the foremost challenges in lignocellulose conversion encompasses the integration of effective lignin valorization in current carbohydrate-oriented biorefinery schemes. Catalytic reductive fractionation (CRF) of lignocellulose offers a technology to simultaneously produce lignin-derived platform chemicals and a carbohydrate-enriched pulp via the combined action of lignin solvolysis and metal-catalyzed hydrogenolysis. Herein, the solvent (composition) plays a crucial role. In this contribution, we study the influence of alcohol/water mixtures by processing poplar sawdust in varying MeOH/water and EtOH/water blends. The results show particular effects that strongly depend on the applied water concentration. Low water concentrations enhance the removal of lignin from themore » biomass, while the majority of the carbohydrates are left untouched (scenario A). Contrarily, high water concentrations favor the solubilization of both hemicellulose and lignin, resulting in a more pure cellulosic residue (scenario B). For both scenarios, an evaluation was made to determine the most optimal solvent composition, based on two earlier introduced empirical efficiency descriptors (denoted LFDE and LFFE). According to these measures, 30 (A) and 70 vol % water (B) showed to be the optimal balance for both MeOH/water and EtOH/water mixtures. This successful implementation of alcohol/water mixtures allows operation under milder processing conditions in comparison to pure alcohol solvents, which is advantageous from an industrial point of view.« less
Bentley, T William
2006-08-25
A recently proposed, multi-parameter correlation: log k (25 degrees C)=s(f) (Ef + Nf), where Ef is electrofugality and Nf is nucleofugality, for the substituent and solvent effects on the rate constants for solvolyses of benzhydryl and substituted benzhydryl substrates, is re-evaluated. A new formula (Ef=log k (RCl/EtOH/25 degrees C) -1.87), where RCl/EtOH refers to ethanolysis of chlorides, reproduces published values of Ef satisfactorily, avoids multi-parameter optimisations and provides additional values of Ef. From the formula for Ef, it is shown that the term (sfxEf) is compatible with the Hammett-Brown (rho+sigma+) equation for substituent effects. However, the previously published values of N(f) do not accurately account for solvent and leaving group effects (e.g. nucleofuge Cl or X), even for benzhydryl solvolyses; alternatively, if the more exact, two-parameter term, (sfxNf) is used, calculated effects are less accurate. A new formula (Nf=6.14 + log k(BX/any solvent/25 degrees C)), where BX refers to solvolysis of the parent benzhydryl as electrofuge, defines improved Nf values for benzhydryl substrates. The new formulae for Ef and Nf are consistent with an assumption that sf=1.00(,) and so improved correlations for benzhydryl substrates can be obtained from the additive formula: log k(RX/any solvent/25 degrees C)=(Ef + Nf). Possible extensions of this approach are also discussed.
Unifying mechanism for Aplysia ADP-ribosyl cyclase and CD38/NAD(+) glycohydrolases.
Cakir-Kiefer, C; Muller-Steffner, H; Schuber, F
2000-01-01
Highly purified Aplysia californica ADP-ribosyl cyclase was found to be a multifunctional enzyme. In addition to the known transformation of NAD(+) into cADP-ribose this enzyme is able to catalyse the solvolysis (hydrolysis and methanolysis) of cADP-ribose. This cADP-ribose hydrolase activity, which becomes detectable only at high concentrations of the enzyme, is amplified with analogues such as pyridine adenine dinucleotide, in which the cleavage rate of the pyridinium-ribose bond is much reduced compared with NAD(+). Although the specificity ratio V(max)/K(m) is in favour of NAD(+) by 4 orders of magnitude, this multifunctionality allowed us to propose a 'partitioning' reaction scheme for the Aplysia enzyme, similar to that established previously for mammalian CD38/NAD(+) glycohydrolases. This mechanism involves the formation of a single oxocarbenium-type intermediate that partitions to cADP-ribose and solvolytic products via competing pathways. In favour of this mechanism was the finding that the enzyme also catalysed the hydrolysis of NMN(+), a substrate that cannot undergo cyclization. The major difference between the mammalian and the invertebrate enzymes resides in their relative cyclization/hydrolysis rate-constant ratios, which dictate their respective yields of cADP-ribose (ADP-ribosyl cyclase activity) and ADP-ribose (NAD(+) glycohydrolase activity). For the Aplysia enzyme's catalysed transformation of NAD(+) we favour a mechanism where the formation of cADP-ribose precedes that of ADP-ribose; i.e. macroscopically the invertebrate ADP-ribosyl cyclase conforms to a sequential reaction pathway as a limiting form of the partitioning mechanism. PMID:10861229
Ludwig, C; Wachter, B; Silinski-Mehr, S; Ganswindt, A; Bertschinger, H; Hofer, H; Dehnhard, M
2013-01-01
The non-invasive measurement of adrenocortical function in cheetahs is an important tool to assess stress in captive and free-ranging individuals, because stress has been suggested to be one of the causes of poor reproductive performance of captive cheetahs. We tested four enzyme immunoassays (EIA) in two captive cheetahs in Germany using adrenocorticotropic hormone (ACTH) challenges and identified the corticosterone-3-CMO EIA to be most sensitive to the increase in faecal glucocorticoid metabolite (fGCM) concentrations after the ACTH challenge. This EIA performed also well in five captive cheetahs in South Africa. The fGCM concentrations across all seven cheetahs increased within 24h by 681% compared to the baseline levels prior to ACTH. Storage of faecal samples at 0-4°C did not strongly affect fGCM concentrations within 24h, simplifying sample collection when immediate storage at -20°C is not feasible. The two cheetahs in Germany also received an injection of [(3)H]cortisol to characterise fGCMs in faecal extracts using high-performance liquid chromatography (HPLC) immunograms. HPLC fractions were measured for their radioactivity and immunoreactive fGCM concentrations with the corticosterone-3-CMO EIA, respectively. The results revealed a polar peak of radiolabelled cortisol metabolites co-eluting with the major peak of immunoreactive fGCMs. Thus, our EIA measured substantial amounts of fGCMs corresponding to the radioactive peaks. The peaks were of higher polarity than native cortisol and corticosterone, suggesting that the metabolites were conjugated, which was confirmed by solvolysis of the HPLC fractions. Our results show that the corticosterone-3-CMO EIA is a reliable tool to assess fGCMs in cheetahs. Copyright © 2012 Elsevier Inc. All rights reserved.
Ionizing power and nucleophilicity in water in oil AOT-based microemulsions.
García-Río, Luis; Hervella, Pablo; Leis, José Ramón
2005-08-16
A study was carried out on the solvolysis of substituted phenyl chloroformates in AOT/isooctane/water microemulsions. (AOT is the sodium salt of bis(2-ethyhexyl)sulfosuccinate.) The results obtained have been interpreted by taking into account the distribution of the chloroformates between the continuous medium and the interface of the microemulsions, where the reactions take place. The values obtained for the rate constant in the interface, k(i), decreases as the water content of the microemulsions increases, as a consequence of the decrease in its nucleophilic capacity. This behavior is consistent with a rate-determining step of water addition to the carbonyl group. The values of k(i) allow us to obtain the slopes of the Hammett correlations at the interface of the microemulsions, rho = 2.25, whose values are greater than those obtained in an aqueous medium, rho = 0.82. This increase in the Hammett slope is similar to that observed in ethanol/water mixtures and is a consequence of a variation in the structure of the transition state of the reaction where there is a smaller extension of the expulsion of the leaving group. The values of the rate constants at the interface of the microemulsions have allowed us, by means of the Grunwald-Winstein equation, to obtain the solvent ionizing power and the nucleophilicity of the solvent. The values obtained for Y(Cl) increase together with the water content of the microemulsion, whereas the values of N(T) decrease. These variations are a consequence of the interaction between the AOT headgroups and the interfacial water, where the water molecules act like electronic acceptors. The intensity of this interaction is greater if the system has a small water content, which explains the variation of Y(Cl) and N(T).
Castiñeiras, Alfonso; Fernández-Hermida, Nuria; García-Santos, Isabel; Gómez-Rodríguez, Lourdes
2012-11-21
Octahedral 1:1 Ni(II) and square-planar 1:1 Pd(II) and Pt(II) complexes of formulae [Ni(HAcb4DM)(AcO)(H2O)2]·H2O (1), [Pd(HAcb4DM)Cl]·5H2O (2) and [Pt(HAcb4DM)Cl]·3H2O (3), where H2Acb4DM = 5-acetylbarbituric-4N-dimethylthiosemicarbazone (H2 denoting its two dissociable protons, one enolic and one thiolic), have been synthesized and characterized by elemental analysis and by 1H and 13C NMR, UV-vis, and IR spectroscopy. Crystallisation of compounds 1–3 from DMSO afforded complexes of formulae [Ni(HAcb4DM)2]·2H2O (1a), [Pd(Acb4DM)(DMSO)]·DMSO (2a) and [Pt(Acb4DM)(DMSO)]·DMSO (3a), the molecular and crystal structures of which were determined by X-ray diffractometry. The thiosemicarbazone in 1a coordinates to the metal ions in an ONS-tridentate manner in the O-enolate/S-thione form, but in complexes 2a and 3a the thiosemicarbazone binds Pd(II) or Pt(II) as an ONS-pincer ligand in the O-enolate/S-thiolate form. The 195Pt NMR spectrum of 3 shows a signal at −2950 ppm along with two new signals at −3348 and −2731 ppm, indicating the presence of solvolysis products. The catalytic activity of complex 2a has been explored in aryl–aryl Suzuki cross-coupling reactions. H2Acb4DM and complexes 2 and 3 were screened for in vitro cytotoxicity against a human tumour cell line (HeLa-229), with the clinically employed drug cisplatin as a reference.
Sol-Gel Synthesis of Fe-Doped TiO2 Nanocrystals
NASA Astrophysics Data System (ADS)
Marami, Mohammad Bagher; Farahmandjou, Majid; Khoshnevisan, Bahram
2018-03-01
Fe-doped TiO2 powders were synthesized by the sol-gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18-39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol-gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase/rutile) of Fe-doped TiO2 by this facile method.
Alternative long-term markers for the detection of methyltestosterone misuse.
Gómez, C; Pozo, O J; Marcos, J; Segura, J; Ventura, R
2013-01-01
Methyltestosterone (MT) is one of the most frequently detected anabolic androgenic steroids in doping control analysis. MT misuse is commonly detected by the identification of its two main metabolites excreted as glucuronide conjugates, 17α-methyl-5α-androstan-3α,17β-diol and 17α-methyl-5β-androstan-3α,17β-diol. The detection of these metabolites is normally performed by gas chromatography-mass spectrometry, after previous hydrolysis with β-glucuronidase enzymes, extraction and derivatization steps. The aim of the present work was to study the sulphate fraction of MT and to evaluate their potential to improve the detection of the misuse of the drug in sports. MT was administered to healthy volunteers and urine samples were collected up to 30days after administration. After an extraction with ethyl acetate, urine extracts were analysed by liquid chromatography tandem mass spectrometry using electrospray ionisation in negative mode by monitoring the transition m/z 385 to m/z 97. Three diol sulphate metabolites (S1, S2 and S3) were detected. Potential structures for these metabolites were proposed after solvolysis and mass spectrometric experiments: S1, 17α-methyl-5β-androstan-3α,17β-diol 3α-sulphate; S2, 17β-methyl-5α-androstan-3α,17α-diol 3α-sulphate; and S3, 17β-methyl-5β-androstan-3α,17α-diol 3α-sulphate. Synthesis of reference compounds will be required in order to confirm the structures. The retrospectivity of these sulphate metabolites in the detection of MT misuse was compared with the obtained with previously described metabolites. Metabolite S2 was detected up to 21days after MT administration, improving between 2 and 3 times the retrospectivity of the detection compared to the last long-term metabolite of MT previously described, 17α-hydroxy-17β-methylandrostan-4,6-dien-3-one. Copyright © 2012 Elsevier Inc. All rights reserved.
Sol-Gel Synthesis of Fe-Doped TiO2 Nanocrystals
NASA Astrophysics Data System (ADS)
Marami, Mohammad Bagher; Farahmandjou, Majid; Khoshnevisan, Bahram
2018-07-01
Fe-doped TiO2 powders were synthesized by the sol-gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18-39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol-gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase /rutile) of Fe-doped TiO2 by this facile method.
Eder, Erwin; Kütt, Wolfgang; Deininger, Christoph
2006-12-01
Six monofunctional alkylating methanesulphonates of widely varying structures were investigated in the in vitro micronucleus assay with Syrian hamster embryo fibroblast cells. The results were compared with the alkylating activities measured in the 4-(nitrobenzyl)pyridine test (NBP-test) and the N-methyl mercaptoimidazole (MMI-test) as measures for S(N)2 reactivity as well as in the triflouoroacetic acid (TFA) solvolysis and the hydrolysis reaction as measures for S(N)1 reactivity in order to provide insights into the role of alkylation mechanisms on induction of micronuclei. Moreover we compared the results of micronucleus assay with those of the Ames tests in strain TA 100 and TA1535 and with those of the SOS chromotest with the strains PQ37, PQ243, PM21 and GC 4798. The potency of methanesulphonates to induce micronuclei depended only to a certain degree, on the total alkylating activity (S(N)1 and S(N)2 reactivity). An inverse, significant correlation between the Ames test and the micronucleus assay was observed and an inverse correlation between the micronucleus assay and the SOS chromotest with the different strains. The results indicate that the primary mechanism leading to induction of micronuclei is not O-alkylation in DNA as it is the case in the Ames test with the hisG46 strains TA1535 and TA100 and not N-alkylation as with the SOS chromotest. There is evidence that protein alkylation, e.g. in the spindle apparatus in mitosis is decisive for induction of micronuclei by alkylating compounds. The structurally voluminous methanesulphonates 2-phenyl ethyl methanesulphonate and 1-phenyl-2-propyl methanesulphonate show a clear higher micronuclei inducing potency than the other tested though the bulky methanesulphonates possess a lower total alkylating activity than the others. This effect can be explained by a higher disturbance during mitosis after alkylation of the spindle apparatus with the structurally more bulky methanesulphonates.
Stabilities and partitioning of arenonium ions in aqueous media.
Lawlor, D A; More O'Ferrall, R A; Rao, S N
2008-12-31
The phenathrenonium ion is formed as a reactive intermediate in the solvolysis of 9-dichloroacetoxy-9,10-dihydrophenanthrene in aqueous acetonitrile and undergoes competing reactions with water acting as a base and nucleophile. Measurements of product ratios in the presence of azide ion as a trap and 'clock' yield rate constants kp = 3.7 x 10(10) and kH2O = 1.5 x 10(8) s(-1), respectively. Combining these with rate constants for the reverse reactions (protonation of phenanthrene and acid-catalyzed aromatization of its water adduct) gives equilibrium constants pKa = -20.9 and pK(R) = -11.6. For a series of arenonium and benzylic cations, correlation of log kp with pKa, taking account of the limit to kp set by the relaxation of water (10(11) s(-1)), leads to extrapolation of kp = 9.0 x 10(10) s(-1) and pKa = -24.5 for the benzenonium ion and kp = 6.5 x 10(10) s(-1) and pKa = -22.5 for the 1-naphthalenonium ion. Combining these pKa's with estimates of equilibrium constants pKH2O for the hydration of benzene and naphthalene, and the relationship pKR = pKa + pKH2O based on Hess's law, gives pKR = -2.3 and -8.0 respectively, and highlights the inherent stability of the benzenonium ion. A correlation exists between the partitioning ratio, kp/kH2O, for carbocations reacting in water and KH2O the equilibrium constant between the respective reaction products, i.e., log(kp/kH2O) = 0.46pKH2O - 3.7. It implies that kp exceeds kH2O only when KH2O > 10(8). This is consistent with the proton transfer (a) possessing a lower intrinsic reactivity than reaction of the carbocation with water as a nucleophile and (b) being rate-determining in the hydration of alkenes (and dehydration of alcohols) except when the double bond of the alkene is unusually stabilized, as in the case of aromatic molecules.
Kitagawa, K; Aida, C; Fujiwara, H; Yagami, T; Futaki, S; Kogire, M; Ida, J; Inoue, K
2001-01-12
Chemical synthesis of tyrosine O-sulfated peptides is still a laborious task for peptide chemists because of the intrinsic acid-lability of the sulfate moiety. An efficient cleavage/deprotection procedure without loss of the sulfate is the critical difficulty remaining to be solved for fluoren-9-ylmethoxycarbonyl (Fmoc)-based solid-phase synthesis of sulfated peptides. To overcome the difficulty, TFA-mediated solvolysis rates of a tyrosine O-sulfate [Tyr(SO3H)] residue and two protecting groups, tBu for the hydroxyl group of Ser and 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) for the guanidino group of Arg, were examined in detail. The desulfation obeyed first-order kinetics with a large entropy (59.6 J.K-1.mol-1) and enthalpy (110.5 kJ.mol-1) of activation. These values substantiated that the desulfation rate of the rigidly solvated Tyr(SO3H) residue was strongly temperature-dependent. By contrast, the SN1-type deprotections were less temperature-dependent and proceeded smoothly in TFA of a high ionizing power. Based on the large rate difference between the desulfation and the SN1-type deprotections in cold TFA, an efficient deprotection protocol for the sulfated peptides was developed. Our synthetic strategy for Tyr(SO3H)-containing peptides with this effective deprotection protocol is as follows: (i) a sulfated peptide chain is directly constructed on 2-chlorotrityl resin with Fmoc-based solid-phase chemistry using Fmoc-Tyr(SO3Na)-OH as a building block; (ii) the protected peptide-resin is treated with 90% aqueous TFA at 0 degree C for an appropriate period of time for the cleavage and deprotection. Human cholecystokinin (CCK)-12, mini gastrin-II (14 residues), and little gastrin-II (17 residues) were synthesized with this method in 26-38% yields without any difficulties. This method was further applied to the stepwise synthesis of human big gastrin-II (34 residues), CCK-33 and -39. Despite the prolonged acid treatment (15-18 h at 0 degree C), the ratios of the desulfated peptides were less than 15%, and the pure sulfated peptides were obtained in around 10% yields.
Reductive Catalytic Fractionation of Corn Stover Lignin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Eric M.; Katahira, Rui; Reed, Michelle
Reductive catalytic fractionation (RCF) has emerged as an effective biomass pretreatment strategy to depolymerize lignin into tractable fragments in high yields. We investigate the RCF of corn stover, a highly abundant herbaceous feedstock, using carbon-supported Ru and Ni catalysts at 200 and 250 degrees C in methanol and, in the presence or absence of an acid cocatalyst (H3PO4 or an acidified carbon support). Three key performance variables were studied: (1) the effectiveness of lignin extraction as measured by the yield of lignin oil, (2) the yield of monomers in the lignin oil, and (3) the carbohydrate retention in the residualmore » solids after RCF. The monomers included methyl coumarate/ferulate, propyl guaiacol/syringol, and ethyl guaiacol/syringol. The Ru and Ni catalysts performed similarly in terms of product distribution and monomer yields. The monomer yields increased monotonically as a function of time for both temperatures. At 6 h, monomer yields of 27.2 and 28.3% were obtained at 250 and 200 degrees C, respectively, with Ni/C. The addition of an acid cocatalysts to the Ni/C system increased monomer yields to 32% for acidified carbon and 38% for phosphoric acid at 200 degrees C. The monomer product distribution was dominated by methyl coumarate regardless of the use of the acid cocatalysts. The use of phosphoric acid at 200 degrees C or the high temperature condition without acid resulted in complete lignin extraction and partial sugar solubilization (up to 50%) thereby generating lignin oil yields that exceeded the theoretical limit. In contrast, using either Ni/C or Ni on acidified carbon at 200 degrees C resulted in moderate lignin oil yields of ca. 55%, with sugar retention values >90%. Notably, these sugars were amenable to enzymatic digestion, reaching conversions >90% at 96 h. Characterization studies on the lignin oils using two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance and gel permeation chromatrography revealed that soluble oligomers are formed via solvolysis, followed by further fragmentation on the catalyst surface via hydrogenolysis. Overall, the results show that clear trade-offs exist between the levels of lignin extraction, monomer yields, and carbohydrate retention in the residual solids for different RCF conditions of corn stover.« less
Naumenko, Olesya I; Zheng, Han; Wang, Jianping; Senchenkova, Sof'ya N; Wang, Hong; Shashkov, Alexander S; Chizhov, Alexander O; Li, Qun; Knirel, Yuriy A; Xiong, Yanwen
2018-03-02
The O-specific polysaccharide (O-antigen) was obtained by mild acid degradation of the lipopolysaccharide of Escherichia albertii O5 (strain T150248) and studied by sugar analysis, selective cleavages of glycosidic linkages, and 1D and 2D 1 H and 13 C NMR spectroscopy. Partial solvolysis with anh (anhydrous) CF 3 CO 2 H and hydrolysis with 0.05 M CF 3 CO 2 H cleaved predominantly the glycosidic linkage of β-GalpNAc or β-Galf, respectively, whereas the linkages of α-GlcpNAc and β-Galp were stable. Mixtures of the corresponding tri- and tetra-saccharides thus obtained were studied by NMR spectroscopy and high-resolution ESI MS. The following new structure was established for the tetrasaccharide repeat (O-unit) of the O-polysaccharide: →4)-α-d-GlcpNAc-(1 → 4)-β-d-Galp6Ac-(1 → 6)-β-d-Galf-(1 → 3)-β-d-GalpNAc-(1→where the degree of O-acetylation of d-Galp is ∼70%. The O-polysaccharide studied has a β-d-Galp-(1 → 6)-β-d-Galf-(1 → 3)-β-d-GalpNAc trisaccharide fragment in common with the O-polysaccharides of E. albertii O7, Escherichia coli O124 and O164, and Shigella dysenteriae type 3 studied earlier. The orf5-7 in the O-antigen gene cluster of E. albertii O5 are 47%, 78%, and 75% identical on the amino acid level to genes for predicted enzymes of E. albertii O7, including Galp-transferase wfeS, UDP-d-Galp mutase glf, and Galf-transferase wfeT, respectively, which are putatively involved with the synthesis of the shared trisaccharide fragment of the O-polysaccharides. The occurrence upstream of the O-antigen gene cluster of a 4-epimerase gene gnu for conversion of undecaprenyl diphosphate-linked d-GlcNAc (UndPP-d-GlcNAc) into UndPP-d-GalNAc indicates that d-GalNAc is the first monosaccharide of the O-unit, and hence the O-units are interlinked in the O-polysaccharide of E. albertii O5 by the β-d-GalpNAc-(1 → 4)-α-d-GlcpNAc linkage. Copyright © 2017. Published by Elsevier Ltd.
New potential markers for the detection of boldenone misuse.
Gómez, C; Pozo, O J; Geyer, H; Marcos, J; Thevis, M; Schänzer, W; Segura, J; Ventura, R
2012-11-01
Boldenone is one of the most frequently detected anabolic androgenic steroids in doping control analysis. Boldenone misuse is commonly detected by the identification of the active drug and its main metabolite, 5β-androst-1-en-17β-ol-3-one (BM1), by gas chromatography-mass spectrometry (GC-MS), after previous hydrolysis with β-glucuronidase enzymes, extraction and derivatization steps. However, some cases of endogenous boldenone and BM1 have been reported. Nowadays, when these compounds are detected in urine at low concentrations, isotope ratio mass spectrometry (IRMS) analysis is needed to confirm their exogenous origin. The aim of the present study was to identify boldenone metabolites conjugated with sulphate and to evaluate their potential to improve the detection of boldenone misuse in sports. Boldenone was administered to a healthy volunteer and urine samples were collected up to 56h after administration. After a liquid-liquid extraction with ethyl acetate, urine extracts were analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS) using electrospray ionisation in negative mode by monitoring the transition of m/z 365-350, specific for boldenone sulphate. Boldenone sulphate was identified in the excretion study urine samples and, moreover, another peak with the same transition was observed. Based on the MS/MS behaviour the metabolite was identified as epiboldenone sulphate. The identity was confirmed by isolation of the LC peak, solvolysis and comparison of the retention time and MS/MS spectra with an epiboldenone standard. These sulphated metabolites have not been previously reported in humans and although they account for less than 1% of the administered dose, they were still present in urine when the concentrations of the major metabolites, boldenone and BM1, were at the level of endogenous origin. The sulphated metabolites were also detected in 10 urine samples tested positive to boldenone and BM1 by GC-MS. In order to verify the usefulness of these new metabolites to discriminate between endogenous and exogenous origin of boldenone, four samples containing endogenous boldenone and BM1, confirmed by IRMS, were analysed. In 3 of the 4 samples, neither boldenone sulphate nor epiboldenone sulphate were detected, confirming that these metabolites were mainly detected after exogenous administration of boldenone. In contrast, boldenone sulphate and, in some cases, epiboldenone sulphate were present in samples with low concentrations of exogenous boldenone and BM1. Thus, boldenone and epiboldenone sulphates are additional markers for the exogenous origin of boldenone and they can be used to reduce the number of samples to be analysed by IRMS. In samples with boldenone and BM1 at the concentrations suspicion for endogenous origin, only if boldenone and epiboldenone sulphates are present, further analysis by IRMS will be needed to confirm exogenous origin. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bakir, Mohammed; Lawrence, Mark A W; McBean, Shameal
2015-07-05
The reaction between [dpktch] and [M(OAc)2] (M=group 12 metal atom) in refluxing CH3CN gave [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O (n=0 or 1). The infrared and (1)H NMR spectra are consistent with the coordination of [η(2)-O,O-OAc] and [η(3)-N,N,O-dpktch-H](-) and the proposed formulations. The electronic absorption spectra of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O measured in non-aqueous solvents revealed a highly intense intra-ligand-charge transfer (ILCT) transition due to π-π∗ of dpk followed by dpk→thiophene charge transfer. The electronic transitions of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O are solvent and concentration dependent. Spectrophotometric titrations of dmso solutions of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O with benzoic acid revealed irreversible inter-conversion between [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O and it conjugate acid [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch)]·nH2O pointing to ligand exchange between the acetate and benzoate anions. When CH2Cl2 solutions of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O were titrated with dmso, changes appeared pointing to solvolysis or ligand exchange reactions. Electrochemical measurements on dmso solutions of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O divulged irreversible redox transformations consistent with electrochemical decomposition of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O. The solid state structure of a single crystal of [Cd(η(3)-N,N,O-dpktch-H)2] obtained from a dmso solution of [Cd(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O confirmed the ligand scrambling of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O. The extended structure of [Cd(η(3)-N,N,O-dpktch-H)2] revealed stacks of [Cd(η(3)-N,N,O-dpktch-H)2] locked via a network of hydrogen bonds. A significant amount of empty space (35.5%) was observed in the solid state structure of [Cd(η(3)-N,N,O-dpktch-H)2]. Copyright © 2015 Elsevier B.V. All rights reserved.
Buckley, Neil; Oppenheimer, Norman J.
1996-10-18
Second-order rate constants and activation values were measured for the reactions with NaN(3) of a series of 4-Y-substituted (Y = MeO, Me, H, Cl, and NO(2)) benzyl 3'-Z-substituted (Z = CN, CONH(2), H, F, Ac) pyridinium chlorides in deuterium oxide. 3'-Cyanopyridine substrates reacted much faster than nicotinamide and pyridine substrates; in the pyridine series the 4-Me, 4-H, and 4-Cl benzyl analogs did not react for up to 6 months at 96()() degrees C in 1.7 M NaN(3). The 3'-cyanopyridine substrates do not exhibit borderline kinetic behavior, but the nicotinamide substrates do. The Hammett plot is flat for the NaN(3) reaction of 3'-cyanopyridine substrates and increasingly V-shaped for the nicotinamide and pyridine substrates. The values of beta(LG) (four-point plot) for the NaN(3) reaction of the 4-MeO benzyl substrates is -1.45, which is usually interpreted as being a very "late" activated complex. Two-point Brønsted "plots" for the other benzyl derivatives and for two N-methylpyridinium ions give values of beta(LG) in the same range. The second-order rate constant and activation values for N-methyl-3'-cyanopyridinium iodide are within the same range as those for the benzyl substrates. For the hydrolysis reaction, the Hammett plot is linear for 3'-cyanopyridine substrates (rho(+) = -1.24) and flat for the nicotinamide substrates. The extent of hydrolysis of 0.005-0.05 M solutions of the 3'-cyanopyridinie substrates depended on the initial concentration of substrate, and hydrolysis was slowed significantly or stopped completely in the presence of exogenous 3-cyanopyridine. These results show that an equilibrium is established among the products for the 4-MeO, 4-Me, 4-H, and 4-Cl substrates; the 4-NO(2) substrate reacted too slowly to discern any difference. Data for the extent of hydrolysis were fitted by an equation derived assuming the equilibrium. Despite this limitation on a classic test of mechanism, the rates and rho values are consistent with direct displacement by solvent and not with a unimolecular process. These results, which are rationalized in terms of the Pross-Shaik model, suggest that there are no ion-dipole complex intermediates in the benzyl series and show that borderline kinetic behavior is a function of leaving group ability and is not necessarily related to a change in mechanism. A computational approach was used to evaluate anomalous beta(LG) values for the hydrolysis and nucleophilic substitution reactions of the methypyridinium ion substrates. It was found that neither the Nu-substrate bond lengths nor the difference in charge matched the beta(LG) values. The value of DeltaDeltaS() of -15 gibbs/mol between (4-methoxybenzyl)-3'-cyanopyridinium chloride and the corresponding dimethylsulfonium chloride in the NaN(3) reaction, which is the result of the solvation of the pyridine at the transition state and the lack of solvation of SMe(2), is used to argue that the source of NAD(+) glycohydrolase "catalysis" of NAD(+) bond cleavage is the result of desolvation of the leaving group upon binding.