Sample records for sonar imaging system

  1. Distant touch hydrodynamic imaging with an artificial lateral line.

    PubMed

    Yang, Yingchen; Chen, Jack; Engel, Jonathan; Pandya, Saunvit; Chen, Nannan; Tucker, Craig; Coombs, Sheryl; Jones, Douglas L; Liu, Chang

    2006-12-12

    Nearly all underwater vehicles and surface ships today use sonar and vision for imaging and navigation. However, sonar and vision systems face various limitations, e.g., sonar blind zones, dark or murky environments, etc. Evolved over millions of years, fish use the lateral line, a distributed linear array of flow sensing organs, for underwater hydrodynamic imaging and information extraction. We demonstrate here a proof-of-concept artificial lateral line system. It enables a distant touch hydrodynamic imaging capability to critically augment sonar and vision systems. We show that the artificial lateral line can successfully perform dipole source localization and hydrodynamic wake detection. The development of the artificial lateral line is aimed at fundamentally enhancing human ability to detect, navigate, and survive in the underwater environment.

  2. Shallow Water Imaging Sonar System for Environmental Surveying Final Report CRADA No. TC-1130-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, L. C.; Rosenbaum, H.

    The scope of this research is to develop a shallow water sonar system designed to detect and map the location of objects such as hazardous wastes or discarded ordnance in coastal waters. The system will use high frequency wide-bandwidth imaging sonar, mounted on a moving platform towed behind a boat, to detect and identify objects on the sea bottom. Resolved images can be obtained even if the targets are buried in an overlayer of silt. Reference 1 ( also attached) summarized the statement of work and the scope of collaboration.

  3. Multiresolution 3-D reconstruction from side-scan sonar images.

    PubMed

    Coiras, Enrique; Petillot, Yvan; Lane, David M

    2007-02-01

    In this paper, a new method for the estimation of seabed elevation maps from side-scan sonar images is presented. The side-scan image formation process is represented by a Lambertian diffuse model, which is then inverted by a multiresolution optimization procedure inspired by expectation-maximization to account for the characteristics of the imaged seafloor region. On convergence of the model, approximations for seabed reflectivity, side-scan beam pattern, and seabed altitude are obtained. The performance of the system is evaluated against a real structure of known dimensions. Reconstruction results for images acquired by different sonar sensors are presented. Applications to augmented reality for the simulation of targets in sonar imagery are also discussed.

  4. Submarine Combat Systems Engineering Project Capstone Project

    DTIC Science & Technology

    2011-06-06

    sonar , imaging, Electronic Surveillance (ES) and communications. These sensors passively detect contacts, which emit... passive sensors is included. A Search Detect Identify Track Decide Engage Assess 3 contact can be sensed by the system as either surface or... Detect Track Avoid Search Detect Identify Track Search Engage Assess Detect Track Avoid Search • SONAR •Imagery •TC • SONAR • SONAR •EW •Imagery •ESM

  5. Processing of SeaMARC swath sonar imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratson, L.; Malinverno, A.; Edwards, M.

    1990-05-01

    Side-scan swath sonar systems have become an increasingly important means of mapping the sea floor. Two such systems are the deep-towed, high-resolution SeaMARC I sonar, which has a variable swath width of up to 5 km, and the shallow-towed, lower-resolution SeaMARC II sonar, which has a swath width of 10 km. The sea-floor imagery of acoustic backscatter output by the SeaMARC sonars is analogous to aerial photographs and airborne side-looking radar images of continental topography. Geologic interpretation of the sea-floor imagery is greatly facilitated by image processing. Image processing of the digital backscatter data involves removal of noise by medianmore » filtering, spatial filtering to remove sonar scans of anomalous intensity, across-track corrections to remove beam patterns caused by nonuniform response of the sonar transducers to changes in incident angle, and contrast enhancement by histogram equalization to maximize the available dynamic range. Correct geologic interpretation requires submarine structural fabrics to be displayed in their proper locations and orientations. Geographic projection of sea-floor imagery is achieved by merging the enhanced imagery with the sonar vehicle navigation and correcting for vehicle attitude. Co-registration of bathymetry with sonar imagery introduces sea-floor relief and permits the imagery to be displayed in three-dimensional perspectives, furthering the ability of the marine geologist to infer the processes shaping formerly hidden subsea terrains.« less

  6. Aided target recognition processing of MUDSS sonar data

    NASA Astrophysics Data System (ADS)

    Lau, Brian; Chao, Tien-Hsin

    1998-09-01

    The Mobile Underwater Debris Survey System (MUDSS) is a collaborative effort by the Navy and the Jet Propulsion Lab to demonstrate multi-sensor, real-time, survey of underwater sites for ordnance and explosive waste (OEW). We describe the sonar processing algorithm, a novel target recognition algorithm incorporating wavelets, morphological image processing, expansion by Hermite polynomials, and neural networks. This algorithm has found all planted targets in MUDSS tests and has achieved spectacular success upon another Coastal Systems Station (CSS) sonar image database.

  7. Increasing circular synthetic aperture sonar resolution via adapted wave atoms deconvolution.

    PubMed

    Pailhas, Yan; Petillot, Yvan; Mulgrew, Bernard

    2017-04-01

    Circular Synthetic Aperture Sonar (CSAS) processing computes coherently Synthetic Aperture Sonar (SAS) data acquired along a circular trajectory. This approach has a number of advantages, in particular it maximises the aperture length of a SAS system, producing very high resolution sonar images. CSAS image reconstruction using back-projection algorithms, however, introduces a dissymmetry in the impulse response, as the imaged point moves away from the centre of the acquisition circle. This paper proposes a sampling scheme for the CSAS image reconstruction which allows every point, within the full field of view of the system, to be considered as the centre of a virtual CSAS acquisition scheme. As a direct consequence of using the proposed resampling scheme, the point spread function (PSF) is uniform for the full CSAS image. Closed form solutions for the CSAS PSF are derived analytically, both in the image and the Fourier domain. The thorough knowledge of the PSF leads naturally to the proposed adapted atom waves basis for CSAS image decomposition. The atom wave deconvolution is successfully applied to simulated data, increasing the image resolution by reducing the PSF energy leakage.

  8. Processing, mosaicking and management of the Monterey Bay digital sidescan-sonar images

    USGS Publications Warehouse

    Chavez, P.S.; Isbrecht, J.; Galanis, P.; Gabel, G.L.; Sides, S.C.; Soltesz, D.L.; Ross, Stephanie L.; Velasco, M.G.

    2002-01-01

    Sidescan-sonar imaging systems with digital capabilities have now been available for approximately 20 years. In this paper we present several of the various digital image processing techniques developed by the U.S. Geological Survey (USGS) and used to apply intensity/radiometric and geometric corrections, as well as enhance and digitally mosaic, sidescan-sonar images of the Monterey Bay region. New software run by a WWW server was designed and implemented to allow very large image data sets, such as the digital mosaic, to be easily viewed interactively, including the ability to roam throughout the digital mosaic at the web site in either compressed or full 1-m resolution. The processing is separated into the two different stages: preprocessing and information extraction. In the preprocessing stage, sensor-specific algorithms are applied to correct for both geometric and intensity/radiometric distortions introduced by the sensor. This is followed by digital mosaicking of the track-line strips into quadrangle format which can be used as input to either visual or digital image analysis and interpretation. An automatic seam removal procedure was used in combination with an interactive digital feathering/stenciling procedure to help minimize tone or seam matching problems between image strips from adjacent track-lines. The sidescan-sonar image processing package is part of the USGS Mini Image Processing System (MIPS) and has been designed to process data collected by any 'generic' digital sidescan-sonar imaging system. The USGS MIPS software, developed over the last 20 years as a public domain package, is available on the WWW at: http://terraweb.wr.usgs.gov/trs/software.html.

  9. Minehunting sonar system research and development

    NASA Astrophysics Data System (ADS)

    Ferguson, Brian

    2002-05-01

    Sea mines have the potential to threaten the freedom of the seas by disrupting maritime trade and restricting the freedom of maneuver of navies. The acoustic detection, localization, and classification of sea mines involves a sequence of operations starting with the transmission of a sonar pulse and ending with an operator interpreting the information on a sonar display. A recent improvement to the process stems from the application of neural networks to the computed aided detection of sea mines. The advent of ultrawideband sonar transducers together with pulse compression techniques offers a thousandfold increase in the bandwidth-time product of conventional minehunting sonar transmissions enabling stealth mines to be detected at longer ranges. These wideband signals also enable mines to be imaged at safe standoff distances by applying tomographic image reconstruction techniques. The coupling of wideband transducer technology with synthetic aperture processing enhances the resolution of side scan sonars in both the cross-track and along-track directions. The principles on which conventional and advanced minehunting sonars are based are reviewed and the results of applying novel sonar signal processing algorithms to high-frequency sonar data collected in Australian waters are presented.

  10. Testing of a Composite Wavelet Filter to Enhance Automated Target Recognition in SONAR

    NASA Technical Reports Server (NTRS)

    Chiang, Jeffrey N.

    2011-01-01

    Automated Target Recognition (ATR) systems aim to automate target detection, recognition, and tracking. The current project applies a JPL ATR system to low resolution SONAR and camera videos taken from Unmanned Underwater Vehicles (UUVs). These SONAR images are inherently noisy and difficult to interpret, and pictures taken underwater are unreliable due to murkiness and inconsistent lighting. The ATR system breaks target recognition into three stages: 1) Videos of both SONAR and camera footage are broken into frames and preprocessed to enhance images and detect Regions of Interest (ROIs). 2) Features are extracted from these ROIs in preparation for classification. 3) ROIs are classified as true or false positives using a standard Neural Network based on the extracted features. Several preprocessing, feature extraction, and training methods are tested and discussed in this report.

  11. Fusion of Local Statistical Parameters for Buried Underwater Mine Detection in Sonar Imaging

    NASA Astrophysics Data System (ADS)

    Maussang, F.; Rombaut, M.; Chanussot, J.; Hétet, A.; Amate, M.

    2008-12-01

    Detection of buried underwater objects, and especially mines, is a current crucial strategic task. Images provided by sonar systems allowing to penetrate in the sea floor, such as the synthetic aperture sonars (SASs), are of great interest for the detection and classification of such objects. However, the signal-to-noise ratio is fairly low and advanced information processing is required for a correct and reliable detection of the echoes generated by the objects. The detection method proposed in this paper is based on a data-fusion architecture using the belief theory. The input data of this architecture are local statistical characteristics extracted from SAS data corresponding to the first-, second-, third-, and fourth-order statistical properties of the sonar images, respectively. The interest of these parameters is derived from a statistical model of the sonar data. Numerical criteria are also proposed to estimate the detection performances and to validate the method.

  12. A Fisheries Application of a Dual-Frequency Identification Sonar Acoustic Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moursund, Russell A.; Carlson, Thomas J.; Peters, Rock D.

    2003-06-01

    The uses of an acoustic camera in fish passage research at hydropower facilities are being explored by the U.S. Army Corps of Engineers. The Dual-Frequency Identification Sonar (DIDSON) is a high-resolution imaging sonar that obtains near video-quality images for the identification of objects underwater. Developed originally for the Navy by the University of Washington?s Applied Physics Laboratory, it bridges the gap between existing fisheries assessment sonar and optical systems. Traditional fisheries assessment sonars detect targets at long ranges but cannot record the shape of targets. The images within 12 m of this acoustic camera are so clear that one canmore » see fish undulating as they swim and can tell the head from the tail in otherwise zero-visibility water. In the 1.8 MHz high-frequency mode, this system is composed of 96 beams over a 29-degree field of view. This high resolution and a fast frame rate allow the acoustic camera to produce near video-quality images of objects through time. This technology redefines many of the traditional limitations of sonar for fisheries and aquatic ecology. Images can be taken of fish in confined spaces, close to structural or surface boundaries, and in the presence of entrained air. The targets themselves can be visualized in real time. The DIDSON can be used where conventional underwater cameras would be limited in sampling range to < 1 m by low light levels and high turbidity, and where traditional sonar would be limited by the confined sample volume. Results of recent testing at The Dalles Dam, on the lower Columbia River in Oregon, USA, are shown.« less

  13. 78 FR 68091 - Certain Marine Sonar Imaging Devices, Products Containing the Same, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-898] Certain Marine Sonar Imaging Devices... importation of certain marine sonar imaging devices, products containing the same, and components thereof by... marine sonar imaging devices, products containing the same, and components thereof by reason of...

  14. Model-based approach to the detection and classification of mines in sidescan sonar.

    PubMed

    Reed, Scott; Petillot, Yvan; Bell, Judith

    2004-01-10

    This paper presents a model-based approach to mine detection and classification by use of sidescan sonar. Advances in autonomous underwater vehicle technology have increased the interest in automatic target recognition systems in an effort to automate a process that is currently carried out by a human operator. Current automated systems generally require training and thus produce poor results when the test data set is different from the training set. This has led to research into unsupervised systems, which are able to cope with the large variability in conditions and terrains seen in sidescan imagery. The system presented in this paper first detects possible minelike objects using a Markov random field model, which operates well on noisy images, such as sidescan, and allows a priori information to be included through the use of priors. The highlight and shadow regions of the object are then extracted with a cooperating statistical snake, which assumes these regions are statistically separate from the background. Finally, a classification decision is made using Dempster-Shafer theory, where the extracted features are compared with synthetic realizations generated with a sidescan sonar simulator model. Results for the entire process are shown on real sidescan sonar data. Similarities between the sidescan sonar and synthetic aperture radar (SAR) imaging processes ensure that the approach outlined here could be made applied to SAR image analysis.

  15. Shallow water benthic imaging and substrate characterization using recreational-grade sidescan-sonar

    USGS Publications Warehouse

    Buscombe, Daniel D.

    2017-01-01

    In recent years, lightweight, inexpensive, vessel-mounted ‘recreational grade’ sonar systems have rapidly grown in popularity among aquatic scientists, for swath imaging of benthic substrates. To promote an ongoing ‘democratization’ of acoustical imaging of shallow water environments, methods to carry out geometric and radiometric correction and georectification of sonar echograms are presented, based on simplified models for sonar-target geometry and acoustic backscattering and attenuation in shallow water. Procedures are described for automated removal of the acoustic shadows, identification of bed-water interface for situations when the water is too turbid or turbulent for reliable depth echosounding, and for automated bed substrate classification based on singlebeam full-waveform analysis. These methods are encoded in an open-source and freely-available software package, which should further facilitate use of recreational-grade sidescan sonar, in a fully automated and objective manner. The sequential correction, mapping, and analysis steps are demonstrated using a data set from a shallow freshwater environment.

  16. Qualitative and quantitative processing of side-scan sonar data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwan, F.S.; Anderson, A.L.; Hilde, T.W.C.

    1990-06-01

    Modern side-scan sonar systems allow vast areas of seafloor to be rapidly imaged and quantitatively mapped in detail. The application of remote sensing image processing techniques can be used to correct for various distortions inherent in raw sonography. Corrections are possible for water column, slant-range, aspect ratio, speckle and striping noise, multiple returns, power drop-off, and for georeferencing. The final products reveal seafloor features and patterns that are geometrically correct, georeferenced, and have improved signal/noise ratio. These products can be merged with other georeferenced data bases for further database management and information extraction. In order to compare data collected bymore » different systems from a common area and to ground truth measurements and geoacoustic models, quantitative correction must be made for calibrated sonar system and bathymetry effects. Such data inversion must account for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area, and grazing angle effects. Seafloor classification can then be performed on the calculated back-scattering strength using Lambert's Law and regression analysis. Examples are given using both approaches: image analysis and inversion of data based on the sonar equation.« less

  17. Diver-based integrated navigation/sonar sensor

    NASA Astrophysics Data System (ADS)

    Lent, Keith H.

    1999-07-01

    Two diver based systems, the Small Object Locating Sonar (SOLS) and the Integrated Navigation and Sonar Sensor (INSS) have been developed at Applied Research Laboratories, the University of Texas at Austin (ARL:UT). They are small and easy to use systems that allow a diver to: detect, classify, and identify underwater objects; render large sector visual images; and track, map and reacquire diver location, diver path, and target locations. The INSS hardware consists of a unique, simple, single beam high resolution sonar, an acoustic navigation systems, an electronic depth gauge, compass, and GPS and RF interfaces, all integrated with a standard 486 based PC. These diver sonars have been evaluated by the very shallow water mine countermeasure detachment since spring 1997. Results are very positive, showing significantly greater capabilities than current diver held systems. For example, the detection ranges are increased over existing systems, and the system allows the divers to classify mines at a significant stand off range. As a result, the INSS design has been chosen for acquisition as the next generation diver navigation and sonar system. The EDMs for this system will be designed and built by ARL:UT during 1998 and 1999 with production planned in 2000.

  18. Audible sonar images generated with proprioception for target analysis.

    PubMed

    Kuc, Roman B

    2017-05-01

    Some blind humans have demonstrated the ability to detect and classify objects with echolocation using palatal clicks. An audible-sonar robot mimics human click emissions, binaural hearing, and head movements to extract interaural time and level differences from target echoes. Targets of various complexity are examined by transverse displacements of the sonar and by target pose rotations that model movements performed by the blind. Controlled sonar movements executed by the robot provide data that model proprioception information available to blind humans for examining targets from various aspects. The audible sonar uses this sonar location and orientation information to form two-dimensional target images that are similar to medical diagnostic ultrasound tomograms. Simple targets, such as single round and square posts, produce distinguishable and recognizable images. More complex targets configured with several simple objects generate diffraction effects and multiple reflections that produce image artifacts. The presentation illustrates the capabilities and limitations of target classification from audible sonar images.

  19. Shallow Water UXO Technology Demonstration Site, Scoring Record Number 2

    DTIC Science & Technology

    2006-09-01

    The Sound Metrics Corporation High frequency Imaging Sonar ( HFIS ) (fig. 4) dual frequency imaging sonar operates at 1.1 and 1.8 MHz. For this...the HFIS unit was determined using a National Marine Electronics Association (NMEA) GPRMC string from a Leica GPS system antenna mounted directly...above the HFIS instrument. This permits the image data to be integrated with the Multiple Frequency Sub-Bottom Profiler (MFSBP) and MGS data during

  20. Composite Wavelet Filters for Enhanced Automated Target Recognition

    NASA Technical Reports Server (NTRS)

    Chiang, Jeffrey N.; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    Automated Target Recognition (ATR) systems aim to automate target detection, recognition, and tracking. The current project applies a JPL ATR system to low-resolution sonar and camera videos taken from unmanned vehicles. These sonar images are inherently noisy and difficult to interpret, and pictures taken underwater are unreliable due to murkiness and inconsistent lighting. The ATR system breaks target recognition into three stages: 1) Videos of both sonar and camera footage are broken into frames and preprocessed to enhance images and detect Regions of Interest (ROIs). 2) Features are extracted from these ROIs in preparation for classification. 3) ROIs are classified as true or false positives using a standard Neural Network based on the extracted features. Several preprocessing, feature extraction, and training methods are tested and discussed in this paper.

  1. The sonar aperture and its neural representation in bats.

    PubMed

    Heinrich, Melina; Warmbold, Alexander; Hoffmann, Susanne; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-10-26

    As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.

  2. Evaluating the use of side-scan sonar for detecting freshwater mussel beds in turbid river environments

    USGS Publications Warehouse

    Powers, Jarrod; Brewer, Shannon K.; Long, James M.; Campbell, Thomas

    2015-01-01

    Side-scan sonar is a valuable tool for mapping habitat features in many aquatic systems suggesting it may also be useful for locating sedentary biota. The objective of this study was to determine if side-scan sonar could be used to identify freshwater mussel (unionid) beds and the required environmental conditions. We used side-scan sonar to develop a series of mussel-bed reference images by placing mussel shells within homogenous areas of fine and coarse substrates. We then used side-scan sonar to map a 32-km river reach during spring and summer. Using our mussel-bed reference images, several river locations were identified where mussel beds appeared to exist in the scanned images and we chose a subset of sites (n = 17) for field validation. The validation confirmed that ~60% of the sites had mussel beds and ~80% had some mussels or shells present. Water depth was significantly related to our ability to predict mussel-bed locations: predictive ability was greatest at depths of 1–2 m, but decreased in water >2-m deep. We determined side-scan sonar is an effective tool for preliminary assessments of mussel presence during times when they are located at or above the substrate surface and in relatively fine substrates excluding fine silt.

  3. Seafloor image survey of Juk-byeon port in Uljin, South Korea, using side scan sonar with a fixed long frame

    NASA Astrophysics Data System (ADS)

    Kim, W. H.; Park, C.; Lee, M.; Park, H. Y.; Kim, C.

    2015-12-01

    A side scan sonar launches ultrasonic wave from both sides of the transducer. And it restores the image by receiving signals. It measures the strength of how "loud" the return echo is, and paints a picture. Hard areas of the sea floor like rocks reflect more return signal than softer areas like sand. We conducted seafloor image survey from 4, Mar. 2013 using R/V Jangmok2 (35ton), side scan sonar 4125 (Edge Tech corporation). The side scan sonar system (4125) is a dual frequency system of 400/900kHz. Seafloor image survey is commonly used to tow the sensor in the rear side of vessel. However, we fixed the tow-fish on right side of the vessel in the seawater with a long frame. The mounted side scan sonar survey was useful in shallow water like the port having many obstacles. And we conducted submarine topography using multi-beam echo sounder EM3001 (Kongs-berg corporation). Multi-beam echo sounder is a device for observing and recording the submarine topography using sound. We mounted the EM3001 on right side of the vessel. Multi-beam echo sounder transducer commonly to mount at right angles to the surface of water. However, we tilted 20-degrees of transducer for long range with 85-degrees measurement on the right side of the vessel. We were equipped with a motion sensor, DGPS(Differential Global Positioning System), and SV(Sound velocity) sensor for the vessel's motion compensation, vessel's position, and the velocity of sound of seawater. The surveys showed the sediment, waste materials, and a lot of discarded tires accumulated in the port. The maximum depth was 12m in the port. Such multi-beam echo sounder survey and side scan sonar survey will facilitate the management and the improvement of environment of port.

  4. Description and Evaluation of a Four-Channel, Coherent 100-kHz Sidescan Sonar

    DTIC Science & Technology

    2004-12-01

    document contains color images. 14. ABSTRACT This report documents the design and features of a new, four-channel, coherent 100-kHz sidescan sonar...Atlantic Technical Memorandum DRDC Atlantic TM 2004-204 December 2004 Abstract This report documents the design and features of a new...Results This report documents the design and features of this new high-frequency sonar system. These initial field trial results demonstrate some of

  5. Near-real-time mosaics from high-resolution side-scan sonar

    USGS Publications Warehouse

    Danforth, William W.; O'Brien, Thomas F.; Schwab, W.C.

    1991-01-01

    High-resolution side-scan sonar has proven to be a very effective tool for stuyding and understanding the surficial geology of the seafloor. Since the mid-1970s, the US Geological Survey has used high-resolution side-scan sonar systems for mapping various areas of the continental shelf. However, two problems typically encountered included the short range and the high sampling rate of high-resolution side-scan sonar systems and the acquisition and real-time processing of the enormous volume of sonar data generated by high-resolution suystems. These problems were addressed and overcome in August 1989 when the USGS conducted a side-scan sonar and bottom sampling survey of a 1000-sq-km section of the continental shelf in the Gulf of Farallones located offshore of San Francisco. The primary goal of this survey was to map an area of critical interest for studying continental shelf sediment dynamics. This survey provided an opportunity to test an image processing scheme that enabled production of a side-scan sonar hard-copy mosaic during the cruise in near real-time.

  6. Alluvial substrate mapping by automated texture segmentation of recreational-grade side scan sonar imagery.

    PubMed

    Hamill, Daniel; Buscombe, Daniel; Wheaton, Joseph M

    2018-01-01

    Side scan sonar in low-cost 'fishfinder' systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar.

  7. Processing techniques for digital sonar images from GLORIA.

    USGS Publications Warehouse

    Chavez, P.S.

    1986-01-01

    Image processing techniques have been developed to handle data from one of the newest members of the remote sensing family of digital imaging systems. This paper discusses software to process data collected by the GLORIA (Geological Long Range Inclined Asdic) sonar imaging system, designed and built by the Institute of Oceanographic Sciences (IOS) in England, to correct for both geometric and radiometric distortions that exist in the original 'raw' data. Preprocessing algorithms that are GLORIA-specific include corrections for slant-range geometry, water column offset, aspect ratio distortion, changes in the ship's velocity, speckle noise, and shading problems caused by the power drop-off which occurs as a function of range.-from Author

  8. Geometric Corrections for Topographic Distortion from Side Scan Sonar Data Obtained by ANKOU System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Fujio; Kato, Yukihiro; Ogasawara, Shohei

    The ANKOU is a newly developed, full ocean depth, long-range vector side scan sonar system. The system provides real time vector side scan sonar data to produce backscattering images and bathymetric maps for seafloor swaths up to 10 km on either side of ship's centerline. Complete geometric corrections are made using towfish attitude and cross-track distortions known as foreshortening and layover caused by violation of the flat bottom assumption. Foreshortening and layover refers to pixels which have been placed at an incorrect cross-track distance. Our correction of this topographic distortion is accomplished by interpolating a bathymetric profile and ANKOU phase data. We applied these processing techniques to ANKOU backscattering data obtained from off Boso Peninsula, and confirmed their efficiency and utility for making geometric corrections of side scan sonar data.

  9. Alluvial substrate mapping by automated texture segmentation of recreational-grade side scan sonar imagery

    PubMed Central

    Buscombe, Daniel; Wheaton, Joseph M.

    2018-01-01

    Side scan sonar in low-cost ‘fishfinder’ systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar. PMID:29538449

  10. Enhanced echolocation via robust statistics and super-resolution of sonar images

    NASA Astrophysics Data System (ADS)

    Kim, Kio

    Echolocation is a process in which an animal uses acoustic signals to exchange information with environments. In a recent study, Neretti et al. have shown that the use of robust statistics can significantly improve the resiliency of echolocation against noise and enhance its accuracy by suppressing the development of sidelobes in the processing of an echo signal. In this research, the use of robust statistics is extended to problems in underwater explorations. The dissertation consists of two parts. Part I describes how robust statistics can enhance the identification of target objects, which in this case are cylindrical containers filled with four different liquids. Particularly, this work employs a variation of an existing robust estimator called an L-estimator, which was first suggested by Koenker and Bassett. As pointed out by Au et al.; a 'highlight interval' is an important feature, and it is closely related with many other important features that are known to be crucial for dolphin echolocation. A varied L-estimator described in this text is used to enhance the detection of highlight intervals, which eventually leads to a successful classification of echo signals. Part II extends the problem into 2 dimensions. Thanks to the advances in material and computer technology, various sonar imaging modalities are available on the market. By registering acoustic images from such video sequences, one can extract more information on the region of interest. Computer vision and image processing allowed application of robust statistics to the acoustic images produced by forward looking sonar systems, such as Dual-frequency Identification Sonar and ProViewer. The first use of robust statistics for sonar image enhancement in this text is in image registration. Random Sampling Consensus (RANSAC) is widely used for image registration. The registration algorithm using RANSAC is optimized for sonar image registration, and the performance is studied. The second use of robust statistics is in fusing the images. It is shown that the maximum a posteriori fusion method can be formulated in a Kalman filter-like manner, and also that the resulting expression is identical to a W-estimator with a specific weight function.

  11. Side-scan sonar mapping: Pseudo-real-time processing and mosaicking techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danforth, W.W.; Schwab, W.C.; O'Brien, T.F.

    1990-05-01

    The US Geological Survey (USGS) surveyed 1,000 km{sup 2} of the continental shelf off San Francisco during a 17-day cruise, using a 120-kHz side-scan sonar system, and produced a digitally processed sonar mosaic of the survey area. The data were processed and mosaicked in real time using software developed at the Lamont-Doherty Geological Observatory and modified by the USGS, a substantial task due to the enormous amount of data produced by high-resolution side-scan systems. Approximately 33 megabytes of data were acquired every 1.5 hr. The real-time sonar images were displayed on a PC-based workstation and the data were transferred tomore » a UNIX minicomputer where the sonar images were slant-range corrected, enhanced using an averaging method of desampling and a linear-contrast stretch, merged with navigation, geographically oriented at a user-selected scale, and finally output to a thermal printer. The hard-copy output was then used to construct a mosaic of the survey area. The final product of this technique is a UTM-projected map-mosaic of sea-floor backscatter variations, which could be used, for example, to locate appropriate sites for sediment sampling to ground truth the sonar imagery while still at sea. More importantly, reconnaissance surveys of this type allow for the analysis and interpretation of the mosaic during a cruise, thus greatly reducing the preparation time needed for planning follow-up studies of a particular area.« less

  12. A novel underwater dam crack detection and classification approach based on sonar images

    PubMed Central

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments. PMID:28640925

  13. A novel underwater dam crack detection and classification approach based on sonar images.

    PubMed

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.

  14. High-performance, multi-faceted research sonar electronics

    NASA Astrophysics Data System (ADS)

    Moseley, Julian W.

    This thesis describes the design, implementation and testing of a research sonar system capable of performing complex applications such as coherent Doppler measurement and synthetic aperture imaging. Specifically, this thesis presents an approach to improve the precision of the timing control and increase the signal-to-noise ratio of an existing research sonar. A dedicated timing control subsystem, and hardware drivers are designed to improve the efficiency of the old sonar's timing operations. A low noise preamplifier is designed to reduce the noise component in the received signal arriving at the input of the system's data acquisition board. Noise analysis, frequency response, and timing simulation data are generated in order to predict the functionality and performance improvements expected when the subsystems are implemented. Experimental data, gathered using these subsys- tems, are presented, and are shown to closely match the simulation results, thus verifying performance.

  15. Probability-Based Recognition Framework for Underwater Landmarks Using Sonar Images †.

    PubMed

    Lee, Yeongjun; Choi, Jinwoo; Ko, Nak Yong; Choi, Hyun-Taek

    2017-08-24

    This paper proposes a probability-based framework for recognizing underwater landmarks using sonar images. Current recognition methods use a single image, which does not provide reliable results because of weaknesses of the sonar image such as unstable acoustic source, many speckle noises, low resolution images, single channel image, and so on. However, using consecutive sonar images, if the status-i.e., the existence and identity (or name)-of an object is continuously evaluated by a stochastic method, the result of the recognition method is available for calculating the uncertainty, and it is more suitable for various applications. Our proposed framework consists of three steps: (1) candidate selection, (2) continuity evaluation, and (3) Bayesian feature estimation. Two probability methods-particle filtering and Bayesian feature estimation-are used to repeatedly estimate the continuity and feature of objects in consecutive images. Thus, the status of the object is repeatedly predicted and updated by a stochastic method. Furthermore, we develop an artificial landmark to increase detectability by an imaging sonar, which we apply to the characteristics of acoustic waves, such as instability and reflection depending on the roughness of the reflector surface. The proposed method is verified by conducting basin experiments, and the results are presented.

  16. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state.

    PubMed

    Zhao, Yuzheng; Wang, Aoxue; Zou, Yejun; Su, Ni; Loscalzo, Joseph; Yang, Yi

    2016-08-01

    NADH and its oxidized form NAD(+) have a central role in energy metabolism, and their concentrations are often considered to be among the most important readouts of metabolic state. Here, we present a detailed protocol to image and monitor NAD(+)/NADH redox state in living cells and in vivo using a highly responsive, genetically encoded fluorescent sensor known as SoNar (sensor of NAD(H) redox). The chimeric SoNar protein was initially developed by inserting circularly permuted yellow fluorescent protein (cpYFP) into the NADH-binding domain of Rex protein from Thermus aquaticus (T-Rex). It functions by binding to either NAD(+) or NADH, thus inducing protein conformational changes that affect its fluorescent properties. We first describe steps for how to establish SoNar-expressing cells, and then discuss how to use the system to quantify the intracellular redox state. This approach is sensitive, accurate, simple and able to report subtle perturbations of various pathways of energy metabolism in real time. We also detail the application of SoNar to high-throughput chemical screening of candidate compounds targeting cell metabolism in a microplate-reader-based assay, along with in vivo fluorescence imaging of tumor xenografts expressing SoNar in mice. Typically, the approximate time frame for fluorescence imaging of SoNar is 30 min for living cells and 60 min for living mice. For high-throughput chemical screening in a 384-well-plate assay, the whole procedure generally takes no longer than 60 min to assess the effects of 380 compounds on cell metabolism.

  17. 2000 Multibeam Sonar Survey of Crater Lake, Oregon - Data, GIS, Images, and Movies

    USGS Publications Warehouse

    Gardner, James V.; Dartnell, Peter

    2001-01-01

    In the summer of 2000, the U.S. Geological Survey, Pacific Seafloor Mapping Project in cooperation with the National Park Service, and the Center for Coastal and Ocean Mapping, University of New Hampshire used a state-of-the-art multibeam sonar system to collect high-resolution bathymetry and calibrated, co-registered acoustic backscatter to support both biological and geological research in the Crater Lake area. This interactive CD-ROM contains the multibeam bathymetry and acoustic backscatter data, along with an ESRI ArcExplorer project (and software), images, and movies.

  18. Processing and Analysis of Multibeam Sonar Data and Images near the Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Tang, Q.

    2017-12-01

    Yellow River Estuary is a typical high-suspended particulate matter estuary in the world. A lot of sediments from Yellow River and other substances produced by human activity cause high-concentration suspended matter and depositional system in the estuary and adjacent water area. Multibeam echo sounder (MBES) was developed in the 1970s, and it not only provided high-precision bathymetric data, but also provided seabed backscatter strength data and water column data with high temporal and spatial resolution. Here, based on high-precision sonar data of the seabed and water column collected by SeaBat7125 MBES system near the Yellow River Estuary, we use advanced data and image processing methods to generate seabed sonar images and water suspended particulate matter acoustic images. By analyzing these data and images, we get a lot of details of the seabed and whole water column features, and we also acquire their shape, size and basic physical characteristics of suspended particulate matters in the experiment area near the Yellow River Estuary. This study shows great potential for monitoring suspended particulate matter use MBES, and the research results will contribute to a comprehensive understanding of sediment transportation, evolution of river trough and shoal in Yellow River Estuary.

  19. Shallow water imaging sonar system for environmental surveying. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-05-01

    The scope of this research is to develop a shallow water sonar system designed to detect and map the location of objects such as hazardous wastes or discarded ordnance in coastal waters. The system will use high frequency wide-bandwidth imaging sonar, mounted on a moving platform towed behind a boat, to detect and identify objects on the sea bottom. Resolved images can be obtained even if the targets are buried in an overlayer of silt. The specific technical objective of this research was to develop and test a prototype system that is capable of (1) scan at high speeds (upmore » to 10m/s), even in shallow water (depth to ten meters), without motion blurring or loss of resolution; (2) produce images of the bottom structure that are detailed enough for unambiguous detection of objects as small as 15cm, even if they are buried up to 30cm deep in silt or sand. The critical technology involved uses an linear FM (LFM) or similar complex waveform, which has a high bandwidth for good range resolution, with a long pulse length for similar Dopper resolution. The lone duration signal deposits more energy on target than a narrower pulse, which increases the signal-to-noise ratio and signal-to-clutter ratio. This in turn allows the use of cheap, lightweight, low power, piezoelectric transducers at the 30--500 kHz range.« less

  20. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection.

  1. Probability-Based Recognition Framework for Underwater Landmarks Using Sonar Images †

    PubMed Central

    Choi, Jinwoo; Choi, Hyun-Taek

    2017-01-01

    This paper proposes a probability-based framework for recognizing underwater landmarks using sonar images. Current recognition methods use a single image, which does not provide reliable results because of weaknesses of the sonar image such as unstable acoustic source, many speckle noises, low resolution images, single channel image, and so on. However, using consecutive sonar images, if the status—i.e., the existence and identity (or name)—of an object is continuously evaluated by a stochastic method, the result of the recognition method is available for calculating the uncertainty, and it is more suitable for various applications. Our proposed framework consists of three steps: (1) candidate selection, (2) continuity evaluation, and (3) Bayesian feature estimation. Two probability methods—particle filtering and Bayesian feature estimation—are used to repeatedly estimate the continuity and feature of objects in consecutive images. Thus, the status of the object is repeatedly predicted and updated by a stochastic method. Furthermore, we develop an artificial landmark to increase detectability by an imaging sonar, which we apply to the characteristics of acoustic waves, such as instability and reflection depending on the roughness of the reflector surface. The proposed method is verified by conducting basin experiments, and the results are presented. PMID:28837068

  2. Side-scan sonar imaging of the Colorado River, Grand Canyon

    USGS Publications Warehouse

    Anima, Roberto; Wong, Florence L.; Hogg, David; Galanis, Peter

    2007-01-01

    This paper presents data collection methods and side-scan sonar data collected along the Colorado River in Grand Canyon in August and September of 2000. The purpose of the data collection effort was to image the distribution of sand between Glen Canyon Dam and river mile 87.4 before and after the 31,600 cfs flow of September 6-8. The side-scan sonar imaging focused on pools between rapids but included smaller rapids where possible.

  3. Recreational-Grade Sidescan Sonar: Transforming a Low-Cost Leisure Gadget into a High Resolution Riverbed Remote Sensing Tool

    NASA Astrophysics Data System (ADS)

    Hamill, D. D.; Buscombe, D.; Wheaton, J. M.; Wilcock, P. R.

    2016-12-01

    The size and spatial organization of bed material, bed texture, is a fundamental physical attribute of lotic ecosystems. Traditional methods to map bed texture (such as physical samples and underwater video) are limited by low spatial coverage, and poor precision in positioning. Recreational grade sidescan sonar systems now offer the possibility of imaging submerged riverbed sediments at coverages and resolutions sufficient to identify subtle changes in bed texture, in any navigable body of water, with minimal cost, expertise in sonar, or logistical effort, thereby facilitating the democratization of acoustic imaging of benthic environments, to support ecohydrological studies in shallow water, not subject to the rigors of hydrographic standards, nor the preserve of hydroacoustic expertise and proprietary hydrographic industry software. We investigate the possibility of using recreational grade sidescan sonar for sedimentary change detection using a case study of repeat sidescan imaging of mixed sand-gravel-rock riverbeds in a debris-fan dominated canyon river, at a coverage and resolution that meets the objectives of studies of the effects of changing bed substrates on salmonid spawning. A repeat substrate mapping analysis on data collected between 2012 and 2015 on the Colorado River in Glen, Marble, and Grand Canyons will be presented. A detailed method has been developed to interpret and analyze non-survey-grade sidescan sonar data, encoded within an open source software tool developed by the authors. An automated technique to quantify bed texture directly from sidescan sonar imagery is tested against bed sediment observations from underwater video and multibeam sonar. Predictive relationships between known bed sediment observations and bed texture metrics could provide an objective means to quantify bed textures and to relate changes in bed texture to biological components of an aquatic ecosystem, at high temporal frequency, and with minimal logistical effort and cost.

  4. A retrospective on hydroacoustic assessment of fish passage in Alaskan rivers

    NASA Astrophysics Data System (ADS)

    Burwen, Debby; Fleischman, Steve; Maxwell, Suzanne; Pfisterer, Carl

    2005-04-01

    The Alaska Department of Fish and Game (ADFG) has enumerated fish stocks in rivers for over 30 years using a variety of acoustic technologies including single-, dual-, and split-beam sonar. Most recently, ADFG has evaluated a relatively new sonar technology at several sites in Alaska to determine its applicability to counting migrating fish in rivers. The new system, called a Dual frequency IDentification SONar (DIDSON), is a high-definition imaging sonar designed and manufactured by the University of Washington's Applied Physics Lab for military applications such as diver detection and underwater mine identification. Results from experiments conducted in 2002-2004 indicate that DIDSON provides significant improvements in our ability to detect, track, and determine the direction of travel of migrating fish in rivers. One of the most powerful uses of the DIDSON has been to combine its camera-like images of fish swimming behavior with corresponding split-beam data. These linked datasets have allowed us to evaluate the effects of fish orientation and swimming behavior on echo shape parameters that have proven useful in the classification of certain fish species.

  5. Enhanced Sidescan-Sonar Imagery, North-Central Long Island Sound

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Schattgen, P.T.; Doran, E.F.

    2008-01-01

    The U.S. Geological Survey, National Oceanic and Atmospheric Administration (NOAA), and Connecticut Department of Environmental Protection have been working cooperatively to map the sea-floor geology within Long Island Sound. Sidescan-sonar imagery collected during three NOAA hydrographic surveys (H11043, H11044, and H11045) was used to interpret the surficial-sediment distribution and sedimentary environments within the Sound. The original sidescan-sonar imagery generated by NOAA was used to evaluate hazards to navigation, which does not require consistent tonal matching throughout the survey. In order to fully utilize these data for geologic interpretation, artifacts within the imagery, primarily due to sidescan-system settings (for example, gain changes), processing techniques (for example, lack of across-track normalization) and environmental noise (for example, sea state), need to be minimized. Sidescan-sonar imagery from surveys H11043, H11044, and H11045 in north-central Long Island Sound was enhanced by matching the grayscale tones between adjacent sidescan-sonar lines to decrease the patchwork effect caused by numerous artifacts and to provide a more coherent sidescan-sonar image for use in geologic interpretation.

  6. Interferometric side scan sonar and data fusion

    NASA Astrophysics Data System (ADS)

    Sintes, Christophe R.; Solaiman, Basel

    2000-04-01

    This paper concerns the possibilities of sea bottom imaging and altitude determining of each imaged point. The performances of new side scan sonars which are able to image the sea bottom with a high definition and are able to evaluate the relief with the same definition derive from an interferometric multisensor system. The drawbacks concern the precision of the numerical altitude model. One way to improve the measurements precision is to merge all the information issued from the multi-sensors system. This leads to increase the Signal to Noise Ratio (SNR) and the robustness of the used method. The aim of this paper is to clearly demonstrate the ability to derive benefits of all information issued from the three arrays side scan sonar by merging: (1) the three phase signals obtained at the output of the sensors, (2) this same set of data after the application of different processing methods, and (3) the a priori relief contextual information. The key idea the proposed fusion technique is to exploit the strength and the weaknesses of each data element in the fusion of process so that the global SNR will be improved as well as the robustness to hostile noisy environments.

  7. Optimization of Adaboost Algorithm for Sonar Target Detection in a Multi-Stage ATR System

    NASA Technical Reports Server (NTRS)

    Lin, Tsung Han (Hank)

    2011-01-01

    JPL has developed a multi-stage Automated Target Recognition (ATR) system to locate objects in images. First, input images are preprocessed and sent to a Grayscale Optical Correlator (GOC) filter to identify possible regions-of-interest (ROIs). Second, feature extraction operations are performed using Texton filters and Principal Component Analysis (PCA). Finally, the features are fed to a classifier, to identify ROIs that contain the targets. Previous work used the Feed-forward Back-propagation Neural Network for classification. In this project we investigate a version of Adaboost as a classifier for comparison. The version we used is known as GentleBoost. We used the boosted decision tree as the weak classifier. We have tested our ATR system against real-world sonar images using the Adaboost approach. Results indicate an improvement in performance over a single Neural Network design.

  8. Development and applications of an acoustic package for deep-sea sub-bottom profiling and detailed seafloor imaging

    NASA Astrophysics Data System (ADS)

    Nishimura, Kiyokazu; Kisimoto, Kiyoyuki; Joshima, Masato; Arai, Kohsaku

    In the deep-sea geological survey, good survey results are difficult to obtain by a conventional surface-towed acoustic survey system, because the horizontal resolution is limited due to the long distance between the sensor and the target (seafloor). In order to improve the horizontal resolution, a deep-tow system, which tows the sensor in the vicinity of seafloor, is most practical, and many such systems have been developed and used until today. It is not easy, however, to carry out a high-density survey in a small area by maneuvering the towing body altitude sufficiently close to the seafloor with rugged topography. A ROV (Remotely Operated Vehicle) can be used to solve this problem. The ROV makes a high-density 2D survey feasible because of its maneuverability, although a long-distance survey is difficult with it. Accordingly, we have developed an acoustic survey system installed on a ROV. The system named DAIPACK (Deep-sea Acoustic Imaging Package) consists of (1) a deep-sea sub-bottom profiler and (2) a deep-sea sidescan sonar. (1) Deep-sea sub-bottom profiler A light-weight and compact sub-bottom profiler for shallow water was chosen to improve and repackage for the deep sea usage. The system is composed of three units; a transducer, an electronic unit and a notebook computer for system control and data acquisition. The source frequency is 10kHz. To convert the system for the deep sea, the transducer was exchanged for the deep sea model, and the electronic unit was improved accordingly. The electronic unit and the notebook computer were installed in a spherical pressure vessel. (2) Deep-sea sidescan sonar We remodeled a compact shallow sea sidescan sonar(water depth limitation is 30m ) into a deep sea one. This sidescan sonar is composed of a sonar towfish (transducers and an electronic unit ), a cable and a notebook computer (data processor). To accommodate in the deep water, the transducers were remodeled into a high pressure resistance type, and the electronic unit and the computer unit were stored in a spherical pressure vessel. The frequency output of the sidescan sonar is 330kHz, and the ranging distance is variable from 15m to 120m (one side).

  9. A Robust and Fast Method for Sidescan Sonar Image Segmentation Using Nonlocal Despeckling and Active Contour Model.

    PubMed

    Huo, Guanying; Yang, Simon X; Li, Qingwu; Zhou, Yan

    2017-04-01

    Sidescan sonar image segmentation is a very important issue in underwater object detection and recognition. In this paper, a robust and fast method for sidescan sonar image segmentation is proposed, which deals with both speckle noise and intensity inhomogeneity that may cause considerable difficulties in image segmentation. The proposed method integrates the nonlocal means-based speckle filtering (NLMSF), coarse segmentation using k -means clustering, and fine segmentation using an improved region-scalable fitting (RSF) model. The NLMSF is used before the segmentation to effectively remove speckle noise while preserving meaningful details such as edges and fine features, which can make the segmentation easier and more accurate. After despeckling, a coarse segmentation is obtained by using k -means clustering, which can reduce the number of iterations. In the fine segmentation, to better deal with possible intensity inhomogeneity, an edge-driven constraint is combined with the RSF model, which can not only accelerate the convergence speed but also avoid trapping into local minima. The proposed method has been successfully applied to both noisy and inhomogeneous sonar images. Experimental and comparative results on real and synthetic sonar images demonstrate that the proposed method is robust against noise and intensity inhomogeneity, and is also fast and accurate.

  10. 78 FR 59370 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Certain Marine Sonar Imaging Devices, Products Containing the Same, and Components Thereof, DN 2981; the... United States after importation of certain marine sonar imaging devices, products containing the same...

  11. Microprocessor-based interface for oceanography

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1979-01-01

    Ocean floor imaging system incorporates five identical microprocessor-based interface units each assigned to specific sonar instrument to simplify system. Central control module based on same microprocessor eliminates need for custom tailoring hardware interfaces for each instrument.

  12. Underwater sonar image detection: A combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm.

    PubMed

    Wang, Xingmei; Liu, Shu; Liu, Zhipeng

    2017-01-01

    This paper proposes a combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically, for the first time, the problem of inappropriate filtering degree parameter which commonly occurs in non-local spatial information and seriously affects the denoising performance in sonar images, was solved with the method utilizing a novel filtering degree parameter. Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism (QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individual is directly encoded by real numbers, which can greatly simplify the evolution process of the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function combining intra-class difference with inter-class difference is adopted to evaluate frog positions more accurately. On this basis, recurring to an analysis of the quantum-behaved particle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new search mechanism is developed to improve the searching ability and detection accuracy. At the same time, the time complexity is further reduced. Finally, the results of comparative experiments using the original sonar images, the UCI data sets and the benchmark functions demonstrate the effectiveness and adaptability of the proposed method.

  13. Underwater sonar image detection: A combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm

    PubMed Central

    Liu, Zhipeng

    2017-01-01

    This paper proposes a combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically, for the first time, the problem of inappropriate filtering degree parameter which commonly occurs in non-local spatial information and seriously affects the denoising performance in sonar images, was solved with the method utilizing a novel filtering degree parameter. Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism (QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individual is directly encoded by real numbers, which can greatly simplify the evolution process of the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function combining intra-class difference with inter-class difference is adopted to evaluate frog positions more accurately. On this basis, recurring to an analysis of the quantum-behaved particle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new search mechanism is developed to improve the searching ability and detection accuracy. At the same time, the time complexity is further reduced. Finally, the results of comparative experiments using the original sonar images, the UCI data sets and the benchmark functions demonstrate the effectiveness and adaptability of the proposed method. PMID:28542266

  14. Detecting the presence-absence of bluefin tuna by automated analysis of medium-range sonars on fishing vessels.

    PubMed

    Uranga, Jon; Arrizabalaga, Haritz; Boyra, Guillermo; Hernandez, Maria Carmen; Goñi, Nicolas; Arregui, Igor; Fernandes, Jose A; Yurramendi, Yosu; Santiago, Josu

    2017-01-01

    This study presents a methodology for the automated analysis of commercial medium-range sonar signals for detecting presence/absence of bluefin tuna (Tunnus thynnus) in the Bay of Biscay. The approach uses image processing techniques to analyze sonar screenshots. For each sonar image we extracted measurable regions and analyzed their characteristics. Scientific data was used to classify each region into a class ("tuna" or "no-tuna") and build a dataset to train and evaluate classification models by using supervised learning. The methodology performed well when validated with commercial sonar screenshots, and has the potential to automatically analyze high volumes of data at a low cost. This represents a first milestone towards the development of acoustic, fishery-independent indices of abundance for bluefin tuna in the Bay of Biscay. Future research lines and additional alternatives to inform stock assessments are also discussed.

  15. Detecting the presence-absence of bluefin tuna by automated analysis of medium-range sonars on fishing vessels

    PubMed Central

    Uranga, Jon; Arrizabalaga, Haritz; Boyra, Guillermo; Hernandez, Maria Carmen; Goñi, Nicolas; Arregui, Igor; Fernandes, Jose A.; Yurramendi, Yosu; Santiago, Josu

    2017-01-01

    This study presents a methodology for the automated analysis of commercial medium-range sonar signals for detecting presence/absence of bluefin tuna (Tunnus thynnus) in the Bay of Biscay. The approach uses image processing techniques to analyze sonar screenshots. For each sonar image we extracted measurable regions and analyzed their characteristics. Scientific data was used to classify each region into a class (“tuna” or “no-tuna”) and build a dataset to train and evaluate classification models by using supervised learning. The methodology performed well when validated with commercial sonar screenshots, and has the potential to automatically analyze high volumes of data at a low cost. This represents a first milestone towards the development of acoustic, fishery-independent indices of abundance for bluefin tuna in the Bay of Biscay. Future research lines and additional alternatives to inform stock assessments are also discussed. PMID:28152032

  16. Automated detection of submerged navigational obstructions in freshwater impoundments with hull mounted sidescan sonar

    NASA Astrophysics Data System (ADS)

    Morris, Phillip A.

    The prevalence of low-cost side scanning sonar systems mounted on small recreational vessels has created improved opportunities to identify and map submerged navigational hazards in freshwater impoundments. However, these economical sensors also present unique challenges for automated techniques. This research explores related literature in automated sonar imagery processing and mapping technology, proposes and implements a framework derived from these sources, and evaluates the approach with video collected from a recreational grade sonar system. Image analysis techniques including optical character recognition and an unsupervised computer automated detection (CAD) algorithm are employed to extract the transducer GPS coordinates and slant range distance of objects protruding from the lake bottom. The retrieved information is formatted for inclusion into a spatial mapping model. Specific attributes of the sonar sensors are modeled such that probability profiles may be projected onto a three dimensional gridded map. These profiles are computed from multiple points of view as sonar traces crisscross or come near each other. As lake levels fluctuate over time so do the elevation points of view. With each sonar record, the probability of a hazard existing at certain elevations at the respective grid points is updated with Bayesian mechanics. As reinforcing data is collected, the confidence of the map improves. Given a lake's current elevation and a vessel draft, a final generated map can identify areas of the lake that have a high probability of containing hazards that threaten navigation. The approach is implemented in C/C++ utilizing OpenCV, Tesseract OCR, and QGIS open source software and evaluated in a designated test area at Lake Lavon, Collin County, Texas.

  17. A micro-Doppler sonar for acoustic surveillance in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional silicon on insulator process. Lastly, a prototype of neuromorphic interconnects using ultra wideband radio will be presented.

  18. Digital sonar system

    DOEpatents

    Young, K.K.; Wilkes, R.J.

    1995-11-21

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal. 4 figs.

  19. Digital sonar system

    DOEpatents

    Young, Kenneth K.; Wilkes, R. Jeffrey

    1995-01-01

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal.

  20. Reliability of fish size estimates obtained from multibeam imaging sonar

    USGS Publications Warehouse

    Hightower, Joseph E.; Magowan, Kevin J.; Brown, Lori M.; Fox, Dewayne A.

    2013-01-01

    Multibeam imaging sonars have considerable potential for use in fisheries surveys because the video-like images are easy to interpret, and they contain information about fish size, shape, and swimming behavior, as well as characteristics of occupied habitats. We examined images obtained using a dual-frequency identification sonar (DIDSON) multibeam sonar for Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, striped bass Morone saxatilis, white perch M. americana, and channel catfish Ictalurus punctatus of known size (20–141 cm) to determine the reliability of length estimates. For ranges up to 11 m, percent measurement error (sonar estimate – total length)/total length × 100 varied by species but was not related to the fish's range or aspect angle (orientation relative to the sonar beam). Least-square mean percent error was significantly different from 0.0 for Atlantic sturgeon (x̄  =  −8.34, SE  =  2.39) and white perch (x̄  = 14.48, SE  =  3.99) but not striped bass (x̄  =  3.71, SE  =  2.58) or channel catfish (x̄  = 3.97, SE  =  5.16). Underestimating lengths of Atlantic sturgeon may be due to difficulty in detecting the snout or the longer dorsal lobe of the heterocercal tail. White perch was the smallest species tested, and it had the largest percent measurement errors (both positive and negative) and the lowest percentage of images classified as good or acceptable. Automated length estimates for the four species using Echoview software varied with position in the view-field. Estimates tended to be low at more extreme azimuthal angles (fish's angle off-axis within the view-field), but mean and maximum estimates were highly correlated with total length. Software estimates also were biased by fish images partially outside the view-field and when acoustic crosstalk occurred (when a fish perpendicular to the sonar and at relatively close range is detected in the side lobes of adjacent beams). These sources of bias are apparent when files are processed manually and can be filtered out when producing automated software estimates. Multibeam sonar estimates of fish size should be useful for research and management if these potential sources of bias and imprecision are addressed.

  1. Digital sonar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, K.K.; Wilkes, R.J.

    1995-11-21

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits amore » responding multifrequency sonar signal. 4 figs.« less

  2. Split Bregman's optimization method for image construction in compressive sensing

    NASA Astrophysics Data System (ADS)

    Skinner, D.; Foo, S.; Meyer-Bäse, A.

    2014-05-01

    The theory of compressive sampling (CS) was reintroduced by Candes, Romberg and Tao, and D. Donoho in 2006. Using a priori knowledge that a signal is sparse, it has been mathematically proven that CS can defY Nyquist sampling theorem. Theoretically, reconstruction of a CS image relies on the minimization and optimization techniques to solve this complex almost NP-complete problem. There are many paths to consider when compressing and reconstructing an image but these methods have remained untested and unclear on natural images, such as underwater sonar images. The goal of this research is to perfectly reconstruct the original sonar image from a sparse signal while maintaining pertinent information, such as mine-like object, in Side-scan sonar (SSS) images. Goldstein and Osher have shown how to use an iterative method to reconstruct the original image through a method called Split Bregman's iteration. This method "decouples" the energies using portions of the energy from both the !1 and !2 norm. Once the energies are split, Bregman iteration is used to solve the unconstrained optimization problem by recursively solving the problems simultaneously. The faster these two steps or energies can be solved then the faster the overall method becomes. While the majority of CS research is still focused on the medical field, this paper will demonstrate the effectiveness of the Split Bregman's methods on sonar images.

  3. The path to COVIS: A review of acoustic imaging of hydrothermal flow regimes

    NASA Astrophysics Data System (ADS)

    Bemis, Karen G.; Silver, Deborah; Xu, Guangyu; Light, Russ; Jackson, Darrell; Jones, Christopher; Ozer, Sedat; Liu, Li

    2015-11-01

    Acoustic imaging of hydrothermal flow regimes started with the incidental recognition of a plume on a routine sonar scan for obstacles in the path of the human-occupied submersible ALVIN. Developments in sonar engineering, acoustic data processing and scientific visualization have been combined to develop technology which can effectively capture the behavior of focused and diffuse hydrothermal discharge. This paper traces the development of these acoustic imaging techniques for hydrothermal flow regimes from their conception through to the development of the Cabled Observatory Vent Imaging Sonar (COVIS). COVIS has monitored such flow eight times a day for several years. Successful acoustic techniques for estimating plume entrainment, bending, vertical rise, volume flux, and heat flux are presented as is the state-of-the-art in diffuse flow detection.

  4. Acoustic Facies Analysis of Side-Scan Sonar Data

    NASA Astrophysics Data System (ADS)

    Dwan, Fa Shu

    Acoustic facies analysis methods have allowed the generation of system-independent values for the quantitative seafloor acoustic parameter, backscattering strength, from GLORIA and (TAMU) ^2 side-scan sonar data. The resulting acoustic facies parameters enable quantitative comparisons of data collected by different sonar systems, data from different environments, and measurements made with survey geometries. Backscattering strength values were extracted from the sonar amplitude data by inversion based on the sonar equation. Image processing products reveal seafloor features and patterns of relative intensity. To quantitatively compare data collected at different times or by different systems, and to ground truth-measurements and geoacoustic models, quantitative corrections must be made on any given data set for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area contribution, and grazing angle effects. In the sonar equation, backscattering strength is the sonar parameter which is directly related to seafloor properties. The GLORIA data used in this study are from the edge of a distal lobe of the Monterey Fan. An interfingered region of strong and weak seafloor signal returns from a flat seafloor region provides an ideal data set for this study. Inversion of imagery data from the region allows the quantitative definition of different acoustic facies. The (TAMU) ^2 data used are from a calibration site near the Green Canyon area of the Gulf of Mexico. Acoustic facies analysis techniques were implemented to generate statistical information for acoustic facies based on the estimates of backscattering strength. The backscattering strength values have been compared with Lambert's Law and other functions to parameterize the description of the acoustic facies. The resulting Lambertian constant values range from -26 dB to -36 dB. A modified Lambert relationship, which consists of both intercept and slope terms, appears to represent the BSS versus grazing angle profiles better based on chi^2 testing and error ellipse generation. Different regression functions, composed of trigonometric functions, were analyzed for different segments of the BSS profiles. A cotangent or sine/cosine function shows promising results for representing the entire grazing angle span of the BSS profiles.

  5. Some Processing and Dynamic-Range Issues in Side-Scan Sonar Work

    NASA Astrophysics Data System (ADS)

    Asper, V. L.; Caruthers, J. W.

    2007-05-01

    Often side-scan sonar data are collected in such a way that they afford little opportunity to do more than simply display them as images. These images are often limited in dynamic range and stored only in an 8-bit tiff format of numbers representing less than true intensity values. Furthermore, there is little prior knowledge during a survey of the best range in which to set those eight bits. This can result in clipped strong targets and/or the depth of shadows so that the bits that can be recovered from the image are not fully representative of target or bottom backscatter strengths. Several top-of-the-line sonars do have a means of logging high-bit-rate digital data (sometimes only as an option), but only dedicated specialists pay much attention to such data, if they record them at all. Most users of side-scan sonars are interested only in the images. Discussed in this paper are issues related to storing and processing of high-bit-rate digital data to preserve their integrity for future enhanced, after- the-fact use and ability to recover actual backscatter strengths. This papers discusses issues in the use high-bit- rate, digital side-scan sonar data. This work was supported by the Office of Naval Research, Code 321OA, and the Naval Oceanographic Office, Mine Warfare Program.

  6. Robust and fast-converging level set method for side-scan sonar image segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Qingwu; Huo, Guanying

    2017-11-01

    A robust and fast-converging level set method is proposed for side-scan sonar (SSS) image segmentation. First, the noise in each sonar image is removed using the adaptive nonlinear complex diffusion filter. Second, k-means clustering is used to obtain the initial presegmentation image from the denoised image, and then the distance maps of the initial contours are reinitialized to guarantee the accuracy of the numerical calculation used in the level set evolution. Finally, the satisfactory segmentation is achieved using a robust variational level set model, where the evolution control parameters are generated by the presegmentation. The proposed method is successfully applied to both synthetic image with speckle noise and real SSS images. Experimental results show that the proposed method needs much less iteration and therefore is much faster than the fuzzy local information c-means clustering method, the level set method using a gamma observation model, and the enhanced region-scalable fitting method. Moreover, the proposed method can usually obtain more accurate segmentation results compared with other methods.

  7. Behavioral responses by grey seals (Halichoerus grypus) to high frequency sonar.

    PubMed

    Hastie, Gordon D; Donovan, Carl; Götz, Thomas; Janik, Vincent M

    2014-02-15

    The use of high frequency sonar is now commonplace in the marine environment. Most marine mammals rely on sound to navigate, and for detecting prey, and there is the potential that the acoustic signals of sonar could cause behavioral responses. To investigate this, we carried out behavioral response tests with grey seals to two sonar systems (200 and 375 kHz systems). Results showed that both systems had significant effects on the seals behavior; when the 200 kHz sonar was active, seals spent significantly more time hauled out and, although seals remained swimming during operation of the 375 kHz sonar, they were distributed further from the sonar. The results show that although peak sonar frequencies may be above marine mammal hearing ranges, high levels of sound can be produced within their hearing ranges that elicit behavioral responses; this has clear implications for the widespread use of sonar in the marine environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. 3D Chirp Sonar Images on Fluid Migration Pathways and Their Implications on Seafloor Stability East of the Fangliao Submarine Canyon Offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, Y. W.; Liu, C. S.; Su, C. C.; Hsu, H. H.; Chen, Y. H.

    2015-12-01

    This study utilizes both chirp sonar images and coring results to investigate the unstable seafloor strata east of the Fangliao Submarine Canyon offshore southwestern Taiwan. We have constructed 3D chirp sonar images from a densely surveyed block to trace the attitude of an acoustic transparent layer and features caused by fluid activities. Based on the distribution of this transparent layer and fluid-related features, we suggest that this transparent layer forms a pathway for fluid migration which induces fluid-related characters such as acoustic blanking and fluid chimneys in the 3D chirp sonar images. Cored seafloor samples are used in this study to investigate the sediment compositions. The 210Pb activity profiles of the cores show oscillating and unsteady values at about 20~25 cm from core top. The bulk densities of the core samples in the same section (about 20~25 cm from core top) give values lower than those at deeper parts of the cores. These results indicate that the water content is much higher in the shallow sediments than in the deeper strata. From core sample analyses, we deduce that the local sediments are disturbed by liquefaction. From the analyses of 3D chirp sonar images and core data, we suggest that the seafloor east of the Fangliao Submarine Canyon is in an unstable condition, if disturbed by earthquakes, submarine landslides and gravity flows could be easily triggered and cause some geohazards, like breaking submarine cables during the 2006 Pingtung earthquake event.

  9. SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts.

    PubMed

    Schramm, Chaim A; Sheng, Zizhang; Zhang, Zhenhai; Mascola, John R; Kwong, Peter D; Shapiro, Lawrence

    2016-01-01

    The rapid advance of massively parallel or next-generation sequencing technologies has made possible the characterization of B cell receptor repertoires in ever greater detail, and these developments have triggered a proliferation of software tools for processing and annotating these data. Of especial interest, however, is the capability to track the development of specific antibody lineages across time, which remains beyond the scope of most current programs. We have previously reported on the use of techniques such as inter- and intradonor analysis and CDR3 tracing to identify transcripts related to an antibody of interest. Here, we present Software for the Ontogenic aNalysis of Antibody Repertoires (SONAR), capable of automating both general repertoire analysis and specialized techniques for investigating specific lineages. SONAR annotates next-generation sequencing data, identifies transcripts in a lineage of interest, and tracks lineage development across multiple time points. SONAR also generates figures, such as identity-divergence plots and longitudinal phylogenetic "birthday" trees, and provides interfaces to other programs such as DNAML and BEAST. SONAR can be downloaded as a ready-to-run Docker image or manually installed on a local machine. In the latter case, it can also be configured to take advantage of a high-performance computing cluster for the most computationally intensive steps, if available. In summary, this software provides a useful new tool for the processing of large next-generation sequencing datasets and the ontogenic analysis of neutralizing antibody lineages. SONAR can be found at https://github.com/scharch/SONAR, and the Docker image can be obtained from https://hub.docker.com/r/scharch/sonar/.

  10. Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the Northern Channel Islands, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Lafferty, Kevin D.

    2002-01-01

    Highly reflective seafloor features imaged by sidescan sonar in nearshore waters off the Northern Channel Islands (California, USA) have been observed in subsequent submersible dives to be areas of thin sand covering bedrock. Adjacent areas of rocky seafloor, suitable as habitat for endangered species of abalone and rockfish, and encrusting organisms, cannot be differentiated from the areas of thin sand on the basis of acoustic backscatter (i.e. grey level) alone. We found second-order textural analysis of sidescan sonar data useful to differentiate the bottom types where data is not degraded by near-range distortion (caused by slant-range and ground-range corrections), and where data is not degraded by far-range signal attenuation. Hand editing based on submersible observations is necessary to completely convert the sidescan sonar image to a bottom character classification map suitable for habitat mapping.

  11. Terrain Aided Navigation for Remus Autonomous Underwater Vehicle

    DTIC Science & Technology

    2014-06-01

    22  Figure 11.  Several successive sonar pings displayed together in the LTP frame .............23  Figure 12.  The linear interpolation of...the sonar pings from Figure 11 .............................24  Figure 13.  SIR particle filter algorithm, after [19... ping —  |p k ky x .........46  Figure 26.  Correlation probability distributions for four different sonar images ..............47  Figure 27.  Particle

  12. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: design/operation/preliminary results.

    PubMed

    Kennedy, J L; Marston, T M; Lee, K; Lopes, J L; Lim, R

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and The Strategic Environmental Research and Development Program.].

  13. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: Design/operation/preliminary results

    NASA Astrophysics Data System (ADS)

    Kennedy, J. L.; Marston, T. M.; Lee, K.; Lopes, J. L.; Lim, R.

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and The Strategic Environmental Research and Development Program.

  14. Sonar Imaging of Elastic Fluid-Filled Cylindrical Shells.

    NASA Astrophysics Data System (ADS)

    Dodd, Stirling Scott

    1995-01-01

    Previously a method of describing spherical acoustic waves in cylindrical coordinates was applied to the problem of point source scattering by an elastic infinite fluid -filled cylindrical shell (S. Dodd and C. Loeffler, J. Acoust. Soc. Am. 97, 3284(A) (1995)). This method is applied to numerically model monostatic oblique incidence scattering from a truncated cylinder by a narrow-beam high-frequency imaging sonar. The narrow beam solution results from integrating the point source solution over the spatial extent of a line source and line receiver. The cylinder truncation is treated by the method of images, and assumes that the reflection coefficient at the truncation is unity. The scattering form functions, calculated using this method, are applied as filters to a narrow bandwidth, high ka pulse to find the time domain scattering response. The time domain pulses are further processed and displayed in the form of a sonar image. These images compare favorably to experimentally obtained images (G. Kaduchak and C. Loeffler, J. Acoust. Soc. Am. 97, 3289(A) (1995)). The impact of the s_{ rm o} and a_{rm o} Lamb waves is vividly apparent in the images.

  15. Experimental verification of an interpolation algorithm for improved estimates of animal position

    NASA Astrophysics Data System (ADS)

    Schell, Chad; Jaffe, Jules S.

    2004-07-01

    This article presents experimental verification of an interpolation algorithm that was previously proposed in Jaffe [J. Acoust. Soc. Am. 105, 3168-3175 (1999)]. The goal of the algorithm is to improve estimates of both target position and target strength by minimizing a least-squares residual between noise-corrupted target measurement data and the output of a model of the sonar's amplitude response to a target at a set of known locations. Although this positional estimator was shown to be a maximum likelihood estimator, in principle, experimental verification was desired because of interest in understanding its true performance. Here, the accuracy of the algorithm is investigated by analyzing the correspondence between a target's true position and the algorithm's estimate. True target position was measured by precise translation of a small test target (bead) or from the analysis of images of fish from a coregistered optical imaging system. Results with the stationary spherical test bead in a high signal-to-noise environment indicate that a large increase in resolution is possible, while results with commercial aquarium fish indicate a smaller increase is obtainable. However, in both experiments the algorithm provides improved estimates of target position over those obtained by simply accepting the angular positions of the sonar beam with maximum output as target position. In addition, increased accuracy in target strength estimation is possible by considering the effects of the sonar beam patterns relative to the interpolated position. A benefit of the algorithm is that it can be applied ``ex post facto'' to existing data sets from commercial multibeam sonar systems when only the beam intensities have been stored after suitable calibration.

  16. Dolphin sonar detection and discrimination capabilities

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.

    2004-05-01

    Dolphins have a very sophisticated short range sonar that surpasses all technological sonar in its capabilities to perform complex target discrimination and recognition tasks. The system that the U.S. Navy has for detecting mines buried under ocean sediment is one that uses Atlantic bottlenose dolphins. However, close examination of the dolphin sonar system will reveal that the dolphin acoustic hardware is fairly ordinary and not very special. The transmitted signals have peak-to-peak amplitudes as high as 225-228 dB re 1 μPa which translates to an rms value of approximately 210-213 dB. The transmit beamwidth is fairly broad at about 10o in both the horizontal and vertical planes and the receiving beamwidth is slightly broader by several degrees. The auditory filters are not very narrow with Q values of about 8.4. Despite these fairly ordinary features of the acoustic system, these animals still demonstrate very unusual and astonishing capabilities. Some of the capabilities of the dolphin sonar system will be presented and the reasons for their keen sonar capabilities will be discussed. Important features of their sonar include the broadband clicklike signals used, adaptive sonar search capabilities and large dynamic range of its auditory system.

  17. SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts

    PubMed Central

    Schramm, Chaim A.; Sheng, Zizhang; Zhang, Zhenhai; Mascola, John R.; Kwong, Peter D.; Shapiro, Lawrence

    2016-01-01

    The rapid advance of massively parallel or next-generation sequencing technologies has made possible the characterization of B cell receptor repertoires in ever greater detail, and these developments have triggered a proliferation of software tools for processing and annotating these data. Of especial interest, however, is the capability to track the development of specific antibody lineages across time, which remains beyond the scope of most current programs. We have previously reported on the use of techniques such as inter- and intradonor analysis and CDR3 tracing to identify transcripts related to an antibody of interest. Here, we present Software for the Ontogenic aNalysis of Antibody Repertoires (SONAR), capable of automating both general repertoire analysis and specialized techniques for investigating specific lineages. SONAR annotates next-generation sequencing data, identifies transcripts in a lineage of interest, and tracks lineage development across multiple time points. SONAR also generates figures, such as identity–divergence plots and longitudinal phylogenetic “birthday” trees, and provides interfaces to other programs such as DNAML and BEAST. SONAR can be downloaded as a ready-to-run Docker image or manually installed on a local machine. In the latter case, it can also be configured to take advantage of a high-performance computing cluster for the most computationally intensive steps, if available. In summary, this software provides a useful new tool for the processing of large next-generation sequencing datasets and the ontogenic analysis of neutralizing antibody lineages. SONAR can be found at https://github.com/scharch/SONAR, and the Docker image can be obtained from https://hub.docker.com/r/scharch/sonar/. PMID:27708645

  18. Investigation of measureable parameters that correlate with automatic target recognition performance in synthetic aperture sonar

    NASA Astrophysics Data System (ADS)

    Gazagnaire, Julia; Cobb, J. T.; Isaacs, Jason

    2015-05-01

    There is a desire in the Mine Counter Measure community to develop a systematic method to predict and/or estimate the performance of Automatic Target Recognition (ATR) algorithms that are detecting and classifying mine-like objects within sonar data. Ideally, parameters exist that can be measured directly from the sonar data that correlate with ATR performance. In this effort, two metrics were analyzed for their predictive potential using high frequency synthetic aperture sonar (SAS) images. The first parameter is a measure of contrast. It is essentially the variance in pixel intensity over a fixed partition of relatively small size. An analysis was performed to determine the optimum block size for this contrast calculation. These blocks were then overlapped in the horizontal and vertical direction over the entire image. The second parameter is the one-dimensional K-shape parameter. The K-distribution is commonly used to describe sonar backscatter return from range cells that contain a finite number of scatterers. An Ada-Boosted Decision Tree classifier was used to calculate the probability of classification (Pc) and false alarm rate (FAR) for several types of targets in SAS images from three different data sets. ROC curves as a function of the measured parameters were generated and the correlation between the measured parameters in the vicinity of each of the contacts and the ATR performance was investigated. The contrast and K-shape parameters were considered separately. Additionally, the contrast and K-shape parameter were associated with background texture types using previously labeled high frequency SAS images.

  19. The fusion of large scale classified side-scan sonar image mosaics.

    PubMed

    Reed, Scott; Tena, Ruiz Ioseba; Capus, Chris; Petillot, Yvan

    2006-07-01

    This paper presents a unified framework for the creation of classified maps of the seafloor from sonar imagery. Significant challenges in photometric correction, classification, navigation and registration, and image fusion are addressed. The techniques described are directly applicable to a range of remote sensing problems. Recent advances in side-scan data correction are incorporated to compensate for the sonar beam pattern and motion of the acquisition platform. The corrected images are segmented using pixel-based textural features and standard classifiers. In parallel, the navigation of the sonar device is processed using Kalman filtering techniques. A simultaneous localization and mapping framework is adopted to improve the navigation accuracy and produce georeferenced mosaics of the segmented side-scan data. These are fused within a Markovian framework and two fusion models are presented. The first uses a voting scheme regularized by an isotropic Markov random field and is applicable when the reliability of each information source is unknown. The Markov model is also used to inpaint regions where no final classification decision can be reached using pixel level fusion. The second model formally introduces the reliability of each information source into a probabilistic model. Evaluation of the two models using both synthetic images and real data from a large scale survey shows significant quantitative and qualitative improvement using the fusion approach.

  20. Validation of a side-scan sonar method for quantifying walleye spawning habitat availability in the littoral zone of northern Wisconsin Lakes

    USGS Publications Warehouse

    Richter, Jacob T.; Sloss, Brian L.; Isermann, Daniel A.

    2016-01-01

    Previous research has generally ignored the potential effects of spawning habitat availability and quality on recruitment of Walleye Sander vitreus, largely because information on spawning habitat is lacking for many lakes. Furthermore, traditional transect-based methods used to describe habitat are time and labor intensive. Our objectives were to determine if side-scan sonar could be used to accurately classify Walleye spawning habitat in the nearshore littoral zone and provide lakewide estimates of spawning habitat availability similar to estimates obtained from a transect–quadrat-based method. Based on assessments completed on 16 northern Wisconsin lakes, interpretation of side-scan sonar images resulted in correct identification of substrate size-class for 93% (177 of 191) of selected locations and all incorrect classifications were within ± 1 class of the correct substrate size-class. Gravel, cobble, and rubble substrates were incorrectly identified from side-scan images in only two instances (1% misclassification), suggesting that side-scan sonar can be used to accurately identify preferred Walleye spawning substrates. Additionally, we detected no significant differences in estimates of lakewide littoral zone substrate compositions estimated using side-scan sonar and a traditional transect–quadrat-based method. Our results indicate that side-scan sonar offers a practical, accurate, and efficient technique for assessing substrate composition and quantifying potential Walleye spawning habitat in the nearshore littoral zone of north temperate lakes.

  1. An Improved Otsu Threshold Segmentation Method for Underwater Simultaneous Localization and Mapping-Based Navigation

    PubMed Central

    Yuan, Xin; Martínez, José-Fernán; Eckert, Martina; López-Santidrián, Lourdes

    2016-01-01

    The main focus of this paper is on extracting features with SOund Navigation And Ranging (SONAR) sensing for further underwater landmark-based Simultaneous Localization and Mapping (SLAM). According to the characteristics of sonar images, in this paper, an improved Otsu threshold segmentation method (TSM) has been developed for feature detection. In combination with a contour detection algorithm, the foreground objects, although presenting different feature shapes, are separated much faster and more precisely than by other segmentation methods. Tests have been made with side-scan sonar (SSS) and forward-looking sonar (FLS) images in comparison with other four TSMs, namely the traditional Otsu method, the local TSM, the iterative TSM and the maximum entropy TSM. For all the sonar images presented in this work, the computational time of the improved Otsu TSM is much lower than that of the maximum entropy TSM, which achieves the highest segmentation precision among the four above mentioned TSMs. As a result of the segmentations, the centroids of the main extracted regions have been computed to represent point landmarks which can be used for navigation, e.g., with the help of an Augmented Extended Kalman Filter (AEKF)-based SLAM algorithm. The AEKF-SLAM approach is a recursive and iterative estimation-update process, which besides a prediction and an update stage (as in classical Extended Kalman Filter (EKF)), includes an augmentation stage. During navigation, the robot localizes the centroids of different segments of features in sonar images, which are detected by our improved Otsu TSM, as point landmarks. Using them with the AEKF achieves more accurate and robust estimations of the robot pose and the landmark positions, than with those detected by the maximum entropy TSM. Together with the landmarks identified by the proposed segmentation algorithm, the AEKF-SLAM has achieved reliable detection of cycles in the map and consistent map update on loop closure, which is shown in simulated experiments. PMID:27455279

  2. An Improved Otsu Threshold Segmentation Method for Underwater Simultaneous Localization and Mapping-Based Navigation.

    PubMed

    Yuan, Xin; Martínez, José-Fernán; Eckert, Martina; López-Santidrián, Lourdes

    2016-07-22

    The main focus of this paper is on extracting features with SOund Navigation And Ranging (SONAR) sensing for further underwater landmark-based Simultaneous Localization and Mapping (SLAM). According to the characteristics of sonar images, in this paper, an improved Otsu threshold segmentation method (TSM) has been developed for feature detection. In combination with a contour detection algorithm, the foreground objects, although presenting different feature shapes, are separated much faster and more precisely than by other segmentation methods. Tests have been made with side-scan sonar (SSS) and forward-looking sonar (FLS) images in comparison with other four TSMs, namely the traditional Otsu method, the local TSM, the iterative TSM and the maximum entropy TSM. For all the sonar images presented in this work, the computational time of the improved Otsu TSM is much lower than that of the maximum entropy TSM, which achieves the highest segmentation precision among the four above mentioned TSMs. As a result of the segmentations, the centroids of the main extracted regions have been computed to represent point landmarks which can be used for navigation, e.g., with the help of an Augmented Extended Kalman Filter (AEKF)-based SLAM algorithm. The AEKF-SLAM approach is a recursive and iterative estimation-update process, which besides a prediction and an update stage (as in classical Extended Kalman Filter (EKF)), includes an augmentation stage. During navigation, the robot localizes the centroids of different segments of features in sonar images, which are detected by our improved Otsu TSM, as point landmarks. Using them with the AEKF achieves more accurate and robust estimations of the robot pose and the landmark positions, than with those detected by the maximum entropy TSM. Together with the landmarks identified by the proposed segmentation algorithm, the AEKF-SLAM has achieved reliable detection of cycles in the map and consistent map update on loop closure, which is shown in simulated experiments.

  3. 50 CFR 216.190 - Modifications to Letters of Authorization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA sonar) Sonar § 216.190 Modifications to Letters of... sonar system from one ship to another, is not considered a substantial modification. (b) If the National...

  4. 50 CFR 216.190 - Modifications to Letters of Authorization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA sonar) Sonar § 216.190 Modifications to Letters of... sonar system from one ship to another, is not considered a substantial modification. (b) If the National...

  5. Waterway wide area tactical coverage and homing (WaterWATCH) program overview

    NASA Astrophysics Data System (ADS)

    Driggers, Gerald; Cleveland, Tammy; Araujo, Lisa; Spohr, Robert; Umansky, Mark

    2008-04-01

    The Congressional and Army sponsored WaterWATCH TM Program has developed and demonstrated a fully integrated shallow water port and facility monitoring system. It provides fully automated monitoring of domains above and below the surface of the water using primarily off-the-shelf sensors and software. The system is modular, open architecture and IP based, and elements can be mixed and matched to adapt to specific applications. The sensors integrated into the WaterWATCH TM system include cameras, radar, passive and active sonar, and various motion detectors. The sensors were chosen based on extensive requirements analyses and tradeoffs. Descriptions of the system and individual sensors are provided, along with data from modular and system level testing. Camera test results address capabilities and limitations associated with using "smart" image analysis software with stressing environmental issues such as bugs, darkness, rain and snow. Radar issues addressed include achieving range and resolution requirements. The passive sonar capability to provide near 100% true positives with zero false positives is demonstrated. Testing results are also presented to show that inexpensive active sonar can be effective against divers with or without SCUBA gear and that false alarms due to fish can be minimized. A simple operator interface has also been demonstrated.

  6. Unmanned Underwater Vehicle (UUV) Information Study

    DTIC Science & Technology

    2014-11-28

    Maritime Unmanned System NATO North Atlantic Treaty Organization xi The use or disclosure of the information on this sheet is subject to the... Unmanned Aerial System UDA Underwater Domain Awareness UNISIPS Unified Sonar Image Processing System USV Unmanned Surface Vehicle UUV Unmanned Underwater...data distribution to ashore systems , such as the delay, its impact and the benefits to the overall MDA and required metadata for efficient search and

  7. Spawning behaviour of Allis shad Alosa alosa: new insights based on imaging sonar data.

    PubMed

    Langkau, M C; Clavé, D; Schmidt, M B; Borcherding, J

    2016-06-01

    Spawning behaviour of Alosa alosa was observed by high resolution imaging sonar. Detected clouds of sexual products and micro bubbles served as a potential indicator of spawning activity. Peak spawning time was between 0130 and 0200 hours at night. Increasing detections over three consecutive nights were consistent with sounds of mating events (bulls) assessed in hearing surveys in parallel to the hydro acoustic detection. In 70% of the analysed mating events there were no additional A. alosa joining the event whilst 70% of the mating events showed one or two A. alosa leaving the cloud. In 31% of the analysed mating events, however, three or more A. alosa were leaving the clouds, indicating that matings are not restricted to a pair. Imaging sonar is suitable for monitoring spawning activity and behaviour of anadromous clupeids in their spawning habitats. © 2016 The Fisheries Society of the British Isles.

  8. Aspect Determination Using a Beacon with a Spiral Wave Front: Modeling and Performance Analysis in Operational Environments

    DTIC Science & Technology

    2014-12-19

    used to evaluate the beacon performance at the Navy’s Seneca Lake Sonar Test Facility operated by NUWC-Newport. These tests occurred in the summer...prototype has been designed. Efforts have been underway to implement the spiral beacon into the Navy’s Sonar Simulation Toolset developed by Dr. Robert...mil). Digital Object Identifier 10.1109/JOE.2013.2293962 acoustic depth finding or sonar imaging may be compared with maps to coordinate position and

  9. Side-scan sonar and submersible observations: New techniques for gleaning more information from sea-floor outcrops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendall, J.; Hams, J.E.; Buck, S.P.

    1990-05-01

    Advances in high resolution side-scan sonar imaging technology are so effective at imaging sea-floor geology that they have greatly improved the efficiency of a bottom sampling program The traditional sea-floor geology methodology of shooting a high-resolution seismic survey and sampling along the seismic grid was considered successful if outcrops were sampled on 20% of the attempts. A submersible was used sparingly because of the inability to consistently locate sea-floor outcrops. Side-scan sonar images have increased the sampling success ratio to 70-95% and allow the cost-effective use of a submersible even in areas of sparse sea-floor outcrops. In offshore basins thismore » new technology has been used in consolidated and semiconsolidated rock terranes. When combined with observations from a two-man submersible, SCUBA traverses, seismic data, and traditional sea-floor bottom sampling techniques, enough data are provided to develop an integrated sea-floor geologic interpretation. On individual prospects, side-scan sonar has aided the establishment of critical dip in poor seismic data areas, located seeps and tar mounds, and determined erosional breaching of a prospect. Over a mature producing field, side-scan sonar has influenced the search for field extension by documenting the orientation and location of critical trapping cross faults. These relatively inexpensive techniques can provide critical data in any marine basin where rocks crop out on the sea floor.« less

  10. Technology Infusion of CodeSonar into the Space Network Ground Segment

    NASA Technical Reports Server (NTRS)

    Benson, Markland J.

    2009-01-01

    This slide presentation reviews the applicability of CodeSonar to the Space Network software. CodeSonar is a commercial off the shelf system that analyzes programs written in C, C++ or Ada for defects in the code. Software engineers use CodeSonar results as an input to the existing source code inspection process. The study is focused on large scale software developed using formal processes. The systems studied are mission critical in nature but some use commodity computer systems.

  11. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar AGENCY: Department of the Navy, DoD. ACTION: Notice of decision... to employ up to four Surveillance Towed Array Sensor System Low Frequency Active (SURTASS LFA) sonar...

  12. Automatic Detection of Sand Ripple Features in Sidescan Sonar Imagery

    DTIC Science & Technology

    2014-07-09

    Among the features used in forensic scientific fingerprint analysis are terminations or bifurcations of print ridges. Sidescan sonar imagery of ripple...always be pathological cases. The size of the blocks of pixels used in determining the ripple wavelength is evident in the output images on the right in

  13. Mid-Frequency Sonar Interactions with Beaked Whales

    DTIC Science & Technology

    2010-09-30

    1 Mid-Frequency Sonar Interactions with Beaked Whales PI Kenneth G. Foote Woods Hole Oceanographic Institution, 98 Water Street, Woods Hole, MA...modeling and visualization system, called the Virtual Beaked Whale, to enable users to predict mid-frequency sonar -induced acoustic fields inside beaked...nature of sonar interactions with beaked whales, and may prove useful in evaluating alternate sonar transmit signals that retain the required

  14. Development of an Autonomous Broadband Acoustic Scattering System for Remote Characterization of Zooplankton

    DTIC Science & Technology

    2009-01-01

    measure of a backscatter at a single narrowband frequency, and some AUVs carry single-frequency sidescan sonars (and this technology has been adapted...monostatic Doppler sonar module. Key personnel for this project include: Andone Lavery as the PI for this project and who has overall responsibility...for the successful development, testing, and calibration of the broadband system. Gene Terray, who developed the original sonar Doppler sonar boards

  15. Acoustic detection and quantification of benthic egg beds of the squid Loligo opalescens in Monterey Bay, California.

    PubMed

    Foote, Kenneth G; Hanlon, Roger T; Lampietro, Pat J; Kvitek, Rikk G

    2006-02-01

    The squid Loligo opalescens is a key species in the nearshore pelagic community of California, supporting the most valuable state marine fishery, yet the stock biomass is unknown. In southern Monterey Bay, extensive beds occur on a flat, sandy bottom, water depths 20-60 m, thus sidescan sonar is a prima-facie candidate for use in rapid, synoptic, and noninvasive surveying. The present study describes development of an acoustic method to detect, identify, and quantify squid egg beds by means of high-frequency sidescan-sonar imagery. Verification of the method has been undertaken with a video camera carried on a remotely operated vehicle. It has been established that sidescan sonar images can be used to predict the presence or absence of squid egg beds. The lower size limit of detectability of an isolated egg bed is about 0.5 m with a 400-kHz sidescan sonar used with a 50-m range when towed at 3 knots. It is possible to estimate the abundance of eggs in a region of interest by computing the cumulative area covered by the egg beds according to the sidescan sonar image. In a selected quadrat one arc second on each side, the estimated number of eggs was 36.5 million.

  16. High-resolution multi-channel seismic images of the Queen Charlotte Fault system offshore southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Brothers, D. S.; Kluesner, J.; Balster-Gee, A.; Ten Brink, U. S.; Andrews, B. D.; Haeussler, P. J.; Watt, J. T.; Dartnell, P.; East, A. E.

    2016-12-01

    We present high-resolution multi-channel seismic (MCS) images of fault structure and sedimentary stratigraphy along the southeastern Alaska margin, where the northern Queen Charlotte Fault (QCF) cuts the shelf-edge and slope. The QCF is a dominantly strike slip system that forms the boundary between the Pacific (PA) and North American (NA) plates offshore western Canada and southeastern Alaska. The data were collected using a 64 channel, 200 m digital streamer and a 0.75-3 kJ sparker source aboard the R/V Norseman in August 2016. The survey was designed to cross a seafloor fault trace recently imaged by multibeam sonar (see adjacent poster by Brothers et al.) and to extend the subsurface information landward and seaward from the fault. Analysis of these MCS and multibeam data focus on addressing key questions that have significant implications for the kinematic and geodynamic history of the fault, including: Is the imaged surface fault in multibeam sonar the only recently-active fault trace? What is the shallow fault zone width and structure, is the internal structure of the recently-discovered pull-apart basin a dynamically developing structure? How does sediment thickness vary along the margin and how does this variation affect the fault expression? Can previous glacial sequences be identified in the stratigraphy?

  17. Underwater Mapping Results for Seabotix vLBV300 Vehicle with Tritech Gemini 720i Imaging Sonar near Newport, OR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollinger, Geoffrey

    This document presents results from tests to demonstrate underwater mapping capabilities of an underwater vehicle in conditions typically found in marine renewable energy arrays. These tests were performed with a tethered Seabotix vLBV300 underwater vehicle. The vehicle is equipped with an inertial navigation system (INS) based on a Gladiator Landmark 40 IMU and Teledyne Explorer Doppler Velocity Log, as well as a Gemini 720i scanning sonar acquired from Tritech. The results presented include both indoor pool and offshore deployments. The indoor pool deployments were performed on October 7, 2016 and February 3, 2017 in Corvallis, OR. The offshore deployment wasmore » performed on April 20, 2016 off the coast of Newport, OR (44.678 degrees N, 124.109 degrees W). During the mission period, the sea state varied between 3 and 4, with an average significant wave height of 1.6 m. Data was recorded from both the INS and the sonar.« less

  18. Lava Morphology Classification of a Fast-Spreading Ridge Using Deep-Towed Sonar Data: East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Meyer, J.; White, S.

    2005-05-01

    Classification of lava morphology on a regional scale contributes to the understanding of the distribution and extent of lava flows at a mid-ocean ridge. Seafloor classification is essential to understand the regional undersea environment at midocean ridges. In this study, the development of a classification scheme is found to identify and extract textural patterns of different lava morphologies along the East Pacific Rise using DSL-120 side-scan and ARGO camera imagery. Application of an accurate image classification technique to side-scan sonar allows us to expand upon the locally available visual ground reference data to make the first comprehensive regional maps of small-scale lava morphology present at a mid-ocean ridge. The submarine lava morphologies focused upon in this study; sheet flows, lobate flows, and pillow flows; have unique textures. Several algorithms were applied to the sonar backscatter intensity images to produce multiple textural image layers useful in distinguishing the different lava morphologies. The intensity and spatially enhanced images were then combined and applied to a hybrid classification technique. The hybrid classification involves two integrated classifiers, a rule-based expert system classifier and a machine learning classifier. The complementary capabilities of the two integrated classifiers provided a higher accuracy of regional seafloor classification compared to using either classifier alone. Once trained, the hybrid classifier can then be applied to classify neighboring images with relative ease. This classification technique has been used to map the lava morphology distribution and infer spatial variability of lava effusion rates along two segments of the East Pacific Rise, 17 deg S and 9 deg N. Future use of this technique may also be useful for attaining temporal information. Repeated documentation of morphology classification in this dynamic environment can be compared to detect regional seafloor change.

  19. 50 CFR 216.189 - Renewal of Letters of Authorization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA sonar) Sonar § 216.189 Renewal of Letters of... each SURTASS LFA sonar operation; (3) Timely receipt of the monitoring reports required under § 216.185... comment on the proposed modification. Amending the areas for upcoming SURTASS LFA sonar operations is not...

  20. 50 CFR 216.189 - Renewal of Letters of Authorization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA sonar) Sonar § 216.189 Renewal of Letters of... each SURTASS LFA sonar operation; (3) Timely receipt of the monitoring reports required under § 216.185... comment on the proposed modification. Amending the areas for upcoming SURTASS LFA sonar operations is not...

  1. 76 FR 3092 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to Navy's Mission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... involve underwater explosive detonation, projectile firing, and sonar testing. Summary of Activity Under..., most of the mid-frequency active sonar (MFAS) and high-frequency active sonar (HFAS) testing events... (Number Authorized vs. Conducted). Number Number Sonar system authorized conducted (hrs) (hrs) AN/SQS-53...

  2. Digitally controlled sonars

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1983-01-01

    Sonars are usually designed and constructed as stand alone instruments. That is, all elements or subsystems of the sonar are provided: power conditioning, displays, intercommunications, control, receiver, transmitter, and transducer. The sonars which are a part of the Advanced Ocean Test Development Platform (AOTDP) represent a departure from this manner of implementation and are configured more like an instrumentation system. Only the transducer, transmitter, and receiver which are unique to a particular sonar function; Up, Down, Side Scan, exist as separable subsystems. The remaining functions are reserved to the AOTDP and serve all sonars and other instrumentation in a shared manner. The organization and functions of the common AOTDP elements were described and then the interface with the sonars discussed. The techniques for software control of the sonar parameters were explained followed by the details of the realization of the sonar functions and some discussion of the performance of the side scan sonars.

  3. Interference fringes on GLORIA side-scan sonar images from the Bering Sea and their implications

    USGS Publications Warehouse

    Huggett, Q.J.; Cooper, A. K.; Somers, M.L.; Stubbs, A.R.

    1992-01-01

    GLORIA side-scan sonographs from the Bering Sea Basin show a complex pattern of interference fringes sub-parallel to the ship's track. Surveys along the same trackline made in 1986 and 1987 show nearly identical patterns. It is concluded from this that the interference patterns are caused by features in the shallow subsurface rather than in the water column. The fringes are interpreted as a thin-layer interference effect that occurs when some of the sound reaching the seafloor passes through it and is reflected off a subsurface layer. The backscattered sound interferes (constructively or desctructively) with the reflected sound. Constructive/destructive interference occurs when the difference in the length of the two soundpaths is a whole/half multiple of GLORIA's 25 cm wavelength. Thus as range from the ship increases, sound moves in and out of phase causing bands of greater and lesser intensity on the GLORIA sonograph. Fluctuations (or 'wiggles') of the fringes on the GLORIA sonographs relate to changes in layer thickness. In principle, a simple three dimensional image of the subsurface layer may be obtained using GLORIA and bathymetric data from adjacent (parallel) ship's tracks. These patterns have also been identified in images from two other systems; SeaMARC II (12 kHz) long-range sonar, and TOBI (30 kHz) deep-towed sonar. In these, and other cases world-wide, the fringes do not appear with the same persistence as those seen in the Bering Sea. ?? 1992 Kluwer Academic Publishers.

  4. Assessment of Marine Mammal Impact Zones for Use of Military Sonar in the Baltic Sea.

    PubMed

    Andersson, Mathias H; Johansson, Torbjörn

    2016-01-01

    Military sonars are known to have caused cetaceans to strand. Navies in shallow seas use different frequencies and sonar pulses, commonly frequencies between 25 and 100 kHz, compared with most studied NATO sonar systems that have been evaluated for their environmental impact. These frequencies match the frequencies of best hearing in the harbor porpoises and seals resident in the Baltic Sea. This study uses published temporary and permanent threshold shifts, measured behavioral response thresholds, technical specifications of a sonar system, and environmental parameters affecting sound propagation common for the Baltic Sea to estimate the impact zones for harbor porpoises and seals.

  5. Acoustic water bottom investigation with a remotely operated watercraft survey system

    NASA Astrophysics Data System (ADS)

    Yamasaki, Shintaro; Tabusa, Tomonori; Iwasaki, Shunsuke; Hiramatsu, Masahiro

    2017-12-01

    This paper describes a remotely operated investigation system developed by combining a modern leisure-use fish finder and an unmanned watercraft to survey water bottom topography and other data related to bottom materials. Current leisure-use fish finders have strong depth sounding capabilities and can provide precise sonar images and bathymetric information. Because these sonar instruments are lightweight and small, they can be used on unmanned small watercraft. With the developed system, an operator can direct the heading of an unmanned watercraft and monitor a PC display showing real-time positioning information through the use of onboard equipment and long-distance communication devices. Here, we explain how the system was developed and demonstrate the use of the system in an area of submerged woods in a lake. The system is low cost, easy to use, and mobile. It should be useful in surveying areas that have heretofore been hard to investigate, including remote, small, and shallow lakes, for example, volcanic and glacial lakes.

  6. Synthetic-Aperture Coherent Imaging From A Circular Path

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1995-01-01

    Imaging algorithms based on exact point-target responses. Developed for use in reconstructing image of target from data gathered by radar, sonar, or other transmitting/receiving coherent-signal sensory apparatus following circular observation path around target. Potential applications include: Wide-beam synthetic-aperture radar (SAR) from aboard spacecraft in circular orbit around target planet; SAR from aboard airplane flying circular course at constant elevation around central ground point, toward which spotlight radar beam pointed; Ultrasonic reflection tomography in medical setting, using one transducer moving in circle around patient or else multiple transducers at fixed positions on circle around patient; and Sonar imaging of sea floor to high resolution, without need for large sensory apparatus.

  7. 50 CFR 216.187 - Applications for Letters of Authorization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA sonar) Sonar § 216.187 Applications for Letters of... scheduled to begin conducting SURTASS LFA sonar operations or the previous Letter of Authorization is...

  8. 50 CFR 216.187 - Applications for Letters of Authorization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA sonar) Sonar § 216.187 Applications for Letters of... scheduled to begin conducting SURTASS LFA sonar operations or the previous Letter of Authorization is...

  9. Multiple Frequency Parametric Sonar

    DTIC Science & Technology

    2015-09-28

    300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...a method for increasing the bandwidth of a parametric sonar system by using multiple primary frequencies rather than only two primary frequencies...2) Description of Prior Art [0004] Parametric sonar generates narrow beams at low frequencies by projecting sound at two distinct primary

  10. Automated Point Cloud Correspondence Detection for Underwater Mapping Using AUVs

    NASA Technical Reports Server (NTRS)

    Hammond, Marcus; Clark, Ashley; Mahajan, Aditya; Sharma, Sumant; Rock, Stephen

    2015-01-01

    An algorithm for automating correspondence detection between point clouds composed of multibeam sonar data is presented. This allows accurate initialization for point cloud alignment techniques even in cases where accurate inertial navigation is not available, such as iceberg profiling or vehicles with low-grade inertial navigation systems. Techniques from computer vision literature are used to extract, label, and match keypoints between "pseudo-images" generated from these point clouds. Image matches are refined using RANSAC and information about the vehicle trajectory. The resulting correspondences can be used to initialize an iterative closest point (ICP) registration algorithm to estimate accumulated navigation error and aid in the creation of accurate, self-consistent maps. The results presented use multibeam sonar data obtained from multiple overlapping passes of an underwater canyon in Monterey Bay, California. Using strict matching criteria, the method detects 23 between-swath correspondence events in a set of 155 pseudo-images with zero false positives. Using less conservative matching criteria doubles the number of matches but introduces several false positive matches as well. Heuristics based on known vehicle trajectory information are used to eliminate these.

  11. Integration of orthophotographic and sidescan sonar imagery: an example from Lake Garda, Italy

    USGS Publications Warehouse

    Gentili, Giuseppe; Twichell, David C.; Schwab, Bill

    1996-01-01

    Digital orthophotos of Lake Garda basin area are available at the scale of up to 1:10,000 from a 1994 high altitude (average scale of 1:75,000) air photo coverage of Italy collected with an RC30 camera and Panatomic film. In October 1994 the lake bed was surveyed by USGS and CISIG personnel using a SIS 1000 Sea-Floor Mapping System. Subsystems of the SIS-1000 include high resolution sidescan sonar and sub-bottom profiler. The sidescan imagery was collected in ranges up to 1500m, while preserving a 50cm pixel resolution. The system was navigated using differential GPS. The extended operational range of the sidescan sonar permitted surveying the 370km lake area in 11 days. Data were compiled into a digital image with a pixel resolution of about 2m and stored as 12 gigabytes in exabyte 8mm tape and converted from WGS84 coordinate system to the European Datum (ED50) and integrated with bathymetric data digitized from maps.The digital bathymetric model was generated by interpolation using commercial software and was merged with the land elevation model to obtain a digital elevation model of the Lake Garda basin.The sidescan image data was also projected in the same coordinate system and seamed with the digital orthophoto of the land to produce a continuous image of the basin as if the water were removed. Some perspective scenes were generated by combining elevation and bathymetric data with basin and lake floor images. In deep water the lake's thermal structure created problems with the imagery indicating that winter or spring is best survey period. In shallow waters, ≤ 10 m, where data are missing, the bottom data gap can be filled with available images from the first few channels of the Daedalus built MIVIS, a 102 channel hyperspectral scanner with 20 channel bands of 0.020 μm width, operating in the visible part of the spectrum. By integrating orthophotos with sidescan imagery we can see how the basin morphology extends across the lake, the paths taken by the lake inlet along the lake bed and the areal distribution of sediments. An extensive exposure of debris aprons were noted on the western side of the lake. Various anthropogenic objects were recognized: pipelines, sites of waste disposal on the lake's bed, and relicts of Venitian and Austrian(?) boats.

  12. Observing Ocean Ecosystems with Sonar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Maxwell, Adam R.; Ham, Kenneth D.

    2016-12-01

    We present a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) is built to connect to an instrumentation network, where it consumes a real-time stream of sonar data and archives tracking and biomass data.

  13. ATR Performance Estimation Seed Program

    DTIC Science & Technology

    2015-09-28

    to produce simulated MCM sonar data and demonstrate the impact of system, environmental, and target scattering effects on ATR detection...settings and achieving better understanding the relative impact of the factors influencing ATR performance. sonar, mine countermeasures, MCM , automatic...simulated MCM sonar data and demonstrate the impact of system, environmental, and target scattering effects on ATR detection/classification performance. The

  14. Studying seafloor bedforms using autonomous stationary imaging and profiling sonars

    USGS Publications Warehouse

    Montgomery, Ellyn T.; Sherwood, Christopher R.

    2014-01-01

    The Sediment Transport Group at the U.S. Geological Survey, Woods Hole Coastal and Marine Science Center uses downward looking sonars deployed on seafloor tripods to assess and measure the formation and migration of bedforms. The sonars have been used in three resolution-testing experiments, and deployed autonomously to observe changes in the seafloor for up to two months in seven field experiments since 2002. The sonar data are recorded concurrently with measurements of waves and currents to: a) relate bedform geometry to sediment and flow characteristics; b) assess hydrodynamic drag caused by bedforms; and c) estimate bedform sediment transport rates, all with the goal of evaluating and improving numerical models of these processes. Our hardware, data processing methods, and test and validation procedures have evolved since 2001. We now employ a standard sonar configuration that provides reliable data for correlating flow conditions with bedform morphology. Plans for the future are to sample more rapidly and improve the precision of our tripod orientation measurements.

  15. Development of an Autonomous Broadband Acoustic Scattering System for Remote Characterization of Zooplankton

    DTIC Science & Technology

    2008-01-01

    backscatter at a single narrowband frequency, and some AUVs carry single-frequency sidescan sonars (and this technology has been adapted for gliders), the...broadband acoustic scattering system by adapting existing technology that has been recently developed at WHOI for a monostatic Doppler sonar module...broadband acoustic backscattering system: 1) Modifications to the monostatic Doppler sonar module, recently developed at WHOI for turbulence studies

  16. Aerial ultrasonic micro Doppler sonar detection range in outdoor environments.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2012-03-01

    Current research demonstrates that micro Doppler sonar has the capability to uniquely identify the presence of a moving human, making it an attractive component in surveillance systems for border security applications. Primary environmental factors that limit sonar performance are two-way spreading losses, ultrasonic absorption, and backscattered energy from the ground that appears at zero Doppler shift in the sonar signal processor. Spectral leakage from the backscatter component has a significant effect on sonar performance for slow moving targets. Sonar performance is shown to rapidly decay as the sensor is moved closer to the ground due to increasing surface backscatter levels. © 2012 Acoustical Society of America

  17. Structural Acoustic UXO Detection and Identification in Marine Environments

    DTIC Science & Technology

    2016-05-01

    BOSS Buried Object Scanning Sonar DVL Doppler Velocity Log EW East/West IMU Inertial Measurement Unit NRL Naval Research Laboratory NSWC-PCD... Inertial Measurement Unit (IMU) to time-delay and coherently sum matched-filtered phase histories from subsurface focal points over a large number of... Measurement Unit (IMU) systems. In our imaging algorithm, the 2D depth image of a target, i.e. one mapped over x and z or y and z, presents the

  18. 77 FR 6084 - Taking and Importing Marine Mammals; U.S. Navy Training in the Southern California Range Complex

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... the Navy in SOCAL, the Hawaii Range Complex, and the Atlantic Fleet Active Sonar Training Study Area... estimated usage of two sonar systems, they remain well within the authorized 5-year source amounts and the... exercise report indicates that the Navy exceeded the average annual amount of two sonar systems during this...

  19. BatSLAM: Simultaneous localization and mapping using biomimetic sonar.

    PubMed

    Steckel, Jan; Peremans, Herbert

    2013-01-01

    We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building.

  20. BatSLAM: Simultaneous Localization and Mapping Using Biomimetic Sonar

    PubMed Central

    Steckel, Jan; Peremans, Herbert

    2013-01-01

    We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building. PMID:23365647

  1. Continuous Monitoring of Mobility, Burial and Re exposure of Underwater Munitions in Energetic Near Shore Environments

    DTIC Science & Technology

    2017-01-01

    parameters on Wasque Shoals ..................................................... 22 Figure 19. Rotary sonar imagery showing migrating mega- ripples and the...shown by the green and yellow lines reveals the convergence and divergence of the migrating mega- ripples ...26 Figure 24. Succesive rotary sonar images showing transient burial and reexposure of a surrogate UXO by migrating mega- ripples

  2. Dynamic 3d Modeling of a Canal-Tunnel Using Photogrammetric and Bathymetric Data

    NASA Astrophysics Data System (ADS)

    Moisan, E.; Heinkele, C.; Charbonnier, P.; Foucher, P.; Grussenmeyer, P.; Guillemin, S.; Koehl, M.

    2017-02-01

    This contribution introduces an original method for dynamically surveying the vault and underwater parts of a canal-tunnel for 3D modeling. The recording system, embedded on a barge, is composed of cameras that provide images of the above-water part of the tunnel, and a sonar that acquires underwater 3D profiles. In this contribution we propose to fully exploit the capacities of photogrammetry to deal with the issue of geo-referencing data in the absence of global positioning system (GPS) data. More specifically, we use it both for reconstructing the vault and side walls of the tunnel in 3D and for estimating the trajectory of the boat, which is necessary to rearrange sonar profiles to form the 3D model of the canal. We report on a first experimentation carried out inside a canal-tunnel and show promising preliminary results that illustrate the potentialities of the proposed approach.

  3. 77 FR 34041 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... Supplement, USN, 00, Surveillance Towed Array Sensor System Low Frequency Active (SURTASS LFA) Sonar Systems, Updated and Additional Information on Employment of Four SURTASS LFA Sonar Systems for Routine Training...

  4. Bathymetry and acoustic backscatter data collected in 2010 from Cat Island, Mississippi

    USGS Publications Warehouse

    Buster, Noreen A.; Pfeiffer, William R.; Miselis, Jennifer L.; Kindinger, Jack G.; Wiese, Dana S.; Reynolds, B.J.

    2012-01-01

    Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center (SPCMSC), in collaboration with the U.S. Army Corps of Engineers (USACE), conducted geophysical and sedimentological surveys around Cat Island, the westernmost island in the Mississippi-Alabama barrier island chain (fig. 1). The objectives of the study were to understand the geologic evolution of Cat Island relative to other barrier islands in the northern Gulf of Mexico and to identify relationships between the geologic history, present day morphology, and sediment distribution. This report contains data from the bathymetry and side-scan sonar portion of the study collected during two geophysical cruises. Interferometric swath bathymetry and side-scan sonar data were collected aboard the RV G.K. Gilbert September 7-15, 2010. Single-beam bathymetry was collected in shallow water around the island (< 2 meter (m)) from the RV Streeterville from September 28 to October 2, 2010, to cover the data gap between the landward limit of the previous cruise and the shoreline. This report serves as an archive of processed interferometric swath and single-beam bathymetry and side scan sonar data. GIS data products include a 50-m cell size interpolated gridded bathymetry surface, trackline maps, and an acoustic side-scan sonar image. Additional files include error analysis maps, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FDGC) metadata.

  5. Multibeam sonar (DIDSON) assessment of American shad (Alosa sapidissima) approaching a hydroelectric dam

    USGS Publications Warehouse

    Grote, Ann B.; Bailey, Michael M.; Zydlewski, Joseph D.; Hightower, Joseph E.

    2014-01-01

    We investigated the fish community approaching the Veazie Dam on the Penobscot River, Maine, prior to implementation of a major dam removal and river restoration project. Multibeam sonar (dual-frequency identification sonar, DIDSON) surveys were conducted continuously at the fishway entrance from May to July in 2011. A 5% subsample of DIDSON data contained 43 793 fish targets, the majority of which were of Excellent (15.7%) or Good (73.01%) observation quality. Excellent quality DIDSON targets (n = 6876) were apportioned by species using a Bayesian mixture model based on four known fork length distributions (river herring (alewife,Alosa psuedoharengus, and blueback herring, Alosa aestivalis), American shad, Alosa sapidissima) and two size classes (one sea-winter and multi-sea-winter) of Atlantic salmon (Salmo salar). 76.2% of targets were assigned to the American shad distribution; Atlantic salmon accounted for 15.64%, and river herring 8.16% of observed targets. Shad-sized (99.0%) and salmon-sized (99.3%) targets approached the fishway almost exclusively during the day, whereas river herring-sized targets were observed both during the day (51.1%) and at night (48.9%). This approach demonstrates how multibeam sonar imaging can be used to evaluate community composition and species-specific movement patterns in systems where there is little overlap in the length distributions of target species.

  6. Submerged Object Detection and Classification System

    DTIC Science & Technology

    1993-04-16

    example of this type of system is a conventional sonar device wherein a highly directional beam of sonic energy periodically radiates from a...scanning transducer which in turn operates as a receiver to detect echoes reflected from any object within the path of 15 propagation. Sonar devices...classification, which requires relatively high frequency signals. Sonar devices also have the shortcoming of sensing background noise generated by

  7. Automated Detection of a Crossing Contact Based on Its Doppler Shift

    DTIC Science & Technology

    2009-03-01

    contacts in passive sonar systems. A common approach is the application of high- gain processing followed by successive classification criteria. Most...contacts in passive sonar systems. A common approach is the application of high-gain processing followed by successive classification criteria...RESEARCH MOTIVATION The trade-off between the false alarm and detection probability is fundamental in radar and sonar . (Chevalier, 2002) A common

  8. A comparison of the role of beamwidth in biological and engineered sonar.

    PubMed

    Todd, Bryan D; Müller, Rolf

    2017-12-28

    Sonar is an important sensory modality for engineers as well as in nature. In engineering, sonar is the dominating modality for underwater sensing. In nature, biosonar is likely to have been a central factor behind the unprecedented evolutionary success of bats, a highly diverse group that accounts for over 20% of all mammal species. However, it remains unclear to what extent engineered and biosonar follow similar design and operational principles. In the current work, the key sonar design characteristic of beamwidth is examined in technical and biosonar. To this end, beamwidth data has been obtained for 23 engineered sonar systems and from numerical beampattern predictions for 151 emission and reception elements (noseleaves and ears) representing bat biosonar. Beamwidth data from these sources is compared to the beamwidth of a planar ellipsoidal transducer as a reference. The results show that engineered and biological both obey the basic physical limit on beamwidth as a function of the ratio of aperture size and wavelength. However, beyond that, the beamwidth data revealed very different behaviors between the engineered and the biological sonar systems. Whereas the beamwidths of the technical sonar systems were very close to the planar transducer limit, the biological samples showed a very wide scatter away from this limit. This scatter was as large, if not wider, than what was seen in a small reference data set obtained with random aluminum cones. A possible interpretation of these differences in the variability could be that whereas sonar engineers try to minimize beamwidth subject to constraints on device size, the evolutionary optimization of bat biosonar beampatterns has been directed at other factors that have left beamwidth as a byproduct. Alternatively, the biosonar systems may require beamwidth values that are larger than the physical limit and differ between species and their sensory ecological niches.

  9. Sonar gas seepage characterization using high resolution systems at short ranges

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, J.; Lohrberg, A.; Mücke, I.

    2017-12-01

    Sonar is extremely sensitive in regard to submarine remote sensing of free gas bubbles. Known reasons for this are (1) high impedance contrast between water and gas, holding true also at larger depths with higher hydrostatic pressures and thus greater mole density in a gas bubble; (2) resonating behavior at a specific depth-frequency-size/shape relation with highly non-linear behavior; (3) an overlooked property being valuable for gas seepage detection and characterization is the movement of bubbles controlled by their overall trajectory governed by buoyancy, upwelling effects, tides, eddies, and currents. Moving objects are an unusual seismo-acoustic target in solid earth geophysics, and most processors hardly consider such short term movement. However, analyzing movement pattern over time and space highly improves human and algorithmic bubble detection and helps mitigation of false alarms often caused by fish's swim bladders. We optimized our sonar surveys for gas bubble trajectory analyses using calibrated split-beam and broadband/short pulse multibeam to gather very high quality sonar images. Thus we present sonar data patterns of gas seepage sites recorded at shorter ranges showing individual bubbles or groups of bubbles. Subsequent analyses of bubble trajectories and sonar strength can be used to quantify minor gas fluxes with high accuracy. Moreover, we analyzed strong gas bubble seepage sites with significant upwelling. Acoustic inversion of such major seep fluxes is extremely challenging if not even impossible given uncertainties in bubble size spectra, upwelling velocities, and beam geometry position of targets. Our 3D analyses of the water column multibeam data unraveled that some major bubble flows prescribe spiral vortex trajectories. The phenomenon was first found at an abandoned well site in the North Sea, but our recent investigations confirm such complex bubble trajectories exist at natural seeps, i.e. at the CO2 seep site Panarea (Italy). We hypothesize that accurate 3D analyses of plume shape and trajectory analyses might help to estimate threshold for fluxes.

  10. Directional Receiver for Biomimetic Sonar System

    NASA Astrophysics Data System (ADS)

    Guarato, Francesco; Andrews, Heather; Windmill, James F.; Jackson, Joseph; Gachagan, Anthony

    An ultrasonic localization method for a sonar system equipped with an emitter and two directional receivers and inspired by bat echolocation uses knowledge of the beam pattern of the receivers to estimate target orientation. Rousettus leschenaultii's left ear constitutes the model for the design of the optimal receiver for this sonar system and 3D printing was used to fabricate receiver structures comprising of two truncated cones with an elliptical external perimeter and a parabolic flare rate in the upper part. Measurements show one receiver has a predominant lobe in the same region and with similar attenuation values as the bat ear model. The final sonar system is to be mounted on vehicular and aerial robots which require remote control for motion and sensors for estimation of each robot's location.

  11. Continuous Active Sonar for Undersea Vehicles Final Report: Input of Factor Graphs into the Detection, Classification, and Localization Chain and Continuous Active SONAR in Undersea Vehicles

    DTIC Science & Technology

    2015-12-31

    image from NURP annual report. in X The ray -cone code simulates the CAS signal received after being reflected form two different targets, and...Cm where m, m, ... , 1fn are X ’s parents, and nodes C1, C1, ... , C,, are X ’s children. Image based on (Duda, Hart, & Stork, 2001). The first...Sorenson, 1970). Using the reference (Welch & Bishop, 2006), the procedure for estimating the real state x , of a discrete-time controlled process , will

  12. Neyman Pearson detection of K-distributed random variables

    NASA Astrophysics Data System (ADS)

    Tucker, J. Derek; Azimi-Sadjadi, Mahmood R.

    2010-04-01

    In this paper a new detection method for sonar imagery is developed in K-distributed background clutter. The equation for the log-likelihood is derived and compared to the corresponding counterparts derived for the Gaussian and Rayleigh assumptions. Test results of the proposed method on a data set of synthetic underwater sonar images is also presented. This database contains images with targets of different shapes inserted into backgrounds generated using a correlated K-distributed model. Results illustrating the effectiveness of the K-distributed detector are presented in terms of probability of detection, false alarm, and correct classification rates for various bottom clutter scenarios.

  13. Sonar Transducer Reliability Improvement Program (STRIP) FY81.

    DTIC Science & Technology

    1981-10-01

    that must be considered when selecting a material for the design of a sonar transducer. In the past decade, plastics have decreased in cost and...required in a sonar transducer system. A recent example of this type of failure has been with a neoprene .tfer formulation which was designed to meet...subject of the first design specification for transducer elastomers. Previous work on this material under the aegis of the Sonar Transduction

  14. Beaked Whale Anatomy, Field Studies and Habitat Modeling

    DTIC Science & Technology

    2007-11-01

    the notion that dual sonar sources interfere constructively to form a sonar beam in front of the animal. This is consistent with how the biosonar ...long been recognized as components of a sophisticated biosonar system. This sonar system has three categorical divisions: the sound generation and... biosonar signals in deep diving animals. These newly described transmission pathways are reminiscent of the configuration that would be seen in a sperm

  15. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why suchmore » correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.« less

  16. Improvement of energy efficiency via spectrum optimization of excitation sequence for multichannel simultaneously triggered airborne sonar system

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Hao; Yao, Zhen-Jing; Peng, Han-Yang

    2009-12-01

    Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error.

  17. 50 CFR 218.240 - Modifications to Letters of Authorization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA) Sonar § 218.240 Modifications to Letters of... sonar system from one ship to another, is not considered a substantial modification. (b) If NMFS...

  18. 50 CFR 218.240 - Modifications to Letters of Authorization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA) Sonar § 218.240 Modifications to Letters of... sonar system from one ship to another, is not considered a substantial modification. (b) If NMFS...

  19. 50 CFR 218.240 - Modifications to Letters of Authorization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA) Sonar § 218.240 Modifications to Letters of... sonar system from one ship to another, is not considered a substantial modification. (b) If NMFS...

  20. Advanced Unmanned Search System (AUSS) Performance Analysis

    DTIC Science & Technology

    1979-07-15

    interference (from thrusters , flow noise , etc.) with sonar data; (4) Sonar range scales can be adjusted, on scene, for viewing the same contacts with...intact. The H-bomb search was performed at 2000 feet, the sub- marine search at 8400 feet. An additional submarine search was selected at 20,000 feet to...Sonar Targets," by Stephen Miller, Marine Physical Laboratory, Scripps Institution of Oceanography, January 1977. 10 Table 2. Baseline towed system

  1. Woods Hole Image Processing System Software implementation; using NetCDF as a software interface for image processing

    USGS Publications Warehouse

    Paskevich, Valerie F.

    1992-01-01

    The Branch of Atlantic Marine Geology has been involved in the collection, processing and digital mosaicking of high, medium and low-resolution side-scan sonar data during the past 6 years. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. With the need to process sidescan data in the field with increased power and reduced cost of major workstations, a need to have an image processing package on a UNIX based computer system which could be utilized in the field as well as be more generally available to Branch personnel was identified. This report describes the initial development of that package referred to as the Woods Hole Image Processing System (WHIPS). The software was developed using the Unidata NetCDF software interface to allow data to be more readily portable between different computer operating systems.

  2. Mechanical Systems Development and Integration for a Second Generation Robot Submarine.

    DTIC Science & Technology

    1980-05-01

    for various scientific ii endeavors. As such, there will be times when the sub- marine must be disassembled for maintenance. This chapter is intended...STBD Side Scan Array 2 Port Side Scan Array 3 Comunications Sonar 4 Pinger 5 Bottom Finding Sonar 6 Collision Avoidance Sonar 7 Gel Cell Battery 8

  3. Sonar equations for planetary exploration.

    PubMed

    Ainslie, Michael A; Leighton, Timothy G

    2016-08-01

    The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus.

  4. Implementation and testing of a Deep Water Correlation Velocity Sonar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickey, F.R.; Bookheimer, W.C.; Rhoades, K.W.

    1983-05-01

    The paper describes a new sonar designated the Magnavox MX 810 Deep Water Correlation Sonar which is under development by the General Electric Company and the Magnavox Advanced Products and Systems Company. The sonar measures ship's velocity relative to the bottom but instead of using the conventional doppler effect, it uses the correlation method described by Dickey and Edward in 1978. In this method, the narrow beams required for doppler are not needed and a low frequency that penetrates to the bottom in deep water is used. The sonar was designed with the constraint that it use a transducer thatmore » mounts through a single 12 inch gate valve. Most offshore geophysical surveys at present make use of an integrated navigation system with bottom referenced velocity input from a doppler sonar which, because of limitations on the sonar bottomtracking range, has difficulty in areas where the water depth is greater than about 500 meters. The MX 810 provides bottom tracking in regions of much greater water depth. It also may be applied as an aid in continuous positioning of a vessel over a fixed location. It also should prove useful as a more general navigation aid. The sonar is undergoing a series of tests using Magnavox's facilities for the purpose of verifying the performance and obtaining data to support and quantify planned improvements in both software and hardware. A prototype transducer of only 5 watts power output was used, but in spite of this low power, successful operation to depths of 1900 meters was obtained. Extrapolation to system parameters to be implemented in production models predicts operation to depths of 5000 meters.« less

  5. Global Multi-Resolution Topography (GMRT) Synthesis - Version 2.0

    NASA Astrophysics Data System (ADS)

    Ferrini, V.; Coplan, J.; Carbotte, S. M.; Ryan, W. B.; O'Hara, S.; Morton, J. J.

    2010-12-01

    The detailed morphology of the global ocean floor is poorly known, with most areas mapped only at low resolution using satellite-based measurements. Ship-based sonars provide data at resolution sufficient to quantify seafloor features related to the active processes of erosion, sediment flow, volcanism, and faulting. To date, these data have been collected in a small fraction of the global ocean (<10%). The Global Multi-Resolution Topography (GMRT) synthesis makes use of sonar data collected by scientists and institutions worldwide, merging them into a single continuously updated compilation of high-resolution seafloor topography. Several applications, including GeoMapApp (http://www.geomapapp.org) and Virtual Ocean (http://www.virtualocean.org), make use of the GMRT Synthesis and provide direct access to images and underlying gridded data. Source multibeam files included in the compilation can also accessed through custom functionality in GeoMapApp. The GMRT Synthesis began in 1992 as the Ridge Multibeam Synthesis. It was subsequently expanded to include bathymetry data from the Southern Ocean, and now includes data from throughout the global oceans. Our design strategy has been to make data available at the full native resolution of shipboard sonar systems, which historically has been ~100 m in the deep sea (Ryan et al., 2009). A new release of the GMRT Synthesis in Fall of 2010 includes several significant improvements over our initial strategy. In addition to increasing the number of cruises included in the compilation by over 25%, we have developed a new protocol for handling multibeam source data, which has improved the overall quality of the compilation. The new tileset also includes a discrete layer of sonar data in the public domain that are gridded to the full resolution of the sonar system, with data gridded 25 m in some areas. This discrete layer of sonar data has been provided to Google for integration into Google’s default ocean base map. NOAA coastal grids and numerous grids contributed by the international science community are also integrated into the GMRT Synthesis. Finally, terrestrial elevation data from NASA’s ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) global DEM, and the USGS National Elevation Dataset have been included in the synthesis, providing resolution of up to 10 m in some areas of the US.

  6. The Dolphin Sonar: Excellent Capabilities In Spite of Some Mediocre Properties

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.

    2004-11-01

    Dolphin sonar research has been conducted for several decades and much has been learned about the capabilities of echolocating dolphins to detect, discriminate and recognize underwater targets. The results of these research projects suggest that dolphins possess the most sophisticated of all sonar for short ranges and shallow water where reverberation and clutter echoes are high. The critical feature of the dolphin sonar is the capability of discriminating and recognizing complex targets in a highly reverberant and noisy environment. The dolphin's detection threshold in reverberation occurs at a echo-to reverberation ratio of approximately 4 dB. Echolocating dolphins also have the capability to make fine discriminate of target properties such as wall thickness difference of water-filled cylinders and material differences in metallic plates. The high-resolution property of the animal's echolocation signals and the high dynamic range of its auditory system are important factors in their outstanding discrimination capabilities. In the wall thickness discrimination of cylinder experiment, time differences between echo highlights at small as 500-600 ns can be resolved by echolocating dolphins. Measurements of the targets used in the metallic plate composition experiment suggest that dolphins attended to echo components that were 20-30 dB below the maximum level for a specific target. It is interesting to realize that some of the properties of the dolphin sonar system are fairly mediocre, yet the total performance of the system is often outstanding. When compared to some technological sonar, the energy content of the dolphin sonar signal is not very high, the transmission and receiving beamwidths are fairly large, and the auditory filters are not very narrow. Yet the dolphin sonar has demonstrated excellent capabilities in spite the mediocre features of its "hardware." Reasons why dolphins can perform complex sonar task will be discussed in light of the "equipment" they possess.

  7. Bed texture mapping in large rivers using recreational-grade sidescan sonar

    USGS Publications Warehouse

    Hamill, Daniel; Wheaton, Joseph M.; Buscombe, Daniel D.; Grams, Paul E.; Melis, Theodore S.

    2017-01-01

    The size-distribution and spatial organization of bed sediment, or bed ‘texture’, is a fundamental attribute of natural channels and is one important component of the physical habitat of aquatic ecosystems. ‘Recreational-grade’ sidescan sonar systems now offer the possibility of imaging, and subsequently quantifying bed texture at high resolution with minimal cost, or logistical effort. We are investigating the possibility of using sidescan sonar sensors on commercially available ‘fishfinders’ for within-channel bed-sediment characterization of mixed sand-gravel riverbeds in a debris-fan dominated canyon river. We analyzed repeat substrate mapping of data collected before and after the November 2014 High Flow Experiment on the Colorado River in lower Marble Canyon, Arizona. The mapping analysis resulted in sufficient spatial coverage (e.g. reach) and resolutions (e.g. centrimetric) to inform studies of the effects of changing bed substrates on salmonid spawning on large rivers. From this preliminary study, we argue that the approach could become a tractable and cost-effective tool for aquatic scientists to rapidly obtain bed texture maps without specialized knowledge of hydroacoustics. Bed texture maps can be used as a physical input for models relating ecosystem responses to hydrologic management.

  8. Seafloor habitat mapping of the New York Bight incorporating sidescan sonar data

    USGS Publications Warehouse

    Lathrop, R.G.; Cole, M.; Senyk, N.; Butman, B.

    2006-01-01

    The efficacy of using sidescan sonar imagery, image classification algorithms and geographic information system (GIS) techniques to characterize the seafloor bottom of the New York Bight were assessed. The resulting seafloor bottom type map was compared with fish trawl survey data to determine whether there were any discernable habitat associations. An unsupervised classification with 20 spectral classes was produced using the sidescan sonar imagery, bathymetry and secondarily derived spatial heterogeneity to characterize homogenous regions within the study area. The spectral classes, geologic interpretations of the study region, bathymetry and a bottom landform index were used to produce a seafloor bottom type map of 9 different bottom types. Examination of sediment sample data by bottom type indicated that each bottom type class had a distinct composition of sediments. Analysis of adult summer flounder, Paralichthys dentatus, and adult silver hake, Merluccius bilinearis, presence/absence data from trawl surveys did not show evidence of strong associations between the species distributions and seafloor bottom type. However, the absence of strong habitat associations may be more attributable to the coarse scale and geographic uncertainty of the trawl sampling data than conclusive evidence that no habitat associations exist for these two species. ?? 2006 Elsevier Ltd. All rights reserved.

  9. 77 FR 51969 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to Navy Operations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... Sensor System Low Frequency Active Sonar AGENCY: National Marine Fisheries Service (NMFS), National... Sensor System Low Frequency Active (SURTASS LFA) sonar operations to the Chief of Naval Operations...

  10. 76 FR 53884 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to U.S. Navy Operations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... Array Sensor System Low Frequency Active Sonar AGENCY: National Marine Fisheries Service (NMFS... conducting operations of Surveillance Towed Array Sensor System (SURTASS) Low Frequency Active (LFA) sonar...

  11. 75 FR 51443 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to Navy Operations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... Sensor System Low Frequency Active Sonar AGENCY: National Marine Fisheries Service (NMFS), National... Array Sensor System Low Frequency Active (SURTASS LFA) sonar operations to the Chief of Naval Operations...

  12. 76 FR 51352 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to Navy Operations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... Sensor System Low Frequency Active Sonar AGENCY: National Marine Fisheries Service (NMFS), National... Array Sensor System Low Frequency Active (SURTASS LFA) sonar operations to the Chief of Naval Operations...

  13. New virtual sonar and wireless sensor system concepts

    NASA Astrophysics Data System (ADS)

    Houston, B. H.; Bucaro, J. A.; Romano, A. J.

    2004-05-01

    Recently, exciting new sensor array concepts have been proposed which, if realized, could revolutionize how we approach surface mounted acoustic sensor systems for underwater vehicles. Two such schemes are so-called ``virtual sonar'' which is formulated around Helmholtz integral processing and ``wireless'' systems which transfer sensor information through radiated RF signals. The ``virtual sonar'' concept provides an interesting framework through which to combat the dilatory effects of the structure on surface mounted sensor systems including structure-borne vibration and variations in structure-backing impedance. The ``wireless'' concept would eliminate the necessity of a complex wiring or fiber-optic external network while minimizing vehicle penetrations. Such systems, however, would require a number of advances in sensor and RF waveguide technologies. In this presentation, we will discuss those sensor and sensor-related developments which are desired or required in order to make practical such new sensor system concepts, and we will present several underwater applications from the perspective of exploiting these new sonar concepts. [Work supported by ONR.

  14. Automatic gain control in the echolocation system of dolphins

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.; Benoit-Bird, Kelly J.

    2003-06-01

    In bats and technological sonars, the gain of the receiver is progressively increased with time after the transmission of a signal to compensate for acoustic propagation loss. The current understanding of dolphin echolocation indicates that automatic gain control is not a part of their sonar system. In order to test this understanding, we have performed field measurements of free-ranging echolocating dolphins. Here we show that dolphins do possess an automatic gain control mechanism, but that it is implemented in the transmission phase rather than the receiving phase of a sonar cycle. We find that the amplitude of the dolphins' echolocation signals are highly range dependent; this amplitude increases with increasing target range, R, in a 20log(R) fashion to compensate for propagation loss. If the echolocation target is a fish school with many sound scatterers, the echoes from the school will remain nearly constant with range as the dolphin closes in on it. This characteristic has the same effect as time-varying gain in bats and technological sonar when considered from a sonar system perspective.

  15. Multibeam sonar backscatter data processing

    NASA Astrophysics Data System (ADS)

    Schimel, Alexandre C. G.; Beaudoin, Jonathan; Parnum, Iain M.; Le Bas, Tim; Schmidt, Val; Keith, Gordon; Ierodiaconou, Daniel

    2018-06-01

    Multibeam sonar systems now routinely record seafloor backscatter data, which are processed into backscatter mosaics and angular responses, both of which can assist in identifying seafloor types and morphology. Those data products are obtained from the multibeam sonar raw data files through a sequence of data processing stages that follows a basic plan, but the implementation of which varies greatly between sonar systems and software. In this article, we provide a comprehensive review of this backscatter data processing chain, with a focus on the variability in the possible implementation of each processing stage. Our objective for undertaking this task is twofold: (1) to provide an overview of backscatter data processing for the consideration of the general user and (2) to provide suggestions to multibeam sonar manufacturers, software providers and the operators of these systems and software for eventually reducing the lack of control, uncertainty and variability associated with current data processing implementations and the resulting backscatter data products. One such suggestion is the adoption of a nomenclature for increasingly refined levels of processing, akin to the nomenclature adopted for satellite remote-sensing data deliverables.

  16. Multimodal integration of micro-Doppler sonar and auditory signals for behavior classification with convolutional networks.

    PubMed

    Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas

    2013-10-01

    The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.

  17. Advances in Simultaneous Localization and Mapping in Confined Underwater Environments Using Sonar and Optical Imaging

    DTIC Science & Technology

    2016-01-01

    satisfying journeys in my life. I would like to thank Ryan for his guidance through the truly exciting world of mobile robotics and robotic perception. Thank...Multi-session and Multi-robot SLAM . . . . . . . . . . . . . . . 15 1.3.3 Robust Techniques for SLAM Backends . . . . . . . . . . . . . . 18 1.4 A...sonar. xv CHAPTER 1 Introduction 1.1 The Importance of SLAM in Autonomous Robotics Autonomous mobile robots are becoming a promising aid in a wide

  18. Ultra Precision Machining

    DTIC Science & Technology

    1990-05-20

    in the fields of mobile robots and military systems. In both fields extensive use is made of a variety of dissimilar sensors to gather information (Luo...and Kay [27]). For example, a mobile robot might use both sonar and stereo imaging data to get a better estimate of the distance to the nearest wall...Estimation and Modulation Theory, volume 1. McGraw-Hill, 1968. [45] R. H. Volin. Techniques and aplications of mechanical signature analsysis. Shock

  19. Inverting a dispersive scene's side-scanned image

    NASA Technical Reports Server (NTRS)

    Harger, R. O.

    1983-01-01

    Consideration is given to the problem of using a remotely sensed, side-scanned image of a time-variant scene, which changes according to a dispersion relation, to estimate the structure at a given moment. Additive thermal noise is neglected in the models considered in the formal treatment. It is shown that the dispersion relation is normalized by the scanning velocity, as is the group scanning velocity component. An inversion operation is defined for noise-free images generated by SAR. The method is extended to the inversion of noisy imagery, and a formulation is defined for spectral density estimation. Finally, the methods for a radar system are used for the case of sonar.

  20. Ultrasonic Imaging Modalities for Medical Applications

    NASA Astrophysics Data System (ADS)

    Ahmed, Mahfuz; Wade, Glen; Wang, Keith

    1980-06-01

    The ability to "see" with sound has long been an intriguing concept. Certain animals, such as bats and dolphins can do it readily but the human species is not so endowed by nature. However, this lack of natural ability has been overcome by developing an appropriate technology. For example, in various laboratories recently, workers were able to obtain true-focused orthographic images in real time of objects irradiated with sound rather than with light. Cross-sectional images have been available for a much longer period of time stemming from the development of pulse-echo techniques first used in the sonar systems of World War I. By now a wide variety of system concepts for acoustic imaging exist and have been or are being applied for medical diagnosis. The newer systems range from tomographic types using computers to holographic ones using lasers. These are dealt with briefly here.

  1. Iterative Self-Dual Reconstruction on Radar Image Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, Charles; Medeiros, Fatima; Ushizima, Daniela

    2010-05-21

    Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizesmore » when applied to simulated and real SAR images in comparison with standard filters.« less

  2. A group filter algorithm for sea mine detection

    NASA Astrophysics Data System (ADS)

    Cobb, J. Tory; An, Myoung; Tolimieri, Richard

    2005-06-01

    Automatic detection of sea mines in coastal regions is a difficult task due to the highly variable sea bottom conditions present in the underwater environment. Detection systems must be able to discriminate objects which vary in size, shape, and orientation from naturally occurring and man-made clutter. Additionally, these automated systems must be computationally efficient to be incorporated into unmanned underwater vehicle (UUV) sensor systems characterized by high sensor data rates and limited processing abilities. Using noncommutative group harmonic analysis, a fast, robust sea mine detection system is created. A family of unitary image transforms associated to noncommutative groups is generated and applied to side scan sonar image files supplied by Naval Surface Warfare Center Panama City (NSWC PC). These transforms project key image features, geometrically defined structures with orientations, and localized spectral information into distinct orthogonal components or feature subspaces of the image. The performance of the detection system is compared against the performance of an independent detection system in terms of probability of detection (Pd) and probability of false alarm (Pfa).

  3. An Adaptive Cultural Algorithm with Improved Quantum-behaved Particle Swarm Optimization for Sonar Image Detection.

    PubMed

    Wang, Xingmei; Hao, Wenqian; Li, Qiming

    2017-12-18

    This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.

  4. Spatial and temporal variation of acoustic backscatter in the STRESS experiment

    NASA Astrophysics Data System (ADS)

    Dworski, J. George; Jackson, Darrell R.

    1994-08-01

    Acoustic backscatter measurements were made of the seabed with a bottom mounted, circularly scanning sonar. The placement was at 91 m depth, mid-shelf of Northern California (38° 34'N), site C3 of the experiment STRESS I (1988-1989). Our expectation was that sonar images (70 m radius, 12,000 m 2) would provide a means of observing, over a large field of view, changes in the bottom due to storm-induced sediment transport and due to bioturbation. This expectation was supported in part by towed sonar measurements at 35 kHz over a sandy area in the North Sea, where dramatic spatial variation in the level of the backseattered signal was observed during an Autumn storm on scales of a few km with no concomitant change in sediment grain size [ JACKSONet al. (1986) The Journal of the Acoustical Society of America, 80, 1188-1199]. It appeared possible that storm-driven sediment transport might have been responsible for this patchiness, by altering bottom roughness and by redeposition of suspended material. At the California site, a conventional sonar processing of our data from the STRESS experiment reveals no such dramatic change in backscattered signal level due to storms. The sonar images contain random structures whose time evolution is subtle and difficult to interpret. A much clearer picture of temporal and spatial variations emerges from a processing scheme involving cross-correlation of time-separated acoustic views of the bottom. In effect, the sequence of correlation data images produces a movie in which patches of activity are seen to develop as functions of time. It appears that most of this activity is biological rather than hydrodynamic. A tentative explanation is two-fold. The bottom shear stress might have been considerably greater at the North Sea site (with depth only one-half of the California site). The seafloor at the California site was silty-clayey, and backscatter from such floor is less sensitive to the water-floor interface shape and roughness than it would be to the same parameters of a sandy bottom.

  5. Examining the robustness of automated aural classification of active sonar echoes.

    PubMed

    Murphy, Stefan M; Hines, Paul C

    2014-02-01

    Active sonar systems are used to detect underwater man-made objects of interest (targets) that are too quiet to be reliably detected with passive sonar. Performance of active sonar can be degraded by false alarms caused by echoes returned from geological seabed structures (clutter) in shallow regions. To reduce false alarms, a method of distinguishing target echoes from clutter echoes is required. Research has demonstrated that perceptual-based signal features similar to those employed in the human auditory system can be used to automatically discriminate between target and clutter echoes, thereby reducing the number of false alarms and improving sonar performance. An active sonar experiment on the Malta Plateau in the Mediterranean Sea was conducted during the Clutter07 sea trial and repeated during the Clutter09 sea trial. The dataset consists of more than 95,000 pulse-compressed echoes returned from two targets and many geological clutter objects. These echoes were processed using an automatic classifier that quantifies the timbre of each echo using a number of perceptual signal features. Using echoes from 2007, the aural classifier was trained to establish a boundary between targets and clutter in the feature space. Temporal robustness was then investigated by testing the classifier on echoes from the 2009 experiment.

  6. 50 CFR 218.239 - Renewal of Letters of Authorization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA) Sonar § 218.239 Renewal of Letters of.... Amending the areas for upcoming SURTASS LFA sonar operations is not considered a substantial modification...

  7. 50 CFR 218.237 - Applications for Letters of Authorization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA) Sonar § 218.237 Applications for Letters of... scheduled to begin conducting SURTASS LFA sonar operations or the previous Letter of Authorization is...

  8. 50 CFR 218.239 - Renewal of Letters of Authorization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA) Sonar § 218.239 Renewal of Letters of.... Amending the areas for upcoming SURTASS LFA sonar operations is not considered a substantial modification...

  9. 50 CFR 218.237 - Applications for Letters of Authorization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA) Sonar § 218.237 Applications for Letters of... scheduled to begin conducting SURTASS LFA sonar operations or the previous Letter of Authorization is...

  10. 50 CFR 218.239 - Renewal of Letters of Authorization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA) Sonar § 218.239 Renewal of Letters of.... Amending the areas for upcoming SURTASS LFA sonar operations is not considered a substantial modification...

  11. 50 CFR 218.237 - Applications for Letters of Authorization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Array Sensor System Low Frequency Active (SURTASS LFA) Sonar § 218.237 Applications for Letters of... scheduled to begin conducting SURTASS LFA sonar operations or the previous Letter of Authorization is...

  12. Computer image processing in marine resource exploration

    NASA Technical Reports Server (NTRS)

    Paluzzi, P. R.; Normark, W. R.; Hess, G. R.; Hess, H. D.; Cruickshank, M. J.

    1976-01-01

    Pictographic data or imagery is commonly used in marine exploration. Pre-existing image processing techniques (software) similar to those used on imagery obtained from unmanned planetary exploration were used to improve marine photography and side-scan sonar imagery. Features and details not visible by conventional photo processing methods were enhanced by filtering and noise removal on selected deep-sea photographs. Information gained near the periphery of photographs allows improved interpretation and facilitates construction of bottom mosaics where overlapping frames are available. Similar processing techniques were applied to side-scan sonar imagery, including corrections for slant range distortion, and along-track scale changes. The use of digital data processing and storage techniques greatly extends the quantity of information that can be handled, stored, and processed.

  13. Nekton Interaction Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-03-15

    The software provides a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) extracts and archives tracking and backscatter statistics data from a real-time stream of data from a sonar device. NIMS also sends real-time tracking messages over the network that can be used by other systems to generate other metrics or to trigger instruments such as an optical video camera. A web-based user interface provides remote monitoring and control. NIMS currently supports three popular sonarmore » devices: M3 multi-beam sonar (Kongsberg), EK60 split-beam echo-sounder (Simrad) and BlueView acoustic camera (Teledyne).« less

  14. Development of an Autonomous, Compact, Broadband Acoustic Backscattering System for Remote Characterization of Zooplankton Variability (PART II)

    DTIC Science & Technology

    2010-09-30

    proposal include: 1) complete the development of second-generation sonar boards, 2) complete the integration of new transducers with the second... sonar board and transducer. APPROACH Over the last 40 years, there has been significant research effort directed towards the use of high...narrowband frequency, and some AUVs carry single-frequency sidescan sonars (and this technology has been adapted for gliders), the lack of suitable

  15. Characteristics and Use of a Parametric End-Fired Array for Acoustics in Air

    DTIC Science & Technology

    2007-03-01

    as a sonar application for underwater use. The vast majority of the research for parametric arrays was devoted to underwater applications until the...and also for the calibration of hydrophones and receivers for wide band sonar . All of the researchers mentioned above mainly focused their efforts on...features, which include very high directivity at low frequencies without unwanted side lobes. They are generally used as a wide band sonar system

  16. 78 FR 34047 - Takes of Marine Mammals Incidental to Specified Activities; Navy Research, Development, Test and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... observe the area when the system is undergoing a small track close to the support platform. (2) Operating... the An/AQS-20A Mine Reconnaissance Sonar System in the NSWC PCD Testing Range, 2012-2014,'' which is... incidental to conducting testing of the AN/AQS- 20A Mine Reconnaissance Sonar System (hereafter referred to...

  17. Development of a sonar-based object recognition system

    NASA Astrophysics Data System (ADS)

    Ecemis, Mustafa Ihsan

    2001-02-01

    Sonars are used extensively in mobile robotics for obstacle detection, ranging and avoidance. However, these range-finding applications do not exploit the full range of information carried in sonar echoes. In addition, mobile robots need robust object recognition systems. Therefore, a simple and robust object recognition system using ultrasonic sensors may have a wide range of applications in robotics. This dissertation develops and analyzes an object recognition system that uses ultrasonic sensors of the type commonly found on mobile robots. Three principal experiments are used to test the sonar recognition system: object recognition at various distances, object recognition during unconstrained motion, and softness discrimination. The hardware setup, consisting of an inexpensive Polaroid sonar and a data acquisition board, is described first. The software for ultrasound signal generation, echo detection, data collection, and data processing is then presented. Next, the dissertation describes two methods to extract information from the echoes, one in the frequency domain and the other in the time domain. The system uses the fuzzy ARTMAP neural network to recognize objects on the basis of the information content of their echoes. In order to demonstrate that the performance of the system does not depend on the specific classification method being used, the K- Nearest Neighbors (KNN) Algorithm is also implemented. KNN yields a test accuracy similar to fuzzy ARTMAP in all experiments. Finally, the dissertation describes a method for extracting features from the envelope function in order to reduce the dimension of the input vector used by the classifiers. Decreasing the size of the input vectors reduces the memory requirements of the system and makes it run faster. It is shown that this method does not affect the performance of the system dramatically and is more appropriate for some tasks. The results of these experiments demonstrate that sonar can be used to develop a low-cost, low-computation system for real-time object recognition tasks on mobile robots. This system differs from all previous approaches in that it is relatively simple, robust, fast, and inexpensive.

  18. Archive of Side Scan Sonar and Swath Bathymetry Data collected during USGS Cruise 10CCT02 Offshore of Petit Bois Island Including Petit Bois Pass, Gulf Islands National Seashore, Mississippi, March 2010

    USGS Publications Warehouse

    Pfeiffer, William R.; Flocks, James G.; DeWitt, Nancy T.; Forde, Arnell S.; Kelso, Kyle; Thompson, Phillip R.; Wiese, Dana S.

    2011-01-01

    In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi, and Dauphin Island, Alabama (fig. 1). These efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geologic stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorphological changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration, particularly in Camille Cut, and protection for the historical Fort Massachusetts on Ship Island, Mississippi. For more information please refer to http://ngom.usgs.gov/gomsc/mscip/index.html. This report serves as an archive of the processed swath bathymetry and side scan sonar data (SSS). Data products herein include gridded and interpolated surfaces, seabed backscatter images, and ASCII x,y,z data products for both swath bathymetry and side scan sonar imagery. Additional files include trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Scanned images of the handwritten and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  19. Fiber-optic hydrophone array for acoustic surveillance in the littoral

    NASA Astrophysics Data System (ADS)

    Hill, David; Nash, Phillip

    2005-05-01

    We describe a fibre-optic hydrophone array system architecture that can be tailored to meet the underwater acoustic surveillance requirements of the military, counter terrorist and customs authorities in protecting ports and harbours, offshore production facilities or coastal approaches. Physically the fibre-optic hydrophone array is in the form of a lightweight cable, enabling rapid deployment from a small vessel. Based upon an optical architecture of time and wavelength multiplexed interferometric hydrophones, the array is comprised of a series of hydrophone sub-arrays. Using multiple sub-arrays, extended perimeters many tens of kilometres in length can be monitored. Interrogated via a long (~50km) optical fibre data link, the acoustic date is processed using the latest open architecture sonar processing platform, ensuring that acoustic targets below, on and above the surface are detected, tracked and classified. Results obtained from an at sea trial of a 96-channel hydrophone array are given, showing the passive detection and tracking of a diver, small surface craft and big ocean going ships beyond the horizon. Furthermore, we describe how the OptaMarine fibre-optic hydrophone array fits into an integrated multi-layered approach to port and harbour security consisting of active sonar for diver detection and hull imaging, as well as thermal imaging and CCTV for surface monitoring. Finally, we briefly describe a complimentary land perimeter intruder detection system consisting of an array of fibre optic accelerometers.

  20. Evaluation of the Performance of the Distributed Phased-MIMO Sonar.

    PubMed

    Pan, Xiang; Jiang, Jingning; Wang, Nan

    2017-01-11

    A broadband signal model is proposed for a distributed multiple-input multiple-output (MIMO) sonar system consisting of two transmitters and a receiving linear array. Transmitters are widely separated to illuminate the different aspects of an extended target of interest. The beamforming technique is utilized at the reception ends for enhancement of weak target echoes. A MIMO detector is designed with the estimated target position parameters within the general likelihood rate test (GLRT) framework. For the high signal-to-noise ratio case, the detection performance of the MIMO system is better than that of the phased-array system in the numerical simulations and the tank experiments. The robustness of the distributed phased-MIMO sonar system is further demonstrated in localization of a target in at-lake experiments.

  1. Evaluation of the Performance of the Distributed Phased-MIMO Sonar

    PubMed Central

    Pan, Xiang; Jiang, Jingning; Wang, Nan

    2017-01-01

    A broadband signal model is proposed for a distributed multiple-input multiple-output (MIMO) sonar system consisting of two transmitters and a receiving linear array. Transmitters are widely separated to illuminate the different aspects of an extended target of interest. The beamforming technique is utilized at the reception ends for enhancement of weak target echoes. A MIMO detector is designed with the estimated target position parameters within the general likelihood rate test (GLRT) framework. For the high signal-to-noise ratio case, the detection performance of the MIMO system is better than that of the phased-array system in the numerical simulations and the tank experiments. The robustness of the distributed phased-MIMO sonar system is further demonstrated in localization of a target in at-lake experiments. PMID:28085071

  2. Quantum imaging for underwater arctic navigation

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco

    2017-05-01

    The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.

  3. Improving Geologic Mapping of Mid-ocean Ridges by Integrating sonar and Visual Observations through Seafloor Classification by Machine-learning Systems

    NASA Astrophysics Data System (ADS)

    White, S. M.; McClinton, J. T.

    2011-12-01

    Beyond the ability of modern near-bottom sonar systems to deliver air-photo-like images of the seafloor to help guide fieldwork, there is a tremendous amount of information hidden within sonar data that is rarely exploited for geologic mapping. Seafloor texture, backscatter amplitude, seafloor slope and roughness data can provide clues about seafloor geology but not straightforward to interpret. We present techniques for seafloor classification in volcanic terrains that integrate the capability of high-resolution, near-bottom sonar instruments to cover extensive areas of seafloor with the ability of visual mapping to discriminate differences in volcanic terrain. These techniques are adapted from the standard practices of terrestrial remote-sensing for use in the deep seafloor volcanic environment. A combination of sonar backscatter and bathymetry is used to supplement the direct seafloor visual observations by geologists to make quasi-geologic thematic maps that are consistent, objective, and most importantly spatially complete. We have taken two approaches to producing thematic maps of the seafloor for the accurate mapping of fine-scale lava morphology (e.g. pillow, lobate and sheet lava) and for the differentiation of distinct seafloor terrain types on a larger scale (e.g. hummocky or smooth). Mapping lava morphology is most accurate using fuzzy logic capable of making inferences between similar morphotypes (e.g. pillow and lobate) and where high-resolution side-scan and bathymetry data coexist. We present examples of lava morphology maps from the Galápagos Spreading Center that show the results from several analyses using different types of input data. Lava morphology is an important source of information on volcanic emplacement and eruptive dynamics. Terrain modeling can be accomplished at any resolution level, depending on the desired use of the model. For volcanic processes, input data needs to be at the appropriate scale to resolve individual volcanic features on the seafloor (e.g. small haystacks and lava channels). We present examples from the East Pacific Rise, which shows that the number of volcanic terrains differs from the tectonic provinces defined by following the spreading axis. Our terrain modeling suggests that differences in ocean crust construction and evolution can be meaningfully identified and explored without a priori assumptions about the geologic processes in a given region.

  4. High-Resolution Multibeam Sonar Survey and Interactive 3-D Exploration of the D-Day Wrecks off Normandy

    NASA Astrophysics Data System (ADS)

    Mayer, L. A.; Calder, B.; Schmidt, J. S.

    2003-12-01

    Historically, archaeological investigations use sidescan sonar and marine magnetometers as initial search tools. Targets are then examined through direct observation by divers, video, or photographs. Magnetometers can demonstrate the presence, absence, and relative susceptibility of ferrous objects but provide little indication of the nature of the target. Sidescan sonar can present a clear image of the overall nature of a target and its surrounding environment, but the sidescan image is often distorted and contains little information about the true 3-D shape of the object. Optical techniques allow precise identification of objects but suffer from very limited range, even in the best of situations. Modern high-resolution multibeam sonar offers an opportunity to cover a relatively large area from a safe distance above the target, while resolving the true three-dimensional (3-D) shape of the object with centimeter-level resolution. The combination of 3-D mapping and interactive 3-D visualization techniques provides a powerful new means to explore underwater artifacts. A clear demonstration of the applicability of high-resolution multibeam sonar to wreck and artifact investigations occurred when the Naval Historical Center (NHC), the Center for Coastal and Ocean Mapping (CCOM) at the University of New Hampshire, and Reson Inc., collaborated to explore the state of preservation and impact on the surrounding environment of a series of wrecks located off the coast of Normandy, France, adjacent to the American landing sectors The survey augmented previously collected magnetometer and high-resolution sidescan sonar data using a Reson 8125 high-resolution focused multibeam sonar with 240, 0.5° (at nadir) beams distributed over a 120° swath. The team investigated 21 areas in water depths ranging from about three -to 30 meters (m); some areas contained individual targets such as landing craft, barges, a destroyer, troop carrier, etc., while others contained multiple smaller targets such as tanks and trucks. Of particular interest were the well-preserved caissons and blockships of the artificial Mulberry Harbor deployed off Omaha Beach. The near-field beam-forming capability of the Reson 8125 combined with 3-D visualization techniques provided an unprecedented level of detail including the ability to recognize individual components of the wrecks (ramps, gun turrets, hatches, etc.), the state of preservation of the wrecks, and the impact of the wrecks on the surrounding seafloor. Visualization of these data on the GeoWall allows us to share the exploration of these important historical artifacts with both experts and the general public.

  5. Personnel and Training Requirements for the ASR-21 Rescue Control Center.

    ERIC Educational Resources Information Center

    DeLuca, Joseph F.; Noble, John F.

    This report covers personnel and training requirements for Rescue Control Center (RCC) twin hull submarine rescue ships (ASRs). Skills and knowledge similar to those of a sonar technician (ST-0408) and a data system technician (DS-1666) are needed to operate the special sonar set and computer based system, but no suitable Navy training facility…

  6. An investigation of acoustic beam patterns for the sonar localization problem using a beam based method.

    PubMed

    Guarato, Francesco; Windmill, James; Gachagan, Anthony; Harvey, Gerald

    2013-06-01

    Target localization can be accomplished through an ultrasonic sonar system equipped with an emitter and two receivers. Time of flight of the sonar echoes allows the calculation of the distance of the target. The orientation can be estimated from knowledge of the beam pattern of the receivers and the ratio, in the frequency domain, between the emitted and the received signals after compensation for distance effects and air absorption. The localization method is described and, as its performance strongly depends on the beam pattern, the search of the most appropriate sonar receiver in order to ensure the highest accuracy of target orientation estimations is developed in this paper. The structure designs considered are inspired by the ear shapes of some bat species. Parameters like flare rate, truncation angle, and tragus are considered in the design of the receiver structures. Simulations of the localization method allow us to state which combination of those parameters could provide the best real world implementation. Simulation results show the estimates of target orientations are, in the worst case, 2° with SNR = 50 dB using the receiver structure chosen for a potential practical implementation of a sonar system.

  7. A Mobile Robot Sonar System with Obstacle Avoidance.

    DTIC Science & Technology

    1994-03-01

    WITH OBSTACLE - AVOIDANCE __ by __ Patrick Gerard Byrne March 1994 Thesis Advisor : Yutaka Kanayama Approved for public release; distribution is...point p is on a line L whose normal has an orientation a and whose distance from the origin is r (Figure 5). This method has an advantage in expressing...sonar(FRONTR); Wine(&pl); while(hitl I >’- 100.0 11 hitl 1 - 0.0 ){ hitl I = sonar(FRONTR); I skipO; line(&p3); gat- robO (&posit 1); while(positl.x

  8. Integration and Field Trials of a High-Resolution Multi-beam Sonar on the Remote Mine hunting Vehicle Dorado

    DTIC Science & Technology

    2003-12-01

    Minehunting System (RMS), is a semi-submersible, remotely controlled drone designed to tow an actively stabilized sidescan sonar towfish. The multi... comparativement aux véhicules sous-marins autonomes, ils offrent le positionnement DGPS, la commande en temps réel et la télémesure, en plus...minehunting vehicle. The Reson 8125 multi-beam bathymetric sonar is designed to acquire high-resolution (of order cm) bathymetry in a 240- beam swath 120

  9. Miniature sonar fish tag

    NASA Technical Reports Server (NTRS)

    Lovelady, R. W.; Ferguson, R. L.

    1975-01-01

    Self-powered sonar device may be implanted in body of fish. It transmits signal that can be detected with portable tracking gear or by automatic detection-and-tracking system. Operating life of over 4000 hours may be expected. Device itself may be used almost indefinitely.

  10. A Q-Ising model application for linear-time image segmentation

    NASA Astrophysics Data System (ADS)

    Bentrem, Frank W.

    2010-10-01

    A computational method is presented which efficiently segments digital grayscale images by directly applying the Q-state Ising (or Potts) model. Since the Potts model was first proposed in 1952, physicists have studied lattice models to gain deep insights into magnetism and other disordered systems. For some time, researchers have realized that digital images may be modeled in much the same way as these physical systems ( i.e., as a square lattice of numerical values). A major drawback in using Potts model methods for image segmentation is that, with conventional methods, it processes in exponential time. Advances have been made via certain approximations to reduce the segmentation process to power-law time. However, in many applications (such as for sonar imagery), real-time processing requires much greater efficiency. This article contains a description of an energy minimization technique that applies four Potts (Q-Ising) models directly to the image and processes in linear time. The result is analogous to partitioning the system into regions of four classes of magnetism. This direct Potts segmentation technique is demonstrated on photographic, medical, and acoustic images.

  11. Geophysical data from offshore of the Gulf Islands National Seashore, Cat Island to Western Horn Island, Mississippi

    USGS Publications Warehouse

    Pendleton, E.A.; Baldwin, W.E.; Danforth, W.W.; DeWitt, N.T.; Forde, A.S.; Foster, D.S.; Kelso, K.W.; Pfeiffer, W.R.; Turecek, A.M.; Flocks, J.G.; Twichell, D.C.

    2011-01-01

    This report contains the geophysical and geospatial data that were collected along the western offshore side of the Gulf Islands of Mississippi on the research vessel Tommy Munro during two cruises in 2010. Geophysical data were collected by the U.S. Geological Survey in Woods Hole, Massachusetts, and St. Petersburg, Forida, in cooperation with the U.S. Army Corps of Engineers Mobile District. Bathymetric-sonar, sidescan-sonar, and Chirp seismic-reflection data were acquired with the following equipment, respectively: Systems Engineering and Assessment, Ltd., SwathPlus interferometric sonars; Klein 3000 and 3900 dual-frequency sidescan sonars; and an EdgeTech 512i Chirp sub-bottom profiling system. The long-term goals of this mapping effort are to produce high-quality, high-resolution geologic maps and interpretations that can be utilized to identify sand resources within the region, to better understand the Holocene evolution, and to anticipate future changes in this coastal system. Processed geospatial data files and the geophysical data provided in this report help attain these goals.

  12. Object Classification in Semi Structured Enviroment Using Forward-Looking Sonar

    PubMed Central

    dos Santos, Matheus; Ribeiro, Pedro Otávio; Núñez, Pedro; Botelho, Silvia

    2017-01-01

    The submarine exploration using robots has been increasing in recent years. The automation of tasks such as monitoring, inspection, and underwater maintenance requires the understanding of the robot’s environment. The object recognition in the scene is becoming a critical issue for these systems. On this work, an underwater object classification pipeline applied in acoustic images acquired by Forward-Looking Sonar (FLS) are studied. The object segmentation combines thresholding, connected pixels searching and peak of intensity analyzing techniques. The object descriptor extract intensity and geometric features of the detected objects. A comparison between the Support Vector Machine, K-Nearest Neighbors, and Random Trees classifiers are presented. An open-source tool was developed to annotate and classify the objects and evaluate their classification performance. The proposed method efficiently segments and classifies the structures in the scene using a real dataset acquired by an underwater vehicle in a harbor area. Experimental results demonstrate the robustness and accuracy of the method described in this paper. PMID:28961163

  13. Effects of Noise of Offshore Oil and Gas Operations on Marine Mammals - An Introductory Assessment. Volume 2

    DTIC Science & Technology

    1982-09-01

    p 110-141, 1971. 61 Penner, RH and J Kadane, Tursiops Biosonar Detection in Noise. In: Animal Sonar Systems. RF Busnel and JF Fish, eds, p 957-959...and J Kadane, Tursiops Biosonar Detection in Noise, In: Animal Sonar .* Systems, RF Busnel and JF Fish, eds, p 957-959, Plenum Press, 1980, 62

  14. A Resume of Stochastic, Time-Varying, Linear System Theory with Application to Active-Sonar Signal-Processing Problems

    DTIC Science & Technology

    1981-06-15

    relationships 5 3. Normalized energy in ambiguity function for i = 0 14 k ilI SACLANTCEN SR-50 A RESUME OF STOCHASTIC, TIME-VARYING, LINEAR SYSTEM THEORY WITH...the order in which systems are concatenated is unimportant. These results are exactly analogous to the results of time-invariant linear system theory in...REFERENCES 1. MEIER, L. A rdsum6 of deterministic time-varying linear system theory with application to active sonar signal processing problems, SACLANTCEN

  15. A novel approach to surveying sturgeon using side-scan sonar and occupancy modeling

    USGS Publications Warehouse

    Flowers, H. Jared; Hightower, Joseph E.

    2013-01-01

    Technological advances represent opportunities to enhance and supplement traditional fisheries sampling approaches. One example with growing importance for fisheries research is hydroacoustic technologies such as side-scan sonar. Advantages of side-scan sonar over traditional techniques include the ability to sample large areas efficiently and the potential to survey fish without physical handling-important for species of conservation concern, such as endangered sturgeons. Our objectives were to design an efficient survey methodology for sampling Atlantic Sturgeon Acipenser oxyrinchus by using side-scan sonar and to developmethods for analyzing these data. In North Carolina and South Carolina, we surveyed six rivers thought to contain varying abundances of sturgeon by using a combination of side-scan sonar, telemetry, and video cameras (i.e., to sample jumping sturgeon). Lower reaches of each river near the saltwater-freshwater interface were surveyed on three occasions (generally successive days), and we used occupancy modeling to analyze these data.We were able to detect sturgeon in five of six rivers by using these methods. Side-scan sonar was effective in detecting sturgeon, with estimated gear-specific detection probabilities ranging from 0.2 to 0.5 and river-specific occupancy estimates (per 2-km river segment) ranging from 0.0 to 0.8. Future extensions of this occupancy modeling framework will involve the use of side-scan sonar data to assess sturgeon habitat and abundance in different river systems.

  16. Experimental results for a prototype 3-D acoustic imaging system using an ultra-sparse planar array

    NASA Astrophysics Data System (ADS)

    Impagliazzo, John M.; Chiang, Alice M.; Broadstone, Steven R.

    2002-11-01

    A handheld high resolution sonar has been under development to provide Navy Divers with a 3-D acoustic imaging system for mine reconnaissance. An ultra-sparse planar array, consisting of 121 1 mm x1 mm, 2 MHz elements, was fabricated to provide 3-D acoustic images. The array was 10 cm x10 cm. A full array at this frequency with elements at half-wavelength spacing would consist of 16384 elements. The first phase of testing of the planar array was completed in September 2001 with the characterization of the array in the NUWC Acoustic Test Facility (ATF). The center frequency was 2 MHz with a 667 kHz bandwidth. A system-level technology demonstration will be conducted in July 2002 with a real-time beamformer and near real-time 3-D imaging software. The demonstration phase consists of imaging simple targets at a range of 3 m in the ATF. Experimental results obtained will be reported on. [Work supported by the Defense Applied Research Project Agency, Advance Technology Office, Dr. Theo Kooij, Program Manager.

  17. Possible Effects of Noise from Offshore Oil and Gas Drilling Activities on Marine Mammals: A Survey of the Literature

    DTIC Science & Technology

    1982-01-01

    in Baleen Whales, New York Acad Sci, 188, p 110-141, 1971. 61 Penner, RI and J Kadane, Tursiops Biosonar Detection in Noise, In: Animal Sonar Systems... Biosonar Detection in Noise, In: Animal Sonar Systems, RF Busnel and JF Fish, eds, p 957-959, Plenum Press, 1980. 62. Nishiwake, M and A Sasao, Human

  18. Detection of Humans and Light Vehicles Using Acoustic-to-Seismic Coupling

    DTIC Science & Technology

    2009-08-31

    microphones, video cameras (regular and infrared), magnetic sensors, and active Doppler radar and sonar systems. These sensors could be located at... sonar systems due to dramatic absorption/reflection of electromagnetic/ultrasonic waves [8,9]. 6...engine was turned off, and the car continued moving. This eliminated the engine sound. A PCB microphone, 377B41, with preamplifier , 426A30, and with

  19. Field trial of a Doppler sonar system for fisheries applications

    NASA Astrophysics Data System (ADS)

    Tollefsen, Cristina D. S.; Zedel, Len

    2003-10-01

    Various deployments of commercial Doppler current profiling systems have demonstrated that these instruments can detect fish and measure their swimming speeds. However, research into the possible application of Doppler sonar to fisheries problems is limited and has not taken advantage of coherent signal processing schemes. A field trial was undertaken in August 2002 to explore the capabilities of a coherent Doppler sonar when applied to detecting discrete targets. The passage of migrating salmon on the Fraser River in British Columbia provided an ideal test opportunity with fish of well-defined swimming behavior and allowed for comparisons with conventional fisheries acoustics techniques. The instrument tested was a 250-kHz sonar which provided for phase coding of transmit pulses and coherent sampling of successive acoustic returns. The field trial resulted in 11 consecutive days of Doppler sonar data acquired during the peak of the sockeye salmon (Oncorhynchus nerka) migration. A total of 7425 individual fish were identified and their swimming speed was measured with an accuracy of between 10 cms-1 and 20 cms-1, which depended on pulse length, pulse spacing, and target range. By comparison, water velocity measurements made with the same instrument can only achieve a theoretical accuracy of 60 cms-1.

  20. Three-Dimensional Ultrasonic Imaging Of The Cornea

    NASA Technical Reports Server (NTRS)

    Heyser, Rrichar C.; Rooney, James A.

    1988-01-01

    Proposed technique generates pictures of curved surfaces. Object ultrasonically scanned in raster pattern generated by scanning transmitter/receiver. Receiver turned on at frequent intervals to measure depth variations of scanned object. Used for medical diagnoses by giving images of small curved objects as cornea. Adaptable to other types of reflection measurementsystems such as sonar and radar.

  1. Introduction to Sonar, Navy Training Course.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    Fundamentals of sonar systems are presented in this book, prepared for both regular navy and naval reserve personnel who are seeking advancement in rating. An introductory description is first made of submarines and antisubmarine units. Determination of underwater targets is analyzed from the background of true and relative bearings, true and…

  2. Grand Canyon riverbed sediment changes, experimental release of September 2000 - a sample data set

    USGS Publications Warehouse

    Wong, Florence L.; Anima, Roberto J.; Galanis, Peter; Codianne, Jennifer; Xia, Yu; Bucciarelli, Randy; Hamer, Michael

    2003-01-01

    An experimental water release from the Glen Canyon Dam into the Colorado River above Grand Canyon was conducted in September 2000 by the U.S. Bureau of Reclamation. The U.S. Geological Survey (USGS) conducted sidescan sonar surveys between Glen Canyon Dam (mile -15) and Diamond Creek (mile 220), Arizona (mile designations after Stevens, 1998) to determine the sediment characteristics of the Colorado River bed before and after the release. The first survey (R3-00-GC, 28 Aug to 5 Sep 2000) was conducted before the release when the river was at its Low Summer Steady Flow (LSSF) of 8,000 cfs. The second survey (R4-00-GC, 10 to 18 Sep 2000) was conducted immediately after the September 2000 experimental release when the average daily flow was as high as 30,800 cfs as measured below Glen Canyon Dam (Figure 2). Riverbed sediment properties interpreted from the sidescan sonar images include sediment type and sandwaves; overall changes in these properties between the two surveys were calculated. Sidescan sonar data from the USGS surveys were processed for segments of the Colorado River from Glen Canyon Dam (mile -15) to Phantom Ranch (mile 87.7, Figure 3). The surveys targeted pools between rapids that are part of the Grand Canyon Monitoring and Research Center (GCMRC http://www.gcmrc.gov/) physical sciences study. Maps interpreted from the sidescan sonar images show the distribution of sediment types (bedrock, boulders, pebbles or cobbles, and sand) and the extent of sandwaves for each of the pre- and post-flow surveys. The changes between the two surveys were calculated with spatial arithmetric and had properties of fining, coarsening, erosion, deposition, and the appearance or disappearance of sandwaves.

  3. Sonar Subsea Images of Large Temples, Mammoths, Giant Sloths. Huge Artwork Carvings, Eroded Cities, Human Images, and Paleo Astronomy Sites that Must be Over Ten Thousand Years Old.

    NASA Astrophysics Data System (ADS)

    Allen, R. L.

    2016-12-01

    Computer enhancing of side scanning sonar plots revealed images of massive art, apparent ruins of cities, and subsea temples. Some images are about four to twenty kilometers in length. Present water depths imply that many of the finds must have been created over ten thousand years ago. Also, large carvings of giant sloths, Ice Age elk, mammoths, mastodons, and other cold climate creatures concurrently indicate great age. In offshore areas of North America, some human faces have beards and what appear to be Caucasian characteristics that clearly contrast with the native tribal images. A few images have possible physical appearances associated with Polynesians. Contacts and at least limited migrations must have occurred much further in the ancient past than previously believed. Greatly rising sea levels and radical changes away from late Ice Age climates had to be devastating to very ancient civilizations. Many images indicate that these cultures were capable of construction and massive art at or near the technological level of the Old Kingdom in Egypt. Paleo astronomy is obvious in some plots. Major concerns are how to further evaluate, catalog, protect, and conserve the creations of those cultures.

  4. Mine Sweeping System for Magnetic and Non-Magnetic Mines.

    DTIC Science & Technology

    1994-12-29

    be detected. One example of the latter type of system is a conventional sonar device wherein a directional beam of acoustic energy periodically...Although satisfactory for many uses, sonar devices have several inherent limitations. Nearby objects can cause echoes and these may obscure the echo of...electromagnetic signal and sends it to the preamplifier 601. The preamplifier 601 increases the strength of the received electrical signal before sending it

  5. Gain control in the sonar of odontocetes.

    PubMed

    Ya Supin, Alexander; Nachtigall, Paul E

    2013-06-01

    The sonar of odontocetes processes echo-signals within a wide range of echo levels. The level of echoes varies widely by tens of decibels depending on the level of the emitted sonar pulse, the target strength, the distance to the target, and the sound absorption by the water media. The auditory system of odontocetes must be capable of effective perception, analysis, and discrimination of echo-signals within all this variability. The sonar of odontocetes has several mechanisms to compensate for the echo-level variation (gain control). To date, several mechanisms of the biosonar gain control have been revealed in odontocetes: (1) adjustment of emitted sonar pulse levels (the longer the distance to the target, the higher the level of the emitted pulse), (2) short-term variation of hearing sensitivity based on forward masking of the echo by the preceding self-heard emitted pulse and subsequent release from the masking, and (3) active long-term control of hearing sensitivity. Recent investigations with the use of the auditory evoked-potential technique have demonstrated that these mechanisms effectively minimize the variation of the response to the echo when either the emitted sonar pulse level, or the target distance, or both vary within a wide range. A short review of these data is presented herein.

  6. Off-axis targets maximize bearing Fisher Information in broadband active sonar.

    PubMed

    Kloepper, Laura N; Buck, John R; Liu, Yang; Nachtigall, Paul E

    2018-01-01

    Broadband active sonar systems estimate range from time delay and velocity from Doppler shift. Relatively little attention has been paid to how the received echo spectrum encodes information about the bearing of an object. This letter derives the bearing Fisher Information encoded in the frequency dependent transmitter beampattern. This leads to a counter-intuitive result: directing the sonar beam so that a target of interest is slightly off-axis maximizes the bearing information about the target. Beam aim data from a dolphin biosonar experiment agree closely with the angle predicted to maximize bearing information.

  7. Sidescan sonar as a tool for detection of demersal fish habitats

    USGS Publications Warehouse

    Able, Kenneth W.; Twichell, David C.; Grimes, Churchill B.; Jones, R. S.

    1987-01-01

    Sidescan sonar can be an effective tool for the determination of the habitat distribution of commercially important species.  This technique has the advantage of rapidly mapping large areas of the seafloor.  Sidescan images (sonographs) may also help to identify appropriate fishing gears for different types of seafloor or areas to be avoided with certain types of gears.  During the early stages of exploration, verification of sidescan sonar sonographs is critical to successful identification of important habitats.  Tilefishes (Lopholatilus and Caulolatilus) are especially good target species because the construct large burrows in the seafloor or live around boulders, both of which are easily detectable on sonographs.  In some special circumstances the estimates of tilefish burrow densities from sonographs can be used to estimate standing stock. In many localities the burrow and boulder habitats of tilefish are shared with other commercially important species such as American lobsters, Homarus americanus; cusk, Brosme brosme; and ocean pout, Macrozoarces americanus.

  8. Technologies for Positioning and Placement of Underwater Structures

    DTIC Science & Technology

    2000-03-01

    for imaging the bottom immediately before placement of the structure. c. Use passive sensors (such as tiltmeters , inclinometers, and gyrocompasses...4 Acoustic Sensors .................................................................... 5 Multibeamn and Side-Scan Sonar Transducers...11.I Video Camera....................................................................11. Passive Sensors

  9. Multi-Beam Sonar Infrastructure Mapping Research

    DOT National Transportation Integrated Search

    2017-10-01

    The hydraulics unit in MnDOTs bridge office applied for a research grant to develop in-house underwater acoustic 3D imaging capabilities. This research report presents both stationary and mobile scanning techniques, outlines the setup of both syst...

  10. Job-Oriented Basic Skills (JOBS) Program for the Acoustic Sensor Operations Strand.

    ERIC Educational Resources Information Center

    U'Ren, Paula Kabance; Baker, Meryl S.

    An effort was undertaken to develop a job-oriented basic skills curriculum appropriate for the acoustic sensor operations area, which includes members of four ratings: ocean systems technician, aviation antisubmarine warfare operator, sonar technician (surface), and sonar technician (submarine). Analysis of the job duties of the four ratings…

  11. A Detailed Study of Sonar Tomographic Imaging

    DTIC Science & Technology

    2013-08-01

    BPA ) to form an object image. As the data is collected radially about the axis of rotation, one computation method computes an inverse Fourier...images are not quite as sharp. It is concluded UNCLASSIFIED iii DSTO–RR–0394 UNCLASSIFIED that polar BPA processing requires an appropriate choice of...attenuation factor to reduce the effect of the specular reflections, while for the 2DIFT BPA approach the degrading effect from these reflections is

  12. Multibeam mapping of the Los Angeles, California Margin

    USGS Publications Warehouse

    Gardner, James V.; Dartnell, Peter

    2002-01-01

    The Los Angeles, California Margin was mapped using multibeam echosounders during three separate surveys (Figure 1). In 1996, the USGS surveyed the shelf and slope in Santa Monica Bay from Pt. Dume to south of the Palos Verdes Peninsula. The mapping was accomplished using a Kongsberg Simrad EM1000 multibeam sonar system that provided high-quality bathymetry and quantitative backscatter. In 1998, the USGS continued the mapping to the south and surveyed the outer shelf, slope, and proximal basin off Long Beach and Newport using a Kongsberg Simrad EM300 multibeam sonar system. In 1999, the Los Angeles Margin mapping was completed with the surveying of the inner Long Beach shelf from the Palos Verdes Peninsula, south to Newport. This survey used a dual Kongsberg Simrad EM3000D multibeam sonar system. These three surveys were conducted to support USGS projects studying marine pollution and geohazards along the Los Angeles Margin.

  13. Size Constancy in Bat Biosonar? Perceptual Interaction of Object Aperture and Distance

    PubMed Central

    Heinrich, Melina; Wiegrebe, Lutz

    2013-01-01

    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed “size constancy”. It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the ‘sonar aperture’, i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats. PMID:23630598

  14. Size constancy in bat biosonar? Perceptual interaction of object aperture and distance.

    PubMed

    Heinrich, Melina; Wiegrebe, Lutz

    2013-01-01

    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats.

  15. Evidence of recent volcanic activity on the ultraslow-spreading Gakkel ridge.

    PubMed

    Edwards, M H; Kurras, G J; Tolstoy, M; Bohnenstiehl, D R; Coakley, B J; Cochran, J R

    2001-02-15

    Seafloor spreading is accommodated by volcanic and tectonic processes along the global mid-ocean ridge system. As spreading rate decreases the influence of volcanism also decreases, and it is unknown whether significant volcanism occurs at all at ultraslow spreading rates (<1.5 cm yr(-1)). Here we present three-dimensional sonar maps of the Gakkel ridge, Earth's slowest-spreading mid-ocean ridge, located in the Arctic basin under the Arctic Ocean ice canopy. We acquired this data using hull-mounted sonars attached to a nuclear-powered submarine, the USS Hawkbill. Sidescan data for the ultraslow-spreading (approximately 1.0 cm yr(-1)) eastern Gakkel ridge depict two young volcanoes covering approximately 720 km2 of an otherwise heavily sedimented axial valley. The western volcano coincides with the average location of epicentres for more than 250 teleseismic events detected in 1999, suggesting that an axial eruption was imaged shortly after its occurrence. These findings demonstrate that eruptions along the ultraslow-spreading Gakkel ridge are focused at discrete locations and appear to be more voluminous and occur more frequently than was previously thought.

  16. Sound localization by echolocating bats

    NASA Astrophysics Data System (ADS)

    Aytekin, Murat

    Echolocating bats emit ultrasonic vocalizations and listen to echoes reflected back from objects in the path of the sound beam to build a spatial representation of their surroundings. Important to understanding the representation of space through echolocation are detailed studies of the cues used for localization, the sonar emission patterns and how this information is assembled. This thesis includes three studies, one on the directional properties of the sonar receiver, one on the directional properties of the sonar transmitter, and a model that demonstrates the role of action in building a representation of auditory space. The general importance of this work to a broader understanding of spatial localization is discussed. Investigations of the directional properties of the sonar receiver reveal that interaural level difference and monaural spectral notch cues are both dependent on sound source azimuth and elevation. This redundancy allows flexibility that an echolocating bat may need when coping with complex computational demands for sound localization. Using a novel method to measure bat sonar emission patterns from freely behaving bats, I show that the sonar beam shape varies between vocalizations. Consequently, the auditory system of a bat may need to adapt its computations to accurately localize objects using changing acoustic inputs. Extra-auditory signals that carry information about pinna position and beam shape are required for auditory localization of sound sources. The auditory system must learn associations between extra-auditory signals and acoustic spatial cues. Furthermore, the auditory system must adapt to changes in acoustic input that occur with changes in pinna position and vocalization parameters. These demands on the nervous system suggest that sound localization is achieved through the interaction of behavioral control and acoustic inputs. A sensorimotor model demonstrates how an organism can learn space through auditory-motor contingencies. The model also reveals how different aspects of sound localization, such as experience-dependent acquisition, adaptation, and extra-auditory influences, can be brought together under a comprehensive framework. This thesis presents a foundation for understanding the representation of auditory space that builds upon acoustic cues, motor control, and learning dynamic associations between action and auditory inputs.

  17. The Feasibility of Generalized Acoustic Sensor Operator Training. Final Report for Period February 1974-February 1975.

    ERIC Educational Resources Information Center

    Daniels, Richard W.; Alden, David G.

    The feasibility of generalized approaches to training military personnel in the use of different types of sonar/acoustic warfare systems was explored. The initial phase of the project consisted of the analysis of representative sonar and acoustic equipment to identify training areas and operator performance requirements that could be subjected to…

  18. Sonar Recognition Training: An Investigation of Whole VS. Part and Analytic VS. Synthetic Procedures.

    ERIC Educational Resources Information Center

    Annett, John

    An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…

  19. First Results From the (Multibeam) Hydrosweep DS2 Upgrade on the R/V Maurice Ewing

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Slagle, A.; Caress, D. W.; Arko, R. A.

    2001-12-01

    The ATLAS Hydrosweep DS multibeam swath mapping sonar system on the R/V Maurice Ewing was upgraded to a DS2 in May 2000. This upgrade increased the effective swath width from 59 beams over about 89 degrees to as many as 140 beams over approximately 118 degrees, added sidescan image as well as data records from which backscatter can be extracted. The upgrade replaced the outdated processing computer, half-inch tape drive and console with modern workstations and 4mm tape. The upgrade did not require changes to the under hull transducer arrays or transceivers so it was relatively inexpensive and was accomplished in a few days during a transit of the Panama Canal. Evaluation and software enhancements were done during subsequent transits. MB-System was enhanced to support the native, raw data format of the Hydrosweep DS2. We also expect to be able to support the more general SURF format that is also generated by new ATLAS sonar systems in the near future. In addition to the hardware and software upgrades to the multibeam, we installed a POS/MV-320 vertical reference system to take over from our venerable HIPPY-120 as the primary attitude reference for the Hydrosweep on the Ewing. The attitude data from the POS has allowed us to eliminate the turn rate restrictions and to improve the data quality. As an additional benefit the P-Code aided position data produced by the POS is significantly more stable and better behaved than our other navigation sources. The upgraded sonar was used during EW0108 (Taylor) in the Gulf of Corinth. As is usually the case with new implementations or modifications of complex systems, some unexpected behaviors were observed and carefully documented. Good remote support from the manufacturer enabled us to implement fixes and to generate very good quality bathymetry and sidescan images on board and in shore-side post processing. Two related software prototypes are currently being evaluated as part of this upgrade package. One is a web-based real-time watch standers logbook that facilitates the entry of standard log information directly into a relational database (rather than by hand on paper forms.) The second is a relational database that contains the FGDC metadata for multibeam swath bathymetry. This initial upgrade to our Hydrosweep establishes a stable base from which we expect to evolve significant new capabilities in the future. Some of these capabilities will be based on the unique cross fan capabilities of the Hydrosweep design.

  20. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, Marshall; Seitz, Heather; Scott, John

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies.

  1. U.S. Navy Employment Options for Unmanned Surface Vehicles (USVs)

    DTIC Science & Technology

    2013-01-01

    sessions, modifying and extrapolating from the original concepts. Assessing Suitability We assessed the suitability of the USV concepts of employment...test and demonstration 1 U.S. Department of the Navy, The Navy Unmanned Surface Vehicle (USV) Master Plan, July 23, 2007. The TRL system was originally ...of interest, the USV uses its sonar to capture imagery. The USV then returns to its point of origin for recovery of the sonar system and the newly

  2. Heart Sonar Images

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Stanford University cardiologists, with the help of Ames engineers, have validated the operation of the echo-cardioscope to monitor cardiac functions of astronauts in flight. This device forms images of internal structures using high-frequency sound. The instrument is compact, lightweight, portable, and DC powered for safety. The battery powered ultrasonic device, being isolated from its electrical environment, has an inherent safety advantage especially with infants.

  3. Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus.

    PubMed

    Chiu, Chen; Reddy, Puduru Viswanadha; Xian, Wei; Krishnaprasad, Perinkulam S; Moss, Cynthia F

    2010-10-01

    Foraging and flight behavior of echolocating bats were quantitatively analyzed in this study. Paired big brown bats, Eptesicus fuscus, competed for a single food item in a large laboratory flight room. Their sonar beam patterns and flight paths were recorded by a microphone array and two high-speed cameras, respectively. Bats often remained in nearly classical pursuit (CP) states when one bat is following another bat. A follower can detect and anticipate the movement of the leader, while the leader has the advantage of gaining access to the prey first. Bats in the trailing position throughout the trial were more successful in accessing the prey. In this study, bats also used their sonar beam to monitor the conspecific's movement and to track the prey. Each bat tended to use its sonar beam to track the prey when it was closer to the worm than to another bat. The trailing bat often directed its sonar beam toward the leading bat in following flight. When two bats flew towards each other, they tended to direct their sonar beam axes away from each other, presumably to avoid signal jamming. This study provides a new perspective on how echolocating bats use their biosonar system to coordinate their flight with conspecifics in a group and how they compete for the same food source with conspecifics.

  4. Research on the frequency hopping bistatic sonar system

    NASA Astrophysics Data System (ADS)

    Liang, Guo-long; Zhang, Yao; Zhang, Guang-pu; Liu, Kai

    2011-10-01

    A new model for bistatic sonar system is established, in which frequency hopping (FH) signals are used for targets detection according to some rules. This model can decrease the time between adjacent signals and obtain more information in a unit time. The receiving system will receive and process the signals of different frequency respectively, according the FH pattern, for detecting and locating targets. This method can helps yield more stable and accurate outputs, using the characteristic of the FH signals, increase the ability of anti-detection and anti partial-band jamming.

  5. Sonar imaging of flooded subsurface voids phase I : proof of concept.

    DOT National Transportation Integrated Search

    2011-04-15

    Damage to Ohio highways due to subsidence or collapse of subsurface voids is a serious problem : for the Office of Geotechnical Engineering (OGE) at the Ohio Department of Transportation : (ODOT). These voids have often resulted from past underground...

  6. Increasing global accessibility and understanding of water column sonar data

    NASA Astrophysics Data System (ADS)

    Wall, C.; Anderson, C.; Mesick, S.; Parsons, A. R.; Boyer, T.; McLean, S. J.

    2016-02-01

    Active acoustic (sonar) technology is of increasing importance for research examining the water column. NOAA uses water column sonar data to map acoustic properties from the ocean surface to the seafloor - from bubbles to biology to bottom. Scientific echosounders aboard fishery survey vessels are used to estimate biomass, measure fish school morphology, and characterize habitat. These surveys produce large volumes of data that are costly and difficult to maintain due to their size, complexity, and proprietary format that require specific software and extensive knowledge. However, through proper management they can deliver valuable information beyond their original collection purpose. In order to maximize the benefit to the public, the data must be easily discoverable and accessible. Access to ancillary data is also needed for complete environmental context and ecosystem assessment. NOAA's National Centers for Environmental Information, in partnership with NOAA's National Marine Fisheries Service and the University of Colorado, created a national archive for the stewardship and distribution of water column sonar data collected on NOAA and academic vessels. A web-based access page allows users to query the metadata and access the raw sonar data. Visualization products being developed allow researchers and the public to understand the quality and content of large volumes of archived data more easily. Such products transform the complex data into a digestible image or graphic and are highly valuable for a broad audience of varying backgrounds. Concurrently collected oceanographic data and bathymetric data are being integrated into the data access web page to provide an ecosystem-wide understanding of the area ensonified. Benefits of the archive include global access to an unprecedented nationwide dataset and the increased potential for researchers to address cross-cutting scientific questions to advance the field of marine ecosystem acoustics.

  7. Anatomy and growth pattern of Amazon deep-sea fan as revealed by long-range side-scan sonar (GLORIA) and high-resolution seismic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damuth, J.E.; Flood, R.D.; Kowsmann, R.O.

    1988-08-01

    Imaging of the Amazon deep-sea fan with long-range side-scan sonar (GLORIA) has, for the first time, revealed the anatomy, trends, and growth pattern of distributary channels on this fan. Only one channel-levee system was active at any given time and extended from the Amazon Submarine Canyon downslope onto the lower fan (> 4,200 m). Formation of new channel-levee systems occurred when a currently active channel-levee system was cut off and abandoned through avulsion, and a new channel-levee system was established nearby. Through time, successive channel-levee formation and abandonment built two broad levee complexes consisting of groups of overlapping, coalescing segmentsmore » of channel-levee systems across the present fan surface. These, plus older, now buried levee complexes, indicate that fan growth is radially outward and downslope through development of successive levee complexes. The most striking characteristic of the distributary channels is their intricate, often recurving, meanders with sinuosities of up to 2.5. Cutoffs and abandoned meander loops indicate that the channels migrate laterally through time. Channel bifurcation results predominantly from avulsion when flows breach a channel levee, thereby abandoning the present channel and establishing a new channel-levee segment nearby. No clear evidence of channel branching (i.e., division of a single channel into two active segments) or braiding was observed. 22 figs.« less

  8. Acoustic behavior of echolocating bats in complex environments

    NASA Astrophysics Data System (ADS)

    Moss, Cynthia; Ghose, Kaushik; Jensen, Marianne; Surlykke, Annemarie

    2004-05-01

    The echolocating bat controls the direction of its sonar beam, just as visually dominant animals control the movement of their eyes to foveate targets of interest. The sonar beam aim of the echolocating bat can therefore serve as an index of the animal's attention to objects in the environment. Until recently, spatial attention has not been studied in the context of echolocation, perhaps due to the difficulty in obtaining an objective measure. Here, we describe measurements of the bat's sonar beam aim, serving as an index of acoustic gaze and attention to objects, in tasks that require localization of obstacles and insect prey. Measurements of the bat's sonar beam aim are taken from microphone array recordings of vocal signals produced by a free-flying bat under experimentally controlled conditions. In some situations, the animal relies on spatial memory over reflected sounds, perhaps because its perceptual system cannot easily organize cascades of echoes from obstacles and prey. This highlights the complexity of the bat's orientation behavior, which can alternate between active sensing and spatial memory systems. The bat's use of spatial memory for orientation also will be addressed in this talk. [Work supported by NSF-IBN-0111973 and the Danish Research Council.

  9. Field calibration and validation of remote-sensing surveys

    USGS Publications Warehouse

    Pe'eri, Shachak; McLeod, Andy; Lavoie, Paul; Ackerman, Seth D.; Gardner, James; Parrish, Christopher

    2013-01-01

    The Optical Collection Suite (OCS) is a ground-truth sampling system designed to perform in situ measurements that help calibrate and validate optical remote-sensing and swath-sonar surveys for mapping and monitoring coastal ecosystems and ocean planning. The OCS system enables researchers to collect underwater imagery with real-time feedback, measure the spectral response, and quantify the water clarity with simple and relatively inexpensive instruments that can be hand-deployed from a small vessel. This article reviews the design and performance of the system, based on operational and logistical considerations, as well as the data requirements to support a number of coastal science and management projects. The OCS system has been operational since 2009 and has been used in several ground-truth missions that overlapped with airborne lidar bathymetry (ALB), hyperspectral imagery (HSI), and swath-sonar bathymetric surveys in the Gulf of Maine, southwest Alaska, and the US Virgin Islands (USVI). Research projects that have used the system include a comparison of backscatter intensity derived from acoustic (multibeam/interferometric sonars) versus active optical (ALB) sensors, ALB bottom detection, and seafloor characterization using HSI and ALB.

  10. Biosonar-inspired technology: goals, challenges and insights.

    PubMed

    Müller, Rolf; Kuc, Roman

    2007-12-01

    Bioinspired engineering based on biosonar systems in nature is reviewed and discussed in terms of the merits of different approaches and their results: biosonar systems are attractive technological paragons because of their capabilities, built-in task-specific knowledge, intelligent system integration and diversity. Insights from the diverse set of sensing tasks solved by bats are relevant to a wide range of application areas such as sonar, biomedical ultrasound, non-destructive testing, sensors for autonomous systems and wireless communication. Challenges in the design of bioinspired sonar systems are posed by transducer performance, actuation for sensor mobility, design, actuation and integration of beamforming baffle shapes, echo encoding for signal processing, estimation algorithms and their implementations, as well as system integration and feedback control. The discussed examples of experimental systems have capabilities that include localization and tracking using binaural and multiple-band hearing as well as self-generated dynamic cues, classification of small deterministic and large random targets, beamforming with bioinspired baffle shapes, neuromorphic spike processing, artifact rejection in sonar maps and passing range estimation. In future research, bioinspired engineering could capitalize on some of its strengths to serve as a model system for basic automation methodologies for the bioinspired engineering process.

  11. Sonar imaging of flooded subsurface voids phase I : proof of concept : executive summary report.

    DOT National Transportation Integrated Search

    2011-04-15

    Damage to Ohio highways due to subsidence : or collapse of subsurface voids is a serious : problem for the Ohio Department of : Transportation (ODOT). These voids have : often resulted from past underground mining : activities for coal, clay, limesto...

  12. Imaging fall Chinook salmon redds in the Columbia River with a dual-frequency identification sonar

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Skalicky, J.J.

    2004-01-01

    We tested the efficacy of a dual-frequency identification sonar (DIDSON) for imaging and enumeration of fall Chinook salmon Oncorhynchus tshawytscha redds in a spawning area below Bonneville Dam on the Columbia River. The DIDSON uses sound to form near-video-quality images and has the advantages of imaging in zero-visibility water and possessing a greater detection range and field of view than underwater video cameras. We suspected that the large size and distinct morphology of a fall Chinook salmon redd would facilitate acoustic imaging if the DIDSON was towed near the river bottom so as to cast an acoustic shadow from the tailspill over the redd pocket. We tested this idea by observing 22 different redds with an underwater video camera, spatially referencing their locations, and then navigating to them while imaging them with the DIDSON. All 22 redds were successfully imaged with the DIDSON. We subsequently conducted redd searches along transects to compare the number of redds imaged by the DIDSON with the number observed using an underwater video camera. We counted 117 redds with the DIDSON and 81 redds with the underwater video camera. Only one of the redds observed with the underwater video camera was not also documented by the DIDSON. In spite of the DIDSON's high cost, it may serve as a useful tool for enumerating fall Chinook salmon redds in conditions that are not conducive to underwater videography.

  13. A New Multibeam Sonar Technique for Evaluating Fine-Scale Fish Behavior Near Hydroelectric Dam Guidance Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Robert L.; Simmons, Mary Ann; Simmons, Carver S.

    2002-03-07

    This book chapter describes a Dual-Head Multibeam Sonar (DHMS) system developed by Battelle and deployed at two dam sites on the Snake and Columbia rivers in Washington State to evaluate the fine-scale (

  14. Measurement of fish movements at depths to 6000 m using a deep-ocean lander incorporating a short base-line sonar utilizing miniature code-activated transponder technology

    NASA Astrophysics Data System (ADS)

    Bagley, P. M.; Bradley, S.; Priede, I. G.; Gray, P.

    1999-12-01

    Most research on animal behaviour in the deep ocean (to depths of 6000 m) is restricted to the capture of dead specimens or viewing activity over small areas of the sea floor by means of cameras or submersibles. This paper describes the use of a miniature acoustic code-activated transponder (CAT) tag and short base-line sonar to track the movements of deep-sea fish in two dimensions over an area 1 km in diameter centred on a lander platform. The CAT tags and sonar are transported to the deep-sea floor by means of a subsea mooring which is ballasted so that it lands and remains on the sea floor for the duration of the tracking experiment (the lander). A description of the CAT, lander and short base-line sonar is given. Results are presented to illustrate the operation of the system.

  15. Blue whales respond to simulated mid-frequency military sonar.

    PubMed

    Goldbogen, Jeremy A; Southall, Brandon L; DeRuiter, Stacy L; Calambokidis, John; Friedlaender, Ari S; Hazen, Elliott L; Falcone, Erin A; Schorr, Gregory S; Douglas, Annie; Moretti, David J; Kyburg, Chris; McKenna, Megan F; Tyack, Peter L

    2013-08-22

    Mid-frequency military (1-10 kHz) sonars have been associated with lethal mass strandings of deep-diving toothed whales, but the effects on endangered baleen whale species are virtually unknown. Here, we used controlled exposure experiments with simulated military sonar and other mid-frequency sounds to measure behavioural responses of tagged blue whales (Balaenoptera musculus) in feeding areas within the Southern California Bight. Despite using source levels orders of magnitude below some operational military systems, our results demonstrate that mid-frequency sound can significantly affect blue whale behaviour, especially during deep feeding modes. When a response occurred, behavioural changes varied widely from cessation of deep feeding to increased swimming speed and directed travel away from the sound source. The variability of these behavioural responses was largely influenced by a complex interaction of behavioural state, the type of mid-frequency sound and received sound level. Sonar-induced disruption of feeding and displacement from high-quality prey patches could have significant and previously undocumented impacts on baleen whale foraging ecology, individual fitness and population health.

  16. Archive of side scan sonar and swath bathymetry data collected during USGS cruise 10CCT01 offshore of Cat Island, Gulf Islands National Seashore, Mississippi, March 2010

    USGS Publications Warehouse

    DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Wiese, Dana S.

    2010-01-01

    In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys east of Cat Island, Mississippi (fig. 1). The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration, particularly in Camille Cut, and provide protection for the historical Fort Massachusetts. For more information refer to http://ngom.usgs.gov/gomsc/mscip/index.html. This report serves as an archive of the processed swath bathymetry and side scan sonar data (SSS). Data products herein include gridded and interpolated surfaces, surface images, and x,y,z data products for both swath bathymetry and side scan sonar imagery. Additional files include trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Scanned images of the handwritten FACS logs and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report or hold the cursor over an acronym for a pop-up explanation. The USGS St. Petersburg Coastal and Marine Science Center assigns a unique identifier to each cruise or field activity. For example, 10CCT01 tells us the data were collected in 2010 for the Coastal Change and Transport (CCT) study and the data were collected during the first field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. Data were collected using a 26-foot (ft) Glacier Bay Catamaran. Side scan sonar and interferometric swath bathymetry data were collected simultaneously along the tracklines. The side scan sonar towfish was towed off the port side just slightly behind the vessel, close to the seafloor. The interferometric swath transducer was sled-mounted on a rail attached between the catamaran hulls. During the survey the sled is secured into position. Navigation was acquired with a CodaOctopus Octopus F190 Precision Attitude and Positioning System and differentially corrected with OmniSTAR. See the digital FACS equipment log for details about the acquisition equipment used. Both raw datasets were stored digitally and processed using CARIS HIPS and SIPS software at the USGS St. Petersburg Coastal and Marine Science Center. For more information on processing refer to the Equipment and Processing page. Post-processing of the swath dataset revealed a motion artifact that is attributed to movement of the pole that the swath transducers are attached to in relation to the boat. The survey took place in the winter months, in which strong winds and rough waves contributed to a reduction in data quality. The rough seas contributed to both the movement of the pole and the very high noise base seen in the raw amplitude data of the side scan sonar. Chirp data were also collected during this survey and are archived separately.

  17. Highly dynamic biological seabed alterations revealed by side scan sonar tracking of Lanice conchilega beds offshore the island of Sylt (German Bight)

    NASA Astrophysics Data System (ADS)

    Heinrich, C.; Feldens, P.; Schwarzer, K.

    2017-06-01

    Hydroacoustic surveys are common tools for habitat investigation and monitoring that aid in the realisation of the aims of the EU Marine Directives. However, the creation of habitat maps is difficult, especially when benthic organisms densely populate the seafloor. This study assesses the sensitivity of entropy and homogeneity image texture parameters derived from backscatter strength data to benthic habitats dominated by the tubeworm Lanice conchilega. Side scan sonar backscatter surveys were carried out in 2010 and 2011 in the German Bight (southern North Sea) at two sites approx. 20 km offshore of the island of Sylt. Abiotic and biotic seabed facies, such as sorted bedforms, areas of fine to medium sand and L. conchilega beds with different tube densities, were identified and characterised based on manual expert analysis and image texture analysis. Ground truthing was performed by grab sampling and underwater video observations. Compared to the manual expert analysis, the k- means classification of image textures proves to be a semi-automated method to investigate small-scale differences in a biologically altered seabed from backscatter data. The texture parameters entropy and homogeneity appear linearly interrelated with tube density, the former positively and the latter negatively. Reinvestigation of one site after 1 year showed an extensive change in the distribution of the L. conchilega-altered seabed. Such marked annual fluctuations in L. conchilega tube cover demonstrate the need for dense time series and high spatial coverage to meaningfully monitor ecological patterns on the seafloor with acoustic backscatter methods in the study region and similar settings worldwide, particularly because the sand mason plays a pivotal role in promoting biodiversity. In this context, image texture analysis provides a cost-effective and reproducible method to track biologically altered seabeds from side scan sonar backscatter signatures.

  18. A Deep-towed Digital Multichannel Seismic Streamer For Very High-resolution Studies Of Marine Subsurface Structures

    NASA Astrophysics Data System (ADS)

    Breitzke, M.; Bialas, J.; Inggas Working Group

    A deep-towed digital multichannel seismic streamer and side scan sonar system has been developed to collect marine seismic data with a very high lateral in- and cross- line resolution particularly in regions of special interest for gas hydrate research. As marine seismic sources conventional air-, GI or waterguns will be shot close to the sea surface. A depressor of about 2 tons weight ensures the slightly buoyant deep-towed system to keep in depth. The streamer is a modular digital system which can be operated in water depths up to 6000 m. At this stage of development, it consists of a 50 m lead-in cable towed behind the side scan sonar fish and 26 single nodes for each channel. Each node houses a sin- gle hydrophone, low- and high-cut filter, preamplifier and 24-bit AD converter. Three special engineering nodes additionally include a pressure sensor and compass which provide information on the depth of the node and on its geographical position relative to the ship. Nodes are interchangeable and can arbitrarily be connected by cables of 1 or 6.5 m length. A minimum sample interval of 0.25 ms allows to use sufficiently high- frequency seismic sources to guarantee both a very high vertical and lateral resolution. Data are stored both underwater on a linux-based PC with 120 GB storage capacity installed in a pressure vessel mounted on the side scan sonar fish, and onboard on a PC running a data acquisition program and a DLT device. Data are transferred between underwater and onboard systems via telemetry controlled by a second linux-based PC onboard, using coaxial cable or fibre optic technology. The exact position of the side scan sonar fish is determined by the ultra-short base line (USBL) Posidonia system. It mainly consists of a hull-mounted acoustic unit (antenna) and a responder mounted on the side scan sonar fish. Additionally, the three engineering nodes measure the depth and heading of the streamer at three positions relative to the side scan sonar fish. All deep-towed and laboratory components are synchronized by DGPS time based trigger signals. This deep-towed system will first be tested during the SO162 cruise of RV Sonne (21.2. - 12.3.02) off Peru and Ecuador along profile lines where conventional multi- channel seismic reflection data have already been collected during a fomer cruise.

  19. ELAS: A powerful, general purpose image processing package

    NASA Technical Reports Server (NTRS)

    Walters, David; Rickman, Douglas

    1991-01-01

    ELAS is a software package which has been utilized as an image processing tool for more than a decade. It has been the source of several commercial packages. Now available on UNIX workstations it is a very powerful, flexible set of software. Applications at Stennis Space Center have included a very wide range of areas including medicine, forestry, geology, ecological modeling, and sonar imagery. It remains one of the most powerful image processing packages available, either commercially or in the public domain.

  20. The Effects of Towfish Motion on Sidescan Sonar Images: Extension to a Multiple-Beam Device

    DTIC Science & Technology

    1994-02-01

    simulation, the raw simulated sidescan image is formed from pixels G , which are the sum of energies E,", assigned to the nearest range- bin k as noted in...for stable motion at constant velocity V0, are applied to (divided into) the G ,, and the simulated sidescan image is ready to display. Maximal energy...limitation is likely to apply to all multiple-beam sonais of similar construction. The yaw correction was incorporated in the MBEAM model by an

  1. Seafloor identification in sonar imagery via simulations of Helmholtz equations and discrete optimization

    NASA Astrophysics Data System (ADS)

    Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin

    2017-06-01

    We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.

  2. Enhanced Multistatic Active Sonar via Innovative Signal Processing

    DTIC Science & Technology

    2015-09-30

    3. DATES COVERED (From - To) Oct. 01, 2014-Sept. 30, 2015 4. TITLE AND SUBTITLE Enhanced Multistatic Active Sonar via Innovative Signal...active sonar (CAS) in the presence of strong direct blast is studied for the Doppler-tolerant linear frequency modulation waveform. A receiver design...beamformer variants is examined. 15. SUBJECT TERMS Pulsed active sonar (PAS), continuous active sonar (CAS), strong delay and Doppler-spread direct blast

  3. UNDERWATER MAPPING USING GLORIA AND MIPS.

    USGS Publications Warehouse

    Chavez, Pat S.; Anderson, Jeffrey A.; Schoonmaker, James W.

    1987-01-01

    Advances in digital image processing of the (GLORIA) Geological Long-Range Induced Asdic) sidescan-sonar image data have made it technically and economically possible to map large areas of the ocean floor including the Exclusive Economic Zone. Software was written to correct both geometric and radiometric distortions that exist in the original raw GLORIA data. A digital mosaicking technique was developed enabling 2 degree by 2 degree quadrangles to be generated.

  4. Broadband Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.

    1986-01-01

    New geometry spreads out resonance region of piezoelectric crystal. In new transducer, crystal surfaces made nonparallel. One surface planar; other, concave. Geometry designed to produce nearly uniform response over a predetermined band of frequencies and to attenuate strongly frequencies outside band. Greater bandwidth improves accuracy of sonar and ultrasonic imaging equipment.

  5. Estimation of velocities via optical flow

    NASA Astrophysics Data System (ADS)

    Popov, A.; Miller, A.; Miller, B.; Stepanyan, K.

    2017-02-01

    This article presents an approach to the optical flow (OF) usage as a general navigation means providing the information about the linear and angular vehicle's velocities. The term of "OF" came from opto-electronic devices where it corresponds to a video sequence of images related to the camera motion either over static surfaces or set of objects. Even if the positions of these objects are unknown in advance, one can estimate the camera motion provided just by video sequence itself and some metric information, such as distance between the objects or the range to the surface. This approach is applicable to any passive observation system which is able to produce a sequence of images, such as radio locator or sonar. Here the UAV application of the OF is considered since it is historically

  6. Mobile sailing robot for automatic estimation of fish density and monitoring water quality

    PubMed Central

    2013-01-01

    Introduction The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. Material and method The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Results Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Summary Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health. PMID:23815984

  7. Mobile sailing robot for automatic estimation of fish density and monitoring water quality.

    PubMed

    Koprowski, Robert; Wróbel, Zygmunt; Kleszcz, Agnieszka; Wilczyński, Sławomir; Woźnica, Andrzej; Łozowski, Bartosz; Pilarczyk, Maciej; Karczewski, Jerzy; Migula, Paweł

    2013-07-01

    The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health.

  8. Mega Scale Constructions and Art on Deep Gulf of Mexico Sonar Images Reveal Extensive Very Ancient Civilizations. Radical Holocene Climate Changes May Relate to Large Shifts in Gulf Surface Areas.

    NASA Astrophysics Data System (ADS)

    Allen, R. L.

    2017-12-01

    Enhanced images from subsea sonar scanning of the Western Gulf of Mexico have revealed quite large temples (4 km. in length), ruins of cities (14 km. by 11 km.), pyramids, amphitheaters, and many other structures. Some human faces have beards implying much earlier migrations of Europeans or North Africans. Several temples have paleo astronomy alignments and similarities to Stone Henge. Southern and Southwestern USA satellite land images display characteristics in common with several subsea designs. Water depths indicate that many structures go back about as far as the late Ice Age and are likely to be over ten thousand years old. Chronologies of civilizations, especially in North America will need to be seriously reconsidered. Greatly rising sea levels and radical climate changes must have helped to destroy relatively advanced cultures. Suprisingly deep water depths of many architectures provide evidence for closures within the Gulf of Mexico to open seas. Closures and openings may have influenced ancient radical climate swings between warmth and cooling as Gulf contributions to water temperatures contracted or expanded. These creations of very old and surprisingly advanced civilizations need protection.

  9. The Gondou hydrothermal field in the Ryukyu Arc: A huge hydrothermal system on the flank of a caldera volcano

    NASA Astrophysics Data System (ADS)

    Minami, H.; Ohara, Y.

    2017-09-01

    High-resolution geophysical mapping was conducted from an autonomous underwater vehicle on the flank of Daisan-Kume Knoll in the Ryukyu Arc, southwest of Japan. 1 m resolution bathymetry identified 264 spires, 173 large mounds and 268 small mounds within a depression that is up to 1600 m wide and up to 60 m deep, at water depths between 1330 and 1470 m. Hydrothermal venting is strongly inferred from the observation of plumes in sidescan sonar imagery and positive temperature anomalies over the spires and mounds. This field, named the Gondou Field, has a giant mound G1 with a diameter of 280 m and a height of 80 m. Mound G1 has distinctive summit ridges composed of multiple spires where acoustic plumes with temperature anomalies up to 1.12°C are observed, indicative of high-temperature venting. Other than mound G1, a number of active large mounds more than 30 m wide and spires over 10-22 m tall are common and they concentrate in the central and southern areas of the field, suggesting that these areas are the center of present hydrothermal activity. Acoustic plumes imaged by side-scan sonar at the Gondou Field are different in character from bubble plumes imaged in other hydrothermal fields in the Ryukyu Arc. The plumes are diffused and deflected as they rise through the water column and have a shape consistent with black smokers.

  10. Seismic-reflection and sidescan-sonar data collected on the Potomac River, Maryland and Virginia, during May 1979

    USGS Publications Warehouse

    Knebel, Harley J.

    1981-01-01

    The U.S. Geological Survey collected 2,170 line kilometers of single-channel seismic-reflection profiles and sidescan sonar records on the Potomac River during R/V NEECHO cruise NE-3-79 in May 1979. The purposes of the survey were to define: (1) areas of sediment accumulation and erosion; (2) the thickness of Holocene sediments; (3) the internal structure of the near-surface sediments; (4) the types of bottom topography; and (5) the general geologic framework of the tidal river and estuary.The survey utilized a variety of acoustic systems. Bottom data were obtained by using a Raytheon _1/ model DE-719 fathometer (200 kHz) and an EDO Western model 606 sidescan-sonar system (100 kHz). Subbottom data were collected with a 7-kHz Raytheon model PTR-106 system and a small airgun system (170-645 Hz band pass; l in3 chamber). An EDO Western sidescan fish (model 604-150) coupled with a 2.5-kHz seismic-reflection system also was used during the longitudinal run up the river. The totals for the ,various kinds of data collected were 481 line kilometers each of fathometer, sidescan sonar, 7-kHz, and airgun records, and 246 line kilometers of 2.5-kHz records. Positional control for all tracklines was provided by frequent radar fixes, by dead reckoning, and by sightings on buoys, landmarks, and other navigational aids.The quality of the acoustic records varied with location in the river. Good fathometer and sidescan-sonar records were collected along all tracklines. However, because of the nature of the sediments within some sections of the river, the degree of subbottom penetration in many places was limited. In general, the subbottom penetration and resolution were poor in the upper and middle reaches of the river, whereas the subbottom records from the lower reach usually were quite good.The original records may be examined at the U.S. Geological Survey, Woods Hole, MA 02543. Microfilm copies of the data are available for purchase from the National Geophysical and Solar-Terrestrial Data Center (NGSDC), Boulder, CO 80303.

  11. Multibeam Formation with a Parametric Sonar

    DTIC Science & Technology

    1976-03-05

    AD-A022 815 MULTIBEAM FORMATION WITH A PARAMETRIC SONAR Robert L. White Texas University at Austin Prepared for: Office of Naval Research 5 March...PARAMETRIC SONAR Final Report under Contract N00014-70-A-0166, Task 0020 1 February - 31 July 1974 Robe&, L. White OFFICE OF NAVAL RESEARCH Contract N00014...78712 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. r-X: ~ ... ABSTRACT Parametric sonar has proven to be an effective concept in sonar

  12. 3D AUV Microseismic Implementation for Deepwater Seabed Investigations

    NASA Astrophysics Data System (ADS)

    George, R.; Taylor, M. W.; Gravely, J. G.

    2005-05-01

    Autonomous Underwater Vehicle (AUV) technology, developed commercially over the past 5 years, allows for the geophysical investigation of the seabed on the deepwater continental slope at resolutions, data densities and timelines not previously attainable. High-resolution geophysical systems normally employed on deepwater survey AUVs consist of multibeam bathymetry, side scan sonar and subbottom profiler. Inertial navigation allows positioning accuracies on the order of plus or minus 3 meters in depths up to 2,000 meters. C & C Technologies, Inc. owns and operates the C-Surveyor I AUV, which has collected more than 40,000 km of geohazard survey data on the continental slopes of the Gulf of Mexico, Mediterranean Sea, Brazil and West Africa. The oil and gas industry routinely engineers deepwater platform-mooring systems and other bottom founded subsea systems for exploration and production developments. Resolute subbottom imaging of the foundation zone in order to identify the near-seafloor geologic conditions at these deepwater development sites is critical in order to maintain system integrity. The paper describes the methodology and post-processing techniques used to create a high-resolution (2-8 kHz) 3D seismic cube from subbottom profiler data collected from an AUV system. Data examples of the multibeam bathymetry, side scan sonar and 2D seismic profiles will be provided to complement the results of the 3D seismic cube processing. Examples of inlines, crosslines, arbitrary lines, seafloor amplitude extraction and time slices are presented for the 4-meter binned data set. Advantages, disadvantages and suggested improvements for the survey acquisition technique and post processing are discussed.

  13. Maps showing the change in modern sediment thickness on the Inner Continental Shelf offshore of Fire Island, New York, between 1996-97 and 2011

    USGS Publications Warehouse

    Schwab, William C.; Baldwin, Wayne E.; Denny, Jane F.

    2015-01-01

    The U.S. Geological Survey mapped approximately 336 square kilometers of the lower shoreface and inner continental shelf offshore of Fire Island, New York, in 1996 and 1997, using high-resolution sidescan-sonar and seismic-reflection systems, and again in 2011, using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents a comparison of sediment thickness and distribution as mapped during these two investigations. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island.

  14. Range compensation for backscattering measurements in the difference-frequency nearfield of a parametric sonar.

    PubMed

    Foote, Kenneth G

    2012-05-01

    Measurement of acoustic backscattering properties of targets requires removal of the range dependence of echoes. This process is called range compensation. For conventional sonars making measurements in the transducer farfield, the compensation removes effects of geometrical spreading and absorption. For parametric sonars consisting of a parametric acoustic transmitter and a conventional-sonar receiver, two additional range dependences require compensation when making measurements in the nonlinearly generated difference-frequency nearfield: an apparently increasing source level and a changing beamwidth. General expressions are derived for range compensation functions in the difference-frequency nearfield of parametric sonars. These are evaluated numerically for a parametric sonar whose difference-frequency band, effectively 1-6 kHz, is being used to observe Atlantic herring (Clupea harengus) in situ. Range compensation functions for this sonar are compared with corresponding functions for conventional sonars for the cases of single and multiple scatterers. Dependences of these range compensation functions on the parametric sonar transducer shape, size, acoustic power density, and hydrography are investigated. Parametric range compensation functions, when applied with calibration data, will enable difference-frequency echoes to be expressed in physical units of volume backscattering, and backscattering spectra, including fish-swimbladder-resonances, to be analyzed.

  15. 50 CFR 216.186 - Requirements for reporting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Low Frequency Active (SURTASS LFA sonar) Sonar § 216.186 Requirements for reporting. (a) The Holder of... of each vessel during each mission; (2) Information on sonar transmissions during each mission; (3... must contain an unclassified analysis of new passive sonar technologies and an assessment of whether...

  16. 50 CFR 218.234 - Mitigation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Frequency Active (SURTASS LFA) Sonar § 218.234 Mitigation. When conducting operations identified in § 218... monitoring. (b) General Operating Procedures: (1) Prior to SURTASS LFA sonar operations, the Navy will... SURTASS LFA sonar signal at a frequency greater than 500 Hertz (Hz). (c) LFA Sonar Mitigation Zone and 1...

  17. 50 CFR 218.234 - Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Frequency Active (SURTASS LFA) Sonar § 218.234 Mitigation. When conducting operations identified in § 218... monitoring. (b) General Operating Procedures: (1) Prior to SURTASS LFA sonar operations, the Navy will... SURTASS LFA sonar signal at a frequency greater than 500 Hertz (Hz). (c) LFA Sonar Mitigation Zone and 1...

  18. 50 CFR 216.186 - Requirements for reporting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Low Frequency Active (SURTASS LFA sonar) Sonar § 216.186 Requirements for reporting. (a) The Holder of... of each vessel during each mission; (2) Information on sonar transmissions during each mission; (3... must contain an unclassified analysis of new passive sonar technologies and an assessment of whether...

  19. 50 CFR 218.234 - Mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Frequency Active (SURTASS LFA) Sonar § 218.234 Mitigation. When conducting operations identified in § 218... monitoring. (b) General Operating Procedures: (1) Prior to SURTASS LFA sonar operations, the Navy will... SURTASS LFA sonar signal at a frequency greater than 500 Hertz (Hz). (c) LFA Sonar Mitigation Zone and 1...

  20. Coherent Path Beamformer Front End for High Performance Acoustic Modems

    DTIC Science & Technology

    1999-09-30

    transmission underwater. This knowledge will be used to develop a test model for evaluating under water acoustic modem and other shallow water sonar ...rates can be achieved, as shown in the following two sections. WORK COMPLETED Two systems have been developed in the Sonar Laboratory of Ocean...2) More performant variable gain preamplifiers have been installed and the software updated for a better control of the dynamic range. 3) An

  1. Design and operation specifications of an active monitoring system for detecting southern resident killer whales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Carlson, Thomas J.; Xu, Jinshan

    2011-09-30

    Before final approval is given to the Snohomish County Public Utility District No. 1 for deploying the first tidal power devices in the United States in an open water environment, a system to manage the potential risk of injury to killer whales due to collision with moving turbine blades must be demonstrated. The Pacific Northwest National Laboratory (PNNL) is tasked with establishing the performance requirements for, constructing, and testing a prototype marine animal alert system for triggering temporary turbine shutdown when there is risk of collision with a killer whale. To develop a system that relies on active sonar twomore » critical areas must be investigated - the target strength of killer whales and the frequency content of commercially available active sonar units. PNNL studied three target strength models: a simple model, the Fourier matching model, and the Kirchoff-ray mode model. Using target strength measurements of bottlenose dolphins obtained by previous researchers and assuming killer whales share similar morphology and structure, PNNL extrapolated the target strength of an adult killer whale 7.5 m in length at a frequency of 67 kHz. To study the frequency content of a commercially available sonar unit, direct measurements of the signal transmitted by the sonar were obtained by using a hydrophone connected to a data acquisition system in both laboratory and field conditions. The measurements revealed that in addition to the primary frequency of 200 kHz, there is a secondary frequency component at 90 kHz, which is within the hearing range of killer whales. The amplitude of the 90-kHz frequency component is above the hearing threshold of killer whales but below the threshold for potential injuries.« less

  2. Multibeam Sonar Backscatter Data Acquisition and Processing: Guidelines and Recommendations from the GEOHAB Backscatter Working Group

    NASA Astrophysics Data System (ADS)

    Heffron, E.; Lurton, X.; Lamarche, G.; Brown, C.; Lucieer, V.; Rice, G.; Schimel, A.; Weber, T.

    2015-12-01

    Backscatter data acquired with multibeam sonars are now commonly used for the remote geological interpretation of the seabed. The systems hardware, software, and processing methods and tools have grown in numbers and improved over the years, yet many issues linger: there are no standard procedures for acquisition, poor or absent calibration, limited understanding and documentation of processing methods, etc. A workshop organized at the GeoHab (a community of geoscientists and biologists around the topic of marine habitat mapping) annual meeting in 2013 was dedicated to seafloor backscatter data from multibeam sonars and concluded that there was an overwhelming need for better coherence and agreement on the topics of acquisition, processing and interpretation of data. The GeoHab Backscatter Working Group (BSWG) was subsequently created with the purpose of documenting and synthetizing the state-of-the-art in sensors and techniques available today and proposing methods for best practice in the acquisition and processing of backscatter data. Two years later, the resulting document "Backscatter measurements by seafloor-mapping sonars: Guidelines and Recommendations" was completed1. The document provides: An introduction to backscatter measurements by seafloor-mapping sonars; A background on the physical principles of sonar backscatter; A discussion on users' needs from a wide spectrum of community end-users; A review on backscatter measurement; An analysis of best practices in data acquisition; A review of data processing principles with details on present software implementation; and finally A synthesis and key recommendations. This presentation reviews the BSWG mandate, structure, and development of this document. It details the various chapter contents, its recommendations to sonar manufacturers, operators, data processing software developers and end-users and its implication for the marine geology community. 1: Downloadable at https://www.niwa.co.nz/coasts-and-oceans/research-projects/backscatter-measurement-guidelines

  3. Sensor Management for Tactical Surveillance Operations

    DTIC Science & Technology

    2007-11-01

    active and passive sonar for submarine and tor- pedo detection, and mine avoidance. [range, bearing] range 1.8 km to 55 km Active or Passive AN/SLQ-501...finding (DF) unit [bearing, classification] maximum range 1100 km Passive Cameras (day- light/ night- vision) ( video & still) Record optical and...infrared still images or motion video of events for near-real time assessment or long term analysis and archiving. Range is limited by the image resolution

  4. Experiences from using Autonomous Underwater Vehicles and Synthetic Aperture Sonar for Sediment and Habitat Mapping

    NASA Astrophysics Data System (ADS)

    Thorsnes, T.; Bjarnadóttir, L. R.

    2017-12-01

    Emerging platforms and tools like autonomous underwater vehicles and synthetic aperture sonars provide interesting opportunities for making seabed mapping more efficient and precise. Sediment grain-size maps are an important product in their own right and a key input for habitat and biotope maps. National and regional mapping programmes are tasked with mapping large areas, and survey efficiency, data quality, and resulting map confidence are important considerations when selecting the mapping strategy. Since 2005, c. 175,000 square kilometres of the Norwegian continental shelf and continental slope has been mapped with respect to sediments, habitats and biodiversity, and pollution under the MAREANO programme (www.mareano.no). At present the sediment mapping is based on a combination of ship-borne multibeam bathymetry and backscatter, visual documentation using a towed video platform, and grab sampling. We have now tested a new approach, using an Autonomous Underwater Vehicle (AUV) as the survey platform for the collection of acoustic data (Synthetic Aperture Sonar (SAS), EM2040 bathymetry and backscatter) and visual data (still images using a TFish colour photo system). This pilot project was conducted together the Norwegian Hydrographic Service, the Institute of Marine Research (biology observations) and the Norwegian Defence Research Establishment (operation of ship and AUV). The test site reported here is the Vesterdjupet area, offshore Lofoten, northern Norway. The water depth is between 170 and 300 metres, with sediments ranging from gravel, cobbles and boulders to sandy mud. A cold-water coral reef, associated with bioclastic sediments was also present in the study area. The presentation will give an overview of the main findings and experiences gained from this pilot project with a focus on geological mapping and will also discuss the relevance of AUV-based mapping to large-area mapping programmes like MAREANO.

  5. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  6. 50 CFR 216.184 - Mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Frequency Active (SURTASS LFA sonar) Sonar § 216.184 Mitigation. The activity identified in § 216.180(a....54 nm) buffer zone extending beyond the 180-dB zone), SURTASS LFA sonar transmissions will be... active acoustic monitoring described in § 216.185. (c) The high-frequency marine mammal monitoring sonar...

  7. 50 CFR 218.235 - Requirements for monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.235 Requirements for monitoring. (a) The Holder of a...) during operations that employ SURTASS LFA sonar in the active mode. The SURTASS vessels shall have... frequency passive SURTASS sonar to listen for vocalizing marine mammals; and (3) Use the HF/M3 active sonar...

  8. 50 CFR 216.184 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Frequency Active (SURTASS LFA sonar) Sonar § 216.184 Mitigation. The activity identified in § 216.180(a....54 nm) buffer zone extending beyond the 180-dB zone), SURTASS LFA sonar transmissions will be... active acoustic monitoring described in § 216.185. (c) The high-frequency marine mammal monitoring sonar...

  9. 50 CFR 218.235 - Requirements for monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.235 Requirements for monitoring. (a) The Holder of a...) during operations that employ SURTASS LFA sonar in the active mode. The SURTASS vessels shall have... frequency passive SURTASS sonar to listen for vocalizing marine mammals; and (3) Use the HF/M3 active sonar...

  10. 50 CFR 218.235 - Requirements for monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.235 Requirements for monitoring. (a) The Holder of a...) during operations that employ SURTASS LFA sonar in the active mode. The SURTASS vessels shall have... frequency passive SURTASS sonar to listen for vocalizing marine mammals; and (3) Use the HF/M3 active sonar...

  11. Blue whales respond to simulated mid-frequency military sonar

    PubMed Central

    Goldbogen, Jeremy A.; Southall, Brandon L.; DeRuiter, Stacy L.; Calambokidis, John; Friedlaender, Ari S.; Hazen, Elliott L.; Falcone, Erin A.; Schorr, Gregory S.; Douglas, Annie; Moretti, David J.; Kyburg, Chris; McKenna, Megan F.; Tyack, Peter L.

    2013-01-01

    Mid-frequency military (1–10 kHz) sonars have been associated with lethal mass strandings of deep-diving toothed whales, but the effects on endangered baleen whale species are virtually unknown. Here, we used controlled exposure experiments with simulated military sonar and other mid-frequency sounds to measure behavioural responses of tagged blue whales (Balaenoptera musculus) in feeding areas within the Southern California Bight. Despite using source levels orders of magnitude below some operational military systems, our results demonstrate that mid-frequency sound can significantly affect blue whale behaviour, especially during deep feeding modes. When a response occurred, behavioural changes varied widely from cessation of deep feeding to increased swimming speed and directed travel away from the sound source. The variability of these behavioural responses was largely influenced by a complex interaction of behavioural state, the type of mid-frequency sound and received sound level. Sonar-induced disruption of feeding and displacement from high-quality prey patches could have significant and previously undocumented impacts on baleen whale foraging ecology, individual fitness and population health. PMID:23825206

  12. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 4, West Hackberry site, Louisiana.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-09-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 4 focuses on the West Hackberry SPR site, located in southwestern Louisiana. Volumes 1, 2, and 3, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the Bryan Mound SPR site, Texas. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes,more » the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.« less

  13. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 2, Big Hill Site, Texas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-08-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 2 focuses on the Big Hill SPR site, located in southeastern Texas. Volumes 1, 3, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes,more » the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.« less

  14. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 1, Bayou Choctaw site, Louisiana.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-10-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 1 focuses on the Bayou Choctaw SPR site, located in southern Louisiana. Volumes 2, 3, and 4, respectively, present images for the Big Hill SPR site, Texas, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes,more » the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.« less

  15. Modeling interface roughness scattering in a layered seabed for normal-incident chirp sonar signals.

    PubMed

    Tang, Dajun; Hefner, Brian T

    2012-04-01

    Downward looking sonar, such as the chirp sonar, is widely used as a sediment survey tool in shallow water environments. Inversion of geo-acoustic parameters from such sonar data precedes the availability of forward models. An exact numerical model is developed to initiate the simulation of the acoustic field produced by such a sonar in the presence of multiple rough interfaces. The sediment layers are assumed to be fluid layers with non-intercepting rough interfaces.

  16. Behavioral Responses of Naive Cuvier’s Beaked Whales in the Ligurian Sea to Playback of Anthropogenic and Natural Sounds

    DTIC Science & Technology

    2012-09-30

    cavirostris) to MFA sonar signals. A secondary goal of conducting a killer whale playback that has not been preceded by a sonar playback (as in Tyack et al...2011) was also planned. OBJECTIVES This investigation set out to safely test responses of Ziphius to sonar signals and to determine the...exposure level required to elicit a response in a site where strandings have been associated with sonar exercises and where the whales seldom hear sonar

  17. Morphodynamic Impacts of Hurricane Sandy on the Inner-shelf (Invited)

    NASA Astrophysics Data System (ADS)

    Trembanis, A. C.; Beaudoin, J. D.; DuVal, C.; Schmidt, V. E.; Mayer, L. A.

    2013-12-01

    Through the careful execution of precision high-resolution acoustic sonar surveys over the period of October 2012 through July 2013, we have obtained a unique set of high-resolution before and after storm measurements of seabed morphology and in situ hydrodynamic conditions (waves and currents) capturing the impact of the storm at an inner continental shelf field site known as the 'Redbird reef' (Raineault et al., 2013). Understanding the signature of this storm event is important for identifying the impacts of such events and for understanding the role that such events have in the transport of sediment and marine debris on the inner continental shelf. In order to understand and characterize the ripple dynamics and scour processes in an energetic, heterogeneous inner-shelf setting, a series of high-resolution geoacoustic surveys were conducted before and after Hurricane Sandy. Our overall goal is to improve our understanding of bedform dynamics and spatio-temporal length scales and defect densities through the application of a recently developed fingerprint algorithm technique (Skarke and Trembanis, 2011). Utilizing high-resolution swath sonar collected by an AUV and from surface vessel multibeam sonar, our study focuses both on bedforms in the vicinity of manmade seabed objects (e.g. shipwrecks and subway cars) and dynamic natural ripples on the inner-shelf in energetic coastal settings with application to critical military operations such as mine countermeasures. Seafloor mapping surveys were conducted both with a ship-mounted multibeam echosounder (200 kHz and 400 kHz) and an Autonomous Underwater Vehicle (AUV) configured with high-resolution side-scan sonar (900 and 1800 kHz) and a phase measuring bathymetric sonar (500 kHz). These geoacoustic surveys were further augmented with data collected by in situ instruments placed on the seabed that recorded measurements of waves and currents at the site before, during, and after the storm. Multibeam echosounder map of the Redbird reef site after Hurricane Sandy. Image resolution is 25 cm/pixel.

  18. High reliability outdoor sonar prototype based on efficient signal coding.

    PubMed

    Alvarez, Fernando J; Ureña, Jesús; Mazo, Manuel; Hernández, Alvaro; García, Juan J; de Marziani, Carlos

    2006-10-01

    Many mobile robots and autonomous vehicles designed for outdoor operation have incorporated ultrasonic sensors in their navigation systems, whose function is mainly to avoid possible collisions with very close obstacles. The use of these systems in more precise tasks requires signal encoding and the incorporation of pulse compression techniques that have already been used with success in the design of high-performance indoor sonars. However, the transmission of ultrasonic encoded signals outdoors entails a new challenge because of the effects of atmospheric turbulence. This phenomenon causes random fluctuations in the phase and amplitude of traveling acoustic waves, a fact that can make the encoded signal completely unrecognizable by its matched receiver. Atmospheric turbulence is investigated in this work, with the aim of determining the conditions under which it is possible to assure the reliable outdoor operation of an ultrasonic pulse compression system. As a result of this analysis, a novel sonar prototype based on complementary sequences coding is developed and experimentally tested. This encoding scheme provides the system with very useful additional features, namely, high robustness to noise, multi-mode operation capability (simultaneous emissions with minimum cross talk interference), and the possibility of applying an efficient detection algorithm that notably decreases the hardware resource requirements.

  19. Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats

    PubMed Central

    Falk, Benjamin; Kasnadi, Joseph; Moss, Cynthia F.

    2015-01-01

    ABSTRACT Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture. PMID:26582935

  20. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions.

    PubMed

    Jarvis, Jenna; Jackson, William; Smotherman, Michael

    2013-01-01

    How bats adapt their sonar behavior to accommodate the noisiness of a crowded day roost is a mystery. Some bats change their pulse acoustics to enhance the distinction between theirs and another bat's echoes, but additional mechanisms are needed to explain the bat sonar system's exceptional resilience to jamming by conspecifics. Variable pulse repetition rate strategies offer one potential solution to this dynamic problem, but precisely how changes in pulse rate could improve sonar performance in social settings is unclear. Here we show that bats decrease their emission rates as population density increases, following a pattern that reflects a cumulative mutual suppression of each other's pulse emissions. Playback of artificially-generated echolocation pulses similarly slowed emission rates, demonstrating that suppression was mediated by hearing the pulses of other bats. Slower emission rates did not support an antiphonal emission strategy but did reduce the relative proportion of emitted pulses that overlapped with another bat's emissions, reducing the relative rate of mutual interference. The prevalence of acoustic interferences occurring amongst bats was empirically determined to be a linear function of population density and mean emission rates. Consequently as group size increased, small reductions in emission rates spread across the group partially mitigated the increase in interference rate. Drawing on lessons learned from communications networking theory we show how modest decreases in pulse emission rates can significantly increase the net information throughput of the shared acoustic space, thereby improving sonar efficiency for all individuals in a group. We propose that an automated acoustic suppression of pulse emissions triggered by bats hearing each other's emissions dynamically optimizes sonar efficiency for the entire group.

  1. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions

    PubMed Central

    Jarvis, Jenna; Jackson, William; Smotherman, Michael

    2013-01-01

    How bats adapt their sonar behavior to accommodate the noisiness of a crowded day roost is a mystery. Some bats change their pulse acoustics to enhance the distinction between theirs and another bat's echoes, but additional mechanisms are needed to explain the bat sonar system's exceptional resilience to jamming by conspecifics. Variable pulse repetition rate strategies offer one potential solution to this dynamic problem, but precisely how changes in pulse rate could improve sonar performance in social settings is unclear. Here we show that bats decrease their emission rates as population density increases, following a pattern that reflects a cumulative mutual suppression of each other's pulse emissions. Playback of artificially-generated echolocation pulses similarly slowed emission rates, demonstrating that suppression was mediated by hearing the pulses of other bats. Slower emission rates did not support an antiphonal emission strategy but did reduce the relative proportion of emitted pulses that overlapped with another bat's emissions, reducing the relative rate of mutual interference. The prevalence of acoustic interferences occurring amongst bats was empirically determined to be a linear function of population density and mean emission rates. Consequently as group size increased, small reductions in emission rates spread across the group partially mitigated the increase in interference rate. Drawing on lessons learned from communications networking theory we show how modest decreases in pulse emission rates can significantly increase the net information throughput of the shared acoustic space, thereby improving sonar efficiency for all individuals in a group. We propose that an automated acoustic suppression of pulse emissions triggered by bats hearing each other's emissions dynamically optimizes sonar efficiency for the entire group. PMID:23781208

  2. Integrating New Bellhop Functionality into the Environmental Modelling Manager

    DTIC Science & Technology

    2012-09-01

    have been made in the final section of the report. Testing these enhancements in real-world at-sea trials and integration into Canada’s PLEIADES Sonar...l’essai ces améliorations au cours d’essais réels en mer et de les intégrer au système sonar canadien PLEIADES . DRDC Atlantic CR 2011-253 v...Bellhop, Environmental Modelling Manager, System Test Bed, PLEIADES , ray tracing, underwater acoustics, propagation, beam patterns This

  3. Bio-Inspired In-Air Sonar Localization: What Artificial Pinnae do for Robotic Bats

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, Filips

    This dissertation investigates the hypothesis that binaural spectral cues, as generated by biomimetic microphone-baffle shapes in a suitable configuration, are both a sufficient and efficient means to realize real-time 3D localization capabilities for an in-air sonar system. We demonstrate 3D localization of real reflectors under realistic noise conditions, a task previously not performed successfully with a single binaural sonar measurement. The principal driving force behind this new approach is the use of two complex artificial pinna structures acting as complex direction-dependent spectral filters on the returning echoes. The technique makes use of broadband spectral cues in the received echoes only. Experiments with complex reflectors illustrate that the active head-related transfer function dominates the echo spectrum, allowing 3D localization in the presence of spectrum distortions caused by unknown reflector filtering. Also, experimental results in which multiple targets are localized simultaneously are presented. It is then investigated how binaural sonar system configuration choices affect 3D spectrum-based reflector localization. The proposed model demonstrates the limits of the spectral cue information provided by conventional transducers. Configurations composed of conventional receivers are evaluated as a function of unknown reflection strength and compared with a system with artificial pinnae receivers. Localization performance is quantified by an information theoretic performance criterion expressing the mutual information carried by a binaural spectrum on the corresponding 3D reflector location. Optimal configurations with conventional transducers are shown to be a function of echo reflection strength and the specific region of interest. The more complex spatial sensitivity patterns of organic pinna forms such as that of the Phyllostomus discolor bat species provide additional spectral cues that greatly improve localization information transfer compared to conventional transducers. Results indicate that the varying acoustic axis in the head-related transfer function of the pinna and even more so the higher peripheral sensitivity around the varying acoustic axis are the driving forces behind the artificial pinna's superior localization performance. Finally, it is shown that technical antennas that do not reproduce all the structural details seen in natural biosonar antennas can be suitable and robust design alternatives for in-air sonar systems intended for use on autonomous robots.

  4. Near Field Imaging for the Characterization of Diffusion Length and Waveguiding in Zinc Oxide Nanowires

    DTIC Science & Technology

    2012-06-01

    From RADAR and SONAR , rocket propulsion, and the atomic bomb in World War II to the high tech drones, satellite imagery, surgically precise weapons...control from the four connectors shown in Figure scanner, preamplifier , step motor, and the bottom scanner. The connectors also electrically ground

  5. Measuring the Speed of Sound in Water

    ERIC Educational Resources Information Center

    Ward, Richard J.

    2015-01-01

    This paper begins with an early measurement of the speed of sound in water. A historical overview of the consequent development of SONAR and medical imaging is given. A method of measuring the speed suitable for demonstration to year 10 students is described in detail, and an explanation of its systematic error examined.

  6. 50 CFR 216.270 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the following mid-frequency active sonar (MFAS) and high frequency active sonar (HFAS) sources, or...) (estimated amounts below): (i) AN/SQS-53 (hull-mounted active sonar)—up to 9885 hours over the course of 5 years (an average of 1977 hours per year) (ii) AN/SQS-56 (hull-mounted active sonar)—up to 2470 hours...

  7. 50 CFR 216.270 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the following mid-frequency active sonar (MFAS) and high frequency active sonar (HFAS) sources, or...) (estimated amounts below): (i) AN/SQS-53 (hull-mounted active sonar)—up to 9885 hours over the course of 5 years (an average of 1977 hours per year) (ii) AN/SQS-56 (hull-mounted active sonar)—up to 2470 hours...

  8. Highly Directive Array Aperture

    DTIC Science & Technology

    2013-02-13

    generally to sonar arrays with acoustic discontinuities, and, more particularly, to increasing the directivity gain of a sonar array aperture by...sought by sonar designers. [0005] The following patents and publication show various types of acoustic arrays with coatings and discontinuities that...discloses a sonar array uses multiple acoustically transparent layers. One layer is a linear array of acoustic sensors that is substantially

  9. A Directional Dogbone Flextensional Sonar Transducer

    DTIC Science & Technology

    2010-10-01

    A Directional Dogbone Flextensional Sonar Transducer Stephen C. Butler Naval Undersea Warfare Center, Newport, RI 02841 Abstract: In order to...transmit energy in one direction, sonar flextensional transducers are combined into arrays of elements that are spaced a 1/4 wavelength apart. The...electroacoustic performance and compared with an experimental data. Keywords: Transducer, Flextensional, Sonar , Piezoelectric, Directional, Cardioid

  10. Experimental Comparison of High Duty Cycle and Pulsed Active Sonars in a Littoral Environment

    DTIC Science & Technology

    2014-09-30

    A series of metrics (eg. number of detections, matched-filter gain, false alarm rates, track purity, track latency, etc.) will be used to quantify...for QA. These data were used to generate spectrograms, ambient noise and reverberation decay plots, and clutter images, all of which helped...Perhaps the most useful of these for QA were the clutter images which provided a rapid visual assessment to estimate SNR, identify at what range the

  11. Geophysical Data from Offshore of the Chandeleur Islands, Eastern Mississippi Delta

    USGS Publications Warehouse

    Baldwin, Wayne E.; Pendleton, Elizabeth A.; Twichell, David C.

    2009-01-01

    This report contains the geophysical and geospatial data that were collected during two cruises on the R/V Acadiana along the eastern, offshore side of the Chandeleur Islands in 2006 and 2007. Data were acquired with the following equipment: a Systems Engineering and Assessment, Ltd., SwathPlus interferometric sonar; a Klein 3000 dual-frequency sidescan sonar; and an EdgeTech 512i chirp sub-bottom profiling system. The long-term goal of this mapping effort is to produce high-quality, high-resolution geologic maps and geophysical interpretations that can be utilized to investigate the impact of Hurricane Katrina, identify sand resources within the region, and make predictions regarding the future evolution of this coastal system.

  12. Fractal analysis of seafloor textures for target detection in synthetic aperture sonar imagery

    NASA Astrophysics Data System (ADS)

    Nabelek, T.; Keller, J.; Galusha, A.; Zare, A.

    2018-04-01

    Fractal analysis of an image is a mathematical approach to generate surface related features from an image or image tile that can be applied to image segmentation and to object recognition. In undersea target countermeasures, the targets of interest can appear as anomalies in a variety of contexts, visually different textures on the seafloor. In this paper, we evaluate the use of fractal dimension as a primary feature and related characteristics as secondary features to be extracted from synthetic aperture sonar (SAS) imagery for the purpose of target detection. We develop three separate methods for computing fractal dimension. Tiles with targets are compared to others from the same background textures without targets. The different fractal dimension feature methods are tested with respect to how well they can be used to detect targets vs. false alarms within the same contexts. These features are evaluated for utility using a set of image tiles extracted from a SAS data set generated by the U.S. Navy in conjunction with the Office of Naval Research. We find that all three methods perform well in the classification task, with a fractional Brownian motion model performing the best among the individual methods. We also find that the secondary features are just as useful, if not more so, in classifying false alarms vs. targets. The best classification accuracy overall, in our experimentation, is found when the features from all three methods are combined into a single feature vector.

  13. Timing matters: sonar call groups facilitate target localization in bats.

    PubMed

    Kothari, Ninad B; Wohlgemuth, Melville J; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F

    2014-01-01

    To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment.

  14. Timing matters: sonar call groups facilitate target localization in bats

    PubMed Central

    Kothari, Ninad B.; Wohlgemuth, Melville J.; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment. PMID:24860509

  15. 50 CFR 218.110 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training...-53 (hull-mounted active sonar)—up to 215 hours over the course of 5 years (an average of 43 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 325 hours over the course of 5 years (an...

  16. 50 CFR 218.100 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... active sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training...-53 (hull-mounted active sonar)—up to 10865 hours over the course of 5 years (an average of 2173 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)-up to 705 hours over the course of 5 years (an...

  17. 50 CFR 216.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-frequency active sonar (MFAS) and high frequency active sonar (HFAS) sources for U.S. Navy anti-submarine warfare (ASW) training in the amounts indicated below (±10 percent): (i) AN/SQS-53 (hull-mounted sonar)—up...-mounted sonar)—up to 1915 hours over the course of 5 years (an average of 383 hours per year) (iii) AN/AQS...

  18. 50 CFR 218.100 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... active sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training...-53 (hull-mounted active sonar)—up to 10865 hours over the course of 5 years (an average of 2173 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)-up to 705 hours over the course of 5 years (an...

  19. 50 CFR 218.110 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training...-53 (hull-mounted active sonar)—up to 215 hours over the course of 5 years (an average of 43 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 325 hours over the course of 5 years (an...

  20. 50 CFR 218.100 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... active sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training...-53 (hull-mounted active sonar)—up to 10865 hours over the course of 5 years (an average of 2173 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)-up to 705 hours over the course of 5 years (an...

  1. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the following mid-frequency active sonar (MFAS) sources, high-frequency active sonar (HFAS) sources...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52...

  2. 50 CFR 218.100 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: (1) The use of the following mid-frequency active sonar (MFAS) and high frequency active sonar (HFAS..., testing and evaluation (RDT&E): (i) AN/SQS-53 (hull-mounted active sonar)—up to 10865 hours over the course of 5 years (an average of 2173 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)-up to...

  3. 50 CFR 218.110 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training...-53 (hull-mounted active sonar)—up to 215 hours over the course of 5 years (an average of 43 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 325 hours over the course of 5 years (an...

  4. 50 CFR 218.110 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources... below: (i) AN/SQS-53 (hull-mounted active sonar)—up to 215 hours over the course of 5 years (an average of 43 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 325 hours over the course of...

  5. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the following mid-frequency active sonar (MFAS) sources, high-frequency active sonar (HFAS) sources...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52...

  6. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the following mid-frequency active sonar (MFAS) sources, high-frequency active sonar (HFAS) sources...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52...

  7. 50 CFR 218.100 - Specified activity and specified geographical area.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: (1) The use of the following mid-frequency active sonar (MFAS) and high frequency active sonar (HFAS..., testing and evaluation (RDT&E): (i) AN/SQS-53 (hull-mounted active sonar)—up to 10865 hours over the course of 5 years (an average of 2173 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)-up to...

  8. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the following mid-frequency active sonar (MFAS) sources, high-frequency active sonar (HFAS) sources...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52...

  9. Sonar beam dynamics in leaf-nosed bats

    PubMed Central

    Linnenschmidt, Meike; Wiegrebe, Lutz

    2016-01-01

    Ultrasonic emissions of bats are directional and delimit the echo-acoustic space. Directionality is quantified by the aperture of the sonar beam. Recent work has shown that bats often widen their sonar beam when approaching movable prey or sharpen their sonar beam when navigating through cluttered habitats. Here we report how nose-emitting bats, Phyllostomus discolor, adjust their sonar beam to object distance. First, we show that the height and width of the bats sonar beam, as imprinted on a parabolic 45 channel microphone array, varies even within each animal and this variation is unrelated to changes in call level or spectral content. Second, we show that these animals are able to systematically decrease height and width of their sonar beam while focusing on the approaching object. Thus it appears that sonar beam sharpening is a further, facultative means of reducing search volume, likely to be employed by stationary animals when the object position is close and unambiguous. As only half of our individuals sharpened their beam onto the approaching object we suggest that this strategy is facultative, under voluntary control, and that beam formation is likely mediated by muscular control of the acoustic aperture of the bats’ nose leaf. PMID:27384865

  10. Sonar beam dynamics in leaf-nosed bats.

    PubMed

    Linnenschmidt, Meike; Wiegrebe, Lutz

    2016-07-07

    Ultrasonic emissions of bats are directional and delimit the echo-acoustic space. Directionality is quantified by the aperture of the sonar beam. Recent work has shown that bats often widen their sonar beam when approaching movable prey or sharpen their sonar beam when navigating through cluttered habitats. Here we report how nose-emitting bats, Phyllostomus discolor, adjust their sonar beam to object distance. First, we show that the height and width of the bats sonar beam, as imprinted on a parabolic 45 channel microphone array, varies even within each animal and this variation is unrelated to changes in call level or spectral content. Second, we show that these animals are able to systematically decrease height and width of their sonar beam while focusing on the approaching object. Thus it appears that sonar beam sharpening is a further, facultative means of reducing search volume, likely to be employed by stationary animals when the object position is close and unambiguous. As only half of our individuals sharpened their beam onto the approaching object we suggest that this strategy is facultative, under voluntary control, and that beam formation is likely mediated by muscular control of the acoustic aperture of the bats' nose leaf.

  11. First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar.

    PubMed

    DeRuiter, Stacy L; Southall, Brandon L; Calambokidis, John; Zimmer, Walter M X; Sadykova, Dinara; Falcone, Erin A; Friedlaender, Ari S; Joseph, John E; Moretti, David; Schorr, Gregory S; Thomas, Len; Tyack, Peter L

    2013-08-23

    Most marine mammal- strandings coincident with naval sonar exercises have involved Cuvier's beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89-127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78-106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.

  12. Very High Resolution Bathymetric Mapping at the Ridge 2000 Integrated Study Sites: Acquisition and Processing Protocols Developed During Recent Alvin Field Programs to the East Pacific Rise and Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Ferrini, V.; Fornari, D. J.; Shank, T.; Tivey, M.; Kelley, D. S.; Glickson, D.; Carbotte, S. M.; Howland, J.; Whitcomb, L. L.; Yoerger, D.

    2004-12-01

    Recent field programs at the East Pacific Rise and Juan de Fuca Ridge have resulted in the refinement of data processing protocols that enable the rapid creation of high-resolution (meter-scale) bathymetric maps from pencil-beam altimetric sonar data that are routinely collected during DSV Alvin dives. With the development of the appropriate processing tools, the Imagenex sonar, a permanent sensor on Alvin, can be used by a broad range of scientists permitting the analysis of various data sets within the context of high-quality bathymetric maps. The data processing protocol integrates depth data recorded with Alvin's Paroscientific pressure sensor with bathymetric soundings collected with an Imagenex 675 kHz articulating (scanning) sonar system, and high-resolution navigational data acquired with DVLNAV, which includes bottom lock Doppler sonar and long baseline (LBL) navigation. Together these data allow us, for the first time, to visualize portions of Ridge 2000 Integrated Study Sites (ISS) at 1-m vertical and horizontal resolution. These maps resolve morphological details of structures within the summit trough at scales that are relevant to biological communities (e.g. hydrothermal vents, lava pillars, trough walls), thus providing the important geologic context necessary to better understand spatial patterns associated with integrated biological-hydrothermal-geological processes. The Imagenex sonar is also a permanent sensor on the Jason2 ROV, which is also equipped with an SM2000 (200 kHz) near-bottom multibeam sonar. In the future, it is envisioned that near-bottom multibeam sonars will be standard sensors on all National Deep Submergence Facility (NDSF) vehicles. Streamlining data processing protocols makes these datasets more accessible to NDSF users and ensures broad compatibility between data formats among NDSF vehicle systems and allied vehicles (e.g. ABE). Establishing data processing protocols and software suites, routinely calibrating sensors (e.g. Paroscientific depth sensors), and ensuring good navigational benchmarks between various cruises to the Ridge 2000 ISS improves the capability and quality of rapidly produced high-resolution bathymetric maps enabling users to optimize their diving programs. This is especially important within the context of augmenting high-resolution bathymetric data collection in ISS areas (several cruises to the same area over multiple years) and investigating possible changes in seafloor topography, hydrothermal vent features and/or biological communities that are related to tectonic or volcanic events.

  13. Rapid jamming avoidance in biosonar.

    PubMed

    Gillam, Erin H; Ulanovsky, Nachum; McCracken, Gary F

    2007-03-07

    The sonar systems of bats and dolphins are in many ways superior to man-made sonar and radar systems, and considerable effort has been devoted to understanding the signal-processing strategies underlying these capabilities. A major feature determining the efficiency of sonar systems is the sensitivity to noise and jamming signals. Previous studies indicated that echolocating bats may adjust their signal structure to avoid jamming ('jamming avoidance response'; JAR). However, these studies relied on behavioural correlations and not controlled experiments. Here, we provide the first experimental evidence for JAR in bats. We presented bats (Tadarida brasiliensis) with 'playback stimuli' consisting of recorded echolocation calls at one of six frequencies. The bats exhibited a JAR by shifting their call frequency away from the presented playback frequency. When the approaching bats were challenged by an abrupt change in the playback stimulus, they responded by shifting their call frequencies upwards, away from the playback. Interestingly, even bats initially calling below the playback's frequency shifted their frequencies upwards, 'jumping' over the playback frequency. These spectral shifts in the bats' calls occurred often within less than 200 ms, in the first echolocation call emitted after the stimulus switch-suggesting that rapid jamming avoidance is important for the bat.

  14. 33 CFR 334.78 - Rhode Island Sound, Atlantic Ocean, approximately 4.0 nautical miles due south of Lands End in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... will consist of six inert drill mines each 16 inches in diameter and 5 feet long and one concrete sonar target 48 inches in diameter and 48 inches high located within the designated area. The sonar target will... sonar. Neither variable depth sonar devices or mechanical minesweeping operations will be utilized in...

  15. Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats.

    PubMed

    Falk, Benjamin; Kasnadi, Joseph; Moss, Cynthia F

    2015-11-01

    Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture. © 2015. Published by The Company of Biologists Ltd.

  16. Combining split-beam and dual-frequency identification sonars to estimate abundance of anadromous fishes in the Roanoke River, North Carolina

    USGS Publications Warehouse

    Hughes, Jacob B.; Hightower, Joseph E.

    2015-01-01

    Riverine hydroacoustic techniques are an effective method for evaluating abundance of upstream migrating anadromous fishes. To use these methods in the Roanoke River, North Carolina, at a wide site with uneven bottom topography, we used a combination of split-beam sonar and dual-frequency identification sonar (DIDSON) deployments. We aimed a split-beam sonar horizontally to monitor midchannel and near-bottom zones continuously over the 3-month spring monitoring periods in 2010 and 2011. The DIDSON was rotated between seven cross-channel locations (using a vertical aim) and nearshore regions (using horizontal aims). Vertical deployment addressed blind spots in split-beam coverage along the bottom and provided reliable information about the cross-channel and vertical distributions of upstream migrants. Using a Bayesian framework, we modeled sonar counts within four cross-channel strata and apportioned counts by species using species proportions from boat electrofishing and gill netting. Modeled estimates (95% credible intervals [CIs]) of total upstream migrants in 2010 and 2011 were 2.5 million (95% CI, 2.4–2.6 million) and 3.6 million (95% CI, 3.4–3.9 million), respectively. Results indicated that upstream migrants are extremely shore- and bottom-oriented, suggesting nearshore DIDSON monitoring improved the accuracy and precision of our estimates. This monitoring protocol and model may be widely applicable to river systems regardless of their cross-sectional width or profile.

  17. A man-made object detection for underwater TV

    NASA Astrophysics Data System (ADS)

    Cheng, Binbin; Wang, Wenwu; Chen, Yao

    2018-03-01

    It is a great challenging task to complete an automatic search of objects underwater. Usually the forward looking sonar is used to find the target, and then the initial identification of the target is completed by the side-scan sonar, and finally the confirmation of the target is accomplished by underwater TV. This paper presents an efficient method for automatic extraction of man-made sensitive targets in underwater TV. Firstly, the image of underwater TV is simplified with taking full advantage of the prior knowledge of the target and the background; then template matching technology is used for target detection; finally the target is confirmed by extracting parallel lines on the target contour. The algorithm is formulated for real-time execution on limited-memory commercial-of-the-shelf platforms and is capable of detection objects in underwater TV.

  18. State-of-the-art for large area high resolution gray scale and full color AC plasma flat panel displays

    NASA Technical Reports Server (NTRS)

    Stoller, Ray A.; Wedding, Donald K.; Friedman, Peter S.

    1993-01-01

    A development status evaluation is presented for gas plasma display technology, noting how tradeoffs among the parameters of size, resolution, speed, portability, color, and image quality can yield cost-effective solutions for medical imaging, CAD, teleconferencing, multimedia, and both civil and military applications. Attention is given to plasma-based large-area displays' suitability for radar, sonar, and IR, due to their lack of EM susceptibility. Both monochrome and color displays are available.

  19. CoBOP: Electro-Optic Identification Laser Line Sean Sensors

    DTIC Science & Technology

    1998-01-01

    Electro - Optic Identification Sensors Project[1] is to develop and demonstrate high resolution underwater electro - optic (EO) imaging sensors, and associated image processing/analysis methods, for rapid visual identification of mines and mine-like contacts (MLCs). Identification of MLCs is a pressing Fleet need. During MCM operations, sonar contacts are classified as mine-like if they are sufficiently similar to signatures of mines. Each contact classified as mine-like must be identified as a mine or not a mine. During MCM operations in littoral areas,

  20. Reduced-order model for underwater target identification using proper orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Ramesh, Sai Sudha; Lim, Kian Meng

    2017-03-01

    Research on underwater acoustics has seen major development over the past decade due to its widespread applications in domains such as underwater communication/navigation (SONAR), seismic exploration and oceanography. In particular, acoustic signatures from partially or fully buried targets can be used in the identification of buried mines for mine counter measures (MCM). Although there exist several techniques to identify target properties based on SONAR images and acoustic signatures, these methods first employ a feature extraction method to represent the dominant characteristics of a data set, followed by the use of an appropriate classifier based on neural networks or the relevance vector machine. The aim of the present study is to demonstrate the applications of proper orthogonal decomposition (POD) technique in capturing dominant features of a set of scattered pressure signals, and subsequent use of the POD modes and coefficients in the identification of partially buried underwater target parameters such as its location, size and material density. Several numerical examples are presented to demonstrate the performance of the system identification method based on POD. Although the present study is based on 2D acoustic model, the method can be easily extended to 3D models and thereby enables cost-effective representations of large-scale data.

  1. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments.

    PubMed

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F

    2014-12-15

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. © 2014. Published by The Company of Biologists Ltd.

  2. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments

    PubMed Central

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. PMID:25394632

  3. Delphinid behavioral responses to incidental mid-frequency active sonar.

    PubMed

    Henderson, E Elizabeth; Smith, Michael H; Gassmann, Martin; Wiggins, Sean M; Douglas, Annie B; Hildebrand, John A

    2014-10-01

    Opportunistic observations of behavioral responses by delphinids to incidental mid-frequency active (MFA) sonar were recorded in the Southern California Bight from 2004 through 2008 using visual focal follows, static hydrophones, and autonomous recorders. Sound pressure levels were calculated between 2 and 8 kHz. Surface behavioral responses were observed in 26 groups from at least three species of 46 groups out of five species encountered during MFA sonar incidents. Responses included changes in behavioral state or direction of travel, changes in vocalization rates and call intensity, or a lack of vocalizations while MFA sonar occurred. However, 46% of focal groups not exposed to sonar also changed their behavior, and 43% of focal groups exposed to sonar did not change their behavior. Mean peak sound pressure levels when a behavioral response occurred were around 122 dB re: 1 μPa. Acoustic localizations of dolphin groups exhibiting a response gave insight into nighttime movement patterns and provided evidence that impacts of sonar may be mediated by behavioral state. The lack of response in some cases may indicate a tolerance of or habituation to MFA sonar by local populations; however, the responses that occur at lower received levels may point to some sensitization as well.

  4. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  5. Mapping nuclear craters on Enewetak Atoll, Marshall Islands

    USGS Publications Warehouse

    Hampson, John C., Jr.

    1986-01-01

    In 1984, the U.S. Geological Survey conducted a detailed geologic analysis of two nuclear test craters at Enewetak Atoll, Marshall Islands, on behalf of the Defense Nuclear Agency. A multidisciplinary task force mapped the morphology, surface character, and subsurface structure of two craters, OAK and KOA. The field mapping techniques include echo sounding, sidescan sonar imaging, single-channel and multichannel seismic reflection profiling, a seismic refraction survey, and scuba and submersible operations. All operations had to be navigated precisely and correlatable with subsequent drilling and sampling operations. Mapping with a high degree of precision at scales as large as 1:1500 required corrections that often are not considered in marine mapping. Corrections were applied to the bathymetric data for location of the echo- sounding transducer relative to the navigation transponder on the ship and for transducer depth, speed of sound, and tidal variations. Sidescan sonar, single-channel seismic reflection, and scuba and submersible data were correlated in depth and map position with the bathymetric data to provide a precise, internally consistent data set. The multichannel and refraction surveys were conducted independently but compared well with bathymetry. Examples drawn from processing the bathymetric, sidescan sonar, and single- channel reflection data help illustrate problems and procedures in precision mapping.

  6. Echo tracker/range finder for radars and sonars

    NASA Technical Reports Server (NTRS)

    Constantinides, N. J. (Inventor)

    1982-01-01

    An echo tracker/range finder or altimeter is described. The pulse repetition frequency (PFR) of a predetermined plurality of transmitted pulses is adjusted so that echo pulses received from a reflecting object are positioned between transmitted pulses and divided their interpulse time interval into two time intervals having a predetermined ratio with respect to each other. The invention described provides a means whereby the arrival time of a plurality of echo pulses is defined as the time at which a composite echo pulse formed of a sum of the individual echo pulses has the highest amplitude. The invention is applicable to radar systems, sonar systems, or any other kind of system in which pulses are transmitted and echoes received therefrom.

  7. Single-channel seismic-reflection profiles and sidescan-sonar records collected by the R/V Neecho, cruise NE 79-06, on the inner shelf east of Cape Cod, Massachusetts

    USGS Publications Warehouse

    Twichell, David C.

    1981-01-01

    Cruise NE 79-06 of the R/V NEECHO was conducted by the U.S. Geological Survey during September 27-0ctober 3, 1979, in the nearshore zone (3-30 m water depth) seaward of Coast Guard Beach and the northern part of Orleans Beach, east of Cape Cod, Massachusetts. The purpose of the study was to map the types and extent of nearshore bed forms and to define the late Pleistocene and Holocene history of the area.The equipment used on this cruise consisted of an EG&G Uniboom, Raytheon echo sounder, and Edo Western sidescan-sonar system. The Uniboom data were mostly filtered to 400-4000 Hz and were recorded at a 1/4-s sweep rate. The 60-kHz echo-sounding data were recorded on a 6-in strip chart on which the depth was calibrated in feet. The sidescan sonar had an operating frequency of 100 kHz and was set to scan 50 m or 100 m to each side of the towed fish. All three data types were collected along 153 km of trackline.Navigation during the survey was by Loran-C and Motorola miniranger systems. Two shore stations were set up for the miniranger system and fixes were collected at either 1- or 2-min intervals. This system malfunctioned during parts of the survey, and during these times navigation was by Loran-C using a Northstar system.The original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the subbottom, echo-sounding, and sidescan-sonar records can be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303, (303-497-6338).

  8. 3S(expn 2): Behavioral Response Studies of Cetaceans to Navy Sonar Signals in Norwegian Waters

    DTIC Science & Technology

    2013-09-30

    orca), long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic Mammals 38: 362-401. 9...of sonar signals by long-finned pilot whales (Globicephala melas ). Marine Mammal sci Aoki K, Sakai M, Miller PJO, Visser F, Sato K (2013) Body...Orcinus orca), long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic Mammals 38: 362-401

  9. Real-Time 3D Sonar Modeling And Visualization

    DTIC Science & Technology

    1998-06-01

    looking back towards Manta sonar beam, Manta plus sonar from 1000m off track. 185 NUWC sponsor Erik Chaum Principal investigator Don Brutzman...USN Sonar Officer LT Kevin Byrne USN Intelligence Officer CPT Russell Storms USA Erik Chaum works in NUWC Code 22. He supervised the design and...McGhee, Bob, "The Phoenix Autonomous Underwater Vehicle," chapter 13, AI-BasedMobile Robots, editors David Kortenkamp, Pete Bonasso and Robin Murphy

  10. Sonar Test and Test Instrumentation Support.

    DTIC Science & Technology

    1979-03-29

    AD-AlSO 055 TEXAS UNIV AT AUSTIN APPLIED RESEARCH LABS F/6 17/1 SONAR TEST AND TEST INSTRUMENTATION SUPPORT (U) MAR 79 0 D BAKER N00140-76-C-64a7... SONAR TEST AND TEST INSTRUMENTATION SUPPORT quarterly progress report September - 30 November 197Pj 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(e) S...involves technical support with sonar testing, test instrumentation, and documentation. This report describes progress made under the tasks that are

  11. Whales and Sonar: Environmental Exemptions for the Navy’s Mid-Frequency Active Sonar Training

    DTIC Science & Technology

    2008-11-14

    Balaenoptera musculus E Finback whale Balaenoptera physalus E Humpback whale Megaptera novaeangliae E Killer Southern whale Resident DPS Orcinus orca...Salmo) mykiss T Steelhead south central CA coast Oncorhynchus (=Salmo) mykiss E Steelhead southern CA coast Oncorhynchus (=Salmo) mykiss E Blue whale ...Order Code RL34403 Whales and Sonar: Environmental Exemptions for the Navy’s Mid-Frequency Active Sonar Training Updated November 14, 2008 Kristina

  12. A distributed pipeline for DIDSON data processing

    USGS Publications Warehouse

    Li, Liling; Danner, Tyler; Eickholt, Jesse; McCann, Erin L.; Pangle, Kevin; Johnson, Nicholas

    2018-01-01

    Technological advances in the field of ecology allow data on ecological systems to be collected at high resolution, both temporally and spatially. Devices such as Dual-frequency Identification Sonar (DIDSON) can be deployed in aquatic environments for extended periods and easily generate several terabytes of underwater surveillance data which may need to be processed multiple times. Due to the large amount of data generated and need for flexibility in processing, a distributed pipeline was constructed for DIDSON data making use of the Hadoop ecosystem. The pipeline is capable of ingesting raw DIDSON data, transforming the acoustic data to images, filtering the images, detecting and extracting motion, and generating feature data for machine learning and classification. All of the tasks in the pipeline can be run in parallel and the framework allows for custom processing. Applications of the pipeline include monitoring migration times, determining the presence of a particular species, estimating population size and other fishery management tasks.

  13. 50 CFR 218.84 - Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... aircraft conducting high-frequency or non-hull-mounted mid-frequency active sonar activities associated... or aircraft conducting high-frequency active sonar activities associated with anti-submarine warfare...). (2) High-frequency and non-hull mounted mid-frequency active sonar (except helicopter dipping). (3...

  14. Biomarkers to Assess Possible Biological Effects on Reproductive Potential, Immune Function, and Energetic Fitness of Bottlenose Dolphins Exposed to Sounds Consistent with Naval Sonars

    DTIC Science & Technology

    2012-09-30

    Reproductive Potential, Immune Function, and Energetic Fitness of Bottlenose Dolphins Exposed to Sounds Consistent with Naval Sonars Dana L. Wetzel...biomarkers to examine whether significant sublethal responses to sonar-type sounds occur in bottlenose dolphins exposed to such sounds. The...investigate samples collected from trained dolphins before exposure to simulated mid-frequency sonar signals, immediately after exposure, and one week post

  15. A model for gravity-wave spectra observed by Doppler sounding systems

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1986-01-01

    A model for Mesosphere - Stratosphere - Troposphere (MST) radar spectra is developed following the formalism presented by Pinkel (1981). Expressions for the one-dimensional spectra of radial velocity versus frequency and versus radial wave number are presented. Their dependence on the parameters of the gravity-wave spectrum and on the experimental parameters, radar zenith angle and averaging time are described and the conditions for critical tests of the gravity-wave hypothesis are discussed. The model spectra is compared with spectra observed in the Arctic summer mesosphere by the Poker Flat radar. This model applies to any monostatic Doppler sounding system, including MST radar, Doppler lidar and Doppler sonar in the atmosphere, and Doppler sonar in the ocean.

  16. Propagation and Signal Modeling

    NASA Astrophysics Data System (ADS)

    Jensen, Finn B.

    The use of sound in the sea is ubiquitous: Apart from the military aspect of trying to detect an adversary’s mines and submarines, ship-mounted sonars measure water depth, ship speed, and the presence of fish shoals. Side-scan systems are used for mapping the bottom topography, sub-bottom profilers for getting information about the deeper layering, and other sonar systems for locating pipelines and cables on the seafloor. Sound is also used for navigating submerged vehicles, for underwater communications and for tracking marine mammals. Finally, in the realm of ‘acoustical oceanography’ and ‘ocean acoustic tomography,’ sound is used for measuring physical parameters of the ocean environment and for monitoring oceanic processes [1-6].

  17. 75 FR 5575 - Taking and Importing Marine Mammals; Navy Training Activities Conducted in the Gulf of Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... present in the area to sound from various active tactical sonar sources or to pressure from underwater... utilizing mid- and high frequency active sonar sources and explosive detonations. These sonar and explosive...

  18. Novel sonar signal processing tool using Shannon entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quazi, A.H.

    1996-06-01

    Traditionally, conventional signal processing extracts information from sonar signals using amplitude, signal energy or frequency domain quantities obtained using spectral analysis techniques. The object is to investigate an alternate approach which is entirely different than that of traditional signal processing. This alternate approach is to utilize the Shannon entropy as a tool for the processing of sonar signals with emphasis on detection, classification, and localization leading to superior sonar system performance. Traditionally, sonar signals are processed coherently, semi-coherently, and incoherently, depending upon the a priori knowledge of the signals and noise. Here, the detection, classification, and localization technique will bemore » based on the concept of the entropy of the random process. Under a constant energy constraint, the entropy of a received process bearing finite number of sample points is maximum when hypothesis H{sub 0} (that the received process consists of noise alone) is true and decreases when correlated signal is present (H{sub 1}). Therefore, the strategy used for detection is: (I) Calculate the entropy of the received data; then, (II) compare the entropy with the maximum value; and, finally, (III) make decision: H{sub 1} is assumed if the difference is large compared to pre-assigned threshold and H{sub 0} is otherwise assumed. The test statistics will be different between entropies under H{sub 0} and H{sub 1}. Here, we shall show the simulated results for detecting stationary and non-stationary signals in noise, and results on detection of defects in a Plexiglas bar using an ultrasonic experiment conducted by Hughes. {copyright} {ital 1996 American Institute of Physics.}« less

  19. Tongue-driven sonar beam steering by a lingual-echolocating fruit bat

    PubMed Central

    Falk, Benjamin; Chiu, Chen; Krishnan, Anand; Arbour, Jessica H.; Moss, Cynthia F.

    2017-01-01

    Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively “illuminate” a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used “piston model” that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array—an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways. PMID:29244805

  20. Tongue-driven sonar beam steering by a lingual-echolocating fruit bat.

    PubMed

    Lee, Wu-Jung; Falk, Benjamin; Chiu, Chen; Krishnan, Anand; Arbour, Jessica H; Moss, Cynthia F

    2017-12-01

    Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively "illuminate" a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used "piston model" that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array-an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways.

  1. High-resolution multibeam bathymetry of East and West Flower Gardens and Stetson Banks, Gulf of Mexico

    USGS Publications Warehouse

    Gardner, J.V.; Mayer, L.A.; Hughes, Clarke J.E.; Kleiner, A.

    1998-01-01

    The 1990s have seen rapid advances in seafloor mapping technology. Multibeam sonars are now capable of mapping a wide range of water depths with beams as narrow as 1??, and provide up to a 150?? swath. When these multibeam sonars are coupled with an extremely accurate vehicle motion sensor and very precise navigation, they are capable of producing unprecedented images of the seafloor. This technology was used in December 1997 to map the East and West Flower Gardens and Stetson Banks, Gulf of Mexico. The results from this survey provide the most accurate maps of these areas yet produced and reveal features at submeter resolution never mapped in these areas before. The digital data provide a database that should become the fundamental base maps for all subsequent work in this recently established National Marine Sanctuary.

  2. Behavioral Responses of Naive Cuvier’s Beaked Whales in the Ligurian Sea to Playback of Anthropogenic and Natural Sounds

    DTIC Science & Technology

    2013-09-30

    cavirostris) to MFA sonar signals. Secondary goals included conducting a killer whale playback that has not been preceded by a sonar playback (as in Tyack...et al. 2011) and collecting more baseline data on Ziphius. OBJECTIVES This investigation set out to safely test responses of Ziphius to sonar ...signals and to determine the exposure level required to elicit a response in a site where strandings have been associated with sonar exercises and

  3. Broadband classification and statistics of echoes from aggregations of fish measured by long-range, mid-frequency sonar.

    PubMed

    Jones, Benjamin A; Stanton, Timothy K; Colosi, John A; Gauss, Roger C; Fialkowski, Joseph M; Michael Jech, J

    2017-06-01

    For horizontal-looking sonar systems operating at mid-frequencies (1-10 kHz), scattering by fish with resonant gas-filled swimbladders can dominate seafloor and surface reverberation at long-ranges (i.e., distances much greater than the water depth). This source of scattering, which can be difficult to distinguish from other sources of scattering in the water column or at the boundaries, can add spatio-temporal variability to an already complex acoustic record. Sparsely distributed, spatially compact fish aggregations were measured in the Gulf of Maine using a long-range broadband sonar with continuous spectral coverage from 1.5 to 5 kHz. Observed echoes, that are at least 15 decibels above background levels in the horizontal-looking sonar data, are classified spectrally by the resonance features as due to swimbladder-bearing fish. Contemporaneous multi-frequency echosounder measurements (18, 38, and 120 kHz) and net samples are used in conjunction with physics-based acoustic models to validate this approach. Furthermore, the fish aggregations are statistically characterized in the long-range data by highly non-Rayleigh distributions of the echo magnitudes. These distributions are accurately predicted by a computationally efficient, physics-based model. The model accounts for beam-pattern and waveguide effects as well as the scattering response of aggregations of fish.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J. V.

    Chirp signals have evolved primarily from radar/sonar signal processing applications specifically attempting to estimate the location of a target in surveillance/tracking volume. The chirp, which is essentially a sinusoidal signal whose phase changes instantaneously at each time sample, has an interesting property in that its correlation approximates an impulse function. It is well-known that a matched-filter detector in radar/sonar estimates the target range by cross-correlating a replicant of the transmitted chirp with the measurement data reflected from the target back to the radar/sonar receiver yielding a maximum peak corresponding to the echo time and therefore enabling the desired range estimate.more » In this application, we perform the same operation as a radar or sonar system, that is, we transmit a “chirp-like pulse” into the target medium and attempt to first detect its presence and second estimate its location or range. Our problem is complicated by the presence of disturbance signals from surrounding broadcast stations as well as extraneous sources of interference in our frequency bands and of course the ever present random noise from instrumentation. First, we discuss the chirp signal itself and illustrate its inherent properties and then develop a model-based processing scheme enabling both the detection and estimation of the signal from noisy measurement data.« less

  5. Potential of coded excitation in medical ultrasound imaging.

    PubMed

    Misaridis, T X; Gammelmark, K; Jørgensen, C H; Lindberg, N; Thomsen, A H; Pedersen, M H; Jensen, J A

    2000-03-01

    Improvement in signal-to-noise ratio (SNR) and/or penetration depth can be achieved in medical ultrasound by using long coded waveforms, in a similar manner as in radars or sonars. However, the time-bandwidth product (TB) improvement, and thereby SNR improvement is considerably lower in medical ultrasound, due to the lower available bandwidth. There is still space for about 20 dB improvement in the SNR, which will yield a penetration depth up to 20 cm at 5 MHz [M. O'Donnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 39(3) (1992) 341]. The limited TB additionally yields unacceptably high range sidelobes. However, the frequency weighting from the ultrasonic transducer's bandwidth, although suboptimal, can be beneficial in sidelobe reduction. The purpose of this study is an experimental evaluation of the above considerations in a coded excitation ultrasound system. A coded excitation system based on a modified commercial scanner is presented. A predistorted FM signal is proposed in order to keep the resulting range sidelobes at acceptably low levels. The effect of the transducer is taken into account in the design of the compression filter. Intensity levels have been considered and simulations on the expected improvement in SNR are also presented. Images of a wire phantom and clinical images have been taken with the coded system. The images show a significant improvement in penetration depth and they preserve both axial resolution and contrast.

  6. Sonar-induced temporary hearing loss in dolphins

    PubMed Central

    Mooney, T. Aran; Nachtigall, Paul E.; Vlachos, Stephanie

    2009-01-01

    There is increasing concern that human-produced ocean noise is adversely affecting marine mammals, as several recent cetacean mass strandings may have been caused by animals' interactions with naval ‘mid-frequency’ sonar. However, it has yet to be empirically demonstrated how sonar could induce these strandings or cause physiological effects. In controlled experimental studies, we show that mid-frequency sonar can induce temporary hearing loss in a bottlenose dolphin (Tursiops truncatus). Mild-behavioural alterations were also associated with the exposures. The auditory effects were induced only by repeated exposures to intense sonar pings with total sound exposure levels of 214 dB re: 1 μPa2 s. Data support an increasing energy model to predict temporary noise-induced hearing loss and indicate that odontocete noise exposure effects bear trends similar to terrestrial mammals. Thus, sonar can induce physiological and behavioural effects in at least one species of odontocete; however, exposures must be of prolonged, high sound exposures levels to generate these effects. PMID:19364712

  7. MBARI Mapping AUV: A High-Resolution Deep Ocean Seafloor Mapping Capability

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Kirkwood, W. J.; Thomas, H.; McEwen, R.; Henthorn, R.; McGill, P.; Thompson, D.; Sibenac, M.; Jensen, S.; Shane, F.; Hamilton, A.

    2005-05-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing an autonomous seafloor mapping capability for deep ocean science applications. The MBARI Mapping AUV is a 0.53 m (21 in) diameter, 5.1 m (16.7 ft) long, Dorado-class vehicle designed to carry four mapping sonars. The primary sensor is a 200 kHz multibeam sonar producing swath bathymetry and sidescan. In addition, the vehicle carries 100 kHz and 410 kHz chirp sidescan sonars, and a 2-16 kHz sweep chirp subbottom profiler. Navigation and attitude data are obtained from an inertial navigation system (INS) incorporating a ring laser gyro and a 300 kHz Doppler velocity log (DVL). The vehicle also includes acoustic modem, ultra-short baseline navigation, and long-baseline navigation systems. The Mapping AUV is powered by 6 kWhr of Li-polymer batteries, providing expected mission duration of 12 hours at a typical speed of 1.5 m/s. All components of the vehicle are rated to 6000 m depth, allowing MBARI to conduct high-resolution mapping of the deep-ocean seafloor. The sonar package is also be mountable on ROV Ventana, allowing surveys at altitudes less than 20 m at topographically challenging sites. The vehicle was assembled and extensively tested during 2004; this year we are commencing operations for MBARI science projects while continuing the process of testing and integrating the complete suite of sensors and systems. MBARI is beginning to use this capability to observe the changing morphology of dynamic systems such as submarine canyons and active slumps, to map deep-water benthic habitats at resolutions comparable to ROV and submersible observations, to provide basemaps for ROV dives, and to provide high resolution bathymetry and subbottom profiles as part of a variety of projects requiring knowledge of the seafloor. We will present initial results from surveys in and around Monterey Canyon, including high resolution repeat surveys of four sites along the canyon axis.

  8. 50 CFR 218.236 - Requirements for reporting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.236 Requirements for reporting. (a) The Holder of the..., and location of each vessel during each mission; (2) Information on sonar transmissions during each..., this report must contain an unclassified analysis of new passive sonar technologies and an assessment...

  9. 50 CFR 218.236 - Requirements for reporting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.236 Requirements for reporting. (a) The Holder of the..., and location of each vessel during each mission; (2) Information on sonar transmissions during each..., this report must contain an unclassified analysis of new passive sonar technologies and an assessment...

  10. 50 CFR 218.236 - Requirements for reporting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.236 Requirements for reporting. (a) The Holder of the..., and location of each vessel during each mission; (2) Information on sonar transmissions during each..., this report must contain an unclassified analysis of new passive sonar technologies and an assessment...

  11. Neural Network Target Identification System for False Alarm Reduction

    NASA Technical Reports Server (NTRS)

    Ye, David; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feed forward back propagation neural network (NN) is then trained to classify each feature vector and remove false positives. This paper discusses the test of the system performance and parameter optimizations process which adapts the system to various targets and datasets. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar image dataset.

  12. Suppression of emission rates improves sonar performance by flying bats.

    PubMed

    Adams, Amanda M; Davis, Kaylee; Smotherman, Michael

    2017-01-31

    Echolocating bats face the challenge of actively sensing their environment through their own emissions, while also hearing calls and echoes of nearby conspecifics. How bats mitigate interference is a long-standing question that has both ecological and technological implications, as biosonar systems continue to outperform man-made sonar systems in noisy, cluttered environments. We recently showed that perched bats decreased calling rates in groups, displaying a behavioral strategy resembling the back-off algorithms used in artificial communication networks to optimize information throughput at the group level. We tested whether free-tailed bats (Tadarida brasiliensis) would employ such a coordinated strategy while performing challenging flight maneuvers, and report here that bats navigating obstacles lowered emission rates when hearing artificial playback of another bat's calls. We measured the impact of acoustic interference on navigation performance and show that the calculated reductions in interference rates are sufficient to reduce interference and improve obstacle avoidance. When bats flew in pairs, each bat responded to the presence of the other as an obstacle by increasing emissions, but hearing the sonar emissions of the nearby bat partially suppressed this response. This behavior supports social cohesion by providing a key mechanism for minimizing mutual interference.

  13. Suppression of emission rates improves sonar performance by flying bats

    PubMed Central

    Adams, Amanda M.; Davis, Kaylee; Smotherman, Michael

    2017-01-01

    Echolocating bats face the challenge of actively sensing their environment through their own emissions, while also hearing calls and echoes of nearby conspecifics. How bats mitigate interference is a long-standing question that has both ecological and technological implications, as biosonar systems continue to outperform man-made sonar systems in noisy, cluttered environments. We recently showed that perched bats decreased calling rates in groups, displaying a behavioral strategy resembling the back-off algorithms used in artificial communication networks to optimize information throughput at the group level. We tested whether free-tailed bats (Tadarida brasiliensis) would employ such a coordinated strategy while performing challenging flight maneuvers, and report here that bats navigating obstacles lowered emission rates when hearing artificial playback of another bat’s calls. We measured the impact of acoustic interference on navigation performance and show that the calculated reductions in interference rates are sufficient to reduce interference and improve obstacle avoidance. When bats flew in pairs, each bat responded to the presence of the other as an obstacle by increasing emissions, but hearing the sonar emissions of the nearby bat partially suppressed this response. This behavior supports social cohesion by providing a key mechanism for minimizing mutual interference. PMID:28139707

  14. 50 CFR 216.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... incidental to the following activities: (1) The use of the following mid-frequency active sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training activities (estimated amounts below): (1) The use of the following mid-frequency active sonar (MFAS) and high frequency active...

  15. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources, for...

  16. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources, for...

  17. 50 CFR 216.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... incidental to the following activities: (1) The use of the following mid-frequency active sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training activities (estimated amounts below): (1) The use of the following mid-frequency active sonar (MFAS) and high frequency active...

  18. Investigation of the Impact of Sonar Transmission on Fisheries and Habitat in the U.S. Navy’s USWTR: Summary of Stakeholder Concerns and Appropriate Research Areas

    DTIC Science & Technology

    2007-09-01

    sonar transmission on fisheries and habitat in the U.S. Navy’s USWTR: Summary of stakeholder concerns and appropriate research areas by Dr...SUBTITLE: Title (Mix case letters) Investigation of the impact of sonar transmission on fisheries and habitat in the U.S. Navy’s USWTR: Summary of...table of specific public comments is included. 15. NUMBER OF PAGES 30 14. SUBJECT TERMS sonar, USWTR, Navy, fish, fishery , fisherman, behavior

  19. Sonar Test and Test Instrumentation Support.

    DTIC Science & Technology

    1976-11-10

    AD-AI0 � TEXAS UNIV AT AUSTIN APPLIED RESEARCH LARS F/6 17/1 SONAR TEST AND TEST INSTRUMENTATION SUPPDRT.1U) NoV 76 0 0 BAKER N00140-76-C-&687...UNCLASSIFIED_ NL i 0 00 THE UNIVERSITY OF TEXAS AT AUSTIN 10 November 1976 Copy No. 3 SONAR TEST AND TEST INSTRUMENTATION SUPPORT Quarterly Progress...8217 mi a - I TABLE OF CONTENTS A pag. I. INTRODUCTION 1 II. AN/FQM-IO(V) SONAR TEST SET FIELD SUPPORT 3 A. Introduction 3 B. Visit to NAVSHIPYD PEARL 3 C

  20. Potential Population Consequences of Active Sonar Disturbance in Atlantic Herring: Estimating the Maximum Risk.

    PubMed

    Sivle, Lise Doksæter; Kvadsheim, Petter Helgevold; Ainslie, Michael

    2016-01-01

    Effects of noise on fish populations may be predicted by the population consequence of acoustic disturbance (PCAD) model. We have predicted the potential risk of population disturbance when the highest sound exposure level (SEL) at which adult herring do not respond to naval sonar (SEL(0)) is exceeded. When the population density is low (feeding), the risk is low even at high sonar source levels and long-duration exercises (>24 h). With densely packed populations (overwintering), a sonar exercise might expose the entire population to levels >SEL(0) within a 24-h exercise period. However, the disturbance will be short and the response threshold used here is highly conservative. It is therefore unlikely that naval sonar will significantly impact the herring population.

  1. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System.

    PubMed

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-02-20

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  2. Behavioral Mapless Navigation Using Rings

    NASA Technical Reports Server (NTRS)

    Monroe, Randall P.; Miller, Samuel A.; Bradley, Arthur T.

    2012-01-01

    This paper presents work on the development and implementation of a novel approach to robotic navigation. In this system, map-building and localization for obstacle avoidance are discarded in favor of moment-by-moment behavioral processing of the sonar sensor data. To accomplish this, we developed a network of behaviors that communicate through the passing of rings, data structures that are similar in form to the sonar data itself and express the decisions of each behavior. Through the use of these rings, behaviors can moderate each other, conflicting impulses can be mediated, and designers can easily connect modules to create complex emergent navigational techniques. We discuss the development of a number of these modules and their successful use as a navigation system in the Trinity omnidirectional robot.

  3. Overview of a Hybrid Underwater Camera System

    DTIC Science & Technology

    2014-07-01

    meters), in increments of 200ps. The camera is also equipped with 6:1 motorized zoom lens. A precision miniature attitude, heading reference system ( AHRS ...LUCIE Control & Power Distribution System AHRS Pulsed LASER Gated Camera -^ Sonar Transducer (b) LUCIE sub-systems Proc. ofSPIEVol. 9111

  4. A Unified Approach to Passive and Active Ocean Acoustic Waveguide Remote Sensing

    DTIC Science & Technology

    2012-09-30

    acoustic sensing reveals humpback whale behavior synchronous with herring spawning processes and sonar had no effect on humpback song ,” submitted to...source and receiver arrays to enable instantaneous continental-shelf scale imaging and continuous monitoring of fish and whale populations. Acoustic...Preliminary analysis shows that humpback whale behavior is synchronous with peak annual Atlantic herring spawning processes in the Gulf of

  5. Contrast Analysis for Side-Looking Sonar

    DTIC Science & Technology

    2013-09-30

    bound for shadow depth that can be used to validate modeling tools such as SWAT (Shallow Water Acoustics Toolkit). • Adaptive Postprocessing: Tune image...0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

  6. King County Nearshore Habitat Mapping Data Report: Picnic Point to Shilshole Bay Marina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Dana L.; Farley, Paul J.; Borde, Amy B.

    2000-12-31

    The objective of this study is to provide accurate, georeferenced maps of benthic habitats to assist in the siting of a new wastewater treatment plant outfall and the assessment of habitats of endangered, threatened, and economically important species. The mapping was conducted in the fall of 1999 using two complementary techniques: side-scan sonar and underwater videography. Products derived from these techniques include geographic information system (GIS) compatible polygon data of substrate type and vegetation cover, including eelgrass and kelp. Additional GIS overlays include underwater video track line data of total macroalgae, selected macroalgal species, fish, and macroinvertebrates. The combined toolsmore » of geo-referenced side-scan sonar and underwater video is a powerful technique for assessing and mapping of nearshore habitat in Puget Sound. Side-scan sonar offers the ability to map eelgrass with high spatial accuracy and resolution, and provides information on patch size, shape, and coverage. It also provides information on substrate change and location of specific targets (e.g., piers, docks, pilings, large boulders, debris piles). The addition of underwater video is a complementary tool providing both groundtruthing for the sonar and additional information on macro fauna and flora. As a groundtruthing technique, the video was able to confirm differences between substrate types, as well as detect subtle spatial changes in substrate. It also verified information related to eelgrass, including the density classification categories and the type of substrate associated with eelgrass, which could not be determined easily with side- scan sonar. Video is also a powerful tool for mapping the location of macroalgae, (including kelp and Ulva), fish and macroinvertebrates. The ability to geo-locate these resources in their functional habitat provides an added layer of information and analytical potential.« less

  7. Lack of behavioural responses of humpback whales (Megaptera novaeangliae) indicate limited effectiveness of sonar mitigation

    PubMed Central

    Kvadsheim, Petter H.; Lam, Frans-Peter A.; von Benda-Beckmann, Alexander M.; Sivle, Lise D.; Visser, Fleur; Curé, Charlotte; Tyack, Peter L.; Miller, Patrick J. O.

    2017-01-01

    ABSTRACT Exposure to underwater sound can cause permanent hearing loss and other physiological effects in marine animals. To reduce this risk, naval sonars are sometimes gradually increased in intensity at the start of transmission (‘ramp-up’). Here, we conducted experiments in which tagged humpback whales were approached with a ship to test whether a sonar operation preceded by ramp-up reduced three risk indicators – maximum sound pressure level (SPLmax), cumulative sound exposure level (SELcum) and minimum source–whale range (Rmin) – compared with a sonar operation not preceded by ramp-up. Whales were subject to one no-sonar control session and either two successive ramp-up sessions (RampUp1, RampUp2) or a ramp-up session (RampUp1) and a full-power session (FullPower). Full-power sessions were conducted only twice; for other whales we used acoustic modelling that assumed transmission of the full-power sequence during their no-sonar control. Averaged over all whales, risk indicators in RampUp1 (n=11) differed significantly from those in FullPower (n=12) by −3.0 dB (SPLmax), −2.0 dB (SELcum) and +168 m (Rmin), but not significantly from those in RampUp2 (n=9). Only five whales in RampUp1, four whales in RampUp2 and none in FullPower or control sessions avoided the sound source. For RampUp1, we found statistically significant differences in risk indicators between whales that avoided the sonar and whales that did not: −4.7 dB (SPLmax), −3.4 dB (SELcum) and +291 m (Rmin). In contrast, for RampUp2, these differences were smaller and not significant. This study suggests that sonar ramp-up has a positive but limited mitigative effect for humpback whales overall, but that ramp-up can reduce the risk of harm more effectively in situations when animals are more responsive and likely to avoid the sonar, e.g. owing to novelty of the stimulus, when they are in the path of an approaching sonar ship. PMID:29141878

  8. Use of handheld sonar to locate a missing diver.

    PubMed

    McGrane, Owen; Cronin, Aaron; Hile, David

    2013-03-01

    The purpose of this study was to investigate whether a handheld sonar device significantly reduces the mean time needed to locate a missing diver. This institutional review board approved, prospective, crossover study used a voluntary convenience sample of 10 scuba divers. Participants conducted both a standard and modified search to locate a simulated missing diver. The standard search utilized a conventional search pattern starting at the point where the missing diver (simulated) was last seen. The modified search used a sonar beacon to augment the search. For each search method, successful completion of the search was defined as locating the missing diver within 40 minutes. Twenty total dives were completed. Using a standard search pattern, the missing diver was found by only 1 diver (10%), taking 18 minutes and 45 seconds. In the sonar-assisted search group, the missing diver was found by all 10 participants (100%), taking an average of 2 minutes and 47 seconds (SD 1 minute, 20 seconds). Using the nonparametric related samples Wilcoxon signed rank test, actual times between the sonar group and the standard group were significant (P < .01). Using paired samples t tests, the sonar group's self-assessed confidence increased significantly after using the sonar (P < .001), whereas the standard group decreased in confidence (not statistically significant, P = .111). Handheld sonar significantly reduces the mean duration to locate a missing diver as well as increasing users' confidence in their ability to find a missing diver when compared with standard search techniques. Copyright © 2013 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  9. A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models.

    PubMed

    Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S; Wu, Xiaowei; Müller, Rolf

    2018-01-01

    Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design.

  10. A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models

    PubMed Central

    Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S.; Wu, Xiaowei; Müller, Rolf

    2017-01-01

    Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design. PMID:29749977

  11. Time-frequency model for echo-delay resolution in wideband biosonar.

    PubMed

    Neretti, Nicola; Sanderson, Mark I; Intrator, Nathan; Simmons, James A

    2003-04-01

    A time/frequency model of the bat's auditory system was developed to examine the basis for the fine (approximately 2 micros) echo-delay resolution of big brown bats (Eptesicus fuscus), and its performance at resolving closely spaced FM sonar echoes in the bat's 20-100-kHz band at different signal-to-noise ratios was computed. The model uses parallel bandpass filters spaced over this band to generate envelopes that individually can have much lower bandwidth than the bat's ultrasonic sonar sounds and still achieve fine delay resolution. Because fine delay separations are inside the integration time of the model's filters (approximately 250-300 micros), resolving them means using interference patterns along the frequency dimension (spectral peaks and notches). The low bandwidth content of the filter outputs is suitable for relay of information to higher auditory areas that have intrinsically poor temporal response properties. If implemented in fully parallel analog-digital hardware, the model is computationally extremely efficient and would improve resolution in military and industrial sonar receivers.

  12. 50 CFR 216.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... incidental to the following activities: (1) The use of the following mid-frequency active sonar (MFAS) and high frequency active sonar (HFAS) sources, or similar sources, for Navy training activities (estimated amounts below): (i) AN/SQS-53 (hull-mounted sonar)—up to 6420 hours over the course of 5 years (an average...

  13. Geomorphic features off southern California as seen by GLORIA side-scan sonar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, B.D.; Field, M.E.; Carlson, P.R.

    1985-02-01

    Approximately 165,000 km/sup 2/ of the sea floor off southern California was mapped during May 1984, as part of a USGS/IOS cooperative program to study the newly proclaimed Exclusive Economic Zone (EEZ) of the US Pacific margin. The area was insonified using the Geological Long-Range Inclined Asdic (GLORIA), a long-range side-scan sonar system. Images were corrected for water-column velocity anomalies, for along-track distortions caused by acoustic ray travel paths. A photomosaic of the overlapping sonographs has been compiled at a scale of 1:375,000. The basins of the inner California continental borderland are characterized by both sinuous channel and fan complexesmore » and by feathery acoustic patterns indicating active sediment transport. In contrast, outer borderland basins appear to be more sediment starved, exhibit large areas of sediment failure, and show significant structural influence. West of Patton Escarpment, the sonographs are dominated by acoustic patterns showing volcanic ridges and seamounts and by deposits of the Monterey and Arguello fans. Arguello fan, for example, exhibits multiple sinuous channels that have transported sediment 60 km south from the canyon mouth. These channels coalesce into a single 100-km long, westward-meandering channel that terminates in a 600-m deep box canyon. A zone of sediment failure is identifiable on the north levee of an upper fan channel. Tectonic trends associated with oceanic basement are highlighted by the terminus of the west-trending Murray Fracture Zone and by the prevailing northeast trend of volcanic ridge and seamount chains.« less

  14. Software Intensive Systems Cost and Schedule Estimation

    DTIC Science & Technology

    2013-06-13

    Radio communication systems RTE Electronic navigation systems RTE Space vehicle electronic tracking systems RTE Sonar systems RTE...MONITORING AGENCY NAME(S) AND ADDRESS(ES) DASD (SE), DoD, AIRFORCE 10. SPONSOR/MONITOR’S ACRONYM(S) 11 . SPONSOR/MONITOR’S REPORT NUMBER(S) 12... 11   3.2.2  SEER‐SEM

  15. A risk function for behavioral disruption of Blainville's beaked whales (Mesoplodon densirostris) from mid-frequency active sonar.

    PubMed

    Moretti, David; Thomas, Len; Marques, Tiago; Harwood, John; Dilley, Ashley; Neales, Bert; Shaffer, Jessica; McCarthy, Elena; New, Leslie; Jarvis, Susan; Morrissey, Ronald

    2014-01-01

    There is increasing concern about the potential effects of noise pollution on marine life in the world's oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville's beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville's beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville's beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150 dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function.

  16. Beaked whales respond to simulated and actual navy sonar.

    PubMed

    Tyack, Peter L; Zimmer, Walter M X; Moretti, David; Southall, Brandon L; Claridge, Diane E; Durban, John W; Clark, Christopher W; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L

    2011-03-14

    Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2-3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2-3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.

  17. A Risk Function for Behavioral Disruption of Blainville’s Beaked Whales (Mesoplodon densirostris) from Mid-Frequency Active Sonar

    PubMed Central

    Moretti, David; Thomas, Len; Marques, Tiago; Harwood, John; Dilley, Ashley; Neales, Bert; Shaffer, Jessica; McCarthy, Elena; New, Leslie; Jarvis, Susan; Morrissey, Ronald

    2014-01-01

    There is increasing concern about the potential effects of noise pollution on marine life in the world’s oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville’s beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville’s beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville’s beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function. PMID:24465477

  18. Beaked Whales Respond to Simulated and Actual Navy Sonar

    PubMed Central

    Tyack, Peter L.; Zimmer, Walter M. X.; Moretti, David; Southall, Brandon L.; Claridge, Diane E.; Durban, John W.; Clark, Christopher W.; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L.

    2011-01-01

    Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance. PMID:21423729

  19. Some Computed Effects of Dome Skin and Temperature Differential on Operation of the AN/SQS-26 Sonar Equipment

    DTIC Science & Technology

    1963-10-04

    Tolerances of Transducer Elements and Preamplifiers on Beam Formation and SSI Performance in the AN/SQS-26 Sonar Equipment (U)", TRACOR Document Number 63...SQS-26 SONAR EQUIPMENT (U) Prepared for GROLP - 4 DOWNGRADED AT% YEAR INTERVALS: l LJ.I The Bureau of Ships DECLASSIFIED A ER 12 YEARS. r . Code 688E t...ON.PERATION OF THEP ,,, Ts 4a nAinS-26 SONAR pul i~ ~ ~ ~ ~ ~ ~ ~~%,i forre o teSFXPora aaeet Prepared for Bull by: DSS11TIAVAILAIIL CODES The Bureau of Ships

  20. Echolocating bats rely on audiovocal feedback to adapt sonar signal design.

    PubMed

    Luo, Jinhong; Moss, Cynthia F

    2017-10-10

    Many species of bat emit acoustic signals and use information carried by echoes reflecting from nearby objects to navigate and forage. It is widely documented that echolocating bats adjust the features of sonar calls in response to echo feedback; however, it remains unknown whether audiovocal feedback contributes to sonar call design. Audiovocal feedback refers to the monitoring of one's own vocalizations during call production and has been intensively studied in nonecholocating animals. Audiovocal feedback not only is a necessary component of vocal learning but also guides the control of the spectro-temporal structure of vocalizations. Here, we show that audiovocal feedback is directly involved in the echolocating bat's control of sonar call features. As big brown bats tracked targets from a stationary position, we played acoustic jamming signals, simulating calls of another bat, timed to selectively perturb audiovocal feedback or echo feedback. We found that the bats exhibited the largest call-frequency adjustments when the jamming signals occurred during vocal production. By contrast, bats did not show sonar call-frequency adjustments when the jamming signals coincided with the arrival of target echoes. Furthermore, bats rapidly adapted sonar call design in the first vocalization following the jamming signal, revealing a response latency in the range of 66 to 94 ms. Thus, bats, like songbirds and humans, rely on audiovocal feedback to structure sonar signal design.

  1. High thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas).

    PubMed

    Antunes, R; Kvadsheim, P H; Lam, F P A; Tyack, P L; Thomas, L; Wensveen, P J; Miller, P J O

    2014-06-15

    The potential effects of exposing marine mammals to military sonar is a current concern. Dose-response relationships are useful for predicting potential environmental impacts of specific operations. To reveal behavioral response thresholds of exposure to sonar, we conducted 18 exposure/control approaches to 6 long-finned pilot whales. Source level and proximity of sonar transmitting one of two frequency bands (1-2 kHz and 6-7 kHz) were increased during exposure sessions. The 2-dimensional movement tracks were analyzed using a changepoint method to identify the avoidance response thresholds which were used to estimate dose-response relationships. No support for an effect of sonar frequency or previous exposures on the probability of response was found. Estimated response thresholds at which 50% of population show avoidance (SPLmax=170 dB re 1 μPa, SELcum=173 dB re 1 μPa(2) s) were higher than previously found for other cetaceans. The US Navy currently uses a generic dose-response relationship to predict the responses of cetaceans to naval active sonar, which has been found to underestimate behavioural impacts on killer whales and beaked whales. The navy curve appears to match more closely our results with long-finned pilot whales, though it might underestimate the probability of avoidance for pilot-whales at long distances from sonar sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Bats' avoidance of real and virtual objects: implications for the sonar coding of object size.

    PubMed

    Goerlitz, Holger R; Genzel, Daria; Wiegrebe, Lutz

    2012-01-01

    Fast movement in complex environments requires the controlled evasion of obstacles. Sonar-based obstacle evasion involves analysing the acoustic features of object-echoes (e.g., echo amplitude) that correlate with this object's physical features (e.g., object size). Here, we investigated sonar-based obstacle evasion in bats emerging in groups from their day roost. Using video-recordings, we first show that the bats evaded a small real object (ultrasonic loudspeaker) despite the familiar flight situation. Secondly, we studied the sonar coding of object size by adding a larger virtual object. The virtual object echo was generated by real-time convolution of the bats' calls with the acoustic impulse response of a large spherical disc and played from the loudspeaker. Contrary to the real object, the virtual object did not elicit evasive flight, despite the spectro-temporal similarity of real and virtual object echoes. Yet, their spatial echo features differ: virtual object echoes lack the spread of angles of incidence from which the echoes of large objects arrive at a bat's ears (sonar aperture). We hypothesise that this mismatch of spectro-temporal and spatial echo features caused the lack of virtual object evasion and suggest that the sonar aperture of object echoscapes contributes to the sonar coding of object size. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Postnatal ontogeny of the cochlea and flight ability in Jamaican fruit bats (Phyllostomidae) with implications for the evolution of echolocation.

    PubMed

    Carter, Richard T; Adams, Rick A

    2015-04-01

    Recent evidence has shown that the developmental emergence of echolocation calls in young bats follow an independent developmental pathway from other vocalizations and that adult-like echolocation call structure significantly precedes flight ability. These data in combination with new insights into the echolocation ability of some shrews suggest that the evolution of echolocation in bats may involve inheritance of a primitive sonar system that was modified to its current state, rather than the ad hoc evolution of echolocation in the earliest bats. Because the cochlea is crucial in the sensation of echoes returning from sonar pulses, we tracked changes in cochlear morphology during development that included the basilar membrane (BM) and secondary spiral lamina (SSL) along the length of the cochlea in relation to stages of flight ability in young bats. Our data show that the morphological prerequisite for sonar sensitivity of the cochlea significantly precedes the onset of flight in young bats and, in fact, development of this prerequisite is complete before parturition. In addition, there were no discernible changes in cochlear morphology with stages of flight development, demonstrating temporal asymmetry between the development of morphology associated with echo-pulse return sensitivity and volancy. These data further corroborate and support the hypothesis that adaptations for sonar and echolocation evolved before flight in mammals. © 2015 Anatomical Society.

  4. Sidescan-Sonar Imagery and Surficial Geologic Interpretations of the Sea Floor in Western Rhode Island Sound

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Haupt, T.A.; Crocker, J.M.

    2009-01-01

    The U.S. Geological Survey (USGS) and National Oceanic and Atmospheric Administration (NOAA) have been working together to interpret sea-floor geology along the northeastern coast of the United States. In 2004, the NOAA Ship RUDE completed survey H11322, a sidescan-sonar and bathymetric survey that covers about 60 square kilometers of the sea floor in western Rhode Island Sound. This report interprets sidescan-sonar and bathymetric data from NOAA survey H11322 to delineate sea-floor features and sedimentary environments in the study area. Paleozoic bedrock and Cretaceous Coastal Plain sediments in Rhode Island Sound underlie Pleistocene glacial drift that affects the distribution of surficial Holocene marine and transgressional sediments. The study area has three bathymetric highs separated by a channel system. Features and patterns in the sidescan-sonar imagery include low, moderate, and high backscatter; sand waves; scarps; erosional outliers; boulders; trawl marks; and dredge spoils. Four sedimentary environments in the study area, based on backscatter and bathymetric features, include those characterized by erosion or nondeposition, coarse-grained bedload transport, sorting and reworking, and deposition. Environments characterized by erosion or nondeposition and coarse-grained bedload transport are located in shallower areas and environments characterized by deposition are located in deeper areas; environments characterized by sorting and reworking processes are generally located at moderate depths.

  5. Recommendations for improved and coherent acquisition and processing of backscatter data from seafloor-mapping sonars

    NASA Astrophysics Data System (ADS)

    Lamarche, Geoffroy; Lurton, Xavier

    2018-06-01

    Multibeam echosounders are becoming widespread for the purposes of seafloor bathymetry mapping, but the acquisition and the use of seafloor backscatter measurements, acquired simultaneously with the bathymetric data, are still insufficiently understood, controlled and standardized. This presents an obstacle to well-accepted, standardized analysis and application by end users. The Marine Geological and Biological Habitat Mapping group (Geohab.org) has long recognized the need for better coherence and common agreement on acquisition, processing and interpretation of seafloor backscatter data, and established the Backscatter Working Group (BSWG) in May 2013. This paper presents an overview of this initiative, the mandate, structure and program of the working group, and a synopsis of the BSWG Guidelines and Recommendations to date. The paper includes (1) an overview of the current status in sensors and techniques available in seafloor backscatter data from multibeam sonars; (2) the presentation of the BSWG structure and results; (3) recommendations to operators, end-users, sonar manufacturers, and software developers using sonar backscatter for seafloor-mapping applications, for best practice methods and approaches for data acquisition and processing; and (4) a discussion on the development needs for future systems and data processing. We propose for the first time a nomenclature of backscatter processing levels that affords a means to accurately and efficiently describe the data processing status, and to facilitate comparisons of final products from various origins.

  6. 76 FR 56407 - Notice of Availability of a Draft Supplemental Environmental Impact Statement/Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... Array Sensor System Low Frequency Active Sonar AGENCY: Department of the Navy, DoD. ACTION: Notice... analyses for the DoN's employment of Surveillance Towed Array Sensor System Low Frequency Active (SURTASS...

  7. High-resolution seismic-reflection profiles and sidescan-sonar records collected on Block Island Sound by U.S. Geological Survey, R/V ASTERIAS, cruise AST 81-2

    USGS Publications Warehouse

    Needell, S. W.; Lewis, R.S.

    1982-01-01

    Cruise AST 81-2 was conducted aboard the R/V ASTERIAS during September 10-18, 1981, in Block Island Sound by the U.S. Geological Survey. It was funded in part by the Connecticut Geological and Natural History Survey. The purpose of the study was to define and map the geology and shallow structure, to determine the geologic framework and late Tertiary to Holocene history, and to identify and map any potential geologic hazards of Block Island Sound.The survey was conducted using an EG&G Uniboom seismic system and an EDO Western sidescan-sonar system. Seismic signals were band-passed between 400 and 4,000 Hz and were recorded at a quarter-second sweep rate. Sidescan sonographs were collected at a 100-m scan range to each side of the ship track. In all, 702 km of seismic-reflection profiles and 402 km of sidescan-sonar records were collected. Navigation was by Loran-C, and the ship position was recorded at 5-minute intervals. Seismic-reflection profiling is continuous and good in quality. Sidescan-sonar records are varied in quality; coverage was intermittent and eventu­ally terminated owing to difficulties with the recorder.Original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the seismic-reflection pro­files and the sidescan sonographs can be purchased only from the National Geo­physical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broad­way, Boulder, CO 80303 (telephone 303-497-6338).

  8. Single-channel seismic-reflection profiles and sidescan sonar records collected during May 15-20, 1978, on the southern New England continental shelf

    USGS Publications Warehouse

    Twichell, David C.

    1980-01-01

    The U.S. Geological Survey completed a cruise aboard the R/V CAPE HENLOPEN during May 15-20, 1978, to map the surface character, thickness and extent of the fine-grained.sediment deposit that covers an area 100 x 200 km on the southern New England Continental Shelf. The study area lies between Great South Channel to the east and Black Channel to the west, and extends from the 50-m isobath to the shelf edge.Single-channel high-resolution seismic-reflection profiles and echo-sounding profiles were collected along 941 km of trackline, sidescan sonar records were collected along 673 km of trackline. The subbottom profiles were collected by using a Huntec*system that was towed at midwater depths. Filters were set at 1 to 7 kHz. Echo-sounding records were collected by using a 60 kHz EDO Western system. A Klein stdescan sonar, set to scan 100 m to either side of the towed fish, was used to collect the sonographs.Navigation during the survey was done by the scientific staff using Loran-C equipment. Fixes were recorded and logged at least every 15 minutes; after the cruise, they were digitized and stored on magnetic tape.The original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the subbottom, echo­sounding, and sidescan sonar records collected during the cruise can be purchased from the National Geophysical and Solar-Terrestrial Data Center, NOAA (National Oceanic ancl Atmosphere Administration), Boulder, CO 80302.

  9. Introduction to Sonar, Naval Education and Training Command. Revised Edition.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    This Rate Training Manual (RTM) and Nonresident Career Course form a self-study package for those U.S. Navy personnel who are seeking advancement in the Sonar Technician Rating. Among the requirements of the rating are the abilities to obtain and interpret underwater data, operate and maintain upkeep of sonar equipment, and interpret target and…

  10. Ceteacean Social Behavioral Response to Sonar

    DTIC Science & Technology

    2011-09-30

    behavior data of humpback whales and minke whales was recorded during 5 and 1 CEEs respectively (including tagging, baseline, sonar exposure and...during fieldwork efforts in 2012 and 2013. Figure 1. Example of humpback whale group behavior sampling...cetacean behavioral responses to sonar signals and other stimuli (tagging effort, killer whale playbacks) as well as baseline behavior, are studied

  11. Swath sonar mapping of Earth's submarine plate boundaries

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would enable global comparisons of plate boundary structures and processes and could facilitate a more coordinated approach to optimizing the future acquisition of these high-value data by the global research community.

  12. Progress in the development of shallow-water mapping systems

    USGS Publications Warehouse

    Bergeron, E.; Worley, C.R.; O'Brien, T.

    2007-01-01

    The USGS (US Geological Survey) Coastal and Marine Geology has deployed an advance autonomous shallow-draft robotic vehicle, Iris, for shallow-water mapping in Apalachicola Bay, Florida. The vehicle incorporates a side scan sonar system, seismic-reflection profiler, single-beam echosounder, and global positioning system (GPS) navigation. It is equipped with an onboard microprocessor-based motor controller, delivering signals for speed and steering to hull-mounted brushless direct-current thrusters. An onboard motion sensor in the Sea Robotics vehicle control system enclosure has been integrated in the vehicle to measure the vehicle heave, pitch, roll, and heading. Three water-tight enclosures are mounted along the vehicle axis for the Edgetech computer and electronics system including the Sea Robotics computer, a control and wireless communications system, and a Thales ZXW real-time kinematic (RTK) GPS receiver. The vehicle has resulted in producing high-quality seismic reflection and side scan sonar data, which will help in developing the baseline oyster habitat maps.

  13. Coherent and Noncoherent Joint Processing of Sonar for Detection of Small Targets in Shallow Water.

    PubMed

    Pan, Xiang; Jiang, Jingning; Li, Si; Ding, Zhenping; Pan, Chen; Gong, Xianyi

    2018-04-10

    A coherent-noncoherent joint processing framework is proposed for active sonar to combine diversity gain and beamforming gain for detection of a small target in shallow water environments. Sonar utilizes widely-spaced arrays to sense environments and illuminate a target of interest from multiple angles. Meanwhile, it exploits spatial diversity for time-reversal focusing to suppress reverberation, mainly strong bottom reverberation. For enhancement of robustness of time-reversal focusing, an adaptive iterative strategy is utilized in the processing framework. A probing signal is firstly transmitted and echoes of a likely target are utilized as steering vectors for the second transmission. With spatial diversity, target bearing and range are estimated using a broadband signal model. Numerical simulations show that the novel sonar outperforms the traditional phased-array sonar due to benefits of spatial diversity. The effectiveness of the proposed framework has been validated by localization of a small target in at-lake experiments.

  14. Sonar sound groups and increased terminal buzz duration reflect task complexity in hunting bats.

    PubMed

    Hulgard, Katrine; Ratcliffe, John M

    2016-02-09

    More difficult tasks are generally regarded as such because they demand greater attention. Echolocators provide rare insight into this relationship because biosonar signals can be monitored. Here we show that bats produce longer terminal buzzes and more sonar sound groups during their approach to prey under presumably more difficult conditions. Specifically, we found Daubenton's bats, Myotis daubentonii, produced longer buzzes when aerial-hawking versus water-trawling prey, but that bats taking revolving air- and water-borne prey produced more sonar sound groups than did the bats when taking stationary prey. Buzz duration and sonar sound groups have been suggested to be independent means by which bats attend to would-be targets and other objects of interest. We suggest that for attacking bats both should be considered as indicators of task difficulty and that the buzz is, essentially, an extended sonar sound group.

  15. Acoustic measurement method of the volume flux of a seafloor hydrothermal plume

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2011-12-01

    Measuring fluxes (volume, chemical, heat, etc.) of the deep sea hydrothermal vents has been a crucial but challenging task faced by the scientific community since the discovery of the vent systems. However, the great depths and complexities of the hydrothermal vents make traditional sampling methods laborious and almost daunting missions. Furthermore, the samples, in most cases both sparse in space and sporadic in time, are hardly enough to provide a result with moderate uncertainty. In September 2010, our Cabled Observatory Vent Imaging Sonar System (COVIS, http://vizlab.rutgers.edu/AcoustImag/covis.html) was connected to the Neptune Canada underwater ocean observatory network (http://www.neptunecanada.ca) at the Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. During the experiment, the COVIS system produced 3D images of the buoyant plume discharged from the vent complex Grotto by measuring the back-scattering intensity of the acoustic signal. Building on the methodology developed in our previous work, the vertical flow velocity of the plume is estimated from the Doppler shift of the acoustic signal using geometric correction to compensate for the ambient horizontal currents. A Gaussian distribution curve is fitted to the horizontal back-scattering intensity profile to determine the back-scattering intensity at the boundary of the plume. Such a boundary value is used as the threshold in a window function for separating the plume from background signal. Finally, the volume flux is obtained by integrating the resulting 2D vertical velocity profile over the horizontal cross-section of the plume. In this presentation, we discuss preliminary results from the COVIS experiment. In addition, several alternative approaches are applied to determination of the accuracy of the estimated plume vertical velocity in the absence of direct measurements. First, the results from our previous experiment (conducted in 2000 at the same vent complex using a similar methodology but a different sonar system) provide references to the consistency of the methodology. Second, the vertical flow rate measurement made in 2007 at an adjacent vent complex (Dante) using a different acoustic method (acoustic scintillation) can serve as a first order estimation of the plume vertical velocity. Third, another first order estimation can be obtained by combining the plume bending angle with the horizontal current measured by a current meter array deployed to the north of the vent field. Finally, statistical techniques are used to quantify the errors due to the ambient noises, inherent uncertainties of the methodology, and the fluctuation of the plume structure.

  16. Analysis of seafloor backscatter strength dependence on the survey azimuth using multibeam echosounder data

    NASA Astrophysics Data System (ADS)

    Lurton, Xavier; Eleftherakis, Dimitrios; Augustin, Jean-Marie

    2018-06-01

    The sediment backscatter strength measured by multibeam echosounders is a key feature for seafloor mapping either qualitative (image mosaics) or quantitative (extraction of classifying features). An important phenomenon, often underestimated, is the dependence of the backscatter level on the azimuth angle imposed by the survey line directions: strong level differences at varying azimuth can be observed in case of organized roughness of the seabed, usually caused by tide currents over sandy sediments. This paper presents a number of experimental results obtained from shallow-water cruises using a 300-kHz multibeam echosounder and specially dedicated to the study of this azimuthal effect, with a specific configuration of the survey strategy involving a systematic coverage of reference areas following "compass rose" patterns. The results show for some areas a very strong dependence of the backscatter level, up to about 10-dB differences at intermediate oblique angles, although the presence of these ripples cannot be observed directly—neither from the bathymetry data nor from the sonar image, due to the insufficient resolution capability of the sonar. An elementary modeling of backscattering from rippled interfaces explains and comforts these observations. The consequences of this backscatter dependence upon survey azimuth on the current strategies of backscatter data acquisition and exploitation are discussed.

  17. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System

    PubMed Central

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-01-01

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequency-domain and achieves computational complexity reduction. PMID:28230763

  18. 50 CFR 218.173 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Complex shall be promulgated, and sightings shall be entered into the Range Operating System and forwarded... Naval Sea System Command (NAVSEA) Naval Undersea Warfare Center (NUWC) Keyport Range Complex and the... active sonar transmissions when passive acoustic monitoring capabilities are being operated during the...

  19. 50 CFR 218.80 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Study Area also includes U.S. Navy pierside locations where sonar maintenance and testing occurs within...): (A) M3—an average of 461 hours per year. (B) [Reserved] (vii) Swimmer Detection Sonar (SD): (A) SD1 and SD2—an average of 230 hours per year. (B) [Reserved] (viii) Forward Looking Sonar (FLS): (A) FLS2...

  20. Multi-Layer Tiled Array.

    DTIC Science & Technology

    1996-12-16

    the Invention 13 The present invention relates to planar sonar arrays. More 14 particularly, the invention relates to the arrangement of 15...transducer elements in planar sonar arrays. 16 (2) Description of the Prior Art 17 Conventional planar sonar array designs typically comprise 18 ceramic...signal 5 conditioners ( preamplifiers )/as short as possible. However, this 6 requirement complicates fabrication and provides little space to 7

  1. Ultrasonic Methods for Human Motion Detection

    DTIC Science & Technology

    2006-10-01

    contacts. The active method utilizes continuous wave ultrasonic Doppler sonar . Human motions have unique Doppler signatures and their combination...The present article reports results of human motion investigations with help of CW ultrasonic Doppler sonar . Low-cost, low-power ultrasonic motion...have been developed for operation in air [10]. Benefits of using ultrasonic CW Doppler sonar included the low-cost, low-electric noise, small size

  2. Patterns of Occurrence and Marine Mammal Acoustic Behavior in Relation to Navy Sonar Activity Off Jacksonville, Florida.

    PubMed

    Oswald, Julie N; Norris, Thomas F; Yack, Tina M; Ferguson, Elizabeth L; Kumar, Anurag; Nissen, Jene; Bell, Joel

    2016-01-01

    Passive acoustic data collected from marine autonomous recording units deployed off Jacksonville, FL (from 13 September to 8 October 2009 and 3 December 2009 to 8 January 2010), were analyzed for detection of cetaceans and Navy sonar. Cetaceans detected included Balaenoptera acutorostrata, Eubalaena glacialis, B. borealis, Physeter macrocephalus, blackfish, and delphinids. E. glacialis were detected at shallow and, somewhat unexpectedly, deep sites. P. macrocephalus were characterized by a strong diel pattern. B. acutorostrata showed the strongest relationship between sonar activity and vocal behavior. These results provide a preliminary assessment of cetacean occurrence off Jacksonville and new insights on vocal responses to sonar.

  3. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel.

    PubMed

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-12-11

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology.

  4. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel †

    PubMed Central

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-01-01

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology. PMID:26690444

  5. Bathymetry mapping using a GPS-sonar equipped remote control boat: Application in waste stabilisation ponds

    NASA Astrophysics Data System (ADS)

    Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco

    2014-05-01

    Traditionally, bathymetry mapping of ponds, lakes and rivers have used techniques which are low in spatial resolution, sometimes subjective in terms of precision and accuracy, labour intensive, and that require a high level of safety precautions. In waste stabilisation ponds (WSP) in particular, sludge heights, and thus sludge volume, are commonly measured using a sludge judge (a clear plastic pipe with length markings). A remote control boat fitted with a GPS-equipped sonar unit can improve the resolution of depth measurements, and reduce safety and labour requirements. Sonar devices equipped with GPS technology, also known as fish finders, are readily available and widely used by people in boating. Through the use of GPS technology in conjunction with sonar, the location and depth can be recorded electronically onto a memory card. However, despite its high applicability to the field, this technology has so far been underutilised. In the case of WSP, the sonar can measure the water depth to the top of the sludge layer, which can then be used to develop contour maps of sludge distribution and to determine sludge volume. The coupling of sonar technology with a remotely operative vehicle has several advantages of traditional measurement techniques, particularly in removing human subjectivity of readings, and the sonar being able to collect more data points in a shorter period of time, and continuously, with a much higher spatial resolution. The GPS-sonar equipped remote control boat has been tested on in excess of 50 WSP within Western Australia, and has shown a very strong correlation (R2 = 0.98) between spot readings taken with the sonar compared to a sludge judge. This has shown that the remote control boat with GPS-sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution, while greatly reducing profiling time. Remotely operated vehicles, such as the one built in this study, are useful for not only determining sludge distribution, but also in calculating sludge accumulation rates, and in evaluating pond hydraulic efficiency (e.g., as input bathymetry for computational fluid dynamics models). This technology is not limited to application for wastewater management, and could potentially have a wider application in the monitoring of other small to medium water bodies, including reservoirs, channels, recreational water bodies, river beds, mine tailings dams and commercial ports.

  6. Lack of behavioural responses of humpback whales (Megaptera novaeangliae) indicate limited effectiveness of sonar mitigation.

    PubMed

    Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; von Benda-Beckmann, Alexander M; Sivle, Lise D; Visser, Fleur; Curé, Charlotte; Tyack, Peter L; Miller, Patrick J O

    2017-11-15

    Exposure to underwater sound can cause permanent hearing loss and other physiological effects in marine animals. To reduce this risk, naval sonars are sometimes gradually increased in intensity at the start of transmission ('ramp-up'). Here, we conducted experiments in which tagged humpback whales were approached with a ship to test whether a sonar operation preceded by ramp-up reduced three risk indicators - maximum sound pressure level (SPL max ), cumulative sound exposure level (SEL cum ) and minimum source-whale range ( R min ) - compared with a sonar operation not preceded by ramp-up. Whales were subject to one no-sonar control session and either two successive ramp-up sessions (RampUp1, RampUp2) or a ramp-up session (RampUp1) and a full-power session (FullPower). Full-power sessions were conducted only twice; for other whales we used acoustic modelling that assumed transmission of the full-power sequence during their no-sonar control. Averaged over all whales, risk indicators in RampUp1 ( n =11) differed significantly from those in FullPower ( n =12) by -3.0 dB (SPL max ), -2.0 dB (SEL cum ) and +168 m ( R min ), but not significantly from those in RampUp2 ( n =9). Only five whales in RampUp1, four whales in RampUp2 and none in FullPower or control sessions avoided the sound source. For RampUp1, we found statistically significant differences in risk indicators between whales that avoided the sonar and whales that did not: -4.7 dB (SPL max ), -3.4 dB (SEL cum ) and +291 m ( R min ). In contrast, for RampUp2, these differences were smaller and not significant. This study suggests that sonar ramp-up has a positive but limited mitigative effect for humpback whales overall, but that ramp-up can reduce the risk of harm more effectively in situations when animals are more responsive and likely to avoid the sonar, e.g. owing to novelty of the stimulus, when they are in the path of an approaching sonar ship. © 2017. Published by The Company of Biologists Ltd.

  7. Thematic Conference on Remote Sensing for Exploration Geology, 6th, Houston, TX, May 16-19, 1988, Proceedings. Volumes 1 & 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Papers concerning remote sensing applications for exploration geology are presented, covering topics such as remote sensing technology, data availability, frontier exploration, and exploration in mature basins. Other topics include offshore applications, geobotany, mineral exploration, engineering and environmental applications, image processing, and prospects for future developments in remote sensing for exploration geology. Consideration is given to the use of data from Landsat, MSS, TM, SAR, short wavelength IR, the Geophysical Environmental Research Airborne Scanner, gas chromatography, sonar imaging, the Airborne Visible-IR Imaging Spectrometer, field spectrometry, airborne thermal IR scanners, SPOT, AVHRR, SIR, the Large Format camera, and multitimephase satellite photographs.

  8. Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits

    NASA Technical Reports Server (NTRS)

    Bulmer, M. H.; Guest, J. E.; Beretan, K.; Michaels, Gregory A.; Saunders, R. Stephen

    1992-01-01

    Modified volcanic domes, referred to as collapsed margin domes, have diameters greater than those of terrestrial domes and were therefore thought to have no suitable terrestrial analogue. Comparison of the collapsed debris using the Magellan SAR images with volcanic debris avalanches on Earth has revealed morphological similarities. Some volcanic features identified on the seafloor from sonar images have diameters similar to those on Venus and also display scalloped margins, indicating modification by collapse. Examination of the SAR images of collapsed dome features reveals a number of distinct morphologies to the collapsed masses. Ten examples of collapsed margin domes displaying a range of differing morphologies and collapsed masses have been selected and examined.

  9. An acoustic backscatter thermometer for remotely mapping seafloor water temperature

    NASA Astrophysics Data System (ADS)

    Jackson, Darrell R.; Dworski, J. George

    1992-01-01

    A bottom-mounted, circularly scanning sonar operating at 40 kHz has been used to map changes in water sound speed over a circular region 150 m in diameter. If it is assumed that the salinity remains constant, the change in sound speed can be converted to a change in temperature. For the present system, the spatial resolution is 7.5 m and the temperature resolution is 0.05°C. The technique is based on comparison of successive sonar scans by means of a correlation algorithm. The algorithm is illustrated using data from the Sediment Transport Events on Slopes and Shelves (STRESS) experiment.

  10. Comparing phase-sensitive and phase-insensitive echolocation target images using a monaural audible sonar.

    PubMed

    Kuc, Roman

    2018-04-01

    This paper describes phase-sensitive and phase-insensitive processing of monaural echolocation waveforms to generate target maps. Composite waveforms containing both the emission and echoes are processed to estimate the target impulse response using an audible sonar. Phase-sensitive processing yields the composite signal envelope, while phase-insensitive processing that starts with the composite waveform power spectrum yields the envelope of the autocorrelation function. Analysis and experimental verification show that multiple echoes form an autocorrelation function that produces near-range phantom-reflector artifacts. These artifacts interfere with true target echoes when the first true echo occurs at a time that is less than the total duration of the target echoes. Initial comparison of phase-sensitive and phase-insensitive maps indicates that both display important target features, indicating that phase is not vital. A closer comparison illustrates the improved resolution of phase-sensitive processing, the near-range phantom-reflectors produced by phase-insensitive processing, and echo interference and multiple reflection artifacts that were independent of the processing.

  11. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales.

    PubMed

    Sivle, L D; Kvadsheim, P H; Fahlman, A; Lam, F P A; Tyack, P L; Miller, P J O

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1-2 kHz and mid frequency active sonar (MFAS): 6-7 kHz] during three field seasons (2006-2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals.

  12. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales

    PubMed Central

    Sivle, L. D.; Kvadsheim, P. H.; Fahlman, A.; Lam, F. P. A.; Tyack, P. L.; Miller, P. J. O.

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1–2 kHz and mid frequency active sonar (MFAS): 6–7 kHz] during three field seasons (2006–2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals. PMID:23087648

  13. Deep sea mega-geomorphology: Progress and problems

    NASA Technical Reports Server (NTRS)

    Bryan, W. B.

    1985-01-01

    Historically, marine geologists have always worked with mega-scale morphology. This is a consequence both of the scale of the ocean basins and of the low resolution of the observational remote sensing tools available until very recently. In fact, studies of deep sea morphology have suffered from a serious gap in observational scale. Traditional wide-beam echo sounding gave images on a scale of miles, while deep sea photography has been limited to scales of a few tens of meters. Recent development of modern narrow-beam echo sounding coupled with computer-controlled swath mapping systems, and development of high-resolution deep-towed side-scan sonar, are rapidly filling in the scale gap. These technologies also can resolve morphologic detail on a scale of a few meters or less. As has also been true in planetary imaging projects, the ability to observe phenomena over a range of scales has proved very effective in both defining processes and in placing them in proper context.

  14. Development of Mid-Frequency Multibeam Sonar for Fisheries Applications

    DTIC Science & Technology

    2006-01-01

    Development of Mid-Frequency Multibeam Sonar for Fisheries Applications John K. Horne University of Washington, School of Aquatic and Fishery ...AND SUBTITLE Development of Mid-Frequency Multibeam Sonar for Fisheries Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Washington,School of Aquatic and Fishery Sciences,Box 355020,Seattle,WA,98195 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME

  15. 75 FR 4047 - Taking and Importing Marine Mammals; U.S. Navy Training in the Southern California Range Complex

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... sonar use in 2009 was less than planned such that a recalculation of marine mammal takes suggests a... contemplated in light of the overall underuse of sonar proposed and actually used in 2009 (and the likelihood... sonar sources in 2009, the authorization of the same amount of take for 2010 as was authorized in 2009...

  16. Adaptive Sampling in Autonomous Marine Sensor Networks

    DTIC Science & Technology

    2006-06-01

    Analog Processing Section A high-performance preamplifier with low noise characteristics is vital to obtaining quality sonar data. The preamplifier ...research assistantships through the Generic Ocean Array Technology Sonar (GOATS) project, contract N00014-97-1-0202 and contract N00014-05-G-0106 Delivery...Formation Behavior ..................................... 60 5 An AUV Intelligent Sensor for Real-Time Adaptive Sensing 63 5.1 A Logical Sonar Sensor

  17. Merged GLORIA sidescan and hydrosweep pseudo-sidescan: Processing and creation of digital mosaics

    USGS Publications Warehouse

    Bird, R.T.; Searle, R.C.; Paskevich, V.; Twichell, D.C.

    1996-01-01

    We have replaced the usual band of poor-quality data in the near-nadir region of our GLORIA long-range sidescan-sonar imagery with a shaded-relief image constructed from swath bathymetry data (collected simultaneously with GLORIA) which completely cover the nadir area. We have developed a technique to enhance these "pseudo-sidescan" images in order to mimic the neighbouring GLORIA backscatter intensities. As a result, the enhanced images greatly facilitate the geologic interpretation of the adjacent GLORIA data, and geologic features evident in the GLORIA data may be correlated with greater confidence across track. Features interpreted from the pseudo-sidescan may be extrapolated from the near-nadir region out into the GLORIA range where they may not have been recognized otherwise, and therefore the pseudo-sidescan can be used to ground-truth GLORIA interpretations. Creation of digital sidescan mosaics utilized an approach not previously used for GLORIA data. Pixels were correctly placed in cartographic space and the time required to complete a final mosaic was significantly reduced. Computer software for digital mapping and mosaic creation is incorporated into the newly-developed Woods Hole Image Processing System (WHIPS) which can process both low- and high-frequency sidescan, and can interchange data with the Mini Image Processing System (MIPS) most commonly used for GLORIA processing. These techniques are tested by creating digital mosaics of merged GLORIA sidescan and Hydrosweep pseudo-sidescan data from the vicinity of the Juan Fernandez microplate along the East Pacific Rise (EPR). 

  18. Zooglider - an Autonomous Vehicle for Optical and Acoustic Sensing of Marine Zooplankton

    NASA Astrophysics Data System (ADS)

    Ohman, M. D.; Davis, R. E.; Sherman, J. T.; Grindley, K.; Whitmore, B. M.

    2016-02-01

    We will present results from early sea trials of the Zooglider, an autonomous zooplankton glider designed and built by the Instrument Development Group at Scripps. The Zooglider is built upon a modified Spray glider and includes a low power camera with telecentric lens and a custom dual frequency sonar (200/1000 kHz). The imaging system quantifies zooplankton as they flow through a sampling tunnel within a well-defined sampling volume. The maximum operating depth is 500 m. Other sensors include a pumped CTD and Chl-a fluorometer. The Zooglider permits in situ measurements of mesozooplankton distributions and three dimensional orientation in relation to other biotic and physical properties of the ocean water column. Zooglider development is supported by the Gordon and Betty Moore Foundation.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminousmore » eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.« less

  20. Bubble Plumes at NW Rota-1 Submarine Volcano, Mariana Arc: Visualization and Analysis of Multibeam Water Column Data

    NASA Astrophysics Data System (ADS)

    Merle, S. G.; Chadwick, W. W.; Embley, R. W.; Doucet, M.

    2012-12-01

    During a March 2010 expedition to NW Rota-1 submarine volcano in the Mariana arc a new EM122 multibeam sonar system on the R/V Kilo Moana was used to repeatedly image bubble plumes in the water column over the volcano. The EM122 (12 kHz) system collects seafloor bathymetry and backscatter data, as well as acoustic return water column data. Previous expeditions to NW Rota-1 have included seafloor mapping / CTD tow-yo surveys and remotely operated vehicle (ROV) dives in 2004, 2005, 2006 and 2009. Much of the focus has been on the one main eruptive vent, Brimstone, located on the south side of the summit at a depth of ~440m, which has been persistently active during all ROV visits. Extensive degassing of CO2 bubbles have been observed by the ROV during frequent eruptive bursts from the vent. Between expeditions in April 2009 and March 2010 a major eruption and landslide occurred at NW Rota-1. ROV dives in 2010 revealed that after the landslide the eruptive vent had been reorganized from a single site to a line of vents. Brimstone vent was still active, but 4 other new eruptive vents had also emerged in a NW/SE line below the summit extending ~100 m from the westernmost to easternmost vents. During the ROV dives, the eruptive vents were observed to turn on and off from day to day and hour to hour. Throughout the 2010 expedition numerous passes were made over the volcano summit to image the bubble plumes above the eruptive vents in the water column, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar data set totals >95 hours of observations over a 12-day period. Generally, the ship drove repeatedly over the eruptive vents at a range of ship speeds (0.5-4 knots) and headings. In addition, some mid-water data was collected during three ROV dives when the ship was stationary over the vents. We used the FMMidwater software program (part of QPS Fledermaus) to visualize and analyze the data collected with this new mid-water technology. The data show that during some passes over the vent all 5 eruptive vents were contributing to the plume above the volcano, whereas on other passes only 1 vent was visible. However, it was common that multiple vents were active at any one time. The highest observed rise of a bubble plume in the water column came from the easternmost vent, with the main plume rising 415 meters from the vent to within 175 m of the surface. In some cases, wisps from the main plume rose to heights less than 100 m from the surface. This analysis shows that water column imaging multibeam sonar data can be used as a proxy to determine the level of eruptive activity above submarine volcanoes that have robust CO2 output. We plan to compare this data set to other data sets including hydrophone recordings, ADCP data and ROV visual observations.

  1. Development of a 2 MHz Sonar Sensor for Inspection of Bridge Substructures.

    PubMed

    Park, Chul; Kim, Youngseok; Lee, Heungsu; Choi, Sangsik; Jung, Haewook

    2018-04-16

    Hydraulic factors account for a large part of the causes of bridge collapse. Due to the nature of the underwater environment, quick and accurate inspection is required when damage occurs. In this study, we developed a 2 MHz side scan sonar sensor module and effective operation technique by improving the limitations of existing sonar. Through field tests, we analyzed the correlation of factors affecting the resolution of the sonar data such as the angle of survey, the distance from the underwater structure and the water depth. The effect of the distance and the water depth and the structure on the survey angle was 66~82%. We also derived the relationship between these factors as a regression model for effective operating techniques. It is considered that application of the developed 2 MHz side scan sonar and its operation method could contribute to prevention of bridge collapses and disasters by quickly and accurately checking the damage of bridge substructures due to hydraulic factors.

  2. Coherent and Noncoherent Joint Processing of Sonar for Detection of Small Targets in Shallow Water

    PubMed Central

    Jiang, Jingning; Li, Si; Ding, Zhenping; Pan, Chen; Gong, Xianyi

    2018-01-01

    A coherent-noncoherent joint processing framework is proposed for active sonar to combine diversity gain and beamforming gain for detection of a small target in shallow water environments. Sonar utilizes widely-spaced arrays to sense environments and illuminate a target of interest from multiple angles. Meanwhile, it exploits spatial diversity for time-reversal focusing to suppress reverberation, mainly strong bottom reverberation. For enhancement of robustness of time-reversal focusing, an adaptive iterative strategy is utilized in the processing framework. A probing signal is firstly transmitted and echoes of a likely target are utilized as steering vectors for the second transmission. With spatial diversity, target bearing and range are estimated using a broadband signal model. Numerical simulations show that the novel sonar outperforms the traditional phased-array sonar due to benefits of spatial diversity. The effectiveness of the proposed framework has been validated by localization of a small target in at-lake experiments. PMID:29642637

  3. Development of a 2 MHz Sonar Sensor for Inspection of Bridge Substructures

    PubMed Central

    Park, Chul; Lee, Heungsu; Choi, Sangsik; Jung, Haewook

    2018-01-01

    Hydraulic factors account for a large part of the causes of bridge collapse. Due to the nature of the underwater environment, quick and accurate inspection is required when damage occurs. In this study, we developed a 2 MHz side scan sonar sensor module and effective operation technique by improving the limitations of existing sonar. Through field tests, we analyzed the correlation of factors affecting the resolution of the sonar data such as the angle of survey, the distance from the underwater structure and the water depth. The effect of the distance and the water depth and the structure on the survey angle was 66~82%. We also derived the relationship between these factors as a regression model for effective operating techniques. It is considered that application of the developed 2 MHz side scan sonar and its operation method could contribute to prevention of bridge collapses and disasters by quickly and accurately checking the damage of bridge substructures due to hydraulic factors. PMID:29659557

  4. Enhanced Sidescan-Sonar Imagery Offshore of Southeastern Massachusetts

    USGS Publications Warehouse

    Poppe, Lawrence J.; McMullen, Kate Y.; Williams, S. Jeffress; Ackerman, Seth D.; Glomb, K.A.; Forfinski, N.A.

    2008-01-01

    The U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), and Massachusetts Office of Coastal Zone Management (CZM) have been working cooperatively to map and study the coastal sea floor. The sidescan-sonar imagery collected during NOAA hydrographic surveys has been included as part of these studies. However, the original sonar imagery contains tonal artifacts from environmental noise (for example, sea state), equipment settings (for example, power and gain changes), and processing (for example, inaccurate cross-track and line-to-line normalization), which impart a quilt-like patchwork appearance to the mosaics. These artifacts can obscure the normalized backscatter properties of the sea floor. To address this issue, sidescan-sonar imagery from surveys H11076 and H11079 offshore of southeastern Massachusetts was enhanced by matching backscatter tones of adjacent sidescan-sonar lines. These mosaics provide continuous grayscale perspectives of the backscatter, more accurately reveal the sea-floor geologic trends, and minimize the environment-, acquisition-, and processing-related noise.

  5. Estimation and Correction of Geometric Distortions in Side-Scan Sonar Images

    DTIC Science & Technology

    1990-03-01

    Dissertation Funding was provided by the Conselho Nacional de Desinvolvemento Cientifico e Tecnologico (CNPq), an agency of the Government of the Federative...sponsorship of the Conselho Nacional de Desenvolvi- mento Cientifico e Tecnoldgico (CNPq), an agency of the Government of the Federative Republic of Brazil, and...Desenvolvimento Cientifico e Tecnol6gico (CNPq). The facilities used at MIT were maintained in part by grants from the National Science Foundation and the

  6. Recommendations for the use of ultrasound in rheumatoid arthritis: literature review and SONAR score experience.

    PubMed

    Zufferey, Pascal; Tamborrini, Giorgio; Gabay, Cem; Krebs, Andreas; Kyburz, Diego; Michel, Beat; Moser, Urs; Villiger, Peter M; So, Alexander; Ziswiler, Hans Rudolf

    2013-12-20

    Ultrasound (US) has become a useful tool in the detection of early disease, differential diagnosis, guidance of treatment decisions and treatment monitoring of rheumatoid arthritis (RA). In 2008, the Swiss Sonography in Arthritis and Rheumatism (SONAR) group was established to promote the use of US in inflammatory arthritis in clinical practice. A scoring system was developed and taught to a large number of Swiss rheumatologists who already contributed to the Swiss Clinical Quality Management (SCQM) database, a national patient register. This paper intends to give a Swiss consensus about best clinical practice recommendations for the use of US in RA on the basis of the current literature knowledge and experience with the Swiss SONAR score. Literature research was performed to collect data on current evidence. The results were discussed among specialists of the Swiss university centres and private practice, following a structured procedure. Musculoskelatal US was found to be very helpful in establishing the diagnosis and monitoring the evolution of RA, and to be a reliable tool if used by experienced examiners. It influences treatment decisions such as continuing, intensifying or stepping down therapy. The definite modalities of integrating US into the diagnosis and monitoring of RA treatments will be defined within a few years. There are, however, strong arguments to use US findings as of today in daily clinical care. Some practical recommendations about the use of US in RA, focusing on the diagnosis and the use of the SONAR score, are proposed.

  7. Sonar Transducer Reliability Improvement Program (STRIP)

    DTIC Science & Technology

    1981-01-01

    Fair *[51] EPDM NORDOL 1370 - Poor *[511 NATURAL 1155- Poor *[51] NITRILE 6100 - Good *[51] VITON CTBN (BF635075) - Poor *[511 CORK- RUBBER ... aging problems have been found. A report entitled "Reliability and Service Life Concepts for Sonar Transducer Applications" has been completed. - A draft...or aging problems have been found. See Section 9. * A report entitled "Reliability and Service Life Concepts for Sonar Transducer Applications" has

  8. Development of Mid-Frequency Multibeam Sonar for Fisheries Applications

    DTIC Science & Technology

    2007-01-01

    Development of Mid-Frequency Multibeam Sonar for Fisheries Applications John K. Horne University of Washington, School of Aquatic and Fishery ...SUBTITLE Development of Mid-Frequency Multibeam Sonar for Fisheries Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...School of Aquatic and Fishery Sciences,Box 355020 ,Seattle,WA,98195 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND

  9. Comparing the Foraging Efficiency of Beaked Whales On and Off Naval Ranges

    DTIC Science & Technology

    2015-09-30

    assessing population level effects. OBJECTIVES The overall objective of this project is to improve the understanding of sonar disturbance on...island (SA), where naval sonar is not regularly used. • Opportunistically DTAG Blainville’s beaked whales in known displacement habitats within TOTO...the primary objective was to: • Deploy DTAGs at South Abaco island (SA), where naval sonar is not regularly used. • Quantify the diving behavior

  10. 3S2: Behavioral Response Studies of Cetaceans to Navy Sonar Signals in Norwegian Waters

    DTIC Science & Technology

    2013-09-30

    exposures of killer (Orcinus orca), long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic Mammals 38...pilot whales (Globicephala melas ). Marine Mammal Science. [in review, refereed] 8 Kvadsheim, PH, Miller, PJO, Tyack, P, Sivle, LD, Lam, FPA, and...killer (Orcinus orca), long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic Mammals 38: 362-401

  11. Time of Flight Estimation in the Presence of Outliers: A Biosonar-Inspired Machine Learning Approach

    DTIC Science & Technology

    2013-08-29

    REPORT Time of Flight Estimation in the Presence of Outliers: A biosonar -inspired machine learning approach 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...installations, biosonar , remote sensing, sonar resolution, sonar accuracy, sonar energy consumption Nathan Intrator, Leon N Cooper Brown University...Presence of Outliers: A biosonar -inspired machine learning approach Report Title ABSTRACT When the Signal-to-Noise Ratio (SNR) falls below a certain

  12. Beaked Whales Respond to Simulated and Actual Navy Sonar

    DTIC Science & Technology

    2011-03-14

    predator recognition in harbour seals. Nature 420: 171–173. 34. Ford JKB (1989) Acoustic behavior of resident killer whales (Orcinus orca) off Vancouver...acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band...of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure

  13. Behavioral responses of herring (Clupea harengus) to 1-2 and 6-7 kHz sonar signals and killer whale feeding sounds.

    PubMed

    Doksaeter, Lise; Rune Godo, Olav; Olav Handegard, Nils; Kvadsheim, Petter H; Lam, Frans-Peter A; Donovan, Carl; Miller, Patrick J O

    2009-01-01

    Military antisubmarine sonars produce intense sounds within the hearing range of most clupeid fish. The behavioral reactions of overwintering herring (Clupea harengus) to sonar signals of two different frequency ranges (1-2 and 6-7 kHz), and to playback of killer whale feeding sounds, were tested in controlled exposure experiments in Vestfjorden, Norway, November 2006. The behavior of free ranging herring was monitored by two upward-looking echosounders. A vessel towing an operational naval sonar source approached and passed over one of them in a block design setup. No significant escape reactions, either vertically or horizontally, were detected in response to sonar transmissions. Killer whale feeding sounds induced vertical and horizontal movements of herring. The results indicate that neither transmission of 1-2 kHz nor 6-7 kHz have significant negative influence on herring on the received sound pressure level tested (127-197 and 139-209 dB(rms) re 1 microPa, respectively). Military sonars of such frequencies and source levels may thus be operated in areas of overwintering herring without substantially affecting herring behavior or herring fishery. The avoidance during playback of killer whale sounds demonstrates the nature of an avoidance reaction and the ability of the experimental design to reveal it.

  14. Can the elongated hindwing tails of fluttering moths serve as false sonar targets to divert bat attacks?

    PubMed

    Lee, Wu-Jung; Moss, Cynthia F

    2016-05-01

    It has long been postulated that the elongated hindwing tails of many saturniid moths have evolved to create false sonar targets to divert the attack of echolocation-guided bat predators. However, rigorous echo-acoustic evidence to support this hypothesis has been lacking. In this study, fluttering luna moths (Actias luna), a species with elongated hindwing tails, were ensonified with frequency modulated chirp signals from all angles of orientation and across the wingbeat cycle. High-speed stereo videography was combined with pulse compression sonar processing to characterize the echo information available to foraging bats. Contrary to previous suggestions, the results show that the tail echoes are weak and do not dominate the sonar returns, compared to the large, planar wings and the moth body. However, the distinctive twisted morphology of the tails create persistent echoes across all angles of orientation, which may induce erroneous sonar target localization and disrupt accurate tracking by echolocating bats. These findings thus suggest a refinement of the false target hypothesis to emphasize sonar localization errors induced by the twisted tails, and highlight the importance of physics-based approaches to study the sensory information involved in the evolutionary arms race between moths and their bat predators.

  15. Behavior of captive herring exposed to naval sonar transmissions (1.0-1.6 kHz) throughout a yearly cycle.

    PubMed

    Doksæter, Lise; Handegard, Nils Olav; Godø, Olav Rune; Kvadsheim, Petter H; Nordlund, Nina

    2012-02-01

    Atlantic herring, Clupea harengus, is a hearing specialist, and several studies have demonstrated strong responses to man-made noise, for example, from an approaching vessel. To avoid negative impacts from naval sonar operations, a set of studies of reaction patters of herring to low-frequency (1.0-1.5 kHz) naval sonar signals has been undertaken. This paper presents herring reactions to sonar signals and other stimuli when kept in captivity under detailed acoustic and video monitoring. Throughout the experiment, spanning three seasons of a year, the fish did not react significantly to sonar signals from a passing frigate, at received root-mean-square sound-pressure level (SPL) up to 168 dB re 1 μPa. In contrast, the fish did exhibit a significant diving reaction when exposed to other sounds, with a much lower SPL, e.g., from a two-stroke engine. This shows that the experimental setup is sensitive to herring reactions when occurring. The lack of herring reaction to sonar signals is consistent with earlier in situ behavioral studies. The complexity of the behavioral reactions in captivity underline the need for better understanding of the causal relationship between stimuli and reaction patterns of fish. © 2012 Acoustical Society of America

  16. Capturing and Displaying Uncertainty in the Common Tactical/Environmental Picture

    DTIC Science & Technology

    2003-09-30

    multistatic active detection, and incorporated this characterization into a Bayesian track - before - detect system called, the Likelihood Ratio Tracker (LRT...prediction uncertainty in a track before detect system for multistatic active sonar. The approach has worked well on limited simulation data. IMPACT

  17. 40 CFR 451.21 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS... as video cameras, digital scanning sonar, and upweller systems; monitoring of sediment quality...

  18. 40 CFR 451.21 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS... as video cameras, digital scanning sonar, and upweller systems; monitoring of sediment quality...

  19. 40 CFR 451.21 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS... as video cameras, digital scanning sonar, and upweller systems; monitoring of sediment quality...

  20. Seismic-reflection and sidescan-sonar data collected off eastern Cape Cod, Massachusetts, during April 1979

    USGS Publications Warehouse

    Knebel, Harley J.

    1981-01-01

    The U.S. Geological Survey collected 98 line kilometers of single-channel seismic-reflection profiles and sidescan sonar records on the inner shelf of eastern Cape Cod, Massachusetts, during April 1979. The data were obtained during cruise NE-1-79 of the R/V NEECHO. The purposes of the survey were: (1) to study the development of barrier islands; (2) to document the frequency and rate of migration of inlets that breach barrier islands; and (3) to define the characteristics of shoreface ridges on a barrier island.he survey uti I ized two acoustic systems. Information about the bottom was obtained by using an EDO Western model 606 sidescan-sonar system (100 kHz). Profiles of the subbottom were collected by an EG&G Uni boom transducer (400-4,000 Hz) and a Del Norte streamer. Positional control for al I track! ines was provided by a shore-based Miniranger system and by LORAN-C.The quality of the records generally is very good. However, subbottom penetration did vary somewhat from place to place during the survey due to the nature of the bottom sediments and to the presence or absence of buried channels.The original records may be examined at the U.S. Geological Survey, Woods Hole, MA 02543. Microfilm copies of the data are avai I able for purchase from the National Geophysical pnd Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303 (303-497-6338).

  1. Salmon escapement estimates into the Togiak River using sonar, Togiak National Wildlife Refuge, Alaska, 1987, 1988, and 1990

    USGS Publications Warehouse

    Irving, David B.; Finn, James E.; Larson, James P.

    1995-01-01

    We began a three year study in 1987 to test the feasibility of using sonar in the Togiak River to estimate salmon escapements. Current methods rely on periodic aerial surveys and a counting tower at river kilometer 97. Escapement estimates are not available until 10 to 14 days after the salmon enter the river. Water depth and turbidity preclude relocating the tower to the lower river and affect the reliability of aerial surveys. To determine whether an alternative method could be developed to improve the timeliness and accuracy of current escapement monitoring, Bendix sonar units were operated during 1987, 1988, and 1990. Two sonar stations were set up opposite each other at river kilometer 30 and were operated 24 hours per day, seven days per week. Catches from gill nets with 12, 14, and 20 cm stretch mesh, a beach seine, and visual observations were used to estimate species composition. Length and sex data were collected from salmon caught in the nets to assess sampling bias.In 1987, sonar was used to select optimal sites and enumerate coho salmon. In 1988 and 1990, the sites identified in 1987 were used to estimate the escapement of five salmon species. Sockeye salmon escapement was estimated at 512,581 and 589,321, chinook at 7,698 and 15,098, chum at 246,144 and 134,958, coho at 78,588 and 28,290, and pink at 96,167 and 131,484. Sonar estimates of sockeye salmon were two to three times the Alaska Department of Fish and Game's escapement estimate based on aerial surveys and tower counts. The source of error was probably a combination of over-estimating the total number of targets counted by the sonar and by incorrectly estimating species composition.Total salmon escapement estimates using sonar may be feasible but several more years of development are needed. Because of the overlapped salmon run timing, estimating species composition appears the most difficult aspect of using sonar for management. Possible improvements include using a larger beach seine or selecting gill net mesh sizes evenly spaced between 10 and 20 cm stretch mesh.Salmon counts at river kilometer 30 would reduce the lag time between salmon river entry and the escapement estimate to 2-5 days. Any further decrease in lag time, however, would require moving the sonar operations downriver into less desirable braided portions of the river.

  2. ROV seafloor surveys combining 5-cm lateral resolution multibeam bathymetry with color stereo photographic imagery

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Rock, S. M.; Risi, M.; Padial, J. A.

    2013-12-01

    The Monterey Bay Aquarium Research Institute is developing a low altitude, high-resolution seafloor mapping capability that combines multibeam sonar with stereo photographic imagery. The goal is to obtain spatially quantitative, repeatable renderings of the seafloor with fidelity at scales of 5 cm or better from altitudes of 2-3 m. The initial test surveys using this sensor system are being conducted from a remotely operated vehicle (ROV). Ultimately we intend to field this survey system from an autonomous underwater vehicle (AUV). This presentation focuses on the current sensor configuration, methods for data processing, and results from recent test surveys. Bathymetry data are collected using a 400-kHz Reson 7125 multibeam sonar. This configuration produces 512 beams across a 135° wide swath; each beam has a 0.5° acrosstrack by 1.0° alongtrack angular width. At a 2-m altitude, the nadir beams have a 1.7-cm acrosstrack and 3.5 cm alongtrack footprint. Dual Allied Vision Technology GX1920 2.8 Mpixel color cameras provide color stereo photography of the seafloor. The camera housings have been fitted with corrective optics achieving a 90° field of view through a dome port. Illumination is provided by dual 100J xenon strobes. Position, depth, and attitude data are provided by a Kearfott SeaDevil Inertial Navigation System (INS) integrated with a 300 kHz RDI Doppler velocity log (DVL). A separate Paroscientific pressure sensor is mounted adjacent to the INS. The INS Kalman filter is aided by the DVL velocity and pressure data, achieving navigational drift rates less than 0.05% of the distance traveled during surveys. The sensors are mounted onto a toolsled fitted below MBARI's ROV Doc Ricketts with the sonars, cameras and strobes all pointed vertically down. During surveys the ROV flies at a 2-m altitude at speeds of 0.1-0.2 m/s. During a four-day R/V Western Flyer cruise in June 2013, we successfully collected multibeam and camera survey data from a 2-m altitude at three sites in the deep Monterey Canyon axis. The surveys lines were spaced 1.5-m and were flown at speeds of 0.1-0.2-m/s while the sonars pinged at 3 Hz and the cameras operated at 0.5 Hz. All three low-altitude surveys are at ~2850 m depth and lie within the 1-m lateral resolution bathymetry of a 2009, 50-m altitude MBARI Mapping AUV survey. Site 1 has the greatest topography, being centered on a 15 m diameter, 7 m high flat boulder surrounded by an 80 m diameter, 6 m deep scour pit. Site 2 is located within a field of ~3-m high apparent sediment waves with ~80-m wavelengths. Site 0 is flat and includes chemosynthetic clam communities. At a 2 m altitude, the multibeam bathymetry swath is more than 7 m wide and the camera images are 4 m wide. Following navigation adjustment to match features in overlapping bathymetry swaths, we achieve 5-cm lateral resolution topography overlain with ~1-mm scale photographic imagery.

  3. Rationale and protocol of the Study Of diabetic Nephropathy with AtRasentan (SONAR) trial: A clinical trial design novel to diabetic nephropathy

    PubMed Central

    Heerspink, Hiddo J. L.; Andress, Dennis L.; Bakris, George; Brennan, John J.; Correa‐Rotter, Ricardo; Dey, Jyotirmoy; Hou, Fan Fan; Kitzman, Dalane W.; Kohan, Donald; Makino, Hirofumi; McMurray, John; Perkovic, Vlado; Tobe, Sheldon; Wigderson, Melissa; Parving, Hans‐Henrik

    2018-01-01

    Aims Individuals with diabetes and chronic kidney disease (CKD) are at high risk for renal events. Recent trials of novel treatments have been negative, possibly because of variability in response to treatment of the target risk factor. Atrasentan is a selective endothelin A receptor antagonist that reduces urinary albumin‐to‐creatinine ratio (UACR), with a large variability between patients. We are assessing its effect on renal outcomes in the Study Of diabetic Nephropathy with AtRasentan (SONAR; NCT01858532) with an enrichment design (>30% lowering of albuminuria) to select patients most likely to benefit. Materials and Methods SONAR is a randomized, double‐blind, placebo‐controlled trial with approximately 3500 participants who have stage 2–4 CKD and macroalbuminuria and are receiving a maximum tolerated dose of a renin‐angiotensin system inhibitor. Results After 6 weeks of exposure to atrasentan 0.75 mg once daily (enrichment period), participants with ≥30% UACR decrease and no tolerability issues (responders) were randomly assigned to placebo or atrasentan 0.75 mg/day. The responder group will be used for primary efficacy and safety analyses. Approximately 1000 participants with <30% UACR reduction (non‐responders) were also randomized to placebo or atrasentan. The primary endpoint is a composite of a sustained doubling of serum creatinine or end‐stage renal disease. The original power calculation indicated that a total of 425 primary renal events in the responder group provides 90% power to detect a 27% reduction in relative risk (alpha level of .05). Conclusion SONAR aims to determine whether atrasentan added to guideline‐recommended therapies safely reduces the risk of CKD progression and delays the onset of end‐stage renal disease in patients with type 2 diabetes and nephropathy. SONAR also aims to establish whether the enrichment of patients based on their initial “surrogate” response to atrasentan will deliver a trial design in accord with personalized treatment of diabetic kidney disease. PMID:29405626

  4. Sidescan Sonar Imagery of the Escanaba Trough, Southern Gorda Ridge, Offshore Northern California

    USGS Publications Warehouse

    Ross, Stephanie L.; Zierenberg, Robert A.

    2009-01-01

    This map features sidescan imagery of the northern Escanaba (NESCA) site at the Escanaba Trough, southern Gorda Ridge, offshore northern California. The Escanaba Trough, a largely sediment-covered seafloor spreading center, contains at least six large massive sulfide deposits. It is a slow spreading center (2.5 cm/yr) with axial depths locally exceeding 3,300 m. Discrete igneous centers occur at 5- to 10-km intervals along this slow-spreading ridge. Basaltic magma intrudes the sediment fill of the axial valley, creating uplifted sediment hills, and, in some areas, erupts onto the sea floor. Large massive sulfide deposits occur along the margins of the uplifted sediment hills. The only active hydrothermal system is located on Central Hill where 220 deg C fluids construct anhydrite chimneys on pyrrhotite-rich massive sulfide mounds (Campbell and others, 1994). Central Hill is bounded by both ridge-parallel basement faults and a concentric set of faults that rim the top of the hill and may be associated with sill intrusion. Central Hill was one of the primary drill sites for Ocean Drilling Program (ODP) Leg 169. The sidescan sonar data (mosaics A, B, C, D) were collected aboard the National Oceanic and Atmospheric Administration (NOAA) research vessel Discoverer in the summer of 1996 with a 60-kHz system towed 100 to 200 m above the sea floor. Major faults and contacts are interpreted from the sidescan mosaics and 4.5-kHz seismic profiles collected simultaneously, as well as from previously conducted camera transects and submersible dives. The seismic profiles (lines 9, 11, 13) provide high-resolution subbottom structure and stratigraphy to a depth of about 50 m. In the sidescan images (mosaics A, B, C, D), bright areas denote high-energy returns from hard reflectors such as volcanic flows, sulfide deposits, or seafloor scarps. Dark areas denote low-energy returns and generally signify relatively undisturbed surface sediment. The grid lines mark one-minute intervals of latitude and longitude. The large sidescan sonar image (mosaic A) is centered on the NESCA igneous center. The spreading axis is flanked on either side by uplifted, sediment-covered terraces that show relatively continuous and undisturbed turbiditic sediment. These terraces bound the 4- to 5-km-wide neotectonic zone that is characterized by more closely spaced, small offset (<20 m) faults, volcanic flows (brightest area of backscatter), and areas where the seismic layering of the turbidites has been partially to completely disrupted by the intrusion of basaltic sills. The most prominent bathymetric features are the three uplifted sediment hills: Central Hill, Southwest Hill, and an unnamed uplifted hill to the north. These features are interpreted to be uplifted above large-volume basaltic intrusions emplaced near the basalt/sediment interface. Southwest Hill is adjacent to the zone of most recent faulting. This hill no longer retains the circular shape of the other hills due to slumps (lines 9, 11), which may have failed along faults related to the most recent spreading. Central Hill is interpreted to be the most recently uplifted sediment hill based on the morphology of the hill and the presence of an active hydrothermal system. The generally continuous area of volcanic basalt flow east of Central Hill appears as a distinct, bright sonar reflector stretching for approximately 6 km along axis (red contact on mosaic A). This flow may be related to the intrusion that is presumed to have uplifted Central Hill. Submersible observations indicate that lava flowed around the sediment hills and ponded against the eastern up-faulted turbidite-covered sediment terrace. Previously collected, deep-penetration seismic data indicate that the lavas overlie about 450 m of sediment (Morton and Fox, 1994). Late-stage emplacement of magma in the shallow subsurface beneath the exposed lava flow is interpreted to have domed the lava flow, forming the east-west-

  5. 3S2: Behavioral Response Studies of Cetaceans to Navy Sonar Signals in Norwegian Waters

    DTIC Science & Technology

    2015-09-30

    long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic Mammals 38: 362-401. Moretti, D., Thomas, L...2014). The social context of individual foraging behaviour in long-finned pilot whales (Globicephala melas ). Behaviour 151: 1453-1477. DOI: 10.1163...response thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas ). Mar. Poll. Bull.83: 165-180. DOI: 10.1016

  6. 3S2: Behavioral Response Studies of Cetaceans to Navy Sonar Signals in Norwegian Waters

    DTIC Science & Technology

    2015-09-30

    experimental exposures of killer (Orcinus orca), long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic...Kvadsheim P.H., Huisman J. and Tyack P.L. (2014). The social context of individual foraging behaviour in long-finned pilot whales (Globicephala melas ...Wensveen P.J., Miller P. J. O. (2014). High response thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas

  7. Seismic Interface Waves in Coastal Waters: A Review

    DTIC Science & Technology

    1980-11-15

    Being at the low- 4 frequency end of classical sonar activity and at the high-frequency end of seismic research, the propagation of infrasonic energy...water areas. Certainly this and other seismic detection methods will never replace the highly-developed sonar techniques but in coastal waters they...for many sonar purposes [5, 85 to 90) shows that very simple bottom models may already be sufficient to make allowance for the influence of the sea

  8. Sonar surveys used in gas-storage cavern analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crossley, N.G.

    1998-05-04

    Natural-gas storage cavern internal configuration, inspection information, and cavern integrity data can be obtained during high-pressure operations with specialized gas-sonar survey logging techniques. TransGas Ltd., Regina, Sask., has successfully performed these operations on several of its deepest and highest pressurized caverns. The data can determine gas-in-place inventory and assess changes in spatial volumes. These changes can result from cavern creep, shrinkage, or closure or from various downhole abnormalities such as fluid infill or collapse of the sidewall or roof. The paper discusses conventional surveys with sonar, running surveys in pressurized caverns, accuracy of the sonar survey, initial development of Cavernmore » 5, a roof fall, Cavern 4 development, and a damaged string.« less

  9. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures. © 2011 Acoustical Society of America

  10. Continental shelf GIS for the Monterey Bay National Marine Sanctuary

    USGS Publications Warehouse

    Wong, Florence L.; Eittreim, Stephen L.

    2001-01-01

    A marine sanctuary is an environment where the interests of science and society meet. Sanctuary managers need access to the best scientific data available that describe the environment and environmental processes in sanctuaries. Seafloor mapping and sampling in the Monterey Bay National Marine Sanctuary have revealed new details about the geology, morphology, and active geologic processes of this region. Data from sidescan sonar, multibeam sonar bathymetry, physical samples, and instrument moorings, are consolidated with new and existing maps in a geographic information system (GIS). The GIS provides researchers and policymakers a view of the relationship among data sets to assist science studies and to help with economic and social policy-making decisions regarding this protected environment.

  11. Obstacle avoidance system with sonar sensing and fuzzy logic

    NASA Astrophysics Data System (ADS)

    Chiang, Wen-chuan; Kelkar, Nikhal; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of an obstacle avoidance system using sonar sensors for a modular autonomous mobile robot controller. The advantages of a modular system are related to portability and the fact that any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. The obstacle avoidance system is based on a micro-controller interfaced with multiple ultrasonic transducers. This micro-controller independently handles all timing and distance calculations and sends a distance measurement back to the computer via the serial line. This design yields a portable independent system. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles. This design, in its modularity, creates a portable autonomous obstacle avoidance controller applicable for any mobile vehicle with only minor adaptations.

  12. Remote sensing in marine environment - acquiring, processing, and interpreting GLORIA sidescan sonor images of deep sea floor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, D.W.

    1989-03-01

    The US Geological Survey's remote sensing instrument for regional imaging of the deep sea floor (> 400 m water depth) is the GLORIA (Geologic Long-Range Inclined Asdic) sidescan sonar system, designed and operated by the British Institute of Oceanographic Sciences. A 30-sec sweep rate provides for a swath width of approximately 45 km, depending on water depth. The return signal is digitally recorded as 8 bit data to provide a cross-range pixel dimension of 50 m. Postcruise image processing is carried out by using USGS software. Processing includes precision water-column removal, geometric and radiometric corrections, and contrast enhancement. Mosaicking includesmore » map grid fitting, concatenation, and tone matching. Seismic reflection profiles, acquired along track during the survey, are image correlative and provide a subsurface dimension unique to marine remote sensing. Generally GLORIA image interpretation is based on brightness variations which are largely a function of (1) surface roughness at a scale of approximately 1 m and (2) slope changes of more than about 4/degrees/ over distances of at least 50 m. Broader, low-frequency changes in slope that cannot be detected from the Gloria data can be determined from seismic profiles. Digital files of bathymetry derived from echo-sounder data can be merged with GLORIA image data to create relief models of the sea floor for geomorphic interpretation of regional slope effects.« less

  13. Survey report of NOAA Ship McArthur II cruises AR-04-04, AR-05-05 and AR-06-03: habitat classification of side scan sonar imagery in support of deep-sea coral/sponge explorations at the Olympic Coast National Marine Sanctuary

    USGS Publications Warehouse

    Intelmann, Steven S.; Cochrane, Guy R.; Bowlby, C. Edward; Brancato, Mary Sue; Hyland, Jeffrey

    2007-01-01

    Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral-sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises, Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed.

  14. Habitat Distribution on the Inner Continental Shelf of Northern South Carolina Based on Sidescan Sonar and Submarine Video Data

    NASA Astrophysics Data System (ADS)

    Ojeda, G. Y.; Gayes, P. T.; van Dolah, R. F.; Schwab, W. C.

    2002-12-01

    Assessment of the extent and variability of benthic habitats is an important mission of biologists and marine scientists, and has supreme relevance in monitoring and maintaining the offshore resources of coastal nations. Mapping `hard bottoms', in particular, is of critical importance because these are the areas that support sessile benthic habitats and associated fisheries. To quantify the extent and distribution of habitats offshore northern South Carolina, we used a spatially quantitative approach that involved textural analysis of side scan sonar images and training of an artificial neural network classifier. This approach was applied to a 2 m-pixel image mosaic of sonar data collected by the USGS in 1999 and 2000. The entire mosaic covered some 686 km2 and extended between the ~6 m and ~10+ m isobaths off the Grand Strand region of South Carolina. Bottom video transects across selected sites provided 2,119 point observations which were used for image-to-ground control as well as training of the neural network classifier. A sensitivity study of 52 space-domain textural features indicated that 12 of them provided reasonable discriminating power between two end-member bottom types: hard bottom and sand. The selected features were calculated over 5 by 5 pixel windows of the image where video point observations existed. These feature vectors were then fed to a 3-layer neural network classifier, trained with a Levenberg-Marquardt backpropagation algorithm. Registration and display of the output habitat map were performed in GIS. Results of our classification indicate that outcropping Tertiary and Cretaceous strata are exposed over a significant portion of northern South Carolina's inner shelf, consistent with a sediment-starved margin type. The combined surface extent classified as hard bottom was 405 km2 -or 59 % of the imaged area-, while only 281 km2 -or 41 % of the area were classified as sand. In addition, our results provided constraints on the spatial continuity of nearshore benthic habitats. The median surface area of the regions classified as hard bottom (n= 190,521) and sand (n= 234,946) were both equal to the output cell size (100 m2), confirming the `patchy' nature of these habitats and suggesting that these medians probably represent upper bounds rather than estimates of the typical extent of individual patches. Furthermore, comparison of the interpretive habitat map with available swath bathymetry data suggests positive correlation between bathymetry `highs' and the major sandy-bottom areas interpreted with our routine. In contrast, the location of hard bottom areas does not appear to be significantly correlated with major bathymetric features. Our findings are in agreement with published qualitative estimates of hard bottom areas on neighboring North Carolina's inner shelf.

  15. Enhancing Deep-Water Low-Resolution Gridded Bathymetry Using Single Image Super-Resolution

    NASA Astrophysics Data System (ADS)

    Elmore, P. A.; Nock, K.; Bonanno, D.; Smith, L.; Ferrini, V. L.; Petry, F. E.

    2017-12-01

    We present research to employ single-image super-resolution (SISR) algorithms to enhance knowledge of the seafloor using the 1-minute GEBCO 2014 grid when 100m grids from high-resolution sonar systems are available for training. Our numerical upscaling experiments of x15 upscaling of the GEBCO grid along three areas of the Eastern Pacific Ocean along mid-ocean ridge systems where we have these 100m gridded bathymetry data sets, which we accept as ground-truth. We show that four SISR algorithms can enhance this low-resolution knowledge of bathymetry versus bicubic or Spline-In-Tension algorithms through upscaling under these conditions: 1) rough topography is present in both training and testing areas and 2) the range of depths and features in the training area contains the range of depths in the enhancement area. We quantitatively judged successful SISR enhancement versus bicubic interpolation when Student's hypothesis testing show significant improvement of the root-mean squared error (RMSE) between upscaled bathymetry and 100m gridded ground-truth bathymetry at p < 0.05. In addition, we found evidence that random forest based SISR methods may provide more robust enhancements versus non-forest based SISR algorithms.

  16. Estimated Tissue and Blood N(2) Levels and Risk of Decompression Sickness in Deep-, Intermediate-, and Shallow-Diving Toothed Whales during Exposure to Naval Sonar.

    PubMed

    Kvadsheim, P H; Miller, P J O; Tyack, P L; Sivle, L D; Lam, F P A; Fahlman, A

    2012-01-01

    Naval sonar has been accused of causing whale stranding by a mechanism which increases formation of tissue N(2) gas bubbles. Increased tissue and blood N(2) levels, and thereby increased risk of decompression sickness (DCS), is thought to result from changes in behavior or physiological responses during diving. Previous theoretical studies have used hypothetical sonar-induced changes in both behavior and physiology to model blood and tissue N(2) tension [Formula: see text], but this is the first attempt to estimate the changes during actual behavioral responses to sonar. We used an existing mathematical model to estimate blood and tissue N(2) tension [Formula: see text] from dive data recorded from sperm, killer, long-finned pilot, Blainville's beaked, and Cuvier's beaked whales before and during exposure to Low- (1-2 kHz) and Mid- (2-7 kHz) frequency active sonar. Our objectives were: (1) to determine if differences in dive behavior affects risk of bubble formation, and if (2) behavioral- or (3) physiological responses to sonar are plausible risk factors. Our results suggest that all species have natural high N(2) levels, with deep diving generally resulting in higher end-dive [Formula: see text] as compared with shallow diving. Sonar exposure caused some changes in dive behavior in both killer whales, pilot whales and beaked whales, but this did not lead to any increased risk of DCS. However, in three of eight exposure session with sperm whales, the animal changed to shallower diving, and in all these cases this seem to result in an increased risk of DCS, although risk was still within the normal risk range of this species. When a hypothetical removal of the normal dive response (bradycardia and peripheral vasoconstriction), was added to the behavioral response during model simulations, this led to an increased variance in the estimated end-dive N(2) levels, but no consistent change of risk. In conclusion, we cannot rule out the possibility that a combination of behavioral and physiological responses to sonar have the potential to alter the blood and tissue end-dive N(2) tension to levels which could cause DCS and formation of in vivo bubbles, but the actually observed behavioral responses of cetaceans to sonar in our study, do not imply any significantly increased risk of DCS.

  17. Assessment of a Static Multibeam Sonar Scanner for 3d Surveying in Confined Subaquatic Environments

    NASA Astrophysics Data System (ADS)

    Moisan, E.; Charbonnier, P.; Foucher, P.; Grussenmeyer, P.; Guillemin, S.; Samat, O.; Pagès, C.

    2016-06-01

    Mechanical Scanning Sonar (MSS) is a promising technology for surveying underwater environments. Such devices are comprised of a multibeam echosounder attached to a pan & tilt positioner, that allows sweeping the scene in a similar way as Terrestrial Laser Scanners (TLS). In this paper, we report on the experimental assessment of a recent MSS, namely, the BlueView BV5000, in a confined environment: lock number 50 on the Marne-Rhin canal (France). To this aim, we hung the system upside-down to scan the lock chamber from the surface, which allows surveying the scanning positions, up to an horizontal orientation. We propose a geometric method to estimate the remaining angle and register the scans in a coordinate system attached to the site. After reviewing the different errors that impair sonar data, we compare the resulting point cloud to a TLS model that was acquired the day before, while the lock was completely empty for maintenance. While the results exhibit a bias that can be partly explained by an imperfect setup, the maximum difference is less than 15 cm, and the standard deviation is about 3.5 cm. Visual inspection shows that coarse defects of the masonry, such as stone lacks or cavities, can be detected in the MSS point cloud, while smaller details, e.g. damaged joints, are harder to notice.

  18. Multi-Sensory Features for Personnel Detection at Border Crossings

    DTIC Science & Technology

    2011-07-08

    challenging problem. Video sensors consume high amounts of power and require a large volume for storage. Hence, it is preferable to use non- imaging sensors...temporal distribution of gait beats [5]. At border crossings, animals such as mules, horses, or donkeys are often known to carry loads. Animal hoof...field, passive ultrasonic, sonar, and both infrared and visi- ble video sensors. Each sensor suite is placed along the path with a spacing of 40 to

  19. Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows

    NASA Astrophysics Data System (ADS)

    Herkül, Kristjan; Peterson, Anneliis; Paekivi, Sander

    2017-06-01

    Both basic science and marine spatial planning are in a need of high resolution spatially continuous data on seabed habitats and biota. As conventional point-wise sampling is unable to cover large spatial extents in high detail, it must be supplemented with remote sensing and modeling in order to fulfill the scientific and management needs. The combined use of in situ sampling, sonar scanning, and mathematical modeling is becoming the main method for mapping both abiotic and biotic seabed features. Further development and testing of the methods in varying locations and environmental settings is essential for moving towards unified and generally accepted methodology. To fill the relevant research gap in the Baltic Sea, we used multibeam sonar and mathematical modeling methods - generalized additive models (GAM) and random forest (RF) - together with underwater video to map seabed substrate and epibenthos of offshore shallows. In addition to testing the general applicability of the proposed complex of techniques, the predictive power of different sonar-based variables and modeling algorithms were tested. Mean depth, followed by mean backscatter, were the most influential variables in most of the models. Generally, mean values of sonar-based variables had higher predictive power than their standard deviations. The predictive accuracy of RF was higher than that of GAM. To conclude, we found the method to be feasible and with predictive accuracy similar to previous studies of sonar-based mapping.

  20. Photographs of the Sea floor Offshore of New York and New Jersey

    USGS Publications Warehouse

    Butman, Bradford; Gutierrez, Benjamin T.; Buchholtz ten Brink, Marilyn R.; Schwab, William S.; Blackwood, Dann S.; Mecray, Ellen L.; Middleton, Tammie J.

    2003-01-01

    This DVD-ROM contains photographs of the sea floor and sediment texture data collected as part of studies carried out by the U.S. Geological Survey (USGS) in the New York Bight (Figure 1a (PDF format)). The studies were designed to map the sea floor (Butman, 1998, URL: http://pubs.usgs.gov/fs/fs133-98/) and to develop an understanding of the transport and long-term fate of sediments and associated contaminants in the region (Mecray and others, 1999, URL: http://pubs.usgs.gov/fs/fs114-99/). The data were collected on four research cruises carried out between 1996 and 2000 (Appendix I). The images and texture data were collected to provide direct observations of the sea floor geology and to aid in the interpretation of backscatter intensity data obtained from sidescan sonar and multibeam surveys of the sea floor. Preliminary descriptions of the sea floor geology in this region may be found in Schwab and others (2000, URL: http://pubs.usgs.gov/of/of00-295/; 2003), Butman and others (1998, URL: http://pubs.usgs.gov/of/of98-616/.), and Butman and others (2002, URL: http://pubs.usgs.gov/of/of00-503/). Schwab and others (2000 URL: http://pubs.usgs.gov/of/of00-295/; 2003) have identified 11 geologic units in New York Bight (Figure 2 (PDF format)). These units identify areas of active sediment transport, extensive anthropogenic influence on the sea floor, and various geologic units. Butman and others (2003) and Harris and others (in press) present the results of a moored array experiment carried out in the Hudson Shelf Valley to investigate the transport of sediments during winter. Summaries of these and other studies may be found at USGS studies in the New York Bight (URL: http://woodshole.er.usgs.gov/project-pages/newyork/). This DVD-ROM contains digital images of bottom still photographs, images digitized from videos, sediment grain-size analysis results, and short QuickTime movies from video transects. The data are presented in tabular form and in an ESRI (Environmental Systems Research Institute, URL: http://www.esri.com) ArcView project where the image and sample locations may be viewed superimposed on maps showing side-scan sonar and/or multibeam backscatter intensity and bottom topography.

  1. Forming maps of targets having multiple reflectors with a biomimetic audible sonar.

    PubMed

    Kuc, Roman

    2018-05-01

    A biomimetic audible sonar mimics human echolocation by emitting clicks and sensing echoes binaurally to investigate the limitations in acoustic mapping of 2.5 dimensional targets. A monaural sonar that provides only echo time-of-flight values produces biased maps that lie outside the target surfaces. Reflector bearing estimates derived from the first echoes detected by a binaural sonar are employed to form unbiased maps. Multiple echoes from a target introduce phantom-reflector artifacts into its map because later echoes are produced by reflectors at bearings different from those determined from the first echoes. In addition, overlapping echoes interfere to produce bearing errors. Addressing the causes of these bearing errors motivates a processing approach that employs template matching to extract valid echoes. Interfering echoes can mimic a valid echo and also form PR artifacts. These artifacts are eliminated by recognizing the bearing fluctuations that characterize echo interference. Removing PR artifacts produces a map that resembles the physical target shape to within the resolution capabilities of the sonar. The remaining differences between the target shape and the final map are void artifacts caused by invalid or missing echoes.

  2. Seafloor geomorphology and geology of the Kingman Reef-Palmyra Atoll region, Central Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Eakins, Barry; Barth, Ginger; Scheirer, Dan; Mosher, Dave; Armstrong, Andy

    2017-04-01

    Kingman Reef and Palmyra Atoll are the exposed summits of two seamounts within the Line Islands Volcanic Chain in the Central Pacific Ocean. Both are U.S. Territories, and the Exclusive Economic Zone around the islands was partially surveyed in 1991 with GLORIA sidescan sonar and seismic reflection profiling. New multibeam swath sonar surveys were conducted in 2010, 2015, and 2016 around the islands, in support of U.S. Extended Continental Shelf investigations. Numerous transits through the region by research vessels have collected additional multibeam swath sonar data. We present new, detailed maps of bathymetry, sidescan sonar imagery, geology, and sediment isopachs of the seafloor surrounding the islands, and how these have informed our understanding of the islands' margins. The islands are the last subaerial remnants of a complex, horse-shoe-shaped volcanic platform spanning roughly 200 km in diameter. The elevated platform from which the seamounts arise comprises at least 10 individual volcanic centers that have heights exceeding 3000m above the nearby abyssal plains. Gravity modeling suggests that the elevated platform is compensated by thickened crust. Strong carbonate caps and voluminous sediment accumulations flanking the platform indicate that the volcanoes were once shallow-water or emergent systems. These systems produced vast quantities of carbonate sediment that were shed to a deep interior basin to the east of Palmyra Atoll, and to nearby abyssal plains. The identification of mass failures, sediment reworking and bedforms, and channel networks provide evidence for extensive sedimentary processes around these volcanic centers. Analysis of the seamounts atop the elevated platform and in the seamount province to the northwest shows that flat-topped seamounts ("guyots") are principally found at depths shallower than 1300 meters, while peaked seamounts are almost exclusively found at greater depths. This constrains the amount of regional subsidence that has occurred since guyot formation.

  3. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  4. Complex submarine landsliding processes caused by subduction of large seamounts along the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, Cesar R.; Weinrebe, Wilhelm; von Huene, Roland

    2014-05-01

    Subduction of kms-tall and tens-of-km wide seamounts cause important landsliding events at subduction zones around the word. Along the Middle America Trench, previous work based on regional swath bathymetry maps (with 100 m grids) and multichannel seismic images have shown that seamount subduction produces large-scale slumping and sliding. Some of the mass wasting event may have been catastrophic and numerical modeling has indicated that they may have produced important local tsunamis. We have re-evaluated the structure of several active submarine landlide complexes caused by large seamount subduction using side scan sonar data. The comparison of the side scan sonar data to local high-resolution bathymetry grids indicates that the backscatter data has a resolution that is somewhat similar to that produced by a 10 m bathymetry grid. Although this is an arbitrary comparison, the side scan sonar data provides comparatively much higher resolution information than the previously used regional multibeam bathymetry. We have mapped the geometry and relief of the head and side walls of the complexes, the distribution of scars and the different sediment deposits to produce a new interpretation of the modes of landsliding during subduction of large seamounts. The new higher resolution information shows that landsliding processes are considerably more complex than formerly assumed. Landslides are of notably smaller dimensions that the lower resolution data had previously appear to indicate. However, significantly large events may have occur far more often than earlier interpretations had inferred representing a more common threat that previously assumed.

  5. 50 CFR 218.241 - Adaptive management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.241 Adaptive management. NMFS may modify (including...) Results from the Navy's monitoring from the previous year's operation of SURTASS LFA sonar. (b) Compiled...

  6. 50 CFR 218.241 - Adaptive management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.241 Adaptive management. NMFS may modify (including...) Results from the Navy's monitoring from the previous year's operation of SURTASS LFA sonar. (b) Compiled...

  7. 50 CFR 218.241 - Adaptive management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.241 Adaptive management. NMFS may modify (including...) Results from the Navy's monitoring from the previous year's operation of SURTASS LFA sonar. (b) Compiled...

  8. Phase unwrapping using region-based markov random field model.

    PubMed

    Dong, Ying; Ji, Jim

    2010-01-01

    Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method.

  9. A Neuro-Fuzzy System for Extracting Environment Features Based on Ultrasonic Sensors

    PubMed Central

    Marichal, Graciliano Nicolás; Hernández, Angela; Acosta, Leopoldo; González, Evelio José

    2009-01-01

    In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case. PMID:22303160

  10. A Case Study in Locating the Architectural Roots of Technical Debt

    DTIC Science & Technology

    2015-01-16

    SoftServe is using, such as SonarQube ? RQ3: Is it possible to quantify the return on investment of removing architecture debts? In other words, is it possible...the Titan tool chain did differ significantly from the files reported as sources of technical debt by SonarQube . The precision and recall of Titan...tools such as SonarQube . But not all of these code problems are certain to cause maintenance or quality problems. In fact, no existing work has been

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rautman, Christopher Arthur; Lord, Anna Snider

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 3 focuses on the Bryan Mound SPR site, located in southeastern Texas. Volumes 1, 2, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes,more » the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.« less

  12. Action Enhances Acoustic Cues for 3-D Target Localization by Echolocating Bats

    PubMed Central

    Wohlgemuth, Melville J.

    2016-01-01

    Under natural conditions, animals encounter a barrage of sensory information from which they must select and interpret biologically relevant signals. Active sensing can facilitate this process by engaging motor systems in the sampling of sensory information. The echolocating bat serves as an excellent model to investigate the coupling between action and sensing because it adaptively controls both the acoustic signals used to probe the environment and movements to receive echoes at the auditory periphery. We report here that the echolocating bat controls the features of its sonar vocalizations in tandem with the positioning of the outer ears to maximize acoustic cues for target detection and localization. The bat’s adaptive control of sonar vocalizations and ear positioning occurs on a millisecond timescale to capture spatial information from arriving echoes, as well as on a longer timescale to track target movement. Our results demonstrate that purposeful control over sonar sound production and reception can serve to improve acoustic cues for localization tasks. This finding also highlights the general importance of movement to sensory processing across animal species. Finally, our discoveries point to important parallels between spatial perception by echolocation and vision. PMID:27608186

  13. Perception for mobile robot navigation: A survey of the state of the art

    NASA Technical Reports Server (NTRS)

    Kortenkamp, David

    1994-01-01

    In order for mobile robots to navigate safely in unmapped and dynamic environments they must perceive their environment and decide on actions based on those perceptions. There are many different sensing modalities that can be used for mobile robot perception; the two most popular are ultrasonic sonar sensors and vision sensors. This paper examines the state-of-the-art in sensory-based mobile robot navigation. The first issue in mobile robot navigation is safety. This paper summarizes several competing sonar-based obstacle avoidance techniques and compares them. Another issue in mobile robot navigation is determining the robot's position and orientation (sometimes called the robot's pose) in the environment. This paper examines several different classes of vision-based approaches to pose determination. One class of approaches uses detailed, a prior models of the robot's environment. Another class of approaches triangulates using fixed, artificial landmarks. A third class of approaches builds maps using natural landmarks. Example implementations from each of these three classes are described and compared. Finally, the paper presents a completely implemented mobile robot system that integrates sonar-based obstacle avoidance with vision-based pose determination to perform a simple task.

  14. Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam.

    PubMed

    Zhuang, Qiao; Müller, Rolf

    2006-11-24

    Horseshoe bats emit their ultrasonic biosonar pulses through nostrils surrounded by intricately shaped protuberances (noseleaves). While these noseleaves have been hypothesized to affect the sonar beam, their physical function has never been analyzed. Using numerical methods, we show that conspicuous furrows in the noseleaf act as resonance cavities shaping the sonar beam. This demonstrates that (a) animals can use resonances in external, half-open cavities to direct sound emissions, (b) structural detail in the faces of bats can have acoustic effects even if it is not adjacent to the emission sites, and (c) specializations in the biosonar system of horseshoe bats allow for differential processing of subbands of the pulse in the acoustic domain.

  15. Multibeam mapping of the Pinnacles region, Gulf of Mexico

    USGS Publications Warehouse

    Gardner, James V.; Dartnell, Peter; Sulak, Kenneth J.

    2002-01-01

    Recent USGS mapping shows an extensive deep (~100 m) reef tract occurs on the Mississippi-Alabama outer continental shelf (Figure 1). The tract, known as "The Pinnacles", is apparently part of a sequence of drowned reef complexes along the "40-fathom" shelf edge of the northern Gulf of Mexico (Ludwick and Walton, 1957). It is critical to determine the accurate geomorphology of these deep-reefs because of their importance as benthic habitats for fisheries. The Pinnacles have previously been mapped using a single-beam echo sounder (Ludwick and Walton,1957), sidescan sonar (Laswell et al., 1990), and the TAMU2 towed single-beam sidescan-sonar system (Anonymous, 1999). These existing studies do not provide the quality of geomorphic data necessary for reasonable habitat studies.

  16. Bee Dances, Bird Songs, Monkey Calls, and Cetacean Sonar: Is Speech Unique?

    ERIC Educational Resources Information Center

    Liska, Jo

    1993-01-01

    Examines to what extent, and in what ways, speech is unusual and how it compares to other semiotic systems. Discusses language and speech, neurolinguistic processing, comparative vocal/auditory abilities, primate evolution, and semiogenesis. (SR)

  17. 30 CFR 550.197 - Data and information to be made available to the public or for limited inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (2) Data or information is collected with high-resolution systems (e.g., bathymetry, side-scan sonar, subbottom profiler, and magnetometer) to comply with safety or environmental protection requirements...

  18. 30 CFR 550.197 - Data and information to be made available to the public or for limited inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (2) Data or information is collected with high-resolution systems (e.g., bathymetry, side-scan sonar, subbottom profiler, and magnetometer) to comply with safety or environmental protection requirements...

  19. 30 CFR 550.197 - Data and information to be made available to the public or for limited inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (2) Data or information is collected with high-resolution systems (e.g., bathymetry, side-scan sonar, subbottom profiler, and magnetometer) to comply with safety or environmental protection requirements...

  20. Toward a generic UGV autopilot

    NASA Astrophysics Data System (ADS)

    Moore, Kevin L.; Whitehorn, Mark; Weinstein, Alejandro J.; Xia, Junjun

    2009-05-01

    Much of the success of small unmanned air vehicles (UAVs) has arguably been due to the widespread availability of low-cost, portable autopilots. While the development of unmanned ground vehicles (UGVs) has led to significant achievements, as typified by recent grand challenge events, to date the UGV equivalent of the UAV autopilot is not available. In this paper we describe our recent research aimed at the development of a generic UGV autopilot. Assuming we are given a drive-by-wire vehicle that accepts as inputs steering, brake, and throttle commands, we present a system that adds sonar ranging sensors, GPS/IMU/odometry, stereo camera, and scanning laser sensors, together with a variety of interfacing and communication hardware. The system also includes a finite state machine-based software architecture as well as a graphical user interface for the operator control unit (OCU). Algorithms are presented that enable an end-to-end scenario whereby an operator can view stereo images as seen by the vehicle and can input GPS waypoints either from a map or in the vehicle's scene-view image, at which point the system uses the environmental sensors as inputs to a Kalman filter for pose estimation and then computes control actions to move through the waypoint list, while avoiding obstacles. The long-term goal of the research is a system that is generically applicable to any drive-by-wire unmanned ground vehicle.

  1. Estimated Tissue and Blood N2 Levels and Risk of Decompression Sickness in Deep-, Intermediate-, and Shallow-Diving Toothed Whales during Exposure to Naval Sonar

    PubMed Central

    Kvadsheim, P. H.; Miller, P. J. O.; Tyack, P. L.; Sivle, L. D.; Lam, F. P. A.; Fahlman, A.

    2012-01-01

    Naval sonar has been accused of causing whale stranding by a mechanism which increases formation of tissue N2 gas bubbles. Increased tissue and blood N2 levels, and thereby increased risk of decompression sickness (DCS), is thought to result from changes in behavior or physiological responses during diving. Previous theoretical studies have used hypothetical sonar-induced changes in both behavior and physiology to model blood and tissue N2 tension PN2, but this is the first attempt to estimate the changes during actual behavioral responses to sonar. We used an existing mathematical model to estimate blood and tissue N2 tension PN2 from dive data recorded from sperm, killer, long-finned pilot, Blainville’s beaked, and Cuvier’s beaked whales before and during exposure to Low- (1–2 kHz) and Mid- (2–7 kHz) frequency active sonar. Our objectives were: (1) to determine if differences in dive behavior affects risk of bubble formation, and if (2) behavioral- or (3) physiological responses to sonar are plausible risk factors. Our results suggest that all species have natural high N2 levels, with deep diving generally resulting in higher end-dive PN2 as compared with shallow diving. Sonar exposure caused some changes in dive behavior in both killer whales, pilot whales and beaked whales, but this did not lead to any increased risk of DCS. However, in three of eight exposure session with sperm whales, the animal changed to shallower diving, and in all these cases this seem to result in an increased risk of DCS, although risk was still within the normal risk range of this species. When a hypothetical removal of the normal dive response (bradycardia and peripheral vasoconstriction), was added to the behavioral response during model simulations, this led to an increased variance in the estimated end-dive N2 levels, but no consistent change of risk. In conclusion, we cannot rule out the possibility that a combination of behavioral and physiological responses to sonar have the potential to alter the blood and tissue end-dive N2 tension to levels which could cause DCS and formation of in vivo bubbles, but the actually observed behavioral responses of cetaceans to sonar in our study, do not imply any significantly increased risk of DCS. PMID:22590458

  2. Development of a Sonar Oil Tanker Cargo Measurement System.

    DTIC Science & Technology

    1980-08-01

    used at any one time is dependent upon the capacity of the stripping system. The operation is conducted to strip at least as fast , if not faster, than...operational mode, measure the average value and variance of the thickness of an oil layer on an intermit - tent sampling basis. Laboratory testing

  3. Bounding the error on bottom estimation for multi-angle swath bathymetry sonar

    NASA Astrophysics Data System (ADS)

    Mullins, Geoff K.; Bird, John S.

    2005-04-01

    With the recent introduction of multi-angle swath bathymetry (MASB) sonar to the commercial marketplace (e.g., Benthos Inc., C3D sonar, 2004), additions must be made to the current sonar lexicon. The correct interpretation of measurements made with MASB sonar, which uses filled transducer arrays to compute angle-of-arrival information (AOA) from backscattered signal, is essential not only for mapping, but for applications such as statistical bottom classification. In this paper it is shown that aside from uncorrelated channel to channel noise, there exists a tradeoff between effects that govern the error bounds on bottom estimation for surfaces having shallow grazing angle and surfaces distributed along a radial arc centered at the transducer. In the first case, as the bottom aligns with the radial direction to the receiver, footprint shift and shallow grazing angle effects dominate the uncertainty in physical bottom position (surface aligns along a single AOA). Alternatively, if signal from a radial arc arrives, a single AOA is usually estimated (not necessarily at the average location of the surface). Through theoretical treatment, simulation, and field measurements, the aforementioned factors affecting MASB bottom mapping are examined. [Work supported by NSERC.

  4. Hydroacoustic detection of dumped ammunition in the Ocean with multibeam snippet backscatter analyses. A case study from the 'Kolberger Heide' ammunition dump site (Baltic Sea, Germany)

    NASA Astrophysics Data System (ADS)

    Kunde, Tina; Schneider von Deimling, Jens

    2016-04-01

    Dumped ammunition in the sea is a matter of great concern in terms of safe navigation and environmental threads. Because corrosion of the dumped ammunition's hull is ongoing, future contamination of the ambient water by their toxic interior is likely to occur. The location of such dump sites is approximately known from historical research and ship log book analyses. Subsequent remote sensing of ammunition dumping sites (e.g. mines) on the seafloor is preferentially performed with hydro-acoustic methods such as high resolution towed side scan or by the sophisticated synthetic aperture sonar approach with autonomous underwater vehicles. However, these are time consuming and expensive procedures, while determining the precise position of individual mines remains a challenging task. To mitigate these shortcomings we suggest using ship-born high-frequency multibeam sonar in shallow water to address the task of mine detection and precise localization on the seabed. Multibeam sonar systems have improved their potential in regard to backscatter analyses significantly over the past years and nowadays present fast and accurate tools for shallow water surveying to (1) detect mines in multibeam snippet backscatter data (2) determine their precise location with high accuracy intertial navigation systems. A case study was performed at the prominent ammunition dumping site 'Kolberger Heide' (Baltic Sea, Germany) in the year 2014 using a modern hydro-acoustic multibeam echosounder system with 200-400 kHz (KONGSBERG EM2040c). With an average water depth of not even 20 m and the proximity to the shore line and dense waterways, this investigated area requires permanent navigational care. Previously, the study area was surveyed by the Navy with the very sophisticated HUGIN AUV equipped with a synthetic aperture sonar with best resolution by current technology. Following an evaluation of the collected data, various ammunition bodies on the sea floor could be clearly detected. Analyses of our shipborn multibeam snippet backscatter data now show the feasibility to detect the majority of such ammunition bodies by their distinct snippet backscatter anomaly and shape. By the use of SAPOS correction data, the navigation data of the appropriated multibeam echosounder was postprocessed, which leads to an absolute accuracy of the ammunition bodies of 0.1 m laterally. Thus, the multibeam dataset represents a study providing both, detection and precise positioning of individual mines on the seabed. Apart from the much greater efficiency of multibeam mapping sonar over towed sidescan, precise localization is important for future management of mines, may it be in regard to their dellaboration, or to evaluate if future sediment mass movement (sediment waves) may cover and obscure the ammunition bodies in the future.

  5. 50 CFR 218.232 - Permissible methods of taking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.232 Permissible methods of taking. (a) Under Letters of.... This annual per-stock cap of 12 percent applies regardless of the number of SURTASS LFA sonar vessels...

  6. 50 CFR 218.232 - Permissible methods of taking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Low Frequency Active (SURTASS LFA) Sonar § 218.232 Permissible methods of taking. (a) Under Letters of.... This annual per-stock cap of 12 percent applies regardless of the number of SURTASS LFA sonar vessels...

  7. A new idea: The possibilities of offshore geothermal system in Indonesia marine volcanoes

    NASA Astrophysics Data System (ADS)

    Rahat Prabowo, Teguh; Fauziyyah, Fithriyani; Suryantini; Bronto, Sutikno

    2017-12-01

    High temperature geothermal systems in Indonesia are commonly associated with volcanic systems. It is believed that volcanoes are acting as the heat source for a geothermal system. Right now, most of the operating geothermal fields in the world are assosiating with volcanic settings which known as the conventional geothermal system. Volcanoes are created in active tectonic zone such as collision zone and MOR (mid oceanic ridge). The later is the one which formed the marine volcanoes on the sea floor. The advances of today’s technology in geothermal energy has created many ideas regarding a new kind of geothermal system, including the ideas of developing the utilization of marine volcanoes. These marine volcanoes are predicted to be hotter than the land system due to the shorter distance to the magma chamber. Seamounts like NEC, Banua Wuhu, and Kawio Barat in Indonesia Sea are good spots to be studied. Methods such as remote sensing using NOAA images, sonar, and MAPR are commonly used, eventhough these would be more accurate with more detailed techniques. This has become the challenge for all geothermal scientists to overcome for a better study result.

  8. Sperm whales reduce foraging effort during exposure to 1-2 kHz sonar and killer whale sounds.

    PubMed

    Isojunno, Saana; Cure, Charlotte; Kvadsheim, Petter Helgevold; Lam, Frans-Peter Alexander; Tyack, Peter Lloyd; Wensveen, Paul Jacobus; Miller, Patrick James O'Malley

    2016-01-01

    The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kHz, source level 214 dB re 1 µPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131-165 dB re 1 µPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6-7 kHz, source level 199 re 1 µPa m, received sound pressure level [SPL] = 73-158 dB re 1 µPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7-5.1 kHz sonar signals received at lower levels (SPL = 89-133 dB re 1 µPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound.

  9. Rationale and protocol of the Study Of diabetic Nephropathy with AtRasentan (SONAR) trial: A clinical trial design novel to diabetic nephropathy.

    PubMed

    Heerspink, Hiddo J L; Andress, Dennis L; Bakris, George; Brennan, John J; Correa-Rotter, Ricardo; Dey, Jyotirmoy; Hou, Fan Fan; Kitzman, Dalane W; Kohan, Donald; Makino, Hirofumi; McMurray, John; Perkovic, Vlado; Tobe, Sheldon; Wigderson, Melissa; Parving, Hans-Henrik; de Zeeuw, Dick

    2018-06-01

    Individuals with diabetes and chronic kidney disease (CKD) are at high risk for renal events. Recent trials of novel treatments have been negative, possibly because of variability in response to treatment of the target risk factor. Atrasentan is a selective endothelin A receptor antagonist that reduces urinary albumin-to-creatinine ratio (UACR), with a large variability between patients. We are assessing its effect on renal outcomes in the Study Of diabetic Nephropathy with AtRasentan (SONAR; NCT01858532) with an enrichment design (>30% lowering of albuminuria) to select patients most likely to benefit. SONAR is a randomized, double-blind, placebo-controlled trial with approximately 3500 participants who have stage 2-4 CKD and macroalbuminuria and are receiving a maximum tolerated dose of a renin-angiotensin system inhibitor. After 6 weeks of exposure to atrasentan 0.75 mg once daily (enrichment period), participants with ≥30% UACR decrease and no tolerability issues (responders) were randomly assigned to placebo or atrasentan 0.75 mg/day. The responder group will be used for primary efficacy and safety analyses. Approximately 1000 participants with <30% UACR reduction (non-responders) were also randomized to placebo or atrasentan. The primary endpoint is a composite of a sustained doubling of serum creatinine or end-stage renal disease. The original power calculation indicated that a total of 425 primary renal events in the responder group provides 90% power to detect a 27% reduction in relative risk (alpha level of .05). SONAR aims to determine whether atrasentan added to guideline-recommended therapies safely reduces the risk of CKD progression and delays the onset of end-stage renal disease in patients with type 2 diabetes and nephropathy. SONAR also aims to establish whether the enrichment of patients based on their initial "surrogate" response to atrasentan will deliver a trial design in accord with personalized treatment of diabetic kidney disease. © 2018 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  10. Distribution of an Acoustic Scattering Layer, Petermann Fjord, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Heffron, E.; Mayer, L. A.; Jakobsson, M.; Hogan, K.; Jerram, K.

    2017-12-01

    The Petermann 2015 Expedition was a comprehensive paleoceanographic and paleoclimatological study of the marine-terminating Petermann Glacier and its outlet system in Northwest Greenland carried out July-August 2015. The purpose was the reconstruction of glacial history and current glacial processes in Petermann Fjord to better understand the fate of the Petermann Glacier and its floating ice tongue that acts as a critical buttressing force to the outlet glacier draining about 4% of the Greenland Ice Sheet. Seafloor mapping was a critical component of the study and an EM122 multibeam sonar was utilized for this purpose; additionally, water column data were acquired with this sonar and an EK80 split-beam echosounder. During the expedition, the mapping team noted an acoustic scattering layer in the EK80 and EM122 water column data which was observed to change depth in a spatially consistent manner that appeared to be related to location. Initial onboard processing revealed what appears to be a strong spatial coherence in the layer distribution that corresponds to our understanding of the complex circulation pattern in the study area, including inflow of warmer Atlantic waters and outflow of subglacial waters. This initial processing was limited to observations at 46 discrete locations that corresponded to CTD stations, a very small subset of the 4800 line kilometers of data collected by each sonar. Both sonars were run 24 hours per day over the 30-day expedition, providing continuous time-varying acoustic coverage of the study area. Post-cruise additional data has been processed to extract the acoustic returns from the scattering layer using a combination of commercial sonar processing software and specialized MATLAB and Python routines. 3-D surfaces have been generated from the extracted points in order to visualize the continuous spatial and temporal distribution of the scattering layer across the entire study area. Multiple crossings of the same location at different times of day address the question of the temporal stability of the scattering layer while the detailed map of the spatial distribution demonstrates the relationship of the scattering layer to the water masses and implies that continuous acoustic coverage may be a powerful proxy for oceanography.

  11. Behavioral Response of Reef Fish and Green Sea Turtles to Midfrequency Sonar.

    PubMed

    Watwood, Stephanie L; Iafrate, Joseph D; Reyier, Eric A; Redfoot, William E

    2016-01-01

    There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test.

  12. Prospects for using sonar for underwater archeology on the Yenisei: surveying a 19th century shipwreck

    NASA Astrophysics Data System (ADS)

    Goncharov, A. E.; Mednikov, D. M.; Karelin, N. M.; Nasyrov, I. R.

    2016-11-01

    Current progress in underwater archeology is based on a rich arsenal of high-tech appliances, among which sonar technology plays a key role; it enables scientists not only to detect submerged archeological objects, but to examine them in high definition without having to conduct diving operations or use expensive underwater unmanned vehicles. While the majority of sensational scientific discoveries using sonar have been made in saltwater environments, freshwater ones, rivers in particular, have seen limited activity. The river Yenisei in central Siberia contains an unrecorded number of shipwrecks that await being discovered and studied. In this article we focus on the peculiarities of using sonar for detecting archeological sites on the Yenisei. This article is based on the results of the 2016 expedition, which has determined the location of Thames, a 19th century British steam schooner which was wrecked on the Yenisei.

  13. 75 FR 79342 - Taking and Importing Marine Mammals; Navy Training Activities Conducted Within the Northwest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ...-frequency or high frequency active sonar (MFAS/HFAS) or to underwater detonations at levels that NMFS... exposing them to sound from mid-frequency or high frequency active sonar (MFAS/HFAS) or underwater...

  14. Phase 1 Final Report: Titan Submarine

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V.

    2015-01-01

    The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase 1 for 2014. The proposal stated the desire to investigate what science a submarine for Titan's liquid hydrocarbon seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (100 kg), it was found that a submersible platform can accomplish extensive science both above and below the surface of the Kraken Mare. Submerged science includes mapping using side-looking sonar, imaging and spectroscopy of the lake, as well as sampling of the lake's bottom and shallow shoreline. While surfaced, the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 km inland. This imaging requirement pushed the landing date to Titan's next summer period (2047) to allow for lighted conditions, as well as direct-to-Earth communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid, sediment, and chemical interactions. An estimated 25 Mb of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system.The baseline 90-day mission would be to sail submerged and surfaced around and through Kraken Mare investigating the shoreline and inlets to evaluate the sedimentary interaction both on the surface and then below. Depths of Kraken have yet to be sensed (Ligeia to the north is thought to be 200 m (656 ft) deep), but a maximum depth of 1,000 m (3,281 ft) for Kraken Mare was assumed for the design). The sub would spend 20 d at the interface between Kraken Mare and Ligeia Mare for clues to the drainage of liquid methane into the currently predicted predominantly ethane Kraken Mare. During an extended ninety-day mission, it would transit the throat of Kraken (now Seldon Fretum) and perform similar explorations in other areas of Kraken Mare. Once this half year of exploration is completed the submarine could be tasked to revisit points of interest and perhaps do a complete sonar mapping of the seas. All in all, the submarine could explore over 3,000 km (1,864 mi) in its primary mission at an average speed of 0.3 meters per second.

  15. Digitally enhanced GLORIA images for petroleum exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prindle, R.O.; Lanz, K

    1990-05-01

    This poster presentation graphically depicts the geological and structural information that can be derived from digitally enhanced Geological Long Range Inclined Asdic (GLORIA) sonar images. This presentation illustrates the advantages of scale enlargement as an interpreter's tool in an offshore area within the Eel River Basin, Northern California. Sonographs were produced from digital tapes originally collected for the exclusive economic zone (EEZ)-SCAN 1984 survey, which was published in the Atlas of the Western Conterminous US at a scale of 1:500,000. This scale is suitable for displaying regional offshore tectonic features but does not have the resolution required for detailed geologicalmore » mapping necessary for petroleum exploration. Applications of digital enhancing techniques which utilize contrast stretching and assign false colors to wide-swath sonar imagery (approximately 40 km) with 50-m resolution enables the acquisition and interpretation of significantly more geological and structural data. This, combined with a scale enlargement to 1:100,000 and high contrast contact prints vs. the offset prints of the atlas, increases the resolution and sharpness of bathymetric features so that many more subtle features may be mapped in detail. A tectonic interpretation of these digitally enhanced GLORIA sonographs from the Eel River basin is presented, displaying anticlines, lineaments, ridge axis, pathways of sediment flow, and subtle doming. Many of these features are not present on published bathymetric maps and have not been derived from seismic data because the plan view spatial resolution is much less than that available from the GLORIA imagery.« less

  16. 77 FR 6771 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to U.S. Navy Operations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... Towed Array Sensor System (SURTASS) Low Frequency Active (LFA) sonar in areas of the world's oceans... Natural Resources Defense Council, NMFS has decided to extend the public comment period by 15 days, to...

  17. Acoustic measurement of the Deepwater Horizon Macondo well flow rate

    PubMed Central

    Camilli, Richard; Di Iorio, Daniela; Bowen, Andrew; Reddy, Christopher M.; Techet, Alexandra H.; Yoerger, Dana R.; Whitcomb, Louis L.; Seewald, Jeffrey S.; Sylva, Sean P.; Fenwick, Judith

    2012-01-01

    On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and acoustic Doppler sonar operating onboard a remotely operated vehicle for noncontact measurement of flow cross-section and velocity from the well’s two leak sites. Over 2,500 sonar cross-sections and over 85,000 Doppler velocity measurements were recorded during the acquisition process. These data were then applied to turbulent jet and plume flow models to account for entrained water and calculate a combined hydrocarbon flow rate from the two leak sites at seafloor conditions. Based on the chemical composition of end-member samples collected from within the well, this bulk volumetric rate was then normalized to account for contributions from gases and condensates at initial leak source conditions. Results from this investigation indicate that on May 31, 2010, the well’s oil flow rate was approximately 0.10 ± 0.017 m3 s-1 at seafloor conditions, or approximately 85 ± 15 kg s-1 (7.4 ± 1.3 Gg d-1), equivalent to approximately 57,000 ± 9,800 barrels of oil per day at surface conditions. End-member chemical composition indicates that this oil release rate was accompanied by approximately an additional 24 ± 4.2 kg s-1 (2.1 ± 0.37 Gg d-1) of natural gas (methane through pentanes), yielding a total hydrocarbon release rate of 110 ± 19 kg s-1 (9.5 ± 1.6 Gg d-1). PMID:21903931

  18. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... such as: The attacks of September 11, 2001; natural disasters such as Hurricanes Katrina and Rita of... UHF SONAR technology during times of extreme weather, such as hurricanes, could be required for...

  19. 50 CFR 218.70 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Swimmer Detection Sonar (SD): (A) SD1—an average of 38 hours per year. (B) [Reserved] (viii) Airguns (AG): (A) AG—an average of 5 airgun uses per year. (B) [Reserved] (ix) Synthetic Aperture Sonar (SAS): (A...

  20. Modeling effectiveness of gradual increases in source level to mitigate effects of sonar on marine mammals.

    PubMed

    Von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2014-02-01

    Ramp-up or soft-start procedures (i.e., gradual increase in the source level) are used to mitigate the effect of sonar sound on marine mammals, although no one to date has tested whether ramp-up procedures are effective at reducing the effect of sound on marine mammals. We investigated the effectiveness of ramp-up procedures in reducing the area within which changes in hearing thresholds can occur. We modeled the level of sound killer whales (Orcinus orca) were exposed to from a generic sonar operation preceded by different ramp-up schemes. In our model, ramp-up procedures reduced the risk of killer whales receiving sounds of sufficient intensity to affect their hearing. The effectiveness of the ramp-up procedure depended strongly on the assumed response threshold and differed with ramp-up duration, although extending the duration of the ramp up beyond 5 min did not add much to its predicted mitigating effect. The main factors that limited effectiveness of ramp up in a typical antisubmarine warfare scenario were high source level, rapid moving sonar source, and long silences between consecutive sonar transmissions. Our exposure modeling approach can be used to evaluate and optimize mitigation procedures. © 2013 Society for Conservation Biology.

Top