Sample records for sonet

  1. SONET Synchronization: What’s Happening

    DTIC Science & Technology

    1992-12-01

    SONET Synchronization : What’s Happening Robert W. Cubbage Alcatel Network Systems, Inc. Richardson, Texas Abstract Almost everyone that has...heard of SONETkwws that the acronym stands for Synchronous Opticd NETwork. There has been a host of manazine articles on SONET rinns. SONET features, ewn...SONET componmponbility w th digital radio. ~ jza t h& not been highlypnblicizedk the critical relationship between SONET. nehuork synchronization

  2. Data and Time Transfer Using SONET Radio

    NASA Technical Reports Server (NTRS)

    Graceffo, Gary M.

    1996-01-01

    The need for precise knowledge of time and frequency has become ubiquitous throughout our society. The areas of astronomy, navigation, and high speed wide-area networks are among a few of the many consumers of this type of information. The Global Positioning System (GPS) has the potential to be the most comprehensive source of precise timing information developed to date; however, the introduction of selective availability has made it difficult for many users to recover this information from the GPS system with the precision required for today's systems. The system described in this paper is a 'Synchronous Optical NetWORK (SONET) Radio Data and Time Transfer System'. The objective of this system is to provide precise time and frequency information to a variety of end-users using a two-way data and time-transfer system. Although time and frequency transfers have been done for many years, this system is unique in that time and frequency information are embedded into existing communications traffic. This eliminates the need to make the transfer of time and frequency informatio a dedicated function of the communications system. For this system SONET has been selected as the transport format from which precise time is derived. SONET has been selected because of its high data rates and its increasing acceptance throughout the industry. This paper details a proof-of-concept initiative to perform embedded time and frequency transfers using SONET Radio.

  3. Control algorithms of SONET integrated self-healing networks

    NASA Astrophysics Data System (ADS)

    Hasegawa, Satoshi; Okaoue, Yasuyo; Egawa, Takashi; Sakauchi, Hideki

    1994-01-01

    As the deployment of high-speed fiber transmission systems has been accelerated, they are widely recognized as a firm infrastructure of information society. Under this circumstance, the importance of network survivability has been increasing rapidly in these days. In SONET, the self-healing networks have been highlighted as one of the most advanced mechanisms to realize SONET survivable networks. Several schemes have been proposed and studied actively due to a rapid progress on the development of highly intelligent NE's. Among them in this paper, a DCS based distributed self-healing network is discussed from a viewpoint of its control algorithms. Specifically, our self-healing algorithm called TRANS is explained in detail, which possesses such desirable features as providing fast and flexible restoration with line and path level restoration applied to an individual STS-1 channel, capability to handle multiple and even node failures, and so on. Both software simulation and hardware experiment verify that TRANS works properly in a real distributed environment, the result of which is shown in the paper. In addition, the combined use of TRANS and the ring restoration control is proposed taking into account the use in a practical SONET.

  4. Layer 1 VPN services in distributed next-generation SONET/SDH networks with inverse multiplexing

    NASA Astrophysics Data System (ADS)

    Ghani, N.; Muthalaly, M. V.; Benhaddou, D.; Alanqar, W.

    2006-05-01

    Advances in next-generation SONET/SDH along with GMPLS control architectures have enabled many new service provisioning capabilities. In particular, a key services paradigm is the emergent Layer 1 virtual private network (L1 VPN) framework, which allows multiple clients to utilize a common physical infrastructure and provision their own 'virtualized' circuit-switched networks. This precludes expensive infrastructure builds and increases resource utilization for carriers. Along these lines, a novel L1 VPN services resource management scheme for next-generation SONET/SDH networks is proposed that fully leverages advanced virtual concatenation and inverse multiplexing features. Additionally, both centralized and distributed GMPLS-based implementations are also tabled to support the proposed L1 VPN services model. Detailed performance analysis results are presented along with avenues for future research.

  5. ATM technology and beyond

    NASA Technical Reports Server (NTRS)

    Cheung, Nim K.

    1993-01-01

    Networks based on Asynchronous Transfer Mode (ATM) are expected to provide cost-effective and ubiquitous infrastructure to support broadband and multimedia services. In this paper, we give an overview of the ATM standards and its associated physical layer transport technologies. We use the experimental HIPPI-ATM-SONET (HAS) interface in the Nectar Gigabit Testbed to illustrate how one can use the SONET/ATM public network to provide transport for bursty gigabit applications.

  6. (abstract) Precision Time and Frequency Transfer Utilizing SONET OC-3

    NASA Technical Reports Server (NTRS)

    Stein, Sam; Calhoun, Malcom; Kuhnle, Paul; Sydnor, Richard; Gifford, Al

    1996-01-01

    An innovative method of distributing precise time and reference frequency to users located several kilometers from a frequency standard and master clock has been developed by the Timing Solutions Corporation of Boulder, CO. The Optical Two-Way Time Transfer System (OTWTTS) utilizes a commercial SONET OC-3 facility interface to physically connect a master unit to multiple slave units at remote locations. Optical fiber is a viable alternative to standard copper cable and microwave transmission. This paper discusses measurements of frequency and timing stability over the OTWTTS.

  7. How long would SDH/SONET be prolonged?

    NASA Astrophysics Data System (ADS)

    Tao, Zhiyong; Mao, Qian

    2004-04-01

    As we all know, the increasing speed of data traffic is exceeding gradually from voice in today"s communication network. The main reason is the explosive of Internet. The controversy with IP over ATM/SDH/Optical becomes hotter and hotter, Many people in the telecommunication field are doubt: HOW LONG WOULD SDH/SONET BE PROLONGED? WHAT KIND OF SDH EQUIPMENTS COULD BE USED IN THE NETWORK? With the analysis from several aspects: services in the network, new development with SDH technology, market in transport equipment, This paper is considered that the SDH with some new features would be predominant transport technology in the recent years.

  8. High-Performance Satellite/Terrestrial-Network Gateway

    NASA Technical Reports Server (NTRS)

    Beering, David R.

    2005-01-01

    A gateway has been developed to enable digital communication between (1) the high-rate receiving equipment at NASA's White Sands complex and (2) a standard terrestrial digital communication network at data rates up to 622 Mb/s. The design of this gateway can also be adapted for use in commercial Earth/satellite and digital communication networks, and in terrestrial digital communication networks that include wireless subnetworks. Gateway as used here signifies an electronic circuit that serves as an interface between two electronic communication networks so that a computer (or other terminal) on one network can communicate with a terminal on the other network. The connection between this gateway and the high-rate receiving equipment is made via a synchronous serial data interface at the emitter-coupled-logic (ECL) level. The connection between this gateway and a standard asynchronous transfer mode (ATM) terrestrial communication network is made via a standard user network interface with a synchronous optical network (SONET) connector. The gateway contains circuitry that performs the conversion between the ECL and SONET interfaces. The data rate of the SONET interface can be either 155.52 or 622.08 Mb/s. The gateway derives its clock signal from a satellite modem in the high-rate receiving equipment and, hence, is agile in the sense that it adapts to the data rate of the serial interface.

  9. On the Resource Efficiency of Virtual Concatenation in SDH/SONET Mesh Transport Networks Bearing Protected Scheduled Connections

    NASA Astrophysics Data System (ADS)

    Kuri, Josu�; Gagnaire, Maurice; Puech, Nicolas

    2005-10-01

    Virtual concatenation (VCAT) is a Synchronous Digital Hierarchy (SDH)/Synchronous Optical Network (SONET) network functionality recently standardized by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). VCAT provides the flexibility required to efficiently allocate network resources to Ethernet, Fiber Channel (FC), Enterprise System Connection (ESCON), and other important data traffic signals. In this article, we assess the resources' gain provided by VCAT with respect to contiguous concatenation (CCAT) in SDH/SONET mesh transport networks bearing protected scheduled connection demands (SCDs). As explained later, an SCD is a connection demand for which the set-up and tear-down dates are known in advance. We define mathematical models to quantify the add/drop and transmission resources required to instantiate a set of protected SCDs in VCAT-and CCAT-capable networks. Quantification of transmission resources requires a routing and slot assignment (RSA) problem to be solved. We formulate the RSA problem in VCAT-and CCAT-capable networks as two different combinatorial optimization problems: RSA in VCAT-capable networks (RSAv) and RSA in CCAT-capable networks (RSAc), respectively. Protection of the SCDs is considered in the formulations using a shared backup path protection (SBPP) technique. We propose a simulated annealing (SA)-based meta-heuristic algorithm to compute approximate solutions to these problems (i.e., solutions whose cost approximates the cost of the optimal ones). The gain in transmission resources and the cost structure of add/drop resources making VCAT-capable networks more economical are analyzed for different traffic scenarios.

  10. Use of the SONET score to evaluate Urgent Care Center overcrowding: a prospective pilot study

    PubMed Central

    Wang, Hao; Robinson, Richard D; Cowden, Chad D; Gorman, Violet A; Cook, Christopher D; Gicheru, Eugene K; Schrader, Chet D; Jayswal, Rani D; Zenarosa, Nestor R

    2015-01-01

    Objectives To derive a tool to determine Urgent Care Center (UCC) crowding and investigate the association between different levels of UCC overcrowding and negative patient care outcomes. Design Prospective pilot study. Setting Single centre study in the USA. Participants 3565 patients who registered at UCC during the 21-day study period were included. Patients who had no overcrowding statuses estimated due to incomplete collection of operational variables at the time of registration were excluded in this study. 3139 patients were enrolled in the final data analysis. Primary and secondary outcome measures A crowding estimation tool (SONET: Severely overcrowded, Overcrowded and Not overcrowded Estimation Tool) was derived using the linear regression analysis. The average length of stay (LOS) in UCC patients and the number of left without being seen (LWBS) patients were calculated and compared under the three different levels of UCC crowding. Results Four independent operational variables could affect the UCC overcrowding score including the total number of patients, the number of results pending for patients, the number of patients in the waiting room and the longest time a patient was stationed in the waiting room. In addition, UCC overcrowding was associated with longer average LOS (not overcrowded: 133±76 min, overcrowded: 169±79 min, and severely overcrowded: 196±87 min, p<0.001) and an increased number of LWBS patients (not overcrowded: 0.28±0.69 patients, overcrowded: 0.64±0.98, and severely overcrowded: 1.00±0.97). Conclusions The overcrowding estimation tool (SONET) derived in this study might be used to determine different levels of crowding in a high volume UCC setting. It also showed that UCC overcrowding might be associated with negative patient care outcomes. PMID:25872940

  11. Low threshold all-optical crossbar switch on GaAs-GaAlAs channel waveguide arrays

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Kostrzewski, Andrew

    1994-09-01

    During the Phase 2 project entitled 'Low Threshold All-Optical Crossbar Switch on GaAs - GaAlAs Channel Waveguide Array,' Physical Optics Corporation (POC) developed the basic principles for the fabrication of all-optical crossbar switches. Based on this development. POC fabricated a 2 x 2 GaAs/GaAlAs switch that changes the direction of incident light with minimum insertion loss and nonlinear distortion. This unique technology can be used in both analog and digital networks. The applications of this technology are widespread. Because the all-optical network does not have any speed limitations (RC time constant), POC's approach will be beneficial to SONET networks, phased array radar networks, very high speed oscilloscopes, all-optical networks, IR countermeasure systems, BER equipment, and the fast growing video conferencing network market. The novel all-optical crossbar switch developed in this program will solve interconnect problems. and will be a key component in the widely proposed all-optical 200 Gb/s SONET/ATM networks.

  12. The Advent of WDM and the All-Optical Network: A Reality Check.

    ERIC Educational Resources Information Center

    Lutkowitz, Mark

    1998-01-01

    Discussion of the telecommunications industry focuses on WDM (wavelength division multiplexing) as a solution for dealing with capacity constraints. Highlights include fiber optic technology; cross-connecting and switching wavelengths; SONET (Synchronous Optical Network) and wavelength networking; and optical TDM (Time Division Multiplexing). (LRW)

  13. Architectural and engineering issues for building an optical Internet

    NASA Astrophysics Data System (ADS)

    St. Arnaud, Bill

    1998-10-01

    Recent developments in high density Wave Division Multiplexing fiber systems allows for the deployment of a dedicated optical Internet network for large volume backbone pipes that does not require an underlying multi-service SONET/SDH and ATM transport protocol. Some intrinsic characteristics of Internet traffic such as its self similar nature, server bound congestion, routing and data asymmetry allow for highly optimized traffic engineered networks using individual wavelengths. By transmitting GigaBit Ethernet or SONET/SDH frames natively over WDM wavelengths that directly interconnect high performance routers the original concept of the Internet as an intrinsically survivable datagram network is possible. Traffic engineering, restoral, protection and bandwidth management of the network must now be carried out at the IP layer and so new routing or switching protocols such as MPLS that allow for uni- directional paths with fast restoral and protection at the IP layer become essential for a reliable production network. The deployment of high density WDM municipal and campus networks also gives carriers and ISPs the flexibility to offer customers as integrated and seamless set of optical Internet services.

  14. Metro Optical Networks for Homeland Security

    NASA Astrophysics Data System (ADS)

    Bechtel, James H.

    Metro optical networks provide an enticing opportunity for strengthening homeland security. Many existing and emerging fiber-optic networks can be adapted for enhanced security applications. Applications include airports, theme parks, sports venues, and border surveillance systems. Here real-time high-quality video and captured images can be collected, transported, processed, and stored for security applications. Video and data collection are important also at correctional facilities, courts, infrastructure (e.g., dams, bridges, railroads, reservoirs, power stations), and at military and other government locations. The scaling of DWDM-based networks allows vast amounts of data to be collected and transported including biometric features of individuals at security check points. Here applications will be discussed along with potential solutions and challenges. Examples of solutions to these problems are given. This includes a discussion of metropolitan aggregation platforms for voice, video, and data that are SONET compliant for use in SONET networks and the use of DWDM technology for scaling and transporting a variety of protocols. Element management software allows not only network status monitoring, but also provides optimized allocation of network resources through the use of optical switches or electrical cross connects.

  15. Real-World Effectiveness of Simeprevir-containing Regimens Among Patients With Chronic Hepatitis C Virus: The SONET Study

    PubMed Central

    Brown, Kimberley; Donovan, Cynthia; Forlenza, Jamie; Lauwers, Kris; Mah’moud, Mitchell A.; Manch, Richard; Mohanty, Smruti R.; Prabhakar, Avinash; Reindollar, Robert; DeMasi, Ralph; Slim, Jihad; Tandon, Neeta; Villadiego, Shirley; Naggie, Susanna

    2017-01-01

    Abstract Background. The Simeprevir ObservatioNal Effectiveness across practice seTtings (SONET) study evaluated the real-world effectiveness of simeprevir-based treatment for hepatitis C virus (HCV) infection. Methods. The SONET study was a phase 4, prospective, observational, United States–based study enrolling patients ≥18 years of age with chronic genotype 1 HCV infection. The primary endpoint was the proportion of patients who achieved sustained virologic response 12 weeks after the end of treatment (SVR12), defined as HCV ribonucleic acid undetectable ≥12 weeks after the end of all HCV treatments. Results. Of 315 patients (intent-to-treat [ITT] population), 275 (87.3%) completed the study. Overall, 291 were treated with simeprevir + sofosbuvir, 17 with simeprevir + sofosbuvir + ribavirin, and 7 with simeprevir + peginterferon + ribavirin. The majority of patients were male (63.2%) and white (60.6%); median age was 58 years, 71.7% had genotype/subtype 1a, and 39.4% had cirrhosis. The SVR12 was achieved by 81.2% (255 of 314) of ITT patients (analysis excluded 1 patient who completed the study but was missing SVR12 data); 2 had viral breakthrough and 18 had viral relapse. The SVR12 was achieved by 92.4% (255 of 276) of patients in the modified ITT (mITT) population, which excluded patients who discontinued treatment for nonvirologic reasons before the SVR12 time point or were missing SVR12 assessment data. Among mITT patients, higher SVR12 rates were associated with factors including age ≥65 years, non-Hispanic/Latino ethnicity, and employment status, but not genotype/subtype nor presence of cirrhosis. Simeprevir-based treatment was well tolerated; no serious adverse events were considered related to simeprevir. Conclusions. In the real-world setting, simeprevir + sofosbuvir treatment was common and 92% of mITT patients achieved SVR12. Simeprevir-based treatment was effective and well tolerated in this cohort, including patients with cirrhosis. PMID:28480251

  16. Use of the SONET score to evaluate Urgent Care Center overcrowding: a prospective pilot study.

    PubMed

    Wang, Hao; Robinson, Richard D; Cowden, Chad D; Gorman, Violet A; Cook, Christopher D; Gicheru, Eugene K; Schrader, Chet D; Jayswal, Rani D; Zenarosa, Nestor R

    2015-04-14

    To derive a tool to determine Urgent Care Center (UCC) crowding and investigate the association between different levels of UCC overcrowding and negative patient care outcomes. Prospective pilot study. Single centre study in the USA. 3565 patients who registered at UCC during the 21-day study period were included. Patients who had no overcrowding statuses estimated due to incomplete collection of operational variables at the time of registration were excluded in this study. 3139 patients were enrolled in the final data analysis. A crowding estimation tool (SONET: Severely overcrowded, Overcrowded and Not overcrowded Estimation Tool) was derived using the linear regression analysis. The average length of stay (LOS) in UCC patients and the number of left without being seen (LWBS) patients were calculated and compared under the three different levels of UCC crowding. Four independent operational variables could affect the UCC overcrowding score including the total number of patients, the number of results pending for patients, the number of patients in the waiting room and the longest time a patient was stationed in the waiting room. In addition, UCC overcrowding was associated with longer average LOS (not overcrowded: 133±76 min, overcrowded: 169±79 min, and severely overcrowded: 196±87 min, p<0.001) and an increased number of LWBS patients (not overcrowded: 0.28±0.69 patients, overcrowded: 0.64±0.98, and severely overcrowded: 1.00±0.97). The overcrowding estimation tool (SONET) derived in this study might be used to determine different levels of crowding in a high volume UCC setting. It also showed that UCC overcrowding might be associated with negative patient care outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Clock recovery for high-speed optical communication

    NASA Astrophysics Data System (ADS)

    Pedrotti, Kenneth D.

    1996-01-01

    This paper reviews recent results for clock recovery circuits operating at speeds in excess of 1 Gbit/sec or realized as multichannel arrays. The emphasis is on synchronous optical network (SONET) type systems, their requirements, and the effect of the clock recovery circuits on system performance. Clock recovery approaches include filter based, phase-locked-loops, and all-optical methods.

  18. Clock recovery for high-speed optical communication

    NASA Astrophysics Data System (ADS)

    Pedrotti, Ken

    1996-01-01

    This paper reviews recent results for clock recovery circuits operating at speeds in excess of 1 Gbit/sec or realized as multichannel arrays. The emphasis is on Synchronous Optical NETwork (SONET) type systems, their requirements, and the effect of the clock recovery circuits on system performance. Clock recovery approaches include filter based, phase-lockcd-loops, and all-optical methods.

  19. Evaluation of Time Transfer Units for Time and Frequency Transfer in Optical Fibers Utilizing a Passive Technique Based on SONET/SDH

    DTIC Science & Technology

    2012-01-01

    precision and accuracy. For instance, in international time metrology, two-way satellite time and frequency transfer ( TWSTFT ) (see e.g. [1] and...can act as a time transfer system that is complementary to other high quality systems such as TWSTFT and GPS. REFERENCES [1] J. Levine. “A

  20. Mastering the broadband challenge: next-generation SONET in a packet world

    NASA Astrophysics Data System (ADS)

    Farhi, Eyal

    2001-10-01

    The continuing liberalization of the world's telecommunications markets and the progressive convergence of voice, data, video and Internet communication are prompting telecommunication service providers to both expand and enhance their service capabilities. As bandwidth-hungry applications proliferate, and the demand for data and data services grows, the requirement for broadband communications appears to be insatiable. To provide the expected level of service in this environment of rapidly increasing demand, telcos and service providers must invest in an expanded network. However, to remain competitive and profitable, they must also continue to leverage their existing infrastructure investment. This paper will examine the current challenges network operators are facing today with the deployment of broadband technologies as they strive to maintain existing infrastructure investments while providing new services to their customers and developing added value network operations. This paper will explore various broadband technologies (optical/wireless) that operate on the primary SDH/SONET standards, their topologies and inherent benefits, which provide operators with solutions to the broadband challenge. New customer demands, such as high-speed Data transmissions (increased Internet use), coupled with operators' continuous need for network optimization, have thrown a wrench into daily operations. Therefore, the need to modernize existing networks has become paramount.

  1. Protocol and Topology Issues for Wide-Area Satellite Interconnection of Terrestrial Optical LANs

    NASA Astrophysics Data System (ADS)

    Parraga, N.

    2002-01-01

    Apart from broadcasting, the satellite business is targeting niche markets. Wide area interconnection is considered as one of these niche markets, since it addresses operators and business LANs (B2B, business to business) in remote areas where terrestrial infrastructure is not available. These LANs - if high-speed - are typically based on optical networks such as SONET. One of the advantages of SONET is its architecture flexibility and capacity to transport all kind of applications including multimedia with a range of different transmission rates. The applications can be carried by different protocols among which the Internet Protocol (IP) or the Asynchronous Transfer Mode (ATM) are the most prominent ones. Thus, the question arises how these protocols can be interconnected via the satellite segment. The paper addresses several solutions for interworking with different protocols. For this investigation we distinguish first of all between the topology and the switching technology of the satellites. In case of a star network with transparent satellite, the satellite protocol consists of physical layer and data layer which can be directly interconnected with layer 2 interworking function to their terrestrial counterparts in the SONET backbone. For regenerative satellites the situation is more complex: here we need to distinguish the types of transport protocols being used in the terrestrial and satellite segment. Whereas IP, ATM, MPEG dominate in the terrestrial networks, satellite systems usually do not follow these standards. Some might employ minor additions (for instance, satellite specific packet headers), some might be completely proprietary. In general, interworking must be done for the data plane on top of layer 2 (data link layer), whereas for the signaling plane the interworking is on top of layer 3. In the paper we will discuss the protocol stacks for ATM, IP, and MPEG with a regenerative satellite system. As an example we will use the EuroSkyWay satellite system for multimedia services. EuroSkyWay uses a GEO satellite with onboard switching. It has its own proprietary protocol stack for data link control (DLC), logical link control (LLC) and layer 3 functions such as resource management, call admission control and authentication. Special attention is paid to the IP interworking with Layer 3 function since IP does not support connection set-up and session protocols, thus proper interworking functions with IP signaling protocols for resource reservation routing such as RSVP, BGP, and ICMP need to be developed. Whereas the EuroSkyWay system is an representative for a meshed topology, DVB-RCS systems have usually star configuration with a central hub station. Different data streams are distinguished by program identifiers (PIDs). Recent proposals aim at the evolution of DVB-RCS towards a fully meshed structure. The paper will also discuss the protocol architecture for interconnect SONET LANs over these systems. Finally, a performance comparison of the different solutions will be given in terms of cell overhead rate and signalling effort for selected scenarios.

  2. CHEETAH: circuit-switched high-speed end-to-end transport architecture

    NASA Astrophysics Data System (ADS)

    Veeraraghavan, Malathi; Zheng, Xuan; Lee, Hyuk; Gardner, M.; Feng, Wuchun

    2003-10-01

    Leveraging the dominance of Ethernet in LANs and SONET/SDH in MANs and WANs, we propose a service called CHEETAH (Circuit-switched High-speed End-to-End Transport ArcHitecture). The service concept is to provide end hosts with high-speed, end-to-end circuit connectivity on a call-by-call shared basis, where a "circuit" consists of Ethernet segments at the ends that are mapped into Ethernet-over-SONET long-distance circuits. This paper focuses on the file-transfer application for such circuits. For this application, the CHEETAH service is proposed as an add-on to the primary Internet access service already in place for enterprise hosts. This allows an end host that is sending a file to first attempt setting up an end-to-end Ethernet/EoS circuit, and if rejected, fall back to the TCP/IP path. If the circuit setup is successful, the end host will enjoy a much shorter file-transfer delay than on the TCP/IP path. To determine the conditions under which an end host with access to the CHEETAH service should attempt circuit setup, we analyze mean file-transfer delays as a function of call blocking probability in the circuit-switched network, probability of packet loss in the IP network, round-trip times, link rates, and so on.

  3. Deployment of the National Transparent Optical Network around the San Francisco Bay Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, K.; Haigh, R.; Armstrong, G.

    1996-06-01

    We report on the deployment and initial operation of the National Transparent Optical Network, an experimental WDM network testbed around the San Francisco Bay Area, during the Optical Fiber Conference (OFC`96) held in San Jose, CA. The deployment aspects of the physical plant, optical and SONET layers are examined along with a discussion of broadband applications which utilized the network during the OFC`96 demonstration. The network features dense WDM technology, transparent optical routing technology using acousto- optic tunable filter based switches, and network modules with add/drop, multicast, and wavelength translation capabilities. The physical layer consisted of over 300 km ofmore » Sprint and Pacific Bell conventional single mode fiber which was amplified with I I optical amplifiers deployed in pre-amp, post-amp, and line amp configurations. An out-of-band control network provided datacom channels from remote equipment sites to the SONET network manager deployed at the San Jose Convention Center for the conference. Data transport over five wavelengths was achieved in the 1550 nm window using a variety of signal formats including analog and digital signal transmission on different wavelengths on the same fiber. The network operated throughout the week of OFC`96 and is still in operation today.« less

  4. Proposed scheme for parallel 10Gb/s VSR system and its verilog HDL realization

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Chen, Hongda; Zuo, Chao; Jia, Jiuchun; Shen, Rongxuan; Chen, Xiongbin

    2005-02-01

    This paper proposes a novel and innovative scheme for 10Gb/s parallel Very Short Reach (VSR) optical communication system. The optimized scheme properly manages the SDH/SONET redundant bytes and adjusts the position of error detecting bytes and error correction bytes. Compared with the OIF-VSR4-01.0 proposal, the scheme has a coding process module. The SDH/SONET frames in transmission direction are disposed as follows: (1) The Framer-Serdes Interface (FSI) gets 16×622.08Mb/s STM-64 frame. (2) The STM-64 frame is byte-wise stripped across 12 channels, all channels are data channels. During this process, the parity bytes and CRC bytes are generated in the similar way as OIF-VSR4-01.0 and stored in the code process module. (3) The code process module will regularly convey the additional parity bytes and CRC bytes to all 12 data channels. (4) After the 8B/10B coding, the 12 channels is transmitted to the parallel VCSEL array. The receive process approximately in reverse order of transmission process. By applying this scheme to 10Gb/s VSR system, the frame size in VSR system is reduced from 15552×12 bytes to 14040×12 bytes, the system redundancy is reduced obviously.

  5. Testbed for Satellite and Terrestrial Interoperability (TSTI)

    NASA Technical Reports Server (NTRS)

    Gary, J. Patrick

    1998-01-01

    Various issues associated with the "Testbed for Satellite and Terrestrial Interoperability (TSTI)" are presented in viewgraph form. Specific topics include: 1) General and specific scientific technical objectives; 2) ACTS experiment No. 118: 622 Mbps network tests between ATDNet and MAGIC via ACTS; 3) ATDNet SONET/ATM gigabit network; 4) Testbed infrastructure, collaborations and end sites in TSTI based evaluations; 5) the Trans-Pacific digital library experiment; and 6) ESDCD on-going network projects.

  6. Chemotherapy for ’Exotic’ RNA Viruses

    DTIC Science & Technology

    1985-01-01

    derived more effective against influenza infection in ti - human alpha, beta . and gamma interferons. sue culture as well as mice (W• sonet al., 1982...growing. Compounds, such as Enhancement of natural resistance to influenza glucan , muramyl di- hnd tripeptides, lipoidal virus in lipopolysaccharide...C. L., Peters. C. J.. Jemski. J. V.. Scott. Levin, M, J., Zaia. J. A., Preblud, S. R. & Arbeit. G. H. & DiLuzio. N. R. (1980). Glucan -induced R. A

  7. Optimal Measurement Interval for Emergency Department Crowding Estimation Tools.

    PubMed

    Wang, Hao; Ojha, Rohit P; Robinson, Richard D; Jackson, Bradford E; Shaikh, Sajid A; Cowden, Chad D; Shyamanand, Rath; Leuck, JoAnna; Schrader, Chet D; Zenarosa, Nestor R

    2017-11-01

    Emergency department (ED) crowding is a barrier to timely care. Several crowding estimation tools have been developed to facilitate early identification of and intervention for crowding. Nevertheless, the ideal frequency is unclear for measuring ED crowding by using these tools. Short intervals may be resource intensive, whereas long ones may not be suitable for early identification. Therefore, we aim to assess whether outcomes vary by measurement interval for 4 crowding estimation tools. Our eligible population included all patients between July 1, 2015, and June 30, 2016, who were admitted to the JPS Health Network ED, which serves an urban population. We generated 1-, 2-, 3-, and 4-hour ED crowding scores for each patient, using 4 crowding estimation tools (National Emergency Department Overcrowding Scale [NEDOCS], Severely Overcrowded, Overcrowded, and Not Overcrowded Estimation Tool [SONET], Emergency Department Work Index [EDWIN], and ED Occupancy Rate). Our outcomes of interest included ED length of stay (minutes) and left without being seen or eloped within 4 hours. We used accelerated failure time models to estimate interval-specific time ratios and corresponding 95% confidence limits for length of stay, in which the 1-hour interval was the reference. In addition, we used binomial regression with a log link to estimate risk ratios (RRs) and corresponding confidence limit for left without being seen. Our study population comprised 117,442 patients. The time ratios for length of stay were similar across intervals for each crowding estimation tool (time ratio=1.37 to 1.30 for NEDOCS, 1.44 to 1.37 for SONET, 1.32 to 1.27 for EDWIN, and 1.28 to 1.23 for ED Occupancy Rate). The RRs of left without being seen differences were also similar across intervals for each tool (RR=2.92 to 2.56 for NEDOCS, 3.61 to 3.36 for SONET, 2.65 to 2.40 for EDWIN, and 2.44 to 2.14 for ED Occupancy Rate). Our findings suggest limited variation in length of stay or left without being seen between intervals (1 to 4 hours) regardless of which of the 4 crowding estimation tools were used. Consequently, 4 hours may be a reasonable interval for assessing crowding with these tools, which could substantially reduce the burden on ED personnel by requiring less frequent assessment of crowding. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  8. GLOBECOM '92 - IEEE Global Telecommunications Conference, Orlando, FL, Dec. 6-9, 1992, Conference Record. Vols. 1-3

    NASA Astrophysics Data System (ADS)

    Papers are presented on such topics as the wireless data network in PCS, advances in digital mobile networks, ATM switching experiments, broadband applications, network planning, and advances in SONET/SDH implementations. Consideration is also given to gigabit computer networks, techniques for modeling large high-speed networks, coding and modulation, the next-generation lightwave system, signaling systems for broadband ISDN, satellite technologies, and advances in standardization of low-rate signal processing.

  9. The nutritional value of narrow-leafed lupine (Lupinus angustifolius) for fattening pigs.

    PubMed

    Kasprowicz-Potocka, Małgorzata; Zaworska, Anita; Kaczmarek, Sebastian Andrzej; Rutkowski, Andrzej

    2016-01-01

    The aim of this study was to determine the nutrient digestibility of seeds of four varieties of narrow-leafed lupines (Lupinus angustifolius) and the possibility of soya bean meal (SBM) substitution by lupine seeds alone and in combination with rapeseed meal (RSM) in the diets of pigs. The seeds of the lupine varieties Kalif, Sonet, Zeus and Boruta were analysed. The apparent total tract digestibility (ATTD) was determined on 50 cross-bred pigs using the difference method with titanium dioxide as a marker. The substitution of SBM by lupine seeds alone (at 0 - 100%) was tested on 60 pigs (20-105 kg body weight (BW)) and by a combination of lupine seeds and RSM on 180 fattening pigs (35-80 kg BW). The chemical composition of lupine seeds differed considerably, especially in terms of crude protein and mineral content. All seeds contained less than 0.05% alkaloids and 9.3% oligosaccharides in dry matter. The ATTD of protein ranged from 70% to 74%, those of ether extract from 36% to 55% and those of gross energy from 77% to 84%. The entire replacement of SBM by lupine seeds (var. Sonet) did not have a negative effect on the performance of grower and fattener pigs. The substitution of SBM by a combination of lupines and RSM reduced the performance of growing and finishing pigs significantly.

  10. Systems Issues In Terrestrial Fiber Optic Link Reliability

    NASA Astrophysics Data System (ADS)

    Spencer, James L.; Lewin, Barry R.; Lee, T. Frank S.

    1990-01-01

    This paper reviews fiber optic system reliability issues from three different viewpoints - availability, operating environment, and evolving technologies. Present availability objectives for interoffice links and for the distribution loop must be re-examined for applications such as the Synchronous Optical Network (SONET), Fiber-to-the-Home (FTTH), and analog services. The hostile operating environments of emerging applications (such as FTTH) must be carefully considered in system design as well as reliability assessments. Finally, evolving technologies might require the development of new reliability testing strategies.

  11. Efficient traffic grooming in SONET/WDM BLSR Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awwal, A S; Billah, A B; Wang, B

    2004-04-02

    In this paper, we study traffic grooming in SONET/WDM BLSR networks under the uniform all-to-all traffic model with an objective to reduce total network costs (wavelength and electronic multiplexing costs), in particular, to minimize the number of ADMs while using the optimal number of wavelengths. We derive a new tighter lower bound for the number of wavelengths when the number of nodes is a multiple of 4. We show that this lower bound is achievable. All previous ADM lower bounds except perhaps that in were derived under the assumption that the magnitude of the traffic streams (r) is one unitmore » (r = 1) with respect to the wavelength capacity granularity g. We then derive new, more general and tighter lower bounds for the number of ADMs subject to that the optimal number of wavelengths is used, and propose heuristic algorithms (circle construction algorithm and circle grooming algorithm) that try to minimize the number of ADMs while using the optimal number of wavelengths in BLSR networks. Both the bounds and algorithms are applicable to any value of r and for different wavelength granularity g. Performance evaluation shows that wherever applicable, our lower bounds are at least as good as existing bounds and are much tighter than existing ones in many cases. Our proposed heuristic grooming algorithms perform very well with traffic streams of larger magnitude. The resulting number of ADMs required is very close to the corresponding lower bounds derived in this paper.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, L.G.; Witzke, E.L.

    This effort studied the integration of innovative methods of key management crypto synchronization, and key agility while scaling encryption speed. Viability of these methods for encryption of ATM cell payloads at the SONET OC- 192 data rate (10 Gb/s), and for operation at OC-48 rates (2.5 Gb/s) was shown. An SNL-Developed pipelined DES design was adapted for the encryption of ATM cells. A proof-of-principle prototype circuit board containing 11 Electronically Programmable Logic Devices (each holding the equivalent of 100,000 gates) was designed, built, and used to prototype a high speed encryptor.

  13. The Role of Time and Frequency in Future Systems

    NASA Technical Reports Server (NTRS)

    Stein, Samuel R.; Gifford, Al; Celano, Tom

    1996-01-01

    Over the past twenty years, the Global Positioning System (GPS) has revolutionized the performance and the geographical availability of time and frequency discrimination, while at the same time reducing the cost to the individual user. This paper examines the question of what comes next for time and frequency dissemination. The question has two motivations: How can improved performance be achieved in the future, and how can redundant sources of time and frequency be provided to critical systems? A model is developed for time and frequency dissemination based on the time management performed in GPS. Several candidate systems for future time and frequency distribution are identified. One system - SONET telecommunications - is discussed in detail. Performance requirements and hardware implementation are presented.

  14. Design and Performance of the Acts Gigabit Satellite Network High Data-Rate Ground Station

    NASA Technical Reports Server (NTRS)

    Hoder, Doug; Kearney, Brian

    1995-01-01

    The ACTS High Data-Rate Ground stations were built to support the ACTS Gigabit Satellite Network (GSN). The ACTS GSN was designed to provide fiber-compatible SONET service to remote nodes and networks through a wideband satellite system. The ACTS satellite is unique in its extremely wide bandwidth, and electronically controlled spot beam antennas. This paper discusses the requirements, design and performance of the RF section of the ACTS High Data-Rate Ground Stations and constituent hardware. The ACTS transponder systems incorporate highly nonlinear hard limiting. This introduced a major complexity in to the design and subsequent modification of the ground stations. A discussion of the peculiarities of the A CTS spacecraft transponder system and their impact is included.

  15. GLOBECOM '88 - IEEE Global Telecommunications Conference and Exhibition, Hollywood, FL, Nov. 28-Dec. 1, 1988, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Various papers on communications for the information age are presented. Among the general topics considered are: telematic services and terminals, satellite communications, telecommunications mangaement network, control of integrated broadband networks, advances in digital radio systems, the intelligent network, broadband networks and services deployment, future switch architectures, performance analysis of computer networks, advances in spread spectrum, optical high-speed LANs, and broadband switching and networks. Also addressed are: multiple access protocols, video coding techniques, modulation and coding, photonic switching, SONET terminals and applications, standards for video coding, digital switching, progress in MANs, mobile and portable radio, software design for improved maintainability, multipath propagation and advanced countermeasure, data communication, network control and management, fiber in the loop, network algorithm and protocols, and advances in computer communications.

  16. Free space optics: a viable last-mile alternative

    NASA Astrophysics Data System (ADS)

    Willebrand, Heinz A.; Clark, Gerald R.

    2001-10-01

    This paper explores Free Space Optics (FSO) as an access technology in the last mile of metropolitan area networks (MANs). These networks are based in part on fiber-optic telecommunications infrastructure, including network architectures of Synchronous Optical Network (commonly referred to as SONET), the North American standard for synchronous data transmission; and Synchronous Digital Hierarchy (commonly referred to as SDH), the international standard and equivalent of SONET. Several converging forces have moved FSO beyond a niche technology for use only in local area networks (LANs) as a bridge connecting two facilities. FSO now allows service providers to cost effectively provide optical bandwidth for access networks and accelerate the extension of metro optical networks bridging what has been termed by industry experts as the optical dead zone. The optical dead zone refers to both the slowdown in capital investment in the short-term future and the actual connectivity gap that exists today between core metro optical networks and the access optical networks. Service providers have built extensive core and minimal metro networks but have not yet provided optical bandwidth to the access market largely due to the non-compelling economics to bridge the dead zone with fiber. Historically, such infrastructure build-out slowdowns have been blamed on a combination of economics, time-to-market constraints and limited technology options. However, new technology developments and market acceptance of FSO give service providers a new cost-effective alternative to provide high-bandwidth services with optical bandwidth in the access networks. Merrill Lynch predicts FSO will grow into a $2 billion market by 2005. The drivers for this market are a mere 5%- 6% penetration of fiber to business buildings; cost effective solution versus RF or fiber; and significant capacity which can only be matched by a physical fiber link, Merrill Lynch reports. This paper will describe FSO technology, its capabilities and its limitations. The paper will investigate how FSO technology has evolved to its current stage for deployment in MANs, LANs, wireless backhaul and metropolitan network extensions - applications that fall within the category of last mile. The paper will address the market, drivers and the adoption of FSO, plus provide a projection of future FSO technology, based on today's product roadmaps. The paper concludes with a summary of findings and recommendations.

  17. A core observational data model for enhancing the interoperability of ontologically annotated environmental data

    NASA Astrophysics Data System (ADS)

    Schildhauer, M.; Bermudez, L. E.; Bowers, S.; Dibner, P. C.; Gries, C.; Jones, M. B.; McGuinness, D. L.; Cao, H.; Cox, S. J.; Kelling, S.; Lagoze, C.; Lapp, H.; Madin, J.

    2010-12-01

    Research in the environmental sciences often requires accessing diverse data, collected by numerous data providers over varying spatiotemporal scales, incorporating specialized measurements from a range of instruments. These measurements are typically documented using idiosyncratic, disciplinary specific terms, and stored in management systems ranging from desktop spreadsheets to the Cloud, where the information is often further decomposed or stylized in unpredictable ways. This situation creates major informatics challenges for broadly discovering, interpreting, and merging the data necessary for integrative earth science research. A number of scientific disciplines have recognized these issues, and been developing semantically enhanced data storage frameworks, typically based on ontologies, to enable communities to better circumscribe and clarify the content of data objects within their domain of practice. There is concern, however, that cross-domain compatibility of these semantic solutions could become problematic. We describe here our efforts to address this issue by developing a core, unified Observational Data Model, that should greatly facilitate interoperability among the semantic solutions growing organically within diverse scientific domains. Observational Data Models have emerged independently from several distinct scientific communities, including the biodiversity sciences, ecology, evolution, geospatial sciences, and hydrology, to name a few. Informatics projects striving for data integration within each of these domains had converged on identifying "observations" and "measurements" as fundamental abstractions that provide useful "templates" through which scientific data can be linked— at the structural, composited, or even cell value levels— to domain terms stored in ontologies or other forms of controlled vocabularies. The Scientific Observations Network, SONet (http://sonet.ecoinformatics.org) brings together a number of these observational data efforts, and is harmonizing their models. The specific observational data models currently under consideration include the OGC's Observations and Measurements Encoding Standard, O&M; the ecological community's Extensible Observation Ontology, OBOE'; the evolutionary community's Entity-Quality model, EQ; and the VSTO core classes, intended for describing atmospheric and solar-terrestrial phenomena, VSTO.OWL. These models all share high structural similarities, expressed in different languages (e.g. UML or OWL), and are intended for use with very different forms of data. The main focus of this talk will be describing these Observational Data Models, and more importantly, how harmonizing these will catalyze semantically enhanced access to large additional data resources across the earth and life sciences.

  18. Michelangelo's eye disease.

    PubMed

    Gallenga, P E; Neri, Giampiero; D'Anastasio, Ruggero; Pettorrossi, Vito Enrico; Alfieri, Emilio; Capasso, Luigi

    2012-06-01

    Charged by the Pope Julius II for painting the Cappella Sistina in Rome (between 1508 and 1512), Michelangelo worked in an elevated scaffolding, in an anomalous position with dyes (including poisoning lead salts) and solvents (such as toxic turpentine) dripping on his face and continuously inhaling, in a dim environment illuminated only with oil lamps and candles, as he described himself and sketched in a sonet addressed to Giovanni da Pistoia. In 1510 he began suffering from eye disease: the main symptom was the necessity to elevate the document he was reading up to the level of his eyes. This defect disappeared few months after he finished painting his masterpiece. We hypothesize that the Michelangelo's eyes disease was a form of acquired and transitory nystagmus induced by the many hours he spent in up gaze, with a skew deviation, a form of ocular tilt reaction resulting from the impairment of spatial sensitivity (inversion illusion) due to the persistence of the artist's head in a horizontal position, looking upward. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Seahawk: telemedicine project in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Kim, Yongmin; Cabral, James E., Jr.; Parsons, David M.; Lipski, Gregory L.; Kirchdoerfer, Richard G.; Sado, Anthony; Bender, Gregory N.; Goeringer, Fred

    1995-05-01

    Telemedicine is becoming increasingly possible due to the confluence of ongoing technical advances in such areas as telecommunications, imaging, multimedia, computers, and information systems. Project Seahawk is a regional telemedicine program in the Pacific Northwest with Madigan Army Medical Center (MAMC) as the hub connecting various military and other federal hospitals and clinics utilizing the state-of-the-art technologies. The first phase of Project Seahawk successfully connected MAMC in Tacoma, Wash. to the University of Washington in Seattle, Wash. through the Western Washington Local Access Transport Area (LATA) Integrated Optical Network (LION) Sonet Ring using asynchronous transfer mode (ATM) and two MediaStation 5000s as a feasibility demonstration. Several telemedicine scenarios were demonstrated including synchronized image manipulation, real- time transmission of ultrasound and medical images, and video and audio teleconferencing, and remote consultation. The second phase implementation will consist of increasing the number of hospitals and clinics with telemedicine capability, e.g., Bremerton Naval Hospital, Oak Harbor Naval Hospital, Seattle VA, and American Lake VA.

  20. Traffic handling capability of a broadband indoor wireless network using CDMA multiple access

    NASA Astrophysics Data System (ADS)

    Zhang, Chang G.; Hafez, H. M.; Falconer, David D.

    1994-05-01

    CDMA (code division multiple access) may be an attractive technique for wireless access to broadband services because of its multiple access simplicity and other appealing features. In order to investigate traffic handling capabilities of a future network providing a variety of integrated services, this paper presents a study of a broadband indoor wireless network supporting high-speed traffic using CDMA multiple access. The results are obtained through the simulation of an indoor environment and the traffic capabilities of the wireless access to broadband 155.5 MHz ATM-SONET networks using the mm-wave band. A distributed system architecture is employed and the system performance is measured in terms of call blocking probability and dropping probability. The impacts of the base station density, traffic load, average holding time, and variable traffic sources on the system performance are examined. The improvement of system performance by implementing various techniques such as handoff, admission control, power control and sectorization are also investigated.

  1. ISDN at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bakes, Catherine Murphy; Goldberg, Fredric; Eubanks, Steven W.

    1992-01-01

    An expository investigation of the potential impact of the Integrated Services Digital Network (ISDN) at NASA Lewis Research Center is described. To properly frame the subject, the paper contains a detailed survey of the components of Narrowband ISDN. The principles and objectives are presented as decreed by the Consultative Committee for International Telephone and Telegraph (CCITT). The various channel types are delineated and their associated service combinations are described. The subscriber-access network functions are explained pictorially via the ISDN reference configuration. A section on switching techniques is presented to enable the reader to understand the emergence of the concept of fast packet switching. This new technology is designed to operate over the high bandwidth, low error rate transmission media that characterizes the LeRC environment. A brief introduction to the next generation of networks is covered with sections on Broadband ISDM (B-ISDN), Asynchronous Transfer Mode (ATM), and Synchronous Optical Networks (SONET). Applications at LeRC are presented, first in terms of targets of opportunity, then in light of compatibility constraints. In-place pilot projects and testing are described that demonstrate actual usage at LeRC.

  2. A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, Z.; Li, K.; Blarel, L.; Wendisch, M.

    2014-12-01

    The polarized CIMEL sun/sky radiometers have been routinely operated within the Sun/sky-radiometer Observation NETwork (SONET) in China and some sites of the AErosol RObotic NETwork (AERONET) around the world. However, the polarization measurements are not yet widely used due to in a certain degree the lack of Stokes parameters derived directly from these polarization measurements. Meanwhile, it have been shown that retrievals of several microphysical properties of aerosol particles can be significantly improved by using degree of linear polarization (DoLP) measurements of polarized CIMEL sun/sky radiometers (CE318-DP). The Stokes parameters Q and U, as well as angle of polarization (AoP) contain additional information about linear polarization and its orientation. A method to calculate Stokes parameters Q, U, and AoP from CE318-DP polarized skylight measurements is introduced in this study. A new polarized almucantar geometry based on CE318-DP is measured to illustrate abundant variation features of these parameters. The polarization parameters calculated in this study are consistent with previous results of DoLP and I, and also comparable to vector radiative transfer simulations.

  3. High-performance parallel interface to synchronous optical network gateway

    DOEpatents

    St. John, Wallace B.; DuBois, David H.

    1996-01-01

    A system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway.

  4. Cascaded clocks measurement and simulation findings

    NASA Technical Reports Server (NTRS)

    Chislow, Don; Zampetti, George

    1994-01-01

    This paper will examine aspects related to network synchronization distribution and the cascading of timing elements. Methods of timing distribution have become a much debated topic in standards forums and among network service providers (both domestically and internationally). Essentially these concerns focus on the need to migrate their existing network synchronization plans (and capabilities) to those required for the next generation of transport technologies (namely, the Synchronous Digital Hierarchy (SDH), Synchronous Optical Networks (SONET), and Asynchronous Transfer Mode (ATM). The particular choices for synchronization distribution network architectures are now being evaluated and are demonstrating that they can indeed have a profound effect on the overall service performance levels that will be delivered to the customer. The salient aspects of these concerns reduce to the following: (1) identifying that the devil is in the details of the timing element specifications and the distribution of timing information (i.e., small design choices can have a large performance impact); (2) developing a standardized method of performance verification that will yield unambiguous results; and (3) presentation of those results. Specifically, this will be done for two general cases: an ideal input, and a noisy input to a cascaded chain of slave clocks.

  5. High-performance parallel interface to synchronous optical network gateway

    DOEpatents

    St. John, W.B.; DuBois, D.H.

    1996-12-03

    Disclosed is a system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway. 7 figs.

  6. [History and poetry in women's biological twilight: menopause and old age].

    PubMed

    Cruz y Hermida, Julio

    2011-01-01

    This is a poetical and historical approach to the last biological stages of the evolutive development of women, namely menopause and old age. It starts with the passages found in Egyptian Papirii such as Ebers or Smith, dated 1500-2000 BC, which describe, among other symptoms, the sweating and hig body temperatures caused by the diminishing hormon secretion of the ovaries. Other important works on the subject, some of them written in the 20th century and some others composed before that date, are also quoted, such as the Edad Crítica (Critical Age) by Dr. Marañon. The final stage of a woman's life, old age, is presented through the famous sonet "Alfa y Omega" (Alpha and Omega) by poet Manuel Machado. Using poetical strokes, the author conveys an image of the many phisiopatological consequences of old age in women: osteoporosis, genital prolapse, urine incontinence and "wrinkles" ("old age is neither shown by white hair nor by wrinkles but by the heart"). The work finishes with the famous statement uttered by Napoleon Bona-parte: "God wanted to be a writer: Man is His prose; His poetry, Women". The same poetry that Dr. Cruz y Hermida has found through the complexities of the evolutive process of feminine biology.

  7. ATM over hybrid fiber-coaxial cable networks: practical issues in deploying residential ATM services

    NASA Astrophysics Data System (ADS)

    Laubach, Mark

    1996-11-01

    Residential broadband access network technology based on asynchronous transfer modem (ATM) will soon reach commercial availability. The capabilities provided by ATM access network promise integrated services bandwidth available in excess of those provided by traditional twisted pair copper wire public telephone networks. ATM to the side of the home placed need quality of service capability closest to the subscriber allowing immediate support for Internet services and traditional voice telephony. Other services such as desktop video teleconferencing and enhanced server-based application support can be added as part of future evolution of the network. Additionally, advanced subscriber home networks can be supported easily. This paper presents an updated summary of the standardization efforts for the ATM over HFC definition work currently taking place in the ATM forum's residential broadband working group and the standards progress in the IEEE 802.14 cable TV media access control and physical protocol working group. This update is fundamental for establishing the foundation for delivering ATM-based integrated services via a cable TV network. An economic model for deploying multi-tiered services is presenting showing that a single-tier service is insufficient for a viable cable operator business. Finally, the use of an ATM based system lends itself well to various deployment scenarios of synchronous optical networks (SONET).

  8. GMPLS-based control plane for optical networks: early implementation experience

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Pendarakis, Dimitrios; Komaee, Nooshin; Saha, Debanjan

    2002-07-01

    Generalized Multi-Protocol Label Switching (GMPLS) extends MPLS signaling and Internet routing protocols to provide a scalable, interoperable, distributed control plane, which is applicable to multiple network technologies such as optical cross connects (OXCs), photonic switches, IP routers, ATM switches, SONET and DWDM systems. It is intended to facilitate automatic service provisioning and dynamic neighbor and topology discovery across multi-vendor intelligent transport networks, as well as their clients. Efforts to standardize such a distributed common control plane have reached various stages in several bodies such as the IETF, ITU and OIF. This paper describes the design considerations and architecture of a GMPLS-based control plane that we have prototyped for core optical networks. Functional components of GMPLS signaling and routing are integrated in this architecture with an application layer controller module. Various requirements including bandwidth, network protection and survivability, traffic engineering, optimal utilization of network resources, and etc. are taken into consideration during path computation and provisioning. Initial experiments with our prototype demonstrate the feasibility and main benefits of GMPLS as a distributed control plane for core optical networks. In addition to such feasibility results, actual adoption and deployment of GMPLS as a common control plane for intelligent transport networks will depend on the successful completion of relevant standardization activities, extensive interoperability testing as well as the strengthening of appropriate business drivers.

  9. Dense wavelength division multiplexing devices for metropolitan-area datacom and telecom networks

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Priest, David G.

    2000-12-01

    Large data processing environments in use today can require multi-gigabyte or terabyte capacity in the data communication infrastructure; these requirements are being driven by storage area networks with access to petabyte data bases, new architecture for parallel processing which require high bandwidth optical links, and rapidly growing network applications such as electronic commerce over the Internet or virtual private networks. These datacom applications require high availability, fault tolerance, security, and the capacity to recover from any single point of failure without relying on traditional SONET-based networking. These requirements, coupled with fiber exhaust in metropolitan areas, are driving the introduction of dense optical wavelength division multiplexing (DWDM) in data communication systems, particularly for large enterprise servers or mainframes. In this paper, we examine the technical requirements for emerging nextgeneration DWDM systems. Protocols for storage area networks and computer architectures such as Parallel Sysplex are presented, including their fiber bandwidth requirements. We then describe two commercially available DWDM solutions, a first generation 10 channel system and a recently announced next generation 32 channel system. Technical requirements, network management and security, fault tolerant network designs, new network topologies enabled by DWDM, and the role of time division multiplexing in the network are all discussed. Finally, we present a description of testing conducted on these networks and future directions for this technology.

  10. Diversity of selected Lupinus angustifolius L. genotypes at the phenotypic and DNA level with respect to microscopic seed coat structure and thickness.

    PubMed

    Clements, Jon; Galek, Renata; Kozak, Bartosz; Michalczyk, Dariusz Jan; Piotrowicz-Cieślak, Agnieszka Iwona; Sawicka-Sienkiewicz, Ewa; Stawiński, Stanislaw; Zalewski, Dariusz

    2014-01-01

    The paper investigates seed coat characteristics (as a percentage of overall seed diameter) in Lupinus angustifolius L., a potential forage crop. In the study ten L. angustifolius genotypes, including three Polish cultivars, two Australian cultivars, three mutants originated from cv. 'Emir', and one Belarusian and one Australian breeding line were evaluated. The highest seed coat percentage was recorded in cultivars 'Sonet' and 'Emir'. The lowest seed coat thickness percentage (below 20%) was noted for breeding lines 11257-19, LAG24 and cultivar 'Zeus' (17.87%, 18.91% 19.60%, respectively). Despite having low seed weight, the Australian line no. 11257-19 was characterized by a desirable proportion of seed coat to the weight of seeds. In general, estimation of the correlation coefficient indicated a tendency that larger seeds had thinner coats. Scanning Electron Microscopy images showed low variation of seed coat sculpture and the top of seeds covered with a cuticle. Most of the studied genotypes were characterized by a cristatepapillate seed coat surface, formed by elongated polygonal cells. Only breeding line no. 11267-19 had a different shape of the cells building the surface layer of the coat. In order to illustrate genetic diversity among the genotypes tested, 24 ISSR primers were used. They generated a total of 161 polymorphic amplification products in 10 evaluated narrow-leaved lupin genotypes.

  11. Characterization, adaptive traffic shaping, and multiplexing of real-time MPEG II video

    NASA Astrophysics Data System (ADS)

    Agrawal, Sanjay; Barry, Charles F.; Binnai, Vinay; Kazovsky, Leonid G.

    1997-01-01

    We obtain network traffic model for real-time MPEG-II encoded digital video by analyzing video stream samples from real-time encoders from NUKO Information Systems. MPEG-II sample streams include a resolution intensive movie, City of Joy, an action intensive movie, Aliens, a luminance intensive (black and white) movie, Road To Utopia, and a chrominance intensive (color) movie, Dick Tracy. From our analysis we obtain a heuristic model for the encoded video traffic which uses a 15-stage Markov process to model the I,B,P frame sequences within a group of pictures (GOP). A jointly-correlated Gaussian process is used to model the individual frame sizes. Scene change arrivals are modeled according to a gamma process. Simulations show that our MPEG-II traffic model generates, I,B,P frame sequences and frame sizes that closely match the sample MPEG-II stream traffic characteristics as they relate to latency and buffer occupancy in network queues. To achieve high multiplexing efficiency we propose a traffic shaping scheme which sets preferred 1-frame generation times among a group of encoders so as to minimize the overall variation in total offered traffic while still allowing the individual encoders to react to scene changes. Simulations show that our scheme results in multiplexing gains of up to 10% enabling us to multiplex twenty 6 Mbps MPEG-II video streams instead of 18 streams over an ATM/SONET OC3 link without latency or cell loss penalty. This scheme is due for a patent.

  12. Designing and application of SAN extension interface based on CWDM

    NASA Astrophysics Data System (ADS)

    Qin, Leihua; Yu, Shengsheng; Zhou, Jingli

    2005-11-01

    As Fibre Channel (FC) becomes the protocol of choice within corporate data centers, enterprises are increasingly deploying SANs in their data central. In order to mitigate the risk of losing data and improve the availability of data, more and more enterprises are increasingly adopting storage extension technologies to replicate their business critical data to a secondary site. Transmitting this information over distance requires a carrier grade environment with zero data loss, scalable throughput, low jitter, high security and ability to travel long distance. To address this business requirements, there are three basic architectures for storage extension, they are Storage over Internet Protocol, Storage over Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Storage over Dense Wavelength Division Multiplexing (DWDM). Each approach varies in functionality, complexity, cost, scalability, security, availability , predictable behavior (bandwidth, jitter, latency) and multiple carrier limitations. Compared with these connectiviy technologies,Coarse Wavelength Division Multiplexing (CWDM) is a Simplified, Low Cost and High Performance connectivity solutions for enterprises to deploy their storage extension. In this paper, we design a storage extension connectivity over CWDM and test it's electrical characteristic and random read and write performance of disk array through the CWDM connectivity, testing result show us that the performance of the connectivity over CWDM is acceptable. Furthermore, we propose three kinds of network architecture of SAN extension based on CWDM interface. Finally the credit-Based flow control mechanism of FC, and the relationship between credits and extension distance is analyzed.

  13. Final Report for the project titled "Enabling Supernova Computations by Integrated Transport and Provisioning Methods Optimized for Dedicated Channels"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malathi Veeraraghavan

    2007-10-31

    A high-speed optical circuit network is one that offers users rate-guaranteed connectivity between two endpoints, unlike today’s IP-routed Internet in which the rate available to a pair of users fluctuates based on the volume of competing traffic. This particular research project advanced our understanding of circuit networks in two ways. First, transport protocols were developed for circuit networks. In a circuit network, since bandwidth resources are reserved for each circuit on an end-to-end basis (much like how a person reserves a seat on every leg of a multi-segment flight), and the sender is limited to send at the rate ofmore » the circuit, there is no possibility of congestion during data transfer. Therefore, no congestion control functions are necessary in a transport protocol designed for circuits. However, error control and flow control are still required because bits can become errored due to noise and interference even on highly reliable optical links, and receivers can, due to multitasking or other reasons, not deplete the receive buffer fast enough to keep up with the sending rate (e.g., if the receiving host is multitasking between receiving a file transfer and some other computation). In this work, we developed two transport protocols for circuits, both of which are described below. Second, this project developed techniques for internetworking different types of connection-oriented networks, which are of two types: circuit-switched or packet-switched. In circuit-switched networks, multiplexing on links is “position based,” where “position” refers to the frequency, time slot, and port (fiber), while connection-oriented packet-switched networks use packet header information to demultiplex packets and switch them from node to node. The latter are commonly referred to as virtual circuit networks. Examples of circuit networks are time-division multiplexed Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Wavelength Division Multiplexing (WDM) networks, while examples of virtual-circuit networks are MultiProtocol Label Switched (MPLS) networks and Ethernet Virtual Local Area Network (VLAN) networks. A series of new technologies have been developed to carry Ethernet VLAN tagged frames on SONET/SDH and WDM networks, such as Generic Framing Procedure (GFP) and ITU G.709, respectively. These technologies form the basis of our solution for connection-oriented internetworking. The benefit of developing such an architecture is that it allows different providers to choose different connection-oriented networking technologies for their networks, and yet be able to allow their customers to connect to those of other providers. As Metcalfe, the inventor of Ethernet, noted, the value of a network service grows exponentially with the number of endpoints to which any single endpoint can connect. Therefore internetworking solutions are key to commercial success. The technical effectiveness of our solutions was measured with proof-of-concept prototypes and experiments. These solutions were shown to be highly effective. Economic feasibility requires business case analyses that were beyond the scope of this project. The project results are beneficial to the public as they demonstrate the viability of simultaneously supporting different types of networks and data communication services much like the variety of services available for the transportation of people and goods. For example, Fedex service offers a deadline based delivery while the USPS offers basic package delivery service. Similarly, a circuit network can offer a deadline based delivery of a data file while the IP-routed network offers only basic delivery service with no guarantees. Two project Web sites, 13 publications, 7 software programs, 21 presentations resulted from this work. This report provides the complete list of publications, software programs and presentations. As for student education and training (human resources), this DOE project, along with an NSF project, jointly supported two postdoctoral fellowships, three PhDs, three Masters, and two undergraduate students. Specifically, two of the Masters students were directly funded on this DOE project.« less

  14. A bandwidth efficient coding scheme for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Pietrobon, Steven S.; Costello, Daniel J., Jr.

    1991-01-01

    As a demonstration of the performance capabilities of trellis codes using multidimensional signal sets, a Viterbi decoder was designed. The choice of code was based on two factors. The first factor was its application as a possible replacement for the coding scheme currently used on the Hubble Space Telescope (HST). The HST at present uses the rate 1/3 nu = 6 (with 2 (exp nu) = 64 states) convolutional code with Binary Phase Shift Keying (BPSK) modulation. With the modulator restricted to a 3 Msym/s, this implies a data rate of only 1 Mbit/s, since the bandwidth efficiency K = 1/3 bit/sym. This is a very bandwidth inefficient scheme, although the system has the advantage of simplicity and large coding gain. The basic requirement from NASA was for a scheme that has as large a K as possible. Since a satellite channel was being used, 8PSK modulation was selected. This allows a K of between 2 and 3 bit/sym. The next influencing factor was INTELSAT's intention of transmitting the SONET 155.52 Mbit/s standard data rate over the 72 MHz transponders on its satellites. This requires a bandwidth efficiency of around 2.5 bit/sym. A Reed-Solomon block code is used as an outer code to give very low bit error rates (BER). A 16 state rate 5/6, 2.5 bit/sym, 4D-8PSK trellis code was selected. This code has reasonable complexity and has a coding gain of 4.8 dB compared to uncoded 8PSK (2). This trellis code also has the advantage that it is 45 deg rotationally invariant. This means that the decoder needs only to synchronize to one of the two naturally mapped 8PSK signals in the signal set.

  15. All-optical NRZ-to-RZ data format conversion with optically injected laser diode or semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-09-01

    By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.

  16. Integrated MEMS-based variable optical attenuator and 10Gb/s receiver

    NASA Astrophysics Data System (ADS)

    Aberson, James; Cusin, Pierre; Fettig, H.; Hickey, Ryan; Wylde, James

    2005-03-01

    MEMS devices can be successfully commercialized in favour of competing technologies only if they offer an advantage to the customer in terms of lower cost or increased functionality. There are limited markets where MEMS can be manufactured cheaper than similar technologies due to large volumes: automotive, printing technology, wireless communications, etc. However, success in the marketplace can also be realized by adding significant value to a system at minimal cost or leverging MEMS technology when other solutions simply will not work. This paper describes a thermally actuated, MEMS based, variable optical attenuator that is co-packaged with existing opto-electronic devices to develop an integrated 10Gb/s SONET/SDH receiver. The configuration of the receiver opto-electronics and relatively low voltage availability (12V max) in optical systems bar the use of LCD, EO, and electro-chromic style attenuators. The device was designed and fabricated using a silicon-on-insulator (SOI) starting material. The design and performance of the device (displacement, power consumption, reliability, physical geometry) was defined by the receiver parameters geometry. This paper will describe how these design parameters (hence final device geometry) were determined in light of both the MEMS device fabrication process and the receiver performance. Reference will be made to the design tools used and the design flow which was a joint effort between the MEMS vendor and the end customer. The SOI technology offered a robust, manufacturable solution that gave the required performance in a cost-effective process. However, the singulation of the devices required the development of a new singulation technique that allowed large volumes of silicon to be removed during fabrication yet still offer high singulation yields.

  17. Copper link evaluations/solutions for fiber channel, SSA, SONET, ATM, and other services through 4 Gb/sec: basic information, test results, and evaluation

    NASA Astrophysics Data System (ADS)

    Leib, Michael J.

    1995-10-01

    Technitrol, the original designer of MIL-STD-1553 transformers, the original military 1Mb/s LAN, has advanced the state of the art one further notch, introducing a series of transceivers that allow high speed (through 1 Gb/s) data transmission over copper wire instead of fiber optic cable. One such device can be employed to implement the Fiber Channel Interface as defined by hte X3T11 ANSI Fibre Channel Committee using either mini coax, Type 1 shielded twisted pair, twinax or video cable. The technology now exists to upgrade data transmission rates on current physical media to speeds formerly only available with fiber optic cabling. Copper transceiver technology provides a cost effective alternative for dealing with demanding high speed applications such as high speed serial data transfer, high speed disk and tape storage transfer, imaging telemetry, radar, and other avionics applications. Eye diagrams will be presented to show that excellent data transmission at rates of 1 gigabit/sec with low jitter is capable over mini coax at distances to approximately 50 meters, shielded twisted pair and twinax cable to distances of 105 meters, and video cable to distances of 175 meters. Distances are further at lower data rates. As a member of the X3T11 ANSI Fiber Channel Committee, Technitrol has developed a Physical Media (copper wire) Dependant (PMD) transceiver not only compliant with the Fibre Channel Specifications but exceeding the specifications by a factor greater than four. Conceivably, this opens high speed interconnections for today's high data rate requirements to copper cabling systems. Fibre Optic problems need not be dealt with to obtain data transfers for high speed information transfers.

  18. ACTS 118x Final Report High-Speed TCP Interoperability Testing

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Zernic, Mike; Hoder, Douglas J.; Brooks, David E.; Beering, Dave R.; Welch, Arun

    1999-01-01

    With the recent explosion of the Internet and the enormous business opportunities available to communication system providers, great interest has developed in improving the efficiency of data transfer using the Transmission Control Protocol (TCP) of the Internet Protocol (IP) suite. The satellite system providers are interested in solving TCP efficiency problems associated with long delays and error-prone links. Similarly, the terrestrial community is interested in solving TCP problems over high-bandwidth links. Whereas the wireless community is interested in improving TCP performance over bandwidth constrained, error-prone links. NASA realized that solutions had already been proposed for most of the problems associated with efficient data transfer over large bandwidth-delay links (which include satellite links). The solutions are detailed in various Internet Engineering Task Force (IETF) Request for Comments (RFCs). Unfortunately, most of these solutions had not been tested at high-speed (155+ Mbps). Therefore, the NASA's ACTS experiments program initiated a series of TCP experiments to demonstrate scalability of TCP/IP and determine how far the protocol can be optimized over a 622 Mbps satellite link. These experiments were known as the 118i and 118j experiments. During the 118i and 118j experiments, NASA worked closely with SUN Microsystems and FORE Systems to improve the operating system, TCP stacks. and network interface cards and drivers. We were able to obtain instantaneous data throughput rates of greater than 520 Mbps and average throughput rates of 470 Mbps using TCP over Asynchronous Transfer Mode (ATM) over a 622 Mbps Synchronous Optical Network (SONET) OC12 link. Following the success of these experiments and the successful government/industry collaboration, a new series of experiments. the 118x experiments. were developed.

  19. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-09-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. Scope of Submission The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities To submit to this special issue, follow the normal procedure for submission to JON, indicating "Optical Ethernet feature" in the "Comments" field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "Optical Ethernet." Additional information can be found on the JON website: http://www.osa-jon.org/submission/

  20. US LHCNet: Transatlantic Networking for the LHC and the U.S. HEP Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Harvey B; Barczyk, Artur J

    2013-04-05

    US LHCNet provides the transatlantic connectivity between the Tier1 computing facilities at the Fermilab and Brookhaven National Labs and the Tier0 and Tier1 facilities at CERN, as well as Tier1s elsewhere in Europe and Asia. Together with ESnet, Internet2, and other R&E Networks participating in the LHCONE initiative, US LHCNet also supports transatlantic connections between the Tier2 centers (where most of the data analysis is taking place) and the Tier1s as needed. Given the key roles of the US and European Tier1 centers as well as Tier2 centers on both continents, the largest data flows are across the Atlantic, wheremore » US LHCNet has the major role. US LHCNet manages and operates the transatlantic network infrastructure including four Points of Presence (PoPs) and currently six transatlantic OC-192 (10Gbps) leased links. Operating at the optical layer, the network provides a highly resilient fabric for data movement, with a target service availability level in excess of 99.95%. This level of resilience and seamless operation is achieved through careful design including path diversity on both submarine and terrestrial segments, use of carrier-grade equipment with built-in high-availability and redundancy features, deployment of robust failover mechanisms based on SONET protection schemes, as well as the design of facility-diverse paths between the LHC computing sites. The US LHCNet network provides services at Layer 1(optical), Layer 2 (Ethernet) and Layer 3 (IPv4 and IPv6). The flexible design of the network, including modular equipment, a talented and agile team, and flexible circuit lease management, allows US LHCNet to react quickly to changing requirements form the LHC community. Network capacity is provisioned just-in-time to meet the needs, as demonstrated in the past years during the changing LHC start-up plans.« less

  1. GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia

    NASA Astrophysics Data System (ADS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Holben, Brent; Eck, Thomas F.; Li, Zhengqiang; Song, Chul H.

    2018-01-01

    The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed to retrieve hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD had accuracy comparable to ground-based and other satellite-based observations but still had errors because of uncertainties in surface reflectance and simple cloud masking. In addition, near-real-time (NRT) processing was not possible because a monthly database for each year encompassing the day of retrieval was required for the determination of surface reflectance. This study describes the improved GOCI YAER algorithm version 2 (V2) for NRT processing with improved accuracy based on updates to the cloud-masking and surface-reflectance calculations using a multi-year Rayleigh-corrected reflectance and wind speed database, and inversion channels for surface conditions. The improved GOCI AOD τG is closer to that of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD than was the case for AOD from the YAER V1 algorithm. The V2 τG has a lower median bias and higher ratio within the MODIS expected error range (0.60 for land and 0.71 for ocean) compared with V1 (0.49 for land and 0.62 for ocean) in a validation test against Aerosol Robotic Network (AERONET) AOD τA from 2011 to 2016. A validation using the Sun-Sky Radiometer Observation Network (SONET) over China shows similar results. The bias of error (τG - τA) is within -0.1 and 0.1, and it is a function of AERONET AOD and Ångström exponent (AE), scattering angle, normalized difference vegetation index (NDVI), cloud fraction and homogeneity of retrieved AOD, and observation time, month, and year. In addition, the diagnostic and prognostic expected error (PEE) of τG are estimated. The estimated PEE of GOCI V2 AOD is well correlated with the actual error over East Asia, and the GOCI V2 AOD over South Korea has a higher ratio within PEE than that over China and Japan.

  2. Aerosol Properties under Air Quality Control Measures of APEC 2014 in Beijing

    NASA Astrophysics Data System (ADS)

    Chen, X.; Xu, H.; Lv, Y.; Xie, Y.; Li, K.; Li, Z.; Li, D.; Ma, Y.; Mei, X.

    2015-12-01

    Because the economic and society were developing fast in the middle of last century, Los Angeles and London both were polluted by photochemical smog, which massacred thousands of people. Now, many regions are often covered by heavy haze in those large developing countries, especially in China and India. The Asia-Pacific Economic Cooperation (APEC) was held in Beijing during 5-11 November 2014. Beijing, Hebei, Tianjin, Shandong, Shanxi, Inner Mongolia reduced air pollution emissions for the APEC 2014 meeting held in Beijing. Only in Hebei province, there were 1028 factories stopped or restricted and 881 construction sites stopped. Half of the cars were prohibited driving even in the Zibo city which is 400 km far from Beijing. For scientific aims, these control measures were indeed a huge and uncommon atmospheric experiment led by the government. During the experiment, what did the "APEC Blue" mean? We analyzed aerosol properties with the data of an AERONET site in Beijing which is located 500m far from the main reception hall of APEC 2014. The Cimel solar photometers can give a series parameters of aerosol and water vapor. In this paper, we used CE318 solar photometer which is the main instrument of NASA AERONET. The CE318 of RADI belongs to the Chinese SONET (Sun-sky radiometer Observation NETwork) too. We analyzed the total, coarse and fine Aerosol Optical Depth (AOD), Fine-Mode Fraction (FMF) and Ångström exponent, Size Distribution and Real Refractive Index. In conclusion, the aerosol properties were analysed with the measurements of a sun photometer. During the APEC 2014, AOD decreased obviously with a 0.27 mean value compared with the annual mean 0.7. Around Beijing, the southern is polluted emission area including the cross part of Shandong, Shanxi, Hebei, Henan four provinces, and the northern is clean for less fine mode particles emission in the large Inner Mongolia province. In fact, during the APEC 2014, the weather condition was not good for the pollutant diffusion, and the surrounding areas were all controlled. So the pollutant aerosol was mainly from local emissions. The humidity may have impact on particle's hygroscopic growth which contributed to the air pollution.

  3. Comparison of nutritional and antinutritional traits among different species (Lupinus albus L., Lupinus luteus L., Lupinus angustifolius L.) and varieties of lupin seeds.

    PubMed

    Musco, N; Cutrignelli, M I; Calabrò, S; Tudisco, R; Infascelli, F; Grazioli, R; Lo Presti, V; Gresta, F; Chiofalo, B

    2017-12-01

    In order to promote the use of lupin in pig nutrition, in this research the nutritional characteristics (i.e. dietary fibre, alkaloid and fatty acid profile) and the in vitro gas production of 12 lupin varieties grown in the Mediterranean basin and belonging to three lupin species (Lupinus albus, Lupinus angustifolius and Lupinus luteus) were assessed. Four varieties of L. albus (Asfer, Lublanc, Lutteur and Multitalia) were grown in South Campania. Three varieties of L. luteus (Dukat, Mister and Taper), three of L. angustifolius (Jindalee, Sonet and Wonga) and two of L. albus (Rosetta and Luxor) were grown in Eastern Sicily. Lupinus albus varieties showed interesting nutritional and dietetic characteristics (i.e. high protein and low fibre content); the lipid fraction, rather elevated, is well represented by monounsaturated fatty acids (544 g/kg), whereas saturated fatty acids (SFAs) are less represented (167 g/kg) and the n-3/n-6 ratio (0.510) is the most favourable. Lupinus luteus varieties presented the most remarkable dietetic aspects, in terms of polyunsaturated fatty acid (PUFA) content (569 g/kg), n-6 PUFA series (490 g/kg), UFA/SFA (5.24) and PUFA/SFA (3.56) ratios and atherogenic (0.059) and thrombogenic (0.100) indices and very low alkaloid content (1.07 mg per 100 g). Lupinus angustifolius varieties showed the least interesting nutritional and dietetic characteristics: low protein and fat content, high fibre level, high SFA amount (248 g/kg) and the lowest favourable nutritional indices (IA: 0.164 and IT: 0.334). Regarding the fermentation process, in L. albus, the tendency to increase the rate of gas production during the early stages of fermentation suggests that the high presence of alkaloids did not affect the in vitro degradability, production of short-chain fatty acids and fermentation process, probably due to their concentration and/or water solubility. Lupinus angustifolius and L. luteus showed intermediate and slightly worse in vitro fermentation patterns respectively. From a nutritional and dietetic point of view, lupin may represent an interesting alternative to soya bean in pig feeding. Journal of Animal Physiology and Animal Nutrition © 2017 Blackwell Verlag GmbH.

  4. GOCI Yonsei aerosol retrieval version 2 aerosol products: improved algorithm description and error analysis with uncertainty estimation from 5-year validation over East Asia

    NASA Astrophysics Data System (ADS)

    Choi, M.; Kim, J.; Lee, J.; KIM, M.; Park, Y. J.; Holben, B. N.; Eck, T. F.; Li, Z.; Song, C. H.

    2017-12-01

    The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed for retrieving hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD showed comparable accuracy compared to ground-based and other satellite-based observations, but still had errors due to uncertainties in surface reflectance and simple cloud masking. Also, it was not capable of near-real-time (NRT) processing because it required a monthly database of each year encompassing the day of retrieval for the determination of surface reflectance. This study describes the improvement of GOCI YAER algorithm to the version 2 (V2) for NRT processing with improved accuracy from the modification of cloud masking, surface reflectance determination using multi-year Rayleigh corrected reflectance and wind speed database, and inversion channels per surface conditions. Therefore, the improved GOCI AOD ( ) is similar with those of Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD compared to V1 of the YAER algorithm. The shows reduced median bias and increased ratio within range (i.e. absolute expected error range of MODIS AOD) compared to V1 in the validation results using Aerosol Robotic Network (AERONET) AOD ( ) from 2011 to 2016. The validation using the Sun-Sky Radiometer Observation Network (SONET) over China also shows similar results. The bias of error ( is within -0.1 and 0.1 range as a function of AERONET AOD and AE, scattering angle, NDVI, cloud fraction and homogeneity of retrieved AOD, observation time, month, and year. Also, the diagnostic and prognostic expected error (DEE and PEE, respectively) of are estimated. The estimated multiple PEE of GOCI V2 AOD is well matched with actual error over East Asia, and the GOCI V2 AOD over Korea shows higher ratio within PEE compared to over China and Japan. Hourly AOD products based on the improved GOCI YAER AOD could contribute to better understandings of aerosols in terms of long-term climate changes and short-term air quality monitoring and forecasting perspectives over East Asia, especially rapid diurnal variation and transboundary transport.

  5. Kyanite-garnet gneisses of the Kåfjord Nappe - North Norwegian Caledonides: P-T conditions and monazite Th-U-Pb dating

    NASA Astrophysics Data System (ADS)

    Ziemniak, Grzegorz; Kośmińska, Karolina; Majka, Jarosław; Janák, Marian; Manecki, Maciej

    2016-04-01

    The Kåfjord Nappe is the part of the Skibotn Nappe Complex traditionally ascribed to the Upper Allochthon of the North Norwegian Caledonides. Pressure-temperature (P-T) conditions and metamorphic age of the Kåfjord Nappe are not well constrained, geochronological data are limited to a single Rb-Sr age of c. 440 Ma (Dangla et al. 1978). Metamorphic evolution of kyanite-garnet gneisses of the Kåfjord Nappe is presented here. The kyanite-garnet gneisses are associated with a few meters thick amphibolite lenses. The gneisses mainly consist of quartz, plagioclase, biotite, muscovite, garnet, kyanite, and rutile. Retrograde minerals are represented by sillimanite and chlorite. Garnet occurs as two textural types. Garnet-I forms euhedral porphyroblasts with multiple small inclusions. Profiles through garnet-I show chemical zonation in all components. The composition varies from Alm64-68Prp11-16Grs13-18Sps2-8 in the core to Alm68-70Prp17-18Grs10-13Sps1-3 in the rim. Garnet-II is subhedral to anhedral, its core is inclusion-rich, whereas rim contains only single inclusions. Chemical composition of garnet-II is similar to that of the garnet-I rim. P-T conditions have been estimated using the garnet-biotite-muscovite-plagioclase (GBPM) geothermobarometer (Holdaway, 2001; Wu, 2014). Calculated peak P-T metamorphic conditions are 610-625 °C and 7.6-8.2 kbar corresponding to the amphibolite facies conditions. Phase equilibrium modelling in the NCKFMMnASH system yields peak metamorphic conditions of c. 620 °C at 8 kbar. Growth conditions of garnet-I core modelled in the NCKFMMnASH system are c. 570 °C at 9.7 kbar. Chemical Th-U-total Pb monazite dating has been performed. Preliminary dating results from the kyanite-garnet gneiss of the Kåfjord Nappe yield an array of dates from 468 Ma to 404 Ma. There is a correlation between an increase of yttrium content and decrease of monazite single dates. Compositional maps confirm an increase of yttrium towards the rim of the monazite. This work is partially funded by AGH research grant no 11.11.140.319. References: Dangla, P., Damange, J. C., Ploquin, A., Quarnadel, J. M., Sonet, J., 1978. Donn'es geochronlogiques sur les Caledonides Scandinaves septentrionates (Troms, Norway du Nord). C. r. Acad. Sci. Paris, 286 D, 1653-1656. Holdaway, M. J., 2001. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86(10), 1117-1129. Wu, C. M., 2015. Revised empirical garnet-biotite-muscovite-plagioclase geobarometer in metapelites. Journal of Metamorphic Geology, 33(2), 167-176.

  6. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-02-01

    Call for Papers: Convergence Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:

  7. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-03-01

    Call for Papers: Convergence Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:

  8. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-08-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques

  9. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-06-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques

  10. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-05-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques

  11. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-04-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques

  12. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-09-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques To submit to this special issue, follow the normal procedure for submission to JON, indicating "Convergence feature" in the "Comments" field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "Convergence." Additional information can be found on the JON website: http://www.osa-jon.org/submission/ Submission Deadline: 1 October 2005

  13. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2004-12-01

    Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:

    • Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks
    • Integration strategies for multiservice transport platforms
    • Access methods that bridge traditional and emerging services
    • Network signaling and control methodologies
    • All-optical packet routing and switching techniques

    Manuscript Submission

    To submit to this special issue, follow the normal procedure for submission to JON, indicating "Convergence feature" in the "Comments" field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "Convergence." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Submission Deadline: 1 July 2005

  14. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-01-01

    Call for Papers: Convergence

    Guest Editors: Thomas E. Darcie, University of Victoria Robert Doverspike, AT&T Martin Zirngibl, Lucent Technologies

    Coordinating Associate Editor: Steven K. Korotky, Lucent Technologies

    The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:
    • Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks
    • Integration strategies for multiservice transport platforms
    • Access methods that bridge traditional and emerging services
    • Network signaling and control methodologies
    • All-optical packet routing and switching techniques

    Manuscript Submission

    To submit to this special issue, follow the normal procedure for submission to JON, indicating "Convergence feature" in the "Comments" field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "Convergence." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Submission Deadline: 1 July 2005

Top