Sample records for sonically assisted filtration

  1. Methods for Purifying Enzymes for Mycoremediation

    NASA Technical Reports Server (NTRS)

    Cullings, Kenneth W. (Inventor); DeSimone, Julia C. (Inventor); Paavola, Chad D. (Inventor)

    2014-01-01

    A process for purifying laccase from an ectomycorrhizal fruiting body is disclosed. The process includes steps of homogenization, sonication, centrifugation, filtration, affinity chromatography, ion exchange chromatography, and gel filtration. Purified laccase can also be separated into isomers.

  2. Towards enhanced automated elution systems for waterborne protozoa using megasonic energy.

    PubMed

    Horton, B; Katzer, F; Desmulliez, M P Y; Bridle, H L

    2018-02-01

    Continuous and reliable monitoring of water sources for human consumption is imperative for public health. For protozoa, which cannot be multiplied efficiently in laboratory settings, concentration and recovery steps are key to a successful detection procedure. Recently, the use of megasonic energy was demonstrated to recover Cryptosporidium from commonly used water industry filtration procedures, forming thereby a basis for a simplified and cost effective method of elution of pathogens. In this article, we report the benefits of incorporating megasonic sonication into the current methodologies of Giardia duodenalis elution from an internationally approved filtration and elution system used within the water industry, the Filta-Max®. Megasonic energy assisted elution has many benefits over current methods since a smaller final volume of eluent allows removal of time-consuming centrifugation steps and reduces manual involvement resulting in a potentially more consistent and more cost-effective method. We also show that megasonic sonication of G. duodenalis cysts provides the option of a less damaging elution method compared to the standard Filta-Max® operation, although the elution from filter matrices is not currently fully optimised. A notable decrease in recovery of damaged cysts was observed in megasonic processed samples, potentially increasing the abilities of further genetic identification options upon isolation of the parasite from a filter sample. This work paves the way for the development of a fully automated and more cost-effective elution method of Giardia from water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The bovine immune response to Brucella abortus. III. Preparation of antisera against a Brucella component precipitated by sera of some infected cattle.

    PubMed Central

    Stemshorn, B; Nielsen, K; Samagh, B

    1981-01-01

    Two methods are described for the partial purification of a high molecular weight, heat-resistant component (CO1) of sonicates of smooth and rough Brucella abortus which is precipitated by sera of some infected cattle. Method 1, a combination of gel filtration chromatography and polyacrylamide gel electrophoresis, was used to prepare CO1 from sonicates of a smooth field strain of B. abortus. Method 2, a combination of gel filtration chromatography and heat treatment, was used to obtain CO1, from sonicates of rough B. abortus strain 45/20. Rabbit antisera produced against CO1 prepared by either method contained only CO1 precipitins but were negative in standard agglutination and complement fixation tests conducted with whole cell antigens. Evidence is presented that CO1 is identical to Brucella antigen A2, and it is proposed that in future the designation A2 be employed. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:6791797

  4. Sonochemical enzyme-catalyzed regioselective acylation of flavonoid glycosides.

    PubMed

    Ziaullah; Rupasinghe, H P Vasantha

    2016-04-01

    This work compares a highly efficient and alternative method of sonication-assisted lipase catalyzed acylation of quercetin-3-O-glucoside and phloretin-2'-glucoside, using Candida antarctica lipase B (Novozyme 435(®)), with a range of fatty acids. In this study, sonication-assisted irradiation coupled with stirring has been found to be more efficient and economical than conventional reaction conditions. Sonication-assisted acylation accelerated the reactions and reduced the time required by 4-5 folds. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Enhancing antibacterial effect of sodium hypochlorite by low electric current-assisted sonic agitation

    PubMed Central

    Maden, Murat; Ertuğrul, İhsan Furkan; Erik, Cevat Emre; Yetiş, Ceylan Çağıl; Tuncer, Yasin; Kahriman, Mesud

    2017-01-01

    Background This research focused on the effects of low electric current (μE)-assisted sonic agitation of sodium hypochlorite on Enterococcus faecalis infected human root dentin. Methods Extracted human canine roots were instrumented, sterilized, and experimentally contaminated with E. faecalis. After incubation for 21 days, the presence of the biofilm was confirmed by scanning electron microscopy (n = 3). Roots were randomly divided into seven groups according to decontamination procedures: G1: no treatment; G2: sterile saline; G3: 5.25% sodium hypochlorite; G4: passive ultrasonic irrigation; G5: EndoActivator (Dentsply Tulsa Dental Specialties, Tulsa, OK) agitation (EA); G6: μE agitation; and G7: μE-assisted sonic agitation. Fixed μE amperage and intensities were applied in G6 and G7. Following microbial sampling, bacterial colonies were counted using the direct plating method. Results Biofilm was not eradicated in any sample. The μE-assisted sonic agitation of sodium hypochlorite revealed the lowest cfu values (p<0.05), whereas there were no significant differences among the passive ultrasonic irrigation, EndoActivator and μE agitation alone (p>0.05). Conclusions Based on available evidence, the following conclusions were drawn: The μE-assisted sonic agitation increased the antibiofilm efficiency of sodium hypochlorite than passive ultrasonic irrigation and EndoActivator. The μE-assisted sonic agitation on 5.25% sodium hypochlorite is not capable to eradicate biofilms at 10mA energy level in 60s. PMID:28854274

  6. Enhancing antibacterial effect of sodium hypochlorite by low electric current-assisted sonic agitation.

    PubMed

    Maden, Murat; Ertuğrul, İhsan Furkan; Orhan, Ekim Onur; Erik, Cevat Emre; Yetiş, Ceylan Çağıl; Tuncer, Yasin; Kahriman, Mesud

    2017-01-01

    This research focused on the effects of low electric current (μE)-assisted sonic agitation of sodium hypochlorite on Enterococcus faecalis infected human root dentin. Extracted human canine roots were instrumented, sterilized, and experimentally contaminated with E. faecalis. After incubation for 21 days, the presence of the biofilm was confirmed by scanning electron microscopy (n = 3). Roots were randomly divided into seven groups according to decontamination procedures: G1: no treatment; G2: sterile saline; G3: 5.25% sodium hypochlorite; G4: passive ultrasonic irrigation; G5: EndoActivator (Dentsply Tulsa Dental Specialties, Tulsa, OK) agitation (EA); G6: μE agitation; and G7: μE-assisted sonic agitation. Fixed μE amperage and intensities were applied in G6 and G7. Following microbial sampling, bacterial colonies were counted using the direct plating method. Biofilm was not eradicated in any sample. The μE-assisted sonic agitation of sodium hypochlorite revealed the lowest cfu values (p<0.05), whereas there were no significant differences among the passive ultrasonic irrigation, EndoActivator and μE agitation alone (p>0.05). Based on available evidence, the following conclusions were drawn: The μE-assisted sonic agitation increased the antibiofilm efficiency of sodium hypochlorite than passive ultrasonic irrigation and EndoActivator. The μE-assisted sonic agitation on 5.25% sodium hypochlorite is not capable to eradicate biofilms at 10mA energy level in 60s.

  7. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells.

    PubMed

    Wu, J; Lin, L; Chau, F T

    2001-10-01

    Ultrasound-assisted extraction was evaluated as a simpler and more effective alternative to conventional extraction methods for the isolation of ginsenosides (saponins) from various types of ginseng. The ginseng samples were extracted with different solvents, under either direct sonication by an ultrasound probe horn or indirect sonication in an ultrasound cleaning bath. The ultrasonic extraction was compared with the conventional method of refluxing boiling solvents in a soxhlet extractor, on the yields of both the total saponin isolated by thin-layer chromatography and the individual ginsenosides by high performance liquid chromatography. It was found that the sonication-assisted extraction of ginseng saponins was about three times faster than the traditional extraction method. The ultrasonic extraction was not only more efficient but also convenient for the recovery and purification of the active ingredients of plant materials. In addition, the sonication-assisted extraction can be carried out at lower temperatures which are favorable for the thermally unstable compounds.

  8. Fast and fully-scalable synthesis of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Abdolhosseinzadeh, Sina; Asgharzadeh, Hamed; Seop Kim, Hyoung

    2015-05-01

    Exfoliation of graphite is a promising approach for large-scale production of graphene. Oxidation of graphite effectively facilitates the exfoliation process, yet necessitates several lengthy washing and reduction processes to convert the exfoliated graphite oxide (graphene oxide, GO) to reduced graphene oxide (RGO). Although filtration, centrifugation and dialysis have been frequently used in the washing stage, none of them is favorable for large-scale production. Here, we report the synthesis of RGO by sonication-assisted oxidation of graphite in a solution of potassium permanganate and concentrated sulfuric acid followed by reduction with ascorbic acid prior to any washing processes. GO loses its hydrophilicity during the reduction stage which facilitates the washing step and reduces the time required for production of RGO. Furthermore, simultaneous oxidation and exfoliation significantly enhance the yield of few-layer GO. We hope this one-pot and fully-scalable protocol paves the road toward out of lab applications of graphene.

  9. New filtration system for efficient recovery of waterborne Cryptosporidium oocysts and Giardia cysts.

    PubMed

    Al-Sabi, M N S; Gad, J A; Riber, U; Kurtzhals, J A L; Enemark, H L

    2015-09-01

    To develop a filtration unit for efficient recovery of waterborne Cryptosporidium oocysts and Giardia cysts ((oo-)cysts) in drinking water. This unit utilizes a metallic filter and an ultrasound transducer for eluting (oo-)cysts, with a fixed retentate backwash volume; approx. 400 μl. Changes in the viability was evaluated by seeding wild type (oo-)cysts (1 × 10(4)) followed by sonication for 5, 10, 20 or 40 s (five replicates for each period). Flow cytometry analysis showed negligible increase in the mortality of (oo-)cysts exposed to 5-10 s of sonication. Recovery rate was assessed by seeding ColorSeed(™) (10 replicates) into the filter unit followed by air backwash to a glass slide and counting of (oo-)cysts by epifluorescent microscopy. High recovery rates (mean ± SD) were found: 84·9% ± 4·8 for Giardia cysts and 70% ± 6·5 for Cryptosporidium oocysts. DNA of seeded wild type (oo-)cysts (1 × 10(2); 10 replicates) was successfully amplified using real-time PCR. The use of a metallic filter, sonication and 'air backwash' were key factors for creating a highly efficient system for recovery of apparently undamaged protozoa. This reagent-less system can be used for monitoring of parasite contamination in drinking water. © 2015 The Society for Applied Microbiology.

  10. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    PubMed

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  11. Particle emissions from laboratory activities involving carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lo, Li-Ming; Tsai, Candace S.-J.; Heitbrink, William A.; Dunn, Kevin H.; Topmiller, Jennifer; Ellenbecker, Michael

    2017-08-01

    This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20-30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87 μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.

  12. Low frequency sonic waves assisted cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator.

    PubMed

    Murugesan, Sivananth; Iyyaswami, Regupathi

    2017-08-15

    Low frequency sonic waves, less than 10kHz were introduced to assist cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator present within the crude broth. Process parameters including surfactant system variables and sonication parameters were studied for their effect on extraction efficiency. Introduction of low frequency sonic waves assists in the dissolution of microbial cell wall by the surfactant micelles and release of cellular content, polyhydroxyalkanoate granules released were encapsulated by the micelle core which was confirmed by crotonic acid assay. In addition, sonic waves resulted in the separation of homogeneous surfactant and broth mixture into two distinct phases, top aqueous phase and polyhydroxyalkanoate enriched bottom surfactant rich phase. Mixed surfactant systems showed higher extraction efficiency compared to that of individual Triton X-100 concentrations, owing to increase in the hydrophobicity of the micellar core and its interaction with polyhydroxyalkanoate. Addition of salts to the mixed surfactant system induces screening of charged surfactant head groups and reduces inter-micellar repulsion, presence of ammonium ions lead to electrostatic repulsion and weaker cation sodium enhances the formation of micellar network. Addition of polyethylene glycol 8000 resulted in increasing interaction with the surfactant tails of the micelle core there by reducing the purity of polyhydroxyalkanoate. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthesis of ZnO Nanocrystal-Graphene Composite by Mechanical Milling and Sonication-Assisted Exfoliation

    NASA Astrophysics Data System (ADS)

    Arora, Sweety; Srivastava, Chandan

    2017-02-01

    A ZnO nanocrystal-graphene composite was synthesized by a two-step method involving mechanical milling and sonication-assisted exfoliation. Zn metal powder was first ball-milled with graphite powder for 30 h in water medium. This ball-milled mixture was then subjected to exfoliation by sonication in the presence of sodium lauryl sulfate surfactant to produce graphene decorated with spherical agglomerates of ultrafine nanocrystalline ZnO. The presence of a few layers of graphene was confirmed by Raman spectroscopy and atomic force microscopy measurements. The size, phase identity and composition of the ZnO nanocrystals was determined by transmission electron microscopy measurements.

  14. A Simple Sonication Improves Protein Signal in Matrix-Assisted Laser Desorption Ionization Imaging

    NASA Astrophysics Data System (ADS)

    Lin, Li-En; Su, Pin-Rui; Wu, Hsin-Yi; Hsu, Cheng-Chih

    2018-02-01

    Proper matrix application is crucial in obtaining high quality matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). Solvent-free sublimation was essentially introduced as an approach of homogeneous coating that gives small crystal size of the organic matrix. However, sublimation has lower extraction efficiency of analytes. Here, we present that a simple sonication step after the hydration in standard sublimation protocol significantly enhances the sensitivity of MALDI MSI. This modified procedure uses a common laboratory ultrasonicator to immobilize the analytes from tissue sections without noticeable delocalization. Improved imaging quality with additional peaks above 10 kDa in the spectra was thus obtained upon sonication treatment. [Figure not available: see fulltext.

  15. Moisture and temperature influence on mechanical behavior of PPS/buckypapers carbon fiber laminates

    NASA Astrophysics Data System (ADS)

    Rojas, J. A.; Santos, L. F. P.; Costa, M. L.; Ribeiro, B.; Botelho, E. C.

    2017-07-01

    In this work, multiwall carbon nanotubes (MWCNT) were dispersed in water with the assistance of water based surfactant and then sonicated in order to obtain a very well dispersed solution. The suspension was filtrate under vaccum conditions, generating a thin film called buckypapers (BP). Poly (phenylene sulphide) (PPS) reinforced carbon fiber (CF) and PPS reinforced CF/BP composites were manufactured through hot compression molding technique. Subsequently the samples were exposed to extreme humidity (90% of moisture) combined with high temperature (80 °C). The mechanical properties of the laminates were evaluated by dynamic mechanical analysis, compression shear test, interlaminar shear strength and impulse excitation of vibration. Volume fraction of pores were 10.93% for PPS/CF and 16.18% for PPS/BP/CF, indicating that the hot compression molding parameters employed in this investigation (1.4 MPa, 5 min and 330 °C) affected both the consolidation quality of the composites and the mechanical properties of the final laminates.

  16. Extraction of valuable compounds from mangosteen pericarps by hydrothermal assisted sonication

    NASA Astrophysics Data System (ADS)

    Machmudah, Siti; Lestari, Sarah Duta; Shiddiqi, Qifni Yasa'Ash; Widiyastuti, Winardi, Sugeng; Wahyudiono, Kanda, Hideki; Goto, Motonobu

    2015-12-01

    Valuable compounds, such as xanthone and phenolic compounds, from mangosteen pericarps was extracted by hydrothermal treatment at temperatures of 120-160 °C and pressures of 5 MPa using batch and semi-batch extractor. This method is a simple and environmentally friendly extraction method requiring no chemicals other than water. Under these conditions, there is possibility for the formation of phenolic compounds from mangosteen pericarps from decomposition of bounds between lignin, cellulose, and hemicellulose via autohydrolysis. In order to increase the amount of extracted valuable compounds, sonication pre-treament was performed prior to the hydrothermal extraction process. 30 min of sonication pre-treatment could increase significantly the amount of xanthone and phenolic compounds mangosteen pericarps extraction. In batch-system, the xanthone recovery approach to 100 % at 160 °C with 30 min sonication pre-treatment for 150 min extraction time. Under semi-batch process, the total phenolic compounds in the extract was 217 mg/g sample at 160 °C with 30 min sonication pre-treatment for 150 min total extraction time. The results revealed that hydrothermal extraction assisted sonication pre-treatment is applicable method for the isolation of polyphenolic compounds from other types of biomass and may lead to an advanced plant biomass components extraction technology.

  17. Microwave-Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (Postprint)

    DTIC Science & Technology

    2012-02-01

    Baggiani, A. and Senesi, S. (2004). Effect of Microwave Radiation on Bacillus subtilis Spores . J. Appl. Microbiol. 97: 1220–1227. Damit, B., Lee, C.N...AFRL-RX-TY-TP-2012-0020 MICROWAVE-IRRADIATION-ASSISTED HVAC FILTRATION FOR INACTIVATION OF VIRAL AEROSOLS POSTPRINT Myung-Heui Woo and...12-APR-2011 -- 11-DEC-2011 Microwave Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (POSTPRINT) FA8650-06-C-5913 0602102F

  18. Robotically assisted velocity-sensitive triggered focused ultrasound surgery

    NASA Astrophysics Data System (ADS)

    Maier, Florian; Brunner, Alexander; Jenne, Jürgen W.; Krafft, Axel J.; Semmler, Wolfhard; Bock, Michael

    2012-11-01

    Magnetic Resonance (MR) guided Focused Ultrasound Surgery (FUS) of abdominal organs is challenging due to breathing motion and limited patient access in the MR environment. In this work, an experimental robotically assisted FUS setup was combined with a MR-based navigator technique to realize motion-compensated sonications and online temperature imaging. Experiments were carried out in a static phantom, during periodic manual motion of the phantom without triggering, and with triggering to evaluate the triggering method. In contrast to the non-triggered sonication, the results of the triggered sonication show a confined symmetric temperature distribution. In conclusion, the velocity sensitive navigator can be employed for triggered FUS to compensate for periodic motion. Combined with the robotic FUS setup, flexible treatment of abdominal targets might be realized.

  19. Role of predation by zooplankton in transport and fate of protozoan (oo)cysts in granular activated carbon filtration.

    PubMed

    Bichai, Françoise; Barbeau, Benoit; Dullemont, Yolanda; Hijnen, Wim

    2010-02-01

    The significance of zooplankton in the transport and fate of pathogenic organisms in drinking water is poorly understood, although many hints of the role of predation in the persistence of microorganisms through water treatment processes can be found in literature. The objective of this study was to assess the impact of predation by natural zooplankton on the transport and fate of protozoan (oo)cysts in granular activated carbon (GAC) filtration process. UV-irradiated unlabelled Cryptosporidium parvum and Giardia lamblia (oo)cysts were seeded into two pilot-scale GAC filtration columns operated under full-scale conditions. In a two-week period after seeding, a reduction of free (oo)cysts retained in the filter bed was observed. Zooplankton was isolated from the filter bed and effluent water on a 30 microm net before and during the two-week period after seeding; it was enumerated and identified. Rotifers, which are potential predators of (oo)cysts, accounted for the major part of the isolated zooplankton. Analytical methods were developed to detect (oo)cysts internalized in natural zooplankton isolated from the filter bed and effluent water. Sample sonication was optimized to disrupt zooplankton organisms and release internalized microorganisms. (Oo)cysts released from zooplankton after sonication were isolated by IMS and stained (EasyStain) for microscopic counting. Both Cryptosporidium and Giardia (oo)cysts were detected in association with zooplankton in the filter bed samples as well as in the effluent of GAC filters. The results of this study suggest that predation by zooplankton can play a role in the remobilization of persistent pathogens such as Cryptosporidium and Giardia (oo)cysts retained in GAC filter beds, and consequently in the transmission of these pathogens in drinking water. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Polymeric Mold For Providing A Microscale Part

    DOEpatents

    Boehme, Dale R.; Bankert, Michelle A.; Christenson, Todd R.

    2005-01-11

    The invention is a developer system for developing a PMMA photoresist having exposed patterns comprising features having both very small sizes, and very high aspect ratios. The developer system of the present invention comprises a developer tank, an intermediate rinse tank and a final rinse tank, each tank having a source of high frequency sonic agitation, temperature control, and continuous filtration. It has been found that by moving a patterned wafer, through a specific sequence of developer/rinse solutions, where an intermediate rinse solution completes development of those portions of the exposed resist left undeveloped after the development solution, by agitating the solutions with a source of high frequency sonic vibration, and by adjusting and closely controlling the temperatures and continuously filtering and recirculating these solutions, it is possible to maintain the kinetic dissolution of the exposed PMMA polymer as the rate limiting step.

  1. Evaluation of human response to structural vibration induced by sonic boom

    NASA Technical Reports Server (NTRS)

    Sutherland, L. C.; Czech, J.

    1992-01-01

    This paper addresses the topic of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. The paper reexamines some of the issues addressed in the previous extensive coverage of the topic, primarily by NASA, and attempts to offer a fresh viewpoint for some of the problems that may assist in reassessing the potential impact of sonic boom over populated areas. The topics addressed are: (1) human response to vibration; (2) criteria for, and acoustic signature of rattle; (3) structural response to shaped booms, including definition of two new descriptors for assessing the structural response to sonic boom; and (4) a detailed review of the previous NASA/FAA Sonic Boom Test Program involving structural response measurements at Edwards AFB and an initial estimate of structural response to sonic booms from possible high speed civil transport configurations. Finally, these estimated vibration responses are shown to be substantially greater than the human response and rattle criteria developed earlier.

  2. ZnO-based transparent conductive thin films via sonicated-assisted sol-gel technique

    NASA Astrophysics Data System (ADS)

    Malek, M. F.; Mamat, M. H.; Ismail, A. S.; Yusoff, M. M.; Mohamed, R.; Rusop, M.

    2018-05-01

    We report on the growth of Al-doped ZnO (AZO) thin films onto Corning 7740 glass substrates via sonicated-assisted sol-gel technique. The influence of Al dopant on crystallisation behavior, optical and electrical properties of AZO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction <002>. All films exhibit a transmittance above than 80-90 % along the visible range up to 800 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO.

  3. Effect of acid fruit juices combined with electric or sonic toothbrushing on root dentin permeability--an in vitro study.

    PubMed

    Batitucci, Roberta Grasselli; Zandim, Daniela Leal; Rocha, Fernanda Regina Godoy; Pinheiro, Michele Carolina; Fontanari, Lucas Amaral; Sampaio, José Eduardo Cezar

    2012-01-01

    The purpose of this in vitro study was to quantify the alterations on human root dentin permeability after exposure to different acid fruit juices and to evaluate the effect of toothbrushing with electric or sonic toothbrush after acid exposure. The root dentin of 50 extracted third molars was exposed with a high speed bur. Crowns were sectioned above the cementoenamel junction and root fragments were used to prepare dentin specimens. Specimens were randomly assigned to 5 groups according to the fruit juice (kiwifruit, starfruit, green apple, pineapple and acerolla). Each specimen was connected to a hydraulic pressure apparatus to measure root dentin permeability using fluid filtration method after the following sequential steps: I) conditioning with 37% phosphoric acid for 30 s, II) root scaling, III) exposure to acid fruit juices for 5 min and IV) electric or sonic toothbrushing without dentifrice for 3 min. Data were analyzed statistically by the Wilcoxon and Mann-Whitney tests at 5% significance level. All fruit juices promoted a significant increase of dentin permeability while toothbrushing decreased it significantly (p<0.05). It may be concluded that all acid fruit juices increased root dentin permeability, while toothbrushing without dentifrice after acid exposure decreased the permeability. The toothbrush mechanism (electric or sonic) had no influence on the decrease of root dentin permeability.

  4. Immobilization of Energetics on Live Fire Ranges (CU-1229). Revision 1.0

    DTIC Science & Technology

    2004-07-31

    Its cost ultimately may be prohibitive for large scale application in some areas, but its humic composition should aid adsorption of energetics and/or...acetonitrile) to sterile glass bottles, evaporating the solvent under a stream of nitrogen, adding a known volume of CaCl2, and sonicating/mixing until all...filtration)- Same as (a) above, except that the cleared supernatant was passed through a 0.45 µm glass fiber syringe filter prior to scintillation counting

  5. Determination of soluble and insoluble dietary fiber in psyllium-containing cereal products.

    PubMed

    Lee, S C; Rodriguez, F; Storey, M; Farmakalidis, E; Prosky, L

    1995-01-01

    A method for soluble and insoluble dietary fiber determinations was developed for psyllium-containing food products, which are highly viscous in aqueous solutions. The assay is based on a modification of the AOAC soluble and insoluble dietary fiber method (991.43), which was recommended for nutrition labeling in the final U.S. food labeling regulations. We found that method 991.43 and other existing dietary fiber methods could not be applied to psyllium food products, which exhibit high viscosity in aqueous solutions, because highly viscous solutions could not be filtered easily. In this study, we modified AOAC method 991.43 to accommodate the filtration process of viscous sample solutions. Sonication followed by high-speed centrifugation was used before filtration. The principles of the method are similar to those for AOAC method 991.43, including the use of the same 3 enzymes (heat-stable alpha-amylase, protease, and amyloglucosidase) as well as similar enzyme incubation conditions. The modification using sonication and high-speed centrifugation did not alter the method performance for analytically normal products such as wheat bran, oat bran, and soy fiber. Yet, the modification allowed the separation of soluble dietary fiber fractions from insoluble fractions for psyllium products with satisfactory precision. This method for psyllium dietary fiber determinations may be applied to other food products that exhibit high viscosity in aqueous solutions.

  6. Evaluation of human response to structural vibrations induced by sonic booms

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Czech, J.

    1992-01-01

    The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material.

  7. Environmental friendly cold-mechanical/sonic enzymatic assisted extraction of genipin from genipap (Genipa americana).

    PubMed

    Ramos-de-la-Peña, Ana Mayela; Renard, Catherine M G C; Wicker, Louise; Montañez, Julio C; García-Cerda, Luis Alfonso; Contreras-Esquivel, Juan Carlos

    2014-01-01

    An efficient cold-mechanical/sonic-assisted extraction technique was developed for extraction of genipin from genipap (Genipa americana) peel. Ultrasound assisted extraction (285 W, 24 kHz) was performed at 5, 10 and 15 °C for 5, 10 and 15 min. After cold-extraction, genipin was separated from pectin and proteins by aid of fungal pectinesterase. The maximum yield of non-cross-linked genipin was 7.85±0.33 mg/g, at 10 °C for 15 min by means of ultrasound extraction. The protein amount in extracts decreased in all samples. If mechanical process is combined with ultrasound assisted extraction the yield is increased by 8 times after the pectinesterase-assisted polyelectrolyte complex formation between pectic polysaccharides and proteins, avoiding the typical cross-linking of genipin. This novel process is viable to obtain non-cross-linked genipin, to be used as a natural colorant and cross-linker in the food and biotechnological industries. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Optimizing dewaterability of drinking water treatment sludge by ultrasound treatment: Correlations to sludge physicochemical properties.

    PubMed

    Meng, Zhili; Zhou, Zhiwei; Zheng, Dan; Liu, Lujian; Dong, Jun; Yang, Yanling; Li, Xing; Zhang, Tingting

    2018-07-01

    Sludge dewatering has proven to be an effective method to reduce the volume of sludge. In this study, drinking water treatment sludge (DWTS) was treated by ultra-sonication under variable conditions comparing two sonoreactor types (bath and probe), four frequencies (25, 40, 68, 160 kHz) and four energy density levels (0.03, 1, 3, 5 W/mL). The effects of these conditions were studied using specific resistance to filtration and capillary suction time as measures of dewaterability, and floc size, the Brunauer, Emmett and Teller (BET) specific surface area and Zeta potential to determine treated sludge characteristics. The results indicated that the dewaterability of sonicated sludge improved at relatively low energy densities of 0.03 and 1.0 W/mL, while an optimum for sonication duration (within 10 min) was also identified. Higher frequencies (tested up to 160 kHz) with acoustic energy density of 0.03 W/mL also reduced the dewatering property. At higher energy densities of 3.0 and 5.0 W/mL, dewaterability of sludge deteriorated regardless of ultra-sonication time, with an increase of solubilized organic matter content and severely changed floc characteristics. The deterioration of the dewatering capacity was closely related to the considerably reduced floc sizes, dissolution of proteins and polysaccharides, and to the Zeta potential of sonicated sludge flocs. The dewaterability was not correlated with BET specific surface area. Mechanistic explanations for the observations were discussed by analyzing corrosion patterns of aluminum foil as a measure for cavitation field distribution. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Effect of surfactant assisted sonic pretreatment on liquefaction of fruits and vegetable residue: Characterization, acidogenesis, biomethane yield and energy ratio.

    PubMed

    Shanthi, M; Rajesh Banu, J; Sivashanmugam, P

    2018-05-15

    The present study explored the disintegration potential of fruits and vegetable residue through sodium dodecyl sulphate (SDS) assisted sonic pretreatment (SSP). In SSP method, initially the biomass barrier (lignin) was removed using SDS at different dosage, subsequently it was sonically disintegrated. The effect of SSP were assessed based on dissolved organic release (DOR) of fruits and vegetable waste and specific energy input. SSP method achieved higher DOR rate and suspended solids reduction (26% and 16%) at optimum SDS dosage of 0.035 g/g SS with least specific energy input of 5400 kJ/kg TS compared to ultrasonic pretreatment (UP) (16% and 10%). The impact of fermentation and biomethane potential assay revealed highest production of volatile fatty acid and methane yield in SSP (1950 mg/L, 0.6 g/g COD) than UP. The energy ratio obtained was 0.9 for SSP, indicating proposed method is energetically efficient. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate.

    PubMed

    Gumel, A M; Annuar, M S M; Chisti, Y; Heidelberg, T

    2012-05-01

    Ultrasonic irradiation greatly improved the Candida antarctica lipase B mediated ring opening polymerization of ε-caprolactone to poly-6-hydroxyhexanoate in the ionic liquid 1-ethyl-3-methylimidazolium tetraflouroborate. Compared to the conventional nonsonicated reaction, sonication improved the monomer conversion by 63% and afforded a polymer product of a narrower molecular weight distribution and a higher degree of crystallinity. Under sonication, the polydispersity index of the product was ~1.44 compared to a value of ~2.55 for the product of the conventional reaction. With sonication, nearly 75% of the monomer was converted to product, but the conversion was only ~16% for the reaction carried out conventionally. Compared to conventional operation, sonication enhanced the rate of polymer propagation by >2-fold and the turnover number of the lipase by >3-fold. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Synthesis of reduced Graphene Oxide (rGO) using different treatments of Graphene Oxide (GO)

    NASA Astrophysics Data System (ADS)

    Zainuddin, M. F.; Nik Raikhan, N. H.; Othman, N. H.; Abdullah, W. F. H.

    2018-05-01

    In this work, a combined chemical and mechanical method was used for the production of graphene instead of chemical method only. The use of mechanical sonication was to assists exfoliation graphene oxide (GO) besides the used of chemical reagents. Then, the reduction of GO into graphene was carried out using L-ascorbic acid. The effects sonication cause synthesis of GO undergoes peeling graphitic layer and at the same time expose the layer with oxidizing agent. The properties of GO and reduced-graphene oxide (rGO) using various routes were investigated using XRD and FTIR. The main characteristics peak was observed at 7°and 9° for GO prepared using sonication and without sonication, respectively. The decreased of 2-theta degree of GO prepared using sonication indicates that the d-value becomes bigger. Estimation of average diameter rGO (with sonication) was 24.49 nm while rGO (without sonication) was 126.2 nm. The reduction of both GO was then carried out using an environmentally reducing agent, ascorbic acid. It was found that the L-ascorbic acid was effective in removing oxygenated functional groups. The conductivity values obtained for rGO-s was 7640 S/m while rGO-ws was is 678 S/m.

  12. Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber

    NASA Astrophysics Data System (ADS)

    Yeon, Youngju; Lee, Mi Yeon; Kim, Sang Youl; Lee, Jihoon; Kim, Bongsoo; Park, Byoungnam; In, Insik

    2015-09-01

    Stable dispersion of quasi-2D graphene sheets with a concentration up to 1.27 mg mL-1 was prepared by sonication-assisted solvent exfoliation of pitch-based carbon fiber in N-methyl pyrrolidone with the mass yield of 2.32%. Prepared quasi-2D graphene sheets have multi-layered 2D plate-like morphology with rich inclusions of graphitic carbons, a low number of structural defects, and high dispersion stability in aprotic polar solvents, and facilitate the utilization of quasi-2D graphene sheets prepared from pitch-based carbon fiber for various electronic and structural applications. Thin films of quasi-2D graphene sheets prepared by vacuum filtration of the dispersion of quasi-2D graphene sheets demonstrated electrical conductivity up to 1.14 × 104 Ω/□ even without thermal treatment, which shows that pitch-based carbon fiber might be useful as the source of graphene-related nanomaterials. Because pitch-based carbon fiber could be prepared from petroleum pitch, a very cheap structural material for the pavement of asphalt roads, our approach might be promising for the mass production of quasi-2D graphene nanomaterials.

  13. Two-year analysis for predicting renal function and contralateral hypertrophy after robot-assisted partial nephrectomy: A three-dimensional segmentation technology study.

    PubMed

    Kim, Dae Keun; Jang, Yujin; Lee, Jaeseon; Hong, Helen; Kim, Ki Hong; Shin, Tae Young; Jung, Dae Chul; Choi, Young Deuk; Rha, Koon Ho

    2015-12-01

    To analyze long-term changes in both kidneys, and to predict renal function and contralateral hypertrophy after robot-assisted partial nephrectomy. A total of 62 patients underwent robot-assisted partial nephrectomy, and renal parenchymal volume was calculated using three-dimensional semi-automatic segmentation technology. Patients were evaluated within 1 month preoperatively, and postoperatively at 6 months, 1 year and continued up to 2-year follow up. Linear regression models were used to identify the factors predicting variables that correlated with estimated glomerular filtration rate changes and contralateral hypertrophy 2 years after robot-assisted partial nephrectomy. The median global estimated glomerular filtration rate changes were -10.4%, -11.9%, and -2.4% at 6 months, 1 and 2 years post-robot-assisted partial nephrectomy, respectively. The ipsilateral kidney median parenchymal volume changes were -24%, -24.4%, and -21% at 6 months, 1 and 2 years post-robot-assisted partial nephrectomy, respectively. The contralateral renal volume changes were 2.3%, 9.6% and 12.9%, respectively. On multivariable linear analysis, preoperative estimated glomerular filtration rate was the best predictive factor for global estimated glomerular filtration rate change on 2 years post-robot-assisted partial nephrectomy (B -0.452; 95% confidence interval -0.84 to -0.14; P = 0.021), whereas the parenchymal volume loss rate (B -0.43; 95% confidence interval -0.89 to -0.15; P = 0.017) and tumor size (B 5.154; 95% confidence interval -0.11 to 9.98; P = 0.041) were the significant predictive factors for the degree of contralateral renal hypertrophy on 2 years post-robot-assisted partial nephrectomy. Preoperative estimated glomerular filtration rate significantly affects post-robot-assisted partial nephrectomy renal function. Renal mass size and renal parenchyma volume loss correlates with compensatory hypertrophy of the contralateral kidney. Contralateral hypertrophy of the renal parenchyma compensates for the functional loss of the ipsilateral kidney. © 2015 The Japanese Urological Association.

  14. Extraction of glutathione from EFB fermentation waste using methanol with sonication process

    NASA Astrophysics Data System (ADS)

    Muryanto, Muryanto; Alvin, Nurdin, Muhammad; Hanifah, Ummu; Sudiyani, Yanni

    2017-11-01

    Glutathione is important compound on the human body. Glutathione have a widely use at pharmacy and cosmetics as detoxification, skin whitening agent, antioxidant and many other. This study aims to obtain glutathione from Saccharomyces cerevisiae in fermentation waste of second generation bioethanol. The remaining yeast in the empty fruit bunch (EFB) fermentation was separated from the fermentation solution use centrifugation process and then extracted using a methanol-water solution. The extraction process was done by maceration which was assisted by sonication process. Solvent concentration and time of sonication were varied to see its effect on glutathione concentration. The concentration of glutathione from the extraction process was analyzed using alloxan method with UV-Vis spectrophotometer. The results show that the highest glutathione concentration was approximately 1.32 g/L obtained with methanol solvent at 90 minutes of maceration following with 15 minutes sonication.

  15. Liga developer apparatus system

    DOEpatents

    Boehme, Dale R.; Bankert, Michelle A.; Christenson, Todd R.

    2003-01-01

    A system to fabricate precise, high aspect ratio polymeric molds by photolithograpic process is described. The molds for producing micro-scale parts from engineering materials by the LIGA process. The invention is a developer system for developing a PMMA photoresist having exposed patterns comprising features having both very small sizes, and very high aspect ratios. The developer system of the present invention comprises a developer tank, an intermediate rinse tank and a final rinse tank, each tank having a source of high frequency sonic agitation, temperature control, and continuous filtration. It has been found that by moving a patterned wafer, through a specific sequence of developer/rinse solutions, where an intermediate rinse solution completes development of those portions of the exposed resist left undeveloped after the development solution, by agitating the solutions with a source of high frequency sonic vibration, and by adjusting and closely controlling the temperatures and continuously filtering and recirculating these solutions, it is possible to maintain the kinetic dissolution of the exposed PMMA polymer as the rate limiting step.

  16. Assisted Sonication vs Conventional Transesterification Numerical Simulation and Sensitivity Study

    NASA Astrophysics Data System (ADS)

    Janajreh, Isam; Noorul Hussain, Mohammed; El Samad, Tala

    2015-10-01

    Transeterification is known as slow reaction that can take over several hours to complete as the two immiscible liquid reactants combine to form biodiesel and the less favorable glycerol. The quest of finding the perfect catalyst, optimal operational conditions, and reactor configuration to accelerate the reaction in mere few minutes that ensures high quality biodiesel, in economically viable way is coming along with sonication. This drastic reduction is a key enabler for the development of a continuous processing that otherwise is fairly costly and low throughput using conventional method. The reaction kinetics of sonication assisted as inferred by several authors is several time faster and this work implements these rates in a high fidelity numerical simulation model. This flow model is based on Navier-Stokes equations coupled with energy equation for non-isothermal flow and the transport equations of the multiple reactive species. The model is initially validated against experimental data from previous work of the authors using an annular reactor configuration. Following the validation, comparison of the reaction rate is shown to gain more insight to the distribution of the reaction and its attained rates. The two models (conventional and sonication) then compared on the basis of their sensitivity to the methane to oil molar ratio as the most pronounced process parameter. Both the exit reactor yield and the distribution of the species are evaluated with favorable yield under sonication process. These results pave the way to build a more robust process intensified reactor having an integrated selective heterogeneous catalyst to steer the reaction. This can avoid the downstream cleaning processes, cutting reaction time, and render economic benefit to the process.

  17. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance.

    PubMed

    Fan, Xinfei; Zhao, Huimin; Liu, Yanming; Quan, Xie; Yu, Hongtao; Chen, Shuo

    2015-02-17

    Membrane filtration provides effective solutions for removing contaminants, but achieving high permeability, good selectivity, and antifouling ability remains a great challenge for existing membrane filtration technologies. In this work, membrane filtration coupled with electrochemistry has been developed to enhance the filtration performance of a CNTs/Al2O3 membrane. The as-prepared CNTs/Al2O3 membrane, obtained by coating interconnected CNTs on an Al2O3 substrate, presented good pore-size tunability, mechanical stability, and electroconductivity. For the removal of a target (silica spheres as a probe) with a size comparable to the membrane pore size, the removal efficiency and flux at +1.5 V were 1.1 and 1.5 times higher, respectively, than those without electrochemical assistance. Moreover, the membrane also exhibited a greatly enhanced removal efficiency for contaminants smaller than the membrane pores, providing enhancements of 4 orders of magnitude and a factor of 5.7 for latex particles and phenol, respectively. These results indicated that both the permeability and the selectivity of CNTs/Al2O3 membranes can be significantly improved by electrochemical assistance, which was further confirmed by the removal of natural organic matter (NOM). The permeate flux and NOM removal efficiency at +1.5 V were about 1.6 and 3.0 times higher, respectively, than those without electrochemical assistance. In addition, the lost flux of the fouled membrane was almost completely recovered by an electrochemically assisted backwashing process.

  18. Effects of ultrasound treatment on physico-chemical, functional properties and antioxidant activity of whey protein isolate in the presence of calcium lactate.

    PubMed

    Jiang, Zhanmei; Yao, Kun; Yuan, Xiangying; Mu, Zhishen; Gao, Zengli; Hou, Juncai; Jiang, Lianzhou

    2018-03-01

    The aim of this study was to investigate the effects of ultrasound applied at various powers (0, 200, 400, 600 or 800 W) and for different times (20 or 40 min) on the physico-chemical, functional properties and antioxidant activities of whey protein isolate (WPI) dispersions in the presence of 1.20 mmol L -1 calcium lactate. Surface hydrophobicity and free sulfhydryl group of the WPI dispersions containing 1.2 mmol L -1 calcium lactate were significantly enhanced after sonication. Furthermore, particle size of WPI dispersions containing 1.20 mmol L -1 calcium lactate was minimised after sonication. Scanning electron microscopy of sonicated WPI suspensions containing 1.20 mmol L -1 calcium lactate showed that WPI microstructure had significantly changed. After WPI dispersions were treated by sonication assisted with calcium lactate, its gel strength enhanced and solubility decreased. Gel strength of sonicated WPI dispersions (600 W, 40 min) was the maximum among all the WPI treatments. Emulsification activity of sonicated WPI dispersions reduced while its emulsion stability increased. The DPPH radical scavenging activity and ferrous reducing power of sonicated WPI dispersions mostly increased. Ultrasound treatments induced structural changes in WPI molecules, leading to different microstructure and improved gel strength of WPI in the presence of calcium lactate. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    NASA Astrophysics Data System (ADS)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-10-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm-2, 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP-AES, LECO and SEM-EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO3 concentration.

  20. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    PubMed

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Ultrasonic-Assisted Extraction of Raspberry Seed Oil and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities

    PubMed Central

    Huang, Qun; Wang, Jinli; Lin, Qiyang; Liu, Mingxin; Lee, Won Young; Song, Hongbo

    2016-01-01

    Ultrasonic-assisted extraction was employed for highly efficient separation of aroma oil from raspberry seeds. A central composite design with two variables and five levels was employed and effects of process variables of sonication time and extraction temperature on oil recovery and quality were investigated. Optimal conditions predicted by response surface methodology were sonication time of 37 min and extraction temperature of 54°C. Specifically, ultrasonic-assisted extraction (UAE) was able to provide a higher content of beneficial unsaturated fatty acids, whereas conventional Soxhlet extraction (SE) resulted in a higher amount of saturated fatty acids. Moreover, raspberry seed oil contained abundant amounts of edible linoleic acid and linolenic acid, which suggest raspberry seeds could be valuable edible sources of natural γ-linolenic acid products. In comparison with SE, UAE exerted higher free radical scavenging capacities. In addition, UAE significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation. PMID:27120053

  2. Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel.

    PubMed

    Moorthy, I Ganesh; Maran, J Prakash; Ilakya, S; Anitha, S L; Sabarima, S Pooja; Priya, B

    2017-01-01

    Four factors three level face centered central composite response surface design was employed in this study to investigate and optimize the effect of process variables (liquid-solid (LS) ratio (10:1-20:1ml/g), pH (1-2), sonication time (15-30min) and extraction temperature (50-70°C)) on the maximum extraction yield of pectin from waste Artocarpus heterophyllus (Jackfruit) peel by ultrasound assisted extraction method. Numerical optimization method was adapted in this study and the following optimal condition was obtained as follows: Liquid-solid ratio of 15:1ml/g, pH of 1.6, sonication time of 24min and temperature of 60°C. The optimal condition was validated through experiments and the observed value was interrelated with predicted value. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion.

    PubMed

    Baig, Zeeshan; Mamat, Othman; Mustapha, Mazli; Mumtaz, Asad; Munir, Khurram S; Sarfraz, Mansoor

    2018-07-01

    The exceptional properties of graphene and its structural uniqueness can improve the performance of nanocomposites if it can attain the uniform dispersion. Tip sonication assisted graphene solvent dispersion has been emerged as an efficient approach but it can cause significant degradation of graphene structure. This study aimed to evaluate the parametric influence of tip sonication on the characteristics of sp 2 carbon structure in graphene nanoplatelets by varying the sonication time and respective energy at three different amplitudes (60%, 80% and 100%). The study is essential to identify appropriate parameters so as to achieve high-quality and defect-free graphene with a highly desirable aspect ratio after solvent dispersion for composite reinforcement. Quantitative approach via Raman spectroscopy is used to find the defect ratio and lateral size of graphene evolved under the effect of tip sonication parameters. Results imply that the defect ratio is steady and increases continually with GNPs, along with the transformation to the nano-crystalline stage I up to 60 min sonication at all amplitudes. Exfoliation was clearly observed at all amplitudes together with sheet re-stacking due to considerable size reduction of sheets with large quantity. Finally, considerable GNPs fragmentation occurred during sonication with increased amplitude and time as confirmed by the reduction of sp 2 domain (La) and flake size. This also validates the formation of edge-type defect in graphene. Convincingly, lower amplitude and time (up to 60 min) produce better results for a low defect content and larger particle size as quantified by Raman analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A Filtration-based Method of Preparing High-quality Nuclei from Cross-linked Skeletal Muscle for Chromatin Immunoprecipitation.

    PubMed

    Nohara, Kazunari; Chen, Zheng; Yoo, Seung-Hee

    2017-07-06

    Chromatin immunoprecipitation (ChIP) is a powerful method to determine protein binding to chromatin DNA. Fiber-rich skeletal muscle, however, has been a challenge for ChIP due to technical difficulty in isolation of high-quality nuclei with minimal contamination of myofibrils. Previous protocols have attempted to purify nuclei before cross-linking, which incurs the risk of altered DNA-protein interaction during the prolonged nuclei preparation process. In the current protocol, we first cross-linked the skeletal muscle tissue collected from mice, and the tissues were minced and sonicated. Since we found that ultracentrifugation was not able to separate nuclei from myofibrils using cross-linked muscle tissue, we devised a sequential filtration procedure to obtain high-quality nuclei devoid of significant myofibril contamination. We subsequently prepared chromatin by using an ultrasonicator, and ChIP assays with anti-BMAL1 antibody revealed robust circadian binding pattern of BMAL1 to target gene promoters. This filtration protocol constitutes an easily applicable method to isolate high-quality nuclei from cross-linked skeletal muscle tissue, allowing consistent sample processing for circadian and other time-sensitive studies. In combination with next-generation sequencing (NGS), our method can be deployed for various mechanistic and genomic studies focusing on skeletal muscle function.

  5. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  6. Ultrasound assisted PTC catalyzed saponification of vegetable oils using aqueous alkali.

    PubMed

    Bhatkhande, B S; Samant, S D

    1998-03-01

    A few vegetable oils were saponified using aqueous KOH and different PTCs at room temperature in the presence of ultrasound. The extent of saponification was studied using the saponification value as a reference. Optimizations of various parameters such as time, selection of PTC, quantity of PTC, quantity of KOH and quantity of water were carried out using soyabean oil as a sample oil under sonication with stirring. To study the effect of ultrasound, the saponification was also carried out at 35 +/- 2 degrees C under different conditions, namely stirring, sonication, stirring and sonication, and heating at 100 degrees C. It was found that the heterogeneous liquid-liquid phase saponification of different vegetable oils using aq. KOH/CTAB was remarkably accelerated at 35 +/- 2 degrees C in the presence of ultrasound along with stirring.

  7. Effects of Ultrasound Assistance on Dehydration Processes and Bioactive Component Retention of Osmo-Dried Sour Cherries.

    PubMed

    Siucińska, Karolina; Mieszczakowska-Frąc, Monika; Połubok, Aleksandra; Konopacka, Dorota

    2016-07-01

    Despite having numerous health benefits, dried sour cherries have proven to be more acceptable to consumers when infused with sugar or other sweeteners to enhance their flavor, which, in turn, leads to serious anthocyanin losses. For this reason, a consideration was made for the application of ultrasound to accelerate solid gain and shorten drying time, thus favoring bioactive component retention. To determine the usefulness of ultrasound as a tool for sour cherry osmotic infusion enhancement, the effect of sonication time on dehydration effectiveness, as well as the stability of bioactive components during osmotic treatment and consecutive convective drying, was investigated. Fruits were osmo-dehydrated using a 60% sucrose solution for 120 min (40 °C), during which, ultrasound of 25 kHz (0.4 W/cm(2) ), was applied for 0, 30, 60, 90, and 120 min, after which, the fruits were convectively dried. In the range of the applied ultrasound energy no significant effect of sonication on mass transfer intensification was observed; moreover, longer acoustic treatment seemed to retard moisture removal during subsequent convective drying, which can be related to the breakdown of the parenchyma cell walls caused by the prolonged ultrasound (US) action. It was concluded that although US assistance could be considered neutral for bioactive component retention, excessive sonication time can lead to some anthocyanin deterioration. According to high-performance liquid chromatography analysis, the particular anthocyanin alterations, both during dehydration and final drying, occurred in a similar way. Sonication time prolongation caused approximately 10% more bioactive compound deterioration, than earlier, shorter trials. © 2016 Institute of Food Technologists®

  8. Filtration and clogging of permeable pavement loaded by urban drainage.

    PubMed

    Sansalone, J; Kuang, X; Ying, G; Ranieri, V

    2012-12-15

    Permeable pavement, as a sustainable infrastructure material can promote hydrologic restoration, particulate matter (PM) and solute control. However, filtration and commensurate clogging are two aspects of continued interest and discussion. This study quantifies filtration and clogging of cementitious permeable pavement (CPP) for loadings from 50 to 200 mg/L of hetero-disperse sandy-silt PM. The CPP mix design provides a hetero-disperse pore size distribution (PSD)(pore), effective porosity (φ(e)) of 24% and median pore size of 658 μm with a standard deviation of 457 μm. The PM mass separation across the entire particle size distribution (PSD)(PM) exceeds 80%; with complete separation for PM greater than 300 μm and 50% separation for suspended PM. Turbidity is reduced (42-95%), and effluent is below 10 NTU in the first quartile of a loading period. Permeable pavement illustrates reductions in initial (clean-bed) hydraulic conductivity (k(0)) with loading time. For all PM loadings, k(0) (3.1 × 10(-1) mm/s) was reduced to 10(-4) mm/s for runoff loading durations from 100 to 250 h, respectively. Temporal hydraulic conductivity (k) follows exponential profiles. Maintenance by vacuuming and sonication illustrate that 96-99% of k(0) is recovered. Permeable pavement constitutive properties integrated with measured PM loads and a year of continuous rainfall-runoff simulation illustrate k reduction with historical loadings. Study results measure and model filtration and hydraulic conductivity phenomena as well as maintenance requirements of permeable pavement directly loaded by urban drainage. Copyright © 2011. Published by Elsevier Ltd.

  9. Ultrasound-assisted lysis using recombinant tissue plasminogen activator and the EKOS EkoSonic endovascular system for treating right atrial thrombus and massive pulmonary embolism: A case study.

    PubMed

    Shammas, N W; Padaria, R; Ahuja, G

    2015-12-01

    Right atrial thrombus in the setting of a large pulmonary embolus is rare and is associated with serious adverse events. This case report presents the role played by EKOS EkoSonic ultrasound system in successfully treating right atrial thrombus and massive pulmonary embolism. A 69-year-old female presented with a massive pulmonary embolus and a large mobile right atrial thrombus. She was treated with catheter-directed lysis using the EKOS EkoSonic ultrasound system and tissue plasminogen activator, with complete resolution of her right atrial thrombus and a marked improvement in her pulmonary embolus and hemodynamics. This case report provides a new and an effective option to treat right atrial thrombus associated with a large pulmonary embolus leading to a good outcome. © The Author(s) 2014.

  10. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    NASA Technical Reports Server (NTRS)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  11. Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels.

    PubMed

    Liew, Shan Qin; Ngoh, Gek Cheng; Yusoff, Rozita; Teoh, Wen Hui

    2016-12-01

    This study aims to optimize sequential ultrasound-microwave assisted extraction (UMAE) on pomelo peel using citric acid. The effects of pH, sonication time, microwave power and irradiation time on the yield and the degree of esterification (DE) of pectin were investigated. Under optimized conditions of pH 1.80, 27.52min sonication followed by 6.40min microwave irradiation at 643.44W, the yield and the DE value of pectin obtained was respectively at 38.00% and 56.88%. Based upon optimized UMAE condition, the pectin from microwave-ultrasound assisted extraction (MUAE), ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE) were studied. The yield of pectin adopting the UMAE was higher than all other techniques in the order of UMAE>MUAE>MAE>UAE. The pectin's galacturonic acid content obtained from combined extraction technique is higher than that obtained from sole extraction technique and the pectin gel produced from various techniques exhibited a pseudoplastic behaviour. The morphological structures of pectin extracted from MUAE and MAE closely resemble each other. The extracted pectin from UMAE with smaller and more regular surface differs greatly from that of UAE. This has substantiated the highest pectin yield of 36.33% from UMAE and further signified their compatibility and potentiality in pectin extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition.

    PubMed

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2012-10-08

    In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p < 0.05) effects on the response variable. A central composite design (CCD) was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  13. 19. EMPTY SEDIMENTATION TANKS. TOP LAYER OF WATER FLOWS OVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. EMPTY SEDIMENTATION TANKS. TOP LAYER OF WATER FLOWS OVER TRIANGULATED CHANNELS AND OUT THE RAISED DUCTS TO FILTRATION PLANT. MOVEABLE BOARDS ON BOTTOM ASSIST IN REMOVING SLUDGE. VIEW LOOKING NORTHEAST. FILTER CONTROL BUILDING AT REAR. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  14. Ultrasound-assisted extraction for total sulphur measurement in mine tailings.

    PubMed

    Khan, Adnan Hossain; Shang, Julie Q; Alam, Raquibul

    2012-10-15

    A sample preparation method for percentage recovery of total sulphur (%S) in reactive mine tailings based on ultrasound-assisted digestion (USAD) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) was developed. The influence of various methodological factors was screened by employing a two-level and three-factor (2(3)) full factorial design and using KZK-1, a sericite schist certified reference material (CRM), to find the optimal combination of studied factors and %S. Factors such as the sonication time, temperature and acid combination were studied, with the best result identified as 20 min of sonication, 80°C temperature and 1 ml of HNO(3):1 ml of HCl, which can achieve 100% recovery for the selected CRM. Subsequently a fraction of the 2(3) full factorial design was applied to mine tailings. The percentage relative standard deviation (%RSD) for the ultrasound method is less than 3.0% for CRM and less than 6% for the mine tailings. The investigated method was verified by X-ray diffraction analysis. The USAD method compared favorably with existing methods such as hot plate assisted digestion method, X-ray fluorescence and LECO™-CNS method. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. pH-Sensitive Liposomes: Acid-Induced Liposome Fusion

    NASA Astrophysics Data System (ADS)

    Connor, Jerome; Yatvin, Milton B.; Huang, Leaf

    1984-03-01

    Sonicated unilamellar liposomes containing phosphatidylethanolamine and palmitoylhomocysteine fuse rapidly when the medium pH is lowered from 7 to 5. Liposome fusion was demonstrated by (i) mixing of the liposomal lipids as shown by resonance energy transfer, (ii) gel filtration, and (iii) electron microscopy. The pH-sensitive fusion of liposomes was observed only when palmitoylhomocysteine (>= 20 mol%) was present in the liposomes. The presence of phosphatidyl-ethanolamine in the liposomes greatly enhanced fusion whereas the presence of phosphatidylcholine inhibited fusion. During fusion of liposomes containing phosphatidylethanolamine and palmitoylhomocysteine (8:2, mol/mol), almost all of the encapsulated calcein was released. Inclusion of cholesterol (40 mol%) in the liposomes substantially decreased leakage without impairing fusion.

  16. Ultrasonic assisted synthesis of Bikitaite zeolite: A potential material for hydrogen storage application.

    PubMed

    Roy, Priyanka; Das, Nandini

    2017-05-01

    Li containing Bikitaite zeolite has been synthesized by an ultrasound-assisted method and used as a potential material for hydrogen storage application. The Sonication energy was varied from 150W to 250W and irradiation time from 3h to 6h. The Bikitaite nanoparticles were characterized by X-ray diffraction (XRD), infrared (IR) spectral analysis, and field-emission scanning electron microscopy (FESEM) thermo-gravimetrical analysis and differential thermal analysis (TGA, DTA). XRD and IR results showed that phase pure, nano crystalline Bikitaite zeolites were started forming after 3h irradiation and 72h of aging with a sonication energy of 150W and nano crystalline Bikitaite zeolite with prominent peaks were obtained after 6h irradiation of 250W sonic energy. The Brunauer-Emmett-Teller (BET) surface area of the powder by N 2 adsorption-desorption measurements was found to be 209m 2 /g. The TEM micrograph and elemental analysis showed that desired atomic ratio of the zeolite was obtained after 6h irradiation. For comparison, sonochemical method, followed by the hydrothermal method, with same initial sol composition was studied. The effect of ultrasonic energy and irradiation time showed that with increasing sonication energy, and sonication time phase formation was almost completed. The FESEM images revealed that 50nm zeolite crystals were formed at room temperature. However, agglomerated particles having woollen ball like structure was obtained by sonochemical method followed by hydrothermal treatment at 100°C for 24h. The hydrogen adsorption capacity of Bikitaite zeolite with different Li content, has been investigated. Experimental results indicated that the hydrogen adsorption capacities were dominantly related to their surface areas as well as total pore volume of the zeolite. The hydrogen adsorption capacity of 143.2c.c/g was obtained at 77K and ambient pressure of (0.11MPa) for the Bikitaite zeolite with 100% Li, which was higher than the reported values for other zeolites. To the best of our knowledge, there is no report on the synthesis of a Bikitaite zeolite by sonochemical method for H 2 storage. Copyright © 2016. Published by Elsevier B.V.

  17. Ultrasonic grinding of optical materials

    NASA Astrophysics Data System (ADS)

    Cahill, Michael; Bechtold, Michael; Fess, Edward; Stephan, Thomas; Bechtold, Rob

    2017-10-01

    Hard ceramic optical materials such as sapphire, ALON, Spinel, PCA, or Silicon Carbide can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Slow processing speeds, premature tool wear, and poor surface quality are common results of the tough mechanical properties of these materials. Often, as a preparatory stage for polishing, the finish of the ground surface greatly influences the polishing process and the resulting finished product. To overcome these challenges, OptiPro Systems has developed an ultrasonic assisted grinding technology, OptiSonic, which has been designed for the precision optics and ceramics industry. OptiSonic utilizes a custom tool holder designed to produce oscillations, in microns of amplitude, in line with the rotating spindle. A software package, IntelliSonic, is integral to the function of this platform. IntelliSonic can automatically characterize tooling during setup to identify and select the ideal resonant peak which to operate at. Then, while grinding, IntelliSonic continuously adjusts the output frequency for optimal grinding efficiency while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more precise surface. Utilizing a variety of instruments, tests have proven to show a reduction in force between tool and part by up to 50%, while increasing the surface quality and reducing tool wear. This paper will present the challenges associated with these materials and solutions created to overcome them.

  18. GALLIUM-MEDIATED ALLYLATION OF CARBONYL COMPOUNDS IN WATER. (R828129)

    EPA Science Inventory

    Ga-mediated allylation of aldehydes or ketones in distilled or tap water generated the corresponding homoallyl alcohols in high yields without the assistance of either acidic media or sonication.


    Grap...

  19. Optimization of ultrasound and microwave assisted extractions of polyphenols from black rice (Oryza sativa cv. Poireton) husk.

    PubMed

    Jha, Pankaj; Das, Arup Jyoti; Deka, Sankar Chandra

    2017-11-01

    Phenolic compounds were extracted from the husk of milled black rice (cv. Poireton) by using a combination of ultrasound assisted extraction and microwave assisted extraction. Extraction parameters were optimized by response surface methodology according to a three levels, five variables Box-Behnken design. The appropriate process variables (extraction temperature and extraction time) to maximize the ethanolic extraction of total phenolic compounds, flavonoids, anthocyanins and antioxidant activity of the extracts were obtained. Extraction of functional components with varying ethanol concentration and microwave time were significantly affected by the process variables. The best possible conditions obtained by RSM for all the factors included 10.02 min sonication time, 49.46 °C sonication temperature, 1:40.79 (w/v) solute solvent ratio, 67.34% ethanol concentration, and 31.11 s microwave time. Under the given solutions, the maximum extraction of phenolics (1.65 mg/g GAE), flavonoids (3.04 mg/100 g), anthocyanins (3.39 mg/100 g) and antioxidants (100%) were predicted, while the experimental values included 1.72 mg/g GAE of total phenolics, 3.01 mg/100 g of flavonoids, 3.36 mg/100 g of anthocyanins and 100% antioxidant activity. The overall results indicated positive impact of co-application of microwave and ultrasound assisted extractions of phenolic compounds from black rice husk.

  20. Characterization of pneumococcal purpura-producing principle.

    PubMed

    Chetty, C; Kreger, A

    1980-07-01

    Purpura was grossly observable in albino mice 6 to 8 h after the intraperitoneal injection of sterile, deoxyribonuclease-treated, cell-free extracts prepared by sodium deoxycholate-induced lysis, sonic disruption, Parr bomb treatment, autolysis without sodium deoxycholate, or alternate freezing and thawing of washed suspensions of Streptococcus pneumoniae type I. Cell-free extracts obtained from sonically disrupted, heat-killed cells (100 degrees C for 20 min) did not contain purpurogenic activity. The reaction was maximal at approximately 24 h postinjection, started to fade slowly after 24 to 48 h, and usually was not grossly observable by 4 to 6 days postinjection. The purpura-producing principle (PPP) in the cell-free extract was purified by sequential ammonium sulfate precipitation, protamine sulfate precipitation, Sepharose 6B gel filtration, wheat germ lectin-Sepharose 6MB affinity chromatography, ribonuclease and trypsin treatment, and a second Sepharose 6B gel filtration step. The final preparation (i) contained glucosamine (5.6%), muramic acid (8.0%), neutral carbohydrate (12.8%), phosphate (8.0%), orcinol-reactive material (6.0%), and Lowry-reactive material (1.6%), and (ii) was free of detectable amounts of deoxyribonucleic acid, capsular polysaccharide, neuraminidase, cytolysin, and hyaluronidase. The isoelectric point and molecular size of the PPP were approximately pI 3.0 and several million daltons, respectively, and the activity remained in the supernatant fluid after centrifugation for 1 day at 105,000 x g. PPP activity was destroyed by incubation with egg white lysozyme and sodium metaperiodate but was resistant to trypsin, pronase, alpha-amylase, deoxyribonuclease, ribonuclease, alkaline phosphatase, pancreatic lipase, 7% trichloroacetic acid, 6 M urea, autoclaving (121 degrees C) for 30 min, and mild acid and alkali exposure. Our observations indicate that the PPP requires intact beta-1,4-glucosidic linkages for activity and support the working hypothesis that activity is associated with pneumococcal peptidoglycan solubilized by the bacterium's autolysin.

  1. Filtration in the Use of Individual Water Purification Devices

    DTIC Science & Technology

    2006-03-01

    natural water pH will increase virus retention (references 14-17). One study investigating coliphage reduction by a 0.2 µm microporous filter...Filtration in the Use of Individual Water Purification Devices Technical Information Paper #31-004-0306 PURPOSE This information paper...natural waters . This paper is intended to assist the reader in evaluating the capabilities of Individual Water Purification Devices (IWPDs) using

  2. Preparation of Self-Assembled Chitin Nanofiber-Natural Rubber Composite Sheets and Porous Materials

    PubMed Central

    Kawano, Akito; Yamamoto, Kazuya

    2017-01-01

    We previously reported the preparation of a self-assembled chitin nanofiber (CNF) film via regeneration from an ion gel with an ionic liquid, followed by sonication and filtration. Based on the finding that CNFs were redispersed in a mixture of the film with ammonia aqueous solution (aq.), in this study, CNF-natural rubber (NR) composite sheets were fabricated by mixing redispersed CNF with NR latex stabilized by ammonia, followed by drying under reduced pressure. Tensile testing of the sheets indicated the reinforcing effect of CNFs. Further, CNF-NR composite porous materials were fabricated by evaporating ammonia from the CNF-NR dispersion, followed by lyophilization. The mechanism for the formation of porous structures was evaluated. PMID:28671578

  3. Robot-assisted laparoscopic versus open partial nephrectomy in patients with chronic kidney disease: A propensity score-matched comparative analysis of surgical outcomes.

    PubMed

    Takagi, Toshio; Kondo, Tsunenori; Tachibana, Hidekazu; Iizuka, Junpei; Omae, Kenji; Kobayashi, Hirohito; Yoshida, Kazuhiko; Tanabe, Kazunari

    2017-07-01

    To compare surgical outcomes between robot-assisted laparoscopic partial nephrectomy and open partial nephrectomy in patients with chronic kidney disease. Of 550 patients who underwent partial nephrectomy between 2012 and 2015, 163 patients with T1-2 renal tumors who had an estimated glomerular filtration rate between 30 and 60 mL/min/1.73 m 2 , and underwent robot-assisted laparoscopic partial nephrectomy or open partial nephrectomy were retrospectively analyzed. To minimize selection bias between the two surgical methods, patient variables were adjusted by 1:1 propensity score matching. The present study included 75 patients undergoing robot-assisted laparoscopic partial nephrectomy and 88 undergoing open partial nephrectomy. After propensity score matching, 40 patients were included in each operative group. The mean preoperative estimated glomerular filtration rate was 49 mL/min/1.73 m 2 . The mean ischemia time was 21 min in robot-assisted laparoscopic partial nephrectomy (warm ischemia) and 35 min in open partial nephrectomy (cold ischemia). Preservation of the estimated glomerular filtration rate 3-6 months postoperatively was not significantly different between robot-assisted laparoscopic partial nephrectomy and open partial nephrectomy (92% vs 91%, P = 0.9348). Estimated blood loss was significantly lower in the robot-assisted laparoscopic partial nephrectomy group than in the open partial nephrectomy group (104 vs 185 mL, P = 0.0025). The postoperative length of hospital stay was shorter in the robot-assisted laparoscopic partial nephrectomy group than in the open partial nephrectomy group (P < 0.0001). The prevalence of Clavien-Dindo grade 3 complications and a negative surgical margin status were not significantly different between the two groups. In our experience, robot-assisted laparoscopic partial nephrectomy and open partial nephrectomy provide similar outcomes in terms of functional preservation and perioperative complications among patients with chronic kidney disease. However, a lower estimated blood loss and shorter postoperative length of hospital stay can be obtained with robot-assisted laparoscopic partial nephrectomy. © 2017 The Japanese Urological Association.

  4. Improvements on FEA with a two-step simulation of experimental procedures in turbine blade crack detection in sonic IR NDE

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam; Favro, Lawrence D.; Thomas, Robert L.

    2013-01-01

    We showed our work on modeling turbine blade crack detection in Sonic Infrared (IR) Imaging with a method of creating flat crack surface in finite element analysis (FEA) in last year's QNDE paper. This modeling has been carried out continuously as part of model-assisted study on crack detection in aircraft engine turbine blades. We have presented that Sonic IR Imaging NDE is a viable method to detect defects in various structures. It combines ultrasound excitation for frictional heating in defects and infrared imaging to sense this heating, and thus to identify the defects. It is a fast wide-area imaging technology. It only takes a second to image a large area of a target sample. When an aircraft is in flight, the turbine engine blades operate under high temperature and high cyclic stresses. Thus, fatigue cracks can form after many hours of operation. Sonic IR Imaging can be used to detect such cracks. However, we still need to better understand contributions of parameters/factors in the crack detection process with Sonic IR Imaging. FEA modeling can help us to reveal certain aspects through the data it produces where experimental work cannot achieve. Upon the model we presented last year, a two-step simulation process was designed to simulate the important aspects in our experiments. These include a newly designed model for the ultrasound transducer which delivers mechanical energy to the sample and the implementation of static force while engaging the transducer to the sample. In this paper, we present the ideas and the results from the new model.

  5. Use of 3-nitrobenzonitrile as an additive for improved sensitivity in sonic-spray ionization mass spectrometry.

    PubMed

    Kanaki, Katerina; Pergantis, Spiros A

    2014-12-15

    Sonic-spray ionization (SSI) has been shown to produce gas-phase ions for a wide range of compounds, without the application of voltage or a laser. However, it remains to be shown that it can also provide similar sensitivities to those obtained by electrospray ionization mass spectrometry (ESI-MS). Here we report on an attempt to further improve the sensitivity of SSI-MS, more specifically a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS, by adding a signal-enhancing additive to the sample solution. The additive used is 3-nitrobenzonitrile (3-NBN), which has recently been used with success in a new ionization approach named matrix-assisted ionization vacuum. In order to conduct this study we have analyzed a range of compounds, including peptides, metalloproteins, and some organometalloids. During the V-EASI-MS analyses molecular ion and protonated molecule signal intensities as well as their corresponding signal-to-noise (S/N) ratios, obtained in the presence and absence of the 3-NBN, were compared. The 3-NBN-assisted V-EASI-MS approach developed here provides significant improvement in sensitivity relative to conventional V-EASI-MS for almost all compounds tested. More specifically, for peptides a 1.6- to 4-fold enhancement was realized, for proteins the enhancements were from 2- to 5-fold, and for some metalloid species enhancements reached up to 10-fold. However, optimum additive concentration and ion transfer capillary temperature were found to be compound-dependent and thus require optimization in order for maximum enhancements to be achieved. In most cases the 3-NBN-assisted V-EASI-MS approach provides comparable sensitivities and S/N ratios to ESI-MS on the same ion trap mass spectrometer. The use of 3-NBN with V-EASI-MS gives rise to a novel 3-NBN-assisted MS technique, which has demonstrated considerable signal enhancement for most of the compounds analyzed, thus improving its competitiveness towards the well-established and dominating ESI-MS technique. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Direct identification of microorganisms from positive blood cultures using the lysis-filtration technique and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): a multicentre study.

    PubMed

    Farina, Claudio; Arena, Fabio; Casprini, Patrizia; Cichero, Paola; Clementi, Massimo; Cosentino, Marina; Degl'Innocenti, Roberto; Giani, Tommaso; Luzzaro, Francesco; Mattei, Romano; Mauri, Carola; Nardone, Maria; Rossolini, Gian Maria; Serna Ortega, Paula Andrea; Vailati, Francesca

    2015-04-01

    Microbial identification from blood cultures is essential to institute optimal antibiotic therapy and improve survival possibilities. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied to identify bacteria and yeasts from positive blood cultures broths. The aim of this multicentre study was to evaluate the reliability of the lysis-filtration technique associated with MALDI-TOF MS to directly identify microorganisms from 765 positive blood cultures collected in six Italian hospitals. Overall, 675/765 (78.1%) blood isolates were correctly identified at the species level, with significant differences between Gram-negative and Gram-positive bacteria (92.6%, and 69.8%, respectively). Some difficulties arise in identifying Streptococcus pneumoniae, Staphylococcus aureus, yeasts and anaerobes. The lysis-filtration protocol is a suitable procedure in terms of performance in identifying microorganisms, but it is quite expensive and technically time-consuming since the time of filtration is not regular for all the samples. The application of the MALDI-TOF MS technique to the direct microbial identification from positive blood cultures is a very promising approach, even if more experience must be gained to minimize errors and costs.

  7. Effect of ultrasonic treatment on tensile properties of PLA/LNR/NiZn ferrite nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahdan, Dalila; Ahmad, Sahrim Hj.; Flaifel, Moayad Husein

    2013-11-27

    The influence of sonication treatment time on the morphological and mechanical properties of LNR/PLA composite impregnated with different filler loadings of NiZn ferrite nanoparticles was investigated. The nanocomposite was prepared using melt blending method with assistance of ultrasonic treatment of 0, 1 and 2 hrs. Structural characterization of the nanocomposites was examined using scanning electron microscopy (SEM) with their elemental composition being confirmed by energy dispersive X-ray spectroscopy (EDX). The tensile properties of LNR/PLA composite treated with different ultrasonication times have improved with increasing magnetic nanofiller signature in the nanocomposite. Further, the optimum sonication time of 1 hr was foundmore » to produce nanocomposite with maximum tensile properties.« less

  8. Combined alkaline hydrolysis and ultrasound-assisted extraction for the release of nonextractable phenolics from cauliflower (Brassica oleracea var. botrytis) waste.

    PubMed

    Gonzales, Gerard Bryan; Smagghe, Guy; Raes, Katleen; Van Camp, John

    2014-04-16

    Cauliflower waste contains high amounts phenolic compounds, but conventional solvent extraction misses high amounts of nonextractable phenolics (NEP), which may contribute more to the valorization of these waste streams. In this study, the NEP content and composition of cauliflower waste were investigated. The ability of alkaline hydrolysis, sonication, and their combination to release NEP was assessed. Alkaline hydrolysis with sonication was found to extract the highest NEP content (7.3 ± 0.17 mg gallic acid equivalents (GAE)/g dry waste), which was higher than the extractable fraction. The highest yield was obtained after treatment of 2 M NaOH at 60 °C for 30 min of sonication. Quantification and identification were done using U(H)PLC-DAD and U(H)PLC-ESI-MS(E). Kaempferol and quercetin glucosides along with several phenolic acids were found. The results of the study show that there are higher amounts of valuable health-promoting compounds from cauliflower waste than what is currently described in the literature.

  9. Mechanistic investigations in sono-hybrid techniques for rice straw pretreatment.

    PubMed

    Suresh, Kelothu; Ranjan, Amrita; Singh, Shuchi; Moholkar, Vijayanand S

    2014-01-01

    This paper reports comparative study of two chemical techniques (viz. dilute acid/alkali treatment) and two physical techniques (viz. hot water bath and autoclaving) coupled with sonication, termed as sono-hybrid techniques, for hydrolysis of rice straw. The efficacy of each sono-hybrid technique was assessed on the basis of total sugar and reducing sugar release. The system of biomass pretreatment is revealed to be mass transfer controlled. Higher sugar release is obtained during dilute acid treatment than dilute alkali treatment. Autoclaving alone was found to increase sugar release marginally as compared to hot water bath. Sonication of the biomass solution after autoclaving and stirring resulted in significant rise of sugar release, which is attributed to strong convection generated during sonication that assists effective transport of sugar molecules. Discrimination between individual contributions of ultrasound and cavitation to mass transfer enhancement reveals that contribution of ultrasound (through micro-streaming) is higher. Micro-turbulence as well as acoustic waves generated by cavitation did not contribute much to enhancing of mass transfer in the system. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Comparison of Heat Inactivation and Cell Disruption Protocols for Identification of Mycobacteria from Solid Culture Media by Use of Vitek Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Machen, Alexandra; Kobayashi, Miwako; Connelly, Mary Robin

    2013-01-01

    Two novel protocols for inactivation and extraction were developed and used to identify 107 Mycobacterium clinical isolates, including Mycobacterium tuberculosis complex, from solid cultures using Vitek matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry. The protocol using heat inactivation with sonication and cell disruption with glass beads resulted in 82.2% and 88.8% species and genus level identifications, respectively. PMID:24068013

  11. Ultrasound assisted in-situ formation of carbon/sulfur cathodes

    DOEpatents

    Pol, Vilas G.; Weng, Wei; Amine, Khalil

    2017-08-29

    A process of preparing an E-carbon nanocomposite includes contacting a porous carbon substrate with an E-containing material to form a mixture; and sonicating the mixture to form the E-carbon nanocomposite; where E is S, Se, Se.sub.xS.sub.y, or Te, x is greater than 0; and y is greater than 0.

  12. Log evaluation in wells drilled with inverted oil emulsion mud. [GLOBAL program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.P.; Lacour-Gayet, P.J.; Suau, J.

    1981-01-01

    As greater use is made of inverted oil emulsion, muds in the development of North Sea oil fields, the need for more precise log evaluation in this environment becomes apparent. This paper demonstrates an approach using the Dual Induction Log, taking into account invasion and boundary effects. Lithology and porosity are derived from the Formation Density or Litho-Density Log, Compensated Neutron Log, Sonic Log and the Natural Gamma Ray Spectrometry log. The effect of invasion by the oil component of the mud filtrate is treated in the evaluation, and a measurement of Moved Water is made Computations of petrophysical propertiesmore » are implemented by means of the GLOBAL interpretation program, taking advantage of its capability of adaption to any combination of logging sensors. 8 refs.« less

  13. Enzyme activity in terrestrial soil in relation to exploration of the Martian surface

    NASA Technical Reports Server (NTRS)

    Ardakani, M. S.; Burns, R. G.; Mclaren, A. D.; Pukite, A. H.

    1972-01-01

    Urease activity in soil is persistent for long periods under low water, low temperature, and sterile regimes, and it was suggested that some form of enzyme-protective mechanism exists in soil. Dublin soil was extracted by sonication in water followed by adding a mixture of salts. Urease activity is associated with the organo-mineral complex thus obtained and is resistant to the activities of proteolytic enzymes. Clay free soil organic matter prepared subsequently by filtration also exhibits urease activity which is resistant to proteolysis. Models consisting of enzymes with bentonite and lignin were found to mimic this resistance to proteolysis. A model system is presented which suggests both the origin and location of soil ureases and a reason for their persistence in nature.

  14. Renal functional and perioperative outcomes of off-clamp versus clamped robot-assisted partial nephrectomy: matched cohort study.

    PubMed

    Tanagho, Youssef S; Bhayani, Sam B; Sandhu, Gurdarshan S; Vaughn, Nicholas P; Nepple, Kenneth G; Figenshau, R Sherburne

    2012-10-01

    To evaluate the potential benefit of performing off-clamp robot-assisted partial nephrectomy as it relates to renal functional outcomes, while assessing the safety profile of this unconventional surgical approach. Twenty-nine patients who underwent off-clamp robot-assisted partial nephrectomy for suspected renal cell carcinoma at Washington University between March 2008 and September 2011 (group 1) were matched to 29 patients with identical nephrometry scores and comparable baseline renal function who underwent robot-assisted partial nephrectomy with hilar clamping during the same period (group 2). The matched cohorts' perioperative and renal functional outcomes were compared at a mean 9-month follow-up. Mean estimated blood loss was 146.4 mL in group 1, versus 103.9 mL in group 2 (P = .039). Mean hilar clamp time was 0 minutes in group 1 and 14.7 minutes in group 2. No perioperative complications were encountered in group 1; 1 Clavien-2 complication (3.4%) occurred in group 2 (P = 1.000). At 9-month follow-up, mean estimated glomerular filtration rate in group 1 was 79.9 versus 84.8 mL/min/1.73 m(2) preoperatively (P = .013); mean estimated glomerular filtration rate in group 2 was 74.1 versus 85.8 mL/min/1.73 m(2) preoperatively (P < .001). Hence, estimated glomerular filtration rate declined by a mean of 4.9 mL/min/1.73 m(2) in group 1 versus 11.7 mL/min/1.73 m(2) in group 2 (P = .033). Off-clamp robot-assisted partial nephrectomy is associated with a favorable morbidity profile and relatively greater renal functional preservation compared to clamped robot-assisted partial nephrectomy. Nevertheless, the benefit is small in renal functional terms and may have very limited clinical relevance. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Experimental design and modeling of ultrasound assisted simultaneous adsorption of cationic dyes onto ZnS: Mn-NPs-AC from binary mixture.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Yousefi, Fakhri; Dastkhoon, Mehdi

    2016-11-01

    The manganese impregnated zinc sulfide nanoparticles deposited on activated carbon (ZnS: Mn-NPs-AC) which fully was synthesized and characterized successfully applied for simultaneous removal of malachite green and methylene blue in binary situation. The effects of variables such as pH (2.0-10.0), sonication time (1-5min), adsorbent mass (0.005-0.025g) and MB and MG concentration (4-20mgL(-1)) on their removal efficiency was studied dy central composite design (CCD) to correlate dyes removal percentage to above mention variables that guides amongst the maximum influence was seen by changing the sonication time and adsorbent mass. Sonication time, adsorbent mass and pH in despite of dyes concentrations has positive relation with removal percentage. Multiple regression analysis of the experimental results is associated with 3-D response surface and contour plots that guide setting condition at pH of 7.0, 3min sonication time, 0.025g Mn: ZnS-NPs-AC and 15mgL(-1) of MB and MG lead to achievement of removal efficiencies of 99.87% and 98.56% for MG and MB, respectively. The pseudo-second-order model as best choice efficiency describe the dyes adsorption behavior, while MG and MB maximum adsorption capacity according to Langmuir was 202.43 and 191.57mgg(-1). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration

    DOE PAGES

    Edgington, Robert; Spillane, Katelyn M.; Papageorgiou, George; ...

    2018-01-15

    Here, nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functionalmore » silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.« less

  17. Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration.

    PubMed

    Edgington, Robert; Spillane, Katelyn M; Papageorgiou, George; Wray, William; Ishiwata, Hitoshi; Labarca, Mariana; Leal-Ortiz, Sergio; Reid, Gordon; Webb, Martin; Foord, John; Melosh, Nicholas; Schaefer, Andreas T

    2018-01-15

    Nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functional silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.

  18. Sonication-assisted synthesis of a new cationic zinc nitrate complex with a tetradentate Schiff base ligand: Crystal structure, Hirshfeld surface analysis and investigation of different parameters influence on morphological properties.

    PubMed

    Mousavi, S A; Montazerozohori, M; Masoudiasl, A; Mahmoudi, G; White, J M

    2018-09-01

    A nanostructured cationic zinc nitrate complex with a formula of [ZnLNO 3 ]NO 3 (where L = (N 2 E,N 2' E)-N 1 ,N 1' -(ethane-1,2-diyl)bis(N 2 -((E)-3-phenylallylidene)ethane-1,2-diamine)) was prepared by sonochemical process and characterized by single crystal X-ray crystallography, scanning electron microscopy (SEM), FT-IR and NMR spectroscopy and X-ray powder diffraction (XRPD). The X-ray analysis demonstrates the formation of a cationic complex that metal center is five-coordinated by four nitrogen atom from Schiff base ligand and one oxygen atom from nitrate group. The crystal packing analysis demonstrates the essential role of the nitrate groups in the organization of supramolecular structure. The morphology and size of ultrasound-assisted synthesized zinc nitrate complex have been investigated using scanning electron microscopy (SEM) by changing parameters such as the concentration of initial reactants, the sonication power and reaction temperature. In addition the calcination of zinc nitrate complex in air atmosphere led to production of zinc oxide nanoparticles. Copyright © 2018. Published by Elsevier B.V.

  19. Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgington, Robert; Spillane, Katelyn M.; Papageorgiou, George

    Here, nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functionalmore » silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.« less

  20. Simple Technique of Exfoliation and Dispersion of Multilayer Graphene from Natural Graphite by Ozone-Assisted Sonication

    PubMed Central

    Lin, Zaw; Karthik, Paneer Selvam; Hada, Masaki; Nishikawa, Takeshi; Hayashi, Yasuhiko

    2017-01-01

    Owing to its unique properties, graphene has attracted tremendous attention in many research fields. There is a great space to develop graphene synthesis techniques by an efficient and environmentally friendly approach. In this paper, we report a facile method to synthesize well-dispersed multilayer graphene (MLG) without using any chemical reagents or organic solvents. This was achieved by the ozone-assisted sonication of the natural graphite in a water medium. The frequency or number of ozone treatments plays an important role for the dispersion in the process. The possible mechanism of graphene exfoliation and the introduction of functional groups have been postulated. The experimental setup is unique for ozone treatment and enables the elimination of ozone off-gas. The heat generated by the dissipation of ultrasonic waves was used as it is, and no additional heat was supplied. The graphene dispersion was stable, and no evidence of aggregation was observed---even after several months. The characterization results show that well-dispersed MLG was successfully synthesized without any significant damage to the overall structure. The graphene obtained by this method has potential applications in composite materials, conductive coatings, energy storage, and electronic devices. PMID:28555015

  1. Simple Technique of Exfoliation and Dispersion of Multilayer Graphene from Natural Graphite by Ozone-Assisted Sonication.

    PubMed

    Lin, Zaw; Karthik, Paneer Selvam; Hada, Masaki; Nishikawa, Takeshi; Hayashi, Yasuhiko

    2017-05-27

    Owing to its unique properties, graphene has attracted tremendous attention in many research fields. There is a great space to develop graphene synthesis techniques by an efficient and environmentally friendly approach. In this paper, we report a facile method to synthesize well-dispersed multilayer graphene (MLG) without using any chemical reagents or organic solvents. This was achieved by the ozone-assisted sonication of the natural graphite in a water medium. The frequency or number of ozone treatments plays an important role for the dispersion in the process. The possible mechanism of graphene exfoliation and the introduction of functional groups have been postulated. The experimental setup is unique for ozone treatment and enables the elimination of ozone off-gas. The heat generated by the dissipation of ultrasonic waves was used as it is, and no additional heat was supplied. The graphene dispersion was stable, and no evidence of aggregation was observed---even after several months. The characterization results show that well-dispersed MLG was successfully synthesized without any significant damage to the overall structure. The graphene obtained by this method has potential applications in composite materials, conductive coatings, energy storage, and electronic devices.

  2. Comparing Zero Ischemia Laparoscopic Radio Frequency Ablation Assisted Tumor Enucleation and Laparoscopic Partial Nephrectomy for Clinical T1a Renal Tumor: A Randomized Clinical Trial.

    PubMed

    Huang, Jiwei; Zhang, Jin; Wang, Yanqing; Kong, Wen; Xue, Wei; Liu, Dongming; Chen, YongHui; Huang, Yiran

    2016-06-01

    We evaluated the functional outcome, safety and efficacy of zero ischemia laparoscopic radio frequency ablation assisted tumor enucleation compared with conventional laparoscopic partial nephrectomy. A prospective randomized controlled trial was conducted from April 2013 to March 2015 in patients with cT1a renal tumor scheduled for laparoscopic nephron sparing surgery. All patients were followed for at least 12 months. Patients in the laparoscopic radio frequency ablation assisted tumor enucleation group underwent tumor enucleation after radio frequency ablation without hilar clamping. The primary outcome was the change in glomerular filtration rate of the affected kidney by renal scintigraphy at 12 months. Secondary outcomes included changes in estimated glomerular filtration rate, estimated blood loss, operative time, hospital stay, postoperative complications and oncologic outcomes. The Pearson chi-square or Fisher exact, Student t-test and Wilcoxon rank sum tests were used. The trial ultimately enrolled 89 patients, of whom 44 were randomized to the laparoscopic radio frequency ablation assisted tumor enucleation group and 45 to the laparoscopic partial nephrectomy group. In the laparoscopic partial nephrectomy group 1 case was converted to radical nephrectomy. Compared with the laparoscopic partial nephrectomy group, patients in the laparoscopic radio frequency ablation assisted tumor enucleation group had a smaller decrease in glomerular filtration rate of the affected kidney at 3 months (10.2% vs 20.5%, p=0.001) and 12 months (7.6% vs 16.2%, p=0.002). Patients in the laparoscopic radio frequency ablation assisted tumor enucleation group had a shorter operative time (p=0.002), lower estimated blood loss (p <0.001) and a shorter hospital stay (p=0.029) but similar postoperative complications (p=1.000). There were no positive margins or local recurrence in this study. Zero ischemia laparoscopic radio frequency ablation assisted tumor enucleation enables tumor excision with better renal function preservation compared to conventional laparoscopic partial nephrectomy. Less blood loss and a shorter operative time were achieved with similar postoperative complication rates. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Faster extraction of heavy metals from soils using vacuum and ultrasonic energy.

    PubMed

    Pontes, Fernanda V M; Carneiro, Manuel C; de da Souza, Evelyn M F; da Silva, Lílian I D; Monteiro, Maria Inês C; Neto, Arnaldo A

    2013-01-01

    A fast vacuum- and ultrasound-assisted acid extraction of Co, Cu, Fe, Mn, Pb, and Zn from soils using a homemade system has been investigated. Preliminarily, a full factorial design with two levels and three variables (extracting agent, extraction temperature, and sonication time) was applied to optimize the extraction conditions (without vacuum) for some heavy metals (Cu, Mn, Pb, and Zn). The best results were obtained with a 3:1 HCI extraction solution, temperature of 80 degrees C, and time of 2 h. As this sonication time was too long, a vacuum pump was used to produce air bubbles in order to increase the contact between the sample and the extracting agent and to prevent the sample sedimentation. This improvement drastically reduced the sonication time to 2 min. Under these conditions, Co, Cu, Mn, and Zn were totally extracted (recoveries of 86-99%), while recoveries of 73-76 and 74% were obtained for Fe and Pb, respectively. The LOD values using flame atomic absorption spectrometry for determination of Co, Cu, Fe, Mn, Pb, and Zn were 3.2, 7.5, 37.5, 7.5, 22.5, and 3.8 micro glg, respectively. The RSDs were lower than 11% (n = 3).

  4. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide.

    PubMed

    Verma, Purnima; Ahuja, Munish

    2016-10-01

    The purpose of this study was to investigate the potential of cubic liquid crystalline nanoparticles for ocular delivery of tropicamide. Ultrasound-assisted fragmentation of cubic liquid crystalline bulk phases resulted in cubic liquid crystalline nanoparticles employing Pluronic F127 as dispersant. The effects of process variables such as sonication time, sonication amplitude, sonication depth, and pre-mixing time on particle size and polydispersity index was investigated using central composite design. The morphology of tropicamide-loaded nanoparticles was found to be nearly cubical in shape by transmission electron microscopy observation. Further, small angle X-ray scattering experiment confirmed the presence of D and P phase cubic structures in coexistence. The optimized tropicamide-loaded cubic nanoparticles showed in vitro corneal permeation of tropicamide across isolated porcine cornea comparable to its commercial preparation, Tropicacyl®. Ocular tolerance was evaluated by Hen's egg-chorioallantoic membrane test and histological studies. The results of in vivo mydriatic response study demonstrated a remarkably higher area under mydriatic response curve (AUC 0→1440 min ) values of cubic nanoparticles over Tropicacyl® indicating better therapeutic value of cubic nanoparticles. Furthermore, tropicamide-loaded cubic nanoparticles exhibited prolonged mydriatic effect on rabbits as compared to commercial conventional aqueous ophthalmic solution.

  5. Effects of radical initiators, polymerization inhibitors, and other agents on the sonochemical unzipping of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fukumori, Minoru; Hara, Shinnosuke; Ogawa, Takuji; Tanaka, Hirofumi

    2018-03-01

    The mechanism of graphene nanoribbon synthesis by the sonication-assisted unzipping of carbon nanotubes (CNTs) was investigated utilizing 4-methoxyphenol and 1,4-dimethoxybenzene as moieties of poly[(m-phenylenevinylene)-co-(2,5-dioctoxy-p-phenylenevinylene)]. The obtained results revealed that unzipping was promoted by 4-methoxyphenol owing to the facile abstraction of its phenolic hydrogen by sonication-generated radicals on CNTs, whereas 1,4-dimethoxybenzene did not facilitate unzipping, since its methoxy hydrogens were hardly abstracted. Moreover, unzipping was also facilitated by trans-stilbene, the double bond of which reacts with CNT radicals. Furthermore, we succeeded in using a general radical initiator, namely, 2,2‧-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride to promote unzipping, confirming that it is promoted by radical donors/trapping agents.

  6. Valley Topological Phases in Bilayer Sonic Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Deng, Weiyin; Huang, Xueqin; Li, Feng; Zhang, Fan; Chen, Shuqi; Liu, Zhengyou

    2018-03-01

    Recently, the topological physics in artificial crystals for classical waves has become an emerging research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two layers of coupled hexagonal array of triangular scatterers. Assisted by the additional layer degree of freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distinguished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively. The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge states that propagate along the interfaces separating different topological phases. Various applications such as sound communications in integrated devices can be anticipated by the intriguing acoustic edge states enriched by the layer information.

  7. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis.

    PubMed

    Armstrong, Mitchell R; Senthilnathan, Sethuraman; Balzer, Christopher J; Shan, Bohan; Chen, Liang; Mu, Bin

    2017-01-01

    Systematic studies of key operating parameters for the sonochemical synthesis of the metal organic framework (MOF) HKUST-1(also called CuBTC) were performed including reaction time, reactor volume, sonication amplitude, sonication tip size, solvent composition, and reactant concentrations analyzed through SEM particle size analysis. Trends in the particle size and size distributions show reproducible control of average particle sizes between 1 and 4μm. These results along with complementary studies in sonofragmentation and temperature control were conducted to compare these results to kinetic crystal growth models found in literature to develop a plausible hypothetical mechanism for ultrasound-assisted growth of metal-organic-frameworks composed of a competitive mechanism including constructive solid-on-solid (SOS) crystal growth and a deconstructive sonofragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. 77 FR 12082 - Notice of Determinations Regarding Eligibility To Apply for Worker Adjustment Assistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ..., Including Leased Workers: Keystone Staffing, Aerotek Staffing. 81,296 Pentair Water Filtration Monticello, IN February 3, 2011. Indiana, LLC, Water Purification Division, Manpower. The following...

  9. Tissue cell assisted fabrication of tubular catalytic platinum microengines

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Moo, James Guo Sheng; Pumera, Martin

    2014-09-01

    We report a facile platform for mass production of robust self-propelled tubular microengines. Tissue cells extracted from fruits of banana and apple, Musa acuminata and Malus domestica, are used as the support on which a thin platinum film is deposited by means of physical vapor deposition. Upon sonication of the cells/Pt-coated substrate in water, microscrolls of highly uniform sizes are spontaneously formed. Tubular microengines fabricated with the fruit cell assisted method exhibit a fast motion of ~100 bodylengths per s (~1 mm s-1). An extremely simple and affordable platform for mass production of the micromotors is crucial for the envisioned swarms of thousands and millions of autonomous micromotors performing biomedical and environmental remediation tasks.We report a facile platform for mass production of robust self-propelled tubular microengines. Tissue cells extracted from fruits of banana and apple, Musa acuminata and Malus domestica, are used as the support on which a thin platinum film is deposited by means of physical vapor deposition. Upon sonication of the cells/Pt-coated substrate in water, microscrolls of highly uniform sizes are spontaneously formed. Tubular microengines fabricated with the fruit cell assisted method exhibit a fast motion of ~100 bodylengths per s (~1 mm s-1). An extremely simple and affordable platform for mass production of the micromotors is crucial for the envisioned swarms of thousands and millions of autonomous micromotors performing biomedical and environmental remediation tasks. Electronic supplementary information (ESI) available: Related video. See DOI: 10.1039/c4nr03720k

  10. Ultrasonically assisted hydrothermal synthesis of activated carbon-HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization.

    PubMed

    Azad, F Nasiri; Ghaedi, M; Dashtian, K; Hajati, S; Pezeshkpour, V

    2016-07-01

    Activated carbon (AC) composite with HKUST-1 metal organic framework (AC-HKUST-1 MOF) was prepared by ultrasonically assisted hydrothermal method and characterized by FTIR, SEM and XRD analysis and laterally was applied for the simultaneous ultrasound-assisted removal of crystal violet (CV), disulfine blue (DSB) and quinoline yellow (QY) dyes in their ternary solution. In addition, this material, was screened in vitro for their antibacterial actively against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO1) bacteria. In dyes removal process, the effects of important variables such as initial concentration of dyes, adsorbent mass, pH and sonication time on adsorption process optimized by Taguchi approach. Optimum values of 4, 0.02 g, 4 min, 10 mg L(-1) were obtained for pH, AC-HKUST-1 MOF mass, sonication time and the concentration of each dye, respectively. At the optimized condition, the removal percentages of CV, DSB and QY were found to be 99.76%, 91.10%, and 90.75%, respectively, with desirability of 0.989. Kinetics of adsorption processes follow pseudo-second-order model. The Langmuir model as best method with high applicability for representation of experimental data, while maximum mono layer adsorption capacity for CV, DSB and QY on AC-HKUST-1 estimated to be 133.33, 129.87 and 65.37 mg g(-1) which significantly were higher than HKUST-1 as sole material with Qm to equate 59.45, 57.14 and 38.80 mg g(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Sonic spectrometer and treatment system

    DOEpatents

    Slomka, B.J.

    1997-06-03

    A novel system and method is developed for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object. 1 fig.

  12. Sonic spectrometer and treatment system

    DOEpatents

    Slomka, Bogdan J.

    1997-06-03

    A novel system and method for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object.

  13. Development of a novel probe sonication assisted enhanced loading of 5-FU in SPION encapsulated pectin nanocarriers for magnetic targeted drug delivery system.

    PubMed

    Dutta, Raj Kumar; Sahu, Saurabh

    2012-09-01

    A novel probe sonication method is developed to enhance loading of 5-fluorouracil (5-FU) in SPION encalsulated pectin nanocarriers of 100-150 nm size (referred here as MP-5FU nanocarriers). Probe sonication at 20 kHz for 60 min resulted in 5-FU loading efficiency of 33.2 ± 2.5%w/w and corresponding drug loading content of 18.2 ± 1.1 wt%. These are two folds higher than literature report of 5-FU loading in pectin. The enhanced loading is attributed to increase in the rate of dissolution of 5-FU in pectin due to transmission of kHz order sonic waves which increases temperature and pressure in the medium due to formation and collapsing of cavitation bubbles. The fabricated MP-5FU nanocarriers with saturation magnetization (43.13 emu/g) exhibited pH responsive, swelling controlled in vitro release of 5-FU in simulated gastric fluid at pH 1.2, in simulated intestinal fluid at pH 6.8, in simulated colonic fluid at pH 5.5, and in phosphate buffer solution at pH 7.4. The cytotoxicity of MP-5FU was measured by sulforhodamine B (SRB) assay and its GI(50) was more than 5mg/mL for cancer cells of HT-29 (colon) and Hep G2 (liver), while it was 3.7 mg/mL for cancer cells of MIA-PaCa-2 (Pancreas). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Effects of processing parameters in the sonic assisted water extraction (SAWE) of 6-gingerol.

    PubMed

    Syed Jaapar, Syaripah Zaimah; Morad, Noor Azian; Iwai, Yoshio; Nordin, Mariam Firdhaus Mad

    2017-09-01

    The use of water in subcritical conditions for extraction has several drawbacks. These include the safety features, higher production costs and possible degradation of the bioactive compounds. To overcome these problems, sonic energy and an entrainer were used as external interventions to decrease the polarity of water at milder operating conditions. The effect of low (28kHz) and high (800kHz) frequencies of sonication in the extraction of the main ginger bioactive compound (6-gingerol) were compared. Six parameters were studied: mean particle size (MPS, mm), time of extraction, applied power, sample to solvent ratio (w/v), temperature of extraction, and the percentage of entrainer. The optimum conditions for high frequency SAWE prototype were MPS 0.89-1.77mm, 45min, 40W applied power, 1:30 (w/v), 45°C, and 15% of ethanol as entrainer. Two-way analysis of variance (ANOVA) gave the most significant parameter, which was power with F (1, 45.07), p<2.50×10 -9 . Although the effect of low frequency was stronger than high frequency, at the optimum conditions of the sample to solvent ratio 1:30 (w/v) with 700mL solvent and temperature 45°C, the concentration and recovery of 6-gingerol from high frequency of SAWE prototype was 2.69 times higher than at low frequency of SAWE. It was found that although the effects of high frequency (800kHz) were negligible in other studies, it could extract suitable compounds, such as 6-gingerol, at lower temperature. Therefore, the effects of sonication, which cause an enlargement in the cell wall of the ginger plant matrix, were observed using a Scanning Electron Microscope (SEM). It was found that the applied power of sonication was the most significant parameter compared to the other parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ultrasonic-assisted dyeing of Nylon-6 nanofibers.

    PubMed

    Jatoi, Abdul Wahab; Ahmed, Farooq; Khatri, Muzamil; Tanwari, Anwaruddin; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo

    2017-11-01

    We first time report ultrasonic dyeing of the Nylon 6 nanofibers with two disperse dyes CI Disperse blue 56 and CI Disperse Red 167:1 by utilising ultrasonic energy during dyeing process. The Nylon 6 nanofibers were fabricated via electrospinning and dyed via batchwise method with and without sonication. Results revealed that ultrasonic dyeing produce higher color yield (K/S values) and substantially reduces dyeing time from 60min for conventional dyeing to 30min can be attributed to breakage of dye aggregate, transient cavitation near nanofiber surface and mass transfer within/between nanofibers. Color fastness results exhibited good to very good dye fixation. SEM images exhibit insignificant effect of sonication on morphology of the nanofibers. Our research results demonstrate ultrasonic dyeing as a better dyeing technique for Nylon 6 nanofibers with higher color yield and substantially reduced dyeing time. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Meal assistance robot with ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Kodani, Yasuhiro; Tanaka, Kanya; Wakasa, Yuji; Akashi, Takuya; Oka, Masato

    2007-12-01

    In this paper, we have constructed a robot that help people with disabilities of upper extremities and advanced stage amyotrophic lateral sclerosis (ALS) patients to eat with their residual abilities. Especially, many of people suffering from advanced stage ALS of the use a pacemaker. And they need to avoid electromagnetic waves. Therefore we adopt ultra sonic motor that does not generate electromagnetic waves as driving sources. Additionally we approach the problem of the conventional meal assistance robot. Moreover, we introduce the interface with eye movement so that extremities can also use our system. User operates our robot not with hands or foot but with eye movement.

  17. Numerical simulation of heat transfer and phase change during freezing of potatoes with different shapes at the presence or absence of ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Kiani, Hossein; Sun, Da-Wen

    2018-03-01

    As novel processes such as ultrasound assisted heat transfer are emerged, new models and simulations are needed to describe these processes. In this paper, a numerical model was developed to study the freezing process of potatoes. Different thermal conductivity models were investigated, and the effect of sonication was evaluated on the convective heat transfer in a fluid to the particle heat transfer system. Potato spheres and sticks were the geometries researched, and the effect of different processing parameters on the results were studied. The numerical model successfully predicted the ultrasound assisted freezing of various shapes in comparison with experimental data of the process. The model was sensitive to processing parameters variation (sound intensity, duty cycle, shape, etc.) and could accurately simulate the freezing process. Among the thermal conductivity correlations studied, de Vries and Maxwell models gave closer estimations. The maximum temperature difference was obtained for the series equation that underestimated the thermal conductivity. Both numerical and experimental data confirmed that an optimum condition of intensity and duty cycle is needed for reducing the freezing time, as increasing the intensity, increased the heat transfer rate and sonically heating rate, simultaneously, that acted against each other.

  18. Validation of a CFD Model by Using 3D Sonic Anemometers to Analyse the Air Velocity Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans

    PubMed Central

    García-Ramos, F. Javier; Malón, Hugo; Aguirre, A. Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-01

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values. PMID:25621611

  19. Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu(3+) hierarchical superstructures: Photometric characteristics and LED applications.

    PubMed

    Venkataravanappa, M; Nagabhushana, H; Darshan, G P; Daruka Prasad, B; Vijayakumar, G R; Premkumar, H B; Udayabhanu

    2016-11-01

    This paper reports for the first time ultrasound, EGCG assisted synthesis of pure and Eu(3+) (1-5mol%) activated Ca2SiO4 nanophosphors having self-assembled superstructures with high purity. The shape, size and morphology of the product were tuned by controlling influential parameters. It was found that morphology was highly dependent on EGCG concentration, sonication time, pH and sonication power. The probable formation mechanism for various hierarchical superstructures was proposed. The PL studies of Ca2SiO4:Eu(3+) phosphors can be effectively excited by the near ultraviolet (UV) (396nm) light and exhibited strong red emission around 613nm, which was attributed to the Eu(3+) ((5)D0→(7)F2) transition. The concentration quenching phenomenon was explained based on energy transfer between defect and Eu(3+) ions, electron-phonon coupling and Eu(3+)-Eu(3+) interaction. The Judd-Ofelt intensity parameters and radiative properties were estimated by using PL emission spectra. The photometric studies indicate that the obtained phosphors could be a promising red component for possible applications in the field of white light emitting diodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: Caffeine/maleic acid.

    PubMed

    Aher, Suyog; Dhumal, Ravindra; Mahadik, Kakasaheb; Paradkar, Anant; York, Peter

    2010-12-23

    Ultrasound assisted solution cocrystallization (USSC) has been studied using a non-congruently soluble pair of caffeine and maleic acid in methanol. USSC was compared with solvent cooling and slurry sonication using different molar ratios of caffeine:maleic acid (1:0.5, 1:1, 1:2, 1:3 and 1:3.5) in solution/slurry. Products were characterized by PXRD and Raman spectroscopy techniques. In USSC trials, the content of cocrystal in the product was observed to increase with increase in amount of maleic acid in solution. Only USSC offered pure caffeine/maleic acid 2:1 cocrystal product when caffeine:maleic acid; 1:3.5 molar ratio was taken in solution. Caffeine/maleic acid 1:1 cocrystal and maleic acid were not obtained in neither of the techniques. Products of solvent cooling and slurry sonication experiments were mixtures of caffeine and caffeine/maleic acid 2:1 cocrystal in varying amounts. In USSC, ultrasound application must have attained simultaneous supersaturation of cocrystal components in solution due to altered supersaturation conditions resulting in cocrystal formation. For this simultaneous attainment of supersaturation, molar ratio of cocrystal components in solution was identified as an important parameter while designing experiments for a non-congruently soluble pair having large solubility difference. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon

    NASA Astrophysics Data System (ADS)

    Roosta, M.; Ghaedi, M.; Daneshfar, A.; Sahraei, R.

    2014-03-01

    In this research, the adsorption rate of safranine O (SO) onto tin sulfide nanoparticle loaded on activated carbon (SnS-NPAC) was accelerated by the ultrasound. SnS-NP-AC was characterized by different techniques such as SEM, XRD and UV-Vis measurements. The present results confirm that the ultrasound assisted adsorption method has remarkable ability to improve the adsorption efficiency. The influence of parameters such as the sonication time, adsorbent dosage, pH and initial SO concentration was examined and evaluated by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF). Conducting adsorption experiments at optimal conditions set as 4 min of sonication time, 0.024 g of adsorbent, pH 7 and 18 mg L-1 SO make admit to achieve high removal percentage (98%) and high adsorption capacity (50.25 mg g-1). A good agreement between experimental and predicted data in this study was observed. The experimental equilibrium data fitting to Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo-second-order and intraparticle diffusion models.

  2. Validation of a CFD model by using 3D sonic anemometers to analyse the air velocity generated by an air-assisted sprayer equipped with two axial fans.

    PubMed

    García-Ramos, F Javier; Malón, Hugo; Aguirre, A Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-22

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values.

  3. Ultrasound assisted extraction of polysaccharides from hazelnut skin.

    PubMed

    Yılmaz, Tuncay; Tavman, Şebnem

    2016-03-01

    In this study ultrasound assisted extraction (UAE) of polysaccharides from hazelnut skin has been studied. Optimum sonication time has been evaluated depending on responses such as amount of carbohydrate and dried sample and thermogravimetric analysis. Chemical and structural properties of extracted material have been determined by Fourier transform spectroscopy attenuated-total reflectance (FTIR-ATR) spectroscopy. Pretreated hazelnut skin powders were extracted in distilled water. Mixture was sonicated by ultrasonic processor probe for 15, 30, 45, 60, 90, and 120 min. The results of UAE showed that maximum ethanol insoluble extracts in 60 min and the highest dry matter content could be obtained in 120 min extraction. Although total carbohydrate content of ethanol insoluble dry extract decreased with time, total carbohydrate in ethanol soluble fraction increased. Polysaccharides extracted from hazelnut skin were assumed to be pectic polysaccharide according to the literature survey of FTIR analysis result. Application time of UAE has an important effect on extraction of polysaccharide from hazelnut skin. This affect could be summarized by enhancing extraction yield up to critical level. Decrease of the yield in ethanol insoluble part could be explained by polymer decomposition. Most suitable model was hyperbolic model by having the lowest root mean square error and the highest R(2) values. © The Author(s) 2015.

  4. Comparative Outcomes of Hand-assisted Laparoscopic Donor Nephrectomy Using Midline Incision or Low Transverse Incision for Hand-assisted Port Placement.

    PubMed

    Gwon, Jun Gyo; Jun, Heungman; Kim, Myung Gyu; Boo, Yoon Jung; Jung, Cheol Woong

    2016-06-01

    Hand-assisted laparoscopic donor nephrectomy is performed in many centers for donor nephrectomy. A midline incision for hand-assisted port placement is generally used but produces an unsightly scar. In this study, patients who had hand-assisted laparoscopic donor nephrectomy with low transverse incision were compared with those who received a midline incision. Our study group included patients who received hand-assisted laparoscopic donor nephrectomy from February 2012 to December 2014 at Korea University Anam Hospital. We retrospectively compared outcomes of these patients based on midline incision (45 patients) versus low transverse incision (17 patients). Risk factors, including age, sex, body mass index, creatinine level, glomerular filtration rate of allograft, side of graft kidney, number of renal arteries, duration of surgical procedure, and warm ischemic time, were compared between the midline and low transverse incision groups. When we compared the midline versus low transverse incision groups, duration of surgical procedure (P = .043), postoperative day 3 glomerular filtration rate (P = .017), and postoperative day 3 pain score (P = .049) were significantly higher in the low transverse incision group versus the midline incision group. Postoperative day 3 results for duration of hospitalization (P = .030) and pain score (P = .021) were also significantly higher in the low transverse versus midline incision groups when we focused on patients with left nephrectomy. Hand-assisted laparoscopic donor nephrectomy with low transverse incision is more painful and necessitates a longer hospital stay and longer surgical procedure. Despite these disadvantages, hand-assisted laparoscopic donor nephrectomy with low transverse incision can offer a better cosmetic outcome with no definitive differences regarding renal function compared with a midline incision. Surgeons should consider these aspects when deciding on the best method for donor nephrectomy.

  5. MID Plot: a new lithology technique. [Matrix identification plot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clavier, C.; Rust, D.H.

    1976-01-01

    Lithology interpretation by the Litho-Porosity (M-N) method has been used for years, but is evidently too cumbersome and ambiguous for widespread acceptance as a field technique. To set aside these objections, another method has been devised. Instead of the log-derived parameters M and N, the MID Plot uses quasi-physical quantities, (rho/sub ma/)/sub a/ and (..delta..t/sub ma/)/sub a/, as its porosity-independent variables. These parameters, taken from suitably scaled Neutron-Density and Sonic-Neutron crossplots, define a unique matrix mineral or mixture for each point on the logs. The matrix points on the MID Plot thus remain constant in spite of changes in mudmore » filtrate, porosity, or neutron tool types (all of which significantly affect the M-N Plot). This new development is expected to bring welcome relief in areas where lithology identification is a routine part of log analysis.« less

  6. Strategy to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis.

    PubMed

    Vázquez-Martínez, Guadalupe; Rodriguez, Mario H; Hernández-Hernández, Fidel; Ibarra, Jorge E

    2004-04-01

    An efficient strategy, based on a combination of procedures, was developed to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis. Samples were initially cultured in solid ASN-10 medium, and a crude separation of major contaminants from P. animalis filaments was achieved by washing in a series of centrifugations and resuspensions in liquid medium. Then, manageable filament fragments were obtained by probe sonication. Fragmentation was followed by forceful washing, using vacuum-driven filtration through an 8-microm pore size membrane and an excess of water. Washed fragments were cultured and treated with a sequential exposure to four different antibiotics. Finally, axenic cultures were obtained from serial dilutions of treated fragments. Monitoring under microscope examination and by inoculation in Luria-Bertani (LB) agar plates indicated either axenicity or the degree of contamination throughout the strategy.

  7. Regulation of Egr1 Target Genes by the Nurd Chromatin Remodeling Complex

    DTIC Science & Technology

    2008-06-01

    Wade for providing a Mi2 antibody , and Megan Santarius for excellent technical assistance. REFERENCES 1. Russo, M. W., Sevetson, B. R., and Milbrandt...achieve crosslinking. Chromatin was then sonicated and immunoprecipitated with antibodies directed against Egr1, MTA2 or IgG control. After...promoter of IGF2, although the effects are more subtle. Control ChIP assays employing an EGR1 antibody show correlated increased binding of EGR1

  8. Comparison of Dilution, Filtration, and Microwave Digestion Sample Pretreatments in Elemental Profiling of Wine by ICP-MS.

    PubMed

    Godshaw, Joshua; Hopfer, Helene; Nelson, Jenny; Ebeler, Susan E

    2017-09-25

    Wine elemental composition varies by cultivar, geographic origin, viticultural and enological practices, and is often used for authenticity validation. Elemental analysis of wine by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is challenging due to the potential for non-spectral interferences and plasma instability arising from organic matrix components. Sample preparation mitigates these interferences, however, conflicting recommendations of best practices in ICP-MS analysis of wine have been reported. This study compared direct dilution, microwave-assisted acid digestion, and two filtration sample pretreatments, acidification prior to filtration and filtration followed by acidification, in elemental profiling of one white and three red table wines by ICP-MS. Of 43 monitored isotopes, 37 varied by sample preparation method, with significantly higher results of 17 isotopes in the microwave-digested samples. Both filtration treatments resulted in lower results for 11 isotopes compared to the other methods. Finally, isotope dilution determination of copper based on natural abundances and the 63 Cu: 65 Cu instrument response ratio agreed with external calibration and confirmed a significant sample preparation effect. Overall, microwave digestion did not compare favorably, and direct dilution was found to provide the best compromise between ease of use and result accuracy and precision, although all preparation strategies were able to differentiate the wines.

  9. Preparation, characterization, nanostructures and bio functional analysis of sonicated protein co-precipitates from brewers' spent grain and soybean flour.

    PubMed

    Alu'datt, Muhammad H; Gammoh, Sana; Rababah, Taha; Almomani, Mohammed; Alhamad, Mohammad N; Ereifej, Khalil; Almajwal, Ali; Tahat, Asma; Hussein, Neveen M; Nasser, Sura Abou

    2018-02-01

    This investigation was performed to assess the effects of sonication on the structure of protein, extractability of phenolics, and biological properties of isolated proteins and protein co-precipitates prepared from brewers' spent grain and soybean flour. Scanning electron micrographs revealed that the sonicated protein isolates and co-precipitates had different microstructures with fewer aggregates and smaller particles down to the nanometer scale compared to non-sonicated samples. However, the levels of free and bound phenolics extracted from non-sonicated protein isolates and protein co-precipitates increased compared to sonicated samples. The bound phenolics extracted after acid hydrolysis of sonicated protein co-precipitates showed improved ACE inhibitory activity and diminished antioxidant potency compared to non-sonicated samples. However, the free phenolics extracted from sonicated protein co-precipitates showed decreased ACE inhibitory activity and increased antioxidant activities compared to non-sonicated samples. The free and bound phenolics extracted from sonicated protein co-precipitates showed increased alpha-amylase inhibitory activity compared to non-sonicated samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkyu; Park, Hun; Paik, Ungyu

    We have discovered a methodology to realize the fabrication of flexible metal oxide film using two-dimensional (2D) nanosheets. Atomic scale titanium oxide (TiO{sub x}) nanosheets were exfoliated from bulk TiO{sub x} powder that had a layered structure via the modified Sasaki’s method. The vacuum-assisted filtration generates films with laterally aligned TiO{sub x} nanosheets. The 2D sheet-like structure and hydrophilic nature of TiO{sub x} nanosheets enables the film consisting of TiO{sub x} nanosheets to be bendable. Also, we demonstrate the fabrication of electrochemical capacitors using this film. The mechanically flexible metal oxide film is expected to open up the possibility ofmore » fabricating flexible energy storage devices from 2D metal oxide nanosheets. - Graphical abstract: The modified Sasaki’s method, combined process of hydrothermal reaction and bulky ion exchange, enables to obtain TiO{sub x} monolayer nanosheets. The vacuum-assisted filtration generates bendable films with laterally aligned TiO{sub x} nanosheets. Also, we demonstrate the fabrication of electrochemical capacitors using this film. - Highlights: • TiO{sub x} single sheets, a novel 2-dimensional material, were exfoliated from bulk powders via the modified Sasaki’s method. • In our method, the acid treatment of TiO{sub x} bulk powders was simply modified by applying the hydrothermal reaction. • Then, the delamination procedures of large cation exchange were conducted following the method proposed by Sasaki et al. • Reassembly of TiO{sub x} sheets into flexible free-standing films was simply achieved via vacuum assisted filtration method. • TiO{sub x} films were used as a flexible supercapaictor electrode material.« less

  11. Portable vibration-assisted filtration device for on-site isolation of blood cells or pathogenic bacteria from whole human blood.

    PubMed

    Kim, Yong Tae; Park, Kyun Joo; Kim, Seyl; Kim, Soon Ae; Lee, Seok Jae; Kim, Do Hyun; Lee, Tae Jae; Lee, Kyoung G

    2018-03-01

    Isolation of specific cells from whole blood is important to monitor disease prognosis and diagnosis. In this study, a vibration-assisted filtration (VF) device has been developed for isolation and recovery of specific cells such as leukocytes and pathogenic bacteria from human whole blood. The VF device is composed of three layers which was fabricated using injection molding with cyclic olefin copolymer (COC) pellets consisting of: a top layer with coin-type vibration motor (Ф = 10mm), a middle plate with a 1μm or 3μm-pore filter membrane to separate of Staphylococcus aureus (S. aureus) cells or leukocytes (i.e. white blood cells) respectively, and a bottom chamber with conical-shaped microstructure. One milliliter of human whole blood was injected into a sample loading chamber using a 3μm-pore filter equipped in the VF device and the coin-type vibration motor applied external vibration force by generating a rotational fluid which enhances the filtration velocity due to the prevention of the cell clogging on the filter membrane. The effluent blood such as erythrocytes, platelet, and plasma was collected at the bottom chamber while the leukocytes were sieved by the filter membrane. The vibration-assisted leukocyte separation was able to finish within 200s while leukocyte separation took 1200s without vibration. Moreover, we successfully separated S. aureus from human whole blood using a 1μm-pore filter equipped VF device and it was further confirmed by genetic analysis. The proposed VF device provides an advanced cell separation platform in terms of simplicity, fast separation, and portability in the fields of point-of-care diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Field-analysis of potable water quality and ozone efficiency in ozone-assisted biological filtration systems for surface water treatment.

    PubMed

    Zanacic, Enisa; Stavrinides, John; McMartin, Dena W

    2016-11-01

    Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Public health protection through bank filtration - Kearney Nebraska case study

    NASA Astrophysics Data System (ADS)

    Esseks, E.; Bellamy, W.; Heinemann, T.; Stocker, K.

    2003-04-01

    The investigation of Kearney's bank filtration system provides further evidence of this technology's capability to assist in providing public health protection, as it relates to drinking water. The results of hydrogeologic and treatment studies demonstrate the capabilities of the Platte River aquifer materials, in this locale, to remove pathogens and their surrogates. Continual monitoring and evaluations will establish the system’s longevity and continued treatment efficacy. The City of Kearney is located in south central Nebraska. The City owns and operates a public water system that serves approximately 24,889 people. The water system includes 12 wells located on Killgore Island in the Platte River. In 1994, the Nebraska Department of Health and Human Services System (Department) determined that 3 wells in the wellfield serving the City of Kearney were ground water under the direct influence of surface water. This determination was based on results of microscopic particulate analysis (MPA). The City of Kearney undertook the natural bank filtration study to determine whether natural bank filtration was occurring at the site and if the filtration was sufficient to meet pathogen treatment requirements designed to protect public health. A preliminary study was undertaken from June through October 1995. This coincided with the City’s peak pumping time, which may be the time when the influence of the River is greatest on the wellfield wells. Hydrogeologic studies assisted in selecting wells that were at highest risk based on shortest travel times and greatest differential head. Data collected included particle counts, MPAs, turbidity, coliform, centrifugate pellet evaluation (CPE) volumes, pH, conductivity, and temperature. Following analysis of data collected during the preliminary 18-week study the Department granted conditional approval of 2-log credit for removal of Giardia lamblia and 1-log credit for removal of viruses through bank filtration, pending the results of an additional 12-month study. Additional monitoring took place from October 1997 to October 1998. Results of the second study supported the findings of the original 18-week study. The Department finalized approval of the removal credits on December 16, 1999. This paper discusses the 2 studies, ongoing monitoring, decisions made by the Department, and issues the City and the Department have addressed and will be addressing with the addition of new treatment requirements to surface water treatment rules. In addition, this paper examines features of the Island wellfield that may explain the documented bank filtration treatment efficiencies.

  14. Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: Response surface methodological optimization.

    PubMed

    Darvishi Cheshmeh Soltani, Reza; Safari, Mahdi

    2016-09-01

    The improvement of sonocatalytic treatment of real textile wastewater in the presence of MgO nanoparticles was the main goal of the present study. According to our preliminary results, the application of pulse mode of sonication, together with the addition of periodate ions, produced the greatest sonocatalytic activity and consequently, the highest chemical oxygen demand (COD) removal efficiency (73.95%) among all the assessed options. In the following, pulsed sonocatalysis of real textile wastewater in the presence of periodate ions was evaluated response surface methodologically on the basis of central composite design. Accordingly, a high correlation coefficient of 0.95 was attained for the applied statistical strategy to optimize the process. As results, a pulsed sonication time of 141min, MgO dosage of 2.4g/L, solution temperature of 314K and periodate concentration of 0.11M gave the maximum COD removal of about 85%. Under aforementioned operational conditions, the removal of total organic carbon (TOC) was obtained to be 63.34% with the reaction rate constant of 7.1×10(-3)min(-1) based on the pseudo-first order kinetic model (R(2)=0.99). Overall, periodate-assisted pulsed sonocatalysis over MgO nanoparticles can be applied as an efficient alternative process for treating and mineralizing real textile wastewater with good reusability potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon.

    PubMed

    Roosta, M; Ghaedi, M; Daneshfar, A; Sahraei, R

    2014-03-25

    In this research, the adsorption rate of safranine O (SO) onto tin sulfide nanoparticle loaded on activated carbon (SnS-NPAC) was accelerated by the ultrasound. SnS-NP-AC was characterized by different techniques such as SEM, XRD and UV-Vis measurements. The present results confirm that the ultrasound assisted adsorption method has remarkable ability to improve the adsorption efficiency. The influence of parameters such as the sonication time, adsorbent dosage, pH and initial SO concentration was examined and evaluated by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF). Conducting adsorption experiments at optimal conditions set as 4 min of sonication time, 0.024 g of adsorbent, pH 7 and 18 mg L(-1) SO make admit to achieve high removal percentage (98%) and high adsorption capacity (50.25 mg g(-)(1)). A good agreement between experimental and predicted data in this study was observed. The experimental equilibrium data fitting to Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo-second-order and intraparticle diffusion models. Copyright © 2013. Published by Elsevier B.V.

  16. 76 FR 65215 - Investigations Regarding Certifications of Eligibility To Apply for Worker Adjustment Assistance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ......... 09/26/11 09/23/11 80463 Clow Water Systems (State/One-Stop). Coshocton, OH........ 09/26/11 09/23/11... American Apparel (State/One-Stop)... Garden Grove, CA..... 09/30/11 09/29/11 80484 Cummins Filtration...

  17. Facile and rapid DNA extraction and purification from food matrices using IFAST (immiscible filtration assisted by surface tension).

    PubMed

    Strotman, Lindsay N; Lin, Guangyun; Berry, Scott M; Johnson, Eric A; Beebe, David J

    2012-09-07

    Extraction and purification of DNA is a prerequisite to detection and analytical techniques. While DNA sample preparation methods have improved over the last few decades, current methods are still time consuming and labor intensive. Here we demonstrate a technology termed IFAST (Immiscible Filtration Assisted by Surface Tension), that relies on immiscible phase filtration to reduce the time and effort required to purify DNA. IFAST replaces the multiple wash and centrifugation steps required by traditional DNA sample preparation methods with a single step. To operate, DNA from lysed cells is bound to paramagnetic particles (PMPs) and drawn through an immiscible fluid phase barrier (i.e. oil) by an external handheld magnet. Purified DNA is then eluted from the PMPs. Here, detection of Clostridium botulinum type A (BoNT/A) in food matrices (milk, orange juice), a bioterrorism concern, was used as a model system to establish IFAST's utility in detection assays. Data validated that the DNA purified by IFAST was functional as a qPCR template to amplify the bont/A gene. The sensitivity limit of IFAST was comparable to the commercially available Invitrogen ChargeSwitch® method. Notably, pathogen detection via IFAST required only 8.5 μL of sample and was accomplished in five-fold less time. The simplicity, rapidity and portability of IFAST offer significant advantages when compared to existing DNA sample preparation methods.

  18. Filtration-wet transferred transparent conducting films of mm long carbon nanotubes grown using water-assisted chemical vapor deposition.

    PubMed

    Patole, Shashikant P; Shin, Dong Wook; Fugetsu, Bunshi; Yoo, Ji-Beom

    2013-11-01

    Transparent conducting films (TCF) made up from carbon nanotubes (CNTs) have a tremendous potential in replacing the indium tin oxide films. Compare to single wall CNTs multiwall CNTs are more metallic and are more suitable candidate for the TCF. In this letter we report the use of selectively grown mm-scale, few-wall, vertically aligned CNTs for the fabrication of TCF. Water-assisted chemical vapor deposition was used to grow the mm-scale CNTs within short growth time. A special post-growth water-vapor treatment allowed us to remove the catalyst-free CNT forest very easily from the substrate and use it for the further process. A filtration-wet transfer process was used to form the TCF. The TCF shows sheet resistance of 228 omega/sq. at 72% transparency (at 550 nm). The ratio of optical conductivity to dc conductivity was observed in between 0.21 to 0.25 for below 80% transmission.

  19. Influence of ultrasonic energy on dispersion of aggregates and released amounts of organic matter and polyvalent cations

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Kleber, M.; Berhe, A. A.

    2010-12-01

    Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (<250 µm) was mixed with water and ultrasonically dispersed by application of 100, 200, 400, 500, 1000, 1500 and 2000 J cm-3 energy. After centrifugation the supernatant was filtered and the solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less disintegration of pedogenic oxides or clay minerals due to high levels of ultrasonic energy.

  20. Mathematical modeling of a single stage ultrasonically assisted distillation process.

    PubMed

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan; Abdullah, Tuan Amran Tuan; Nasef, Mohamed M; Ali, Mohamad W

    2015-05-01

    The ability of sonication phenomena in facilitating separation of azeotropic mixtures presents a promising approach for the development of more intensified and efficient distillation systems than conventional ones. To expedite the much-needed development, a mathematical model of the system based on conservation principles, vapor-liquid equilibrium and sonochemistry was developed in this study. The model that was founded on a single stage vapor-liquid equilibrium system and enhanced with ultrasonic waves was coded using MATLAB simulator and validated with experimental data for ethanol-ethyl acetate mixture. The effects of both ultrasonic frequency and intensity on the relative volatility and azeotropic point were examined, and the optimal conditions were obtained using genetic algorithm. The experimental data validated the model with a reasonable accuracy. The results of this study revealed that the azeotropic point of the mixture can be totally eliminated with the right combination of sonication parameters and this can be utilized in facilitating design efforts towards establishing a workable ultrasonically intensified distillation system. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1992-01-01

    A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh #8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  2. Hydrolysis of triolein in phospholipid vesicles and microemulsions by a purified rat liver acid lipase.

    PubMed

    Burrier, R E; Brecher, P

    1983-10-10

    An acid lipase was purified from rat liver lysosomes. Lipase purification involved affinity chromatography, gel filtration, and stabilization of the purified preparation using ethylene glycol and Triton X-100. A molecular weight of 67,000-69,000 was determined independently using density gradient centrifugation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gel filtration. To study enzyme action, model substrates were prepared by incorporating radiolabeled triolein into either unilamellar vesicles or microemulsions. Substrates were prepared by cosonicating aqueous dispersions of lecithin and triolein. Formation of vesicles or emulsions depended on the relative amount of each lipid and on sonication conditions. Vesicles were prepared at molar ratios between 70:1 and 26:1 (lecithin:triolein) and the microemulsion preparation at a molar ratio of 1:1. The substrate particles were of similar size (220-250 A) as determined by Bio-Gel A-15m chromatography. Hydrolysis of triolein contained in vesicles or emulsions was similar with respect to pH, temperature, and reaction products. Kinetic studies on vesicles with increasing triolein content showed progressively greater Vmax values (0-0.6 mumol/min/mg), and Vmax for the emulsion was 3.1 mumol/min/mg. Addition of human very low or low density lipoprotein produced a dose-dependent inhibition with both substrates. The results show that synthetically prepared microemulsions are stable and effective substrates for the acid lipase and indicate that surface-oriented triolein is hydrolyzed in both preparations.

  3. SonicBAT Testing

    NASA Image and Video Library

    2017-08-24

    Teams from NASA's Armstrong Flight Research Center in California, and Langley Research Center in Virginia, are conducting supersonic flight tests to study the ways sonic booms travel. The Sonic Booms in Atmospheric Turbulence flight series, or SonicBAT, features a F/A-18 research aircraft to create sonic booms, flying at supersonic speeds just off the coast of Florida. In order to understand how atmospheric turbulence in a humic climate impacts how sonic booms travel, NASA is flying a TG-14 motorized glider to obtain data on sonic booms before they travel through atmospheric turbulence. That data is compared with similar data captured by two microphone arrays on the ground that hear sonic booms that have traveled through atmospheric turbulence.

  4. Validation of serum free light chain reference ranges in primary care.

    PubMed

    Galvani, Luca; Flanagan, Jane; Sargazi, Mansour; Neithercut, William D

    2016-05-01

    The demand for measurement of serum immunoglobulin free kappa (κ) and lambda (λ) light chains has increased. The κ:λ ratio is used to assist in diagnosis/monitoring of plasma cell disorders. The binding site reference range for serum-free light chain κ:λ ratios of 0.26-1.65 was derived from healthy volunteers. Subsequently, a reference range of 0.37-3.1 for patients with chronic kidney disease has been proposed. Elevated free light chain concentrations and borderline raised free light chain ratios also may be found in polyclonal gammopathies and with other non-renal illnesses. This assessment was conducted to validate the established free light chain reference ranges in individuals from primary care. A total of 130 samples were identified from routine blood samples collected in primary care for routine biochemistry testing and estimated glomerular filtration rate calculation. The median and range of κ:λ ratios found in each estimated glomerular filtration rate group used for chronic kidney disease classification were higher than previously described. This was the case for individuals with normal or essentially normal renal function with estimated glomerular filtration rates>90, (0.58-1.76) and estimated glomerular filtration rate of 60-90 mL/min/1.73 m(2), (0.71-1.93). Individuals with estimated glomerular filtration rate 15-30, (0.72-4.50) and estimated glomerular filtration rate <15 ml/min/1.73 m(2) (0.71-4.95) also had higher values when compared to the current renal reference range of 0.37-3.10. Elevation of free light chain-κ:λ ratios may occur in the absence of a reduced renal function shown by a normal estimated glomerular filtration rate and in the presence of reduced renal function by estimated glomerular filtration rate when comparing results with the established reference ranges. Explanations include choice of analytical systems or the presence of other concurrent non-plasma cell illness. © The Author(s) 2016.

  5. Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study.

    PubMed

    Jamshidi, M; Ghaedi, M; Dashtian, K; Hajati, S; Bazrafshan, A A

    2016-09-01

    Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019g ZnO: Cr-NPs-AC, 3.9min sonication at 4.5, 4.8 and 4.7mgL(-1) of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R(2), adjusted and predicted R(2) for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6mgg(-1) for MG, EY and AO, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds.

    PubMed

    Da Porto, Carla; Porretto, Erica; Decorti, Deborha

    2013-07-01

    Ultrasound-assisted extraction (US) carried out at 20 KHz, 150 W for 30 min gave grape seed oil yield (14% w/w) similar to Soxhlet extraction (S) for 6 h. No significant differences for the major fatty acids was observed in oils extracted by S and US at 150 W. Instead, K232 and K268 of US- oils resulted lower than S-oil. From grape seeds differently defatted (S and US), polyphenols and their fractions were extracted by maceration for 12 h and by ultrasound-assisted extraction for 15 min. Sonication time was optimized after kinetics study on polyphenols extraction. Grape seed extracts obtained from seeds defatted by ultrasound (US) and then extracted by maceration resulted the highest in polyphenol concentration (105.20mg GAE/g flour) and antioxidant activity (109 Eq αToc/g flour). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. One approach to architectural acoustics in education

    NASA Astrophysics Data System (ADS)

    Jaffe, J. Christopher

    2003-04-01

    In the fall of 1997, Dean Alan Balfour of the School of Architecture at the Rennselaer Polytechnic Institute asked me to introduce an undergraduate 14 credit certificate course entitled ''Sonics in Architecture.`` Subsequently, the program was expanded to include a Master's Degree in Building Science. This paper discusses the trials and tribulations of building a scientific program in a liberal arts school. In addition, the problem of acquiring the research funds needed to provide tuition assistance for graduate students in Architectural Acoustics is reviewed. Information on the curriculum developed for both the lecture and laboratory courses is provided. I will also share my concerns regarding the teaching methods currently prevalent in many schools of architecture today, and how building science professionals might assist in addressing these issues.

  8. Phase structuring in metal alloys: Ultrasound-assisted top-down approach to engineering of nanostructured catalytic materials.

    PubMed

    Cherepanov, Pavel V; Andreeva, Daria V

    2017-03-01

    High intensity ultrasound (HIUS) is a novel and efficient tool for top-down nanostructuring of multi-phase metal systems. Ultrasound-assisted structuring of the phase in metal alloys relies on two main mechanisms including interfacial red/ox reactions and temperature driven solid state phase transformations which affect surface composition and morphology of metals. Physical and chemical properties of sonication medium strongly affects the structuring pathways as well as morphology and composition of catalysts. HIUS can serve as a simple, fast, and effective approach for the tuning of structure and surface properties of metal particles, opening the new perspectives in design of robust and efficient catalysts. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Flight test measurements and analysis of sonic boom phenomena near the shock wave extremity

    NASA Technical Reports Server (NTRS)

    Haglund, G. T.; Kane, E. J.

    1973-01-01

    The sonic boom flight test program conducted at Jackass Flats, Nevada, during the summer and fall of 1970 consisted of 121 sonic-boom-generating flights over the 1500 ft instrumented BREN tower. This test program was designed to provide information on several aspects of sonic boom, including caustics produced by longitudinal accelerations, caustics produced by steady flight near the threshold Mach number, sonic boom characteristics near lateral cutoff, and the vertical extent of shock waves attached to near-sonic airplanes. The measured test data, except for the near-sonic flight data, were analyzed in detail to determine sonic boom characteristics for these flight conditions and to determine the accuracy and the range of validity of linear sonic boom theory. The caustic phenomena observed during the threshold Mach number flights and during the transonic acceleration flights are documented and analyzed in detail. The theory of geometric acoustics is shown to be capable of predicting shock wave-ground intersections, and current methods for calculating sonic boom pressure signature away from caustics are shown to be reasonably accurate.

  10. The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50.

    PubMed

    Switzer, Callin M; Combes, Stacey A

    2016-08-01

    We investigated changes in sonication (or buzz-pollination) behavior of Bombus impatiens bumblebees, after consumption of the neonicotinoid pesticide, imidacloprid. We measured sonication frequency, sonication length, and flight (wing beat) frequency of marked bees collecting pollen from Solanum lycopsersicum (tomato), and then randomly assigned bees to consume 0, 0.0515, 0.515, or 5.15 ng of imidacloprid. We recorded the number of bees in each treatment group that resumed sonication behavior after consuming imidacloprid, and re-measured sonication and flight behavior for these bees. We did not find evidence that consuming 0.0515 ng imidacloprid affected the sonication length, sonication frequency, or flight frequency for bees that sonicated after consuming imidacloprid; we were unable to test changes in these variables for bees that consumed 0.515 or 5.15 ng because we did not observe enough of these bees sonicating after treatment. We performed Cox proportional hazard regression to determine whether consuming imidacloprid affected the probability of engaging in further sonication behavior on S. lycopersicum and found that bumblebees who consumed 0.515 or 5.15 ng of imidacloprid were significantly less likely to sonicate after treatment than bees who consumed no imidacloprid. At the end of the experiment, we classified bees as dead or alive; our data suggest a trend of increasing mortality with higher doses of imidacloprid. Our results show that even modest doses of imidacloprid can significantly affect the likelihood of bumblebees engaging in sonication, a behavior critical for the pollination of a variety of crops and other plants.

  11. One of many microphones arrayed under the path of the F-5E SSBE aircraft to record sonic booms

    NASA Image and Video Library

    2004-01-13

    One of many microphones arrayed under the path of the F-5E SSBE (Shaped Sonic Boom Experiment) aircraft to record sonic booms. The SSBE (Shaped Sonic Boom Experiment) was formerly known as the Shaped Sonic Boom Demonstration, or SSBD, and is part of DARPA's Quiet Supersonic Platform (QSP) program. On August 27, 2003, the F-5E SSBD aircraft demonstrated a method to reduce the intensity of sonic booms.

  12. Sonic Fatigue Design Techniques for Advanced Composite Aircraft Structures

    DTIC Science & Technology

    1980-04-01

    AFWAL-TR-80.3019 AD A 090553 SONIC FATIGUE DESIGN TECHNIQUES FOR ADVANCED COMPOSITE AIRCRAFT STRUCTURES FINAL REPORT Ian Holehouse Rohr Industries...5 2. General Sonic Fatigue Theory .... ....... 7 3. Composite Laminate Analysis .. ....... ... 10 4. Preliminary Sonic Fatigue...overall sonic fatigue design guides. These existing desiyn methcds have been developed for metal structures. However, recent advanced composite

  13. Ultrasonically assisted anchoring of biodegradable implants for chevron osteotomies - clinical evaluation of a novel fixation method.

    PubMed

    Olms, Kai; Randt, Thorsten; Reimers, Nils; Zander, Nils; Schulz, Arndt P

    2014-01-01

    Reconstructive osteotomies for the treatment of Hallux valgus are among the most prevalent procedures in foot and ankle surgery. The combination of biodegradable materials with an innovative method for fixation by application of ultrasonic energy facilitates a new bonding method for fractures or osteotomies. As clinical experience is still limited, the aim of this study was to assess the safety and performance of the SonicPin system for fixation of Austin/Chevron osteotomies. Chevron osteotomy was performed on 30 patients for the treatment of Hallux valgus. The used SonicPins were made from polylactide and are selectively melted into the cancellous bone structure during insertion by ultrasonic energy. Patients were followed for one year, which included X-ray and MRI examinations as well as evaluation of life quality by EQ-5D (EuroQol). The MRI after three months showed adequate bone healing in all cases and no signs of foreign body reactions, which was again confirmed by MRI 12 months postoperatively. The bony healing after 12 months was uneventful without any signs of foreign body reactions. In summary, based on the low complication rate and the significant improvement in health related quality of life (EQ-5D) reported in this study, fixation of an Austin/Chevron osteotomy with a SonicPin for treatment of Hallux valgus can be considered to be safe and efficient over the short term. Therapeutic Level III.

  14. Ultrasonically Assisted Anchoring of Biodegradable Implants for Chevron Osteotomies – Clinical Evaluation of a Novel Fixation Method

    PubMed Central

    Olms, Kai; Randt, Thorsten; Reimers, Nils; Zander, Nils; Schulz, Arndt P.

    2014-01-01

    Reconstructive osteotomies for the treatment of Hallux valgus are among the most prevalent procedures in foot and ankle surgery. The combination of biodegradable materials with an innovative method for fixation by application of ultrasonic energy facilitates a new bonding method for fractures or osteotomies. As clinical experience is still limited, the aim of this study was to assess the safety and performance of the SonicPin system for fixation of Austin/Chevron osteotomies. Chevron osteotomy was performed on 30 patients for the treatment of Hallux valgus. The used SonicPins were made from polylactide and are selectively melted into the cancellous bone structure during insertion by ultrasonic energy. Patients were followed for one year, which included X-ray and MRI examinations as well as evaluation of life quality by EQ-5D (EuroQol). The MRI after three months showed adequate bone healing in all cases and no signs of foreign body reactions, which was again confirmed by MRI 12 months postoperatively. The bony healing after 12 months was uneventful without any signs of foreign body reactions. In summary, based on the low complication rate and the significant improvement in health related quality of life (EQ-5D) reported in this study, fixation of an Austin/Chevron osteotomy with a SonicPin for treatment of Hallux valgus can be considered to be safe and efficient over the short term. Level of Clinical Evidence: Therapeutic Level III. PMID:24851140

  15. Ultrasound-assisted extraction and characterization of hydrolytic and oxidative enzymes produced by solid state fermentation.

    PubMed

    Szabo, Orsolya Erzsebet; Csiszar, Emilia; Toth, Karolina; Szakacs, George; Koczka, Bela

    2015-01-01

    Ligninolytic and hydrolytic enzymes were produced with six selected fungi on flax substrate by solid state fermentation (SSF). The extracellular enzyme production of the organisms in two SSF media was evaluated by measuring the soluble protein concentration and the filter paper, endoxylanase, 1,4-β-d-glucosidase, 1,4-β-d-endoglucanase, polygalacturonase, lignin peroxidase, manganese peroxidase and laccase activities of the clear culture solutions produced by conventional extraction from the SSF materials. The SSF material of the best enzyme producer (Trichoderma virens TUB F-498) was further investigated to enhance the enzyme recovery by low frequency ultrasound treatment. Performance of both the original and ultrasound macerated crude enzyme mixtures was evaluated in degradation of the colored lignin-containing and waxy materials of raw linen fabric. Results proved that sonication (at 40%, 60% and 80% amplitudes, for 60min) did not result in reduction in the filter paper, lignin peroxidase and laccase activities of the crude enzyme solution, but has a significant positive effect on the efficiency of enzyme extraction from the SSF material. Depending on the parameters of sonication, the enzyme activities in the extracts obtained can be increased up to 129-413% of the original activities measured in the control extracts recovered by a common magnetic stirrer. Sonication also has an effect on both the enzymatic removal of the lignin-containing color materials and hydrophobic surface layer from the raw linen. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. SonicBAT News Conference

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, Larry Cliatt, SonicBAT Fluid Mechanics at Armstrong Flight Research Center in California, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.

  17. SonicBAT News Conference

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, Peter Coen, SonicBAT Mission Analysis at NASA’s Langley Research Center in Virginia, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.

  18. A Study of Reflected Sonic Booms Using Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Kantor, Samuel R.; Cliatt, Larry J., II

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test was conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements. This paper focuses on using this unique data set to investigate the ability of sonic boom modeling software to calculate sonic boom reflections. Because the algorithms used to model sonic boom reflections are also used to model the secondary carpet and over the top booms, the use of actual flight data is vital to improving the understanding of the effects of sonic booms outside of the primary carpet. Understanding these effects becomes especially important as the return of commercial supersonic approaches, as well as ensuring the accuracy of mission planning for future experiments.

  19. The Effect of Sonic Booms on Earthquake Warning Systems

    NASA Technical Reports Server (NTRS)

    Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.

    2011-01-01

    Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.

  20. Investigation of the visible light photocatalytic activity of BiVO4 prepared by sol gel method assisted by ultrasonication.

    PubMed

    Deebasree, J P; Maheskumar, V; Vidhya, B

    2018-07-01

    Visible light induced photocatalyst BiVO 4 with monoclinic scheelite structure has been synthesised via sol gel method assisted by ultrasonication. The prepared samples were characterised using X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis diffused reflectance spectroscopy (DRS) techniques. The photocatalytic efficiency was evaluated by decolourisation of MB under visible light irradiation. The effect of ultrasound output power on the properties of BiVO 4 during and after preparation by sol-gel method has been compared with normal agitated sample (As prepared). The power of ultrasonic vibration has been varied and an ideal output power which yields better catalytic efficiency is determined. BiVO 4 sonicated with 80 W during preparation 80 W (D) exhibited relatively high surface area, better surface morphology and better catalytic efficiency compared to other samples which were sonicated with 100, 160 and 200 W. The results signify that the photodegradation rate of BiVO 4 80 W (D) sample is high up to 96% in 90 min compared to other samples. Change in morphology leading to better catalytic efficiency was obtained just by exposing the sample to ultrasonic radiation without addition of any surfactant. The recovery test showed that the sample was stable for four consecutive cycles. Using radical test, a reasonable mechanism for photodegradation has been proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Efficient regeneration and improved sonication-assisted Agrobacterium transformation (SAAT) method for Catharanthus roseus.

    PubMed

    Alam, Pravej; Khan, Zainul Abdeen; Abdin, Malik Zainul; Khan, Jawaid A; Ahmad, Parvaiz; Elkholy, Shereen F; Sharaf-Eldin, Mahmoud A

    2017-05-01

    Catharanthus roseus is an important medicinal plant known for its pharmacological qualities such as antimicrobial, anticancerous, antifeedant, antisterility, antidiabetic activities. More than 130 bioactive compounds like vinblastine, vindoline and vincristine have been synthesized in this plant. Extensive studies have been carried out for optimization regeneration and transformation protocols. Most of the protocol described are laborious and time-consuming. Due to sophisticated protocol of regeneration and genetic transformation, the production of these bioactive molecules is less and not feasible to be commercialized worldwide. Here we have optimized the efficient protocol for regeneration and transformation to minimize the time scale and enhance the transformation frequency through Agrobacterium and sonication-assisted transformation (SAAT) method. In this study, hypocotyl explants responded best for maximal production of transformed shoots. The callus percentage were recorded 52% with 1.0 mg L -1 (BAP) and 0.5 mg L -1 (NAA) while 80% shoot percentage obtained with 4.0 mg L -1 (BAP) and 0.05 mg L -1 (NAA). The microscopic studies revealed that the expression of GFP was clearly localized in leaf tissue of the C. roseus after transformation of pRepGFP0029 construct. Consequently, transformation efficiency was revealed on the basis of GFP localization. The transformation efficiency of SAAT method was 6.0% comparable to 3.5% as conventional method. Further, PCR analysis confirmed the integration of the nptII gene in the transformed plantlets of C. roseus.

  2. Ultrasound assisted combined molecularly imprinted polymer for selective extraction of nicotinamide in human urine and milk samples: Spectrophotometric determination and optimization study.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Dashtian, Kheibar

    2017-01-01

    Ultrasound-assisted dispersive solid phase microextraction followed by UV-vis spectrophotometer (UA-DSPME-UV-vis) was designed for extraction and preconcentration of nicotinamide (vitamin B 3 ) by HKUST-1 metal organic framework (MOF) based molecularly imprinted polymer (MIP). This new material was characterized by FTIR and FE-SEM techniques. The preliminary Plackett-Burman design was used for screening and subsequently the central composite design justifies significant terms and possible construction of mathematical equation which give the individual and cooperative contribution of variables like HKUST-1-MOF-NA-MIP mass, sonication time, temperature, eluent volume, pH and vortex time. Accordingly the optimum condition was set as: 2.0mg HKUST-1-MOF-NA-MIP, 200μL eluent and 5.0min sonication time in center points other variables were determined as the best conditions to reach the maximum recovery of the analyte. The UA-DSPME-UV-vis method performances like excellent linearity (LR), limits of detection (LOD), limits of quantification of 10-5000μgL -1 with R 2 of 0.99, LOD (1.96ngmL -1 ), LOQ (6.53μgL -1 ), respectively show successful and accurate applicability of the present method for monitoring analytes with within- and between-day precision of 0.96-3.38%. The average absolute recoveries of the nicotinamide extracted from the urine, milk and water samples were 95.85-101.27%. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process: An efficient diesel treatment by injection of the aqueous phase.

    PubMed

    Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman

    2017-11-01

    A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila)

    PubMed Central

    Cardinal, Sophie; Buchmann, Stephen L.; Russell, Avery L.

    2018-01-01

    Abstract Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate (“buzz”) flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time‐calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100–145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology. PMID:29392714

  5. High-Quality Seismic Observations of Sonic Booms

    NASA Technical Reports Server (NTRS)

    Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.

    2011-01-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  6. High Speed Research Program Sonic Fatigue

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul

    2005-01-01

    The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.

  7. Sonic Booms And Building Vibration Revisited

    NASA Astrophysics Data System (ADS)

    Sutherland, Louis C.; Kryter, Karl D.; Czech, Joseph

    2006-05-01

    Lessons learned from the 1960's sonic boom tests at St. Louis, Oklahoma City and at Edwards Air Force Base (EAFB) and more recently in communities near EAFB and Nellis AFB are briefly reviewed from the standpoint of building vibration and rattle response induced by the sonic boom signature. Available data on the vibro-acoustic threshold of rattle are considered along with the principal sonic boom signature parameters, peak overpressure and duration, which drive the low frequency vibration response of buildings to sonic booms. Implications for the current effort to develop an acceptable sonic boom signature are considered with this overview of current understanding of building vibration response to sonic booms. Possible gaps in this current knowledge for current technology boom signatures are considered.

  8. The Impact of Sonication on the Surface Quality of Single-Walled Carbon Nanotubes.

    PubMed

    Koh, Byumseok; Cheng, Wei

    2015-08-01

    Sonication process is regularly adopted for dispersing single-walled carbon nanotubes (SWCNTs) in an aqueous medium. This can be achieved by either covalent functionalization of SWCNTs with strong acid or by noncovalent functionalization using dispersants that adsorb onto the surface of SWCNTs during dispersion. Because the dispersion process is usually performed using sonication, unintentional free radical formation during sonication process may induce covalent modification of SWCNT surface. Herein, we have systematically investigated the status of SWCNT surface modification under various sonication conditions using Raman spectroscopy. Comparing ID /IG (Raman intensities between D and G bands) ratio of SWCNTs under various sonication conditions suggests that typical sonication conditions (1-6 h bath sonication with sonication power between 3 and 80 W) in aqueous media do not induce covalent modification of SWCNT surface. In addition, we confirm that SWCNT dispersion with single-stranded DNA (ssDNA) involves noncovalent adsorption of ssDNA onto the surface of SWCNTs, but not covalent linkage between ssDNA and SWCNT surface. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Sonic Booms in Atmospheric Turbulence (SonicBAT) Ground Measurements in a Hot Desert Climate

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.

    2017-01-01

    The Sonic Booms in Atmospheric Turbulence (SonicBAT) Project flew a series of 20 F-18 flights with 69 supersonic passes at Edwards Air Force Base in July 2016 to quantify the effect of atmospheric turbulence on sonic booms. Most of the passes were at a pressure altitude of 32,000 feet and a Mach number of 1.4, yielding a nominal sonic boom overpressure of 1.6 pounds per square foot. Atmospheric sensors such as GPS sondeballoons, Sonic Detection and Ranging (SODAR) acoustic sounders, and ultrasonic anemometers were used to characterize the turbulence state of the atmosphere for each flight. Spiked signatures in excess of 7 pounds per square foot were measured at some locations, as well as rounded sonic-boom signatures with levels much lower than the nominal. This presentation will quantify the range of overpressure and Perceived Level of the sonic boom as a function of turbulence parameters, and also present the spatial variation of these quantities over the array. Comparison with historical data will also be shown.

  10. Gallium-68 EDTA PET/CT for Renal Imaging.

    PubMed

    Hofman, Michael S; Hicks, Rodney J

    2016-09-01

    Nuclear medicine renal imaging provides important functional data to assist in the diagnosis and management of patients with a variety of renal disorders. Physiologically stable metal chelates like ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine penta-acetate (DTPA) are excreted by glomerular filtration and have been radiolabelled with a variety of isotopes for imaging glomerular filtration and quantitative assessment of glomerular filtration rate. Gallium-68 ((68)Ga) EDTA PET usage predates Technetium-99m ((99m)Tc) renal imaging, but virtually disappeared with the widespread adoption of gamma camera technology that was not optimal for imaging positron decay. There is now a reemergence of interest in (68)Ga owing to the greater availability of PET technology and use of (68)Ga to label other radiotracers. (68)Ga EDTA can be used a substitute for (99m)Tc DTPA for wide variety of clinical indications. A key advantage of PET for renal imaging over conventional scintigraphy is 3-dimensional dynamic imaging, which is particularly helpful in patients with complex anatomy in whom planar imaging may be nondiagnostic or difficult to interpret owing to overlying structures containing radioactive urine that cannot be differentiated. Other advantages include accurate and absolute (rather than relative) camera-based quantification, superior spatial and temporal resolution and integrated multislice CT providing anatomical correlation. Furthermore, the (68)Ga generator enables on-demand production at low cost, with no additional patient radiation exposure compared with conventional scintigraphy. Over the past decade, we have employed (68)Ga EDTA PET/CT primarily to answer difficult clinical questions in patients in whom other modalities have failed, particularly when it was envisaged that dynamic 3D imaging would be of assistance. We have also used it as a substitute for (99m)Tc DTPA if unavailable owing to supply issues, and have additionally examined the role of (68)Ga EDTA PET/CT for measuring glomerular filtration rate and split renal function. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Sonic-boom research: Selected bibliography with annotation

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Maglieri, D. J.; Stephens, D. G.

    1986-01-01

    Citations of selected documents are included which represent the state of the art of technology in each of the following subject areas: prediction, measurement, and minimization of steady-flight sonic booms; prediction and measurement of accelerating-flight sonic booms; sonic-boom propagation; the effects of sonic booms on people, communities, structures, animals, birds, and terrain; and sonic-boom simulator technology. Documents are listed in chronological order in each section of the paper, with key documents and associated annotation listed first. The sources are given along with acquisition numbers, when available, to expedite the acquisition of copies of the documents.

  12. A Study of Reflected Sonic Booms Using Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Kantor, Samuel R.; Cliatt, Larry J.

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements.

  13. Improving the sludge disintegration efficiency of sonication by combining with alkalization and thermal pre-treatment methods.

    PubMed

    Şahinkaya, S; Sevimli, M F; Aygün, A

    2012-01-01

    One of the most serious problems encountered in biological wastewater treatment processes is the production of waste activated sludge (WAS). Sonication, which is an energy-intensive process, is the most powerful sludge pre-treatment method. Due to lack of information about the combined pre-treatment methods of sonication, the combined pre-treatment methods were investigated and it was aimed to improve the disintegration efficiency of sonication by combining sonication with alkalization and thermal pre-treatment methods in this study. The process performances were evaluated based on the quantities of increases in soluble chemical oxygen demand (COD), protein and carbohydrate. The releases of soluble COD, carbohydrate and protein by the combined methods were higher than those by sonication, alkalization and thermal pre-treatment alone. Degrees of sludge disintegration in various options of sonication were in the following descending order: sono-alkalization > sono-thermal pre-treatment > sonication. Therefore, it was determined that combining sonication with alkalization significantly improved the sludge disintegration and decreased the required energy to reach the same yield by sonication. In addition, effects on sludge settleability and dewaterability and kinetic mathematical modelling of pre-treatment performances of these methods were investigated. It was proven that the proposed model accurately predicted the efficiencies of ultrasonic pre-treatment methods.

  14. Effect of dual modification of sonication and γ-irradiation on physicochemical and functional properties of lentil (Lens culinaris L.) starch.

    PubMed

    Majeed, Toiba; Wani, Idrees Ahmed; Hussain, Peerzada Rashid

    2017-08-01

    Starch isolated from lentil was subjected to two treatments namely sonication and, a dual treatment of sonication and irradiation at a dose of 5kGy. Lentil yielded 26.12±1.56g starch/100g of lentil. Chemical composition of native starch revealed 7.83±0.28% moisture, 0.23±0.30% protein, 0.35±0.05% fat and 0.10±0.00% ash. The results revealed that pasting properties of lentil starch were not affected upon sonication. However, these decreased significantly (p≤0.05) upon dual treatments. Amylose content of native starch was 31.16±1.80g/100g which showed a decrease upon sonication and dual treatments. Sonication and dual treatments (sonication and irradiation) decreased hunter 'L' value while 'a' and 'b' values showed an increase. Syneresis decreased more or less insignificantly upon sonication. However, a significant decrease in syneresis was observed after 120h storage following dual treatments. Sonication did not decrease the functional properties significantly while as dual treatment induced a significant decrease in functional properties. FT-IR analysis revealed a decrease in the intensities of OH, CH and OC stretches and CH 2 bending upon sonication and dual treatments. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ultrasonic-assisted soldering of Cu/Ti joints

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Wang, Chunyu; Li, Yuhang; Zhong, Tongtong; Yang, Jianguo; Bao, Yefeng

    2018-03-01

    Cu/Ti joints are expected to be used in various applications, while reliable joining method is still to be developed. It is commonly not possible to solder Ti alloys using Sn-based solder alloys because of their poor wettability. In this study, Sn-Ag-Cu soldering filler metal was used to joining TC4 titanium alloy and pure copper using ultrasonic-assisted soldering. The influence of different temperature and different ultrasonic time on the welded joint is studied and explored. Microstructure of the joints was investigated. Shear strength of the joints reached the maximum value, i.e. 38.2MPa. Relationship between the sonication parameters and the microstructure and strength of the joints was discussed. Thus, it is verified that dissimilar metal brazing of TC4 and copper is suitable for low temperature soldering.

  16. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles.

    PubMed

    Pradhan, Sulena; Hedberg, Jonas; Blomberg, Eva; Wold, Susanna; Odnevall Wallinder, Inger

    2016-01-01

    In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30-80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3-15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs.

  17. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila).

    PubMed

    Cardinal, Sophie; Buchmann, Stephen L; Russell, Avery L

    2018-03-01

    Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate ("buzz") flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time-calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100-145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology. © 2018 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  18. Performance of automated multiplex PCR using sonication fluid for diagnosis of periprosthetic joint infection: a prospective cohort.

    PubMed

    Renz, Nora; Feihl, Susanne; Cabric, Sabrina; Trampuz, Andrej

    2017-12-01

    Sonication of explanted prostheses improved the microbiological diagnosis of periprosthetic joint infections (PJI). We evaluated the performance of automated multiplex polymerase chain reaction (PCR) using sonication fluid for the microbiological diagnosis of PJI. In a prospective cohort using uniform definition criteria for PJI, explanted joint prostheses were investigated by sonication and the resulting sonication fluid was analyzed by culture and multiplex PCR. McNemar's Chi-squared test was used to compare the performance of diagnostic tests. Among 111 patients, PJI was diagnosed in 78 (70%) and aseptic failure in 33 (30%). For the diagnosis of PJI, the sensitivity and specificity of periprosthetic tissue culture was 51 and 100%, of sonication fluid culture 58 and 100%, and of sonication fluid PCR 51 and 94%, respectively. Among 70 microorganisms, periprosthetic tissue culture grew 52 (74%), sonication fluid culture grew 50 (71%) and sonication fluid PCR detected 37 pathogens (53%). If only organisms are considered, for which primers are included in the test panel, PCR detected 37 of 58 pathogens (64%). The sonication fluid PCR missed 19 pathogens (predominantly oral streptococci and anaerobes), whereas 7 additional microorganisms were detected only by PCR (including Cutibacterium spp. and coagulase-negative staphylococci). The performance of multiplex PCR using sonication fluid is comparable to culture of periprosthetic tissue or sonication fluid. The advantages of PCR are short processing time (< 5 h) and fully automated procedure. However, culture technique is still needed due to the low sensitivity and the need of comprehensive susceptibility testing. Modification of primers or inclusion of additional ones may improve the performance of PCR, especially of low-virulent organisms.

  19. Diagnosis of Persistent Infection in Prosthetic Two-Stage Exchange: Evaluation of the Effect of Sonication on Antibiotic Release from Bone Cement Spacers.

    PubMed

    Mariaux, Sandrine; Furustrand Tafin, Ulrika; Borens, Olivier

    2018-01-01

    Introduction : When treating periprosthetic joint infection with a two-stage procedure, antibiotic-impregnated spacers can be used in the interval between prosthetic removal and reimplantation. In our experience, cultures of sonicated spacers are most often negative. The objective of the study was to assess whether that sonication causes an elution of antibiotics, leading to elevated antibiotic concentrations in the sonication fluid inhibiting bacterial growth and thus causing false-negative cultures. Methods : A prospective monocentric study was performed from September 2014 to March 2016. Inclusion criteria were a two-stage procedure for prosthetic infection and agreement of the patient to participate in the study. Spacers were made of gentamicin-containing cement to which tobramycin and vancomycin were added. Antibiotic concentrations in the sonication fluid were determined by mass-spectometry (LC-MS). Results : 30 patients were identified (15 hip and 14 knee and 1 ankle arthroplasties). No cases of culture positive sonicated spacer fluid were observed in our serie. In the sonication fluid median concentrations of 13.2µg/ml, 392 µg/ml and 16.6 µg/ml were detected for vancomycin, tobramycin and gentamicin, respectively. According to the European Committee on antimicrobial susceptibility testing (EUCAST), these concentrations released from cement spacer during sonication are higher than the minimal inhibitory concentrations (MICs) for most bacteria relevant in prosthetic joint infections. Conclusion: Spacer sonication cultures remained sterile in all of our cases. Elevated concentrations of antibiotics released during sonication could explain partly negative-cultured sonicated spacers. Indeed, the absence of antibiotic free interval during the two-stages can also contribute to false-negative spacers sonicated cultures.

  20. Cupriavidus metallidurans biomineralization ability and its application as a bioconsolidation enhancer for ornamental marble stone.

    PubMed

    Daskalakis, Markos I; Magoulas, Antonis; Kotoulas, Georgios; Katsikis, Ioannis; Bakolas, Asterios; Karageorgis, Aristomenis P; Mavridou, Athena; Doulia, Danae; Rigas, Fotis

    2014-08-01

    Bacterially induced calcium carbonate precipitation of a Cupriavidus metallidurans isolate was investigated to develop an environmentally friendly method for restoration and preservation of ornamental stones. Biomineralization performance was carried out in a growth medium via a Design of Experiments (DoE) approach using, as design factors, the temperature, growth medium concentration, and inoculum concentration. The optimum conditions were determined with the aid of consecutive experiments based on response surface methodology (RSM) and were successfully validated thereafter. Statistical analysis can be utilized as a tool for screening bacterial bioprecipitation as it considerably reduced the experimental time and effort needed for bacterial evaluation. Analytical methods provided an insight to the biomineral characteristics, and sonication tests proved that our isolate could create a solid new layer of vaterite on marble substrate withstanding sonication forces. C. metallidurans ACA-DC 4073 provided a compact vaterite layer on the marble substrate with morphological characteristics that assisted in its differentiation. The latter proved valuable during spraying minimum amount of inoculated media on marble substrate under conditions close to an in situ application. A sufficient and clearly distinguishable layer was identified.

  1. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS.

    PubMed

    Bentlin, Fabrina R S; dos Santos, Clarissa M M; Flores, Erico M M; Pozebon, Dirce

    2012-01-13

    This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 μL of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L(-1), respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. SonicBAT News Conference

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, NASA and other government leaders speak to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Participants from left are: Matthew Kamlet of NASA Communications at the Armstrong Flight Research Center in California; Peter Coen, SonicBAT Mission Analysis at NASA’s Langley Research Center in Virginia; Larry Cliatt, SonicBAT Fluid Mechanics at Armstrong; Dale Ketcham chief of Strategic Alliances for Space Florida; and Laura Henning, public information officer for the Canaveral National Seashore. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.

  3. Resonance: The science behind the art of sonic drilling

    NASA Astrophysics Data System (ADS)

    Lucon, Peter Andrew

    The research presented in this dissertation quantifies the system dynamics and the influence of control variables of a sonic drill system. The investigation began with an initial body of work funded by the Department of Energy under a Small Business Innovative Research Phase I Grant, grant number: DE-FG02-06ER84618, to investigate the feasibility of using sonic drills to drill micro well holes to depths of 1500 feet. The Department of Energy funding enabled feasibility testing using a 750 hp sonic drill owned by Jeffery Barrow, owner of Water Development Co. During the initial feasibility testing, data was measured and recorded at the sonic drill head while the sonic drill penetrated to a depth of 120 feet. To demonstrate feasibility, the system had to be well understood to show that testing of a larger sonic drill could simulate the results of drilling a micro well hole of 2.5 inch diameter. A first-order model of the system was developed that produced counter-intuitive findings that enabled the feasibility of using this method to drill deeper and produce micro-well holes to 1500 feet using sonic drills. Although funding was not continued, the project work continued. This continued work expanded on the sonic drill models by understanding the governing differential equation and solving the boundary value problem, finite difference methods, and finite element methods to determine the significance of the control variables that can affect the sonic drill. Using a design of experiment approach and commercially available software, the significance of the variables to the effectiveness of the drill system were determined. From the significant variables, as well as the real world testing, a control system schematic for a sonic drill was derived and is patent pending. The control system includes sensors, actuators, personal logic controllers, as well as a human machine interface. It was determined that the control system should control the resonant mode and the weight on the bit as the primary two control variables. The sonic drill can also be controlled using feedback from sensors mounted on the sonic drill head, which is the driver for the sonic drill located above ground

  4. SonicBAT News Conference

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, Dale Ketcham chief of Strategic Alliances for Space Florida, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.

  5. SonicBAT News Conference

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, Laura Henning, public information officer for the Canaveral National Seashore, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.

  6. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-23

    A motorized glider prepares to take off from the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Flying with its engine off, the glider will be positioned above the 14,000-foot level to measure sonic booms created by agency F-18 jets to measure the effects of sonic booms. Several flights a day have been taking place the week of Aug. 21, 2017 as part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  7. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-23

    A motorized glider has taken off from the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Flying with its engine off, the glider will be positioned above the 14,000-foot level to measure sonic booms created by agency F-18 jets to measure the effects of sonic booms. Several flights a day have been taking place the week of Aug. 21, 2017 as part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  8. The effect of sonication method on the mechanical properties of nanosilicon/epoxy composite

    NASA Astrophysics Data System (ADS)

    Razali, Nur Zarifah; Abidin, Mohd Hanafiah; Romli, Ahmad Zafir

    2017-09-01

    An experimental work had been conducted to deeply understand the science of dispersion uniformity and mechanical properties exerted with the addition of nano-powder in composite system. The epoxy with nano-silicon contained between 1-5 wt% were utilized to investigate the mechanical behavior and identify the morphology changes and fracture by using optical micrograph images (in which will be discussed in the fractography section). Sonication method was utilized in distributing nano-silicon homogenously in the matrix and two type of devices opted were horn and bath sonicator. In this study, an in-direct sonication (bath) method which having a frequency of 42 kHz was introduced to the samples by using water as a medium and a comparison had been made between bath and horn sonicator efficiency. Non-destructive testing such as density and morphology testing like Optical micrograph was done as to identify the morphology changes in micro-level as well as to confirm the uniformity of nano-silicon distribution in the viscous epoxy. Whilst the destructive testing (i.e izod impact) was used to measure toughness and strength of composite sample. Result shows that Izod impact at velocity 2.0 ms-1 are 2.1kJ/m2 (for bath sonication) and 1.5kJ/m2 (for horn sonication) at velocity of 3.5 ms-1 are 2.8 kJ/m2 (for bath sonication) and 2.0kJ/m2 (for horn sonication). It can be concluded that bath sonication method give significant increment compared to horn sonication.

  9. Effect of fractionation on treatment outcome in local dual-frequency sonication and Dox-encapsulated nanomicelles.

    PubMed

    Hasanzadeh, Hadi; Mokhtari-Dizaji, Manijhe; Bathaie, S Zahra; Hassan, Zuhair M

    2013-10-01

    The goal of this study was to localize drug release from nanomicelles using dual-frequency sonication at low levels of acoustic intensity. In this study, the antitumor effect of simultaneous dual-frequency sonication (28 kHz and 3 MHz) at low levels of acoustic intensity in combination with doxorubicin and micellar doxorubicin injection was assessed in a spontaneous model of breast adenocarcinoma in female Balb/c mice. Sixty-three tumor-bearing mice were randomly grouped into control, sham, dual-frequency sonication, doxorubicin injection with and without dual-frequency sonication, and micellar doxorubicin injection with and without dual-frequency sonication groups. The results of volume change relative to initial volume showed that in the micellar doxorubicin injection with sonication group, this parameter was significantly different from that of the control, sham, sonication, and doxorubicin injection groups (P < 0.05). In addition, the volume began to increase on the 15th day after the start of treatment, which is a good indication to repeat treatment; therefore, another group received an extra treatment on day 15. The animal life span in the micellar doxorubicin with sonication and repeated treatment groups was significantly higher than that in all the other experimental groups except for the micellar doxorubicin injection group (P < 0.05). It was concluded that dual-frequency sonication with micellar doxorubicin injection extends the life span relative to doxorubicin injection or dual-frequency sonication alone, and that repeating this treatment on day 15 decreases the rate of tumor growth significantly.

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; ULTRASONIC AQUEOUS CLEANING SYSTEMS, SMART SONIC CORPORATION, SMART SONIC

    EPA Science Inventory

    This report is a product of the U.S. EPA's Environmental Technoloy Verification (ETV) Program and is focused on the Smart Sonics Ultrasonic Aqueous Cleaning Systems. The verification is based on three main objectives. (1) The Smart Sonic Aqueous Cleaning Systems, Model 2000 and...

  11. Sonic Boom Modeling Technical Challenge

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.

    2007-01-01

    This viewgraph presentation reviews the technical challenges in modeling sonic booms. The goal of this program is to develop knowledge, capabilities and technologies to enable overland supersonic flight. The specific objectives of the modeling are: (1) Develop and validate sonic boom propagation model through realistic atmospheres, including effects of turbulence (2) Develop methods enabling prediction of response of and acoustic transmission into structures impacted by sonic booms (3) Develop and validate psychoacoustic model of human response to sonic booms under both indoor and outdoor listening conditions, using simulators.

  12. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    NASA F-18 jets prepare for takeoff from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  13. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    An engineer in a control trailer at NASA's Kennedy Space Center in Florida monitors data before flights of agency F-18 jets to measure the effects of sonic booms. Several flights a day have been taking place the week of Aug. 21, 2017 as part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  14. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    NASA pilots board an F-18 jet prior to take off from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  15. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    A NASA F-18 jet is prepared for takeoff from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  16. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    A NASA F-18 jet takes off from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  17. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    A NASA pilot boards an F-18 jet prior to take off from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  18. SonicBAT News Conference

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, Matthew Kamlet of NASA Communications at the Armstrong Flight Research Center in California, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.

  19. Lateral spread of sonic boom measurements from US Air Force boomfile flight tests

    NASA Technical Reports Server (NTRS)

    Downing, J. Micah

    1992-01-01

    A series of sonic boom flight tests were conducted by the US Air Force at Edwards AFB in 1987 with current supersonic DOD aircraft. These tests involved 43 flights by various aircraft at different Mach number and altitude combinations. The measured peak overpressures to predicted values as a function of lateral distance are compared. Some of the flights are combined into five groups because of the varying profiles and the limited number of sonic booms obtained during this study. The peak overpressures and the lateral distances are normalized with respect to the Carlson method predicted centerline overpressures and lateral cutoff distances, respectively, to facilitate comparisons between sonic boom data from similar flight profiles. It is demonstrated that the data agrees with sonic boom theory and previous studies and adds to the existing sonic boom database by including sonic boom signatures, tracking, and weather data in a digital format.

  20. A new approach of probe sonication assisted ionic liquid conversion of glucose, cellulose and biomass into 5-hydroxymethylfurfural.

    PubMed

    Sarwono, Ariyanti; Man, Zakaria; Muhammad, Nawshad; Khan, Amir Sada; Hamzah, Wan Suzaini Wan; Rahim, Asyraf Hanim Abdul; Ullah, Zahoor; Wilfred, Cecilia Devi

    2017-07-01

    5-Hydroxymethylfurfural (HMF) has been identified as a promising biomass-derived platform chemical. In this study, one pot production of HMF was studied in ionic liquid (IL) under probe sonication technique. Compared with the conventional heating technique, the use of probe ultrasonic irradiation reduced the reaction time from hours to minutes. Glucose, cellulose and local bamboo, treated with ultrasonic, produced HMF in the yields of 43%, 31% and 13% respectively, within less than 10min. The influence of various parameters such as acoustic power, reaction time, catalysts and glucose loading were studied. About 40% HMF yield at glucose conversion above 90% could be obtained with 2% of catalyst in 3min. Negligible amount of soluble by-product was detected, and humin formation could be controlled by adjusting the different process parameters. Upon extraction of HMF, the mixture of ionic liquid and catalyst could be reused and exhibited no significant reduction of HMF yield over five successive runs. The purity of regenerated [C 4 C 1 im]Cl and HMF was confirmed by NMR spectroscopy, indicating neither changes in the chemical structure nor presence of any major contaminants during the conversion under ultrasonic treatment. 13 C NMR suggests that [C 4 C 1 im]Cl/CrCl 3 catalyses mutarotation of α-glucopyranose to β-glucopyranose leading to isomerization and finally conversion to HMF. The experimental results demonstrate that the use of probe sonication technique for conversion to HMF provides a positive process benefit. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Display Provides Pilots with Real-Time Sonic-Boom Information

    NASA Technical Reports Server (NTRS)

    Haering, Ed; Plotkin, Ken

    2013-01-01

    Supersonic aircraft generate shock waves that move outward and extend to the ground. As a cone of pressurized air spreads across the landscape along the flight path, it creates a continuous sonic boom along the flight track. Several factors can influence sonic booms: weight, size, and shape of the aircraft; its altitude and flight path; and weather and atmospheric conditions. This technology allows pilots to control the impact of sonic booms. A software system displays the location and intensity of shock waves caused by supersonic aircraft. This technology can be integrated into cockpits or flight control rooms to help pilots minimize sonic boom impact in populated areas. The system processes vehicle and flight parameters as well as data regarding current atmospheric conditions. The display provides real-time information regarding sonic boom location and intensity, enabling pilots to make the necessary flight adjustments to control the timing and location of sonic booms. This technology can be used on current-generation supersonic aircraft, which generate loud sonic booms, as well as future- generation, low-boom aircraft, anticipated to be quiet enough for populated areas.

  2. Enhancement of volatile fatty acid production and biogas yield from food waste following sonication pretreatment.

    PubMed

    Liu, Nuo; Jiang, Jianguo; Yan, Feng; Gao, Yuchen; Meng, Yuan; Aihemaiti, Aikelaimu; Ju, Tongyao

    2018-07-01

    The positive effect of sonication on volatile fatty acid (VFA) and hydrogen production was investigated by batch experiments. Several sonication densities (2, 1.6, and 1.2 W/mL) and times (5, 10, and 15 min) were tested. The optimal sonication condition was ultrasonic density 2 W/mL and ultrasonic time 15 min (2-U15). The FW particle size larger than 50 μm (d > 50 μm) were more susceptible to the sonication treatment than the smaller particle size (d ≤ 50 μm). The SCOD increased and VS reduction accelerated under sonication treatment. The maximum VFA production and the highest proportion of hydrogen in the biogas increased 65.3% and 59.1%, respectively, under the optimal sonication conditions compared to the unsonicated batch. Moreover, a reduction of over 50% in the time required to reach its maximum production was also observed. Butyric acid fermentation type was obtained whether following sonication treatment or not. The composition of key microbial community differed under the various sonication conditions. The genera Clostridium and Parabacteroides are predominantly responsible for VFA generation and both were found to be abundant under the optimal condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Low sensitivity of implant sonication when screening for infection in revision surgery

    PubMed Central

    Van Diek, Floor M; Albers, Christiaan G M; Van Hooff, Miranda L; Meis, Jacques F; Goosen, Jon H M

    2017-01-01

    Background and purpose Prosthetic-joint infection (PJI) is the most serious complication of arthroplasty, and accurate identification of a potentially responsible microorganism is essential for successful antibiotic treatment. We therefore determined the diagnostic accuracy of sonication and compared it with tissue culture as a screening tool in detecting prosthetic joint infection in revision arthroplasty. Patients and methods 252 consecutive revision arthroplasty cases were enrolled. These cases were determined as being suspected or unsuspected of having infection according to standard criteria. Perioperatively, 6 periprosthetic interface tissue biopsies were obtained from each patient and the implants removed were sonicated. The sensitivity and specificity of periprosthetic tissue culture and sonication fluid cultures were determined. Results Preoperatively, 75 revision cases were classified as having PJI (33 early and 42 late) and 177 were unsuspected of having infection. Compared with tissue culture, the sensitivity of the sonication fluid analysis was low: 0.47 (95% CI: 0.35–0.59) for sonication as compared to 0.68 (95% CI: 0.56–0.78) for tissue culture. The specificity of the sonication fluid analysis was higher than that for tissue culture: 0.99 (95% CI: 0.96–1.0) as compared to 0.80 (95% CI: 0.74–0.86). Interpretation Sonication is a highly specific test for diagnosis of PJI. However, due to the low sensitivity, a negative sonication result does not rule out the presence of PJI. Thus, sonication is not of value for screening of microorganisms during revision surgery. PMID:28287012

  4. Synergistic effect of microbubble emulsion and sonic or ultrasonic agitation on endodontic biofilm in vitro.

    PubMed

    Halford, Andrew; Ohl, Claus-Dieter; Azarpazhooh, Amir; Basrani, Bettina; Friedman, Shimon; Kishen, Anil

    2012-11-01

    Irrigation dynamics and antibacterial activity determine the efficacy of root canal disinfection. Sonic or ultrasonic agitation of irrigants is expected to improve irrigation dynamics. This study examined the effects of microbubble emulsion (ME) combined with sonic or ultrasonic agitation on irrigation dynamics and reduction of biofilm bacteria within root canal models. Two experiments were conducted. First, high-speed imaging was used to characterize the bubble dynamics generated in ME by sonic or ultrasonic agitation within canals of polymer tooth models. Second, 5.25% NaOCl irrigation or ME was sonically or ultrasonically agitated in canals of extracted teeth with 7-day-grown Enterococcus faecalis biofilms. Dentinal shavings from canal walls were sampled at 1 mm and 3 mm from the apical terminus, and colony-forming units (CFUs) were enumerated. Mean log CFU/mL values were analyzed with analysis of variance and post hoc tests. High-speed imaging demonstrated strongly oscillating and vaporizing bubbles generated within ME during ultrasonic but not sonic agitation. Compared with CFU counts in controls, NaOCl-sonic and NaOCl-ultrasonic yielded significantly lower counts (P < .05) at both measurement levels. ME-sonic yielded significantly lower counts (P = .002) at 3 mm, whereas ME-ultrasonic yielded highly significantly lower counts (P = .000) at both measurement levels. At 3 mm, ME-ultrasonic yielded significantly lower CFU counts (P = .000) than ME-sonic, NaOCl-sonic, and NaOCl-ultrasonic. Enhanced bubble dynamics and reduced E. faecalis biofilm bacteria beyond the level achieved by sonic or ultrasonic agitation of NaOCl suggested a synergistic effect of ME combined with ultrasonic agitation. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Boiling histotripsy lesion characterization on a clinical magnetic resonance imaging-guided high intensity focused ultrasound system

    PubMed Central

    Eranki, Avinash; Farr, Navid; Partanen, Ari; V. Sharma, Karun; Chen, Hong; Rossi, Christopher T.; Kothapalli, Satya V. V. N.; Oetgen, Matthew; Kim, AeRang; H. Negussie, Ayele; Woods, David; J. Wood, Bradford; C. W. Kim, Peter; S. Yarmolenko, Pavel

    2017-01-01

    Purpose High intensity focused ultrasound (HIFU) is a non-invasive therapeutic technique that can thermally ablate tumors. Boiling histotripsy (BH) is a HIFU approach that can emulsify tissue in a few milliseconds. Lesion volume and temperature effects for different BH sonication parameters are currently not well characterized. In this work, lesion volume, temperature distribution, and area of lethal thermal dose were characterized for varying BH sonication parameters in tissue-mimicking phantoms (TMP) and demonstrated in ex vivo tissues. Methods The following BH sonication parameters were varied using a clinical MR-HIFU system (Sonalleve V2, Philips, Vantaa, Finland): acoustic power, number of cycles/pulse, total sonication time, and pulse repetition frequency (PRF). A 3×3×3 pattern was sonicated inside TMP’s and ex vivo tissues. Post sonication, lesion volumes were quantified using 3D ultrasonography and temperature and thermal dose distributions were analyzed offline. Ex vivo tissues were sectioned and stained with H&E post sonication to assess tissue damage. Results Significant increase in lesion volume was observed while increasing the number of cycles/pulse and PRF. Other sonication parameters had no significant effect on lesion volume. Temperature full width at half maximum at the end of sonication increased significantly with all parameters except total sonication time. Positive correlation was also found between lethal thermal dose and lesion volume for all parameters except number of cycles/pulse. Gross pathology of ex vivo tissues post sonication displayed either completely or partially damaged tissue at the focal region. Surrounding tissues presented sharp boundaries, with little or no structural damage to adjacent critical structures such as bile duct and nerves. Conclusion Our characterization of effects of HIFU sonication parameters on the resulting lesion demonstrates the ability to control lesion morphologic and thermal characteristics with a clinical MR-HIFU system in TMP’s and ex vivo tissues. We demonstrate that this system can produce spatially precise lesions in both phantoms and ex vivo tissues. The results provide guidance on a preliminary set of BH sonication parameters for this system, with a potential to facilitate BH translation to the clinic. PMID:28301597

  6. [Changes of pulse rate caused by sonic bomms during sleep (author's transl)].

    PubMed

    Griefahn, B

    1975-12-05

    In two experimental series (19 resp. 53 nights, 2 different persons in each series, test-time 10.30 p.m. to 3.00 a.m.) pulse rate after sonic booms had been recorded during sleep. In the first 3 nights the subjects slept undisturbed by noise. In the following 11 resp. 30 nights sonic booms were applied alternately 2 or 4 times. In the main series after 10 more nights without any noise 4 nights with 8 and 16 sonic booms alternately followed. The last 6 undisturbed nights in both series were used as comparison phase. The interval between two sonic booms was 40 min in nights with 2 booms, 20 min in nights with 4 sonic booms and in the nights with 8 and 16 sonic booms 8.6 resp. 4.6 min. Sound level of the sonic booms ranged from 0.48 mbar to 1.45 mbar, 1 mbar [83.5 dB (A)] in the average. The first sonic boom was applied if one of the two subjects had entered the deepest stage of sleep. Sonic booms induced a biphasic reaction in pulse rate. After an initial increase in frequency with a maximum in the 4th sec pulse rate decreased below the value before sonic boom; it was followed by a slow increase towards the baseline value. This reaction was analysed with special regard to the following factors: 1. Intensity. Due to very fast increase of noise intensity there was no significant correlation between the intensity of sonic boom and the pulse reaction. 2. Exogenic variables. There is no significant connection between postboom pulse rate and noiseless time before the sonic boom, the duration of the test series and the ambient temperature. 3. Endogenic variables. No correlation could be found between the stage of sleep and the reaction. On the contrary a very significant correlation was found between the maximum of postboom increase of pulse rate and the pulse rate before boom. With increasing pulse rate the extent of reaction becomes smaller.

  7. Ultrasonication assisted Layer-by-Layer technology for the preparation of multi-functional anticancer drugs paclitaxel and lapatinib

    NASA Astrophysics Data System (ADS)

    Zhang, Xingcai

    In this dissertation, ultrasonication assisted Layer-by-Layer (LbL) technology for the preparation of multifunctional poorly water-soluble anticancer drug nanoparticles, paclitaxel and lapatinib, has been developed. Many FDA approved drugs are very low soluble in water; therefore, it is very difficult to load and control their release and targeting efficiently, which greatly confines their application. The development of this method will pave the way for the development and application of those low soluble anticancer drugs. In the first part of this dissertation, the first approach for powerful ultrasonication, the top-down approach (sonicating bulk drug crystals in polyelectrolyte solution), was successfully applied for the preparation of the nanoparticles of paclitaxel. For this approach, a 200 nm diameter was a kind of "magic" barrier for colloidal particles prepared. This diameter barrier may be related to the nucleation size of the solvent vapor microbubbles. Consequently, agents enhancing bubbling formation (such as NH4HCO3) were applied to decrease paclitaxel colloid particles to 100-120 nm. Those paclitaxel nanoparticles were Layer-by-Layer coated with a 10-20 nm polycation/polyanion shell to provide aqueous colloidal stability and slower particle dissolution. However, a large obstacle of these powerful ultrasonication methods was a necessity of long ca 45 minutes high power ultrasonication which resulted in TiO2 contamination from titanium electrode. The small amount of TiO2 contamination from ultrasonication did negatively affect the in vivo testing of this system in mice, and had to be removed before low toxicity of the Layer-by-Layer coated paclitaxel nanoparticles were observed. In the second part of the dissertation, the second approach for sonication, the bottom-up approach (sonicating drug in a water-miscible organic solvent followed by slow water add-in) was successfully applied for the preparation of the nanoparticles of lapatinib and paclitaxel with less powerful sonication. By using polymeric excipients combined with non-ionic and anionic surfactants along with regular sonication, the prepared particle sizes was uniform at around 140-150 nm. Less sonication time (ca 15 minutes) and lower sonication power avoided TiO2 contamination. The amphiphiles attached to the hydrophobic nanoparticles and served as anchors for LbL shell. The inner LbL layers and surfactants minimized the surface free energy, thereby preventing crystal form changes and nanoparticles coalescence, while the outermost layers enhanced colloidal stability. In the third part of the dissertation, LbL shells with PEGylation (using a block copolymer of poly-L-lysine (PLL) and PEG) for lapatinib were developed for enhanced colloidal stability in high molarity PBS buffer. In the above proposed paclitaxel and lapatinib formulation, we obtained 150-200 nm with high drug content of 80-90% due to very thin capsule walls (ca 10 nm). The drug release time from the LbL capsules was found to be between 10 and 20 hours depending on the shell thickness. Washless Layer-by-Layer assembly was used: 1) addition of polycation in the amount that is enough to reverse surface charge of the dispersion to a high positive (+30 mV) value; 2) addition of polyanion in the amount that is enough to reverse surface charge of the dispersion to a high negative (-30 mV) value. No intermediate washing of nanoparticles was done until the shell was complete. The washless method had the advantage of time and energy saving, preservation of the sample structure and no losses of sample. In the last part of the dissertation, we elaborated nanoformulation of two drugs in one nanocapsule locating paclitaxel in the core and lapatinib on the shell periphery. With this formulation, combining in one nanoparticle dual drugs, we reached the drugs' efficiency synergy. In a multidrug-resistant (MDR) ovarian cancer cell line, OVCAR-3, LbL lapatinib/paclitaxel nanocolloids mediated an enhanced cell growth inhibition in comparison with the LbL paclitaxel-only and LbL lapatinib-only treatment, not to say the free one drug treatment.

  8. Comparison between dispersive solid-phase and dispersive liquid-liquid microextraction combined with spectrophotometric determination of malachite green in water samples based on ultrasound-assisted and preconcentration under multi-variable experimental design optimization.

    PubMed

    Alipanahpour Dil, Ebrahim; Ghaedi, Mehrorang; Asfaram, Arash; Zare, Fahimeh; Mehrabi, Fatemeh; Sadeghfar, Fardin

    2017-11-01

    The ultrasound-assisted dispersive solid-phase microextraction (USA-DSPME) and the ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) developed for as an ultra preconcentration and/or technique for the determination of malachite green (MG) in water samples. Central composite design based on analysis of variance and desirability function guide finding best operational conditions and represent dependency of response to variables viz. volume of extraction, eluent and disperser solvent, pH, adsorbent mass and ultrasonication time has significant influence on methods efficiency. Optimum conditions was set for USA-DSPME as: 1mg CNTs/Zn:ZnO@Ni 2 P-NCs; 4min sonication time and 130μL eluent at pH 6.0. Meanwhile optimum point for USA-DLLME conditions were fixed at pH 6.0; 4min sonication time and 130, 650μL and 10mL of extraction solvent (CHCl 3 ), disperser solvent (ethanol) and sample volume, respectively. Under the above specified best operational conditions, the enrichment factors for the USA-DSPME and USA-DLLME were 88.89 and 147.30, respectively. The methods has linear response in the range of 20.0 to 4000.0ngmL -1 with the correlation coefficients (r) between 0.9980 to 0.9995, while its reasonable detection limits viz. 1.386 to 2.348ngmL -1 and good relative standard deviations varied from 1.1% to 2.8% (n=10) candidate this method for successful monitoring of analyte from various media. The relative recoveries of the MG dye from water samples at spiking level of 500ngmL -1 were in the range between 94.50% and 98.86%. The proposed methods has been successfully applied to the analysis of the MG dye in water samples, and a satisfactory result was obtained. Copyright © 2017. Published by Elsevier B.V.

  9. MALDI-TOF identification of Gram-negative bacteria directly from blood culture bottles containing charcoal: Sepsityper® kits versus centrifugation-filtration method.

    PubMed

    Riederer, Kathleen; Cruz, Kristian; Shemes, Stephen; Szpunar, Susan; Fishbain, Joel T

    2015-06-01

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry has dramatically altered the way microbiology laboratories identify clinical isolates. Direct blood culture (BC) detection may be hampered, however, by the presence of charcoal in BC bottles currently in clinical use. This study evaluates an in-house process for extraction and MALDI-TOF identification of Gram-negative bacteria directly from BC bottles containing charcoal. Three hundred BC aliquots were extracted by a centrifugation-filtration method developed in our research laboratory with the first 96 samples processed in parallel using Sepsityper® kits. Controls were colonies from solid media with standard phenotypic and MALDI-TOF identification. The identification of Gram-negative bacteria was successful more often via the in-house method compared to Sepsityper® kits (94.7% versus 78.1%, P≤0.0001). Our in-house centrifugation-filtration method was further validated for isolation and identification of Gram-negative bacteria (95%; n=300) directly from BC bottles containing charcoal. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The choice of ultrasound assisted extraction coupled with spectrophotometric for rapid determination of gallic acid in water samples: Central composite design for optimization of process variables.

    PubMed

    Pooralhossini, Jaleh; Ghaedi, Mehrorang; Zanjanchi, Mohammad Ali; Asfaram, Arash

    2017-01-01

    A sensitive procedure namely ultrasound-assisted (UA) coupled dispersive nano solid-phase microextraction spectrophotometry (DNSPME-UV-Vis) was designed for preconcentration and subsequent determination of gallic acid (GA) from water samples, while the detailed of composition and morphology and also purity and structure of this new sorbent was identified by techniques like field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDX) techniques. Among conventional parameters viz. pH, amount of sorbent, sonication time and volume of elution solvent based on Response Surface Methodology (RSM) and central composite design according to statistics based contour the best operational conditions was set at pH of 2.0; 1.5mg sorbent, 4.0min sonication and 150μL ethanol. Under these pre-qualified conditions the method has linear response over wide concentration range of 15-6000ngmL -1 with a correlation coefficient of 0.9996. The good figure of merits like acceptable LOD (S/N=3) and LOQ (S/N=10) with numerical value of 2.923 and 9.744ngmL -1 , respectively and relative recovery between 95.54 and 100.02% show the applicability and efficiency of this method for real samples analysis with RSDs below 6.0%. Finally the method with good performance were used for monitoring under study analyte in various real samples like tap, river and mineral waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Optimized ultrasound-assisted emulsification microextraction for simultaneous trace multielement determination of heavy metals in real water samples by ICP-OES.

    PubMed

    Sereshti, Hassan; Heravi, Yeganeh Entezari; Samadi, Soheila

    2012-08-15

    Ultrasonic-assisted emulsification microextraction (USAEME) combined with inductively coupled plasma-optical emission spectrometry (ICP-OES) was used for preconcentration and determination of aluminum, bismuth, cadmium, cobalt, copper, iron, gallium, indium, nickel, lead, thallium and zinc in real water samples. Ammonium pyrrolidine dithiocarbamate (APDC) and carbon tetrachloride (CCl(4)) were used as the chelating agent and extraction solvent, respectively. The effective parameters (factors) of the extraction process such as volume of extraction solvent, pH, sonication time, and concentration of chelating agent were optimized by a small central composite design (CCD). The optimum conditions were found to be 98 μL for extraction solvent, 1476 mg L(-1) for chelating agent, 3.8 for pH and 9 min for sonication time. Under the optimal conditions, the limits of detection (LODs) for Al, Bi, Cd, Co, Cu, Fe, Ga, In, Ni, Pb, Tl and Zn were 0.13, 0.48, 0.19, 0.28, 0.29, 0.27, 0.27, 0.38, 0.44, 0.47, 0.52 and 0.17 μg L(-1), respectively. The linear dynamic range (LDR) was 1-1000 μ gL(-1) with determination coefficients of 0.991-0.998. Relative standard deviations (RSDs, C=200 μg L(-1), n=6) were between 1.87%-5.65%. The proposed method was successfully applied to the extraction and determination of heavy metals in real water samples and the satisfactory relative recoveries (90.3%-105.5%) were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Fabrication of biopolymer-based staple electrospun fibres for nanocomposite applications by particle-assisted low temperature ultrasonication.

    PubMed

    Mulky, Elias; Yazgan, Gökçe; Maniura-Weber, Katharina; Luginbuehl, Reto; Fortunato, Giuseppino; Bühlmann-Popa, Ana-Maria

    2014-12-01

    We demonstrate the fabrication of staple polymer-based fibres by the ultrasound-assisted processing of electrospun meshes. Bioabsorbable Poly-L-Lactic Acid (PLLA) was electrospun from organic solvent mixtures, yielding continuous fibres with diameters in the range of 244±78 nm. Subsequently, the obtained fibres were sonicated at low temperatures in the presence of nanoparticles in order to obtain fibres with small aspect ratios. The influence of the dispersion medium, the sonication process parameters (temperature and time) and the dimensions of the particles used on the respective length distribution of the obtained nanofibres was investigated. Hexane was identified as an optimal dispersion medium for the system studied in this work. When a cooling bath temperature of 0°C was used, a slight increase in the obtained fibres' average length and distribution was observed as compared to cooling at -80°C (54±43 μm vs 44±31 μm). Moreover, in the presence of hydroxyapatite and hydrophilic and hydrophobic TiO2 nanoparticles in the dispersion medium longer fibres were obtained (44±31 μm, 63±47 μm, and 51±52 μm). Finally, the application of the obtained PLLA-fibre-hydroxyapatite (HA) nanoparticle precursors for the fabrication of a fibre-reinforced Brushite-based cement with high compressive strength is shown. This method of obtaining nanoscaled fibre-reinforced materials opens up a wide range of perspectives for the fabrication of composites for tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Behavioral, autonomic, and subjective reactions to low- and moderate-level simulated sonic booms : a report of two experiments and a general evaluation of sonic boom startle effects.

    DOT National Transportation Integrated Search

    1974-09-01

    Two separate studies are reported. The first attempted to determine a sonic boom exposure level below which startle reactions would not occur. Subjects were exposed indoors to six simulated sonic booms having various outside overpressures. In the sec...

  14. Sonic horizon formation for oscillating Bose-Einstein condensates in isotropic harmonic potential

    PubMed Central

    Wang, Ying; Zhou, Yu; Zhou, Shuyu

    2016-01-01

    We study the sonic horizon phenomena of the oscillating Bose-Einstein condensates in isotropic harmonic potential. Based on the Gross-Pitaevskii equation model and variational method, we derive the original analytical formula for the criteria and lifetime of the formation of the sonic horizon, demonstrating pictorially the interaction parameter dependence for the occur- rence of the sonic horizon and damping effect of the system distribution width. Our analytical results corroborate quantitatively the particular features of the sonic horizon reported in previous numerical study. PMID:27922129

  15. High-Speed Research: Sonic Boom, volume 1

    NASA Technical Reports Server (NTRS)

    Darden, Christine M. (Compiler)

    1992-01-01

    A High-Speed Sonic Boom Workshop was held at LaRC of Feb. 25-27, 1992. The purpose was to make presentations on current research activities and accomplishments and to assess progress in the area of sonic boom since the program was initiated in FY-90. Twenty-nine papers were presented during the 2-1/2 day workshop. Attendees included representatives from academia, industry, and government who are actively involved in sonic-boom research. Volume 1 contains papers related to atmospheric effects on the sonic-boom signature during propagation and on acceptability studies.

  16. Status of sonic boom methodology and understanding

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.; Powell, Clemans A.; Hayes, Wallace D.; George, Albert R.; Pierce, Allan D.

    1989-01-01

    In January 1988, approximately 60 representatives of industry, academia, government, and the military gathered at NASA-Langley for a 2 day workshop on the state-of-the-art of sonic boom physics, methodology, and understanding. The purpose of the workshop was to assess the sonic boom area, to determine areas where additional sonic boom research is needed, and to establish some strategies and priorities in this sonic boom research. Attendees included many internationally recognized sonic boom experts who had been very active in the Supersonic Transport (SST) and Supersonic Cruise Aircraft Research Programs of the 60's and 70's. Summaries of the assessed state-of-the-art and the research needs in theory, minimization, atmospheric effects during propagation, and human response are given.

  17. Subjective response to sonic booms having different shapes, rise times, and durations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1994-01-01

    Two laboratory experiments were conducted to quantify the subjective response of people to simulated outdoor sonic booms having different pressure signatures. The specific objectives of the experiments were to compare subjective response to sonic booms when described in terms of 'loudness' and 'annoyance'; to determine the ability of various noise metrics to predict subjective response to sonic booms; to determine the effects on subjective response of rise time, duration, and level; and to compare the subjective response to 'N-wave' sonic boom signatures with the subjective response to 'minimized' sonic boom signatures. The experiments were conducted in a computer-controlled, man-rated sonic boom simulator capable of reproducing user-specified pressure signatures for a wide range of sonic boom parameters. One hundred and fifty sonic booms representing different combinations of two wave shapes, four rise times, seven durations, and three peak overpressures were presented to 36 test subjects in each experiment. The test subjects in the first experiment made judgments of 'loudness' while the test subjects in the second experiment judged 'annoyance.' Subjective response to sonic booms was the same whether expressed in terms of loudness or in terms of annoyance. Analyses of several different noise metrics indicated that A-weighted sound exposure level and Perceived Level were the best predictors of subjective response. Further analyses indicated that, of these two noise metrics, only Perceived Level completely accounted for the effects of wave shape, rise time, and peak overpressure. Neither metric fully accounted for the effect of duration. However, the magnitude of the duration effect was small over the very wide range of durations considered.

  18. Control of somite patterning by Sonic hedgehog and its downstream signal response genes.

    PubMed

    Borycki, A G; Mendham, L; Emerson, C P

    1998-02-01

    In the avian embryo, previous work has demonstrated that the notochord provides inductive signals to activate myoD and pax1 regulatory genes, which are expressed in the dorsal and ventral somite cells that give rise to myotomal and sclerotomal lineages. Here, we present bead implantation and antisense inhibition experiments that show that Sonic hedgehog is both a sufficient and essential notochord signal molecule for myoD and pax1 activation in somites. Furthermore, we show that genes of the Sonic hedgehog signal response pathway, specifically patched, the Sonic hedgehog receptor, and gli and gli2/4, zinc-finger transcription factors, are activated in coordination with somite formation, establishing that Sonic hedgehog response genes play a regulatory role in coordinating the response of somites to the constitutive notochord Sonic hedgehog signal. Furthermore, the expression of patched, gli and gli2/4 is differentially patterned in the somite, providing mechanisms for differentially transducing the Sonic hedgehog signal to the myotomal and sclerotomal lineages. Finally, we show that the activation of gli2/4 is controlled by the process of somite formation and signals from the surface ectoderm, whereas upregulation of patched and activation of gli is controlled by the process of somite formation and a Sonic hedgehog signal. The Sonic hedgehog signal response genes, therefore, have important functions in regulating the initiation of the Sonic hedgehog response in newly forming somites and in regulating the patterned expression of myoD and pax1 in the myotomal and sclerotomal lineages following somite formation.

  19. Simple atmospheric perturbation models for sonic-boom-signature distortion studies

    NASA Technical Reports Server (NTRS)

    Ehernberger, L. J.; Wurtele, Morton G.; Sharman, Robert D.

    1994-01-01

    Sonic-boom propagation from flight level to ground is influenced by wind and speed-of-sound variations resulting from temperature changes in both the mean atmospheric structure and small-scale perturbations. Meteorological behavior generally produces complex combinations of atmospheric perturbations in the form of turbulence, wind shears, up- and down-drafts and various wave behaviors. Differences between the speed of sound at the ground and at flight level will influence the threshold flight Mach number for which the sonic boom first reaches the ground as well as the width of the resulting sonic-boom carpet. Mean atmospheric temperature and wind structure as a function of altitude vary with location and time of year. These average properties of the atmosphere are well-documented and have been used in many sonic-boom propagation assessments. In contrast, smaller scale atmospheric perturbations are also known to modulate the shape and amplitude of sonic-boom signatures reaching the ground, but specific perturbation models have not been established for evaluating their effects on sonic-boom propagation. The purpose of this paper is to present simple examples of atmospheric vertical temperature gradients, wind shears, and wave motions that can guide preliminary assessments of nonturbulent atmospheric perturbation effects on sonic-boom propagation to the ground. The use of simple discrete atmospheric perturbation structures can facilitate the interpretation of the resulting sonic-boom propagation anomalies as well as intercomparisons among varied flight conditions and propagation models.

  20. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    PubMed

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm 2 ) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers

    Treesearch

    John M. Frank; William J. Massman; Brent E. Ewers

    2013-01-01

    Sonic thermometry and anemometry are fundamental to all eddy-covariance studies of surface energy balance. Recent studies have suggested that sonic anemometers with non-orthogonal transducers can underestimate vertical wind velocity (w) and sensible heat flux (H) when compared to orthogonal designs. In this study we tested whether a non-orthogonal sonic anemometer (...

  2. The oligolectic bee Osmia brevis sonicates Penstemon flowers for pollen: A newly documented behavior for the Megachilidae

    Treesearch

    James H. Cane

    2014-01-01

    Flowers with poricidally dehiscent anthers are typically nectarless but are avidly visited and often solely pollinated by bees that sonicate the flowers to harvest pollen. Sonication results from shivering the thoracic flight muscles. Honey bees (Apis) and the 4,000+ species of Megachilidae are enigmatic in their seeming inability to sonicate flowers. The oligolectic...

  3. Subjective response of people to simulated sonic booms in their homes

    NASA Technical Reports Server (NTRS)

    McCurdy, David A.; Brown, Sherilyn A.; Hilliard, R. David

    2004-01-01

    In order to determine the effect of the number of sonic boom occurrences on annoyance, a computer-based system was developed for studying the subjective response of people to the occurrence of simulated sonic booms in their homes. The system provided a degree of control over the noise exposure not found in community surveys and a degree of situational realism not available in the laboratory. A system was deployed for eight weeks in each of 33 homes. Each day from 4 to 63 sonic booms were played as the test subject went about his or her normal activities. At the end of the day, the test subjects rated their annoyance to the sonic booms heard during the day. The sonic booms consisted of different combinations of waveforms, levels, and occurrence rates. The experiment confirmed that the increase in annoyance resulting from multiple occurrences can be modeled by the addition of the term "10 * log(number of occurrences)" to the sonic boom level. Of several noise metrics considered, perceived level was the best annoyance predictor. Comparisons of the subjective responses to the different sonic boom waveforms found no differences that were not accounted for by the noise metrics.

  4. Laboratory Headphone Studies of Human Response to Low-Amplitude Sonic Booms and Rattle Heard Indoors

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra; Sullivan, Brenda M.; Klos, Jacob; Rathsam, Jonathan; Gavin, Joseph R.

    2013-01-01

    Human response to sonic booms heard indoors is affected by the generation of contact-induced rattle noise. The annoyance caused by sonic boom-induced rattle noise was studied in a series of psychoacoustics tests. Stimuli were divided into three categories and presented in three different studies: isolated rattles at the same calculated Perceived Level (PL), sonic booms combined with rattles with the mixed sound at a single PL, and sonic booms combined with rattles with the mixed sound at three different PL. Subjects listened to sounds over headphones and were asked to report their annoyance. Annoyance to different rattles was shown to vary significantly according to rattle object size. In addition, the combination of low-amplitude sonic booms and rattles can be more annoying than the sonic boom alone. Correlations and regression analyses for the combined sonic boom and rattle sounds identified the Moore and Glasberg Stationary Loudness (MGSL) metric as a primary predictor of annoyance for the tested sounds. Multiple linear regression models were developed to describe annoyance to the tested sounds, and simplifications for applicability to a wider range of sounds are presented.

  5. Is amplitude loss of sonic waveforms due to intrinsic attenuation or source coupling to the medium?

    USGS Publications Warehouse

    Lee, Myung W.

    2006-01-01

    Sonic waveforms acquired in gas-hydrate-bearing sediments indicate strong amplitude loss associated with an increase in sonic velocity. Because the gas hydrate increases sonic velocities, the amplitude loss has been interpreted as due to intrinsic attenuation caused by the gas hydrate in the pore space, which apparently contradicts conventional wave propagation theory. For a sonic source in a fluid-filled borehole, the signal amplitude transmitted into the formation depends on the physical properties of the formation, including any pore contents, in the immediate vicinity of the source. A signal in acoustically fast material, such as gas-hydrate-bearing sediments, has a smaller amplitude than a signal in acoustically slower material. Therefore, it is reasonable to interpret the amplitude loss in the gas-hydrate-bearing sediments in terms of source coupling to the surrounding medium as well as intrinsic attenuation. An analysis of sonic waveforms measured at the Mallik 5L-38 well, Northwest Territories, Canada, indicates that a significant part of the sonic waveform's amplitude loss is due to a source-coupling effect. All amplitude analyses of sonic waveforms should include the effect of source coupling in order to accurately characterize the formation's intrinsic attenuation.

  6. Extraction of DNA from forensic-type sexual assault specimens using simple, rapid sonication procedures.

    PubMed

    Crouse, C A; Ban, J D; D'Alessio, J K

    1993-10-01

    Sonication procedures for the extraction of DNA from forensic-type semen specimens have been developed, which, when compared to currently utilized sperm DNA extraction techniques, are simple, rapid and result in comparable DNA yields. Sperm DNA extraction by sonication was performed on whole semen, seminal stains, buccal swabs and post-coital specimens. Ultrasound disruption of sperm cells and their ultimate release of cellular DNA has been conducted in the presence of sperm wash buffers followed by organic extraction or Chelex 100 with little or no compromise to DNA quality, quantity or amplifiability. Two advantages of sonication over currently used forensic techniques to extract sperm DNA include 1) sperm DNA extraction that occurs within five minutes of sonication compared with an hour or greater for water bath incubations in classic enzyme digestion DNA extractions and 2) one less preparatory step with the Chelex/sonication protocol and three less steps with the sonication/organic protocol compared with other procedures thus eliminating potential sample-to-sample cross-contamination. Sperm DNA extracted by optimum sonication procedures was used for forensic HLA DQ alpha typing and restriction fragment length polymorphisms analysis without any adverse effects on typing results.

  7. Review of current sonic boom studies.

    NASA Technical Reports Server (NTRS)

    Kane, E. J.

    1973-01-01

    Several aspects of the sonic boom phenomena are currently under investigation at The Boeing Co. This work, supported by the NASA and the FAA, includes an in-depth analysis of sonic boom measurements recorded at the BREN tower, a summary and evaluation of sonic boom investigations done in the last decade and a half, and configuration studies to determine practical lower bound sonic boom limits. The BREN tower test program yielded unique and valuable data because it was the first time that vertical profile measurements were made through caustics produced by maneuvers and atmospheric refraction. The objective of the second effort is to compile in a single reference an annotated abstract, including significant results, for each published sonic boom study and to provide a comprehensive review of the current state of the art to aid future researchers. The configuration work is devoted toward determining the feasibility of supersonic transport type airplanes with a primary design goal of acceptable sonic boom characteristics. Each of these investigations is briefly reviewed and significant results are discussed.

  8. Sonic boom acceptability studies

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Sullivan, Brenda M.; Leatherwood, Jack D.; Mccurdy, David A.

    1992-01-01

    The determination of the magnitude of sonic boom exposure which would be acceptable to the general population requires, as a starting point, a method to assess and compare individual sonic booms. There is no consensus within the scientific and regulatory communities regarding an appropriate sonic boom assessment metric. Loudness, being a fundamental and well-understood attribute of human hearing was chosen as a means of comparing sonic booms of differing shapes and amplitudes. The figure illustrates the basic steps which yield a calculated value of loudness. Based upon the aircraft configuration and its operating conditions, the sonic boom pressure signature which reaches the ground is calculated. This pressure-time history is transformed to the frequency domain and converted into a one-third octave band spectrum. The essence of the loudness method is to account for the frequency response and integration characteristics of the auditory system. The result of the calculation procedure is a numerical description (perceived level, dB) which represents the loudness of the sonic boom waveform.

  9. Combination of nano-material enrichment and dead-end filtration for uniform and rapid sample preparation in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Wu, Zengnan; Khan, Mashooq; Mao, Sifeng; Lin, Ling; Lin, Jin-Ming

    2018-05-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a fast analysis tool for the detection of a wide range of analytes. However, heterogeneous distribution of matrix/analyte cocrystal, variation in signal intensity and poor experimental reproducibility at different locations of the same spot means difficulty in quantitative analysis. In this work, carbon nanotubes (CNTs) were employed as adsorbent for analyte cum matrix on a conductive porous membrane as a novel mass target plate. The sample pretreatment step was achieved by enrichment and dead-end filtration and dried by a solid-liquid separation. This approach enables the homogeneous distribution of analyte in the matrix, good shot-to-shot reproducibility in signals and quantitative detection of peptide and protein at different concentrations with correlation coefficient (R 2 ) of 0.9920 and 0.9909, respectively. The simple preparation of sample in a short time, uniform distribution of analyte, easy quantitative detection, and high reproducibility makes this technique useful and may diversify the application of MALDI-MS for quantitative detection of a variety of proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. High-Speed Research: Sonic Boom, Volume 1

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas A. (Editor)

    1994-01-01

    The second High-Speed Research Program Sonic Boom Workshop was held at NASA Ames Research Center May 12-14, 1993. The workshop was organized into three sessions dealing with atmospheric propagation, acceptability, and configuration design. Volume 1 includes papers on atmospheric propagation and acceptability studies. Significant progress is noted in these areas in the time since the previous workshop a year earlier. In particular, several papers demonstrate an improved capability to model the effect of atmospheric turbulence on sonic booms. This is a key issue in determining the stability and acceptability of shaped sonic booms. In the area of acceptability, the PLdB metric has withstood considerable scrutiny and is validated as a loudness metric for a wide variety of sonic boom shapes. The differential loudness of asymmetric sonic booms is better understood, too.

  11. A Study in a New Test Facility on Indoor Annoyance Caused by Sonic Booms

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Loubeau, Alexandra; Klos, Jacob

    2012-01-01

    A sonic-boom simulator at NASA Langley Research Center has been constructed to research the indoor human response to low-amplitude sonic booms. The research goal is the development of a psychoacoustic model for individual sonic booms to be validated by future community studies. The study in this report assessed the suitability of existing noise metrics for predicting indoor human annoyance. The test signals included a wide range of synthesized and recorded sonic-boom waveforms. Results indicated that no noise metric predicts indoor annoyance to sonic-boom sounds better than Perceived Level, PL. During the study it became apparent that structural vibrations induced by the test signals were contributing to annoyance, so the relationship between sound and vibration at levels of equivalent annoyance has been quantified.

  12. Implications for high speed research: The relationship between sonic boom signature distortion and atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.; Gionfriddo, Thomas A.

    1994-01-01

    In this study there were two primary tasks. The first was to develop an algorithm for quantifying the distortion in a sonic boom. Such an algorithm should be somewhat automatic, with minimal human intervention. Once the algorithm was developed, it was used to test the hypothesis that the cause of a sonic boom distortion was due to atmospheric turbulence. This hypothesis testing was the second task. Using readily available sonic boom data, we statistically tested whether there was a correlation between the sonic boom distortion and the distance a boom traveled through atmospheric turbulence.

  13. Low speed and angle of attack effects on sonic and near-sonic inlets

    NASA Technical Reports Server (NTRS)

    Hickcox, T. E.; Lawrence, R. L.; Syberg, J.; Wiley, D. R.

    1975-01-01

    Tests of the Quiet, Clean Short-Haul Experimental Engine (QCSEE) were conducted to determine the effects of forward velocity and angle of attack on sonic and near-sonic inlet aerodynamic performance penalties and acoustic suppression characteristics. The tests demonstrate that translating centerbody and radial vane sonic inlets, and QCSEE high throat Mach number inlets, can be designed to operate effectively at forward speed and moderate angle of attack with good performance and noise suppression capability. The test equipment and procedures used in conducting the evaluation are described. Results of the tests are presented in tabular form.

  14. High-Speed Research: Sonic Boom, volume 2

    NASA Technical Reports Server (NTRS)

    Darden, Christine M. (Compiler)

    1992-01-01

    A High-Speed Sonic Boom Workshop was held at NASA Langley Research Center on February 25-27, 1992. The purpose of the workshop was to make presentations on current research activities and accomplishments and to assess progress in the area of sonic boom since the program was initiated in FY-90. Twenty-nine papers were presented during the 2-1/2 day workshop. Attendees included representatives from academia, industry, and government who are actively involved in sonic-boom research. Volume 2 contains papers related to low sonic-boom design and analysis using both linear theory and higher order computational fluid dynamics (CFD) methods.

  15. NASA Test Flights Examine Effect of Atmospheric Turbulence on Sonic Booms

    NASA Image and Video Library

    2016-07-20

    NASA pilot Nils Larson, and flight test engineer and pilot Wayne Ringelberg, head for a mission debrief after flying a NASA F/A-18 at Mach 1.38 to create sonic booms as part of the SonicBAT flight series at NASA’s Armstrong Flight Research Center in California, to study sonic boom signatures with and without the element of atmospheric turbulence.

  16. Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog-Dependent Medulloblastoma Initiation and Maintenance

    DTIC Science & Technology

    2014-10-01

    Remodeling Factor in Sonic Hedgehog -Dependent Medulloblastoma Initiation and Maintenance PRINCIPAL INVESTIGATOR: Xuanming Shi CONTRACTING...Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog -Dependent 5b. GRANT NUMBER W81XWH-12-1-0527 Medulloblastoma Initiation and Maintenance...medulloblastoma. 15. SUBJECT TERMS Medulloblastoma, Sonic Hedgehog , Chromatin remodeling, BAF complex, Brg1, mouse model of shh-subtype medulloblastoma

  17. Modified Linear Theory Aircraft Design Tools and Sonic Boom Minimization Strategy Applied to Signature Freezing via F-function Lobe Balancing

    NASA Astrophysics Data System (ADS)

    Jung, Timothy Paul

    Commercial supersonic travel has strong business potential; however, in order for the Federal Aviation Administration to lift its ban on supersonic flight overland, designers must reduce aircraft sonic boom strength to an acceptable level. An efficient methodology and associated tools for designing aircraft for minimized sonic booms are presented. The computer-based preliminary design tool, RapidF, based on modified linear theory, enables quick assessment of an aircraft's sonic boom with run times less than 30 seconds on a desktop computer. A unique feature of RapidF is that it tracks where on the aircraft each segment of the of the sonic boom came from, enabling precise modifications, speeding the design process. Sonic booms from RapidF are compared to flight test data, showing that it is capability of predicting a sonic boom duration, overpressure, and interior shock locations. After the preliminary design is complete, scaled flight tests should be conducted to validate the low boom design. When conducting such tests, it is insufficient to just scale the length; thus, equations to scale the weight and propagation distance are derived. Using RapidF, a conceptual supersonic business jet design is presented that uses F-function lobe balancing to create a frozen sonic boom using lifting surfaces. The leading shock is reduced from 1.4 to 0.83 psf, and the trailing shock from 1.2 to 0.87 psf, 41% and 28% reductions respectfully. By changing the incidence angle of the surfaces, different sonic boom shapes can be created, and allowing the lobes to be re-balanced for new flight conditions. Computational fluid dynamics is conducted to validate the sonic boom predictions. Off-design analysis is presented that varies weight, altitude, Mach number, and propagation angle, demonstrating that lobe-balance is robust. Finally, the Perceived Level of Loudness metric is analyzed, resulting in a modified design that incorporates other boom minimization techniques to further reduce the sonic boom.

  18. Ultrasonically enhanced fractionation of milk fat in a litre-scale prototype vessel.

    PubMed

    Leong, Thomas; Johansson, Linda; Mawson, Raymond; McArthur, Sally L; Manasseh, Richard; Juliano, Pablo

    2016-01-01

    The ultrasonic fractionation of milk fat in whole milk to fractions with distinct particle size distributions was demonstrated using a stage-based ultrasound-enhanced gravity separation protocol. Firstly, a single stage ultrasound gravity separation was characterised after various sonication durations (5-20 min) with a mass balance, where defined volume partitions were removed across the height of the separation vessel to determine the fat content and size distribution of fat droplets. Subsequent trials using ultrasound-enhanced gravity separation were carried out in three consecutive stages. Each stage consisted of 5 min sonication, with single and dual transducer configurations at 1 MHz and 2 MHz, followed by aliquot collection for particle size characterisation of the formed layers located at the bottom and top of the vessel. After each sonication stage, gentle removal of the separated fat layer located at the top was performed. Results indicated that ultrasound promoted the formation of a gradient of vertically increasing fat concentration and particle size across the height of the separation vessel, which became more pronounced with extended sonication time. Ultrasound-enhanced fractionation provided fat enriched fractions located at the top of the vessel of up to 13 ± 1% (w/v) with larger globules present in the particle size distributions. In contrast, semi-skim milk fractions located at the bottom of the vessel as low as 1.2 ± 0.01% (w/v) could be produced, containing proportionally smaller sized fat globules. Particle size differentiation was enhanced at higher ultrasound energy input (up to 347 W/L). In particular, dual transducer after three-stage operation at maximum energy input provided highest mean particle size differentiation with up to 0.9 μm reduction in the semi-skim fractions. Higher frequency ultrasound at 2 MHz was more effective in manipulating smaller sized fat globules retained in the later stages of skimming than 1 MHz. While 2 MHz ultrasound removed 59 ± 2% of the fat contained in the initial sample, only 47 ± 2% was removed with 1 MHz after 3 ultrasound-assisted fractionation stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. An in-home study of subjective response to simulated sonic booms

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Brown, Sherilyn A.; Hilliard, R. David

    1994-01-01

    The proposed development of a second-generation supersonic commercial transport has resulted in increased research efforts to provide an environmentally acceptable aircraft. One of the environmental issues is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonically over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public and could possibly permit overland supersonic flight. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' rating and can be placed and operated in individuals' homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment.

  20. Potential for Sonic Boom Reduction of the Boeing HSCT

    NASA Technical Reports Server (NTRS)

    Haglund, George T.

    1999-01-01

    The HSR sonic boom technology program includes a goal of reducing the objectionable aspects of sonic boom. Earlier HSCT sonic boom studies considered achieving significant sonic boom reduction by the use of arrow-wing planforms and detailed shaping of the airplane to produce shaped waveforms (non N-waves) at the ground. While these design efforts were largely successful, the added risk and cost of the airplanes were judged to be unacceptable. The objective of the current work is to explore smaller configuration refinements that could lead to reduced sonic boom impact, within design and operational constraints. A somewhat modest target of 10% reduction in sonic boom maximum overpressure was selected to minimize the effect on the configuration performance. This work was a joint NASA/Industry effort, utilizing the respective strengths of team members at Boeing, NASA Langley, and NASA Ames. The approach used was to first explore a wide range of modifications and airplane characteristics for their effects on sonic boom and drag, using classical Modified Linear Theory (MLT) methods. CFD methods were then used to verify promising, modifications and to analyze modifications for which the MLT methods were not appropriate. The tea m produced a list of configuration changes with their effects on sonic boom and, in some cases, an estimate of the drag penalty. The most promising modifications were applied to produce a boom-softened derivative of the baseline Boeing High Speed Civil Transport (HSCT) configuration. This boom-softened configuration was analyzed in detail for the reduce sonic boom impact and also for the effect of the configuration modifications on drag, weight, and overall performance relative to the baseline.

  1. Lateral Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Arnac, Sarah R.; Hill, Michael A.

    2016-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center (AFRC) and the NASA Langley Research Center (LaRC), in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics near the sonic boom carpet extremity. The FaINT was an effort that collected finely-space sonic boom data across the entire lateral cutoff transition region. A major objective of the effort was to investigate the acoustic phenomena that occur at the audible edge of a sonic boom carpet, including the transition and shadow zones. A NASA F-18B aircraft made supersonic passes such that its sonic boom carpet transition zone would intersect a linear 60-microphone, 7500-ft long array. A TG-14 motor glider equipped with a microphone on its wing also attempted to capture the same sonic boom rays that were measured on the ground, at altitudes of 3000 - 6000 ft above ground level. This paper determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, and established a value of 65 dB as a limit for the acoustic levels defining the lateral extent of a sonic boom's noise region; analyzed the change in sonic boom levels as a function of distance from flight path both on the ground and 4500 ft above the ground; and compared between sonic boom measurements and numerical predictions.

  2. Alfalfa (Medicago sativa L.).

    PubMed

    Fu, Chunxiang; Hernandez, Timothy; Zhou, Chuanen; Wang, Zeng-Yu

    2015-01-01

    Alfalfa (Medicago sativa L.) is a high-quality forage crop widely grown throughout the world. This chapter describes an efficient protocol that allows for the generation of large number of transgenic alfalfa plants by sonication-assisted Agrobacterium-mediated transformation. Binary vectors carrying different selectable marker genes that confer resistance to phosphinothricin (bar), kanamycin (npt II), or hygromycin (hph) were used to generate transgenic alfalfa plants. Intact trifoliates collected from clonally propagated plants in the greenhouse were sterilized with bleach and then inoculated with Agrobacterium strain EHA105. More than 80 % of infected leaf pieces could produce rooted transgenic plants in 4-5 months after Agrobacterium-mediated transformation.

  3. Sonic boom signature data from cruciform microphone array experiments during the 1966-1967 EAFB national sonic boom evaluation program

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Maglieri, D. J.

    1990-01-01

    Tables are provided of measured sonic boom signature data derived from supersonic flyover tests of the XB-70, B-58 and F-104 aircraft for ranges of altitude and Mach number. These tables represent a convenient hard copy version of available electronic files and complement preliminary information included in a reference National Sonic Boom Evaluation Office document.

  4. Unstructured grids for sonic-boom analysis

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran

    1993-01-01

    A fast and efficient unstructured grid scheme is evaluated for sonic-boom applications. The scheme is used to predict the near-field pressure signatures of a body of revolution at several body lengths below the configuration, and those results are compared with experimental data. The introduction of the 'sonic-boom grid topology' to this scheme make it well suited for sonic-boom applications, thus providing an alternative to conventional multiblock structured grid schemes.

  5. Application of two-level factorial design to investigate the effect of process parameters on the sonocrystallization of sulfathiazole

    NASA Astrophysics Data System (ADS)

    Kuo, Peng-Hsuan; Zhang, Bo-Cong; Su, Chie-Shaan; Liu, Jun-Jen; Sheu, Ming-Thau

    2017-08-01

    In this study, cooling sonocrystallization was used to recrystallize an active pharmaceutical ingredient, sulfathiazole, using methanol as the solvent. The effects of three operating parameters-sonication intensity, sonication duration, and solution concentration-on the recrystallization were investigated by using a 2k factorial design. The solid-state properties of sulfathiazole, including the mean particle size, crystal habit, and polymorphic form, were analyzed. Analysis of variance showed that the effect of the sonication intensity, cross-interaction effect of sonication intensity/sonication duration, and cross-interaction effect of sonication intensity/solution concentration on the recrystallization were significant. The results obtained using the 2k factorial design indicated that a combination of high sonication intensity and long sonication duration is not favorable for sonocrystallization, especially at a high solution concentration. A comparison of the solid-state properties of the original and the recrystallized sulfathiazole revealed that the crystal habit of the recrystallized sulfathiazole was more regular and that its mean particle size could be reduced to approximately 10 μm. Furthermore, the analytical results obtained using the PXRD, DSC, and FTIR spectroscopy indicated that the polymorphic purity of sulfathiazole improved from the original Form III/IV mixture to Form III after sonocrystallization.

  6. High precision UTDR measurements by sonic velocity compensation with reference transducer.

    PubMed

    Stade, Sam; Kallioinen, Mari; Mänttäri, Mika; Tuuva, Tuure

    2014-07-02

    An ultrasonic sensor design with sonic velocity compensation is developed to improve the accuracy of distance measurement in membrane modules. High accuracy real-time distance measurements are needed in membrane fouling and compaction studies. The benefits of the sonic velocity compensation with a reference transducer are compared to the sonic velocity calculated with the measured temperature and pressure using the model by Belogol'skii, Sekoyan et al. In the experiments the temperature was changed from 25 to 60 °C at pressures of 0.1, 0.3 and 0.5 MPa. The set measurement distance was 17.8 mm. Distance measurements with sonic velocity compensation were over ten times more accurate than the ones calculated based on the model. Using the reference transducer measured sonic velocity, the standard deviations for the distance measurements varied from 0.6 to 2.0 µm, while using the calculated sonic velocity the standard deviations were 21-39 µm. In industrial liquors, not only the temperature and the pressure, which were studied in this paper, but also the properties of the filtered solution, such as solute concentration, density, viscosity, etc., may vary greatly, leading to inaccuracy in the use of the Belogol'skii, Sekoyan et al. model. Therefore, calibration of the sonic velocity with reference transducers is needed for accurate distance measurements.

  7. On the Gas Dynamics of Inert-Gas-Assisted Laser Cutting of Steel Plate

    NASA Astrophysics Data System (ADS)

    Brandt, A. D.; Settles, G. S.; Scroggs, S. D.

    1996-11-01

    Laser beam cutting of sheet metal requires an assist gas to blow away the molten material. Since the assist-gas dynamics influences the quality and speed of the cut, the orientation of the gas nozzle with respect to the kerf is also expected to be important. A 1 kW cw CO2 laser with nitrogen assist gas was used to cut mild steel sheet of 1 to 4 mm thickness, using a sonic coaxial nozzle as a baseline. Off-axis nozzles were oriented from 20 deg to 60 deg from normal with exit Mach numbers from 1 to 2.4. Results showed maximum cutting speed at a 40 deg nozzle orientation. Shadowgrams of a geometrically-similar model kerf then revealed a separated shock wave-boundary layer interaction within the kerf for the (untilted) coaxial nozzle case. This was alleviated, resulting in a uniform supersonic flow throughout the kerf and consequent higher cutting speeds, by tilting the nozzle between 20 deg and 45 deg from the normal. This result did not depend upon the exit Mach number of the nozzle. (Research supported by NSF Grant DMI-9400119.)

  8. Sono-assisted adsorption of a textile dye on milk vetch-derived charcoal supported by silica nanopowder.

    PubMed

    Jorfi, Sahand; Darvishi Cheshmeh Soltani, Reza; Ahmadi, Mehdi; Khataee, Alireza; Safari, Mahdi

    2017-02-01

    This study was performed to assess the efficiency of silica nanopowder (SNP)/milk vetch-derived charcoal (MVDC) nanocomposite coupled with the ultrasonic irradiation named sono-adsorption process for treating water-contained Basic Red 46 (BR46) dye. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FT-IR) were performed for the characterization of as-prepared adsorbent. The sono-assisted adsorption process was optimized using response surface optimization on the basis of central composite design by the application of quadratic model. Accordingly, the color removal can be retained more than 93% by an initial BR46 concentration of 8 mg/L, sonication time of 31 min, adsorbent dosage of 1.2 g/L and initial pH of 9. The pseudo-second order kinetic model described the sono-assisted adsorption of BR46 reasonably well (R 2  > 0.99). The intra-particular diffusion kinetic model pointed out that the sono-assisted adsorption of BR46 onto SNP/MVDC nanocomposite was diffusion controlled as well as that ultrasonication enhanced the diffusion rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Sono-photocatalytic production of hydrogen by interface modified metal oxide insulators.

    PubMed

    Senevirathne, Rushdi D; Abeykoon, Lahiru K; De Silva, Nuwan L; Yan, Chang-Feng; Bandara, Jayasundera

    2018-07-01

    Dielectric oxide materials are well-known insulators that have many applications in catalysis as well as in device manufacturing industries. However, these dielectric materials cannot be employed directly in photochemical reactions that are initiated by the absorption of UV-Vis photons. Despite their insensitivity to solar energy, dielectric materials can be made sono-photoactive even for low energy IR photons by modifications of the interfacial properties of dielectric materials by noble metals and metal oxides. In this investigation, by way of interface modification of dielectric MgO nanoparticles by Ag metal and Ag 2 O nanoparticles, IR photon initiated sono-photocatalytic activity of MgO is reported. The observed photocatalytic activity is found to be the synergic action of both IR light and sonication effect and sonication assisted a multi-step, sub-bandgap excitation of electrons in the MgO is proposed for the observed catalytic activity of Ag/Ag 2 O coated MgO nanoparticles. Our investigation reveals that other dielectric materials such as silver coated SiO 2 and Al 2 O 3 also exhibit IR active sono-photocatalytic activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Simultaneous sonication-assisted extraction, and determination by gas chromatography-mass spectrometry, of di-(2-ethylhexyl)phthalate, nonylphenol, nonylphenol ethoxylates and polychlorinated biphenyls in sludge from wastewater treatment plants.

    PubMed

    Aparicio, I; Santos, J L; Alonso, E

    2007-02-19

    Di-(2-ethyl-hexyl)phthalate (DEHP), nonylphenol, nonylphenol mono- and diethoxylates (NPEs) and polychlorinated biphenyls (PCBs) are organic pollutants in sewage sludge which have to be monitored in the European Union according to a future Sludge Directive. In the present work, an analytical method for the simultaneous extraction and determination of DEHP, NPEs and PCBs is proposed for the routine analysis of these compounds in sludge from wastewater treatment plants. All the compounds were simultaneously extracted by sonication with hexane and analysed by gas chromatography-mass spectrometry (GC-MS) in electronic impact mode. Recoveries achieved were 105% for DEHP, 61.4-88.6% for NPEs and 55.8-108.3% for PCBs with relative standard deviation bellow 10%. Limits of quantification were 65 microg kg(-1) for DEHP, from 630 to 2504 microg kg(-1) for NPEs and from 5.4 to 10.6 microg kg(-1) for PCBs in dried sludge. The applicability of the proposed method was evaluated by the determination of these compounds in sludge from wastewater treatment plants in Seville (South Spain).

  11. Optimisation of olive oil phenol extraction conditions using a high-power probe ultrasonication.

    PubMed

    Jerman Klen, T; Mozetič Vodopivec, B

    2012-10-15

    A new method of ultrasound probe assisted liquid-liquid extraction (US-LLE) combined with a freeze-based fat precipitation clean-up and HPLC-DAD-FLD-MS detection is described for extra virgin olive oil (EVOO) phenol analysis. Three extraction variables (solvent type; 100%, 80%, 50% methanol, sonication time; 5, 10, 20 min, extraction steps; 1-5) and two clean-up methods (n-hexane washing vs. low temperature fat precipitation) were studied and optimised with aim to maximise extracts' phenol recoveries. A three-step extraction of 10 min with pure methanol (5 mL) resulted in the highest phenol content of freeze-based defatted extracts (667 μg GAE g(-1)) from 10 g of EVOO, providing much higher efficiency (up to 68%) and repeatability (up to 51%) vs. its non-sonicated counterpart (LLE-agitation) and n-hexane washing. In addition, the overall method provided high linearity (r(2)≥0.97), precision (RSD: 0.4-9.3%) and sensitivity with LODs/LOQs ranging from 0.03 to 0.16 μg g(-1) and 0.10-0.51 μg g(-1) of EVOO, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Easy ambient sonic-spray ionization mass spectrometry combined with thin-layer chromatography.

    PubMed

    Haddad, Renato; Milagre, Humberto M S; Catharino, Rodrigo Ramos; Eberlin, Marcos N

    2008-04-15

    On-spot detection and analyte characterization on thin-layer chromatography (TLC) plates is performed via ambient desorption/ionization and (tandem) mass spectrometry detection, that is, via easy ambient sonic spray ionization mass spectrometry (EASI-MS). As proof-of-principle cases, mixtures of semipolar nitrogenated compounds as well as pharmaceutical drugs and vegetable oils have been tested. The technique has also been applied to monitor a chemical reaction of synthetic importance. EASI is the simplest and gentlest ambient ionization technique currently available, assisted solely by N2 (or air). It uses no voltages, no electrical discharges; no UV or laser beams, and no high temperature and is most easily implemented in all API mass spectrometers. TLC is also the simplest, fastest, and most easily performed chromatographic technique. TLC plus EASI-MS therefore provide a simple and advantageous combination of chromatographic separation and sensitive detection of the TLC spots as well as on-spot MS or MS/MS characterization. The favorable characteristics of TLC-EASI-MS indicate advantageous applications in several areas such as drug and oil analysis, phytochemistry and synthetic chemistry, forensics via reliable counterfeit detection, and quality control.

  13. Stability of sonic boom metrics regarding signature distortions from atmospheric turbulence.

    PubMed

    Doebler, William J; Sparrow, Victor W

    2017-06-01

    The degree of insensitivity to atmospheric turbulence was evaluated for five metrics (A-, B-, E-weighted sound exposure level, Stevens Mark VII Perceived Level, and NASA's Indoor Sonic Boom Annoyance Predictor) that correlate to human annoyance from sonic booms. Eight N-wave shaped sonic booms from NASA's FaINT experiment and five simulated "low-boom" sonic booms were turbulized by Locey's ten atmospheric filter functions. The B-weighted sound exposure level value changed the least due to the turbulence filters for twelve of thirteen booms. This makes it the most turbulence stable metric which may be useful for quiet supersonic aircraft certification.

  14. Comparing renal function preservation after laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy for clinical T1a renal tumor: using a 3D parenchyma measurement system.

    PubMed

    Zhu, Liangsong; Wu, Guangyu; Huang, Jiwei; Wang, Jianfeng; Zhang, Ruiyun; Kong, Wen; Xue, Wei; Huang, Yiran; Chen, Yonghui; Zhang, Jin

    2017-05-01

    To compare the renal function preservation between laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy. Data were analyzed from 246 patients who underwent laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy for solitary cT1a renal cell carcinoma from January 2013 to July 2015. To reduce the intergroup difference, we used a 1:1 propensity matching analysis. The functional renal parenchyma volume preservation were measured preoperative and 12 months after surgery. The total renal function recovery and spilt GFR was compared. Multivariable logistic analysis was used for predictive factors for renal function decline. After 1:1 propensity matching, each group including 100 patients. Patients in the laparoscopic radio frequency ablation assisted tumor enucleation had a smaller decrease in estimate glomerular filtration rate at 1 day (-7.88 vs -20.01%, p < 0.001), 3 months (-2.31 vs -10.39%, p < 0.001), 6 months (-2.16 vs -7.99%, p = 0.015), 12 months (-3.26 vs -8.03%, p = 0.012) and latest test (-3.24 vs -8.02%, p = 0.040), also had better functional renal parenchyma volume preservation (89.19 vs 84.27%, p < 0.001), lower decrease of the spilt glomerular filtration rate (-9.41 vs -17.13%, p < 0.001) at 12 months. The functional renal parenchyma volume preservation, warm ischemia time and baseline renal function were the important independent factors in determining long-term functional recovery. The laparoscopic radio frequency ablation assisted tumor enucleation technology has unique advantage and potential in preserving renal parenchyma without ischemia damage compared to conventional laparoscopic partial nephrectomy, and had a better outcome, thus we recommend this technique in selected T1a patients.

  15. Ultrasonic assisted dispersive solid-phase microextraction of Eriochrome Cyanine R from water sample on ultrasonically synthesized lead (II) dioxide nanoparticles loaded on activated carbon: Experimental design methodology.

    PubMed

    Bahrani, Sonia; Ghaedi, Mehrorang; Mansoorkhani, Mohammad Javad Khoshnood; Asfaram, Arash; Bazrafshan, Ali Akbar; Purkait, Mihir Kumar

    2017-01-01

    The present research focus on designing an appropriate dispersive solid-phase microextraction (UA-DSPME) for preconcentration and determination of Eriochrome Cyanine R (ECR) in aqueous solutions with aid of sonication using lead (II) dioxide nanoparticles loaded on activated carbon (PbO-NPs-AC). This material was fully identified with XRD and SEM. Influence of pH, amounts of sorbent, type and volume of eluent, and sonication time on response properties were investigated and optimized by central composite design (CCD) combined with surface response methodology using STATISTICA. Among different solvents, dimethyl sulfoxide (DMSO) was selected as an efficient eluent, which its combination by present nanoparticles and application of ultrasound waves led to enhancement in mass transfer. The predicted maximum extraction (100%) under the optimum conditions of the process variables viz. pH 4.5, eluent 200μL, adsorbent dosage 2.5mg and 5min sonication was close to the experimental value (99.50%). at optimum conditions some experimental features like wide 5-2000ngmL -1 ECR, low detection limit (0.43ngmL -1 , S/N=3:1) and good repeatability and reproducibility (relative standard deviation, <5.5%, n=12) indicate versatility in successful applicability of present method for real sample analysis. Investigation of accuracy by spiking known concentration of ECR over 200-600ngmL -1 gave mean recoveries from 94.850% to 101.42% under optimal conditions. The procedure was also applied for the pre-concentration and subsequent determination of ECR in tap and waste waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog-Dependent Medulloblastoma Initiation and Maintenance

    DTIC Science & Technology

    2013-10-01

    Remodeling Factor in Sonic Hedgehog -Dependent Medulloblastoma Initiation and Maintenance PRINCIPAL INVESTIGATOR: Xuanming Shi CONTRACTING...5a. CONTRACT NUMBER W81XWH-12-1-0527 Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog -Dependent 5b. GRANT NUMBER W81XWH-12-1...drug development and therapy of pediatric brain tumor and other Shh- dependent tumors. 15. SUBJECT TERMS Medulloblastoma, Sonic Hedgehog , Chromatin

  17. The 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1996-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing the development of viable reduced-boom High-Speed Civil Transport concepts. The Workshop included these sessions: Session 1 - Sonic Boom Propagation (Theoretical); Session 2 - Sonic Boom Propagation (Experimental); and Session 3 - Acceptability Studies - Human and Animal.

  18. Amplitude loss of sonic waveform due to source coupling to the medium

    NASA Astrophysics Data System (ADS)

    Lee, Myung W.; Waite, William F.

    2007-03-01

    In contrast to hydrate-free sediments, sonic waveforms acquired in gas hydrate-bearing sediments indicate strong amplitude attenuation associated with a sonic velocity increase. The amplitude attenuation increase has been used to quantify pore-space hydrate content by attributing observed attenuation to the hydrate-bearing sediment's intrinsic attenuation. A second attenuation mechanism must be considered, however. Theoretically, energy radiation from sources inside fluid-filled boreholes strongly depends on the elastic parameters of materials surrounding the borehole. It is therefore plausible to interpret amplitude loss in terms of source coupling to the surrounding medium as well as to intrinsic attenuation. Analyses of sonic waveforms from the Mallik 5L-38 well, Northwest Territories, Canada, indicate a significant component of sonic waveform amplitude loss is due to source coupling. Accordingly, all sonic waveform amplitude analyses should include the effect of source coupling to accurately characterize a formation's intrinsic attenuation.

  19. Amplitude loss of sonic waveform due to source coupling to the medium

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2007-01-01

    In contrast to hydrate-free sediments, sonic waveforms acquired in gas hydrate-bearing sediments indicate strong amplitude attenuation associated with a sonic velocity increase. The amplitude attenuation increase has been used to quantify pore-space hydrate content by attributing observed attenuation to the hydrate-bearing sediment's intrinsic attenuation. A second attenuation mechanism must be considered, however. Theoretically, energy radiation from sources inside fluid-filled boreholes strongly depends on the elastic parameters of materials surrounding the borehole. It is therefore plausible to interpret amplitude loss in terms of source coupling to the surrounding medium as well as to intrinsic attenuation. Analyses of sonic waveforms from the Mallik 5L-38 well, Northwest Territories, Canada, indicate a significant component of sonic waveform amplitude loss is due to source coupling. Accordingly, all sonic waveform amplitude analyses should include the effect of source coupling to accurately characterize a formation's intrinsic attenuation.

  20. Development of the sonic pump levitation

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.

    1984-01-01

    A prototype levitating/positioning device termed the Sonic Pump Levitator was designed, built and successfully tested in full gravity and in the reduced gravity of the parabolic flight regime of the KC-135. Positioning is achieved by timely and appropriate application of gas momentum from one or more of six sonic pumps. The sonic pumps, which are arranged orthogonally in opposed pairs about the levitation region, are activated by an electro-optical, computer controlled, feedback system. The sonic pump is a transducer which is capable of converting sound energy into a directed flow of gas. It consists of a loudspeaker whose face is sealed by a closure perforated by one or more orifices. The diaphragm of the loudspeaker is the only moving part of the sonic pump, no valves being needed. This very low inertia electromechanical device was developed to provide the short response time necessary to keep pace with the demands of computerized position keeping.

  1. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin

    PubMed Central

    Giresi, Paul G.; Kim, Jonghwan; McDaniell, Ryan M.; Iyer, Vishwanath R.; Lieb, Jason D.

    2007-01-01

    DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered in the aqueous phase is fluorescently labeled and hybridized to a DNA microarray. FAIRE performed in human cells strongly enriches DNA coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, and active promoters. Evidence for cell-type–specific patterns of FAIRE enrichment is also presented. FAIRE has utility as a positive selection for genomic regions associated with regulatory activity, including regions traditionally detected by nuclease hypersensitivity assays. PMID:17179217

  2. Recovery and purification of cholesterol from cholesterol-β-cyclodextrin inclusion complex using ultrasound-assisted extraction.

    PubMed

    Li, Yong; Chen, Youliang; Li, Hua

    2017-01-01

    Response surface methodology was used to optimize ultrasound-assisted ethanol extraction (UAE) of cholesterol from cholesterol-β-cyclodextrin (C-β-CD) inclusion complex prepared from duck yolk oil. The best extraction conditions were solvent-solid ratio 10mL/g, ultrasonic power 251W, extraction temperature 56°C and sonication time 36min. Under these conditions, the highest cholesterol extraction yield and cholesterol content obtained 98.12±0.25% and 43.38±0.61mg/g inclusion complex, respectively. As compared with Reflux extraction and Soxhlet extraction, the UAE was more efficient and economical. To increase the purity of crude cholesterol extraction, silica gel column chromatography and crystallization were carried out. Finally, cholesterol was obtained at 95.1% purity, 71.7% recovery and 22.0% yield. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Enhanced primary sludge sonication by heat insulation to reclaim carbon source for biological phosphorous removal.

    PubMed

    Tian, Qing; Wang, Qi; Zhu, Yanbing; Li, Fang; Zhuang, Lin; Yang, Bo

    2017-01-01

    Ultrasound pretreatment is a potent step to disintegrate primary sludge (PS). The supernatant of sonicated PS is recycled as an alternative carbon source for biological phosphorus removal. In this study, we investigated the role of temperature on PS disintegration during sonication. We found that a temperature of 60°C yielded a dissolution rate of about 2% soluble chemical oxygen demand (SCOD) as compared to 7% SCOD using sonication at the specific energy (SE) of 7359kJ/kg TS. Using the SE of 6000kJ/kg TS with heat insulation during sonication, the SCOD dissolution rate of PS was similar to the result at the SE of 7051kJ/kg TS without heat insulation. Upon treatment with sonication, the PS released low concentrations of Cu and Zn into the supernatant. The phosphorus-accumulating organisms (PAOs) used the supernatant of sonicated PS as the carbon source. Supplementation with the diluted sonicated PS supernatant (SCOD≈1000mg/L) in anaerobic phase resulted in the release of phosphorus (36mg/L) and the production of polyhydroxyalkanoates (PHAs) (0.36g PHA/g SS). Compared with sodium acetate, higher polyhydroxyvalerate (PHV) faction in the polyhydroxyalkanoates (PHAs) was observed in the biomass when incubated with sonicated PS as the carbon source. This work provides a simple pathway to conserve energy and to enhance efficiencies of ultrasonic pretreatment and the recovery of carbon source from the sludge for improving the phosphorus removal in the ENR system. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Porous cobalt spheres for high temperature gradient magnetically assisted fluidized beds

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.; Jovanovic, Goran N.; Wheeler, Richard R Jr; Sornchamni, Thana

    2003-01-01

    Porous metallic cobalt spheres have been prepared as high temperature capable media for employment in gradient magnetically assisted fluidization and filtration technologies. Cobalt impregnated alginate beads are first formed by extrusion of an aqueous suspension of Co3O4 into a Co(II) chloride solution. The organic polymer is thermally decomposed yielding cobalt oxide spheres, followed by reduction to the metallic state, and densification. Cobalt beads have been produced with porosities ranging between 10 and 50%, depending upon sintering conditions. The product media have been characterized by scanning electron microscopy (SEM), nitrogen adsorption porosimetry, and vibrating sample magnetometry. c2003 Elsevier Science Ltd. All rights reserved.

  5. Langley's Computational Efforts in Sonic-Boom Softening of the Boeing HSCT

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran

    1999-01-01

    NASA Langley's computational efforts in the sonic-boom softening of the Boeing high-speed civil transport are discussed in this paper. In these efforts, an optimization process using a higher order Euler method for analysis was employed to reduce the sonic boom of a baseline configuration through fuselage camber and wing dihedral modifications. Fuselage modifications did not provide any improvements, but the dihedral modifications were shown to be an important tool for the softening process. The study also included aerodynamic and sonic-boom analyses of the baseline and some of the proposed "softened" configurations. Comparisons of two Euler methodologies and two propagation programs for sonic-boom predictions are also discussed in the present paper.

  6. Comparison of the amount of transportation when using a precurved instrument in a sonic handpiece vs. nickel-titanium rotary files.

    PubMed

    Spradley, James W; Eleazer, Paul D

    2010-01-01

    Three-dimensional cleaning of the root canal system along its basic shape is one of the main goals in endodontics. A sonic handpiece is a helpful adjunct that can aid in accomplishing this goal; however, its use has been limited due to the risk of transporting the apices' original position. Precurving sonic files may reduce transportation. For this study, 35 plastic blocks were randomly assigned to two groups, one of which (n = 16) was instrumented by nickel-titanium rotary files (to a size 40), while the second group (n = 18) was instrumented by a sonic handpiece with precurved files. Similar blocks were instrumented with noncurved sonic files and used as controls. Radiographs taken before and after instrumentation were compared. Of the 18 apices instrumented by the sonic handpiece with precurved files, seven were not transported. By comparison, 8 of the 16 apices instrumented by nickel-titanium files did not transport. When transportation did occur, it was less than 0.5 mm for either technique. The control blocks instrumented by the sonic handpiece with straight files were transported significantly. An ANOVA with a post hoc Tukey's test showed no statistically significant difference between the file systems. Based on the results, precurving sonic files to match the canal contour may allow for efficient cleaning without undue transportation.

  7. Techniques for Type I Collagen Organization

    NASA Astrophysics Data System (ADS)

    Anderson-Jackson, LaTecia Diamond

    Tissue Engineering is a process in which cells, engineering, and material methods are used in amalgamation to improve biological functions. The purpose of tissue engineering is to develop alternative solutions to treat or cure tissues and organs that have been severely altered or damaged by diseases, congenital defects, trauma, or cancer. One of the most common and most promising biological materials for tissue engineering to develop scaffolds is Type I collagen. A major challenge in biomedical research is aligning Type I collagen to mimic biological structures, such as ligaments, tendons, bones, and other hierarchal aligned structures within the human body. The intent of this research is to examine possible techniques for organizing Type I collagen and to assess which of the techniques is effective for potential biological applications. The techniques used in this research to organize collagen are soft lithography with solution-assisted sonication embossing, directional freezing, and direct poling. The final concentration used for both soft lithography with solution-assisted sonication embossing and direct poling was 1 mg/ml, whereas for directional freezing the final concentration varied between 4mg/ml, 2mg/ml, and 1 mg/ml. These techniques were characterized using the Atomic Force Microscope (AFM) and Helium Ion Microscope (HIM). In this study, we have found that out of the three techniques, the soft lithography and directional freezing techniques have been successful in organizing collagen in a particular pattern, but not alignment. We concluded alignment may be dependent on the pH of collagen and the amount of acetic acid used in collagen solution. However, experiments are still being conducted to optimize all three techniques to align collagen in a unidirectional arrangement.

  8. Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: Application to furfural synthesis.

    PubMed

    Santos, Daniel; Silva, Ubiratan F; Duarte, Fabio A; Bizzi, Cezar A; Flores, Erico M M; Mello, Paola A

    2018-01-01

    In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO 3 , H 2 SO 4 , HCl and H 2 C 2 O 4 . The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70°C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8molL -1 HNO 3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance ( 1 H and 13 C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4molL -1 HNO 3 solution, sonicated for 60min at 30°C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Robotically Assisted Sonic Therapy as a Noninvasive Nonthermal Ablation Modality: Proof of Concept in a Porcine Liver Model.

    PubMed

    Smolock, Amanda R; Cristescu, Mircea M; Vlaisavljevich, Eli; Gendron-Fitzpatrick, Annette; Green, Chelsey; Cannata, Jonathan; Ziemlewicz, Timothy J; Lee, Fred T

    2018-05-01

    Purpose To determine the feasibility of creating a clinically relevant hepatic ablation (ie, an ablation zone capable of treating a 2-cm liver tumor) by using robotically assisted sonic therapy (RAST), a noninvasive and nonthermal focused ultrasound therapy based on histotripsy. Materials and Methods This study was approved by the institutional animal use and care committee. Ten female pigs were treated with RAST in a single session with a prescribed 3-cm spherical treatment region and immediately underwent abdominal magnetic resonance (MR) imaging. Three pigs (acute group) were sacrificed immediately following MR imaging. Seven pigs (chronic group) were survived for approximately 4 weeks and were reimaged with MR imaging immediately before sacrifice. Animals underwent necropsy and harvesting of the liver for histologic evaluation of the ablation zone. RAST ablations were performed with a 700-kHz therapy transducer. Student t tests were performed to compare prescribed versus achieved ablation diameter, difference of sphericity from 1, and change in ablation zone volume from acute to chronic imaging. Results Ablation zones had a sphericity index of 0.99 ± 0.01 (standard deviation) (P < .001 vs sphericity index of 1). Anteroposterior and transverse dimensions were not significantly different from prescribed (3.4 ± 0.7; P = .08 and 3.2 ± 0.8; P = .29, respectively). The craniocaudal dimension was significantly larger than prescribed (3.8 ± 1.1; P = .04), likely because of respiratory motion. The central ablation zone demonstrated complete cell destruction and a zone of partial necrosis. A fibrous capsule surrounded the ablation zone by 4 weeks. On 4-week follow-up images, ablation zone volumes decreased by 64% (P < .001). Conclusion RAST is capable of producing clinically relevant ablation zones in a noninvasive manner in a porcine model. © RSNA, 2018.

  10. Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: Experimental design optimization.

    PubMed

    Sharifpour, Ebrahim; Khafri, Hossein Zare; Ghaedi, Mehrorang; Asfaram, Arash; Jannesar, Ramin

    2018-01-01

    Copper sulfide nanorods loaded on activated carbon (CuS-NRs-AC) was synthesized and used for simultaneous ultrasound-assisted adsorption of malachite green (MG) and Pb 2+ ions from aqueous solution. Following characterization of CuS-NRs-AC were investigated by SEM, EDX, TEM and XRD, the effects of pH (2.0-10), amount of adsorbent (0.003-0.011g), MG concentration (5-25mgL -1 ), Pb 2+ concentration (3-15mgL -1 ) and sonication time (1.5-7.5min) and their interactions on responses were investigated by central composite design (CCD) and response surface methodology. According to desirability function on the Design Expert optimum removal (99.4%±1.0 for MG and 68.3±1.8 for Pb 2+ ions) was obtained at pH 6.0, 0.009g CuS-NRs-AC, 6.0min mixing by sonication and 15 and 6mgL -1 for MG and Pb 2+ ions, respectively. High determination coefficient (R 2 >0.995), Pred-R 2 -value (>0.920) and Adju-R 2 -value (>0.985) all are good indication of best agreement between the experimental and design modelling. The adsorption kinetics follows the pseudo-second order model and adsorption isotherm follows the Langmuir model with maximum adsorption capacity of 145.98 and 47.892mgg -1 for MG and Pb 2+ ions, respectively. This adsorbent over short contact time is good choice for simultaneous removal of large content of both MG and Pb 2+ ions from wastewater sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Application of ZnO nanorods loaded on activated carbon for ultrasonic assisted dyes removal: Experimental design and derivative spectrophotometry method.

    PubMed

    Ansari, Fatemeh; Ghaedi, Mehrorang; Taghdiri, Mehdi; Asfaram, Arash

    2016-11-01

    A method based on application of ZnO nanorods loaded on activated carbon (ZnO-NRs-AC) for adsorption of Bromocresol Green (BCG) and Eosin Y (EY) accelerated by ultrasound was described. The present material was synthesized under ultrasound assisted wet-chemical method and subsequently was characterized by FE-SEM, TEM, BET and XRD analysis. The extent of contribution of conventional variables like pH (2.0-10.0), BCG concentration (4-20mgL(-1)), EY concentration (3-23mgL(-1)), adsorbent dosage (0.01-0.03g), sonication time (1-5min) and centrifuge time (2-6min) as main and interaction part were investigated by central composite design under response surface methodology. Analysis of variance (ANOVA) was adapted to experimental data and guide the best operational conditions mass by set at 6.0, 9mgL(-1), 10mgL(-1), 0.02g, 4 and 4min for pH, BCG concentration, EY concentration, adsorbent dosage, sonication and centrifuge time, respectively. At these specified conditions dye adsorption efficiency was higher than 99.5%. The suitability and well prediction of optimum point was tested by conducting five experiments and respective results revel that RSD% was lower than 3% and high quality of fitting was confirmed by t-test. The experimental data were best fitted in Langmuir isotherm equation and the removal followed pseudo second order kinetics. The experimentally obtained maximum adsorption capacities were estimated as 57.80 and 61.73mgg(-1) of ZnO-NRs-AC for BCG and EY respectively from binary dye solutions. The mechanism of removal was explained by boundary layer diffusion via intraparticle diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ultrasound-assisted dispersive magnetic solid phase extraction based on amino-functionalized Fe3O4 adsorbent for recovery of clomipramine from human plasma and its determination by high performance liquid chromatography: Optimization by experimental design.

    PubMed

    Hamidi, Fatemeh; Hadjmohammadi, Mohammad Reza; Aghaie, Ali B G

    2017-09-15

    The applicability of Amino-functionalized Fe 3 O 4 nanoparticles (NPs) as an effective adsorbent was developed for the extraction and determination of clomipramine (CLP) in plasma sample by ultrasound-assisted dispersive magnetic solid phase extraction (UADM-SPE) and high-performance liquid chromatography-ultraviolet (HPLC-UV) detection. Fabrication of the Fe 3 O 4 @SiO 2 -NH 2 magnetic nanoparticles confirmed by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different extraction parameters (i.e. pH of the sample solution, the amount of magnetic nanoparticles (MNPs), sample volume, temperature and sonication time) on the extraction recovery of CLP were investigated by response surface methodology through central composite design (CCD). The optimum condition is obtained when the affecting parameters are set to: pH of the sample solution=9, the amount of MNPs=37mg, sample volume=23mL, 25°C temperature and sonication time=1min. Under the optimum condition, extraction recovery was 90.6% with relative standard deviation of 3.5%, and enrichment factor of 117. The linear range for determination of CLP was 0.017-0.70mgL -1 with a determination coefficient (R 2 ) of 0.999. Limit of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.0167mgL -1 , respectively. The established UADM-SPE-HPLC-UV method was rapid, simple and efficient for determination of CLP in human plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Rapid metal extractability tests from polluted mining soils by ultrasound probe sonication and microwave-assisted extraction systems.

    PubMed

    García-Salgado, Sara; Quijano, M Ángeles

    2016-12-01

    Ultrasonic probe sonication (UPS) and microwave-assisted extraction (MAE) were used for rapid single extraction of Cd, Cr, Cu, Ni, Pb, and Zn from soils polluted by former mining activities (Mónica Mine, Bustarviejo, NW Madrid, Spain), using 0.01 mol L -1 calcium chloride (CaCl 2 ), 0.43 mol L -1 acetic acid (CH 3 COOH), and 0.05 mol L -1 ethylenediaminetetraacetic acid (EDTA) at pH 7 as extracting agents. The optimum extraction conditions by UPS consisted of an extraction time of 2 min for both CaCl 2 and EDTA extractions and 15 min for CH 3 COOH extraction, at 30% ultrasound (US) amplitude, whereas in the case of MAE, they consisted of 5 min at 50 °C for both CaCl 2 and EDTA extractions and 15 min at 120 °C for CH 3 COOH extraction. Extractable concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The proposed methods were compared with a reduced version of the corresponding single extraction procedures proposed by the Standards, Measurements and Testing Programme (SM&T). The results obtained showed a great variability on extraction percentages, depending on the metal, the total concentration level and the soil sample, reaching high values in some areas. However, the correlation analysis showed that total concentration is the most relevant factor for element extractability in these soil samples. From the results obtained, the application of the accelerated extraction procedures, such as MAE and UPS, could be considered a useful approach to evaluate rapidly the extractability of the metals studied.

  14. Rapid and high-capacity ultrasonic assisted adsorption of ternary toxic anionic dyes onto MOF-5-activated carbon: Artificial neural networks, partial least squares, desirability function and isotherm and kinetic study.

    PubMed

    Askari, Hanieh; Ghaedi, Mehrorang; Dashtian, Kheibar; Azghandi, Mohammad Hossein Ahmadi

    2017-07-01

    The present paper focused on the ultrasonic assisted simultaneous removal of fast green (FG), eosin Y (EY) and quinine yellow (QY) from aqueous media following using MOF-5 as a metal organic framework and activated carbon hybrid (AC-MOF-5). The structure and morphology of AC-MOF-5 was identified by SEM, FTIR and XRD analysis. The interactive and main effects of variables such as pH, initial dyes concentration (mgL -1 ), adsorbent dosage (mg) and sonication time (min) on removal percentage were studied by central composite design (CCD), subsequent desirability function (DF) permit to achieved real variable experimental condition. Optimized values were found 7.06, 5.68, 7.59 and 5.04mgL -1 , 0.02g and 2.55min for pH, FG, EY and QY concentration, adsorbent dosage and sonication time, respectively. Under this conditions removal percentage were obtained 98.1%, 98.1% and 91.91% for FG, EY and QY, respectively. Two models, namely partial least squares (PLS) and multi-layer artificial neural network (ANN) model were used for building up to construct an empirical model to predict the dyes under study removal behavior. The obtained results show that ANN and PLS model is a powerful tool for prediction of under-study dyes adsorption by AC-MOF-5. The evaluation and estimation of equilibrium data from traditional isotherm models display that the Langmuir model indicated the best fit to the equilibrium data with maximum adsorption capacity of 21.230, 20.242 and 18.621mgg -1 , for FG, EY and QY, respectively, while the adsorption rate efficiently follows the pseudo-second-order model. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Carbon-silicon composite anode electrodes modified with MWCNT for high energy battery applications

    NASA Astrophysics Data System (ADS)

    Akbulut, H.; Nalci, D.; Guler, A.; Duman, S.; Guler, M. O.

    2018-07-01

    In this study, we comparatively study the electrochemical characteristics of Si, Si-C and vacuum-assisted filtration fabrication of a novel free-standing Si@C/Mutli Wall Carbon Nanotubes (MWCNT) nanocomposite. The surfaces of the as-received Si nanaoparticles were coated with an amorphous carbon layer and homogenously anchored onto the surfaces of as-received MWCNTs by a simple vacuum filtration method. The samples were then analyzed with field emission scanning electron microscopy and X-ray diffraction (XRD) methods. Si@C/MWCNT samples have shown a stable capacity of 1290 mA h g-1 after 200 cycles. The results have proven that MWCNT's large surface area, highly conductive network which can provide good contact between Si@C nanoparticles, tolerating large volume change sand suppressing aggregation of Si@C nanoparticles during charge/discharge processes. Such a comparison between the performances of carbon-MWCNT-metal materials is reasonably envisaged not only to be useful for understanding the individual contribution from MWCNT and metal but also to form a fundamental basis for energy storage applications. Free-standing Si-C/MWCNT nano paper has been successfully obtained by a facile vacuum filtration method.

  16. Determination of total arsenic and arsenic(III) in phosphate fertilizers by hydride generation atomic absorption spectrometry after ultrasound-assisted extraction based on a control acid media.

    PubMed

    Rezende, Helen Cristine; Coelho, Nivia Maria Melo

    2014-01-01

    An ultrasound-assisted extraction procedure was developed for determination of inorganic arsenic (As) in phosphate fertilizer by hydride generation atomic absorption spectrometry. The variables that affect the hydride generation step were optimized, including the reducer, acid, sample flow rate, and concentrations of the acid and reducer. The determination of As(lll) was performed through the simple control of solution pH with a 0.5 M citric acid-sodium citrate buffer solution at pH 4.5, and total As was determined after a pre-reduction reaction with 1.0% (w/v) thiourea. Ultrasound-assisted acid extraction was performed, and the parameters sonication time and acid and Triton X-114 concentrations were optimized using a 23 factorial design and central composite design. LODs for As(lll) and total As were 0.029 and 0.022 microg/L, respectively. The accuracy of the method was confirmed with certified reference materials. The method was successfully applied in the determination of inorganic As in phosphate fertilizer samples.

  17. Evaluation of ultrasound assisted potassium permanganate pre-treatment of spent coffee waste.

    PubMed

    Ravindran, Rajeev; Jaiswal, Swarna; Abu-Ghannam, Nissreen; Jaiswal, Amit K

    2017-01-01

    In the present study, novel pre-treatment for spent coffee waste (SCW) has been proposed which utilises the superior oxidising capacity of alkaline KMnO 4 assisted by ultra-sonication. The pre-treatment was conducted for different exposure times (10, 20, 30 and 40min) using different concentrations of KMnO 4 (1, 2, 3, 4, 5%w/v) at room temperature with solid/liquid ratio of 1:10. Pretreating SCW with 4% KMnO 4 and exposing it to ultrasound for 20min resulted in 98% cellulose recovery and a maximum lignin removal of 46%. 1.7 fold increase in reducing sugar yield was obtained after enzymatic hydrolysis of KMnO 4 pretreated SCW as compared to raw. SEM, XRD and FTIR analysis of the pretreated SCW revealed the various effects of pretreatment. Thermal behaviour of the pretreated substrate against the native biomass was also studied using DSC. Ultrasound-assisted potassium permanganate oxidation was found to be an effective pretreatment for SCW, and can be a used as a potential feedstock pretreatment strategy for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Antiproliferative activity of Curcuma phaeocaulis Valeton extract using ultrasonic assistance and response surface methodology.

    PubMed

    Wang, Xiaoqin; Jiang, Ying; Hu, Daode

    2017-01-02

    The objective of the study was to optimize the ultrasonic-assisted extraction of curdione, furanodienone, curcumol, and germacrone from Curcuma phaeocaulis Valeton (Val.) and investigate the antiproliferative activity of the extract. Under the suitable high-performance liquid chromatography condition, the calibration curves for these four tested compounds showed high levels of linearity and the recoveries of these four compounds were between 97.9 and 104.3%. Response surface methodology (RSM) combining central composite design and desirability function (DF) was used to define optimal extraction parameters. The results of RSM and DF revealed that the optimum conditions were obtained as 8 mL g -1 for liquid-solid ratio, 70% ethanol concentration, and 20 min of ultrasonic time. It was found that the surface structures of the sonicated herbal materials were fluffy and irregular. The C. phaeocaulis Val. extract significantly inhibited the proliferation of RKO and HT-29 cells in vitro. The results reveal that the RSM can be effectively used for optimizing the ultrasonic-assisted extraction of bioactive components from C. phaeocaulis Val. for antiproliferative activity.

  19. Preliminary airborne measurements for the SR-71 sonic boom propagation experiment

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Ehernberger, L. J.; Whitmore, Stephen A.

    1995-01-01

    SR-71 sonic boom signatures were measured to validate sonic boom propagation prediction codes. An SR-71 aircraft generated sonic booms from Mach 1.25 to Mach 1.6, at altitudes of 31,000 to 48,000 ft, and at various gross weights. An F-16XL aircraft measured the SR-71 near-field shock waves from close to the aircraft to more than 8,000 ft below, gathering 105 signatures. A YO-3A aircraft measured the SR-71 sonic booms from 21,000 to 38,000 feet below, recording 17 passes. The sonic booms at ground level and atmospheric data were recorded for each flight. Data analysis is underway. Preliminary results show that shock wave patterns and coalescence vary with SR-71 gross weight, Mach number, and altitude. For example, noncoalesced shock wave signatures were measured by the YO-3A at 21,000 ft below the SR-71 aircraft while at a low gross weight, Mach 1.25, and 31,000-ft altitude. This paper describes the design and execution of the flight research experiment. Instrumentation and flight maneuvers of the SR-71, F-16XL, and YO-3A aircraft and sample sonic boom signatures are included.

  20. Sonication technique improves microbiological diagnosis in patients treated with antibiotics before surgery for prosthetic joint infections.

    PubMed

    Scorzolini, Laura; Lichtner, Miriam; Iannetta, Marco; Mengoni, Fabio; Russo, Gianluca; Panni, Alfredo Schiavone; Vasso, Michele; Vasto, Michele; Bove, Marco; Villani, Ciro; Mastroianni, Claudio M; Vullo, Vincenzo

    2014-07-01

    Microbiological diagnosis is crucial for the appropriate management of implant-associated orthopedic infections (IAOIs). Sonication of biomaterials for microbiological diagnosis has not yet been introduced in routine clinical practice. Aim of this study was to describe the advantages and feasibility of this procedure in the clinical setting. We prospectively studied 56 consecutive patients undergoing revision because of IAOI and compared the sensitivity of sonication of explanted orthopedic implants with standard cultures. Patients were divided into two groups: those with foreign body infection (FBI, 15 patients) and those with prosthetic joint infection (PJI, 41 patients). Clinical, radiological and microbiological features were recorded. In the PJI group the sensitivity of sonication in detecting bacterial growth was higher than conventional culture (77% vs 34.1% respectively, p<0.002), while no difference was observed in the FBI group (85.7% vs 86% respectively, p>0.05). Coagulase-negative Staphylococci accounted for 90% of the bacteria detected by sonication. Moreover, we found that in the PJI group the sensitivity of sonication was not affected by the timing of antibiotic interruption before surgery. Sonication remains an important tool to improve microbiological diagnosis in PJIs, especially in patients who received previous antimicrobial treatment.

  1. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites.

    PubMed

    Arrigo, Rossella; Teresi, Rosalia; Gambarotti, Cristian; Parisi, Filippo; Lazzara, Giuseppe; Dintcheva, Nadka Tzankova

    2018-03-05

    The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT's original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena.

  2. Vibration Penalty Estimates for Indoor Annoyance Caused by Sonic Boom

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Klos, Jacob

    2016-01-01

    Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One key objective is a predictive model for indoor annoyance based on factors such as noise and indoor vibration levels. The current study quantified the increment in indoor sonic boom annoyance when sonic booms can be felt directly through structural vibrations in addition to being heard. A shaker mounted below each chair in the sonic boom simulator emulated vibrations transmitting through the structure to that chair. The vibration amplitudes were determined from numeric models of a large range of residential structures excited by the same sonic boom waveforms used in the experiment. The analysis yielded vibration penalties, which are the increments in sound level needed to increase annoyance as much as the vibration does. For sonic booms at acoustic levels from 75 to 84 dB Perceived Level, vibration signals with lower amplitudes (+1 sigma) yielded penalties from 0 to 5 dB, and vibration signals with higher amplitudes (+3 sigma) yielded penalties from 6 to 10 dB.

  3. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites

    PubMed Central

    Teresi, Rosalia; Gambarotti, Cristian; Dintcheva, Nadka Tzankova

    2018-01-01

    The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT’s original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena. PMID:29510595

  4. Chemical Cues which Include Amino Acids Mediate Species-Specific Feeding Behavior in Invasive Filter-Feeding Bigheaded Carps.

    PubMed

    Claus, Aaron W; Sorensen, Peter W

    2017-04-01

    This study tested whether and how dissolved chemicals might assist food recognition in two filter-feeding fishes, the silver (Hypophthalmichthys molitrix) and the bighead carp (H. nobilis). These species evolved in Asia, are now invasive in the Mississippi River, and feed voraciously on microparticles including plankton. The food habits and biology of these carps are broadly similar to many filter-feeding fish, none of whose chemical ecology has been examined. We conducted five experiments. First, we demonstrated that buccal-pharngeal pumping (BPP), a behavior in which fish pump water into their buccal cavities, is responsible for sampling food: BPP activity in both silver and bighead carps was low and increased nearly 25-fold after exposure to a filtrate of a planktonic food mixture (P < 0.01) and over 35-fold when planktonic food was added (P < 0.001). Next, we showed that of nine food filtrates, the one containing chemicals released by spirulina, a type of cyanobacterium, was the most potent planktonic component for both species. The potency of filtrates varied between species in ways that reflected their different chemical compositions. While L-amino acids could explain about half of the activity of food filtrate, other unknown chemical stimuli were also implicated. Finally, occlusion experiments showed the olfactory sense has a very important, but not exclusive, role in bigheaded carp feeding behaviors and this might be exploited in both their control and culture.

  5. Comparisons of Methods for Predicting Community Annoyance Due to Sonic Booms

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1996-01-01

    Two approaches to the prediction of community response to sonic boom exposure are examined and compared. The first approach is based on the wealth of data concerning community response to common transportation noises coupled with results of a sonic boom/aircraft noise comparison study. The second approach is based on limited field studies of community response to sonic booms. Substantial differences between indoor and outdoor listening conditions are observed. Reasonable agreement is observed between predicted community responses and available measured responses.

  6. Micro-sonicator for spore lysis

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Nasarabadi, Shanavaz L.

    2000-01-01

    A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.

  7. The influence of using sonicator type to produce alcohol in the glycerol degradation process

    NASA Astrophysics Data System (ADS)

    Kalla, Ruslan; Sumarno, S.; Mahfud., M.

    2017-05-01

    The last few years the energy crisis happens everywhere, not least in Indonesia. One reason is the need for fossil energy is increasing with the increasing population, in addition to the depletion of oil reserves on the Earth Indonesia. Therefore it takes a plant-based alternative energy, one of which is biodiesel. The transesterification process will produce primary products such as methyl ester and byproducts / waste in the form of about 10-15 % glycerol so that glycerol is quite abundant. This research aims to study the effect of the sonicator type (vibrating horn and cleaning bath) as well as the effect of γ-Al2O3 catalyst on the degradation of glycerol. The production process was conducted in a batch reactor equipped with an ultrasonic wave generator. Operating conditions of this study was the atmospheric pressure with mass ratio of glycerol water 1:10. The research variables were sonication temperature of 30 and 40 ° C, sonication time of 10, 30, 50, 70 and 90 minutes with and without the catalyst. Products of degradation were analyzed by Gas Chromatography (GC). The results showed that, the products of degradation product (methanol and allyl alcohol) using a sonicator vibrating horn type were greater compared to using cleaning bath type sonicator. The glycerol conversion was 63.21 % at sonication time of 90 minutes, a temperature of 40 °C using γ-Al2O3 catalyst. While the greatest product yield was 18.17 % methanol at sonication time of 90 minutes, a temperature of 40 °C with the use of vibrating horn sonicator type, with the addition of γ-Al2O3 catalyst.

  8. Adenine nucleotide transport in sonic submitochondrial particles. Kinetic properties and binding of specific inhibitors.

    PubMed

    Lauquin, G J; Villiers, C; Michejda, J W; Hryniewiecka, L V; Vignais, P V

    1977-05-11

    1. A procedure for preparation of sonic submitochondrial particles competent for adenine nucleotide transport is described. ADP or ATP transport was assayed, in the presence of oligomycin, in a saline medium made of 0.125 M KCl, 1 mM EDTA, 10 mM 4-morpholinopropane sulfonic acid buffer, pH 6.5. 2. Sonic particles transport ADP and ATP by an exchange diffusion process. Externally added ADP (or ATP) is exchanged with internal ADP and ATP with a stoichiometry of one to one. The V value for ADP transport 5 degrees C was between 2 and 3 nmol/min per mg protein. 3. The transport system in sonic particles is specific for ADP and ATP. It is strongly dependent on temperature. The activation energy between 0 and 9 degrees C is approx. 35 kcal/mol. The optimum pH is 6.5, 4, Like in intact mitochondria, externally added ADP is transported into sonic particles faster at a given concentration than externally added ATP. The V value for ADP transport is 1.5-2 times higher than the V value for ATP transport. 5. The transition from the energized to the deenergized state in sonic particles results in a decrease of the pH gradient across the membrane (internal pH less than external pH) and in a 2-4 fold increase in the Km value for ATP. This latter effect is opposite that found for transport of added ATP in intact mitochondria (Souverijn, J.H.M., Huisman, L.A., Rosing J. and Kemp, Jr., A. (1973) Biochim. Biophys. Acta 305, 185-198). Energization has no effect on the V value of ATP transport in sonic particles. 6. In contrast to intact mitochondria, inhibition of ADP transport in sonic particles by bongkrekic acid does not have any lag-time and does not depend on pH. The inhibition caused by bongkrekic acid is a mixed type inhibition with a Ki value of 1.2 micronM. Atractyloside and carboxyatractyloside do not inhibit ADP transport in sonic particles, unless the particles have been preloaded with these inhibitors during the sonication. 7. Palmityl-CoA added to sonic particles inhibits efficiently ADP transport. The mixed type inhibition found with palmityl-CoA has a Ki value of 1.6 micronM. 8. [3H]Bongkrekic acid binds to sonic particles readily and with high affinity. Bongkrekic acic binding to sonic particles does not depend on pH and it has a saturation plateau, corresponding approximately to 1.3 mol of site per mol of cytochrome a. The number of [3H]atracytloside binding sites is much lower (one-fifth of the bongkrekic acid). External carboxyatractyloside does not compete with [3H]bongkrekic acid for binding to sonic particles. However, when carboxyatractyloside is present inside the particles, it inhibits the binding of [3H]bongkrekic acid.

  9. Recent Progress on Sonic Boom Research at NASA

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra

    2012-01-01

    Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to support development of a new noise-based standard for supersonic aircraft certification. Partnerships with several industry, government, and academic institutions have enabled the recent execution of several acoustic field studies on sonic booms. An overview of recent activities funded by NASA includes: focus boom model development and experimental validation, field experiments of structural transmission of sonic booms into large buildings, and low boom community response testing.

  10. Sonication improves kasturi lime (Citrus microcarpa) juice quality.

    PubMed

    Bhat, Rajeev; Kamaruddin, Nor Shuaidda Bt Che; Min-Tze, Liong; Karim, A A

    2011-11-01

    Freshly squeezed kasturi lime fruit juice was sonicated (for 0, 30 and 60min at 20°C, 25kHz frequency) to evaluate its impact on selected physico-chemical and antioxidant properties, such as pH, °Brix, titratable acidity, Hunter color values (L(∗), a(∗), b(∗)), ascorbic acid, DPPH radical scavenging activity, total phenolics, antioxidant capacity, flavonoids and flavonols. Additionally, the effect of sonication treatments on the microbial load (TPC, yeast and mold) were also evaluated. Sonication of juice samples for 60min showed enhancement in most of the bioactive compounds compared to samples treated for 30min and control samples (untreated). Significant reductions in the microbial load corresponding to sonication time were also recorded. Results of the present study indicate that sonication may be employed as a suitable technique for kasturi lime juice processing, where antioxidant and other bioactive compound retention or enhancement is desired, along with the achievement of safety and quality standards. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 2; Configuration Design, Analysis, and Testing

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to: (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing, the development C, of viable reduced-boom High-Speed Civil Transport concepts. The Workshop was organized in four sessions: Sessions 1 Sonic Boom Propagation (Theoretical); Session 2 Sonic Boom Propagation (Experimental); Session 3 Acceptability Studies-Human and Animal; and Session 4 - Configuration Design, Analysis, and Testing.

  12. Evaluation of an Indoor Sonic Boom Subjective Test Facility at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra; Rathsam, Jonathan; Klos, Jacob

    2011-01-01

    A sonic boom simulator at NASA Langley Research Center has been constructed for research on human response to low-amplitude sonic booms heard indoors. Research in this facility will ultimately lead to development of a psychoacoustic model for single indoor booms. The first subjective test was designed to explore indoor human response to variations in sonic boom rise time and amplitude. Another goal was to identify loudness level variability across listener locations within the facility. Finally, the test also served to evaluate the facility as a laboratory research tool for studying indoor human response to sonic booms. Subjects listened to test sounds and were asked to rate their annoyance relative to a reference boom. Measurements of test signals were conducted for objective analysis and correlation with subjective responses. Results confirm the functionality of the facility and effectiveness of the test methods and indicate that loudness level does not fully describe indoor annoyance to the selected sonic boom signals.

  13. The Sound of Stigmatization: Sonic Habitus, Sonic Styles, and Boundary Work in an Urban Slum.

    PubMed

    Schwarz, Ori

    2015-07-01

    Based on focus groups and interviews with student renters in an Israeli slum, the article explores the contributions of differences in sonic styles and sensibilities to boundary work, social categorization, and evaluation. Alongside visual cues such as broken windows, bad neighborhoods are characterized by sonic cues, such as shouts from windows. Students understand "being ghetto" as being loud in a particular way and use loudness as a central resource in their boundary work. Loudness is read as a performative index of class and ethnicity, and the performance of middle-class studentship entails being appalled by stigmatized sonic practices and participating in their exoticization. However, the sonic is not merely yet another resource of boundary work. Paying sociological attention to senses other than vision reveals complex interactions between structures anchored in the body, structures anchored in language, and actors' identification strategies, which may refine theorizations of the body and the senses in social theory.

  14. Characterization of drinking water treatment sludge after ultrasound treatment.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Zhang, Yang; Guo, Xuan

    2015-05-01

    Ultrasonic technology alone or the combination of ultrasound with alkaline or thermal hydrolysis as pretreatment for anaerobic digestion of activated sludge has been extensively documented. However, there are few reports on ultrasound as pretreatment of drinking water treatment sludge (DWTS), and thereby the characteristic variability of sonicated DWTS has not been fully examined. This research presents a lab-scale study on physical, chemical and biological characteristics of a DWTS sample collected from a water plant after ultrasonic treatment via a bath/probe sonoreactor. By doing this work, we provide implications for using ultrasound as pretreatment of enhanced coagulation of recycling sludge, and for the conditioning of water and wastewater mixed sludge by ultrasound combined with polymers. Our results indicate that the most vigorous DWTS disintegration quantified by particles' size reduction and organic solubilization is achieved with 5 W/ml for 30 min ultra-sonication (specific energy of 1590 kWh/kg TS). The Brunauer, Emmett and Teller (BET) specific surface area of sonicated DWTS flocs increase as ultra-sonication prolongs at lower energy densities (0.03 and 1 W/ml), while decrease as ultra-sonication prolongs at higher energy densities (3 and 5 W/ml). Additionally, the pH and zeta potential of sonicated DWTS slightly varies under all conditions observed. A shorter sonication with higher energy density plays a more effective role in restraining microbial activity than longer sonication with lower energy density. Copyright © 2015. Published by Elsevier B.V.

  15. Antibacterial Efficacy of Calcium Hypochlorite with Vibringe Sonic Irrigation System on Enterococcus faecalis: An In Vitro Study

    PubMed Central

    Dumani, Aysin; Guvenmez, Hatice Korkmaz; Yilmaz, Sehnaz; Yoldas, Oguz; Kurklu, Zeliha Gonca Bek

    2016-01-01

    Aim. The purpose of this study was to compare the in vitro efficacy of calcium hypochlorite (Ca[OCl]2) and sodium hypochlorite (NaOCl) associated with sonic (Vibringe) irrigation system in root canals which were contaminated with Enterococcus faecalis. Material and Methods. The root canals of 84 single-rooted premolars were enlarged up to a file 40, autoclaved, inoculated with Enterococcus faecalis, and incubated for 21 days. The samples were divided into 7 groups according to the irrigation protocol: G0: no treatment; G1: distilled water; G2: 2.5% NaOCl; G3: 2.5% Ca(OCl)2; G4: distilled water with sonic activation; G5: 2.5% NaOCl with sonic activation; and G6: 2.5% Ca(OCl)2 with sonic activation. Before and after decontamination procedures microbiological samples were collected and the colony-forming units were counted and the percentages of reduction were calculated. Results. Distilled water with syringe irrigation and sonic activation groups demonstrated poor antibacterial effect on Enterococcus faecalis compared to other experimental groups (p < 0.05). There was no statistically significant difference between syringe and sonic irrigation systems with Ca(OCl)2 and NaOCl. Conclusion. The antimicrobial property of Ca(OCl)2 has been investigated and compared with that of NaOCl. Both conventional syringe irrigation and sonic irrigation were found effective at removing E. faecalis from the root canal of extracted human teeth. PMID:27218106

  16. Sonic Booms on Big Structures (SonicBOBS) Phase I Database; NASA Dryden Sensors

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Arnac, Sarah Renee

    2010-01-01

    This DVD contains 13 channels of microphone and up to 22 channels of pressure transducer data collected in September, 2009 around several buildings located at Edwards Air Force Base. These data were recorded by NASA Dryden. Not included are data taken by NASA Langley and Gulfstream. Each day's data is in a separate folder and each pass is in a file beginning with "SonicBOBS_" (for microphone data) or "SonicBOBSBB_" (for BADS and BASS data) followed by the month, day, year as two digits each, followed by the hour, minute, sec after midnight GMT. The filename time given is for the END time of the raw recording file. In the case of the microphone data, this time may be several minutes after the sonic boom, and is according to the PC's uncalibrated clock. The Matlab data files have the actual time as provided by a GPS-based IRIG-B signal recorded concurrently with the data. Microphone data is given for 5 seconds prior to 20 seconds after the sonic boom. BADS and BASS data is given for the full recording, 6 seconds for the BADS and 10 seconds for the BASS. As an example of the naming convention, file "SonicBOBS_091209154618.mat" is from September 12, 2009 at 15:46:18 GMT. Note that data taken on September 12, 2009 prior to 01:00:00 GMT was of the Space Shuttle Discovery (a sonic boom of opportunity), which was on September 11, 2009 in local Pacific Daylight Time.

  17. Gulfstream's Quiet Spike sonic boom mitigator being installed on NASA DFRC's F-15B testbed aircraft

    NASA Image and Video Library

    2006-04-17

    Gulfstream's Quiet Spike sonic boom mitigator being installed on NASA DFRC's F-15B testbed aircraft. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  18. Subjective Response to Simulated Sonic Booms in Homes

    NASA Technical Reports Server (NTRS)

    McCurdy, David A.; Brown, Sherilyn A.

    1996-01-01

    One of the environmental issues affecting the development of a second-generation supersonic commercial transport is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonic over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' ratings and can be placed and operated in individual homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment. The effects on annoyance of several other parameters were also examined. Initially, data analyses were based on all the data collected. However, further analyser found that test subjects adapted to the sonic booms during the first few days of exposure. The first eight days of each testing period consisted of eight introductory exposures that were repeated on randomly selected days later in the testing period. Comparison of the introductory exposures with their repeats indicated that the test subjects adapted to the new sonic boom noise environment during the first days of the testing period. Because of the adaptation occurring, the introductory days were deleted from the ds set and the analyses redone. This paper presents the updated analyses. Elimination of the introductory days did not significantly affect the results and conclusions of the initial analyses. This paper also presents analyses of the effects on annoyance of additional factors in the study not previously examined.

  19. Microphotographs of cyanobacteria documenting the effects of various cell-lysis techniques

    USGS Publications Warehouse

    Rosen, Barry H.; Loftin, Keith A.; Smith, Christopher E.; Lane, Rachael F.; Keydel, Susan P.

    2011-01-01

    Cyanotoxins are a group of organic compounds biosynthesized intracellularly by many species of cyanobacteria found in surface water. The United States Environmental Protection Agency has listed cyanotoxins on the Safe Drinking Water Act's Contaminant Candidate List 3 for consideration for future regulation to protect public health. Cyanotoxins also pose a risk to humans and other organisms in a variety of other exposure scenarios. Accurate and precise analytical measurements of cyanotoxins are critical to the evaluation of concentrations in surface water to address the human health and ecosystem effects. A common approach to total cyanotoxin measurement involves cell membrane disruption to release the cyanotoxins to the dissolved phase followed by filtration to remove cellular debris. Several methods have been used historically, however no standard protocols exist to ensure this process is consistent between laboratories before the dissolved phase is measured by an analytical technique for cyanotoxin identification and quantitation. No systematic evaluation has been conducted comparing the multiple laboratory sample processing techniques for physical disruption of cell membrane or cyanotoxins recovery. Surface water samples collected from lakes, reservoirs, and rivers containing mixed assemblages of organisms dominated by cyanobacteria, as well as laboratory cultures of species-specific cyanobacteria, were used as part of this study evaluating multiple laboratory cell-lysis techniques in partnership with the U.S. Environmental Protection Agency. Evaluated extraction techniques included boiling, autoclaving, sonication, chemical treatment, and freeze-thaw. Both treated and untreated samples were evaluated for cell membrane integrity microscopically via light, epifluorescence, and epifluorescence in the presence of a DNA stain. The DNA stain, which does not permeate live cells with intact membrane structures, was used as an indicator for cyanotoxin release into the dissolved phase. Of the five techniques, sonication (at 70 percent) was most effective at complete cell destruction while QuikLyse (Trademarked) was least effective. Autoclaving, boiling, and sequential freeze-thaw were moderately effective in physical destruction of colonies and filaments.

  20. Renal ultrafiltration changes induced by focused US.

    PubMed

    Fischer, Krisztina; McDannold, Nathan J; Zhang, Yongzhi; Kardos, Magdolna; Szabo, Andras; Szabo, Antal; Reusz, Gyorgy S; Jolesz, Ferenc A

    2009-12-01

    To determine if focused ultrasonography (US) combined with a diagnostic microbubble-based US contrast agent can be used to modulate glomerular ultrafiltration and size selectivity. The experiments were approved by the animal care committee. The left kidney of 17 healthy rabbits was sonicated by using a 260-kHz focused US transducer in the presence of a microbubble-based US contrast agent. The right kidney served as the control. Three acoustic power levels were applied: 0.4 W (six rabbits), 0.9 W (six rabbits), and 1.7 W (five rabbits). Three rabbits were not treated with focused US and served as control animals. The authors evaluated changes in glomerular size selectivity by measuring the clearance rates of 3000- and 70,000-Da fluorescence-neutral dextrans. The creatinine clearance was calculated for estimation of the glomerular filtration rate. The urinary protein-creatinine ratio was monitored during the experiments. The authors assessed tubular function by evaluating the fractional sodium excretion, tubular reabsorption of phosphate, and gamma-glutamyltransferase-creatinine ratio. Whole-kidney histologic analysis was performed. For each measurement, the values obtained before and after sonication were compared by using the paired t test. Significant (P < .05) increases in the relative (ratio of treated kidney value/nontreated kidney value) clearance of small- and large-molecule agents and the urine flow rates that resulted from the focused US treatments were observed. Overall, 1.23-, 1.23-, 1.61-, and 1.47-fold enhancement of creatinine clearance, 3000-Da dextran clearance, 70 000-Da dextran clearance, and urine flow rate, respectively, were observed. Focal tubular hemorrhage and transient functional tubular alterations were observed at only the highest (1.7-W) acoustic power level tested. Glomerular ultrafiltration and size selectivity can be temporarily modified with simultaneous application of US and microbubbles. This method could offer new opportunities for treatment of renal disease.

  1. 21 CFR 888.4580 - Sonic surgical instrument and accessories/attachments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Sonic surgical instrument and accessories/attachments. 888.4580 Section 888.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4580 Sonic surgical...

  2. 21 CFR 888.4580 - Sonic surgical instrument and accessories/attachments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sonic surgical instrument and accessories/attachments. 888.4580 Section 888.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4580 Sonic surgical...

  3. 21 CFR 888.4580 - Sonic surgical instrument and accessories/attachments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Sonic surgical instrument and accessories/attachments. 888.4580 Section 888.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4580 Sonic surgical...

  4. 21 CFR 888.4580 - Sonic surgical instrument and accessories/attachments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Sonic surgical instrument and accessories/attachments. 888.4580 Section 888.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4580 Sonic surgical...

  5. 21 CFR 888.4580 - Sonic surgical instrument and accessories/attachments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Sonic surgical instrument and accessories/attachments. 888.4580 Section 888.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4580 Sonic surgical...

  6. 78 FR 77769 - CompuSonics Video Corporation, Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] CompuSonics Video Corporation, Order of Suspension of Trading December 20, 2013. It appears to the Securities and Exchange Commission that there is a lack of current and accurate information concerning the securities of CompuSonics Video Corporation...

  7. Detection and Assessment of Secondary Sonic Booms in New England.

    DTIC Science & Technology

    1980-05-01

    MEASUREMENT DATA During the period May 3, 1979 to September 14, 1979, infra - sonic measurements were made at Malden MA, at six other sites in the Greater...D-AO8O 160 TRANSPORTATION SYSTEMS CENTER CAMBRIDGE MA F/ 20/1 DETECTION AND ASSESSMENT OF SECONDARY SONIC BOOMS IN NEW ENGLAN--ETC(U) MAY 80 E J...CHART F AA-AEE-8O-22 DETECTION AND ASSESSMENT OF SECONDARY SONIC BOOMS IN NEW ENGLAND AD A088 160 MAY 1980 Q4 = Ci OF T R, 4 This document has been

  8. Sonic Boom Minimization Efforts on Boeing HSCT Baseline

    NASA Technical Reports Server (NTRS)

    Cheung, Samson H.; Fouladi, Kamran; Haglund, George; Tu, Eugene

    1999-01-01

    A team was formed to tackle the sonic boom softening issues of the current Boeing HSCT design. The team consisted of personnel from NASA Ames, NASA Langley, and Boeing company. The work described in this paper was done when the first author was at NASA Ames Research Center. This paper presents the sonic boom softening work on two Boeing High Speed Civil Transport (HSCT) baseline configurations, Reference-H and Boeing-1122. This presentation can be divided into two parts: parametric studies and sonic boom minimization by CFD optimization routines.

  9. A summary of the lateral cutoff analysis and results from NASA's Farfield Investigation of No-boom Thresholds

    NASA Astrophysics Data System (ADS)

    Cliatt, Larry J.; Hill, Michael A.; Haering, Edward A.; Arnac, Sarah R.

    2015-10-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, NASA, in partnership with other industry organizations, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The research from FaINT determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, established a value of 65 dB as a limit for the acoustic lateral extent of a sonic boom's noise region, analyzed change in sonic boom levels near lateral cutoff, and compared between real sonic boom measurements and numerical predictions.

  10. The Synthesis of Photocatalyst Material ZnO using the Simple Sonication Method

    NASA Astrophysics Data System (ADS)

    Faradis, R.; Azizah, E. N.; Marella, S. D.; Aini, N.; Prasetyo, A.

    2018-03-01

    ZnO is well known as photocatalyst material therefore potentially to applied in many purposes. The particle size of photocatalyst material influenced the catalytic activities. In this research, ZnO was synthesized using the simple sonication method to obtain the the smaller particle with sonication time variation respectively: 30, 60, 160, 360 minute. X-ray diffraction data showed that the synthesized material have wurtzite structure with space group P63 mc. The synthesized ZnO with 30 minutes sonication time produced the smallest particle size and have the lowest band gap energy (2.79 eV). The photocatalytic test at methylene blue also showed that the optimum activity was gained from ZnO which synthesized at 30 minute sonication time (degradation percentage of metylene blue is 77.93%).

  11. A Summary of the Lateral Cutoff Analysis and Results from Nasa's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Hill, Michael A.; Haering, Edward A., Jr.; Arnac, Sarah R.

    2015-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, NASA, in partnership with other industry organizations, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The research from FaINT determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, established a value of 65 dB as a limit for the acoustic lateral extent of a sonic boom's noise region, analyzed change in sonic boom levels near lateral cutoff, and compared between real sonic boom measurements and numerical predictions.

  12. Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa A.; Wilcox, Floyd J.; Cliff, Susan; Thomas, Scott

    2012-01-01

    A sonic boom wind tunnel test was conducted on a straight-line segmented leading edge (SLSLE) model in the NASA Langley 4- by 4- Foot Unitary Plan Wind Tunnel (UPWT). The purpose of the test was to determine whether accurate sonic boom measurements could be obtained while continuously moving the SLSLE model past a conical pressure probe. Sonic boom signatures were also obtained using the conventional move-pause data acquisition method for comparison. The continuous data acquisition approach allows for accurate signatures approximately 15 times faster than a move-pause technique. These successful results provide an incentive for future testing with greatly increased efficiency using the continuous model translation technique with the single probe to measure sonic boom signatures. Two widely used NASA codes, USM3D (Navier-Stokes) and CART3D-AERO (Euler, adjoint-based adaptive mesh), were used to compute off-body sonic boom pressure signatures of the SLSLE model at several different altitudes below the model at Mach 2.0. The computed pressure signatures compared well with wind tunnel data. The effect of the different altitude for signature extraction was evaluated by extrapolating the near field signatures to the ground and comparing pressure signatures and sonic boom loudness levels.

  13. The Sonic Altimeter for Aircraft

    NASA Technical Reports Server (NTRS)

    Draper, C S

    1937-01-01

    Discussed here are results already achieved with sonic altimeters in light of the theoretical possibilities of such instruments. From the information gained in this investigation, a procedure is outlined to determine whether or not a further development program is justified by the value of the sonic altimeter as an aircraft instrument. The information available in the literature is reviewed and condensed into a summary of sonic altimeter developments. Various methods of receiving the echo and timing the interval between the signal and the echo are considered. A theoretical discussion is given of sonic altimeter errors due to uncertainties in timing, variations in sound velocity, aircraft speed, location of the sending and receiving units, and inclinations of the flight path with respect to the ground surface. Plots are included which summarize the results in each case. An analysis is given of the effect of an inclined flight path on the frequency of the echo. A brief study of the acoustical phases of the sonic altimeter problem is carried through. The results of this analysis are used to predict approximately the maximum operating altitudes of a reasonably designed sonic altimeter under very good and very bad conditions. A final comparison is made between the estimated and experimental maximum operating altitudes which shows good agreement where quantitative information is available.

  14. Assessment of Near-Field Sonic Boom Simulation Tools

    NASA Technical Reports Server (NTRS)

    Casper, J. H.; Cliff, S. E.; Thomas, S. D.; Park, M. A.; McMullen, M. S.; Melton, J. E.; Durston, D. A.

    2008-01-01

    A recent study for the Supersonics Project, within the National Aeronautics and Space Administration, has been conducted to assess current in-house capabilities for the prediction of near-field sonic boom. Such capabilities are required to simulate the highly nonlinear flow near an aircraft, wherein a sonic-boom signature is generated. There are many available computational fluid dynamics codes that could be used to provide the near-field flow for a sonic boom calculation. However, such codes have typically been developed for applications involving aerodynamic configuration, for which an efficiently generated computational mesh is usually not optimum for a sonic boom prediction. Preliminary guidelines are suggested to characterize a state-of-the-art sonic boom prediction methodology. The available simulation tools that are best suited to incorporate into that methodology are identified; preliminary test cases are presented in support of the selection. During this phase of process definition and tool selection, parallel research was conducted in an attempt to establish criteria that link the properties of a computational mesh to the accuracy of a sonic boom prediction. Such properties include sufficient grid density near shocks and within the zone of influence, which are achieved by adaptation and mesh refinement strategies. Prediction accuracy is validated by comparison with wind tunnel data.

  15. Optically assisted trapping with high-permittivity dielectric rings: Towards optical aerosol filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaee, Rasoul; Kadic, Muamer; Rockstuhl, Carsten

    Controlling the transport, trapping, and filtering of nanoparticles is important for many applications. By virtue of their weak response to gravity and their thermal motion, various physical mechanisms can be exploited for such operations on nanoparticles. However, the manipulation based on optical forces is potentially most appealing since it constitutes a highly deterministic approach. Plasmonic nanostructures have been suggested for this purpose, but they possess the disadvantages of locally generating heat and trapping the nanoparticles directly on the surface. Here, we propose the use of dielectric rings made of high permittivity materials for trapping nanoparticles. Thanks to their ability tomore » strongly localize the field in space, nanoparticles can be trapped without contact. We use a semianalytical method to study the ability of these rings to trap nanoparticles. Lastly, the results are supported by full-wave simulations and application of the trapping concept to nanoparticle filtration is suggested.« less

  16. Optically assisted trapping with high-permittivity dielectric rings: Towards optical aerosol filtration

    DOE PAGES

    Alaee, Rasoul; Kadic, Muamer; Rockstuhl, Carsten; ...

    2016-10-04

    Controlling the transport, trapping, and filtering of nanoparticles is important for many applications. By virtue of their weak response to gravity and their thermal motion, various physical mechanisms can be exploited for such operations on nanoparticles. However, the manipulation based on optical forces is potentially most appealing since it constitutes a highly deterministic approach. Plasmonic nanostructures have been suggested for this purpose, but they possess the disadvantages of locally generating heat and trapping the nanoparticles directly on the surface. Here, we propose the use of dielectric rings made of high permittivity materials for trapping nanoparticles. Thanks to their ability tomore » strongly localize the field in space, nanoparticles can be trapped without contact. We use a semianalytical method to study the ability of these rings to trap nanoparticles. Lastly, the results are supported by full-wave simulations and application of the trapping concept to nanoparticle filtration is suggested.« less

  17. Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters.

    PubMed

    Shin, Jaewoo; Kong, Chanho; Cho, Jae Sung; Lee, Jihyeon; Koh, Chin Su; Yoon, Min-Sik; Na, Young Cheol; Chang, Won Seok; Chang, Jin Woo

    2018-02-01

    OBJECTIVE The application of pharmacological therapeutics in neurological disorders is limited by the ability of these agents to penetrate the blood-brain barrier (BBB). Focused ultrasound (FUS) has recently gained attention for its potential application as a method for locally opening the BBB and thereby facilitating drug delivery into the brain parenchyma. However, this method still requires optimization to maximize its safety and efficacy for clinical use. In the present study, the authors examined several sonication parameters of FUS influencing BBB opening in small animals. METHODS Changes in BBB permeability were observed during transcranial sonication using low-intensity FUS in 20 adult male Sprague-Dawley rats. The authors examined the effects of FUS sonication with different sonication parameters, varying acoustic pressure, center frequency, burst duration, microbubble (MB) type, MB dose, pulse repetition frequency (PRF), and total exposure time. The focal region of BBB opening was identified by Evans blue dye. Additionally, H & E staining was used to identify blood vessel damage. RESULTS Acoustic pressure amplitude and burst duration were closely associated with enhancement of BBB opening efficiency, but these parameters were also highly correlated with tissue damage in the sonicated region. In contrast, MB types, MB dose, total exposure time, and PRF had an influence on BBB opening without conspicuous tissue damage after FUS sonication. CONCLUSIONS The study aimed to identify these influential conditions and provide safety and efficacy values for further studies. Future work based on the current results is anticipated to facilitate the implementation of FUS sonication for drug delivery in various CNS disease states in the near future.

  18. Contribution of sonicate-fluid cultures and broad-range PCR to microbiological diagnosis in vascular graft infections.

    PubMed

    Kokosar Ulcar, Barbara; Lakic, Nikola; Jeverica, Samo; Pecavar, Blaz; Logar, Mateja; Cerar, Tjasa Kisek; Lejko-Zupanc, Tatjana

    2018-06-01

    Vascular graft infections (VGI) are associated with considerable morbidity and mortality, and antimicrobial treatment is an important adjunct to surgical treatment. While microbial aetiology of VGI is often difficult to determine, other techniques such as sonication of implanted material may be used to enhance the recovery of biofilm-associated organisms. We performed a retrospective analysis of 22 consecutive patients treated for VGI at University Medical Centre Ljubljana from May 2011 through January 2015. Explanted vascular grafts were flooded with sterile Ringer solution, sonicated for 1 min at a frequency of 40 kHz and inoculated on solid and liquid culture media. Aerobic and anaerobic cultures were performed, incubated for 14 days and any significant bacterial growth was quantitatively evaluated. Additionally, broad-range PCR from sonicate fluid was performed. Microbiological results were compared with the results of preoperatively taken blood cultures and the results of intraoperative tissue cultures (material from peri-graft collection). Identification of the causative organism (irrespective of the method) was achieved in 95.8%. Preoperative blood cultures were positive in 35.3%, intraoperative tissue cultures in 31.8%, sonicate fluid culture in 79.2%, while broad-range PCR from sonicate fluid was positive in 66.7%. In 37.5% the pathogen detected in sonicate fluid culture or broad-range PCR was the only positive microbiological result. Sonicate fluid culture and broad-range PCR from explanted vascular grafts may contribute to optimization of antimicrobial treatment. Optimal timing of antibiotic therapy before explantation should be further assessed to improve diagnostic yield.

  19. Field intercomparison of prevailing sonic anemometers

    NASA Astrophysics Data System (ADS)

    Mauder, Matthias; Zeeman, Matthias J.

    2018-01-01

    Three-dimensional sonic anemometers are the core component of eddy covariance systems, which are widely used for micrometeorological and ecological research. In order to characterize the measurement uncertainty of these instruments we present and analyse the results from a field intercomparison experiment of six commonly used sonic anemometer models from four major manufacturers. These models include Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R. M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site DE-Fen in southern Germany over a period of 16 days in June of 2016 as part of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by adjacent structures as much as possible. Moreover, the high-frequency data from all instruments were treated with the same post-processing algorithm. In this study, we compare the results for various turbulence statistics, which include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity, and the buoyancy flux. Quantitative measures of uncertainty, such as bias and comparability, are derived from these results. We find that biases are generally very small for all sensors and all computed variables, except for the sonic temperature measurements of the two Gill sonic anemometers (HS and R3), confirming a known transducer-temperature dependence of the sonic temperature measurement. The best overall agreement between the different instruments was found for the mean wind speed and the buoyancy flux.

  20. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions

    PubMed Central

    2012-01-01

    The preparation of nanofluids is very important to their thermophysical properties. Nanofluids with the same nanoparticles and base fluids can behave differently due to different nanofluid preparation methods. The agglomerate sizes in nanofluids can significantly impact the thermal conductivity and viscosity of nanofluids and lead to a different heat transfer performance. Ultrasonication is a common way to break up agglomerates and promote dispersion of nanoparticles into base fluids. However, research reports of sonication effects on nanofluid properties are limited in the open literature. In this work, sonication effects on thermal conductivity and viscosity of carbon nanotubes (0.5 wt%) in an ethylene glycol-based nanofluid are investigated. The corresponding effects on the agglomerate sizes and the carbon nanotube lengths are observed. It is found that with an increased sonication time/energy, the thermal conductivity of the nanofluids increases nonlinearly, with the maximum enhancement of 23% at sonication time of 1,355 min. However, the viscosity of nanofluids increases to the maximum at sonication time of 40 min, then decreases, finally approaching the viscosity of the pure base fluid at a sonication time of 1,355 min. It is also observed that the sonication process not only reduces the agglomerate sizes but also decreases the length of carbon nanotubes. Over the current experimental range, the reduction in agglomerate size is more significant than the reduction of the carbon nanotube length. Hence, the maximum thermal conductivity enhancement and minimum viscosity increase are obtained using a lengthy sonication, which may have implications on application. PMID:22333487

  1. A sonic tool for spinal fusion.

    PubMed

    Weis, E B

    1977-01-01

    The application of sonic energy to bone cutting problems is reported. The basic principle of the resonant tool, its adaptation for surgery, the experimental results of its use in animals, and clinical experience are reported. This sonic tool is found to introduce no significant tissue destruction. It does have several desirable characteristics for routine use in orthopedics.

  2. Experimental Sonic Boom Measurements on a Mach 1.6 Cruise Low-Boom Configuration

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa, A.; Wayman, Thomas R.; Waithe, Kenrick A.; Howe, Donald C.; Bangert, Linda S.

    2012-01-01

    A wind tunnel test has been conducted by Gulfstream Aerospace Corporation (GAC) to measure the sonic boom pressure signature of a low boom Mach 1.6 cruise business jet in the Langley Unitary Plan Wind Tunnel at Mach numbers 1.60 and 1.80. Through a cooperative agreement between GAC and the National Aeronautics and Space Administration (NASA), GAC provided NASA access to some of the experimental data and NASA is publishing these data for the sonic boom research community. On-track and off-track near field sonic boom pressure signatures were acquired at three separation distances (0.5, 1.2, and 1.7 reference body lengths) and three angles of attack (-0.26deg, 0.26deg, and 0.68deg). The model was blade mounted to minimize the sting effects on the sonic boom signatures. Although no extensive data analysis is provided, selected data are plotted to illustrate salient features of the data. All of the experimental sonic boom pressure data are tabulated. Schlieren images of the configuration are also included.

  3. Loudness and annoyance response to simulated outdoor and indoor sonic booms

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1993-01-01

    The sonic boom simulator of the Langley Research Center was used to quantify subjective loudness and annoyance response to simulated indoor and outdoor sonic boom signatures. The indoor signatures were derived from the outdoor signatures by application of house filters that approximated the noise reduction characteristics of a residential structure. Two indoor listening situations were simulated: one with the windows open and the other with the windows closed. Results were used to assess loudness and annoyance as sonic boom criterion measures and to evaluate several metrics as estimators of loudness and annoyance. The findings indicated that loudness and annoyance were equivalent criterion measures for outdoor booms but not for indoor booms. Annoyance scores for indoor booms were significantly higher than indoor loudness scores. Thus, annoyance was recommended as the criterion measure of choice for general use in assessing sonic boom subjective effects. Perceived level was determined to be the best estimator of annoyance for both indoor and outdoor booms, and of loudness for outdoor booms. It was recommended as the metric of choice for predicting sonic boom subjective effects.

  4. Diagnostics of Wooden Poles Situated in the Open - Air Museum Using Sonic Tomography

    NASA Astrophysics Data System (ADS)

    Makýš, Oto; Krušinský, Peter; Korenková, Renáta; Šrobárová, Dominika

    2018-06-01

    The paper deals with the lifetime of wooden poles, situated in the archaeological open-air museum Liptovská Mara - Havránok, which were erected outdoors about 12 years ago. It is aimed at diagnosing their condition using sonic tomography. The poles differ from each other in the location, anchorage, and positioning in terms of the terrain slope. Investigation was focused on the free-standing poles (quasi sacrifice poles) and the poles that are part of the fortification (gates and walls). Measurements were carried out using the device Fakopp ArborSonic 3D Sonic Tomograph that has 18 sensors. It measures the sonic response (sound velocity) in a tree stem. Sound wave velocity within sound wood depends on its species, moisture content, and the direction of measurement. Measurements brought remarkable results.

  5. Confidence Intervals for Laboratory Sonic Boom Annoyance Tests

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Christian, Andrew

    2016-01-01

    Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One deliverable NASA will provide is a predictive model for indoor annoyance to aid in setting an acceptable quiet sonic boom threshold. A laboratory study was conducted to determine how indoor vibrations caused by sonic booms affect annoyance judgments. The test method required finding the point of subjective equality (PSE) between sonic boom signals that cause vibrations and signals not causing vibrations played at various amplitudes. This presentation focuses on a few statistical techniques for estimating the interval around the PSE. The techniques examined are the Delta Method, Parametric and Nonparametric Bootstrapping, and Bayesian Posterior Estimation.

  6. Quiet Sonic Booms: A NASA and Industry Progress Report

    NASA Technical Reports Server (NTRS)

    Larson, David Nils; Martin, Roy; Haering, Edward A.

    2011-01-01

    The purpose of this Oral Presentation is to present a progress report on NASA and Industry efforts related to Quiet Sonic Boom Program activities. This presentation will review changes in aircraft shaping to produce quiet supersonic booms and associated supersonic flight test methods and results. In addition, new flight test profiles have been recently developed that have allowed for the generation of sonic booms of varying intensity. These new flight test profiles have allowed for ground testing of the response of various building structures to sonic booms and the associated public acceptability to various sonic boom intensities. The new flight test profiles and associated ground measurement test methods will be reviewed. Finally, this Oral Presentation will review the International Regulatory requirements that would be involved to change aviation regulation and allow for overland quiet supersonic flight.

  7. Design and analysis of ultrasonic monaural audio guiding device for the visually impaired.

    PubMed

    Kim, Keonwook; Kim, Hyunjai; Yun, Gihun; Kim, Myungsoo

    2009-01-01

    The novel Audio Guiding Device (AGD) based on the ultrasonic, which is named as SonicID, has been developed in order to localize point of interest for the visually impaired. The SonicID requires the infrastructure of the transmitters for broadcasting the location information over the ultrasonic carrier. The user with ultrasonic headset receives the information with variable amplitude upon the location and direction of the user due to the ultrasonic characteristic and modulation method. This paper proposes the monaural headset form factor of the SonicID which improves the daily life of the beneficiary compare to the previous version which uses the both ears. Experimental results from SonicID, Bluetooth, and audible sound show that the SonicID demonstrates comparable localization performance to the audible sound with silence to others.

  8. Effect of clot aging and cholesterol content on ultrasound-assisted thrombolysis.

    PubMed

    Zhou, Yufeng; Murugappan, Suresh Kanna; Sharma, Vijay Kumar

    2014-10-01

    Exposure to 2-MHz transcranial diagnostic ultrasound enhances the thrombolytic activity of intravenously administered tissue plasminogen activator (IV-tPA) in acute ischemic stroke (sonothrombolysis). However, rates of arterial recanalization vary widely, depending upon the clot burden, its location, and stroke subtype. We evaluated the influence of age and cholesterol level of the blood clots on sonothrombolysis in an in vitro model. To "age" the clots, serum was replaced by fresh blood periodically. We increased the cholesterol content of the clots by adding cholesterin to the blood. The clots were lysed by tPA and/or transcranial Doppler ultrasound sonication for 1 h. The extent of thrombolysis induced by various treatment protocols (controls, sonication, tPA, and sonothrombolysis) was evaluated with relative changes in the clot weights and in the clot structure by scanning electron microscopy (SEM) at end of the experiment. Sonothrombolysis induced significantly higher weight reduction in fresh clots (37.3 % in 2-h old clots versus 24.8 % in 10-h ones, p < 0.005) as well as the clots with higher cholesterol levels (41.7 versus 30.6 % in normal cholesterol clots, p < 0.005). SEM demonstrated patterns of clot dissolution among various treatment modalities. Sonothrombolysis induced better clot lysis in fresh thrombi with high cholesterol levels.

  9. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developingmore » the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.« less

  10. Ultrasonic-assisted synthesis of polyvinyl alcohol/phytic acid polymer film and its thermal stability, mechanical properties and surface resistivity.

    PubMed

    Li, Jihui; Li, Yongshen; Song, Yunna; Niu, Shuai; Li, Ning

    2017-11-01

    In this paper, polyvinyl alcohol/phytic acid polymer (PVA/PA polymer) was synthesized through esterification reaction of PVA and PA in the case of acidity and ultrasound irradiation and characterized, and PVA/PA polymer film was prepared by PVA/PA polymer and characterized, and the influence of dosage of PA on the thermal stability, mechanical properties and surface resistivity of PVA/PA polymer film were researched, and the influence of sonication time on the mechanical properties of PVA/PA polymer film was investigated. Based on those, it was concluded that the hydroxyl group on the chain of PVA and the phosphonic group on PA were connected together in the form of phosphonate bond, and the hydroxyl group on the chain of PVA were connected together in the form of ether bond after the intermolecular dehydration; in the meantime, it was also confirmed that PVA/PA polymer film prepared from 1.20mL of PA not only had the high thermal stability and favorable ductility but also the low surface resistivity in comparison with PVA/PA polymer film with 0.00mL of PA, and the ductility of PVA/PA polymer film was very sensitive to the sonication time. Copyright © 2017. Published by Elsevier B.V.

  11. Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: The coupled effect of ultrasound and wedging nanoparticles.

    PubMed

    Hadi, Alireza; Zahirifar, Jafar; Karimi-Sabet, Javad; Dastbaz, Abolfazl

    2018-06-01

    This study aims to investigate a novel technique to improve the yield of liquid phase exfoliation of graphite to graphene sheets. The method is based on the utilization of magnetic Fe 3 O 4 nanoparticles as "particle wedge" to facilitate delamination of graphitic layers. Strong shear forces resulted from the collision of Fe 3 O 4 particles with graphite particles, and intense ultrasonic waves lead to enhanced exfoliation of graphite. High quality of graphene sheets along with the ease of Fe 3 O 4 particle separation from graphene solution which arises from the magnetic nature of Fe 3 O 4 nanoparticles are the unique features of this approach. Initial graphite flakes and produced graphene sheets were characterized by various methods including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Zeta potential analysis. Moreover, the effect of process factors comprising initial graphite concentration, Fe 3 O 4 nanoparticles concentration, sonication time, and sonication power were investigated. Results revealed that graphene preparation yield and the number of layers could be manipulated by the presence of magnetic nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Mechanistic insight into ultrasound induced enhancement of simultaneous saccharification and fermentation of Parthenium hysterophorus for ethanol production.

    PubMed

    Singh, Shuchi; Agarwal, Mayank; Sarma, Shyamali; Goyal, Arun; Moholkar, Vijayanand S

    2015-09-01

    This paper presents investigations into mechanism of ultrasound assisted bioethanol synthesis using Parthenium hysterophorus biomass through simultaneous saccharification and fermentation (SSF) mode. Approach of coupling experimental results to mathematical model for SSF using Genetic Algorithm based optimization has been adopted. Comparison of model parameters for experiments with mechanical shaking and sonication (10% duty cycle) give an interesting mechanistic account of influence of ultrasound on SSF system. A 4-fold rise in ethanol and cell mass productivity is seen with ultrasound. The analysis reveals following facets of influence of ultrasound on SSF: increase in Monod constant for glucose for cell growth, maximal specific growth rate and inhibition constant of cell growth by glucose and reduction in specific cell death rate. Values of inhibition constant of cell growth by ethanol (K3E), and constants for growth associated (a) and non-growth associated (b) ethanol production remained unaltered with sonication. Beneficial effects of ultrasound are attributed to enhanced cellulose hydrolysis, enhanced trans-membrane transport of substrate and products as well as dilution of the toxic substances due to micro-convection induced by ultrasound. Intrinsic physiological functioning of cells remained unaffected by ultrasound as indicated by unaltered values of K3E, a and b. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Residents' reactions to long-term sonic boom exposure: Preliminary results

    NASA Technical Reports Server (NTRS)

    Fields, James M.; Moulton, Carey; Baumgartner, Robert M.; Thomas, Jeff

    1994-01-01

    This presentation is about residents' reactions to sonic booms in a long-term sonic boom exposure environment. Although two phases of the data collection have been completed, the analysis of the data has only begun. The results are thus preliminary. The list of four authors reflects the complex multi-disciplinary character of any field study such as this one. Carey Moulton is responsible for Wyle Laboratories' acoustical data collection effort. Robert Baumgartner and Jeff Thomas of HBRS, a social science research firm, are responsible for social survey field work and data processing. The study is supported by the NASA Langley Research Center. The study has several objectives. The preliminary data addresses two of the primary objectives. The first objective is to describe the reactions to sonic booms of people who are living where sonic booms are a routine, recurring feature of the acoustical environment. The second objective is to compare these residents' reactions to the reactions of residents who hear conventional aircraft noise around airports. Here is an overview of the presentation. This study will first be placed in the context of previous community survey research on sonic booms. Next the noise measurement program will be briefly described and part of a social survey interview will be presented. Finally data will be presented on the residents' reactions and these reactions will be compared with reactions to conventional aircraft. Twelve community studies of residents' reactions to sonic booms were conducted in the United States and Europe in the 1960's and early 1970's. None of the 12 studies combined three essential ingredients that are found in the present study. Residents' long-term responses are related to a measured noise environment. Sonic booms are a permanent feature of the residential environment. The respondents' do not live on a military base. The present study is important because it provides the first dose/response relationship for sonic booms that could be expected to apply to residents in civilian residential areas.

  14. MR-Guided Unfocused Ultrasound Disruption of the Rat Blood-Brain Barrier

    NASA Astrophysics Data System (ADS)

    Townsend, Kelly A.; King, Randy L.; Zaharchuk, Greg; Pauly, Kim Butts

    2011-09-01

    Therapeutic ultrasound with microbubbles can temporarily disrupt the blood-brain barrier (BBB) for drug delivery. Contrast-enhanced MRI (CE-MRI) can visualize gadolinium passage into the brain, indicating BBB opening. Previous studies used focused ultrasound, which is appropriate for the targeted delivery of drugs. The purpose of this study was to investigate unfocused ultrasound for BBB opening across the whole brain. In 10 rats, gadolinium-based MR contrast agent (Gd; 0.25 ml) was administered concurrent with ultrasound microbubbles (Optison, 0.25 ml) and circulated for 20 sec before sonication. A 753 kHz planar PZT transducer, diameter 1.8 cm, sonicated each rat brain with supplied voltage of 300, 400, or 500 mVpp for 10 sec in continuous wave mode, or at 500 mVpp at 20% duty cycle at 10 Hz for 30-300 sec. After sonication, coronal T1-weighted FSE CE-MRI images were acquired with a 3in surface coil. The imaging protocol was repeated 3-5 times after treatment. One control animal was given Gd and microbubbles, but not sonicated, and the other was given Gd and sonicated without microbubbles. Signal change in ROIs over the muscle, mesencephalon/ventricles, and the cortex/striatum were measured at 3-5 time points up to 36 min after sonication. Signal intensity was converted to % signal change compared to the initial image. In the controls, CE-MRI showed brightening of surrounding structures, but not the brain. In the continuous wave subjects, cortex/striatum signal did not increase, but ventricle/mesenchephalon signal did. Those that received pulsed sonications showed signal increases in both the cortex/striatum and ventricles/mesenchephalon. In conclusion, after pulsed unfocused ultrasound sonication, the BBB is disrupted across the whole brain, including cortex and deep grey matter, while continuous wave sonication affects only the ventricles and possibly deeper structures, without opening the cortex BBB. As time passes, the timeline of Gd passage into the brain can be visualized.

  15. A total variation diminishing finite difference algorithm for sonic boom propagation models

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    1993-01-01

    It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.

  16. NASA Ames Sonic Boom Testing

    NASA Technical Reports Server (NTRS)

    Durston, Donald A.; Kmak, Francis J.

    2009-01-01

    Multiple sonic boom wind tunnel models were tested in the NASA Ames Research Center 9-by 7-Foot Supersonic Wind Tunnel to reestablish related test techniques in this facility. The goal of the testing was to acquire higher fidelity sonic boom signatures with instrumentation that is significantly more sensitive than that used during previous wind tunnel entries and to compare old and new data from established models. Another objective was to perform tunnel-to-tunnel comparisons of data from a Gulfstream sonic boom model tested at the NASA Langley Research Center 4-foot by 4-foot Unitary Plan Wind Tunnel.

  17. Reactions of Residents to Long-Term Sonic Boom Noise Environments

    NASA Technical Reports Server (NTRS)

    Fields, James M.

    1997-01-01

    A combined social survey and noise measurement program has been completed in 14 communities in two regions of the western United States that have been regularly exposed to sonic booms for many years. A total of 1,573 interviews were completed. Three aspects of the sonic booms are most disturbing: being startled, noticing rattles or vibrations, and being concerned about the possibility of damage from the booms. Sonic boom annoyance is greater than that in a conventional aircraft environment with the same continuous equivalent noise exposure. The reactions in the two study regions differ in severity.

  18. Laboratory study of sonic booms and their scaling laws. [ballistic range simulation

    NASA Technical Reports Server (NTRS)

    Toong, T. Y.

    1974-01-01

    This program undertook to seek a basic understanding of non-linear effects associated with caustics, through laboratory simulation experiments of sonic booms in a ballistic range and a coordinated theoretical study of scaling laws. Two cases of superbooms or enhanced sonic booms at caustics have been studied. The first case, referred to as acceleration superbooms, is related to the enhanced sonic booms generated during the acceleration maneuvers of supersonic aircrafts. The second case, referred to as refraction superbooms, involves the superbooms that are generated as a result of atmospheric refraction. Important theoretical and experimental results are briefly reported.

  19. Pre-treatment of thickened waste activated sludge (TWAS) for enhanced biogas production via the application of a novel radial horn sonication technology.

    PubMed

    Suhartini, Sri; Melville, Lynsey; Amato, Tony

    2017-05-01

    The efficacy of sonication as a pre-treatment to anaerobic digestion (AD) was assessed using thickened waste activated sludge (TWAS). Efficiency was measured in relation to solubilisation, dewaterability, and AD performance. Eighteen experimental conditions were evaluated at low frequency (20 kHz), duration (2-10 s), amplitude (∼8-12 μm) and applied pressure (0.5-3.0 barg), using a sonix™ patented titanium sonoprobe capable of delivering an instantaneous power of ∼6 kW provided by Doosan Enpure Ltd (DEL). An optimised experimental protocol was used as a pre-treatment for biochemical methane potential (BMP) testing and semi-continuous trials. Four digesters, with a 2-L working volume were operated mesophilically (37 ± 0.5 °C) over 22 days. The results showed that the sonix™ technology delivers effective sonication at very short retention times compared to conventional system. Results demonstrate that the technology effectively disrupts the floc structures and filaments within the TWAS, causing an increase in solubilisation and fine readily digestible material. Both BMP tests and semi-continuous trials demonstrated that sonicated TWAS gave higher biodegradability and methane potential compared to untreated TWAS. Partial-stream sonication (30:70 sonicated to untreated TWAS) resulted in a proportionate increase in biogas production illustrating the benefits of full-stream sonication.

  20. Effect of ultrasound sonication on clonogenic survival and mitochondria of ovarian cancer cells in the presence of methylene blue.

    PubMed

    Xiang, Junyan; Leung, Albert Wingnang; Xu, Chuanshan

    2014-10-01

    This study aimed to investigate the effect of ultrasound sonication in the presence of methylene blue on clonogenic survival and mitochondria of ovarian cancer cells. Human ovarian cancer HO-8910 cells, which were incubated with different concentrations of methylene blue for 1 hour, were exposed to an ultrasonic wave for 5 seconds with intensity of 0.46 W/cm(2). Clonogenic survival of HO-8910 cells after ultrasound sonication was measured by a colony-forming unit assay. Mitochondrial structural changes were observed on transmission electron microscopy, and the mitochondrial membrane potential was evaluated by confocal laser-scanning microscopy with rhodamine 123 staining. The colony-forming units of HO-8910 cells decreased considerably after ultrasound sonication in the presence of methylene blue. Transmission electron microscopy showed slightly enlarged mitochondria in the ultrasound-treated cells in the absence of methylene blue; however, seriously damaged mitochondria, even with almost complete disappearance of cristae, were found in the cells treated by ultrasound sonication in the presence of methylene blue. The mitochondrial membrane potential collapsed significantly when HO-8910 cells were treated by ultrasound sonication in the presence of methylene blue (P < .05). Ultrasound sonication in the presence of methylene blue markedly damaged mitochondrial structure and function and decreased clonogenic survival of HO-8910 cells. © 2014 by the American Institute of Ultrasound in Medicine.

  1. Ultrasonic hydrometer

    DOEpatents

    Swoboda, Carl A.

    1984-01-01

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time "t" between the initial and returning impulses. Considering the distance "d" between the spaced sonic surfaces and the measured time "t", the sonic velocity "V" is calculated with the equation "V=2d/t". The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0.degree. and 40.degree. C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  2. NASA Test Flights Examine Effect of Atmospheric Turbulence on Sonic Booms

    NASA Image and Video Library

    2016-07-20

    One of three microphone arrays positioned strategically along the ground at Edwards Air Force Base, California, sits ready to collect sound signatures from sonic booms created by a NASA F/A-18 during the SonicBAT flight series. The arrays collected the sound signatures of booms that had traveled through atmospheric turbulence before reaching the ground.

  3. NASA's F-15B testbed aircraft with Gulfstream Quiet Spike sonic boom mitigator attached

    NASA Image and Video Library

    2006-07-06

    Gulfstream Aerospace and NASA's Dryden Flight Research Center are testing the structural integrity of a telescopic 'Quiet Spike' sonic boom mitigator on the F-15B testbed. The Quiet Spike was developed as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.

  4. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry James; Haering, Ed; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of NASAs ongoing effort to bring supersonic commercial travel to the public, NASA Dryden Flight Research Center and NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response. Such tests will go towards building a dataset that governing agencies like the Federal Aviation Administration and International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. Until WSPR, there had never been an effort that studied the response of people in their own homes and performing daily activities to non-traditional, low sonic booms.WSPR was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle. Other partners included Gulfstream Aerospace Corporation, Pennsylvania State University, Tetra Tech, and Fidell Associates, Inc.A major objective of the effort included exposing a community with the sonic boom magnitudes and occurrences expected in high-air traffic regions with a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data was collected using multiple survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on NASAs role in the efforts logistics and operations including human response subject recruitment, the operational processes involved in implementing the surveys throughout the community, instrumentation systems, logistics, flight planning, and flight operations. Findings discussed in this paper include critical lessons learned in all of those areas. The paper also discusses flight operations results. Analysis of the accuracy and repeatability of planning and executing the unique aircraft maneuver used to generate low sonic booms concluded that the sonic booms had overpressures within 0.15 pounds-per-square-feet of the planned values for 76 of t he attempts. Similarly, 90 of the attempts to generate low sonic booms within the community were successful.

  5. Development and sexual dimorphism of the sonic system in three deep-sea neobythitine fishes and comparisons between upper mid and lower continental slope

    NASA Astrophysics Data System (ADS)

    Fine, Michael L.; Ali, Heba A.; Nguyen, Thanh Kim; Mok, Hin-Kiu; Parmentier, Eric

    2018-01-01

    Based on morphology, NB Marshall identified cusk-eels (family Ophidiidae) as one of the chief sound-producing groups on the continental slope. Due to food scarcity, we hypothesized that sonic systems will be reduced at great depths despite their potential importance in sexual reproduction. We examined this hypothesis in the cusk-eel subfamily Neobythitinae by comparing sonic morphology in Atlantic species from the upper-mid (Dicrolene intronigra) and deeper continental slope (Porogadus miles and Bathyonus pectoralis) with three Taiwanese species previously described from the upper slope (Hoplobrotula armatus, Neobythites longipes and N. unimaculatus). In all six species, medial muscles are heavier in males than in females. Dicrolene has four pairs of sonic muscles similar to the shallow Pacific species, suggesting neobythitine sonic anatomy is conservative and sufficient food exists to maintain a well-developed system at depths exceeding 1 km. The sonic system in Porogadus and Bathyonus was reduced to a single pair of ventral medial muscles that connects to a smaller and thinner swimbladder via a long tendon. Small muscle fiber diameters, a likely indicator of rapid contraction, were present in males of five of the species. However, in Bathyonus, the deepest species (pale coloration, reduced eye size, shorter sonic muscles and longer tendons), muscle fibers were larger suggesting an adaptation to facilitate rapid bladder movement for sound production while using slower contractions and less metabolic energy. The six species separate into three groups in length-weight regressions: the three upper slope species have the greatest weights per unit length, Dicrolene is lower, and the two deep species are further reduced consistent with the hypothesis that food limitation affects sonic anatomy at great depths.

  6. Diagnosis Of Persistent Infection In Prosthetic Two-Stage Exchange: PCR analysis of Sonication fluid From Bone Cement Spacers.

    PubMed

    Mariaux, Sandrine; Tafin, Ulrika Furustrand; Borens, Olivier

    2017-01-01

    Introduction: When treating periprosthetic joint infections with a two-stage procedure, antibiotic-impregnated spacers are used in the interval between removal of prosthesis and reimplantation. According to our experience, cultures of sonicated spacers are most often negative. The objective of our study was to investigate whether PCR analysis would improve the detection of bacteria in the spacer sonication fluid. Methods: A prospective monocentric study was performed from September 2014 to January 2016. Inclusion criteria were two-stage procedure for prosthetic infection and agreement of the patient to participate in the study. Beside tissues samples and sonication, broad range bacterial PCRs, specific S. aureus PCRs and Unyvero-multiplex PCRs were performed on the sonicated spacer fluid. Results: 30 patients were identified (15 hip, 14 knee and 1 ankle replacements). At reimplantation, cultures of tissue samples and spacer sonication fluid were all negative. Broad range PCRs were all negative. Specific S. aureus PCRs were positive in 5 cases. We had two persistent infections and four cases of infection recurrence were observed, with bacteria different than for the initial infection in three cases. Conclusion: The three different types of PCRs did not detect any bacteria in spacer sonication fluid that was culture-negative. In our study, PCR did not improve the bacterial detection and did not help to predict whether the patient will present a persistent or recurrent infection. Prosthetic 2-stage exchange with short interval and antibiotic-impregnated spacer is an efficient treatment to eradicate infection as both culture- and molecular-based methods were unable to detect bacteria in spacer sonication fluid after reimplantation.

  7. Rapid profiling of antimicrobial compounds characterising B. subtilis TR50 cell-free filtrate by high-performance liquid chromatography coupled to high-resolution Orbitrap™ mass spectrometry.

    PubMed

    Monaci, Linda; Quintieri, Laura; Caputo, Leonardo; Visconti, Angelo; Baruzzi, Federico

    2016-01-15

    Several Bacillus strains, typically isolated from different food sources, represent renowned producers of a multitude of low and high molecular weight compounds, including lipopeptides and macrolactones, with an importance for their antimicrobial activity. The high homology shared by many of these compounds also occurring as closely related isoforms poses a challenge in their prompt detection. Identification and structural elucidation is generally achieved by matrix-assisted laser desorption/ionization (MALDI) or liquid chromatography (LC) coupled to mass spectrometry (MS) after a pre-fractionation and/or purification step of the extract. In this paper we report the application of a method based on LC separation and high-resolution Orbitrap™-based MS for the rapid screening of raw filtrate of the strain Bacillus subtilis TR50 endowed with antimicrobial activity, without requiring any sample pre-treatment. Upon direct analysis of the cell-free filtrate of Bacillus subtilis TR50 by high-resolution mass spectrometry (HRMS), different compounds families, that proved to exert a remarked antimicrobial activity against several foodborne pathogens, can be readily displayed along the chromatographic run. Among them, three different classes were identified and characterized belonging to the iturin, fengycin and surfactin groups. The high resolving power and accurate mass accuracy provided by the HRMS system in use ensured an enhanced selectivity compared to other mass spectrometers. In addition, after activation of the HCD cell, the HR-MS/MS spectra can provide insights in the structural elucidation of several compounds. The acquisition of HRMS spectra of raw filtrates of subtilis strains allows untargeted analysis of the major classes of compounds produced to be performed, thus facilitating identification of other unknown bioactive molecules after retrospective analysis. These features make this approach a fast tool applicable to the rapid screening and further identification of antimicrobial compounds released by Bacillus strains in raw filtrates. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Feasibility and accuracy of computational robot-assisted partial nephrectomy planning by virtual partial nephrectomy analysis.

    PubMed

    Isotani, Shuji; Shimoyama, Hirofumi; Yokota, Isao; China, Toshiyuki; Hisasue, Shin-ichi; Ide, Hisamitsu; Muto, Satoru; Yamaguchi, Raizo; Ukimura, Osamu; Horie, Shigeo

    2015-05-01

    To evaluate the feasibility and accuracy of virtual partial nephrectomy analysis, including a color-coded three-dimensional virtual surgical planning and a quantitative functional analysis, in predicting the surgical outcomes of robot-assisted partial nephrectomy. Between 2012 and 2014, 20 patients underwent virtual partial nephrectomy analysis before undergoing robot-assisted partial nephrectomy. Virtual partial nephrectomy analysis was carried out with the following steps: (i) evaluation of the arterial branch for selective clamping by showing the vascular-supplied area; (ii) simulation of the optimal surgical margin in precise segmented three-dimensional model for prediction of collecting system opening; and (iii) detailed volumetric analyses and estimates of postoperative renal function based on volumetric change. At operation, the surgeon identified the targeted artery and determined the surgical margin according to the virtual partial nephrectomy analysis. The surgical outcomes between the virtual partial nephrectomy analysis and the actual robot-assisted partial nephrectomy were compared. All 20 patients had negative cancer surgical margins and no urological complications. The tumor-specific renal arterial supply areas were shown in color-coded three-dimensional model visualization in all cases. The prediction value of collecting system opening was 85.7% for sensitivity and 100% for specificity. The predicted renal resection volume was significantly correlated with actual resected specimen volume (r(2) = 0.745, P < 0.001). The predicted estimated glomerular filtration rate was significantly correlated with actual postoperative estimated glomerular filtration rate (r(2) = 0.736, P < 0.001). Virtual partial nephrectomy analysis is able to provide the identification of tumor-specific renal arterial supply, prediction of collecting system opening and prediction of postoperative renal function. This technique might allow urologists to compare various arterial clamping methods and resection margins with surgical outcomes in a non-invasive manner. © 2015 The Japanese Urological Association.

  9. Broadband unidirectional ultrasound propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Dipen N.; Pantea, Cristian

    A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystalmore » provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.« less

  10. Nondestructive DNA extraction from blackflies (Diptera: Simuliidae): retaining voucher specimens for DNA barcoding projects.

    PubMed

    Hunter, Stephanie J; Goodall, Tim I; Walsh, Kerry A; Owen, Richard; Day, John C

    2008-01-01

    A nondestructive, chemical-free method is presented for the extraction of DNA from small insects. Blackflies were submerged in sterile, distilled water and sonicated for varying lengths of time to provide DNA which was assessed in terms of quantity, purity and amplification efficiency. A verified DNA barcode was produced from DNA extracted from blackfly larvae, pupae and adult specimens. A 60-second sonication period was found to release the highest quality and quantity of DNA although the amplification efficiency was found to be similar regardless of sonication time. Overall, a 66% amplification efficiency was observed. Examination of post-sonicated material confirmed retention of morphological characters. Sonication was found to be a reliable DNA extraction approach for barcoding, providing sufficient quality template for polymerase chain reaction amplification as well as retaining the voucher specimen for post-barcoding morphological evaluation. © 2007 The Authors.

  11. An Analysis of Measured Pressure Signatures From Two Theory-Validation Low-Boom Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2003-01-01

    Two wing/fuselage/nacelle/fin concepts were designed to check the validity and the applicability of sonic-boom minimization theory, sonic-boom analysis methods, and low-boom design methodology in use at the end of the 1980is. Models of these concepts were built, and the pressure signatures they generated were measured in the wind-tunnel. The results of these measurements lead to three conclusions: (1) the existing methods could adequately predict sonic-boom characteristics of wing/fuselage/fin(s) configurations if the equivalent area distributions of each component were smooth and continuous; (2) these methods needed revision so the engine-nacelle volume and the nacelle-wing interference lift disturbances could be accurately predicted; and (3) current nacelle-configuration integration methods had to be updated. With these changes in place, the existing sonic-boom analysis and minimization methods could be effectively applied to supersonic-cruise concepts for acceptable/tolerable sonic-boom overpressures during cruise.

  12. Review of sonic-boom simulation devices and techniques.

    NASA Technical Reports Server (NTRS)

    Edge, P. M., Jr.; Hubbard, H. H.

    1972-01-01

    Research on aircraft-generated sonic booms has led to the development of special techniques to generate controlled sonic-boom-type disturbances without the complications and expense of supersonic flight operations. This paper contains brief descriptions of several of these techniques along with the significant hardware items involved and indicates the advantages and disadvantages of each in research applications. Included are wind tunnels, ballistic ranges, spark discharges, piston phones, shock tubes, high-speed valve systems, and shaped explosive charges. Specialized applications include sonic-boom generation and propagation studies and the responses of structures, terrain, people, and animals. Situations for which simulators are applicable are shown to include both small-scale and large-scale laboratory tests and full-scale field tests. Although no one approach to simulation is ideal, the various techniques available generally complement each other to provide desired capability for a broad range of sonic-boom studies.

  13. Supersonic civil airplane study and design: Performance and sonic boom

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1995-01-01

    Since aircraft configuration plays an important role in aerodynamic performance and sonic boom shape, the configuration of the next generation supersonic civil transport has to be tailored to meet high aerodynamic performance and low sonic boom requirements. Computational fluid dynamics (CFD) can be used to design airplanes to meet these dual objectives. The work and results in this report are used to support NASA's High Speed Research Program (HSRP). CFD tools and techniques have been developed for general usages of sonic boom propagation study and aerodynamic design. Parallel to the research effort on sonic boom extrapolation, CFD flow solvers have been coupled with a numeric optimization tool to form a design package for aircraft configuration. This CFD optimization package has been applied to configuration design on a low-boom concept and an oblique all-wing concept. A nonlinear unconstrained optimizer for Parallel Virtual Machine has been developed for aerodynamic design and study.

  14. Prediction of sonic boom at a focus

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.; Cantril, J. M.

    1976-01-01

    The behavior of sonic boom at a focus has been reviewed for the purpose of extending present sonic boom computational methods to include focal zones. The geometry of a focal zone - whether a smooth caustic, a cusped caustic, or a perfect focus to a point - determines the character of focused signatures. The seeming contradiction of various experimental data can be resolved by noting these differences. A ray acoustic analysis has been developed for quantitative determination of caustic geometry. The only reliable theory presently available for signatures at a focus is for a smooth caustic. There has been some controversy between theoretical and experimental values of a constant in the scaling law for this case. It has been found that this discrepancy can be resolved by accounting for the finite thickness of real sonic boom shock waves. These findings have been incorporated into an existing sonic boom computer program.

  15. Influence of ultrasonication on anaerobic bioconversion of sludge.

    PubMed

    Mao, Taohong; Show, Kuan-Yeow

    2007-04-01

    The influence of ultrasonication on hydrolysis, acidogenesis, and methanogenesis in anaerobic decomposition of sludge was investigated. The sonicated sludge exhibited prehydrolysis and preacidogenesis effects in the anaerobic decomposition process. First-order hydrolysis rates increased from 0.0384 day(-1) in the control digester to 0.0672 day(-1) in the digester fed, with sludge sonicated at 0.52 W/mL. The sonication appeared to be ineffective in relation to acidogenesis reaction rates, but it provided a better buffering capacity to diminish the adverse effect of acidification. Digesters fed with sonicated sludge demonstrated enhanced methanogenesis over the control unit. Determination by coenzyme F420 verified that sonication is able to promote the growth of methanogenic biomass and facilitate a positive methanogenic microbial development in suppressing the initial methanogenesis limitation. The results suggest that ultrasonication could enhance anaerobic decomposition of sludge, resulting in an accelerated bioconversion, improved organics degradation, improved biogas production, and increased methane content.

  16. Improve the Recovery of Fermentable Sugar from Rice Straw by Sonication and Its Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Saurav; Dutta, Somenath; Datta, Sidhartha; Bhattacharjee, Chiranjib

    2012-08-01

    Rice straw is waste renewable agricultural biomass, which contains sufficient amount of fermentable sugars like glucose, galactose fructose, xylose etc. These sugars can be treated with fermentation pathway to produce ethanol. Hydrolysis of pretreated rice straw in dilute sulfuric acid was investigated at different acid concentrations (0.25-0.75 % w/v), and sonication was carried out to improve the extent of sugar extraction. The current work examines the effect of sonication on extraction of total reducing sugar (TRS) and an empirical mathematical model has been established to predict it. Effects of various operating variables of sonication, including amplitude (60-100 %), cycle (0.6-1.0), treatment time (0-15 min) have been analyzed for each acid concentration. Observation shows that on optimization of the sonication conditions (100 % amplitude, 0.8 cycle and 10 min) around 90 % improvement of TRS extraction occurs at 0.5 % (w/v) acid concentration.

  17. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    PubMed

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.

  18. Impacts of solids retention time on trace organic compound attenuation and bacterial resistance to trimethoprim and sulfamethoxazole.

    PubMed

    Neyestani, Majid; Dickenson, Eric; McLain, Jean; Robleto, Eduardo; Rock, Channah; Gerrity, Daniel

    2017-09-01

    Bacteria can grow in the presence of trimethoprim and sulfamethoxazole by expressing antibiotic resistance genes or by acquiring thymine or thymidine from environmental reservoirs to facilitate DNA synthesis. The purpose of this study was to evaluate whether activated sludge serves as a reservoir for thymine or thymidine, potentially impacting the quantification of antibiotic resistant bacteria. This study also assessed the impacts of varying solids retention time (SRT) on trimethoprim and sulfamethoxazole removal during wastewater treatment and single and multi-drug resistance. When assayed in the presence of the antibiotics at standard clinical concentrations, up to 40% increases in the relative prevalence of resistant bacteria were observed with (1) samples manually augmented with reagent-grade thymidine, (2) samples manually augmented with sonicated biomass (i.e., cell lysate), (3) samples manually augmented with activated sludge filtrate, and (4) activated sludge samples collected from reactors with longer SRTs. These observations suggest that longer SRTs may select for antibiotic resistant bacteria and/or result in false positives for antibiotic resistance due to higher concentrations of free thymine, thymidine, or other extracellular constituents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Microwave-assisted extraction of pectin from cocoa peel

    NASA Astrophysics Data System (ADS)

    Sarah, M.; Hanum, F.; Rizky, M.; Hisham, M. F.

    2018-02-01

    Pectin is a polymer of d-galacturonate acids linked by β-1,4 glycosidic bond. This study isolates pectin from cocoa peel (Theobroma cacao) using citric acid as solvent by microwave-assisted extraction method. Cocoa peels (moisture content of 10%) with citric acid solution (pH of 1.5) irradiated by microwave energy at various microwave power (180, 300, 450 and 600 W) for 10, 15, 20, 25 and 30 minutes respectively. Pectin obtained from this study was collected and filtrated by adding 96% ethanol to precipitate the pectin. The best results obtained from extraction process using microwave power of 180 Watt for 30 minutes. This combination of power and time yielded 42.3% pectin with moisture content, ash content, weight equivalent, methoxyl content and galacturonate levels were 8.08%, 5%, 833.33 mg, 6.51% and 58,08%, respectively. The result finding suggested that microwave-assisted extraction method has a great potency on the commercial pectin production.

  20. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation - A critical review.

    PubMed

    Skouteris, George; Saroj, Devendra; Melidis, Paraschos; Hai, Faisal I; Ouki, Sabèha

    2015-06-01

    This review concentrates on the effect of activated carbon (AC) addition to membrane bioreactors (MBRs) treating wastewaters. Use of AC-assisted MBRs combines adsorption, biodegradation and membrane filtration. This can lead to advanced removal of recalcitrant pollutants and mitigation of membrane fouling. The relative contribution of adsorption and biodegradation to overall removal achieved by an AC-assisted MBR process can vary, and "biological AC" may not fully develop due to competition of target pollutants with bulk organics in wastewater. Thus periodic replenishment of spent AC is necessary. Sludge retention time (SRT) governs the frequency of spent AC withdrawal and addition of fresh AC, and is an important parameter that significantly influences the performance of AC-assisted MBRs. Of utmost importance is AC dosage because AC overdose may aggravate membrane fouling, increase sludge viscosity, impair mass transfer and reduce sludge dewaterability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Sonic CPT Probing in Support of DNAPL Characterization

    DTIC Science & Technology

    2000-11-21

    directed at developing advanced sensors for delivery by the cone penetrometer. To accommodate these new sensors , probe sizes have increased (from 1.44-in...capability of the CPT, a sonic vibratory system was integrated with conventional CPT to advance cone penetrometer sensor packages past currently attainable...Sonic, Cone Penetrometer, Site Characterization, Fluorescense, Sensor , Shock Hardened Sensors , Geoprobe• 17. SECURITY CLASSIFICATION OF REPORT

  2. Hawking radiation in sonic black holes.

    PubMed

    Giovanazzi, S

    2005-02-18

    I present a microscopic description of Hawking radiation in sonic black holes. A one-dimensional Fermi-degenerate liquid squeezed by a smooth barrier forms a transonic flow, a sonic analog of a black hole. The quantum treatment of the noninteracting case establishes a close relationship between sonic Hawking radiation and quantum tunneling through the barrier. Quasiparticle excitations appear at the barrier and are then radiated with a thermal distribution in exact agreement with Hawking's formula. The signature of the radiation can be found in the dynamic structure factor, which can be measured in a scattering experiment. The possibility for experimental verification of this new transport phenomenon for ultracold atoms is discussed.

  3. Real-Time, Interactive Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  4. State of the art of sonic boom modeling

    NASA Astrophysics Data System (ADS)

    Plotkin, Kenneth J.

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  5. State of the art of sonic boom modeling.

    PubMed

    Plotkin, Kenneth J

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  6. Sonic boom generated by a slender body aerodynamically shaded by a disk spike

    NASA Astrophysics Data System (ADS)

    Potapkin, A. V.; Moskvichev, D. Yu.

    2018-03-01

    The sonic boom generated by a slender body of revolution aerodynamically shaded by another body is numerically investigated. The aerodynamic shadow is created by a disk placed upstream of the slender body across a supersonic free-stream flow. The disk size and its position upstream of the body are chosen in such a way that the aerodynamically shaded flow is quasi-stationary. A combined method of phantom bodies is used for sonic boom calculations. The method is tested by calculating the sonic boom generated by a blunted body and comparing the results with experimental investigations of the sonic boom generated by spheres of various diameters in ballistic ranges and wind tunnels. The test calculations show that the method of phantom bodies is applicable for calculating far-field parameters of shock waves generated by both slender and blunted bodies. A possibility of reducing the shock wave intensity in the far field by means of the formation of the aerodynamic shadow behind the disk placed upstream of the body is estimated. The calculations are performed for the incoming flow with the Mach number equal to 2. The effect of the disk size on the sonic boom level is calculated.

  7. The Binding Mode of the Sonic Hedgehog Inhibitor Robotnikinin, a combined Docking and QM/MM MD Study.

    NASA Astrophysics Data System (ADS)

    Hitzenberger, Manuel; Schuster, Daniela; Hofer, Thomas S.

    2017-10-01

    Erroneous activation of the Hedgehog pathway has been linked to a great amount of cancerous diseases and therefore a large number of studies aiming at its inhibition have been carried out. One leverage point for novel therapeutic strategies targeting the proteins involved, is the prevention of complex formation between the extracellular signaling protein Sonic Hedgehog and the transmembrane protein Patched 1. In 2009 robotnikinin, a small molecule capable of binding to and inhibiting the activity of Sonic Hedgehog has been identified, however in the absence of X-ray structures of the Sonic Hedgehog-robotnikinin complex, the binding mode of this inhibitor remains unknown. In order to aid with the identification of novel Sonic Hedgehog inhibitors, the presented investigation elucidates the binding mode of robotnikinin by performing an extensive docking study, including subsequent molecular mechanical as well as quantum mechanical/molecular mechanical molecular dynamics simulations. The attained configurations enabled the identification of a number of key protein-ligand interactions, aiding complex formation and providing stabilizing contributions to the binding of the ligand. The predicted structure of the Sonic Hedgehog-robotnikinin complex is provided via a PDB file as supplementary material and can be used for further reference.

  8. Sonic Boom Computations for a Mach 1.6 Cruise Low Boom Configuration and Comparisons with Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa A.; Cliff, Susan E.; Wilcox, Floyd; Nemec, Marian; Bangert, Linda; Aftosmis, Michael J.; Parlette, Edward

    2011-01-01

    Accurate analysis of sonic boom pressure signatures using computational fluid dynamics techniques remains quite challenging. Although CFD shows accurate predictions of flow around complex configurations, generating grids that can resolve the sonic boom signature far away from the body is a challenge. The test case chosen for this study corresponds to an experimental wind-tunnel test that was conducted to measure the sonic boom pressure signature of a low boom configuration designed by Gulfstream Aerospace Corporation. Two widely used NASA codes, USM3D and AERO, are examined for their ability to accurately capture sonic boom signature. Numerical simulations are conducted for a free-stream Mach number of 1.6, angle of attack of 0.3 and Reynolds number of 3.85x10(exp 6) based on model reference length. Flow around the low boom configuration in free air and inside the Langley Unitary plan wind tunnel are computed. Results from the numerical simulations are compared with wind tunnel data. The effects of viscous and turbulence modeling along with tunnel walls on the computed sonic boom signature are presented and discussed.

  9. USAF Flight Test Investigation of Focused Sonic Booms: Project Have Bears

    NASA Technical Reports Server (NTRS)

    Downing, Micah; Zamot, Noel; Moss, Chris; Morin, Daniel; Wolski, Ed; Chung, Sukhwan; Plotkin, Kenneth; Maglieri, Domenic

    1996-01-01

    Supersonic operations from military aircraft generate sonic booms that can affect people, animals and structures. A substantial experimental data base exists on sonic booms for aircraft in steady flight and confidence in the predictive techniques has been established. All the focus sonic boom data that are in existence today were collected during the 60's and 70's as part of the information base to the US Supersonic Transport program and the French Jericho studies for the Concorde. These experiments formed the data base to develop sonic boom propagation and prediction theories for focusing. There is a renewed interest in high-speed transports for civilian application. Moreover, today's fighter aircraft have better performance capabilities, and supersonic flights ars more common during air combat maneuvers. Most of the existing data on focus booms are related to high-speed civil operations such as transitional linear accelerations and mild turns. However, military aircraft operating in training areas perform more drastic maneuvers such as dives and high-g turns. An update and confirmation of USAF prediction capabilities is required to demonstrate the ability to predict and control sonic boom impacts, especially those produced by air combat maneuvers.

  10. Numerical Investigation of the Influence of the Configuration Parameters of a Supersonic Passenger Aircraft on the Intensity of Sonic Boom

    NASA Astrophysics Data System (ADS)

    Volkov, V. F.; Mazhul', I. I.

    2018-01-01

    Results of calculations of the sonic boom produced by a supersonic passenger aircraft in a cruising regime of flight at the Mach number M = 2.03 are presented. Consideration is given to the influence of the lateral dihedral of the wings and the angle of their setting, and also of different locations of the aircraft engine nacelles on the wing. An analysis of parametric calculations has shown that the intensities of sonic boom generated by a configuration with a dihedral rear wing and by a configuration with set wings remain constant, in practice, and correspond to the intensity level created by the optimum configuration. Comparative assessments of sonic boom for tandem configurations with different locations of the engine nacelles on the wing surface have shown that the intensity of sonic boom generated by the configuration with an engine nacelle on the windward side can be reduced by 14% compared to the configuration without engine nacelles. In the case of the configuration with engine nacelles on the leeward size of the wing, the profile of the sonic-boom wave degenerates into an N-wave, in which the intensity of the bow shock is significantly reduced.

  11. Effect of ultrasound and chemical treatment on total phenol, flavonoids and antioxidant properties on carrot-grape juice blend during storage.

    PubMed

    Nadeem, Muhammad; Ubaid, Numra; Qureshi, Tahir Mahmood; Munir, Masooma; Mehmood, Arshad

    2018-07-01

    Ultrasonics is one of the developing technologies which is being studied extensively on different food commodities. Our aim was to study the effect of sonication and chemical (Potassium metabisulfite, K 2 S 2 O 5 ,) preservation method on grape-carrot juice blend. Sonication/ultrasound treatments (20 kHz frequency, 70% amplitude level (525 W power), and pulse duration 5 s on and 5 s off, 5 min at 15 °C) of all the samples (250 mL) were performed by using an ultrasonic processor with 0.5 in. probe at 2 in. depth of the sample. Additionally, impact of sonication on 90 days of storage period at refrigerated temperature was also measured. It was observed that sonication had a positive effect on nutritional status of juice blend as it enhanced the total phenolic, flavonoid, reducing power and antioxidant properties of juice significantly (p < 0.05) with increase in sonication time. Sonication can be employed successfully for treatment of juice with better nutritional attributes from consumers' point of view. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Experimental and Computational Sonic Boom Assessment of Lockheed-Martin N+2 Low Boom Models

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Durston, Donald A.; Elmiligui, Alaa A.; Walker, Eric L.; Carter, Melissa B.

    2015-01-01

    Flight at speeds greater than the speed of sound is not permitted over land, primarily because of the noise and structural damage caused by sonic boom pressure waves of supersonic aircraft. Mitigation of sonic boom is a key focus area of the High Speed Project under NASA's Fundamental Aeronautics Program. The project is focusing on technologies to enable future civilian aircraft to fly efficiently with reduced sonic boom, engine and aircraft noise, and emissions. A major objective of the project is to improve both computational and experimental capabilities for design of low-boom, high-efficiency aircraft. NASA and industry partners are developing improved wind tunnel testing techniques and new pressure instrumentation to measure the weak sonic boom pressure signatures of modern vehicle concepts. In parallel, computational methods are being developed to provide rapid design and analysis of supersonic aircraft with improved meshing techniques that provide efficient, robust, and accurate on- and off-body pressures at several body lengths from vehicles with very low sonic boom overpressures. The maturity of these critical parallel efforts is necessary before low-boom flight can be demonstrated and commercial supersonic flight can be realized.

  13. Particle formation induced by sonication during yogurt fermentation - Impact of exopolysaccharide-producing starter cultures on physical properties.

    PubMed

    Körzendörfer, Adrian; Nöbel, Stefan; Hinrichs, Jörg

    2017-07-01

    Two major quality defects of yogurt are syneresis and the presence of large particles, and several reasons have been extensively discussed. Vibrations during fermentation, particularly generated by pumps, must be considered as a further cause as latest research showed that both ultrasound and low frequencies induced visible particles. The aim of this study was to investigate the impact of sonication during fermentation with starter cultures differing in exopolysaccharide (EPS) synthesis on the physical properties of set (syneresis, firmness) and stirred yogurt (large particles, laser diffraction, rheology). Skim milk was fermented with starter cultures YC-471 (low EPS) or YF-L 901 (high EPS) (Chr. Hansen) and sonicated for 5min at pH5.2. Sonicated set gels exhibited syneresis and were softer than respective controls. The mechanical treatment was adjusted to quantify visible particles (d≥0.9mm) in stirred yogurts properly. Sonication significantly increased particle numbers, however, the effect was less pronounced when YF-L 901 was used, indicating EPS as a tool to reduce syneresis and particle formation due to vibrations. Rheological parameters and size of microgel particles were rather influenced by starter cultures than by sonication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Rapid Molecular Microbiologic Diagnosis of Prosthetic Joint Infection

    PubMed Central

    Cazanave, Charles; Greenwood-Quaintance, Kerryl E.; Hanssen, Arlen D.; Karau, Melissa J.; Schmidt, Suzannah M.; Gomez Urena, Eric O.; Mandrekar, Jayawant N.; Osmon, Douglas R.; Lough, Lindsay E.; Pritt, Bobbi S.; Steckelberg, James M.

    2013-01-01

    We previously showed that culture of samples obtained by prosthesis vortexing and sonication was more sensitive than tissue culture for prosthetic joint infection (PJI) diagnosis. Despite improved sensitivity, culture-negative cases remained; furthermore, culture has a long turnaround time. We designed a genus-/group-specific rapid PCR assay panel targeting PJI bacteria and applied it to samples obtained by vortexing and sonicating explanted hip and knee prostheses, and we compared the results to those with sonicate fluid and periprosthetic tissue culture obtained at revision or resection arthroplasty. We studied 434 subjects with knee (n = 272) or hip (n = 162) prostheses; using a standardized definition, 144 had PJI. Sensitivities of tissue culture, of sonicate fluid culture, and of PCR were 70.1, 72.9, and 77.1%, respectively. Specificities were 97.9, 98.3, and 97.9%, respectively. Sonicate fluid PCR was more sensitive than tissue culture (P = 0.04). PCR of prosthesis sonication samples is more sensitive than tissue culture for the microbiologic diagnosis of prosthetic hip and knee infection and provides same-day PJI diagnosis with definition of microbiology. The high assay specificity suggests that typical PJI bacteria may not cause aseptic implant failure. PMID:23658273

  15. Methodology on quantification of sonication duration for safe application of MR guided focused ultrasound for liver tumour ablation.

    PubMed

    Mihcin, Senay; Karakitsios, Ioannis; Le, Nhan; Strehlow, Jan; Demedts, Daniel; Schwenke, Michael; Haase, Sabrina; Preusser, Tobias; Melzer, Andreas

    2017-12-01

    Magnetic Resonance Guided Focused Ultrasound (MRgFUS) for liver tumour ablation is a challenging task due to motion caused by breathing and occlusion due the ribcage between the transducer and the tumour. To overcome these challenges, a novel system for liver tumour ablation during free breathing has been designed. The novel TRANS-FUSIMO Treatment System (TTS, EUFP7) interacts with a Magnetic Resonance (MR) scanner and a focused ultrasound transducer to sonicate to a moving target in liver. To meet the requirements of ISO 13485; a quality management system for medical device design, the system needs to be tested for certain process parameters. The duration of sonication and, the delay after the sonication button is activated, are among the parameters that need to be quantified for efficient and safe ablation of tumour tissue. A novel methodology is developed to quantify these process parameters. A computerised scope is programmed in LabVIEW to collect data via hydrophone; where the coordinates of fiber-optic sensor assembly was fed into the TRANS-FUSIMO treatment software via Magnetic Resonance Imaging (MRI) to sonicate to the tip of the sensor, which is synchronised with the clock of the scope, embedded in a degassed water tank via sensor assembly holder. The sonications were executed for 50 W, 100 W, 150 W for 10 s to quantify the actual sonication duration and the delay after the emergency stop by two independent operators for thirty times. The deviation of the system from the predefined specs was calculated. Student's-T test was used to investigate the user dependency. The duration of sonication and the delay after the sonication were quantified successfully with the developed method. TTS can sonicate with a maximum deviation of 0.16 s (Std 0.32) from the planned duration and with a delay of 14 ms (Std 0.14) for the emergency stop. Student's T tests indicate that the results do not depend on operators (p > .05). The evidence obtained via this protocol is crucial for translation- of-research into the clinics for safe application of MRgFUS. The developed protocol could be used for system maintenance in compliance with quality systems in clinics for daily quality assurance routines. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent.

    PubMed

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Tomao, Valérie; Cravotto, Giancarlo; Chemat, Farid

    2013-01-01

    A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography--diode array detector--mass spectroscopy (UPLC-DAD-MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm(-2), temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace.

    PubMed

    He, Bo; Zhang, Ling-Li; Yue, Xue-Yang; Liang, Jin; Jiang, Jun; Gao, Xue-Ling; Yue, Peng-Xiang

    2016-08-01

    Ultrasound-Assisted Extraction (UAE) of total anthocyanins (TA) and phenolics (TP) from Blueberry Wine Pomace (BWP) was optimized using Response Surface Methodology (RSM). A Box-Behnken design was used to predict that the optimized conditions were an extraction temperature of 61.03°C, a liquid-solid ratio of 21.70mL/g and a sonication time of 23.67min. Using the modeled optimized conditions, the predicted and experimental yields of TA and TP were within a 2% difference. The yields of TA and TP obtained through the optimized UAE method were higher than those using a Conventional Solvent Extraction (CSE) method. Seven anthocyanins, namely delphinidin-3-O-glucoside, delphindin-3-O-arabinoside, petunidin-3-O-glucoside, cyanidin-3-O-arabinoside, cyanidin-3-O-glucoside, malvidin-3-O-glucoside and malvidin-3-O-arabinoside, were found in the BWP extract from both the UAE and CSE methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Ionic liquid based ultrasonication-assisted extraction of essential oil from the leaves of Persicaria minor and conductor-like screening model for realistic solvents study].

    PubMed

    Habib, Ullah; Cecilia, D Wilfred; Maizatul, S Shaharun

    2017-06-08

    Ionic liquids (ILs) based ultrasonic-assisted extract has been applied for the extraction of essential oil from Persicaria minor leaves. The effects of temperature, sonication time, and particle size of the plant material on the yield of essential oil were investigated. Among the different ILs employed, 1-ethyl-3-methylimidazolium acetate was the most effective, providing a 9.55% yield of the essential oil under optimum conditions (70 ℃, 25 min, IL:hexane ratio of 7:10 (v/v), particle size 60-80 mesh). The performance of 1-ethyl-3-methylimidazolium acetate in the extraction was attributed to its low viscosity and ability to disintegrate the structural matrix of the plant material. The ability of 1-ethyl-3-methylimidazolium acetate was also confirmed using the conductor like-screening model for realistic solvents. This research proves that ILs can be used to extract essential oils from lignocellulosic biomass.

  19. Ultrasound-assisted in-situ transesterification of wet Aurantiochytrium sp. KRS 101 using potassium carbonate.

    PubMed

    Sung, Mina; Han, Jong-In

    2018-08-01

    A new in-situ transesterification method was developed for wet biomass: K 2 CO 3 was used as an alkaline catalyst and, Aurantiochytrium sp. KRS 101 as oleaginous DHA-producing microalgae. It was found that the presence of water greatly impaired the overall efficiency even with the powerful catalyst that had worked surpassingly well with dry biomass, and thus a mechanical aid like ultrasonication was needed to make advantage of full potential of the alkaline catalyst. The total fatty acid ethyl ester (FAEE) recovery yield of 94.6% was achieved with sonication at 100 g/L of biomass (40% moisture), 3% of K 2 CO 3 , 70 °C and 30 min. All these suggest that the ultrasound assisted in-situ transesterification can offer a feasible means for FAEE recovery and it was so by way of overcoming the physical limitation of mass transfer caused the presence of water and providing effective contacts between reactants. Copyright © 2018. Published by Elsevier Ltd.

  20. Using FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) to isolate active regulatory DNA

    PubMed Central

    Simon, Jeremy M.; Giresi, Paul G.; Davis, Ian J.; Lieb, Jason D.

    2013-01-01

    Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements of the eukaryotic genome. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are crosslinked briefly with formaldehyde, lysed, and sonicated. Sheared chromatin is subjected to phenol-chloroform extraction and the isolated DNA, typically encompassing 1–3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays, or next-generation sequencing. Regulatory elements enriched by FAIRE display high concordance with those identified by nuclease hypersensitivity or ChIP, and the entire procedure can be completed in three days. FAIRE exhibits low technical variability, which allows its use in large-scale studies of chromatin from normal or diseased tissues. PMID:22262007

  1. Ultrasound-Assisted Synthesis of Titania Nanoparticles, Characterization of Their Thin Films, and Activity in Photooxidation of β-Naphthol

    NASA Astrophysics Data System (ADS)

    Hurain, Syyeda Sana; Habib, Amir; Hussain, Syed Muzammil; Ul-Haq, Noaman

    2015-11-01

    Nanosized titania (TiO2) films and powders were prepared from titanium isopropoxide by ultrasonication then ultrasonic aerosol-assisted chemical vapor deposition (UAACVD). X-ray diffraction (XRD), used to study the crystal structure, phase, and crystallite size of TiO2 samples annealed at 500°C, revealed anatase was the main crystalline phase. Scanning electron microscopy and atomic force microscopy revealed the quasi-spherical morphology of the TiO2 nanoparticles; average size distribution was in the range 20-35 nm. Ultraviolet-visible spectroscopy was used to evaluate the photocatalytic activity of the anatase TiO2, on the basis of efficiency of degradation of β-naphthol. Pure TiO2 nanoparticles synthesized by use of sonication-UAACVD then calcination at 500°C enabled effective photodegradation under UV light. This method of synthesis of TiO2 is superior to the reflux-UAACVD method with titanium isopropoxide as precursor.

  2. Isolation and characterization of cellulose nanofibrils from Colombian Fique decortication by-products.

    PubMed

    Ovalle-Serrano, S A; Gómez, F N; Blanco-Tirado, C; Combariza, M Y

    2018-06-01

    Fique fibers are extracted from Furcraea spp. leaves, with 5% average mass yield, using mechanical decortication. Juice, pulp and tow, the by-products of this process, amount 95% of the leaf weight and are considered waste. We extracted cellulose nanofibrils (CNF) from Fique tow, via ultrasound-assisted TEMPO followed by mechanical disintegration with sonication. Fique CNF exhibit diameters around 100 nm, degree of oxidation (DO) of 0.27 and surface charge density (σ) of 1.6 mmol/g. Fique CNF aqueous suspensions show optical birefringence and high colloidal stability due to a high ζ potential (-53 mV). The morphology, chemical structure, crystallinity and phase transitions of Fique CNF were studied using FESEM, IR-ATR, XRD and TGA. We observed that the delignification pretreatment and the TEMPO reaction assisted by ultrasound significantly increase Fique CNF σ and ζ potential, in contrast with the oxidation carried out without ultrasound or with raw (lignified) tow. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Potential effect of ultrasound on carbohydrates.

    PubMed

    Bera, Smritilekha; Mondal, Dhananjoy; Martin, Jacob T; Singh, Man

    2015-06-17

    The use of ultrasound has emerged as one of the most useful alternative energy sources for the synthesis of carbohydrate-derived biologically and pharmaceutically potential compounds. Spectacular advances have been made in the field of sonication-assisted organic reactions, which are known for producing superior yields, enhanced reactivity of the reactant, improved stereoselectivity, and shortened reaction times. Orthogonal protection-deprotection reactions and/or modification and manipulation of functional groups in carbohydrates are common synthetic steps in carbohydrate chemistry. These reaction steps can be driven by the ultrasonic energy generated by acoustic cavitation via the formation and subsequent collapse of ultrasound-induced bubbles. The ultrasound-assisted synthesis of differently functionalised monosaccharides is useful in a wide variety of applications of carbohydrate chemistry such as the glycosylation of oligosaccharides, one pot domino reactions, thioglycoside syntheses, azidoglycoside syntheses, 1,3-dipolar cycloaddition reactions, and syntheses of natural products. This review article covers ultrasound-mediated reactions on carbohydrates that have been described in the literature since 2000. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Synthesis of green Fe3+/glucose/rGO electrode for supercapacitor application assisted by chemical exfoliation process from burning coconut shell

    NASA Astrophysics Data System (ADS)

    Putra, Gilang B. A.; Pradana, Herdy Y.; Soenaryo, Dimas E. T.; Baqiya, Malik A.; Darminto

    2018-04-01

    For the goal of large, environmental - friendly, renewable, and inexpensive energy storage, the development of supercapacitor electrodes is needed, by anchoring transition metal oxide (Fe3+ ion) as pseudo capacitor electrode material with reduced graphene oxide (rGO) from an old coconut shell as electrochemical double layer capacitor (EDLC). This porous electrode composite is prepared by sonication and chemical exfoliation assisted by acid. Synthesis of supercapacitor is also added by glucose, which acts as a spacer between layers of rGO to increase the capacitance, also as binder between the materials used. Combining Fe3+ with old coconut shell rGO give high specific capacitance of up to 99 F/g at a potential window of -1 V to 1 V. The Fe3+/glucose/rGO electrode has thickness of up to 57 nm (from PSA result) and give a uniform distribution from EDX mapping with disperse Fe domains and not bonding with rGO.

  5. Synthesis and application of magnetic deep eutectic solvents: Novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene.

    PubMed

    Khezeli, Tahere; Daneshfar, Ali

    2017-09-01

    Two novel magnetic deep eutectic solvents (MDESs), comprised of cheap and simple components named [choline chloride/phenol] [FeCl 4 ] and [choline chloride/ethylene glycol] [FeCl 4 ] were prepared and characterized by CHN elemental analysis, proton nuclear magnetic resonance ( 1 H NMR), vibrating sample magnetometery (VSM), Raman, Fourier transform-infrared (FT-IR) and UV-Vis spectrometery. The extraction efficiency of the prepared MDESs has been investigated in ultrasound assisted liquid-liquid microextraction based MDES (UALLME-MDES). Briefly, MDESs were added to n-heptan containing thiophene. Then, MDESs were dispersed in n-heptane by sonication. After that, microdroplets of MDESs were collected by a magnet and the remained concentration of thiophene in n-heptane phase was analyzed by GC-FID. The results indicated that [choline chloride/phenol] [FeCl 4 ] has higher extraction efficiency than [choline chloride/ethylene glycol] [FeCl 4 ]. This work opens a new way to the application of MDESs. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Determination of volatile components of green, black, oolong and white tea by optimized ultrasound-assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography.

    PubMed

    Sereshti, Hassan; Samadi, Soheila; Jalali-Heravi, Mehdi

    2013-03-08

    Ultrasound assisted extraction (UAE) followed by dispersive liquid-liquid microextraction (DLLME) was used for extraction and preconcentration of volatile constituents of six tea plants. The preconcentrated compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Totally, 42 compounds were identified and caffeine was quantitatively determined. The main parameters (factors) of the extraction process were optimized by using a central composite design (CCD). Methanol and chloroform were selected as the extraction solvent and preconcentration solvent, respectively .The optimal conditions were obtained as 21 in for sonication time; 32°C for temperature; 27 L for volume of extraction solvent and 7.4% for salt concentration (NaCl/H(2)O). The determination coefficient (R(2)) was 0.9988. The relative standard deviation (RSD %) was 4.8 (n=5), and the enhancement factors (EFs) were 4.0-42.6. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Jeffrey J.

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of themore » gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.« less

  8. SCAMP: Rapid Focused Sonic Boom Waypoint Flight Planning Methods, Execution, and Results

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Cliatt, Larry J., II; Delaney, Michael M., Jr.; Plotkin, Kenneth J.; Maglieri, Domenic J.; Brown, Jacob C.

    2012-01-01

    Successful execution of the flight phase of the Superboom Caustic Analysis and Measurement Project (SCAMP) required accurate placement of focused sonic booms on an array of prepositioned ground sensors. While the array was spread over a 10,000-ft-long area, this is a relatively small region when considering the speed of a supersonic aircraft and sonic boom ray path variability due to shifting atmospheric conditions and aircraft trajectories. Another requirement of the project was to determine the proper position for a microphone-equipped motorized glider to intercept the sonic boom caustic, adding critical timing to the constraints. Variability in several inputs to these calculations caused some shifts of the focus away from the optimal location. Reports of the sonic booms heard by persons positioned amongst the array were used to shift the focus closer to the optimal location for subsequent passes. This paper describes the methods and computations used to place the focused sonic boom on the SCAMP array and gives recommendations for their accurate placement by future quiet supersonic aircraft. For the SCAMP flights, 67% of the foci were placed on the ground array with measured positions within a few thousand feet of computed positions. Among those foci with large caustic elevation angles, 96% of foci were placed on the array, and measured positions were within a few hundred feet of computed positions. The motorized glider captured sonic booms on 59% of the passes when the instrumentation was operating properly.

  9. Treatment of subgingival implant surfaces with Teflon-coated sonic and ultrasonic scaler tips and various implant curettes. An in vitro study.

    PubMed

    Rühling, A; Kocher, T; Kreusch, J; Plagmann, H C

    1994-03-01

    Removal of plaque and calculus by means of sonic and ultrasonic scalers causes considerable damage to implants. With a view to avoiding the aggressive effects of these instruments, an experimental study was carried out for which conventional sonic and ultrasonic scalers were coated with Teflon. The effects of these instruments on implant surfaces was then compared with that of plastic and metal implant curettes. Stereo-microscopy, scanning electron microscopy and surface profilometry were used to detect and record damage to implant surfaces and changes in surface roughness. Generation and propagation of heat in subgingival simulation of use of sonic and ultrasonic scalers were also recorded by means of temperature measurements at the implant surface. The results revealed that no discernible damage was caused by Teflon-coated sonic and ultrasonic scalers or implant curettes made of plastic on smooth titanium surfaces. Instrument material residues were found on rough implant surfaces. It was not the intention of this study to provide an analysis of the prerequisites for the cleaning of rough implant surfaces, but rather to determine what type of damage is to be expected when contact is made with smooth and rough surfaces unintentionally. Temperature measurements during the subgingival use of sonic and ultrasonic scalers indicated satisfactory functioning of the cooling system. Coating of sonic and ultrasonic scaler tips with Teflon thus facilitates the use of high-frequency instruments to achieve professional cleaning of implants.

  10. An analytical model of SAGD process considering the effect of threshold pressure gradient

    NASA Astrophysics Data System (ADS)

    Morozov, P.; Abdullin, A.; Khairullin, M.

    2018-05-01

    An analytical model is proposed for the development of super-viscous oil deposits by the method of steam-assisted gravity drainage, taking into account the nonlinear filtration law with the limiting gradient. The influence of non-Newtonian properties of oil on the productivity of a horizontal well and the cumulative steam-oil ratio are studied. Verification of the proposed model based on the results of physical modeling of the SAGD process was carried out.

  11. Adaption of Machine Fluid Analysis for Manufacturing - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardini, Allan F.

    2005-08-16

    Pacific Northwest National Laboratory (PNNL: Operated by Battelle Memorial Institute for the Department of Energy) is working with the Department of Energy (DOE) to develop technology for the US mining industry. Filtration and lubricant suppliers to the pulp and paper industry had noted the recent accomplishments by PNNL and its industrial partners in the DOE OIT Mining Industry of the Future Program, and asked for assistance in adapting this DOE-funded technology to the pulp and paper industry.

  12. HIV Viral RNA Extraction in Wax Immiscible Filtration Assisted by Surface Tension (IFAST) Devices

    PubMed Central

    Berry, Scott M.; LaVanway, Alex J.; Pezzi, Hannah M.; Guckenberger, David J.; Anderson, Meghan A.; Loeb, Jennifer M.; Beebe, David J.

    2015-01-01

    The monitoring of viral load is critical for proper management of antiretroviral therapy for HIV-positive patients. Unfortunately, in the developing world, significant economic and geographical barriers exist, limiting access to this test. The complexity of current viral load assays makes them expensive and their access limited to advanced facilities. We attempted to address these limitations by replacing conventional RNA extraction, one of the essential processes in viral load quantitation, with a simplified technique known as immiscible filtration assisted by surface tension (IFAST). Furthermore, these devices were produced via the embossing of wax, enabling local populations to produce and dispose of their own devices with minimal training or infrastructure, potentially reducing the total assay cost. In addition, IFAST can be used to reduce cold chain dependence during transportation. Viral RNA extracted from raw samples stored at 37°C for 1 week exhibited nearly complete degradation. However, IFAST-purified RNA could be stored at 37°C for 1 week without significant loss. These data suggest that RNA isolated at the point of care (eg, in a rural clinic) via IFAST could be shipped to a central laboratory for quantitative RT-PCR without a cold chain. Using this technology, we have demonstrated accurate and repeatable measurements of viral load on samples with as low as 50 copies per milliliter of sample. PMID:24613822

  13. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  14. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  15. NASA Dryden's F-15B aircraft with the Gulfstream Quiet Spike sonic boom mitigator attached undergoes ground vibration testing in preparation for test flights

    NASA Image and Video Library

    2006-05-01

    NASA Dryden's F-15B testbed aircraft with the Gulfstream Quiet Spike sonic boom mitigator attached undergoes ground vibration testing in preparation for test flights. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  16. Ultrasound assisted biogas production from landfill leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions formore » solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.« less

  17. Development of the ultrastructure of sonic muscles: a kind of neoteny?

    PubMed Central

    2014-01-01

    Background Drumming muscles of some sound-producing fish are ‘champions’ of contraction speed, their rate setting the fundamental frequency. In the piranha, contraction of these muscles at 150 Hz drives a sound at the same frequency. Drumming muscles of different not closely related species show evolutionary convergences. Interestingly, some characters of sonic muscles can also be found in the trunk muscles of newly hatched larvae that are able to maintain tail beat frequencies up to 100 Hz. The aim of this work was to study the development of sound production and sonic and epaxial muscles simultaneously in the red bellied piranhas (Pygocentrus nattereri) to seek for possible common characteristics. Results Call, pulse and period durations increased significantly with the fish size, but the call dominant frequencies decreased, and the number of pulses and the call amplitude formed a bell curve. In epaxial muscles, the fibre diameters of younger fish are first positioned in the graphical slope corresponding to sonic muscles, before diverging. The fibre diameter of older fish trunk muscles was bigger, and the area of the myofibrils was larger than in sonic muscles. Moreover, in two of the biggest fish, the sonic muscles were invaded by fat cells and the sonic muscle ultrastructure was similar to the epaxial one. These two fish were also unable to produce any sound, meaning they lost their ability to contract quickly. Conclusions The volume occupied by myofibrils determines the force of contraction, the volume of sarcoplasmic reticulum sets the contraction frequency, and the volume of mitochondria sets the level of sustained performance. The functional outcomes in muscles are all attributable to shifts in the proportions of those structures. A single delay in the development restricts the quantity of myofibrils, maintains a high proportion of space in the sarcoplasm and develops sarcoplasmic reticulum. High-speed sonic muscles could thus be skeletal muscles with delayed development. This hypothesis has the advantage that it could easily explain why high-speed sonic muscles have evolved so many times in different lineages. PMID:24507247

  18. Could an endoneurial endothelial crosstalk between Wnt/β-catenin and Sonic Hedgehog pathways underlie the early disruption of the infra-orbital blood-nerve barrier following chronic constriction injury?

    PubMed

    Moreau, Nathan; Mauborgne, Annie; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette B; Villanueva, Luis; Pohl, Michel; Boucher, Yves

    2017-01-01

    Blood–nerve barrier disruption is pivotal in the development of neuroinflammation, peripheral sensitization, and neuropathic pain after peripheral nerve injury. Activation of toll-like receptor 4 and inactivation of Sonic Hedgehog signaling pathways within the endoneurial endothelial cells are key events, resulting in the infiltration of harmful molecules and immunocytes within the nerve parenchyma. However, we showed in a previous study that preemptive inactivation of toll-like receptor 4 signaling or sustained activation of Sonic Hedgehog signaling did not prevent the local alterations observed following peripheral nerve injury, suggesting the implication of another signaling pathway. Using a classical neuropathic pain model, the infraorbital nerve chronic constriction injury (IoN-CCI), we investigated the role of the Wnt/β-catenin pathway in chronic constriction injury-mediated blood–nerve barrier disruption and in its interactions with the toll-like receptor 4 and Sonic Hedgehog pathways. In the IoN-CCI model versus control, mRNA expression levels and/or immunochemical detection of major Wnt/Sonic Hedgehog pathway (Frizzled-7, vascular endothelial-cadherin, Patched-1 and Gli-1) and/or tight junction proteins (Claudin-1, Claudin-5, and Occludin) readouts were assessed. Vascular permeability was assessed by sodium fluorescein extravasation. IoN-CCI induced early alterations in the vascular endothelial-cadherin/β-catenin/Frizzled-7 complex, shown to participate in local blood–nerve barrier disruption via a β-catenin-dependent tight junction protein downregulation. Wnt pathway also mediated a crosstalk between toll-like receptor 4 and Sonic Hedgehog signaling within endoneurial endothelial cells. Nevertheless, preemptive inhibition of Wnt/β-catenin signaling before IoN-CCI could not prevent the downregulation of key Sonic Hedgehog pathway readouts or the disruption of the infraorbital blood–nerve barrier, suggesting that Sonic Hedgehog pathway inhibition observed following IoN-CCI is an independent event responsible for blood–nerve barrier disruption. A crosstalk between Wnt/β-catenin- and Sonic Hedgehog-mediated signaling pathways within endoneurial endothelial cells could mediate the chronic disruption of the blood–nerve barrier following IoN-CCI, resulting in increased irreversible endoneurial vascular permeability and neuropathic pain development.

  19. Motion-Corrected 3D Sonic Anemometer for Tethersondes and Other Moving Platforms

    NASA Technical Reports Server (NTRS)

    Bognar, John

    2012-01-01

    To date, it has not been possible to apply 3D sonic anemometers on tethersondes or similar atmospheric research platforms due to the motion of the supporting platform. A tethersonde module including both a 3D sonic anemometer and associated motion correction sensors has been developed, enabling motion-corrected 3D winds to be measured from a moving platform such as a tethersonde. Blimps and other similar lifting systems are used to support tethersondes meteorological devices that fly on the tether of a blimp or similar platform. To date, tethersondes have been limited to making basic meteorological measurements (pressure, temperature, humidity, and wind speed and direction). The motion of the tethersonde has precluded the addition of 3D sonic anemometers, which can be used for high-speed flux measurements, thereby limiting what has been achieved to date with tethersondes. The tethersonde modules fly on a tether that can be constantly moving and swaying. This would introduce enormous error into the output of an uncorrected 3D sonic anemometer. The motion correction that is required must be implemented in a low-weight, low-cost manner to be suitable for this application. Until now, flux measurements using 3D sonic anemometers could only be made if the 3D sonic anemometer was located on a rigid, fixed platform such as a tower. This limited the areas in which they could be set up and used. The purpose of the innovation was to enable precise 3D wind and flux measurements to be made using tether - sondes. In brief, a 3D accelerometer and a 3D gyroscope were added to a tethersonde module along with a 3D sonic anemometer. This combination allowed for the necessary package motions to be measured, which were then mathematically combined with the measured winds to yield motion-corrected 3D winds. At the time of this reporting, no tethersonde has been able to make any wind measurement other than a basic wind speed and direction measurement. The addition of a 3D sonic anemometer is unique, as is the addition of the motion-correction sensors.

  20. Weakfish sonic muscle: influence of size, temperature and season.

    PubMed

    Connaughton, M A; Fine, M L; Taylor, M H

    2002-08-01

    The influence of temperature, size and season on the sounds produced by the sonic muscles of the weakfish Cynoscion regalis are categorized and used to formulate a hypothesis about the mechanism of sound generation by the sonic muscle and swimbladder. Sounds produced by male weakfish occur at the time and location of spawning and have been observed in courtship in captivity. Each call includes a series of 6-10 sound pulses, and each pulse expresses a damped, 2-3 cycle acoustic waveform generated by single simultaneous twitches of the bilateral sonic muscles. The sonic muscles triple in mass during the spawning season, and this hypertrophy is initiated by rising testosterone levels that trigger increases in myofibrillar and sarcoplasmic cross-sectional area of sonic muscle fibers. In response to increasing temperature, sound pressure level (SPL), dominant frequency and repetition rate increase, and pulse duration decreases. Likewise, SPL and pulse duration increase and dominant frequency decreases with fish size. Changes in acoustic parameters with fish size suggest the possibility that drumming sounds act as an 'honest' signal of male fitness during courtship. These parameters also correlate with seasonally increasing sonic muscle mass. We hypothesize that sonic muscle twitch duration rather than the resonant frequency of the swimbladder determines dominant frequency. The brief (3.5 ms), rapidly decaying acoustic pulses reflect a low-Q, broadly tuned resonator, suggesting that dominant frequency is determined by the forced response of the swimbladder to sonic muscle contractions. The changing dominant frequency with temperature in fish of the same size further suggests that frequency is not determined by the natural frequency of the bladder because temperature is unlikely to affect resonance. Finally, dominant frequency correlates with pulse duration (reflecting muscle twitch duration), and the inverse of the period of the second cycle of acoustic energy approximates the recorded frequency. This paper demonstrates for the first time that the dominant frequency of a fish sound produced by a single muscle twitch is apparently determined by the velocity of the muscle twitch rather than the natural frequency of the swimbladder.

  1. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response (WSPR). Such tests will be applied to building a dataset that governing agencies such as the Federal Aviation Administration and the International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. The WSPR test was the first such effort that studied responses to non-traditional low sonic booms while the subject persons were in their own homes and performing daily activities.The WSPR test was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle (El Segundo, California). Other partners included Gulfstream Aerospace Corporation (Savannah, Georgia); Pennsylvania State University (University Park, Pennsylvania); Tetra Tech, Inc. (Pasadena, California); and Fidell Associates, Inc. (Woodland Hills, California).A major objective of the effort included exposing a community to the sonic boom magnitudes and occurrences that would be expected to occur in high-air traffic regions having a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data were collected using multiple survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on the NASA role in the logistics and operations of the effort, including human response subject recruitment, the operational processes involved in implementing the surveys throughout the community, instrumentation systems, logistics, flight planning, and flight operations. Findings discussed in this paper include critical lessons learned in all of the above-mentioned areas, as well as flight operations results. Analysis of the accuracy and repeatability of planning and executing the unique aircraft maneuver used to generate low sonic booms concluded that the sonic booms had overpressures within 0.15 lbft2 of the planned values for 76 percent of the attempts. Similarly, 90 percent of the attempts to generate low sonic booms within the community were successful.

  2. Application of sonic-boom minimization concepts in supersonic transport design

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Barger, R. L.; Mack, R. J.

    1973-01-01

    The applicability of sonic boom minimization concepts in the design of large supersonic transport airplanes capable of a 2500-nautical-mile range at a cruise Mach number of 2.7 is considered. Aerodynamics, weight and balance, and mission performance as well as sonic boom factors, have been taken into account. The results indicate that shock-strength nominal values of somewhat less than 48 newtons/sq m during cruise are within the realm of possibility. Because many of the design features are in direct contradiction to presently accepted design practices, further study of qualified airplane design teams is required to ascertain sonic boom shock strength levels actually attainable for practical supersonic transports.

  3. Sonic-boom measurements for SR-71 aircraft operating at Mach numbers to 3.0 and altitudes to 24384 meters

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Huckel, V.; Henderson, H. R.

    1972-01-01

    Sonic-boom pressure signatures produced by the SR-71 aircraft at altitudes from 10,668 to 24,384 meters and Mach numbers 1.35 to 3.0 were obtained as an adjunct to the sonic boom evaluation program relating to structural and subjective response which was conducted in 1966-1967 time period. Approximately 2000 sonic-boom signatures from 33 flights of the SR-71 vehicle and two flights of the F-12 vehicle were recorded. Measured ground-pressure signatures for both on-track and lateral measuring station locations are presented and the statistical variations of the overpressure, positive impulse, wave duration, and shock-wave rise time are illustrated.

  4. Pilot Test of a Novel Method for Assessing Community Response to Low-Amplitude Sonic Booms

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Horonjeff, Richard D.; Harris, Michael

    2012-01-01

    A pilot test of a novel method for assessing residents annoyance to sonic booms was performed. During a two-week period, residents of the base housing area at Edwards Air Force Base provided data on their reactions to sonic booms using Smartphone-based interviews. Noise measurements were conducted at the same time. The report presents information about data collection methods and about test participants reactions to low-amplitude sonic booms. The latter information should not be viewed as definitive for several reasons. It may not be reliably generalized to the wider U.S. residential population (because it was not derived from a representative random sample) and the sample itself was not large.

  5. Correlation of lithologic and sonic logs from the COST No. B-2 well with seismic reflection data

    USGS Publications Warehouse

    King, K.C.

    1979-01-01

    The purpose of this study was to correlate events recorded on seismic records with changes in lithology recorded from sample descriptions from the Continental Offshore Stratigraphic Test (COST) No. B-2 well.  The well is located on the U.S. mid-Atlantic Outer Continental Shelf about 146 km east of Atlantic City, N.J. (see location map).  Lithologic data are summarized from the sample descriptions of Smith and others (1976).  Sonic travel times were read at 0.15 m intervals in the well using a long-space sonic logging tool.  Interval velocities, reflection coefficients and a synthetic seismogram were calculated from the sonic log.

  6. A loudness calculation procedure applied to shaped sonic booms

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Sullivan, Brenda M.

    1991-01-01

    Described here is a procedure that can be used to calculate the loudness of sonic booms. The procedure is applied to a wide range of sonic booms, both classical N-waves and a variety of other shapes of booms. The loudness of N-waves is controlled by overpressure and the associated rise time. The loudness of shaped booms is highly dependent on the characteristics of the initial shock. A comparison of the calculated loudness values indicates that shaped booms may have significantly reduced loudness relative to N-waves having the same peak overpressure. This result implies that a supersonic transport designed to yield minimized sonic booms may be substantially more acceptable than an unconstrained design.

  7. High Speed Research Program Structural Acoustics Multi-Year Summary Report

    NASA Technical Reports Server (NTRS)

    Beier, Theodor H.; Bhat, Waman V.; Rizzi, Stephen A.; Silcox, Richard J.; Simpson, Myles A.

    2005-01-01

    This report summarizes the work conducted by the Structural Acoustics Integrated Technology Development (ITD) Team under NASA's High Speed Research (HSR) Phase II program from 1993 to 1999. It is intended to serve as a reference for future researchers by documenting the results of the interior noise and sonic fatigue technology development activities conducted during this period. For interior noise, these activities included excitation modeling, structural acoustic response modeling, development of passive treatments and active controls, and prediction of interior noise. For sonic fatigue, these activities included loads prediction, materials characterization, sonic fatigue code development, development of response reduction techniques, and generation of sonic fatigue design requirements. Also included are lessons learned and recommendations for future work.

  8. Ultrasonic hydrometer. [Specific gravity of electrolyte

    DOEpatents

    Swoboda, C.A.

    1982-03-09

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

  9. Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves

    NASA Astrophysics Data System (ADS)

    Haering, Edward A.; Smolka, James W.; Murray, James E.; Plotkin, Kenneth J.

    2006-05-01

    The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.

  10. Experimental Measurements of Sonic Boom Signatures Using a Continuous Data Acquisition Technique

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel to determine the effectiveness of a technique to measure aircraft sonic boom signatures using a single conical survey probe while continuously moving the model past the probe. Sonic boom signatures were obtained using both move-pause and continuous data acquisition methods for comparison. The test was conducted using a generic business jet model at a constant angle of attack and a single model-to-survey-probe separation distance. The sonic boom signatures were obtained at a Mach number of 2.0 and a unit Reynolds number of 2 million per foot. The test results showed that it is possible to obtain sonic boom signatures while continuously moving the model and that the time required to acquire the signature is at least 10 times faster than the move-pause method. Data plots are presented with a discussion of the results. No tabulated data or flow visualization photographs are included.

  11. A study of the limitations of linear theory methods as applied to sonic boom calculations

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.

    1990-01-01

    Current sonic boom minimization theories have been reviewed to emphasize the capabilities and flexibilities of the methods. Flexibility is important because it is necessary for the designer to meet optimized area constraints while reducing the impact on vehicle aerodynamic performance. Preliminary comparisons of sonic booms predicted for two Mach 3 concepts illustrate the benefits of shaping. Finally, for very simple bodies of revolution, sonic boom predictions were made using two methods - a modified linear theory method and a nonlinear method - for signature shapes which were both farfield N-waves and midfield waves. Preliminary analysis on these simple bodies verified that current modified linear theory prediction methods become inadequate for predicting midfield signatures for Mach numbers above 3. The importance of impulse is sonic boom disturbance and the importance of three-dimensional effects which could not be simulated with the bodies of revolution will determine the validity of current modified linear theory methods in predicting midfield signatures at lower Mach numbers.

  12. Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Smolka, James W.; Murray, James E.; Plotkin, Kenneth J.

    2005-01-01

    The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.

  13. Ground-recorded sonic boom signatures of F-18 aircraft formation flight

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine M.; Haering, Edward A., Jr.

    1995-01-01

    Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft. An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

  14. Sonicated Diagnostic Immunoblot for Bartonellosis

    PubMed Central

    Mallqui, Vania; Speelmon, Emily C.; Verástegui, Manuela; Maguiña-Vargas, Ciro; Pinell-Salles, Paula; Lavarello, Rosa; Delgado, Jose; Kosek, Margaret; Romero, Sofia; Arana, Yanina; Gilman, Robert H.

    2000-01-01

    Two simple Bartonella bacilliformis immunoblot preparation methods were developed. Antigen was prepared by two different methods: sonication of whole organisms or glycine extraction. Both methods were then tested for sensitivity and specificity. Well-defined control sera were utilized in the development of these diagnostic immunoblots, and possible cross-reactions were thoroughly examined. Sera investigated for cross-reaction with these diagnostic antigens were drawn from patients with brucellosis, chlamydiosis, Q fever, and cat scratch disease, all of whom were from regions where bartonellosis is not endemic. While both immunoblots yielded reasonable sensitivity and high specificity, we recommend the use of the sonicated immunoblot, which has a higher sensitivity when used to detect acute disease and produces fewer cross-reactions. The sonicated immunoblot reported here is 94% sensitive to chronic bartonellosis and 70% sensitive to acute bartonellosis. In a healthy group, it is 100% specific. This immunoblot preparation requires a simple sonication protocol for the harvesting of B. bacilliformis antigens and is well suited for use in regions of endemicity. PMID:10618267

  15. Brief ultrasonication improves detection of biofilm-formative bacteria around a metal implant.

    PubMed

    Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Fujishiro, Takaaki; Procop, Gary W

    2007-04-01

    Biofilms are complex microenvironments produced by microorganisms on surfaces. Ultrasonication disrupts biofilms and may make the microorganism or its DNA available for detection. We determined whether ultrasonication could affect our ability to detect bacteria adherent to a metal substrate. A biofilm-formative Staphylococcus aureus strain was used for an in vitro implant infection model (biofilm-formative condition). We used quantitative culture and real time-polymerase chain reaction to determine the influence of different durations of ultrasound on bacterial adherence and viability. Sonication for 1 minute increased the yield of bacteria. Sonication longer than 5 minutes led to fewer bacterial colonies by conventional culture but not by polymerase chain reaction. This suggests short periods of sonication help release bacteria from the metal substrate by disrupting the biofilm, but longer periods of sonication lyse bacteria prohibiting their detection in microbiologic cultures. A relatively short duration of sonication may be desirable for maximizing detection of biofilm-formative bacteria around implants by culture or polymerase chain reaction.

  16. Initial Results from the Variable Intensity Sonic Boom Database

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Cliatt, Larry J., II; Gabrielson, Thomas; Sparrow, Victor W.; Locey, Lance L.; Bunce, Thomas J.

    2008-01-01

    43 sonic booms generated (a few were evanescent waves) a) Overpressures of 0.08 to 2.20 lbf/sq ft; b) Rise-times of about 0.7 to 50 ms. Objectives: a) Structural response of a house of modern construction; b) Sonic boom propagation code validation. Approach: a) Measure shockwave directionality; b) Determine effect of height above ground on acoustic level; c) Generate atmospheric turbulence filter functions.

  17. Tactical Infrasound

    DTIC Science & Technology

    2005-05-01

    received briefings on a variety of infra - sonic sensor systenis. Materials were also received from the 2001 and 2002 Infrasonic Technology Workshops and...Systems to Tactical Acoustic Sys- tems One issue to be considered in the evaluation of a p)otential tactical infra - sonic system is the ability to...Communication range Fixed Fixed 5 km 7.4 A Design Approach for a Future Tactical Infra - sonic Sensor System This section describes a procedure used to

  18. Sonic boom measurement test plan for Space Shuttle STS-3 reentry

    NASA Technical Reports Server (NTRS)

    Henderson, H. R.

    1982-01-01

    The lateral area from the reentry ground track affected by sonic boom overpressure levels is determined. Four data acquisition stations are deployed laterally to the STS-3 reentry flight track. These stations provide six intermediate band FM channels of sonic boom data, universal time synchronization, and voice annotation. All measurements are correlated with the vehicle reentry flight track information along with atmospheric and vehicle operation conditions.

  19. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice.

    PubMed

    Santhirasegaram, Vicknesha; Razali, Zuliana; Somasundram, Chandran

    2013-09-01

    Ultrasonic treatment is an emerging food processing technology that has growing interest among health-conscious consumers. Freshly squeezed Chokanan mango juice was thermally treated (at 90 °C for 30 and 60s) and sonicated (for 15, 30 and 60 min at 25 °C, 40 kHz frequency, 130 W) to compare the effect on microbial inactivation, physicochemical properties, antioxidant activities and other quality parameters. After sonication and thermal treatment, no significant changes occurred in pH, total soluble solids and titratable acidity. Sonication for 15 and 30 min showed significant improvement in selected quality parameters except color and ascorbic acid content, when compared to freshly squeezed juice (control). A significant increase in extractability of carotenoids (4-9%) and polyphenols (30-35%) was observed for juice subjected to ultrasonic treatment for 15 and 30 min, when compared to the control. In addition, enhancement of radical scavenging activity and reducing power was observed in all sonicated juice samples regardless of treatment time. Thermal and ultrasonic treatment exhibited significant reduction in microbial count of the juice. The results obtained support the use of sonication to improve the quality of Chokanan mango juice along with safety standard as an alternative to thermal treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Airborne Shaped Sonic Boom Demonstration Pressure Measurements with Computational Fluid Dynamics Comparisons

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Murray, James E.; Purifoy, Dana D.; Graham, David H.; Meredith, Keith B.; Ashburn, Christopher E.; Stucky, Mark

    2005-01-01

    The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near- and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.

  1. Usability research study of a specially engineered sonic powered toothbrush with unique sensing and control technologies.

    PubMed

    Hunter, Gail; Burns, Laurie; Bone, Brian; Mintel, Thomas; Jimenez, Eduardo

    2012-01-01

    This paper summarizes the results of a longitudinal usability research study of a specially engineered sonic powered toothbrush with unique sensing and control technologies. The usability test was conducted with fourteen (14) consumers from the St. Louis, MO, USA area who use manual toothbrushes. The study consisted of consumers using the specially engineered sonic powered toothbrush with unique sensing and control technologies for three weeks. During the study, users participated in four toothbrush trials during weekly visits to the research facility. These trials were videotaped and were analyzed regarding brushing time, behavior, and technique. In addition, the users were required to use the toothbrush twice a day for their at-home brushing. The toothbrush had a positive impact on consumers' tooth brushing behavior. Users spent more time brushing their teeth with this toothbrush as compared to their manual toothbrush. In addition, users spent more time keeping the sonic toothbrush in the recommended angle during use. Finally, users perceived their teeth to be cleaner when using the specially engineered sonic powered toothbrush with unique sensing and control technologies. The specially engineered sonic powered toothbrush with unique sensing and control technologies left a positive impression on the users. The users perceived the toothbrush to clean their teeth better than a manual toothbrush.

  2. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage.

    PubMed

    Martínez-Flores, Héctor E; Garnica-Romo, Ma Guadalupe; Bermúdez-Aguirre, Daniela; Pokhrel, Prashant Raj; Barbosa-Cánovas, Gustavo V

    2015-04-01

    Thermosonication has been successfully tested in food for microbial inactivation; however, changes in bioactive compounds and shelf-life of treated products have not been thoroughly investigated. Carrot juice was thermo-sonicated (24 kHz, 120 μm amplitude) at 50 °C, 54 °C and 58 °C for 10 min (acoustic power 2204.40, 2155.72, 2181.68 mW/mL, respectively). Quality parameters and microbial growth were evaluated after processing and during storage at 4 °C. Control and sonicated treatments at 50 °C and 54 °C had 10, 12 and 14 d of shelf-life, respectively. Samples sonicated at 58 °C had the best quality; microbial growth remained low at around 3-log for mesophiles, 4.5-log for yeasts and molds and 2-log for enterobacteria after 20 d of storage. Furthermore, thermo-sonicated juice at 58 °C retained >98% of carotenoids and 100% of ascorbic acid. Phenolic compounds increased in all stored, treated juices. Thermo-sonication is therefore a promising technology for preserving the quality of carrot juice by minimising the physicochemical changes during storage, retarding microbial growth and retaining the bioactive compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effects of precipitation on sonic anemometer measurements of turbulent fluxes in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Zhang, Rongwang; Huang, Jian; Wang, Xin; Zhang, Jun A.; Huang, Fei

    2016-06-01

    Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations induced by precipitation are observed for the outputs of sonic anemometer-derived temperature and wind velocity components. A technique of turbulence spectra and cospectra normalized in the framework of similarity theory is utilized to validate the measured variables and calculated fluxes. It is found that the sensitivity of sonic anemometer-derived temperature to precipitation is significant, compared with that of the wind velocity components. The spectra of wind velocity and cospectra of momentum flux resemble the standard universal shape with the slopes of the spectra and cospectra at the inertial subrange, following the -2/3 and -4/3 power law, respectively, even under the condition of heavy rain. Contaminated by precipitation, however, the spectra of temperature and cospectra of sensible heat flux do not exhibit a universal shape and have obvious frequency loss at the inertial subrange. From the physical structure and working principle of sonic anemometer, a possible explanation is proposed to describe this difference, which is found to be related to the variations of precipitation particles. Corrections for errors of sonic anemometer-derived temperature under precipitation is needed, which is still under exploration.

  4. Removal of oil and oil sheen from produced water by pressure-assisted ozonation and sand filtration.

    PubMed

    Cha, Zhixiong; Lin, Cheng-Fang; Cheng, Chia-Jung; Andy Hong, P K

    2010-01-01

    Ever increasing energy demand worldwide necessitates energy supply, inevitably leading to an increasing volume of process waters containing hydrocarbon contaminants. Among them, dispersed and dissolved oils in produced water need to be removed adequately in order to reuse or avoid surface sheen from coastal discharge. We have recently developed a new ozonation technique coupled with sand filtration to quickly remove oil from process water and prevent oil sheen. The technique incorporates rapid, successive cycles of compression and decompression during ozonation. Gas bubbles expanding from small to large sizes occur that provide ample reactive zones at the gas-liquid interface, resulting in heightened chemical conversions-notably the conversion of hydrophobic hydrocarbon molecules into hydrophilic ones. This study examined the removal of hydrocarbons and sheen according to treatment parameters and configurations, as assessed by changes in turbidity, COD, BOD, and sheen presence following treatment. When a synthetic produced water containing 120ppm of oil (about 100ppm of dispersed and 20ppm of soluble oil at a total COD of 320mgL(-1)) was subjected to 10 pressure cycles (reaching 1.0MPa; 20s each) of ozonation and sand filtration at 6cmmin(-1) and then repeated by 20 cycles of ozonation and sand filtration, it resulted in removal of oil to 20ppm as water-soluble organic acids, decrease of turbidity from 200 to 2NTU, and complete sequestration of surface sheen. The new technique offers a treatment alternative for produced water and likely other tailings waters, promoting safe discharge to the environment and beneficial uses of the water. 2009 Elsevier Ltd. All rights reserved.

  5. Sounds of earthquakes in West Bohemia: analysis of sonic and infrasonic records

    NASA Astrophysics Data System (ADS)

    Fischer, Tomáš; Vilhelm, Jan; Kuna, Václav; Chum, Jaroslav; Horálek, Josef

    2013-04-01

    Earthquake sounds are usually observed during the occurrence of small earthquakes. The observations of audible manifestations of earthquakes date back to the ancient age and have been recently analyzed in more detail based both on macroseismic observations and audio recordings. In most cases the earthquake sounds resemble low-frequency underground thundering that is generated by seismic-acoustic conversion of P and SV waves at the earth surface. This is also supported by the fact that earthquake sounds usually precede shaking caused by S-waves. The less frequent are explosion-type sounds whose origin remains unclear. We analyze the observations of sounds associating the occurrence of earthquake swarms in the area of West Bohemia/Vogtland, Central Europe. Macroseismic data include 250 reports of sounds with 90% thundering and 10% of explosions. Additional data consist of sonic and infrasonic records acquired by microphones and microbarographs at seismic stations in the area. All the sonic and infrasonic records correspond to sounds of the thunder type; no explosions were recorded. Comparison of these records enabled to determine the seismic wave - air pressure transfer function. The measurements using a 3D microphone array confirm that in the epicentral area the sonic wave is propagating subvertically. We also compared the coda of seismograms and sonic records. It turned out that additional to seismo-acoustic coupling, a later acoustic wave of thunder type arrives at the observation site whose arrival time corresponds to sonic propagation from the epicenter. We analyse the possible generation mechanisms of this type of sonic wave.

  6. Homogenisation of cystic fibrosis sputum by sonication--an essential step for Aspergillus PCR.

    PubMed

    Baxter, Caroline G; Jones, Andrew M; Webb, Kevin; Denning, David W

    2011-04-01

    The importance of Aspergillus as a lung pathogen in cystic fibrosis (CF) is becoming increasingly recognised. However, fungal culture of CF sputum is unreliable and there is no consensus for identifying phenotypes beyond ABPA that may benefit from antifungal therapy. There are no published studies using real-time PCR to detect Aspergillus in CF sputum. The major barrier to sensitive detection of Aspergillus using PCR is sputum homogenisation. This study aimed to optimise sputum homogenisation utilising sonication to improve Aspergillus DNA extraction. Sonication amplitude and duration that enabled sputum homogenisation but ensured preservation of DNA integrity were first determined. 160 sputum samples were collected from CF patients. 49 of the sputum samples were split, one half was used for standard culture and the other half was homogenised with NALC-NaOH before undergoing DNA extraction. The subsequent 111 samples were homogenised with dithiothreitol plus sonication prior to culture and DNA extraction. Real-time PCR targeting a portion of the 18S rDNA of Aspergillus was performed on all DNA extractions. In the 49 samples with no sonication 8 (16%) were culture positive but only 4 of these were PCR positive. However, PCR was positive in 11 culture negative samples. PCR after sonication showed a significant improvement in sensitivity: 33 (30%) were culture and PCR positive, 48 (43%) were culture negative, but PCR positive (p<0.0001) and 30 (27%) were culture and PCR negative. The combination of dithiothreitol and sonication to homogenise sputum increases PCR yield, with PCR being substantially more sensitive than culture. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Brushing force of manual and sonic toothbrushes affects dental hard tissue abrasion.

    PubMed

    Wiegand, Annette; Burkhard, John Patrik Matthias; Eggmann, Florin; Attin, Thomas

    2013-04-01

    This study aimed to determine the brushing forces applied during in vivo toothbrushing with manual and sonic toothbrushes and to analyse the effect of these brushing forces on abrasion of sound and eroded enamel and dentin in vitro. Brushing forces of a manual and two sonic toothbrushes (low and high frequency mode) were measured in 27 adults before and after instruction of the respective brushing technique and statistically analysed by repeated measures analysis of variance (ANOVA). In the in vitro experiment, sound and eroded enamel and dentin specimens (each subgroup n = 12) were brushed in an automatic brushing machine with the respective brushing forces using a fluoridated toothpaste slurry. Abrasion was determined by profilometry and statistically analysed by one-way ANOVA. Average brushing force of the manual toothbrush (1.6 ± 0.3 N) was significantly higher than for the sonic toothbrushes (0.9 ± 0.2 N), which were not significantly different from each other. Brushing force prior and after instruction of the brushing technique was not significantly different. The manual toothbrush caused highest abrasion of sound and eroded dentin, but lowest on sound enamel. No significant differences were detected on eroded enamel. Brushing forces of manual and sonic toothbrushes are different and affect their abrasive capacity. Patients with severe tooth wear and exposed and/or eroded dentin surfaces should use sonic toothbrushes to reduce abrasion, while patients without tooth wear or with erosive lesions confining only to enamel do not benefit from sonic toothbrushes with regard to abrasion.

  8. Comparison of Diagnostic Accuracy of Periprosthetic Tissue Culture in Blood Culture Bottles to That of Prosthesis Sonication Fluid Culture for Diagnosis of Prosthetic Joint Infection (PJI) by Use of Bayesian Latent Class Modeling and IDSA PJI Criteria for Classification.

    PubMed

    Yan, Qun; Karau, Melissa J; Greenwood-Quaintance, Kerryl E; Mandrekar, Jayawant N; Osmon, Douglas R; Abdel, Matthew P; Patel, Robin

    2018-06-01

    We have previously demonstrated that culturing periprosthetic tissue in blood culture bottles (BCBs) improves sensitivity compared to conventional agar and broth culture methods for diagnosis of prosthetic joint infection (PJI). We have also shown that prosthesis sonication culture improves sensitivity compared to periprosthetic tissue culture using conventional agar and broth methods. The purpose of this study was to compare the diagnostic accuracy of tissue culture in BCBs (subsequently referred to as tissue culture) to prosthesis sonication culture (subsequently referred to as sonicate fluid culture). We studied 229 subjects who underwent arthroplasty revision or resection surgery between March 2016 and October 2017 at Mayo Clinic in Rochester, Minnesota. Using the Infectious Diseases Society of America (IDSA) PJI diagnostic criteria (omitting culture criteria) as the gold standard, the sensitivity of tissue culture was similar to that of the sonicate fluid culture (66.4% versus 73.1%, P = 0.07) but was significantly lower than that of the two tests combined (66.4% versus 76.9%, P < 0.001). Using Bayesian latent class modeling, which assumes no gold standard for PJI diagnosis, the sensitivity of tissue culture was slightly lower than that of sonicate fluid culture (86.3% versus 88.7%) and much lower than that of the two tests combined (86.3% versus 99.1%). In conclusion, tissue culture in BCBs reached sensitivity similar to that of prosthesis sonicate fluid culture for diagnosis of PJI, but the two tests combined had the highest sensitivity without compromising specificity. The combination of tissue culture in BCBs and sonicate fluid culture is recommended to achieve the highest level of microbiological diagnosis of PJI. Copyright © 2018 American Society for Microbiology.

  9. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without coupling to a sonic boom propagation analysis code, from the stagnation chamber of the nozzle to the far field external flow, taking into account all nonisentropic effects in the shocks, boundary layers, and free shear layers, and their interactions at distances up to 30 times the nozzle exit diameter from the jet centerline. A CFD solution is shown in Figure 2. The flow field is very complicated and multi-dimensional, with shock-shock and shockplume interactions. At the time of this reporting, a full three-dimensional CFD study was being conducted to evaluate the effects of nozzle vectoring on the aircraft tail shock strength.

  10. Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe3O4-GA-MIP-NPs: UV-vis detection and optimization study.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Dashtian, Kheibar

    2017-01-01

    Magnetite (Fe 3 O 4 nanoparticles (NPs)) HKUST-1 metal organic framework (MOF) composite as a support was used for surface imprinting of gallic acid imprinted polymer (HKUST-1-MOF-Fe 3 O 4 -GA-MIP) using vinyltrimethoxysilane (VTMOS) as the cross-linker. Subsequently, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP characterized by FT-IR, XRD and FE-SEM analysis and applied for fast and selective and sensitive ultrasound assisted dispersive magnetic solid phase microextraction of gallic acid (GA) by UV-Vis (UA-DMSPME-UV-Vis) detection method. Plackett-Burman design (PBD) and central composite design (CCD) according to desirability function (DF) indicate the significant variables among the extraction factors vortex (mixing) time (min), sonication time (min), temperature (°C), eluent volume (L), pH and HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass (mg) and their contribution on the response. Optimum conditions and values correspond to pH, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass, sonication time and the eluent volume were set as follow 3.0, 1.6mg, 4.0min and 180μL, respectively. The average recovery (ER%) of GA was 98.13% with desirability of 0.997, while the present method has best operational performance like wide linear range 8-6000ngmL -1 with a Limit of detection (LOD) of 1.377ngmL -1 , limit of quantification (LOQ) 4.591ngmL -1 and precision (<3.50% RSD). The recovery of GA in urine, human plasma and water samples within the range of 92.3-100.6% that strongly support high applicability of present method for real samples analysis, which candidate this method as promise for further application. Copyright © 2016. Published by Elsevier B.V.

  11. NASA Test Flights Examine Effect of Atmospheric Turbulence on Sonic Booms

    NASA Image and Video Library

    2016-07-20

    NASA’s SonicBAT team poses in front of the TG-14 motor glider and F/A-18 research aircraft, sitting side-by-side in front of Rogers Dry Lake prior to a SonicBAT flight at Armstrong Flight Research Center on Edwards Air Force Base, California. The TG-14 collected sound signatures of shockwaves created by the F/A-18, to compare with signatures collected on the ground.

  12. Affordable/Acceptable Supersonic Flight: Is It Near?

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.

    2003-01-01

    The author takes a historical look at supersonic flight and humankind's first encounter with the sonic boom. A review is given from the 1950s to the present of the quest to understand the sonic boom, quantify its disturbance on humans and structures, and minimize its effect through aircraft design and operation. Finally, the author reminds readers that sonic boom is only one factor, though critical, in enabling an economically viable commercial supersonic aircraft.

  13. Implementation of high slurry concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Godinho, Justin M; Reising, Arved E; Tallarek, Ulrich; Jorgenson, James W

    2016-09-02

    Slurry packing capillary columns for ultrahigh pressure liquid chromatography is complicated by many interdependent experimental variables. Previous results have suggested that combination of high slurry concentration and sonication during packing would create homogeneous bed microstructures and yield highly efficient capillary columns. Herein, the effect of sonication while packing very high slurry concentrations is presented. A series of six, 1m×75μm internal diameter columns were packed with 200mg/mL slurries of 2.02μm bridged-ethyl hybrid silica particles. Three of the columns underwent sonication during packing and yielded highly efficient separations with reduced plate heights as low as 1.05. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Shuttle sonic boom - Technology and predictions. [environmental impact

    NASA Technical Reports Server (NTRS)

    Holloway, P. F.; Wilhold, G. A.; Jones, J. H.; Garcia, F., Jr.; Hicks, R. M.

    1973-01-01

    Because the shuttle differs significantly in both geometric and operational characteristics from conventional supersonic aircraft, estimation of sonic boom characteristics required a new technology base. The prediction procedures thus developed are reviewed. Flight measurements obtained for both the ascent and entry phases of the Apollo 15 and 16 and for the ascent phase only of the Apollo 17 missions are presented which verify the techniques established for application to shuttle. Results of extensive analysis of the sonic boom overpressure characteristics completed to date are presented which indicate that this factor of the shuttle's environmental impact is predictable, localized, of short duration and acceptable. Efforts are continuing to define the shuttle sonic boom characteristics to a fine level of detail based on the final system design.

  15. The Potential of Sonic IR to Inspect Aircraft Components Traditionally Inspected with Fluorescent Penetrant and or Magnetic Particle Inspection

    NASA Astrophysics Data System (ADS)

    DiMambro, J.; Ashbaugh, D. M.; Han, X.; Favro, L. D.; Lu, J.; Zeng, Z.; Li, W.; Newaz, G. M.; Thomas, R. L.

    2006-03-01

    Sandia National Laboratories Airworthiness Assurance Nondestructive Inspection Validation Center (AANC) provides independent and quantitative evaluations of new and enhanced inspection, to developers, users, and regulators of aircraft. Wayne State University (WSU) has developed and patented an inspection technique using high-power ultrasonic excitation and infrared technology to detect defects in a variety of materials. AANC and WSU are working together as part of the FAA Sonic Infrared Technology Transfer Program. The ultimate goal of the program is to implement Sonic IR in the aviation field where appropriate. The capability of Sonic IR imaging to detect cracks in components commonly inspected with magnetic particle or liquid penetrant inspection in the field is of interest to industry.

  16. Impact of ultrasound on solid-liquid extraction of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments.

    PubMed

    Meullemiestre, A; Petitcolas, E; Maache-Rezzoug, Z; Chemat, F; Rezzoug, S A

    2016-01-01

    Maritime pine sawdust, a by-product from industry of wood transformation, has been investigated as a potential source of polyphenols which were extracted by ultrasound-assisted maceration (UAM). UAM was optimized for enhancing extraction efficiency of polyphenols and reducing time-consuming. In a first time, a preliminary study was carried out to optimize the solid/liquid ratio (6g of dry material per mL) and the particle size (0.26 cm(2)) by conventional maceration (CVM). Under these conditions, the optimum conditions for polyphenols extraction by UAM, obtained by response surface methodology, were 0.67 W/cm(2) for the ultrasonic intensity (UI), 40°C for the processing temperature (T) and 43 min for the sonication time (t). UAM was compared with CVM, the results showed that the quantity of polyphenols was improved by 40% (342.4 and 233.5mg of catechin equivalent per 100g of dry basis, respectively for UAM and CVM). A multistage cross-current extraction procedure allowed evaluating the real impact of UAM on the solid-liquid extraction enhancement. The potential industrialization of this procedure was implemented through a transition from a lab sonicated reactor (3 L) to a large scale one with 30 L volume. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: Central composite design, kinetic and isotherm study.

    PubMed

    Dashamiri, Somayeh; Ghaedi, Mehrorang; Dashtian, Kheibar; Rahimi, Mahmood Reza; Goudarzi, Alireza; Jannesar, Ramin

    2016-07-01

    Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L(-1)). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sono assisted electrocoagulation process for the removal of pollutant from pulp and paper industry effluent.

    PubMed

    Asaithambi, P; Aziz, Abdul Raman Abdul; Sajjadi, Baharak; Daud, Wan Mohd Ashri Bin Wan

    2017-02-01

    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm 2 ), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm 2 , electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.

  19. Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification.

    PubMed

    Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed

    2014-01-01

    The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application.

  20. Efficacy of a Sonicating Swab for Removal and Capture of Listeria monocytogenes in Biofilms on Stainless Steel

    PubMed Central

    Branck, Tobyn A.; Hurley, Matthew J.; Prata, Gianna N.; Crivello, Christina A.

    2017-01-01

    ABSTRACT Listeria monocytogenes is of great concern in food processing facilities because it persists in biofilms, facilitating biotransfer. Stainless steel is commonly used for food contact surfaces and transport containers. L. monocytogenes biofilms on stainless steel served as a model system for surface sampling, to test the performance of a sonicating swab in comparison with a standard cotton swab. Swab performance and consistency were determined using total viable counts. Stainless steel coupons sampled with both types of swabs were examined using scanning electron microscopy, to visualize biofilms and surface structures (i.e., polishing grooves and scratches). Laser scanning confocal microscopy was used to image and to quantitate the biofilms remaining after sampling with each swab type. The total viable counts were significantly higher (P ≤ 0.05) with the sonicating swab than with the standard swab in each trial. The sonicating swab was more consistent in cell recovery than was the standard swab, with coefficients of variation ranging from 8.9% to 12.3% and from 7.1% to 37.6%, respectively. Scanning electron microscopic imaging showed that biofilms remained in the polished grooves of the coupons sampled with the standard swab but were noticeably absent with the sonicating swab. Percent area measurements of biofilms remaining on the stainless steel coupons showed significantly (P ≤ 0.05) less biofilm remaining when the sonicating swab was used (median, 1.1%), compared with the standard swab (median, 70.4%). The sonicating swab provided greater recovery of cells, with more consistency, than did the standard swab, and it is employs sonication, suction, and scrubbing. IMPORTANCE Inadequate surface sampling can result in foodborne illness outbreaks from biotransfer, since verification of sanitization protocols relies on surface sampling and recovery of microorganisms for detection and enumeration. Swabbing is a standard method for microbiological sampling of surfaces. Although swabbing offers portability and ease of use, there are limitations, such as high user variability and low recovery rates, which can be attributed to many different causes. This study demonstrates some benefits that a sonicating swab has over a standard swab for removal and collection of microbiological samples from a surface, to provide better verification of surface cleanliness and to help decrease the potential for biotransfer of pathogens into foods. PMID:28314729

  1. Efficacy of a Sonicating Swab for Removal and Capture of Listeria monocytogenes in Biofilms on Stainless Steel.

    PubMed

    Branck, Tobyn A; Hurley, Matthew J; Prata, Gianna N; Crivello, Christina A; Marek, Patrick J

    2017-06-01

    Listeria monocytogenes is of great concern in food processing facilities because it persists in biofilms, facilitating biotransfer. Stainless steel is commonly used for food contact surfaces and transport containers. L. monocytogenes biofilms on stainless steel served as a model system for surface sampling, to test the performance of a sonicating swab in comparison with a standard cotton swab. Swab performance and consistency were determined using total viable counts. Stainless steel coupons sampled with both types of swabs were examined using scanning electron microscopy, to visualize biofilms and surface structures (i.e., polishing grooves and scratches). Laser scanning confocal microscopy was used to image and to quantitate the biofilms remaining after sampling with each swab type. The total viable counts were significantly higher ( P ≤ 0.05) with the sonicating swab than with the standard swab in each trial. The sonicating swab was more consistent in cell recovery than was the standard swab, with coefficients of variation ranging from 8.9% to 12.3% and from 7.1% to 37.6%, respectively. Scanning electron microscopic imaging showed that biofilms remained in the polished grooves of the coupons sampled with the standard swab but were noticeably absent with the sonicating swab. Percent area measurements of biofilms remaining on the stainless steel coupons showed significantly ( P ≤ 0.05) less biofilm remaining when the sonicating swab was used (median, 1.1%), compared with the standard swab (median, 70.4%). The sonicating swab provided greater recovery of cells, with more consistency, than did the standard swab, and it is employs sonication, suction, and scrubbing. IMPORTANCE Inadequate surface sampling can result in foodborne illness outbreaks from biotransfer, since verification of sanitization protocols relies on surface sampling and recovery of microorganisms for detection and enumeration. Swabbing is a standard method for microbiological sampling of surfaces. Although swabbing offers portability and ease of use, there are limitations, such as high user variability and low recovery rates, which can be attributed to many different causes. This study demonstrates some benefits that a sonicating swab has over a standard swab for removal and collection of microbiological samples from a surface, to provide better verification of surface cleanliness and to help decrease the potential for biotransfer of pathogens into foods. Copyright © 2017 American Society for Microbiology.

  2. Sonic Boom Ocean Penetration: Noise Metric Comparison and Initial Focusing Results

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    1996-01-01

    The purpose of the present research is to determine the impact by sonic boom noise penetration into the ocean. Since the 1994 LaRC High Speed Research Program Sonic Boom Workshop several new results have been obtained. This talk reviews these results, and emphasizes the two most important findings. The first major result is an improved understanding of the noise spectra of the penetrating sonic boom. It was determined that weighted sound exposure levels decrease with deeper ocean depths significantly faster than unweighted sound exposure levels. This is because low frequencies penetrate the ocean deeper than high frequencies. Several noise metrics were used including peak, SEL, C-SEL, A-SEL, and PLdB, and results are given for all. These results are important because they show that the sonic boom noise impact on marine life a few meters below the ocean surface may be significantly lower using weighted sound levels than if one were to measure the impact using unweighted levels. The other major finding is the first estimate of the worst case peak levels produced by a penetrating sonic boom being focused by a sinusoidal ocean surface. The method of analysis chosen was computational, a time domain finite difference algorithm. The method is outlined and then example results are presented. For rounded sonic boom waveforms incident on a sinusoidal ocean surface, it is shown that the percentage increase or decrease in pressure is only occasionally larger than 10%, rarely 25%. These fluctuations indicate, under the assumptions already given, that any increase or decrease in sound level underwater due to focusing or defocusing should be small, less than 3 dB.

  3. MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits.

    PubMed

    McDannold, Nathan; Vykhodtseva, Natalia; Raymond, Scott; Jolesz, Ferenc A; Hynynen, Kullervo

    2005-11-01

    Focused ultrasound offers a method to disrupt the blood-brain barrier (BBB) noninvasively and reversibly at targeted locations. The purpose of this study was to test the safety of this method by searching for ischemia and apoptosis in areas with BBB disruption induced by pulsed ultrasound in the presence of preformed gas bubbles and by looking for delayed effects up to one month after sonication. Pulsed ultrasound exposures (sonications) were performed in the brains of 24 rabbits under monitoring by magnetic resonance imaging (MRI) (ultrasound: frequency = 1.63 MHz, burst length = 100 ms, PRF = 1 Hz, duration = 20 s, pressure amplitude 0.7 to 1.0 MPa). Before sonication, an ultrasound contrast agent (Optison, GE Healthcare, Milwaukee, WI, USA) was injected IV. BBB disruption was confirmed with contrast-enhanced MR images. Whole brain histologic examination was performed using haematoxylin and eosin staining for general histology, vanadium acid fuchsin-toluidine blue staining for ischemic neurons and TUNEL staining for apoptosis. The main effects observed were tiny regions of extravasated red blood cells scattered around the sonicated locations, indicating affected capillaries. Despite these vasculature effects, only a few cells in some of the sonicated areas showed evidence for apoptosis or ischemia. No ischemic or apoptotic regions were detected that would indicate a compromised blood supply was induced by the sonications. No delayed effects were observed either by MRI or histology up to 4 wk after sonication. Ultrasound-induced BBB disruption is possible without inducing substantial vascular damage that would result in ischemic or apoptotic death to neurons. These findings indicate that this method is safe for targeted drug delivery, at least when compared with the currently available invasive methods.

  4. OPACITY BROADENING OF {sup 13}CO LINEWIDTHS AND ITS EFFECT ON THE VARIANCE-SONIC MACH NUMBER RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correia, C.; De Medeiros, J. R.; Burkhart, B.

    2014-04-10

    We study how the estimation of the sonic Mach number (M{sub s} ) from {sup 13}CO linewidths relates to the actual three-dimensional sonic Mach number. For this purpose we analyze MHD simulations that include post-processing to take radiative transfer effects into account. As expected, we find very good agreement between the linewidth estimated sonic Mach number and the actual sonic Mach number of the simulations for optically thin tracers. However, we find that opacity broadening causes M{sub s} to be overestimated by a factor of ≈1.16-1.3 when calculated from optically thick {sup 13}CO lines. We also find that there ismore » a dependence on the magnetic field: super-Alfvénic turbulence shows increased line broadening compared with sub-Alfvénic turbulence for all values of optical depth for supersonic turbulence. Our results have implications for the observationally derived sonic Mach number-density standard deviation (σ{sub ρ/(ρ)}) relationship, σ{sub ρ/〈ρ〉}{sup 2}=b{sup 2}M{sub s}{sup 2}, and the related column density standard deviation (σ {sub N/(N)}) sonic Mach number relationship. In particular, we find that the parameter b, as an indicator of solenoidal versus compressive driving, will be underestimated as a result of opacity broadening. We compare the σ {sub N/(N)}-M{sub s} relation derived from synthetic dust extinction maps and {sup 13}CO linewidths with recent observational studies and find that solenoidally driven MHD turbulence simulations have values of σ {sub N/(N)}which are lower than real molecular clouds. This may be due to the influence of self-gravity which should be included in simulations of molecular cloud dynamics.« less

  5. Value of PCR in sonication fluid for the diagnosis of orthopedic hardware-associated infections: Has the molecular era arrived?

    PubMed

    Renz, Nora; Cabric, Sabrina; Morgenstern, Christian; Schuetz, Michael A; Trampuz, Andrej

    2018-04-01

    Bone healing disturbance following fracture fixation represents a continuing challenge. We evaluated a novel fully automated polymerase chain reaction (PCR) assay using sonication fluid from retrieved orthopedic hardware to diagnose infection. In this prospective diagnostic cohort study, explanted orthopedic hardware materials from consecutive patients were investigated by sonication and the resulting sonication fluid was analyzed by culture (standard procedure) and multiplex PCR (investigational procedure). Hardware-associated infection was defined as visible purulence, presence of a sinus tract, implant on view, inflammation in peri-implant tissue or positive culture. McNemar's chi-squared test was used to compare the performance of diagnostic tests. For the clinical performance all pathogens were considered, whereas for analytical performance only microorganisms were considered for which primers are included in the PCR assay. Among 51 patients, hardware-associated infection was diagnosed in 38 cases (75%) and non-infectious causes in 13 patients (25%). The sensitivity for diagnosing infection was 66% for peri-implant tissue culture, 84% for sonication fluid culture, 71% (clinical performance) and 77% (analytical performance) for sonication fluid PCR, the specificity of all tests was >90%. The analytical sensitivity of PCR was higher for gram-negative bacilli (100%), coagulase-negative staphylococci (89%) and Staphylococcus aureus (75%) than for Cutibacterium (formerly Propionibacterium) acnes (57%), enterococci (50%) and Candida spp. (25%). The performance of sonication fluid PCR for diagnosis of orthopedic hardware-associated infection was comparable to culture tests. The additional advantage of PCR was short processing time (<5 h) and fully automated procedure. With further improvement of the performance, PCR has the potential to complement conventional cultures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effect of ultrasound sonication on electroplating of iridium.

    PubMed

    Ohsaka, Takashi; Isaka, Motohiro; Hirano, Katsuhiko; Ohishi, Tomoji

    2008-04-01

    Effect of ultrasound sonication was examined on the electroplating of iridium in aqueous hexabromoiridate(III) solution. The electrodeposits were evaluated by observing the defects of the iridium deposits by means of voltammetry, in which the current-potential curves of the iridium deposits on copper were measured. Applying ultrasound sonication to the electroplating of iridium decreased the defects including the cracks in the deposit whenever the glycerol as the additives was contained or not in the electrolyte.

  7. A new ultrasonic transducer sample cell for in situ small-angle scattering experiments

    NASA Astrophysics Data System (ADS)

    Gupta, Sudipta; Bleuel, Markus; Schneider, Gerald J.

    2018-01-01

    Ultrasound irradiation is a commonly used technique for nondestructive diagnostics or targeted destruction. We report on a new versatile sonication device that fits in a variety of standard sample environments for neutron and X-ray scattering instruments. A piezoelectric transducer permits measuring of the time-dependent response of the sample in situ during or after sonication. We use small-angle neutron scattering (SANS) to demonstrate the effect of a time-dependent perturbation on the structure factor of micelles formed from sodium dodecyl sulfate surfactant molecules. We observe a substantial change in the micellar structure during and after exposure to ultrasonic irradiation. We also observe a time-dependent relaxation to the equilibrium values of the unperturbed system. The strength of the perturbation of the structure factor depends systematically on the duration of sonication. The relaxation behavior can be well reproduced after multiple times of sonication. Accumulation of the recorded intensities of the different sonication cycles improves the signal-to-noise ratio and permits reaching very short relaxation times. In addition, we present SANS data for the micellar form factor on alkyl-poly (ethylene oxide) surfactant molecules irradiated by ultrasound. Due to the flexibility of our new in situ sonication device, different experiments can be performed, e.g., to explore molecular potentials in more detail by introducing a systematic time-dependent perturbation.

  8. Differential bacterial load on components of total knee prosthesis in patients with prosthetic joint infection.

    PubMed

    Holinka, Johannes; Pilz, Magdalena; Hirschl, Alexander M; Graninger, Wolfgang; Windhager, Reinhard; Presterl, Elisabeth

    2012-10-01

    The purpose of our study was to evaluate and quantify the bacterial adherence on different components of total knee prosthesis with the sonication culture method. Explanted components of all patients with presumptive prosthetic or implant infection were treated by sonication separately in sterile containers to dislodge the adherent bacteria from the surfaces and cultured. The bacterial load of the different knee components (femur, tibia, PE-inlay and patella) was evaluated by counting of colony-forming units (CFU) dislodged from the components surfaces using the sonication culture method. Overall, 27 patients had positive sonication cultures of explanted total knee prostheses. Microorganisms were detected from 88 of 100 explanted components. Twenty femoral components were culture positive and 7 negative, 23 tibial components as well as 23 polyethylene (PE) platforms had positive microorganism detection from the surface. Staphylococcus epidermidis adhered to the highest number of components whereas Staphylococcus aureus yielded the highest load of CFU in the sonication cultures. Although not significant, PE-inlays and tibial components were most often affected. The highest CFU count was detected in polyethylene components. The sonication culture method is a reliable method to detect bacteria from the components. Additionally, the results demonstrate that bacterial adherence is not affecting a single component of knee prosthesis only. Thus, in septic revision surgery partial prosthetic exchange or exchange of single polyethylene components alone may be not sufficient.

  9. Realism Assessment of Sonic Boom Simulators

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.; Davies, Patrica; Hodgdon, Kthleen K.; Salamone, Joseph A., III; Pilon, Anthony

    2008-01-01

    Developments in small supersonic aircraft design are predicted to result in low-intensity sonic booms. Booms generated by current aircraft are similar to those that led to the ban on commercial supersonic fli ght over the US, so are unsuitable for parametric studies of psychoac oustic response to low-intensity booms. Therefore, simulators have be en used to study the impact of predicted low-intensity sonic booms. H owever, simulators have been criticized because, when simulating conv entional-level booms, the sounds were observed to be unrealistic by p eople experienced in listening to sonic booms. Thus, two studies were conducted to measure the perceived realism of three sonic boom simul ators. Experienced listeners rated the realism of conventional sonic boom signatures when played in these simulators. The effects on percei ved realism of factors such as duration of post-boom noise, exclusion of very low frequency components, inclusion of ground reflections, a nd type of simulator were examined. Duration of post-boom noise was f ound to have a strong effect on perceived realism, while type of simu lator had a weak effect. It was determined that post-boom noise had t o be at least 1.5 seconds long for the sound to be rated very realist ic. Loudness level did not affect realism for the range of sounds pla yed in the tests (80-93 dB ASEL).

  10. Lack of antimicrobial effect on periodontopathic bacteria by ultrasonic and sonic scalers in vitro.

    PubMed

    Schenk, G; Flemmig, T F; Lob, S; Ruckdeschel, G; Hickel, R

    2000-02-01

    The purpose of this study was to assess the antimicrobial effects of a sonic and ultrasonic scaler generally used for subgingival scaling on gram-negative and gram-positive periodontopathic bacteria. Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Campylobacter rectus, or Peptostreptococcus micros were suspended in Schaedler's broth medium and treated by a sonic or a magnetostrictive ultrasonic scaler for 30 s and 150 s in vitro. Bacterial suspensions treated by an ultrasonic cell disruptor served as a positive control and untreated bacterial suspensions served as a negative control. Following sonication, samples were serially diluted, streaked on blood agar plates and incubated for 2-5 days at 37 degrees C. Treatment by the sonic or ultrasonic scaler for up to 150 s did not reduce the viability of any of the tested periodontal pathogens. Compared to untreated controls, the viability of A. actinomycetemcomitans and P. gingivalis was significantly (p<0.05) reduced only following ultrasonication with the cell disruptor after 30 s (0.72 and 0.54 log CFU/ml, respectively) and of A. actinomycetemcomitans, P. gingivalis, C. rectus, and P. micros after 150 s (1.98, 1.34, 1.95 and 1.98 log CFU/ml, respectively). The data of the study may indicate that the assessed sonic and ultrasonic scaler used for subgingival debridement do not result in killing of the tested periodontal pathogens.

  11. An Auditory Illusion of Proximity of the Source Induced by Sonic Crystals

    PubMed Central

    Spiousas, Ignacio; Etchemendy, Pablo E.; Vergara, Ramiro O.; Calcagno, Esteban R.; Eguia, Manuel C.

    2015-01-01

    In this work we report an illusion of proximity of a sound source created by a sonic crystal placed between the source and a listener. This effect seems, at first, paradoxical to naïve listeners since the sonic crystal is an obstacle formed by almost densely packed cylindrical scatterers. Even when the singular acoustical properties of these periodic composite materials have been studied extensively (including band gaps, deaf bands, negative refraction, and birrefringence), the possible perceptual effects remain unexplored. The illusion reported here is studied through acoustical measurements and a psychophysical experiment. The results of the acoustical measurements showed that, for a certain frequency range and region in space where the focusing phenomenon takes place, the sonic crystal induces substantial increases in binaural intensity, direct-to-reverberant energy ratio and interaural cross-correlation values, all cues involved in the auditory perception of distance. Consistently, the results of the psychophysical experiment revealed that the presence of the sonic crystal between the sound source and the listener produces a significant reduction of the perceived relative distance to the sound source. PMID:26222281

  12. Feasibility study on conducting overflight measurements of shaped sonic boom signatures using the Firebee BQM-34E RPV

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Sothcott, Victor E.; Keefer, Thomas N., Jr.

    1993-01-01

    A study was performed to determine the feasibility of establishing if a 'shaped' sonic boom signature, experimentally shown in wind tunnel models out to about 10 body lengths, will persist out to representative flight conditions of 200 to 300 body lengths. The study focuses on the use of a relatively large supersonic remotely-piloted and recoverable vehicle. Other simulation methods that may accomplish the objective are also addressed and include the use of nonrecoverable target drones, missiles, full-scale drones, very large wind tunnels, ballistic facilities, whirling-arm techniques, rocket sled tracks, and airplane nose probes. In addition, this report will also present a background on the origin of the feasibility study including a brief review of the equivalent body concept, a listing of the basic sonic boom signature characteristics and requirements, identification of candidate vehicles in terms of desirable features/availability, and vehicle characteristics including geometries, area distributions, and resulting sonic boom signatures. A program is developed that includes wind tunnel sonic boom and force models and tests for both a basic and modified vehicles and full-scale flight tests.

  13. Simulator Study of Indoor Annoyance Caused by Shaped Sonic Boom Stimuli With and Without Rattle Augmentation

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Loubeau, Alexandra; Klos, Jacob

    2013-01-01

    The National Aeronautics and Space Administration's High Speed Project is developing a predictive capability for annoyance caused by shaped sonic booms transmitted indoors. The predictive capability is intended for use by aircraft designers as well as by aircraft noise regulators who are considering lifting the current prohibition on overland civil supersonic flight. The goal of the current study is to use an indoor simulator to validate two models developed using headphone tests for annoyance caused by sonic booms with and without rattle augmentation. The predictors in the proposed models include Moore and Glasberg's Stationary Loudness Level, the time derivative of Moore and Glasberg's time-varying short-term Loudness Level, and the difference between two weighted sound exposure levels, CSEL-ASEL. The indoor simulator provides a more realistic listening environment than headphones due to lowfrequency sound reproduction down to 6 Hz, which also causes perceptible tactile vibration. The results of this study show that a model consisting of {PL + (CSEL-ASEL)} is a reliable predictor of annoyance caused by shaped sonic booms alone, rattle sounds alone, and shaped sonic booms and rattle sounds together.

  14. The absence of histone H1 from the chromatin fraction obtained by sonication of calf thymus nuclei under "quasiphysiological" ionic conditions.

    PubMed Central

    Lishanskaya, A I; Mosevitsky, M I

    1976-01-01

    The minor chromatin fraction was isolated from the sonicated calf thymus nuclei on the basis of its differential solubility in the "quasiphysiological" salt medium (0.1 M KCl-0.05 M NaCl-l mM MgCl2-1 mM CaCl2). Histone Hl is almost completely absent from this fraction. DNA isolated from this fraction occurs in three discrete low mol. wt. fragments. The fraction of chromatin which lacks histone Hl can also be obtained by two other methods. On of them consists in salt precipitation of the chromatin gel and its subsequent sonication. The second method includes precipitation of the sonicated chromatin gel by salts. In the first case the properties of the chromatin fraction which remains in the supernatant after centrifugation closely resemble those of the original salt-soluble nuclear fraction. The second method yields supernatant fraction also lacking histone Hl but containing heterogeneous DNA. Comparisons were also made of the sonically-solubilized nuclear fractions obtained in the complete salt medium and its mono and divalent cationic constituents. Images PMID:967688

  15. A Compilation of Space Shuttle Sonic Boom Measurements

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Henderson, Herbert R.; Massey, Steven J.; Stansbery, Eugene G.

    2011-01-01

    Sonic boom measurements have been obtained on 26 flights of the Space Shuttle system beginning with the launch of STS-1 on April 12, 1981, to the reentry-descent of STS-41 into EAFB on Oct. 10, 1990. A total of 23 boom measurements were acquired within the focus region off the Florida coast during 3 STS launch-ascents and 113 boom measurements were acquired during 23 STS reentry-descent to landing into Florida and California. Sonic boom measurements were made under, and lateral to, the vehicle ground track and cover the Mach-altitude range of about 1.3 to 23 and 54,000 feet to 243,000 feet, respectively. Vehicle operational data, flight profiles and weather data were also gathered during the flights. This STS boom database is contained in 26 documents, some are formal and referenceable but most internal documents. Another 38 documents, also non-referenceable, contain predicted sonic boom footprints for reentry-descent flights on which no measurements were made. The purpose of this report is to provide an overview of the STS sonic boom database and summarize the main findings.

  16. An Auditory Illusion of Proximity of the Source Induced by Sonic Crystals.

    PubMed

    Spiousas, Ignacio; Etchemendy, Pablo E; Vergara, Ramiro O; Calcagno, Esteban R; Eguia, Manuel C

    2015-01-01

    In this work we report an illusion of proximity of a sound source created by a sonic crystal placed between the source and a listener. This effect seems, at first, paradoxical to naïve listeners since the sonic crystal is an obstacle formed by almost densely packed cylindrical scatterers. Even when the singular acoustical properties of these periodic composite materials have been studied extensively (including band gaps, deaf bands, negative refraction, and birrefringence), the possible perceptual effects remain unexplored. The illusion reported here is studied through acoustical measurements and a psychophysical experiment. The results of the acoustical measurements showed that, for a certain frequency range and region in space where the focusing phenomenon takes place, the sonic crystal induces substantial increases in binaural intensity, direct-to-reverberant energy ratio and interaural cross-correlation values, all cues involved in the auditory perception of distance. Consistently, the results of the psychophysical experiment revealed that the presence of the sonic crystal between the sound source and the listener produces a significant reduction of the perceived relative distance to the sound source.

  17. Design methodology for a community response questionnaire on sonic boom exposure

    NASA Technical Reports Server (NTRS)

    Farbry, John E., Jr.; Fields, James M.; Molino, John A.; Demiranda, Gwendolyn A.

    1991-01-01

    A preliminary draft questionnaire concerning community response to sonic booms was developed. Interviews were conducted in two communities that had experienced supersonic overflights of the SR-71 airplane for several years. Even though the overflights had ceased about 6 months prior to the interviews, people clearly remembered hearing sonic booms. A total of 22 people living in central Utah and 23 people living along Idaho/Washington state border took part in these interviews. The draft questionnaire was constantly modified during the study in order to evaluate different versions. Questions were developed which related to annoyance, startle, sleep disturbance, building vibration, and building damage. Based on the data collected, a proposed community response survey response instrument was developed for application in a full-scale sonic boom study.

  18. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  19. Sonic boom (human response and atmospheric effects) outdoor-to-indoor response to minimized sonic booms

    NASA Technical Reports Server (NTRS)

    Brown, David; Sutherland, Louis C.

    1992-01-01

    The preferred descriptor to define the spectral content of sonic booms is the Sound Exposure Spectrum Level, LE(f). This descriptor represents the spectral content of the basic noise descriptors used for describing any single event--the Sound Exposure Level, LE. The latter is equal to ten times the logarithms, to the base ten, of the integral, over the duration of the event, of the square of the instantaneous acoustic pressure, divided by the square of the reference pressure, 20 micro-Pa. When applied to the evaluation of community response to sonic booms, it is customary to use the so-called C-Weighted Sound Exposure Level, LCE, for which the frequency content of the instantaneous acoustic pressure is modified by the C-Weighting curve.

  20. Numerical model for the weakly nonlinear propagation of sound through turbulence

    NASA Technical Reports Server (NTRS)

    Lipkens, Bart; Blanc-Benon, Philippe

    1994-01-01

    When finite amplitude (or intense) sound, such as a sonic boom, propagates through a turbulent atmosphere, the propagation is strongly affected by the turbulence. The interaction between sound and turbulence has mostly been studied as a linear phenomenon, i.e., the nonlinear behavior of the intense sound has been neglected. It has been shown that turbulence has an effect on the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. Peak pressure and rise time are important factors that determine the loudness of the sonic boom when heard outdoors. However, the interaction between turbulence and nonlinear effects has mostly not been included in propagation studies of sonic booms. It is therefore important to investigate the influence of acoustical nonlinearity on the interaction of intense sound with turbulence.

  1. Characterization of sonicated natural zeolite/ferric chloride hexahydrate by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Prasetyo, T. A. B.; Soegijono, B.

    2018-03-01

    The characteristics of sonicated Bayah natural zeolite with and without ferric chloride hexahydrate solution using infrared method has been studied. High intensity ultrasonic waves were exposed to the samples for 40 min, 80 min and 120 min. Infra red spectra analysis was conducted to evaluate zeolite vibrational spectrum contributions, namely, the vibrations from the framework of the zeolite, from the charge-balancing cations, and from the relatively isolated groups, such as the surface OH groups and their behavior after sonication process. An addition of FeCl3.6H2O and sonication process on natural zeolite improved secondary building units link by forming oxygen bridges and also close relationship with duration of applied high intensity ultrasonic process. Longer ultrasonic process resulted in more increment of O-H absorbance.

  2. Design methodology for a community response questionnaire on sonic boom exposure

    NASA Astrophysics Data System (ADS)

    Farbry, John E., Jr.; Fields, James M.; Molino, John A.; Demiranda, Gwendolyn A.

    1991-05-01

    A preliminary draft questionnaire concerning community response to sonic booms was developed. Interviews were conducted in two communities that had experienced supersonic overflights of the SR-71 airplane for several years. Even though the overflights had ceased about 6 months prior to the interviews, people clearly remembered hearing sonic booms. A total of 22 people living in central Utah and 23 people living along Idaho/Washington state border took part in these interviews. The draft questionnaire was constantly modified during the study in order to evaluate different versions. Questions were developed which related to annoyance, startle, sleep disturbance, building vibration, and building damage. Based on the data collected, a proposed community response survey response instrument was developed for application in a full-scale sonic boom study.

  3. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    NASA Astrophysics Data System (ADS)

    Cucciati, G.; Auffray, E.; Bugalho, R.; Cao, L.; Di Vara, N.; Farina, F.; Felix, N.; Frisch, B.; Ghezzi, A.; Juhan, V.; Jun, D.; Lasaygues, P.; Lecoq, P.; Mensah, S.; Mundler, O.; Neves, J.; Paganoni, M.; Peter, J.; Pizzichemi, M.; Siles, P.; Silva, J. C.; Silva, R.; Tavernier, S.; Tessonnier, L.; Varela, J.

    2014-03-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information.

  4. Exhaust Plume Effects on Sonic Boom for a Delta Wing and a Swept Wing-Body Model

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Lake, Troy

    2012-01-01

    Supersonic travel is not allowed over populated areas due to the disturbance caused by the sonic boom. Research has been performed on sonic boom reduction and has included the contribution of the exhaust nozzle plume. Plume effect on sonic boom has progressed from the study of isolated nozzles to a study with four exhaust plumes integrated with a wing-body vehicle. This report provides a baseline analysis of the generic wing-body vehicle to demonstrate the effect of the nozzle exhaust on the near-field pressure profile. Reductions occurred in the peak-to-peak magnitude of the pressure profile for a swept wing-body vehicle. The exhaust plumes also had a favorable effect as the nozzles were moved outward along the wing-span.

  5. Heat propagation in dentin during instrumentation with different sonic scaler tips.

    PubMed

    Kocher, T; Plagmann, H C

    1996-04-01

    It is important to know how much heat is generated when a root surface is debrided with sonic scalers and if that heat can be released satisfactorily into the environment. The temperature changes that occurred in dentinal specimens treated with two different sonic scaler tips, used with and without coolant, were studied. Temperature increases of up to 4 degrees C were observed for both tips when a coolant was used. Heat propagation during instrumentation was dependent to a considerable degree on the temperature of the coolant. Sonic scalers should not be used without coolant, because the dentinal temperature may increase up to 35 degrees C, depending on the force of application. A high positive linear correlation was found between increase in temperature and force of application.

  6. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  7. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  8. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  9. Advanced Energy Conversion Concept for Beamed-Energy Propulsion.

    DTIC Science & Technology

    1987-08-21

    pulsed simultaneously at 40 HL. the thruster will operate almost iMen&1 within the infra - sonIc regime. c) Asymmetric thrust considerations During low...LSD WAVES) - / TIME I-*- INFRA - SONIC I LEVITATIUN FREQUENCY Firm U-27 .?AmpUtude-laimpd macro-pulam .5 " I A. SIDE VIEW CUNICAL TIP ,?I , i...s equal local sta ic), and the sonic velocity. Since cool air can rush in only at the speed of sound, one would want to minimize the expanded plasma

  10. Ocean Magnetics: 1. Fundamental Survey and Estimates of Induction Phenomena

    DTIC Science & Technology

    1977-10-01

    sensitivities of /i0-• /Hz only in the far infra - sonic regime. We may note that, for a noise souce at great distances (R) such that its radiation...Various Ocean Depths (D), Pycnocline Depths (d), and Density Changes (6p/p), Sonic Mode (0), with IW Truncated at Brunt-Vaisala Frequency for aJ 25-m...Changes (6p/p), Sonic Mode MQ, with 1WI ~Truncated at Brunt Vaisala Frequency for a 25-rn-Thick Pycnocline.I Dashed line separates quasi-static (left

  11. Locally resonant sonic materials

    PubMed

    Liu; Zhang; Mao; Zhu; Yang; Chan; Sheng

    2000-09-08

    We have fabricated sonic crystals, based on the idea of localized resonant structures, that exhibit spectral gaps with a lattice constant two orders of magnitude smaller than the relevant wavelength. Disordered composites made from such localized resonant structures behave as a material with effective negative elastic constants and a total wave reflector within certain tunable sonic frequency ranges. A 2-centimeter slab of this composite material is shown to break the conventional mass-density law of sound transmission by one or more orders of magnitude at 400 hertz.

  12. Sonic Onyx: Case Study of an Interactive Artwork

    NASA Astrophysics Data System (ADS)

    Ahmed, Salah Uddin; Jaccheri, Letizia; M'kadmi, Samir

    Software supported art projects are increasing in numbers in recent years as artists are exploring how computing can be used to create new forms of live art. Interactive sound installation is one kind of art in this genre. In this article we present the development process and functional description of Sonic Onyx, an interactive sound installation. The objective is to show, through the life cycle of Sonic Onyx, how a software dependent interactive artwork involves its users and raises issues related to its interaction and functionalities.

  13. Evaluation of outdoor-to-indoor response to minimized sonic booms

    NASA Technical Reports Server (NTRS)

    Brown, David; Sutherland, Louis C.

    1992-01-01

    Various studies were conducted by NASA and others on the practical limitations of sonic boom signature shaping/minimization for the High-Speed Civil Transport (HSCT) and on the effects of these shaped boom signatures on perceived loudness. This current effort is a further part of this research with emphasis on examining shaped boom signatures which are representative of the most recent investigations of practical limitations on sonic boom minimization, and on examining and comparing the expected response to these signatures when experienced indoors and outdoors.

  14. Sucrose tricarboxylate by sonocatalysed TEMPO-mediated oxidation.

    PubMed

    Lemoine, S; Thomazeau, C; Joannard, D; Trombotto, S; Descotes, G; Bouchu, A; Queneau, Y

    2000-06-16

    Oxidation of sucrose by the NaOCl/TEMPO system provided sucrose tricarboxylate without the addition of sodium bromide as co-catalyst when high-frequency (500 kHz) ultrasound was applied, in contrast to very limited conversion without sonication. In the presence of sodium bromide, sonication also caused acceleration of the oxidation. The rate increase due to sonication of the oxidant system prior to sucrose addition suggests that ultrasound acts at the level of the formation of the nitrosonium ion, the active oxidising species in the catalytic cycle.

  15. Sonic levitation apparatus

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.; Pomplum, A. R.; Paquette, E. G.; Ethridge, E. C.; Johnson, J. L. (Inventor)

    1984-01-01

    A sonic levitation apparatus is disclosed which includes a sonic transducer which generates acoustical energy responsive to the level of an electrical amplifier. A duct communicates with an acoustical chamber to deliver an oscillatory motion of air to a plenum section which contains a collimated hole structure having a plurality of parallel orifices. The collimated hole structure converts the motion of the air to a pulsed. Unidirectional stream providing enough force to levitate a material specimen. Particular application to the production of microballoons in low gravity environment is discussed.

  16. Using FUN3D for Aeroelastic, Sonic Boom, and AeroPropulsoServoElastic (APSE) Analyses of a Supersonic Configuration

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph; Kopasakis, George

    2016-01-01

    An overview of recent applications of the FUN3D CFD code to computational aeroelastic, sonic boom, and aeropropulsoservoelasticity (APSE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed including multiple unstructured CFD grids suitable for aeroelastic and sonic boom analyses. In addition, aeroelastic Reduced-Order Models (ROMs) are generated and used to rapidly compute the aeroelastic response and utter boundaries at multiple flight conditions.

  17. Atmospheric Characterization During Super-Resolution Vision System Developmental Testing

    DTIC Science & Technology

    2013-05-01

    local time each day of the test. RM Young 81000 sonic anemometers were located at 0-, 800-, and 1800-m target points at 1.5-m elevation to provide point...estimates of C2n. Sonic anemometer data were also collected at a 0-km tower at several levels, providing a vertical turbulence profile. Turbulence...Atmospheric Instrumentation and Analysis 8 4. Estimation of C2n from Sonic Anemometer Data 11 5. Data Plots 14 6. Derived Results 32 7. Conclusions 36 8

  18. Environmental Pollution: Noise Pollution - Sonic Boom

    DTIC Science & Technology

    1977-06-01

    UNCLASSIFIED AD-A041 400 DDC/BIB-77/06 ENVIRONMENTAL POLLUTION NOISE POLLUTION SONIC BOOM A DDC BIBLIOGRAPHY DDC-TAS Cameron Station Alexandria, Va...rn7Sttio 658S-A041 400 4 TITLE xand r.VuhtlVlia) 2 TA i b- 1iblog ra ph y ENVIRONMENTAL POLLUTION : --. Apr-l IM59-Jul, 7NOISE POLLUTION -SONIC BOOM. 1,976...BIBLIOGRAPHY SEARCH CONTROL NO. /2OM09 AD- 769 970 20/1 1/3 DEFENSE UOCUMENTATION CENTER ALEXANDRIA VA ENVIRONMENTAL POLLUTION : NOISE POLLUTION

  19. Optimization of Ultrasound Assisted Extraction of Functional Ingredients from Stevia Rebaudiana Bertoni Leaves

    NASA Astrophysics Data System (ADS)

    Šic Žlabur, Jana; Voća, Sandra; Dobričević, Nadica; Brnčić, Mladen; Dujmić, Filip; Rimac Brnčić, Suzana

    2015-04-01

    The aim of the present study was to reveal an effective extraction procedure for maximization of the yield of steviol glycosides and total phenolic compounds as well as antioxidant activity in stevia extracts. Ultrasound assisted extraction was compared with conventional solvent extraction. The examined solvents were water (100°C/24 h) and 70% ethanol (at 70°C for 30 min). Qualitative and quantitative analyses of steviol glycosides in the extracts obtained were performed using high performance liquid chromatography. Total phenolic compounds, flavonoids, and radical scavenging capacity by 2, 2-azino-di-3-ethylbenzothialozine- sulphonic acid) assay were also determined. The highest content of steviol glycosides, total phenolic compounds, and flavonoids in stevia extracts were obtained when ultrasound assisted extraction was used. The antioxidant activity of the extracts was correlated with the total amount of phenolic compounds. The results indicated that the examined sonication parameters represented as the probe diameter (7 and 22 mm) and treatment time (2, 4, 6, 8, and 10 min) significantly contributed to the yield of steviol glycosides, total phenolic compounds, and flavonoids. The optimum conditions for the maximum yield of steviol glycosides, total phenolic compounds, and flavonoids were as follows: extraction time 10 min, probe diameter 22 mm, and temperature 81.2°C.

  20. Field intercomparison of six different three-dimensional sonic anemometers

    NASA Astrophysics Data System (ADS)

    Mauder, Matthias; Zeeman, Matthias

    2017-04-01

    Although sonic anemometers have been used extensively for several decades in micrometeorological and ecological research, there is still some scientific debate about the measurement uncertainty of these instruments. This is due to the fact that an absolute reference for the measurement of turbulent wind fluctuations in the free atmosphere does not exist. In view of this lack we have conducted a field intercomparison experiment of six commonly used sonic anemometers from four major manufacturers. The models included Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R.M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site De-Fen in southern Germany over a period of 16 days in June of 2016 in preparation of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by neighbouring structures as much as possible. Moreover, the data were filtered for potentially disturbed wind sectors, and the high-frequency data from all instruments were treated with the same post-processing algorithm. In this presentation, we compare the results for various turbulence statistics from all sensors. These include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity and the covariance between vertical wind velocity and sonic temperature. Quantitative measures of uncertainty were derived from these results. We find that biases and regression intercepts are generally very small for all sensors and all computed variables, except for the temperature measurements of the two Gill sonic anemometers (HS and R3), which are known to suffer from a transducer-temperature dependence of the sonic temperature measurement. The comparability of the instruments is not always as good, which means that there is some scatter but the errors compensate at least partly. The best overall agreement between the different instruments was found for the variables "mean wind speed" and "buoyancy flux", which reflects that the sensors are optimized for measuring these quantities.

  1. Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation.

    PubMed

    Jeon, Byong-Hun; Choi, Jeong-A; Kim, Hyun-Chul; Hwang, Jae-Hoon; Abou-Shanab, Reda Ai; Dempsey, Brian A; Regan, John M; Kim, Jung Rae

    2013-01-01

    Microalgal biomass contains a high level of carbohydrates which can be biochemically converted to biofuels using state-of-the-art strategies that are almost always needed to employ a robust pretreatment on the biomass for enhanced energy production. In this study, we used an ultrasonic pretreatment to convert microalgal biomass (Scenedesmus obliquus YSW15) into feasible feedstock for microbial fermentation to produce ethanol and hydrogen. The effect of sonication condition was quantitatively evaluated with emphases on the characterization of carbohydrate components in microalgal suspension and on subsequent production of fermentative bioenergy. Scenedesmus obliquus YSW15 was isolated from the effluent of a municipal wastewater treatment plant. The sonication durations of 0, 10, 15, and 60 min were examined under different temperatures at a fixed frequency and acoustic power resulted in morphologically different states of microalgal biomass lysis. Fermentation was performed to evaluate the bioenergy production from the non-sonicated and sonicated algal biomasses after pretreatment stage under both mesophilic (35°C) and thermophilic (55°C) conditions. A 15 min sonication treatment significantly increased the concentration of dissolved carbohydrates (0.12 g g(-1)), which resulted in an increase of hydrogen/ethanol production through microbial fermentation. The bioconvertibility of microalgal biomass sonicated for 15 min or longer was comparable to starch as a control, indicating a high feasibility of using microalgae for fermentative bioenergy production. Increasing the sonication duration resulted in increases in both algal surface hydrophilicity and electrostatic repulsion among algal debris dispersed in aqueous solution. Scanning electron microscope images supported that ruptured algal cell allowed fermentative bacteria to access the inner space of the cell, evidencing an enhanced bioaccessibility. Sonication for 15 min was the best for fermentative bioenergy (hydrogen/ethanol) production from microalga, and the productivity was relatively higher for thermophilic (55°C) than mesophilic (35°C) condition. These results demonstrate that more bioavailable carbohydrate components are produced through the ultrasonic degradation of microalgal biomass, and thus the process can provide a high quality source for fermentative bioenergy production.

  2. An Eight-Week Clinical Evaluation of an Oscillating-Rotating Power Toothbrush with a Brush Head Utilizing Angled Bristles Compared with a Sonic Toothbrush in the Reduction of Gingivitis and Plaque.

    PubMed

    Ccahuana-Vasquez, Renzo A; Conde, Erinn; Grender, Julie M; Cunningham, Pamela; Qaqish, Jimmy; Goyal, C Ram

    2015-01-01

    To evaluate and compare the efficacy of an oscillating-rotating (O-R) power toothbrush with a brush head utilizing angled bristles to a marketed sonic toothbrush in the reduction of plaque and gingivitis over an eight-week period. This study used a randomized, examiner-blind, single-center, two-treatment, parallel group, eight-week design. Subjects with mild-to-moderate plaque and gingivitis were evaluated for baseline whole mouth, gingival margin, and approximal plaque, gingivitis, and gingival bleeding. Clinical assessments were performed using the Modified Gingival Index, Gingival Bleeding Index, and the Rustogi Modified Navy Plaque Index. Subjects received either the O-R brush (Oral-B Professional Care 1000 [D16u] with Oral-B CrossAction brush head [EB50]) or the sonic brush (Sonicare DiamondClean with the standard DiamondClean brush head). Subjects brushed twice daily for two minutes per brushing with the assigned brush and a standard fluoride dentifrice for eight weeks before returning for plaque and gingivitis evaluations using the same methods. Prior to baseline and Week 8 measurements, participants abstained from oral hygiene for 12 hours. One hundred and forty-eight subjects completed the study; 75 in the O-R group and 73 in the sonic group. Both brushes demonstrated statistically significant reductions in plaque and gingivitis over the eight-week study period (p < 0.00 1). The O-R brush was statistically significantly more effective in reducing plaque and gingivitis than the sonic brush. Whole mouth, gingival margin, and approximal plaque reductions were 27.7%, 46.8%, and 29.3% greater, respectively, compared with the sonic brush, while the reductions in gingivitis, gingival bleeding, and number of bleeding sites were 34.6%, 36.4%, and 36.1% greater, respectively, for the O-R brush than for the sonic brush (p < 0.001 for all six measures). No adverse events were observed for either brush. The plaque and gingivitis reductions for the O-R power brush incorporating the angled-bristled brush head were significantly greater than for the sonic power brush.

  3. CFD Predictions of Sonic-Boom Characteristics for Unmodified and Modified SR-71 Configurations

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran

    1999-01-01

    Shaped sonic-boom signatures refer to signatures that look something other than the typical N-waves. Shaped sonic-boom signatures such as "flat-top," "ramp-type," or "hybrid-type" waveforms have been shown to reduce the subjective loudness without requiring reductions in overpressure peaks. The shaping of sonic-boom signatures requires increasing the shock rise time and changes in frequency spectra. So far, a flat-top waveform was shown to be achievable in wind tunnels; however, the influence of long propagation distance and real atmosphere on shaped signatures should be addressed using flight tests. Two different approaches have been proposed for sonic-boom minimization flight tests. The first approach, proposed by Eagle Aerospace, is for a flight test using a modified BQM-34 "FIREBEE" remotely piloted vehicle. The 30-foot long FIREBEE has a steady state flight condition at the Mach number and altitude of interest, and it can be recovered by helicopter from the water. As an alternative approach, a modified SR-71 vehicle has been proposed by the McDonnell Douglas Corporation. Benefits of the SR-71 include its variable geometry supersonic inlets, small cockpit bulge, higher Mach number capabilities, slender design, and longer length (105 foot). The present investigation addresses the sonic-boom analysis for the second vehicle.The objective of the current investigation is to assess the feasibility of a modified SR-71 configuration, with McDonnell Douglas-designed fuselage modifications, intended to produce shaped sonic-boom signatures on the ground. The present study describes the use of a higher-order computational fluid dynamics (CFD) method to predict the sonic-boom characteristics for both unmodified and modified SR-71 configurations. An Euler unstructured grid methodology is used to predict the near-field, three-dimensional pressure patterns generated by both SR-71 models. The computed near-field pressure signatures are extrapolated to specified distances below the aircraft down to impingement on the ground using the code MDBOOM. Comparisons of the near-field pressure signatures with available flight-test data are presented in the current paper.

  4. Multi-focal HIFU reduces cavitation in mild-hyperthermia.

    PubMed

    Chaplin, Vandiver; Caskey, Charles F

    2017-01-01

    Mild-hyperthermia therapy (40-45 °C) with high-intensity focused ultrasound (HIFU) is a technique being considered in a number of different treatments such as thermally activated drug delivery, immune-stimulation, and as a chemotherapy adjuvant. Mechanical damage and loss of cell viability associated with HIFU-induced acoustic cavitation may pose a risk during these treatments or may hinder their success. Here we present a method that achieves mild heating and reduces cavitation by using a multi-focused HIFU beam. We quantify cavitation level and temperature rise in multi-focal sonications and compare it to single-focus sonications at the transducer geometric focus. Continuous wave sonications were performed with the Sonalleve V2 transducer in gel phantoms and pork at 5, 10, 20, 40, 60, 80 acoustic watts for 30 s. Cavitation activity was measured with two ultrasound (US) imaging probes, both by computing the raw channel variance and using passive acoustic mapping (PAM). Temperature rise was measured with MR thermometry at 3 T. Cavitation and heating were compared for single- and multi-focal sonication geometries. Multi-focal sonications used four points equally spaced on a ring of either 4 mm or 8 mm diameter. Single-focus sonications were not steered. Multi-focal sonication generated distinct foci that were visible in MRI thermal maps in both phantoms and pork, and visible in PAM images in phantoms only. Cavitation activity (measured by channel variance) and mean PAM image value were highly correlated (r > 0.9). In phantoms, cavitation exponentially decreased over the 30-second sonication, consistent with depletion of cavitation nuclei. In pork, sporadic spikes signaling cavitation were observed with single focusing only. In both materials, the widest beam reduced average and peak cavitation level by a factor of two or more at each power tested when compared to a single focus. The widest beam reduced peak temperature by at least 10 °C at powers above 5 W, and created heating that was more spatially diffuse than single focus, resulting in more voxels in the mild heating (3-8 °C) range. Multi-focal HIFU can be used to achieve mild temperature elevation and reduce cavitation activity.

  5. Comparison of sarcoplasmic reticulum capabilities in toadfish (Opsanus tau) sonic muscle and rat fast twitch muscle.

    PubMed

    Feher, J J; Waybright, T D; Fine, M L

    1998-08-01

    The sonic muscle of the oyster toadfish, Opsanus tau, can produce unfused contractions at 300 Hz. Electron microscopy shows a great abundance of the Sarcoplasmic reticulum (SR) in this muscle, but no functional characterization of the capabilities of the SR has been reported. We measured the oxalate-supported Ca2+ uptake rate and capacities of homogenates of toadfish sonic muscle and rat extensor digitorum longus (EDL) muscle, and estimated the number of pump units by titration with thapsigargin, a high-affinity, specific inhibitor of the SR Ca-ATPase. The Ca2+ uptake rate averaged 70.9 +/- 9.5 mumol min -1 per g tissue for the toad fish sonic muscle, and 73.5 +/- 3.7 mumol min -1 g-1 for rat EDL. The capacity for Ca2+ -oxalate uptake was 161 +/- 20 mumol g -1 and 33 +/- 2 mumol g -1 for toadfish sonic muscle and rat EDL, respectively. Thus, the rates of Ca2+ uptake were similar in the two muscles, but the toadfish sonic muscle had about five times the capacity of the rat EDL. The number of pumps as estimated by thapsigargin titration was 68 +/- 4 nmol of Ca-ATPase per g tissue in the toadfish, and 42 +/- 5 nmol Ca-ATPase per g tissue in the rat EDL. The turnover number, defined as the Ca2+ uptake divided by the number of pumps, was 1065 +/- 150 min -1 for toadfish and 1786 +/- 230 min -1 for rat EDL (p < 0.05) at 37 degrees C. The Ca2+ uptake rate of toadfish sonic muscle at 22 degree C, a typical temperature for calling toadfish, averaged 42 +/- 1% of its rate at 37 degree C. At these operating temperatures, the toadfish SR is likely to be slower than the rat fast-twitch SR, yet the toadfish sonic muscle supports more rapid contractions. One explanation for this is that the voluminous SR provides activator Ca2+ for contraction, but the abundant parvalbumin plays a major role in relaxation.

  6. Exosome-like vesicles in uterine aspirates: a comparison of ultracentrifugation-based isolation protocols.

    PubMed

    Campoy, Irene; Lanau, Lucia; Altadill, Tatiana; Sequeiros, Tamara; Cabrera, Silvia; Cubo-Abert, Montserrat; Pérez-Benavente, Assumpción; Garcia, Angel; Borrós, Salvador; Santamaria, Anna; Ponce, Jordi; Matias-Guiu, Xavier; Reventós, Jaume; Gil-Moreno, Antonio; Rigau, Marina; Colas, Eva

    2016-06-18

    Uterine aspirates are used in the diagnostic process of endometrial disorders, yet further applications could emerge if its complex milieu was simplified. Exosome-like vesicles isolated from uterine aspirates could become an attractive source of biomarkers, but there is a need to standardize isolation protocols. The objective of the study was to determine whether exosome-like vesicles exist in the fluid fraction of uterine aspirates and to compare protocols for their isolation, characterization, and analysis. We collected uterine aspirates from 39 pre-menopausal women suffering from benign gynecological diseases. The fluid fraction of 27 of those aspirates were pooled and split into equal volumes to evaluate three differential centrifugation-based procedures: (1) a standard protocol, (2) a filtration protocol, and (3) a sucrose cushion protocol. Characterization of isolated vesicles was assessed by electron microscopy, nanoparticle tracking analysis and immunoblot. Specifically for RNA material, we evaluate the effect of sonication and RNase A treatment at different steps of the protocol. We finally confirmed the efficiency of the selected methods in non-pooled samples. All protocols were useful to isolate exosome-like vesicles. However, the Standard procedure was the best performing protocol to isolate exosome-like vesicles from uterine aspirates: nanoparticle tracking analysis revealed a higher concentration of vesicles with a mode of 135 ± 5 nm, and immunoblot showed a higher expression of exosome-related markers (CD9, CD63, and CD81) thus verifying an enrichment in this type of vesicles. RNA contained in exosome-like vesicles was successfully extracted with no sonication treatment and exogenous nucleic acids digestion with RNaseA, allowing the analysis of the specific inner cargo by Real-Time qPCR. We confirmed the existence of exosome-like vesicles in the fluid fraction of uterine aspirates. They were successfully isolated by differential centrifugation giving sufficient proteomic and transcriptomic material for further analyses. The Standard protocol was the best performing procedure since the other two tested protocols did not ameliorate neither yield nor purity of exosome-like vesicles. This study contributes to establishing the basis for future comparative studies to foster the field of biomarker research in gynecology.

  7. High-Speed Research: 1994 Sonic Boom Workshop: Atmospheric Propagation and Acceptability Studies

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A. (Editor)

    1994-01-01

    The workshop proceedings include papers on atmospheric propagation and acceptability studies. Papers discussing atmospheric effects on the sonic boom waveform addressed several issues. It has long been assumed that the effects of molecular relaxation are adequately accounted for by assuming that a steady state balance between absorption and nonlinear wave steepening exists. It was shown that the unsteadiness induced by the nonuniform atmosphere precludes attaining this steady state. Further, it was shown that the random atmosphere acts as a filter, effectively filtering out high frequency components of the distorted waveform. Several different propagation models were compared, and an analysis of the sonic boom at the edge of the primary carpet established that the levels there are bounded. Finally, a discussion of the levels of the sonic boom below the sea surface was presented.

  8. Automatic control of oscillatory penetration apparatus

    DOEpatents

    Lucon, Peter A

    2015-01-06

    A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.

  9. Review and status of sonic boom penetration into the ocean.

    PubMed

    Sparrow, Victor W

    2002-01-01

    Since the 1970 Sonic Boom Symposium, held at the ASA's 80th meeting in Houston, TX, substantial progress has been made in understanding the penetration of sonic booms into the ocean. The state of the art at that time was documented by J. C. Cook, T. Goforth, and R. K. Cook [J. Acoust. Soc. Am. 51, 729-741 (1972)]. Since then, additional experiments have been performed which corroborate Cook's and Sawyers' theory for sonic boom penetration into a flat ocean surface. In addition, computational simulations have validated that theory and extended the work to include arbitrarily shaped waveforms penetrating flat ocean surfaces. Further numerical studies have investigated realistic ocean surfaces including large-scale ocean swell. Research has also been performed on the effects of ocean inhomogeneities due to bubble plumes. This paper provides a brief overview of these developments.

  10. Mechanical Properties of Graphene-Rubber Nanocomposites

    NASA Astrophysics Data System (ADS)

    Anhar, N. A. M.; Ramli, M. M.; Hambali, N. A. M. A.; Aziz, A. A.; Mat Isa, S. S.; Danial, N. S.; Abdullah, M. M. A. B.

    2017-11-01

    This research focused on development of wearable sensor device by using Prevulcanized Natural Rubber (PV) and Epoxidized Natural Rubber (ENR 50) latex incorporated with graphene oxide (GO), graphene paste, graphene powder and reduced graphene oxide (rGO) powder. The compounding formulation and calculation were based on phr (parts per hundred rubber) and all the samples were then tested for mechanical properties using Instron 5565 machine. It was found that the sonication effects on tensile strength may have better quality of tensile strength compared to non-sonicated GO. For PV incorporate GO, the optimum loading was best determined at loading 1.5 phr with or without sonication and similar result was recorded for PV/G. For ENR 50 incorporate graphene paste and rGO powder nanocomposite shows the best optimum was at 3.0 phr with 24 hours’ sonication.

  11. Enantiomeric resolution of p-toluenesulfonate of valine benzyl ester by preferential crystallizaion.

    PubMed

    Munegumi, Toratane; Wakatsuki, Aiko; Takahashi, Yutaro

    2012-02-01

    Preferential crystallization of amino acid derivatives by seeding a pure enantiomer into racemic amino acid solutions has been studied for many years. However, few examples of valine derivatives have been reported so far. Although there have been some reports using valine hydrogen chloride with preferential crystallization, it is difficult to obtain optical isomers for valine derivatives using preferential crystallization. In this study, repeated preferential crystallization of p-toluenesulfonate valine benzyl ester with a 20% e.e. in 2-propanol gave a 94% e.e. on sonication. Sonication accelerated crystallization rate, but there was not a big difference in e.e. between with and without sonication. However, this research demonstrates the first preferential crystallization of p-toluenesulfonate of valine benzyl esters with an acceleration of crystallization using sonication. Copyright © 2011 Wiley Periodicals, Inc.

  12. Sonic Thermometer for High-Altitude Balloons

    NASA Technical Reports Server (NTRS)

    Bognar, John

    2012-01-01

    The sonic thermometer is a specialized application of well-known sonic anemometer technology. Adaptations have been made to the circuit, including the addition of supporting sensors, which enable its use in the high-altitude environment and in non-air gas mixtures. There is a need to measure gas temperatures inside and outside of superpressure balloons that are flown at high altitudes. These measurements will allow the performance of the balloon to be modeled more accurately, leading to better flight performance. Small thermistors (solid-state temperature sensors) have been used for this general purpose, and for temperature measurements on radiosondes. A disadvantage to thermistors and other physical (as distinct from sonic) temperature sensors is that they are subject to solar heating errors when they are exposed to the Sun, and this leads to issues with their use in a very high-altitude environment

  13. Field Intercomparison of Six Sifferent Three-dimensional Sonic Anemometers

    NASA Astrophysics Data System (ADS)

    Zeeman, M. J.; Mauder, M.

    2016-12-01

    Although sonic anemometers have been used extensively for several decades in micrometeorological and ecological research, there is still some scientific debate about the measurement uncertainty of these instruments. This is due to the fact that an absolute reference for the measurement of turbulent wind fluctuations in the free atmosphere does not exist. In view of this lack we have conducted a field intercomparison experiment of six commonly used sonic anemometers from four major manufacturers. The models included Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R.M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site De-Fen in southern Germany over a period of 16 days in June of 2016 in preparation of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by neighbouring structures as much as possible. Moreover, the data were filtered for potentially disturbed wind sectors, and the high-frequency data from all instruments were treated with the same post-processing algorithm. In this presentation, we compare the results for various turbulence statistics from all sensors. These include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity and the covariance between vertical wind velocity and sonic temperature. Quantitative measures of uncertainty, such as bias and comparability are derived from these results.

  14. Influence of the Cell Wall on Intracellular Delivery to Algal Cells by Electroporation and Sonication

    PubMed Central

    Azencott, Harold R.; Peter, Gary F.; Prausnitz, Mark R.

    2007-01-01

    To assess the cell wall’s role as a barrier to intracellular delivery, wild-type Chlamydomonas reinhardtii algal cells and mutant cells lacking a cell wall were exposed to electroporation or sonication. Flow cytometry determined intracellular uptake of calcein and bovine serum albumin (BSA) and loss of cell viability as functions of electroporation transmembrane potential and acoustic energy. Electroporation of wild-type cells increased calcein uptake with increasing transmembrane potential, but delivered much less BSA. Electroporation of wall-deficient cells had similar effects on calcein uptake, but increased BSA uptake as much as 7.5-fold relative to wild-type cells, which indicated that the cell wall was a significant barrier to BSA delivery during electroporation. Sonication of wild-type cells caused calcein and BSA uptake at similar levels. This suggests that the cell wall barrier to BSA delivery can be overcome by sonication. Increased electroporation transmembrane potential or acoustic energy also caused increased loss of cell viability, where wall-deficient cells were especially susceptible to lysis. Overall, we believe this is the first study to compare the effects of electroporation and sonication in a direct fashion in any cell type. Specifically, these findings suggest that electroporation primarily transports molecules across the plasma membrane, because its mechanism is specific to lipid bilayer disruption, whereas sonication transports molecules across both the plasma membrane and cell wall, because it non-specifically disrupts cell-surface barriers. PMID:17602827

  15. Sonic-Hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy

    PubMed Central

    Voutouri, Chrysovalantis; Kalli, Maria; Pirentis, Athanassios P.; Stylianopoulos, Triantafyllos

    2017-01-01

    Targeting the rich extracellular matrix of desmoplastic tumors has been successfully shown to normalize collagen and hyaluronan levels and re-engineer intratumoral mechanical forces, improving tumor perfusion and chemotherapy. As far as targeting the abundant cancer-associated fibroblasts (CAFs) in desmoplastic tumors is concerned, while both pharmacologic inhibition of the sonic-hedgehog pathway and genetic depletion of fibroblasts have been employed in pancreatic cancers, the results between the two methods have been contradictory. In this study, we employed vismodegib to inhibit the sonic-hedgehog pathway with the aim to i) elucidate the mechanism of how CAFs depletion improves drug delivery, ii) extent and evaluate the potential use of sonic-hedgehog inhibitors to breast cancers, and iii) investigate whether sonic-hedgehog inhibition improves not only chemotherapy, but also the efficacy of the most commonly used breast cancer nanomedicines, namely Abraxane® and Doxil®. We found that treatment with vismodegib normalizes the tumor microenvironment by reducing the proliferative CAFs and in cases the levels of collagen and hyaluronan. These modulations re-engineered the solid and fluid stresses in the tumors, improving blood vessel functionality. As a result, the delivery and efficacy of chemotherapy was improved in two models of pancreatic cancer. Additionally, vismodegib treatment significantly improved the efficacy of both Abraxane and Doxil in xenograft breast tumors. Our results suggest the use of vismodegib, and sonic hedgehog inhibitors in general, to enhance cancer chemo- and nanotherapy. PMID:28662901

  16. An Intermediate in the evolution of superfast sonic muscles

    PubMed Central

    2011-01-01

    Background Intermediate forms in the evolution of new adaptations such as transitions from water to land and the evolution of flight are often poorly understood. Similarly, the evolution of superfast sonic muscles in fishes, often considered the fastest muscles in vertebrates, has been a mystery because slow bladder movement does not generate sound. Slow muscles that stretch the swimbladder and then produce sound during recoil have recently been discovered in ophidiiform fishes. Here we describe the disturbance call (produced when fish are held) and sonic mechanism in an unrelated perciform pearl perch (Glaucosomatidae) that represents an intermediate condition in the evolution of super-fast sonic muscles. Results The pearl perch disturbance call is a two-part sound produced by a fast sonic muscle that rapidly stretches the bladder and an antagonistic tendon-smooth muscle combination (part 1) causing the tendon and bladder to snap back (part 2) generating a higher-frequency and greater-amplitude pulse. The smooth muscle is confirmed by electron microscopy and protein analysis. To our knowledge smooth muscle attachment to a tendon is unknown in animals. Conclusion The pearl perch, an advanced perciform teleost unrelated to ophidiiform fishes, uses a slow type mechanism to produce the major portion of the sound pulse during recoil, but the swimbladder is stretched by a fast muscle. Similarities between the two unrelated lineages, suggest independent and convergent evolution of sonic muscles and indicate intermediate forms in the evolution of superfast muscles. PMID:22126599

  17. Top-down and Bottom-up Approaches in Production of Aqueous Nanocolloids of Low Soluble Drug Paclitaxel

    PubMed Central

    Pattekari, P.; Zheng, Z.; Zhang, X.; Levchenko, T.; Torchilin, V.

    2015-01-01

    Nano-encapsulation of poorly soluble anticancer drug was developed with sonication assisted layer-by-layer polyelectrolyte coating (SLbL). We changed the strategy of LbL-encapsulation from making microcapsules with many layers in the walls for encasing highly soluble materials to using very thin polycation / polyanion coating on low soluble nanoparticles to provide their good colloidal stability. SLbL encapsulation of paclitaxel resulted in stable 100-200 nm diameter colloids with high electrical surface ξ-potential (of -45 mV) and drug content in the nanoparticles of 90 wt %. In the top-down approach, nanocolloids were prepared by rupturing powder of paclitaxel using ultrasonication and simultaneous sequential adsorption of oppositely charged biocompatible polyelectrolytes. In the bottom-up approach paclitaxel was dissolved in organic solvent (ethanol or acetone), and drug nucleation was initiated by gradual worsening the solution with the addition of aqueous polyelectrolyte assisted by ultrasonication. Paclitaxel release rates from such nanocapsules were controlled by assembling multilayer shells with variable thicknesses and are in the range of 10-20 hours. PMID:21442095

  18. Optimisation of ultrasound-assisted reverse micelles dispersive liquid-liquid micro-extraction by Box-Behnken design for determination of acetoin in butter followed by high performance liquid chromatography.

    PubMed

    Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali

    2014-10-15

    A novel approach, ultrasound-assisted reverse micelles dispersive liquid-liquid microextraction (USA-RM-DLLME) followed by high performance liquid chromatography (HPLC) was developed for selective determination of acetoin in butter. The melted butter sample was diluted and homogenised by n-hexane and Triton X-100, respectively. Subsequently, 400μL of distilled water was added and the microextraction was accelerated by 4min sonication. After 8.5min of centrifugation, sedimented phase (surfactant-rich phase) was withdrawn by microsyringe and injected into the HPLC system for analysis. The influence of effective variables was optimised using Box-Behnken design (BBD) combined with desirability function (DF). Under optimised experimental conditions, the calibration graph was linear over the range of 0.6-200mgL(-1). The detection limit of method was 0.2mgL(-1) and coefficient of determination was 0.9992. The relative standard deviations (RSDs) were less than 5% (n=5) while the recoveries were in the range of 93.9-107.8%. Copyright © 2014. Published by Elsevier Ltd.

  19. A comparison of measured and theoretical predictions for STS ascent and entry sonic booms

    NASA Technical Reports Server (NTRS)

    Garcia, F., Jr.; Jones, J. H.; Henderson, H. R.

    1983-01-01

    Sonic boom measurements have been obtained during the flights of STS-1 through 5. During STS-1, 2, and 4, entry sonic boom measurements were obtained and ascent measurements were made on STS-5. The objectives of this measurement program were (1) to define the sonic boom characteristics of the Space Transportation System (STS), (2) provide a realistic assessment of the validity of xisting theoretical prediction techniques, and (3) establish a level of confidence for predicting future STS configuration sonic boom environments. Detail evaluation and reporting of the results of this program are in progress. This paper will address only the significant results, mainly those data obtained during the entry of STS-1 at Edwards Air Force Base (EAFB), and the ascent of STS-5 from Kennedy Space Center (KSC). The theoretical prediction technique employed in this analysis is the so called Thomas Program. This prediction technique is a semi-empirical method that required definition of the near field signatures, detailed trajectory characteristics, and the prevailing meteorological characteristics as an input. This analytical procedure then extrapolates the near field signatures from the flight altitude to an altitude consistent with each measurement location.

  20. Effects of sonochemical treatment on meteoritic nanodiamonds

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatolii V.; Verchovsky, Sasha B.; Shiryaev, Andrei A.; Semjonova, Luba F.

    2017-01-01

    A nanodiamond-rich fraction (NDF) separated from the Orgueil meteorite was subjected to a high-intensity ultrasonic treatment in a weakly acidic aqueous solution. After sedimentation by centrifugation, two fractions of grains (suspension, designated as OD7C and sediment, designated as OD7D) with different properties have been obtained. The following effects of the sonication were revealed from comparison of the contents and isotope compositions of C, N, and Xe released during stepped pyrolysis and combustion of the fractions OD7C and OD7D, the initial NDF and two grain-size fractions (OD10 and OD15) produced without sonication (a) surface layer of the sonicated diamond grains is modified to different extent in comparison with nontreated ones, (b) in some grains concentrations of the bulk N and Xe a reduced significantly, and (c) nondiamond nitrogen containing phases (e.g., Si3N4) have been destroyed. It is suggested that combined effects of the sonication and centrifugation observed for the fractions OD7C and OD7D are due to differences in surface chemistry of the nanodiamond grains, which statistically influences behavior of nanoparticles during the sonication resulting in their preferential modification in the different reaction zones of the cavitating fluid.

  1. Sonic Boom: Six Decades of Research

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Bobbitt, Percy J.; Plotkin, Kenneth J.; Shepherd, Kevin P.; Coen, Peter G.; Richwine, David M.

    2014-01-01

    Sonic booms generated by aircraft traveling at supersonic speeds have been the subject of extensive aeronautics research for over 60 years. Hundreds of papers have been published that document the experimental and analytical research conducted during this time period. The purpose of this publication is to assess and summarize this work and establish the state-of-the-art for researchers just entering the field, or for those interested in a particular aspect of the subject. This publication consists of ten chapters that cover the experimental and analytical aspects of sonic boom generation, propagation and prediction with summary remarks provided at the end of each chapter. Aircraft maneuvers, sonic boom minimization, simulation techniques and devices as well as human, structural, and other responses to sonic booms are also discussed. The geometry and boom characteristics of various low-boom concepts, both large civil transports and smaller business-jet concepts, are included. The final chapter presents an assessment of civilian supersonic overland flight and highlights the need for continued research and a low-boom demonstrator vehicle. Summary remarks are provided at the end of each chapter. The studies referenced in this publication have been drawn from over 500 references.

  2. Ground-based sensors for the SR-71 sonic boom propagation experiment

    NASA Technical Reports Server (NTRS)

    Norris, Stephen R.; Haering, Edward A., Jr.; Murray, James E.

    1995-01-01

    This paper describes ground-level measurements of sonic boom signatures made as part of the SR-71 sonic boom propagation experiment recently completed at NASA Dryden Flight Research Center, Edwards, California. Ground level measurements were the final stage of this experiment which also included airborne measurements at near and intermediate distances from an SR-71 research aircraft. Three types of sensors were deployed to three station locations near the aircraft ground track. Pressure data were collected for flight conditions from Mach 1.25 to Mach 1.60 at altitudes from 30,000 to 48,000 ft. Ground-level measurement techniques, comparisons of data sets from different ground sensors, and sensor system strengths and weaknesses are discussed. The well-known N-wave structure dominated the sonic boom signatures generated by the SR-71 aircraft at most of these conditions. Variations in boom shape caused by atmospheric turbulence, focusing effects, or both were observed for several flights. Peak pressure and boom event duration showed some dependence on aircraft gross weight. The sonic boom signatures collected in this experiment are being compiled in a data base for distribution in support of the High Speed Research Program.

  3. The effect of ultrasound on casein micelle integrity.

    PubMed

    Chandrapala, J; Martin, G J O; Zisu, B; Kentish, S E; Ashokkumar, M

    2012-12-01

    Samples of fresh skim milk, reconstituted micellar casein, and casein powder were sonicated at 20 kHz to investigate the effect of ultrasonication. For fresh skim milk, the average size of the remaining fat globules was reduced by approximately 10 nm after 60 min of sonication; however, the size of the casein micelles was determined to be unchanged. A small increase in soluble whey protein and a corresponding decrease in viscosity also occurred within the first few minutes of sonication, which could be attributed to the breakup of casein-whey protein aggregates. No measurable changes in free casein content could be detected in ultracentrifuged skim milk samples sonicated for up to 60 min. A small, temporary decrease in pH resulted from sonication; however, no measurable change in soluble calcium concentration was observed. Therefore, casein micelles in fresh skim milk were stable during the exposure to ultrasonication. Similar results were obtained for reconstituted micellar casein, whereas larger viscosity changes were observed as whey protein content was increased. Controlled application of ultrasound can be usefully applied to reverse process-induced protein aggregation without affecting the native state of casein micelles. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Uncertainty Analysis of Sonic Boom Levels Measured in a Simulator at NASA Langley

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Ely, Jeffry W.

    2012-01-01

    A sonic boom simulator has been constructed at NASA Langley Research Center for testing the human response to sonic booms heard indoors. Like all measured quantities, sonic boom levels in the simulator are subject to systematic and random errors. To quantify these errors, and their net influence on the measurement result, a formal uncertainty analysis is conducted. Knowledge of the measurement uncertainty, or range of values attributable to the quantity being measured, enables reliable comparisons among measurements at different locations in the simulator as well as comparisons with field data or laboratory data from other simulators. The analysis reported here accounts for acoustic excitation from two sets of loudspeakers: one loudspeaker set at the facility exterior that reproduces the exterior sonic boom waveform and a second set of interior loudspeakers for reproducing indoor rattle sounds. The analysis also addresses the effect of pressure fluctuations generated when exterior doors of the building housing the simulator are opened. An uncertainty budget is assembled to document each uncertainty component, its sensitivity coefficient, and the combined standard uncertainty. The latter quantity will be reported alongside measurement results in future research reports to indicate data reliability.

  5. Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization.

    PubMed

    Kaur, Inder; Ellis, Laura-Jayne; Romer, Isabella; Tantra, Ratna; Carriere, Marie; Allard, Soline; Mayne-L'Hermite, Martine; Minelli, Caterina; Unger, Wolfgang; Potthoff, Annegret; Rades, Steffi; Valsami-Jones, Eugenia

    2017-12-25

    The sonication process is commonly used for de-agglomerating and dispersing nanomaterials in aqueous based media, necessary to improve homogeneity and stability of the suspension. In this study, a systematic step-wise approach is carried out to identify optimal sonication conditions in order to achieve a stable dispersion. This approach has been adopted and shown to be suitable for several nanomaterials (cerium oxide, zinc oxide, and carbon nanotubes) dispersed in deionized (DI) water. However, with any change in either the nanomaterial type or dispersing medium, there needs to be optimization of the basic protocol by adjusting various factors such as sonication time, power, and sonicator type as well as temperature rise during the process. The approach records the dispersion process in detail. This is necessary to identify the time points as well as other above-mentioned conditions during the sonication process in which there may be undesirable changes, such as damage to the particle surface thus affecting surface properties. Our goal is to offer a harmonized approach that can control the quality of the final, produced dispersion. Such a guideline is instrumental in ensuring dispersion quality repeatability in the nanoscience community, particularly in the field of nanotoxicology.

  6. Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization

    PubMed Central

    Kaur, Inder; Ellis, Laura-Jayne; Romer, Isabella; Tantra, Ratna; Carriere, Marie; Allard, Soline; Mayne-L'Hermite, Martine; Minelli, Caterina; Unger, Wolfgang; Potthoff, Annegret; Rades, Steffi; Valsami-Jones, Eugenia

    2017-01-01

    The sonication process is commonly used for de-agglomerating and dispersing nanomaterials in aqueous based media, necessary to improve homogeneity and stability of the suspension. In this study, a systematic step-wise approach is carried out to identify optimal sonication conditions in order to achieve a stable dispersion. This approach has been adopted and shown to be suitable for several nanomaterials (cerium oxide, zinc oxide, and carbon nanotubes) dispersed in deionized (DI) water. However, with any change in either the nanomaterial type or dispersing medium, there needs to be optimization of the basic protocol by adjusting various factors such as sonication time, power, and sonicator type as well as temperature rise during the process. The approach records the dispersion process in detail. This is necessary to identify the time points as well as other above-mentioned conditions during the sonication process in which there may be undesirable changes, such as damage to the particle surface thus affecting surface properties. Our goal is to offer a harmonized approach that can control the quality of the final, produced dispersion. Such a guideline is instrumental in ensuring dispersion quality repeatability in the nanoscience community, particularly in the field of nanotoxicology. PMID:29364209

  7. Gingival cell proliferation induced by use of a sonic toothbrush with warmed silicone rubber bristles.

    PubMed

    Tomofuji, Takaaki; Kusano, Hiroki; Azuma, Tetsuji; Ekuni, Daisuke; Yamamoto, Tatsuo; Watanabe, Tatsuo; Kishimoto, Takashi

    2004-12-01

    Toothbrushing promotes gingival cell proliferation, which may occur as the result of the physical stimulation of the gingiva. The present study evaluated the effects of temperature and silicone rubber bristles of a sonic toothbrush on gingival cell proliferation in dogs. During the 5-week experimental period, one quadrant in each of eight dogs received a different toothbrushing regimen: a manual toothbrush or a sonic toothbrush with 1) nylon, 2) silicone rubber, or 3) warmed silicone rubber bristles. The proliferative activity of gingival cells was evaluated based on expression of proliferating cell nuclear antigen (PCNA). Use of the sonic toothbrushes produced a higher density of PCNA-positive and total fibroblasts than did use of a manual toothbrush. The warm silicone rubber bristles resulted in a higher density of PCNA-positive fibroblasts compared with the cooler silicone rubber bristle. The number of PCNA-positive basal cells in the junctional epithelium also increased following electric toothbrushing with warmed silicone rubber bristles. The sonic toothbrush with silicone rubber bristles induced gingival fibroblast proliferation to a greater degree than a manual toothbrush. Warming the silicone rubber bristles increased their stimulatory effects on the proliferative activity of gingival cells.

  8. Courseware Review.

    ERIC Educational Resources Information Center

    Risley, John, Ed.

    1988-01-01

    Compares the features of the sonic rangers available from HRM Software, MICROMEASUREMENTS, NAGAWTIS Software Research, and PASCO Scientific for demonstrations and experiments in mechanics. Presents the advantages of the sonic rangers and the typical graphics displayed by each software package. (YP)

  9. A sonic transducer to detect fluid leaks

    NASA Technical Reports Server (NTRS)

    Cimerman, I.; Janus, J.

    1972-01-01

    Ultrasonic detector utilizes set of contact transducers and bandpass filters to detect and analyze sonic energy produced by flow or leakage. Detector covers wide frequency range and is operable at cryogenic temperatures and in vacuum.

  10. High temperature ultrasonic testing of materials for internal flaws

    DOEpatents

    Kupperman, David S.; Linzer, Melvin

    1990-01-01

    An apparatus is disclosed for nondestructive evaluation of defects in hot terials, such as metals and ceramics, by sonic signals, which includes a zirconia buffer in contact with a hot material being tested, a liquid couplant of borax in contact with the zirconia buffer and the hot material to be tested, a transmitter mounted on the zirconia buffer sending sonic signals through the buffer and couplant into the hot material, and a receiver mounted on the zirconia buffer receiving sonic signals reflected from within the hot material through the couplant and the buffer.

  11. Environmental Impact Statement, Establishment of the Gandy Range Extension and Adjacent Restricted Airspace as an Area for Supersonic Flight Training, Hill AFB, Utah

    DTIC Science & Technology

    1985-10-03

    years, there have been noise complaintn centering out of the Montello, Nevada and Park Valley, Utah areas, There has been alleged damage to chicken ...of mink to sonic booms does not affect reproduction. 4. All eýxperisental evidence to date indicates that the exposure of chicken eggs to sonic booms...structural response to sonic boom overpressure. The most intens-ive test was conducted at White Sands, New Mexico , where 21 structures of various design

  12. Analysis of MSS (Marine Seismic System) and OBS (Ocean Bottom Seismograph) Data Collected during the NGENDEI Seismic Experiment

    DTIC Science & Technology

    1986-08-01

    34Wave-wave interactions, microseisms, and infra - sonic ambient noise in the ocean," J. Acoust. Soc. Am. 78, 981-994, 1985. 8. R. G. Adair, J. A...properties were very con- sistent. Sonic velocities measured at 400 kliz with a Hamilton Frame Velocimeter varied only slightly from 1.5 kilometers/second...physical properties measurements. This sample gave a much higher sonic velocity of 3.8 kilometers/second and a wet bulk desity of 2.46 Mg/m*3. A thin

  13. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Herz, Jack

    2005-01-01

    An ultrasonic/sonic jackhammer (USJ) is the latest in a series of related devices. Each of these devices cuts into a brittle material by means of hammering and chiseling actions of a tool bit excited with a combination of ultrasonic and sonic vibrations. A small-scale prototype of the USJ has been demonstrated. A fully developed, full-scale version of the USJ would be used for cutting through concrete, rocks, hard asphalt, and other materials to which conventional pneumatic jackhammers are applied, but the USJ would offer several advantages over conventional pneumatic jackhammers.

  14. Serological comparison of selected isolates of Aeromonas salmonicida ssp. Salmonicida

    USGS Publications Warehouse

    Hahnel, G.B.; Gould, R.W.; Boatman, E.S.

    1983-01-01

    Eight isolates of Acronionus salmonicida ssp. salmonicida were collected during furunculosis epizootics in North American Pacific coast states and provinces. Both virulent and avirulent forms of each isolate, confirmed by challenge and electron microscopy, were examined. Serological comparisons by cross-absorption agglutination tests revealed no serological differences between isolates. Using the double diffusion precipitin test, a single band was observed when antigen from a sonicated virulent strain was reacted with antiserum against a sonicated, virulent strain absorbed with homologous, avirulent strain. The presence of the single band was eliminated by excess sonication.

  15. Method for Estimating the Sonic-Boom Characteristics of Lifting Canard-Wing Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2005-01-01

    A method for estimating the sonic-boom overpressures from a conceptual aircraft where the lift is carried by both a canard and a wing during supersonic cruise is presented and discussed. Computer codes used for the prediction of the aerodynamic performance of the wing, the canard-wing interference, the nacelle-wing interference, and the sonic-boom overpressures are identified and discussed as the procedures in the method are discussed. A canard-wing supersonic-cruise concept was used as an example to demonstrate the application of the method.

  16. Fine structure of transient waves in a random medium: The correlation and spectral density functions

    NASA Technical Reports Server (NTRS)

    Wenzel, Alan R.

    1994-01-01

    This is essentially a progress report on a theoretical investigation of the propagation of transient waves in a random medium. The emphasis in this study is on applications to sonic-boom propagation, particularly as regards the effect of atmospheric turbulence on the sonic-boom waveform. The analysis is general, however, and is applicable to other types of waves besides sonic-boom waves. The phenomenon of primary concern in this investigation is the fine structure of the wave. A figure is used to illustrate what is meant by finestructure.

  17. Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation.

    PubMed

    Xu, Zhiyuan; Carlson, Carissa; Snell, John; Eames, Matt; Hananel, Arik; Lopes, M Beatriz; Raghavan, Prashant; Lee, Cheng-Chia; Yen, Chun-Po; Schlesinger, David; Kassell, Neal F; Aubry, Jean-Francois; Sheehan, Jason

    2015-01-01

    In biological tissues, it is known that the creation of gas bubbles (cavitation) during ultrasound exposure is more likely to occur at lower rather than higher frequencies. Upon collapsing, such bubbles can induce hemorrhage. Thus, acoustic inertial cavitation secondary to a 220-kHz MRI-guided focused ultrasound (MRgFUS) surgery is a serious safety issue, and animal studies are mandatory for laying the groundwork for the use of low-frequency systems in future clinical trials. The authors investigate here the in vivo potential thresholds of MRgFUS-induced inertial cavitation and MRgFUS-induced thermal coagulation using MRI, acoustic spectroscopy, and histology. Ten female piglets that had undergone a craniectomy were sonicated using a 220-kHz transcranial MRgFUS system over an acoustic energy range of 5600-14,000 J. For each piglet, a long-duration sonication (40-second duration) was performed on the right thalamus, and a short sonication (20-second duration) was performed on the left thalamus. An acoustic power range of 140-300 W was used for long-duration sonications and 300-700 W for short-duration sonications. Signals collected by 2 passive cavitation detectors were stored in memory during each sonication, and any subsequent cavitation activity was integrated within the bandwidth of the detectors. Real-time 2D MR thermometry was performed during the sonications. T1-weighted, T2-weighted, gradient-recalled echo, and diffusion-weighted imaging MRI was performed after treatment to assess the lesions. The piglets were killed immediately after the last series of posttreatment MR images were obtained. Their brains were harvested, and histological examinations were then performed to further evaluate the lesions. Two types of lesions were induced: thermal ablation lesions, as evidenced by an acute ischemic infarction on MRI and histology, and hemorrhagic lesions, associated with inertial cavitation. Passive cavitation signals exhibited 3 main patterns identified as follows: no cavitation, stable cavitation, and inertial cavitation. Low-power and longer sonications induced only thermal lesions, with a peak temperature threshold for lesioning of 53°C. Hemorrhagic lesions occurred only with high-power and shorter sonications. The sizes of the hemorrhages measured on macroscopic histological examinations correlated with the intensity of the cavitation activity (R2 = 0.74). The acoustic cavitation activity detected by the passive cavitation detectors exhibited a threshold of 0.09 V·Hz for the occurrence of hemorrhages. This work demonstrates that 220-kHz ultrasound is capable of inducing a thermal lesion in the brain of living swines without hemorrhage. Although the same acoustic energy can induce either a hemorrhage or a thermal lesion, it seems that low-power, long-duration sonication is less likely to cause hemorrhage and may be safer. Although further study is needed to decrease the likelihood of ischemic infarction associated with the 220-kHz ultrasound, the threshold established in this work may allow for the detection and prevention of deleterious cavitations.

  18. Possible high sonic velocity due to the inclusion of gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Banno, T.; Mikada, H.; Goto, T.; Takekawa, J.

    2010-12-01

    If formation water becomes multi-phase by inclusion of gas bubbles, sonic velocities would be strongly influenced. In general, sonic velocities are knocked down due to low bulk moduli of the gas bubbles. However, sonic velocities may increase depending on the size of gas bubbles, when the bubbles in water or other media oscillate due to incoming sonic waves. Sonic waves are scattered by the bubbles and the superposition of the incoming and the scattered waves result in resonant-frequency-dependent behavior. The phase velocity of sonic waves propagating in fluids containing bubbles, therefore, probably depends on their frequencies. This is a typical phenomenon called “wave dispersion.” So far we have studied about the bubble impact on sonic velocity in bubbly media, such as the formation that contains gas bubbles. As a result, it is shown that the bubble resonance effect is a key to analyze the sonic phase velocity increase. Therefore to evaluate the resonance frequency of bubbles is important to solve the frequency response of sonic velocity in formations having bubbly fluids. There are several analytical solutions of the resonance frequency of bubbles in water. Takahira et al. (1994) derived a equation that gives us the resonance frequency considering bubble - bubble interactions. We have used this theory to calculate resonance frequency of bubbles at the previous work. However, the analytical solution of the Takahira’s equation is based on several assumptions. Therefore we used a numerical approach to calculate the bubble resonance effect more precisely in the present study. We used the boundary element method (BEM) to reproduce a bubble oscillation in incompressible liquid. There are several reasons to apply the BEM. Firstly, it arrows us to model arbitrarily sets and shapes of bubbles. Secondly, it is easy to use the BEM to reproduce a boundary-surface between liquid and gas. The velocity potential of liquid surrounding a bubble satisfies the Laplace equation when the liquid is supposed to be incompressible. We got the boundary integral equation from the Laplace equation and solved the boundary integral equation by the BEM. Then, we got the gradient of the velocity potential from the BEM. We used this gradient to get time derivative of the velocity potential from the Bernouii’s equation. And we used the second order Adams-Bashforth method to execute time integration of the velocity potential. We conducted this scheme iteratively to calculate a bubble oscillation. At each time step, we input a pressure change as a sinusoidal wave. As a result, we observed a bubble oscillation following the pressure frequency. We also evaluated the resonance frequency of a bubble by changing the pressure frequency. It showed a good agreement with the analytical solution described above. Our future work is to extend the calculation into plural bubbles condition. We expect that interaction between bubbles becomes strong and resonance frequency of bubbles becomes small when distance between bubbles becomes small.

  19. Sonic flow distortion experiment

    NASA Astrophysics Data System (ADS)

    Peters, Gerhard; Kirtzel, Hans-Jürgen; Radke, Jürgen

    2017-04-01

    We will present results from a field experiment with multiple sonic anemometers, and will address the question about residual errors of wind tunnel based calibrations that are transferred to atmospheric measurements. Ultrasonic anemometers have become standard components of high quality in-situ instrumentations, because of the long term calibration stability, fast response, wide dynamic range, and various options of built in quality control. On the downside of this technology is the fact that the sound transducers and the carrying structure represent obstacles in the flow causing systematic deviations of the measured flow from the free flow. Usually, the correction schemes are based on wind tunnel observations of the sonic-response as function of angle of attack under stationary conditions. Since the natural atmospheric flow shows turbulence intensities and scales, which cannot be mimicked in a wind tunnel, it is suspected that the wind-tunnel based corrections may be not (fully) applicable to field data. The wide spread use of sonic anemometers in eddy flux instrumentations for example in the frame of EuroFlux, AmeriFlux or other international observation programs has therefore prompted a - still controversial - discussion of the significance of residual flow errors. In an attempt to quantify the flow distortion in free field conditions, 12 identical 3-component sonics with 120 degree head symmetry were operated at the north margin of an abandoned airfield. The sonics were installed in a straight line in WE-direction at 2.6 m height with a mutual distance of 3 meters and with an azimuth increment of the individual sonics of 11 degrees. Synchronous raw data were recorded with 20 Hz sample rate. Data of about 12 hours with southerly winds (from the relatively flat airfield) were analyzed. Statistical homogeneity of the wind field in the range of the instruments line was assumed, but a variable finite turbulent decay constant was accounted for, which was estimated from the data. The free field flow distortion estimates will be discussed in comparison with wind tunnel observations.

  20. NASA’s Improved Supersonic Cockpit Display Shows Precise Locations of Sonic Booms

    NASA Image and Video Library

    2016-10-15

    Flight Test Engineer Jacob Schaefer inspects the Cockpit Interactive Sonic Boom Display Avionics, or CISBoomDA, from the cockpit of his F-18 at NASA’s Armstrong Flight Research Center in Edwards, California.

Top