Multi Agent Systems with Symbiotic Learning and Evolution using GNP
NASA Astrophysics Data System (ADS)
Eguchi, Toru; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi
Recently, various attempts relevant to Multi Agent Systems (MAS) which is one of the most promising systems based on Distributed Artificial Intelligence have been studied to control large and complicated systems efficiently. In these trends of MAS, Multi Agent Systems with Symbiotic Learning and Evolution named Masbiole has been proposed. In Masbiole, symbiotic phenomena among creatures are considered in the process of learning and evolution of MAS. So we can expect more flexible and sophisticated solutions than conventional MAS. In this paper, we apply Masbiole to Iterative Prisoner’s Dilemma Games (IPD Games) using Genetic Network Programming (GNP) which is a newly developed evolutionary computation method for constituting agents. Some characteristics of Masbiole using GNP in IPD Games are clarified.
Formalism Challenges of the Cougaar Model Driven Architecture
NASA Technical Reports Server (NTRS)
Bohner, Shawn A.; George, Boby; Gracanin, Denis; Hinchey, Michael G.
2004-01-01
The Cognitive Agent Architecture (Cougaar) is one of the most sophisticated distributed agent architectures developed today. As part of its research and evolution, Cougaar is being studied for application to large, logistics-based applications for the Department of Defense (DoD). Anticipiting future complex applications of Cougaar, we are investigating the Model Driven Architecture (MDA) approach to understand how effective it would be for increasing productivity in Cougar-based development efforts. Recognizing the sophistication of the Cougaar development environment and the limitations of transformation technologies for agents, we have systematically developed an approach that combines component assembly in the large and transformation in the small. This paper describes some of the key elements that went into the Cougaar Model Driven Architecture approach and the characteristics that drove the approach.
The Janus face of Darwinian competition
Hintze, Arend; Phillips, Nathaniel; Hertwig, Ralph
2015-01-01
Without competition, organisms would not evolve any meaningful physical or cognitive abilities. Competition can thus be understood as the driving force behind Darwinian evolution. But does this imply that more competitive environments necessarily evolve organisms with more sophisticated cognitive abilities than do less competitive environments? Or is there a tipping point at which competition does more harm than good? We examine the evolution of decision strategies among virtual agents performing a repetitive sampling task in three distinct environments. The environments differ in the degree to which the actions of a competitor can affect the fitness of the sampling agent, and in the variance of the sample. Under weak competition, agents evolve decision strategies that sample often and make accurate decisions, which not only improve their own fitness, but are good for the entire population. Under extreme competition, however, the dark side of the Janus face of Darwinian competition emerges: Agents are forced to sacrifice accuracy for speed and are prevented from sampling as often as higher variance in the environment would require. Modest competition is therefore a good driver for the evolution of cognitive abilities and of the population as a whole, whereas too much competition is devastating. PMID:26354182
The Janus face of Darwinian competition.
Hintze, Arend; Phillips, Nathaniel; Hertwig, Ralph
2015-09-10
Without competition, organisms would not evolve any meaningful physical or cognitive abilities. Competition can thus be understood as the driving force behind Darwinian evolution. But does this imply that more competitive environments necessarily evolve organisms with more sophisticated cognitive abilities than do less competitive environments? Or is there a tipping point at which competition does more harm than good? We examine the evolution of decision strategies among virtual agents performing a repetitive sampling task in three distinct environments. The environments differ in the degree to which the actions of a competitor can affect the fitness of the sampling agent, and in the variance of the sample. Under weak competition, agents evolve decision strategies that sample often and make accurate decisions, which not only improve their own fitness, but are good for the entire population. Under extreme competition, however, the dark side of the Janus face of Darwinian competition emerges: Agents are forced to sacrifice accuracy for speed and are prevented from sampling as often as higher variance in the environment would require. Modest competition is therefore a good driver for the evolution of cognitive abilities and of the population as a whole, whereas too much competition is devastating.
Agent independent task planning
NASA Technical Reports Server (NTRS)
Davis, William S.
1990-01-01
Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.
2007-06-15
Al Qaeda is a product of the forces of globalization. Increasing access to global finances , international travel, and sophisticated technology is...evolution. Al Qaeda is a product of the forces of globalization. Increasing access to global finances , international travel, and sophisticated technology...75 Finance
Modelling of Robotized Manufacturing Systems Using MultiAgent Formalism
NASA Astrophysics Data System (ADS)
Foit, K.; Gwiazda, A.; Banaś, W.
2016-08-01
The evolution of manufacturing systems has greatly accelerated due to development of sophisticated control systems. On top of determined, one way production flow the need of decision making has arisen as a result of growing product range that are manufactured simultaneously, using the same resources. On the other hand, the intelligent flow control could address the “bottleneck” problem caused by the machine failure. This sort of manufacturing systems uses advanced control algorithms that are introduced by the use of logic controllers. The complex algorithms used in the control systems requires to employ appropriate methods during the modelling process, like the agent-based one, which is the subject of this paper. The concept of an agent is derived from the object-based methodology of modelling, so it meets the requirements of representing the physical properties of the machines as well as the logical form of control systems. Each agent has a high level of autonomy and could be considered separately. The multi-agent system consists of minimum two agents that can interact and modify the environment, where they act. This may lead to the creation of self-organizing structure, what could be interesting feature during design and test of manufacturing system.
Biological therapies in moderate and severe psoriasis: perspectives and certainties
Constantin, MM; Poenaru, E; Constantin, T; Poenaru, C; Purcarea, VL; Mateescu, BR
2014-01-01
An inflammatory, proliferative condition with chronic evolution and systemic response, psoriasis, is positioned today among the most common inflammatory skin diseases affecting the Caucasian population worldwide. With a significant incidence, psoriasis has been increasingly defined as a disease with a major impact on the patient's life and the society to which he/she belongs. This paper conducts an analysis of the currently available therapies for the treatment of moderate and severe psoriasis, therapies with biological agents obtained through sophisticated genetic engineering technologies. Recent research and the increasing interest in therapeutic methods as complete and efficient as possible make us optimistic and confident in the future. PMID:25870666
Matsiaka, Oleksii M; Penington, Catherine J; Baker, Ruth E; Simpson, Matthew J
2018-04-01
Scratch assays are routinely used to study the collective spreading of cell populations. In general, the rate at which a population of cells spreads is driven by the combined effects of cell migration and proliferation. To examine the effects of cell migration separately from the effects of cell proliferation, scratch assays are often performed after treating the cells with a drug that inhibits proliferation. Mitomycin-C is a drug that is commonly used to suppress cell proliferation in this context. However, in addition to suppressing cell proliferation, mitomycin-C also causes cells to change size during the experiment, as each cell in the population approximately doubles in size as a result of treatment. Therefore, to describe a scratch assay that incorporates the effects of cell-to-cell crowding, cell-to-cell adhesion, and dynamic changes in cell size, we present a new stochastic model that incorporates these mechanisms. Our agent-based stochastic model takes the form of a system of Langevin equations that is the system of stochastic differential equations governing the evolution of the population of agents. We incorporate a time-dependent interaction force that is used to mimic the dynamic increase in size of the agents. To provide a mathematical description of the average behaviour of the stochastic model we present continuum limit descriptions using both a standard mean-field approximation and a more sophisticated moment dynamics approximation that accounts for the density of agents and density of pairs of agents in the stochastic model. Comparing the accuracy of the two continuum descriptions for a typical scratch assay geometry shows that the incorporation of agent growth in the system is associated with a decrease in accuracy of the standard mean-field description. In contrast, the moment dynamics description provides a more accurate prediction of the evolution of the scratch assay when the increase in size of individual agents is included in the model.
The Social Bayesian Brain: Does Mentalizing Make a Difference When We Learn?
Devaine, Marie; Hollard, Guillaume; Daunizeau, Jean
2014-01-01
When it comes to interpreting others' behaviour, we almost irrepressibly engage in the attribution of mental states (beliefs, emotions…). Such "mentalizing" can become very sophisticated, eventually endowing us with highly adaptive skills such as convincing, teaching or deceiving. Here, sophistication can be captured in terms of the depth of our recursive beliefs, as in "I think that you think that I think…" In this work, we test whether such sophisticated recursive beliefs subtend learning in the context of social interaction. We asked participants to play repeated games against artificial (Bayesian) mentalizing agents, which differ in their sophistication. Critically, we made people believe either that they were playing against each other, or that they were gambling like in a casino. Although both framings are similarly deceiving, participants win against the artificial (sophisticated) mentalizing agents in the social framing of the task, and lose in the non-social framing. Moreover, we find that participants' choice sequences are best explained by sophisticated mentalizing Bayesian learning models only in the social framing. This study is the first demonstration of the added-value of mentalizing on learning in the context of repeated social interactions. Importantly, our results show that we would not be able to decipher intentional behaviour without a priori attributing mental states to others. PMID:25474637
Evolution of Computational Toxicology-from Primitive ...
Presentation at the Health Canada seminar in Ottawa, ON, Canada on Nov. 15. 2016 Presentation at the Health Canada seminar in Ottawa, ON, Canada on Nov. 15. 2016 on the Evolution of Computational Toxicology-from Primitive Beginnings to Sophisticated Application
Use of Microcomputers and Personal Computers in Pacing
Sasmor, L.; Tarjan, P.; Mumford, V.; Smith, E.
1983-01-01
This paper describes the evolution from the early discrete circuit pacemaker of the past to the sophisticated microprocessor based pacemakers of today. The necessary computerized supporting instrumentation is also described. Technological and economical reasons for this evolution are discussed.
Kagan, Ari; Rand, David G.
2017-01-01
How does cognitive sophistication impact cooperation? We explore this question using a model of the co-evolution of cooperation and cognition. In our model, agents confront social dilemmas and coordination games, and make decisions using intuition or deliberation. Intuition is automatic and effortless, but relatively (although not necessarily completely) insensitive to context. Deliberation, conversely, is costly but relatively (although not necessarily perfectly) sensitive to context. We find that regardless of the sensitivity of intuition and imperfection of deliberation, deliberating undermines cooperation in social dilemmas, whereas deliberating can increase cooperation in coordination games if intuition is sufficiently sensitive. Furthermore, when coordination games are sufficiently likely, selection favours a strategy whose intuitive response ignores the contextual cues available and cooperates across contexts. Thus, we see how simple cognition can arise from active selection for simplicity, rather than just be forced to be simple due to cognitive constraints. Finally, we find that when deliberation is imperfect, the favoured strategy increases cooperation in social dilemmas (as a result of reducing deliberation) as the benefit of cooperation to the recipient increases. PMID:28330915
Undecidability and Irreducibility Conditions for Open-Ended Evolution and Emergence.
Hernández-Orozco, Santiago; Hernández-Quiroz, Francisco; Zenil, Hector
2018-01-01
Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational definitions of open-ended evolution and the adaptability of computable dynamical systems. Within this framework, we show that decidability imposes absolute limits on the stable growth of complexity in computable dynamical systems. Conversely, systems that exhibit (strong) open-ended evolution must be undecidable, establishing undecidability as a requirement for such systems. Complexity is assessed in terms of three measures: sophistication, coarse sophistication, and busy beaver logical depth. These three complexity measures assign low complexity values to random (incompressible) objects. As time grows, the stated complexity measures allow for the existence of complex states during the evolution of a computable dynamical system. We show, however, that finding these states involves undecidable computations. We conjecture that for similar complexity measures that assign low complexity values, decidability imposes comparable limits on the stable growth of complexity, and that such behavior is necessary for nontrivial evolutionary systems. We show that the undecidability of adapted states imposes novel and unpredictable behavior on the individuals or populations being modeled. Such behavior is irreducible. Finally, we offer an example of a system, first proposed by Chaitin, that exhibits strong OEE.
The portrayal of natural environment in the evolution of the ecological public health paradigm.
Coutts, Christopher; Forkink, Annet; Weiner, Jocelyn
2014-01-10
This paper explores the conceptualization of the natural environment in an evolving ecological public health paradigm. The natural environment has long been recognized as essential to supporting life, health, and wellbeing. Our understanding of the relationship between the natural environment and health has steadily evolved from one of an undynamic environment to a more sophisticated understanding of ecological interactions. This evolution is reflected in a number of ecological public health models which demonstrate the many external and overlapping determinants of human health. Six models are presented here to demonstrate this evolution, each model reflecting an increasingly ecological appreciation for the fundamental role of the natural environment in supporting human health. We conclude that after decades of public health's acceptance of the ecological paradigm, we are only now beginning to assemble knowledge of sophisticated ecological interdependencies and apply this knowledge to the conceptualization and study of the relationship between the natural environment and the determinants of human health.
The Portrayal of Natural Environment in the Evolution of the Ecological Public Health Paradigm
Coutts, Christopher; Forkink, Annet; Weiner, Jocelyn
2014-01-01
This paper explores the conceptualization of the natural environment in an evolving ecological public health paradigm. The natural environment has long been recognized as essential to supporting life, health, and wellbeing. Our understanding of the relationship between the natural environment and health has steadily evolved from one of an undynamic environment to a more sophisticated understanding of ecological interactions. This evolution is reflected in a number of ecological public health models which demonstrate the many external and overlapping determinants of human health. Six models are presented here to demonstrate this evolution, each model reflecting an increasingly ecological appreciation for the fundamental role of the natural environment in supporting human health. We conclude that after decades of public health’s acceptance of the ecological paradigm, we are only now beginning to assemble knowledge of sophisticated ecological interdependencies and apply this knowledge to the conceptualization and study of the relationship between the natural environment and the determinants of human health. PMID:24434596
Promoting motivation with virtual agents and avatars: role of visual presence and appearance.
Baylor, Amy L
2009-12-12
Anthropomorphic virtual agents can serve as powerful technological mediators to impact motivational outcomes such as self-efficacy and attitude change. Such anthropomorphic agents can be designed as simulated social models in the Bandurian sense, providing social influence as virtual 'role models'. Of particular value is the capacity for designing such agents as optimized social models for a target audience and context. Importantly, the visual presence and appearance of such agents can have a major impact on motivation and affect regardless of the underlying technical sophistication. Empirical results of different instantiations of agent presence and appearance are reviewed for both autonomous virtual agents and avatars that represent a user.
Theory of Mind: Did Evolution Fool Us?
Devaine, Marie; Hollard, Guillaume; Daunizeau, Jean
2014-01-01
Theory of Mind (ToM) is the ability to attribute mental states (e.g., beliefs and desires) to other people in order to understand and predict their behaviour. If others are rewarded to compete or cooperate with you, then what they will do depends upon what they believe about you. This is the reason why social interaction induces recursive ToM, of the sort “I think that you think that I think, etc.”. Critically, recursion is the common notion behind the definition of sophistication of human language, strategic thinking in games, and, arguably, ToM. Although sophisticated ToM is believed to have high adaptive fitness, broad experimental evidence from behavioural economics, experimental psychology and linguistics point towards limited recursivity in representing other’s beliefs. In this work, we test whether such apparent limitation may not in fact be proven to be adaptive, i.e. optimal in an evolutionary sense. First, we propose a meta-Bayesian approach that can predict the behaviour of ToM sophistication phenotypes who engage in social interactions. Second, we measure their adaptive fitness using evolutionary game theory. Our main contribution is to show that one does not have to appeal to biological costs to explain our limited ToM sophistication. In fact, the evolutionary cost/benefit ratio of ToM sophistication is non trivial. This is partly because an informational cost prevents highly sophisticated ToM phenotypes to fully exploit less sophisticated ones (in a competitive context). In addition, cooperation surprisingly favours lower levels of ToM sophistication. Taken together, these quantitative corollaries of the “social Bayesian brain” hypothesis provide an evolutionary account for both the limitation of ToM sophistication in humans as well as the persistence of low ToM sophistication levels. PMID:24505296
Theory of mind: did evolution fool us?
Devaine, Marie; Hollard, Guillaume; Daunizeau, Jean
2014-01-01
Theory of Mind (ToM) is the ability to attribute mental states (e.g., beliefs and desires) to other people in order to understand and predict their behaviour. If others are rewarded to compete or cooperate with you, then what they will do depends upon what they believe about you. This is the reason why social interaction induces recursive ToM, of the sort "I think that you think that I think, etc.". Critically, recursion is the common notion behind the definition of sophistication of human language, strategic thinking in games, and, arguably, ToM. Although sophisticated ToM is believed to have high adaptive fitness, broad experimental evidence from behavioural economics, experimental psychology and linguistics point towards limited recursivity in representing other's beliefs. In this work, we test whether such apparent limitation may not in fact be proven to be adaptive, i.e. optimal in an evolutionary sense. First, we propose a meta-Bayesian approach that can predict the behaviour of ToM sophistication phenotypes who engage in social interactions. Second, we measure their adaptive fitness using evolutionary game theory. Our main contribution is to show that one does not have to appeal to biological costs to explain our limited ToM sophistication. In fact, the evolutionary cost/benefit ratio of ToM sophistication is non trivial. This is partly because an informational cost prevents highly sophisticated ToM phenotypes to fully exploit less sophisticated ones (in a competitive context). In addition, cooperation surprisingly favours lower levels of ToM sophistication. Taken together, these quantitative corollaries of the "social Bayesian brain" hypothesis provide an evolutionary account for both the limitation of ToM sophistication in humans as well as the persistence of low ToM sophistication levels.
The potential for chemical evolution on Titan
NASA Technical Reports Server (NTRS)
Beauchamp, P. M.; Lunine, J. I.; Welch, C.
2002-01-01
Sampling of organics to determine oxygen content, extent of acetylene polymerization, existence of chiral molecules and enantiomeric excesses, and searches for specific polymer products, would be of interest in assessing how organic chemistry evolves toward biochemistry. Such efforts would require fairly sophisticated chemical analyses from landed missions. This paper examines this chemistry and the potential instruments that could distinguish chemical evolution.
Dawn of Advanced Molecular Medicine: Nanotechnological Advancements in Cancer Imaging and Therapy
Kaittanis, Charalambos; Shaffer, Travis M.; Thorek, Daniel L. J.; Grimm, Jan
2014-01-01
Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy. PMID:25271430
Using circulating tumor cells to inform on prostate cancer biology and clinical utility
Li, Jing; Gregory, Simon G.; Garcia-Blanco, Mariano A.; Armstrong, Andrew J.
2016-01-01
Substantial advances in the molecular biology of prostate cancer have led to the approval of multiple new systemic agents to treat men with metastatic castration-resistant prostate cancer (mCRPC). These treatments encompass androgen receptor directed therapies, immunotherapies, bone targeting radiopharmaceuticals and cytotoxic chemotherapies. There is, however, great heterogeneity in the degree of patient benefit with these agents, thus fueling the need to develop predictive biomarkers that are able to rationally guide therapy. Circulating tumor cells (CTCs) have the potential to provide an assessment of tumor-specific biomarkers through a non-invasive, repeatable “liquid biopsy” of a patient’s cancer at a given point in time. CTCs have been extensively studied in men with mCRPC, where CTC enumeration using the Cellsearch® method has been validated and FDA approved to be used in conjunction with other clinical parameters as a prognostic biomarker in metastatic prostate cancer. In addition to enumeration, more sophisticated molecular profiling of CTCs is now feasible and may provide more clinical utility as it may reflect tumor evolution within an individual particularly under the pressure of systemic therapies. Here, we review technologies used to detect and characterize CTCs, and the potential biological and clinical utility of CTC molecular profiling in men with metastatic prostate cancer. PMID:26079252
NASA Astrophysics Data System (ADS)
Kock, B. E.
2008-12-01
The increased availability and understanding of agent-based modeling technology and techniques provides a unique opportunity for water resources modelers, allowing them to go beyond traditional behavioral approaches from neoclassical economics, and add rich cognition to social-hydrological models. Agent-based models provide for an individual focus, and the easier and more realistic incorporation of learning, memory and other mechanisms for increased cognitive sophistication. We are in an age of global change impacting complex water resources systems, and social responses are increasingly recognized as fundamentally adaptive and emergent. In consideration of this, water resources models and modelers need to better address social dynamics in a manner beyond the capabilities of neoclassical economics theory and practice. However, going beyond the unitary curve requires unique levels of engagement with stakeholders, both to elicit the richer knowledge necessary for structuring and parameterizing agent-based models, but also to make sure such models are appropriately used. With the aim of encouraging epistemological and methodological convergence in the agent-based modeling of water resources, we have developed a water resources-specific cognitive model and an associated collaborative modeling process. Our cognitive model emphasizes efficiency in architecture and operation, and capacity to adapt to different application contexts. We describe a current application of this cognitive model and modeling process in the Arkansas Basin of Colorado. In particular, we highlight the potential benefits of, and challenges to, using more sophisticated cognitive models in agent-based water resources models.
Computational Modeling of Cultural Dimensions in Adversary Organizations
2010-01-01
Nodes”, In the Proceedings of the 9th Conference on Uncertainty in Artificial Intelli - gence, 1993. [8] Pearl, J. Probabilistic Reasoning in...the artificial life simulations; in con- trast, models with only a few agents typically employ quite sophisticated cognitive agents capa- ble of...Model Construction 45 cisions as to how to allocate scarce ISR assets (two Unmanned Air Systems, UAS ) among the two Red activities while at the same
Aspen: A microsimulation model of the economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, N.; Pryor, R.J.; Quint, T.
1996-10-01
This report presents, Aspen. Sandia National Laboratories is developing this new agent-based microeconomic simulation model of the U.S. economy. The model is notable because it allows a large number of individual economic agents to be modeled at a high level of detail and with a great degree of freedom. Some features of Aspen are (a) a sophisticated message-passing system that allows individual pairs of agents to communicate, (b) the use of genetic algorithms to simulate the learning of certain agents, and (c) a detailed financial sector that includes a banking system and a bond market. Results from runs of themore » model are also presented.« less
Adaptive Language Games with Robots
NASA Astrophysics Data System (ADS)
Steels, Luc
2010-11-01
This paper surveys recent research into language evolution using computer simulations and robotic experiments. This field has made tremendous progress in the past decade going from simple simulations of lexicon formation with animallike cybernetic robots to sophisticated grammatical experiments with humanoid robots.
Agent Based Modeling of Collaboration and Work Practices Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Acquisti, Alessandro; Sierhuis, Maarten; Clancey, William J.; Bradshaw, Jeffrey M.; Shaffo, Mike (Technical Monitor)
2002-01-01
The International Space Station is one the most complex projects ever, with numerous interdependent constraints affecting productivity and crew safety. This requires planning years before crew expeditions, and the use of sophisticated scheduling tools. Human work practices, however, are difficult to study and represent within traditional planning tools. We present an agent-based model and simulation of the activities and work practices of astronauts onboard the ISS based on an agent-oriented approach. The model represents 'a day in the life' of the ISS crew and is developed in Brahms, an agent-oriented, activity-based language used to model knowledge in situated action and learning in human activities.
Fire Prevention Posters: The Story of Smokey Bear. Teaching with Documents.
ERIC Educational Resources Information Center
Haverkamp, Beth; Schamel, Wynell B.
1994-01-01
Contends that, despite increasingly sophisticated means of communication, posters remain a powerful cornerstone of many government advertising campaigns. Describes the beginnings and evolution of Smokey Bear from a World War II homefront poster to an ongoing advertising success. (CFR)
ERIC Educational Resources Information Center
David, Leonard
1979-01-01
As interplanetary travel by robot vehicles launched from earth becomes more sophisticated, the solar system neighborhood will be constantly rediscovered. This will lead to the maturation of the science of comparative planetology. This discipline, involved in study of the origin, evolution, and nature of planets, promises significant future…
Devaine, Marie; San-Galli, Aurore; Trapanese, Cinzia; Bardino, Giulia; Hano, Christelle; Saint Jalme, Michel; Bouret, Sebastien
2017-01-01
Theory of Mind (ToM), i.e. the ability to understand others' mental states, endows humans with highly adaptive social skills such as teaching or deceiving. Candidate evolutionary explanations have been proposed for the unique sophistication of human ToM among primates. For example, the Machiavellian intelligence hypothesis states that the increasing complexity of social networks may have induced a demand for sophisticated ToM. This type of scenario ignores neurocognitive constraints that may eventually be crucial limiting factors for ToM evolution. In contradistinction, the cognitive scaffolding hypothesis asserts that a species' opportunity to develop sophisticated ToM is mostly determined by its general cognitive capacity (on which ToM is scaffolded). However, the actual relationships between ToM sophistication and either brain volume (a proxy for general cognitive capacity) or social group size (a proxy for social network complexity) are unclear. Here, we let 39 individuals sampled from seven non-human primate species (lemurs, macaques, mangabeys, orangutans, gorillas and chimpanzees) engage in simple dyadic games against artificial ToM players (via a familiar human caregiver). Using computational analyses of primates' choice sequences, we found that the probability of exhibiting a ToM-compatible learning style is mainly driven by species' brain volume (rather than by social group size). Moreover, primates' social cognitive sophistication culminates in a precursor form of ToM, which still falls short of human fully-developed ToM abilities. PMID:29112973
Devaine, Marie; San-Galli, Aurore; Trapanese, Cinzia; Bardino, Giulia; Hano, Christelle; Saint Jalme, Michel; Bouret, Sebastien; Masi, Shelly; Daunizeau, Jean
2017-11-01
Theory of Mind (ToM), i.e. the ability to understand others' mental states, endows humans with highly adaptive social skills such as teaching or deceiving. Candidate evolutionary explanations have been proposed for the unique sophistication of human ToM among primates. For example, the Machiavellian intelligence hypothesis states that the increasing complexity of social networks may have induced a demand for sophisticated ToM. This type of scenario ignores neurocognitive constraints that may eventually be crucial limiting factors for ToM evolution. In contradistinction, the cognitive scaffolding hypothesis asserts that a species' opportunity to develop sophisticated ToM is mostly determined by its general cognitive capacity (on which ToM is scaffolded). However, the actual relationships between ToM sophistication and either brain volume (a proxy for general cognitive capacity) or social group size (a proxy for social network complexity) are unclear. Here, we let 39 individuals sampled from seven non-human primate species (lemurs, macaques, mangabeys, orangutans, gorillas and chimpanzees) engage in simple dyadic games against artificial ToM players (via a familiar human caregiver). Using computational analyses of primates' choice sequences, we found that the probability of exhibiting a ToM-compatible learning style is mainly driven by species' brain volume (rather than by social group size). Moreover, primates' social cognitive sophistication culminates in a precursor form of ToM, which still falls short of human fully-developed ToM abilities.
Understanding a High School Physics Teacher's Pedagogical Content Knowledge of Argumentation
ERIC Educational Resources Information Center
Wang, Jianlan; Buck, Gayle A.
2016-01-01
Scientific argumentation is an important learning objective in science education. It is also an effective instructional approach to constructivist science learning. The implementation of argumentation in school settings requires science teachers, who are pivotal agents of transforming classroom practices, to develop sophisticated knowledge of…
USDA-ARS?s Scientific Manuscript database
Plasmodium falciparum and Toxoplasma gondii are widely studied parasites in phylum Apicomplexa and the etiological agents of severe human malaria and toxoplasmosis, respectively. These intracellular pathogens have evolved a sophisticated invasion strategy that relies on delivery of proteins into the...
Medical subject heading (MeSH) annotations illuminate maize genetics and evolution
USDA-ARS?s Scientific Manuscript database
In the modern era, high-density marker panels and/or whole-genome sequencing,coupled with advanced phenotyping pipelines and sophisticated statistical methods, have dramatically increased our ability to generate lists of candidate genes or regions that are putatively associated with phenotypes or pr...
Modeling Co-evolution of Speech and Biology.
de Boer, Bart
2016-04-01
Two computer simulations are investigated that model interaction of cultural evolution of language and biological evolution of adaptations to language. Both are agent-based models in which a population of agents imitates each other using realistic vowels. The agents evolve under selective pressure for good imitation. In one model, the evolution of the vocal tract is modeled; in the other, a cognitive mechanism for perceiving speech accurately is modeled. In both cases, biological adaptations to using and learning speech evolve, even though the system of speech sounds itself changes at a more rapid time scale than biological evolution. However, the fact that the available acoustic space is used maximally (a self-organized result of cultural evolution) is constant, and therefore biological evolution does have a stable target. This work shows that when cultural and biological traits are continuous, their co-evolution may lead to cognitive adaptations that are strong enough to detect empirically. Copyright © 2016 Cognitive Science Society, Inc.
Evolution of an Information Competency Requirement for Undergraduates
ERIC Educational Resources Information Center
Walsh, Tiffany R.
2011-01-01
University at Buffalo undergraduate students are required to complete a non-credit-bearing information competency assessment prior to graduation, preferably within their first year of study. Called the "Library Skills Workbook," this assessment has evolved from a short, print-based quiz into a sophisticated, multi-module tutorial and…
Evolution of Management Thought in the Medieval Times.
ERIC Educational Resources Information Center
Sharma, C. L.
The medieval times witnessed progress toward the growth of larger and more complex organizations and the application of increasingly sophisticated management techniques. Feudalism contributed the concept of decentralization. The concepts evolved by the Catholic Church can scarcely be improved on and are very much pertinent to the management of…
Investigating Evolutionary Biology in the Laboratory.
ERIC Educational Resources Information Center
McComas, William F., Ed.
This document presents a collection of useful laboratory-based activities for teaching about evolution. Some of the activities in this monograph are previously unpublished exercises, some are new versions of well-known labs, a few make useful classroom demonstrations, and several require somewhat sophisticated equipment. As a group, the activities…
ERIC Educational Resources Information Center
Cruger, Katherine M.
2018-01-01
This article explores the potential of challenge-based learning (CBL) for feminist pedagogy. In a qualitative case study of an introductory mass communication and social theory course, students were more likely to indicate sophisticated, intersectional understandings of course concepts following the CBL project. Before the CBL project, students…
Control technology for future aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Zeller, J. R.; Szuch, J. R.; Merrill, W. C.; Lehtinen, B.; Soeder, J. F.
1984-01-01
The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized.
System dynamics of behaviour-evolutionary mix-game models
NASA Astrophysics Data System (ADS)
Gou, Cheng-Ling; Gao, Jie-Ping; Chen, Fang
2010-11-01
In real financial markets there are two kinds of traders: one is fundamentalist, and the other is a trend-follower. The mix-game model is proposed to mimic such phenomena. In a mix-game model there are two groups of agents: Group 1 plays the majority game and Group 2 plays the minority game. In this paper, we investigate such a case that some traders in real financial markets could change their investment behaviours by assigning the evolutionary abilities to agents: if the winning rates of agents are smaller than a threshold, they will join the other group; and agents will repeat such an evolution at certain time intervals. Through the simulations, we obtain the following findings: (i) the volatilities of systems increase with the increase of the number of agents in Group 1 and the times of behavioural changes of all agents; (ii) the performances of agents in both groups and the stabilities of systems become better if all agents take more time to observe their new investment behaviours; (iii) there are two-phase zones of market and non-market and two-phase zones of evolution and non-evolution; (iv) parameter configurations located within the cross areas between the zones of markets and the zones of evolution are suited for simulating the financial markets.
Evolution of natural agents: preservation, advance, and emergence of functional information.
Sharov, Alexei A
2016-04-01
Biological evolution is often viewed narrowly as a change of morphology or allele frequency in a sequence of generations. Here I pursue an alternative informational concept of evolution, as preservation, advance, and emergence of functional information in natural agents. Functional information is a network of signs (e.g., memory, transient messengers, and external signs) that are used by agents to preserve and regulate their functions. Functional information is preserved in evolution via complex interplay of copying and construction processes: the digital components are copied, whereas interpreting subagents together with scaffolds, tools, and resources, are constructed. Some of these processes are simple and invariant, whereas others are complex and contextual. Advance of functional information includes improvement and modification of already existing functions. Although the genome information may change passively and randomly, the interpretation is active and guided by the logic of agent behavior and embryonic development. Emergence of new functions is based on the reinterpretation of already existing information, when old tools, resources, and control algorithms are adopted for novel functions. Evolution of functional information progressed from protosemiosis, where signs correspond directly to actions, to eusemiosis, where agents associate signs with objects. Language is the most advanced form of eusemiosis, where the knowledge of objects and models is communicated between agents.
Evolution of natural agents: preservation, advance, and emergence of functional information
Sharov, Alexei A.
2016-01-01
Biological evolution is often viewed narrowly as a change of morphology or allele frequency in a sequence of generations. Here I pursue an alternative informational concept of evolution, as preservation, advance, and emergence of functional information in natural agents. Functional information is a network of signs (e.g., memory, transient messengers, and external signs) that are used by agents to preserve and regulate their functions. Functional information is preserved in evolution via complex interplay of copying and construction processes: the digital components are copied, whereas interpreting subagents together with scaffolds, tools, and resources, are constructed. Some of these processes are simple and invariant, whereas others are complex and contextual. Advance of functional information includes improvement and modification of already existing functions. Although the genome information may change passively and randomly, the interpretation is active and guided by the logic of agent behavior and embryonic development. Emergence of new functions is based on the reinterpretation of already existing information, when old tools, resources, and control algorithms are adopted for novel functions. Evolution of functional information progressed from protosemiosis, where signs correspond directly to actions, to eusemiosis, where agents associate signs with objects. Language is the most advanced form of eusemiosis, where the knowledge of objects and models is communicated between agents. PMID:27525048
Google's Evolution Leads to Library Revolution
ERIC Educational Resources Information Center
Jaworski, Susan; Sullivan, Roberta
2011-01-01
Do library catalogs compete with Google or is it the other way around? We know which came first but which will finish in the end? Only trained library professionals were considered qualified to develop reliable catalog records. However, with the increased sophistication of search engines, we are beginning to realize that a collaborative effort may…
USDA-ARS?s Scientific Manuscript database
With more sophisticated data compilation and analytical capabilities, the evolution of “big data” analysis has occurred rapidly. We examine the meta-analysis of “big data” representing phosphorus (P) flows and stocks in global agriculture and address the need to consider local nuances of farm operat...
The Performance in Context Model: A 21st Century Tertiary Dance Teaching Pedagogy
ERIC Educational Resources Information Center
Stevens, Kym; Huddy, Avril
2016-01-01
Despite tertiary institutions acknowledging that reflective practice is an essential component of undergraduate dance teacher training, there is often a disparity between the tertiary students' reflective skills and the more sophisticated reflective ability needed to navigate the twenty-first-century workforce. This paper charts the evolution of a…
Microorganism and filamentous fungi drive evolution of plant synapses.
Baluška, František; Mancuso, Stefano
2013-01-01
In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell-cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.
Microorganism and filamentous fungi drive evolution of plant synapses
Baluška, František; Mancuso, Stefano
2013-01-01
In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell–cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes. PMID:23967407
Heinz, Eva; Lithgow, Trevor
2013-02-01
Mitochondria are present in all eukaryotes, but remodeling of their metabolic contribution has in some cases left them almost unrecognizable and they are referred to as mitochondria-like organelles, hydrogenosomes or, in the case where evolution has led to a great deal of simplification, as mitosomes. Mitochondria rely on the import of proteins encoded in the nucleus and the protein import machinery has been investigated in detail in yeast: several sophisticated molecular machines act in concert to import substrate proteins across the outer mitochondrial membrane and deliver them to a precise sub-mitochondrial compartment. Because these machines are so sophisticated, it has been a major challenge to conceptualize the first phase of their evolution. Here we review recent studies on the protein import pathway in parasitic species that have mitosomes: in the course of their evolution for highly specialized niches these parasites, particularly Cryptosporidia and Microsporidia, have secondarily lost numerous protein functions, in accordance with the evolution of their genomes towards a minimal size. Microsporidia are related to fungi, Cryptosporidia are apicomplexans and kin to the malaria parasite Plasmodium; and this great phylogenetic distance makes it remarkable that Microsporidia and Cryptosporidia have independently evolved skeletal protein import pathways that are almost identical. We suggest that the skeletal pathway reflects the protein import machinery of the first eukaryotes, and defines the essential roles of the core elements of the mitochondrial protein import machinery. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.
Non-thermal transitions in a model inspired by moral decisions
NASA Astrophysics Data System (ADS)
Alamino, Roberto C.
2016-08-01
This work introduces a model in which agents of a network act upon one another according to three different kinds of moral decisions. These decisions are based on an increasing level of sophistication in the empathy capacity of the agent, a hierarchy which we name Piaget’s ladder. The decision strategy of the agents is non-rational, in the sense they are arbitrarily fixed, and the model presents quenched disorder given by the distribution of its defining parameters. An analytical solution for this model is obtained in the large system limit as well as a leading order correction for finite-size systems which shows that typical realisations of the model develop a phase structure with both continuous and discontinuous non-thermal transitions.
The Art of Snaring Dragons. Artificial Intelligence Memo Number 338. Revised.
ERIC Educational Resources Information Center
Cohen, Harvey A.
Several models for problem solving are discussed, and the idea of a heuristic frame is developed. This concept provides a description of the evolution of problem-solving skills in terms of the growth of the number of algorithms available and increased sophistication in their use. The heuristic frame model is applied to two sets of physical…
ERIC Educational Resources Information Center
Schmitt, Catherine A.
2012-01-01
This dissertation examines the history of workforce education, corporate university development models in both literature and practice, and the evolution of the next generation of corporate universities. It traces workforce education from indentured servants in Europe during the Middle Ages, to the sophisticated corporate universities that…
Shin, Yonghee; Lee, Chiwon; Yang, Myung-Seok; Jeong, Sunil; Kim, Dongchul; Kang, Taewook
2014-08-26
Two-dimensional (2D) gold nanoparticles can possess novel physical and chemical properties, which will greatly expand the utility of gold nanoparticles in a wide variety of applications ranging from catalysis to biomedicine. However, colloidal synthesis of such particles generally requires sophisticated synthetic techniques to carefully guide anisotropic growth. Here we report that 2D hyper-branched gold nanoparticles in the lateral size range of about 50 ~ 120 nm can be synthesized selectively on a 2D immiscible oil/water interface in a few minutes at room temperature without structure-directing agents. An oleic acid/water interface can provide diffusion-controlled growth conditions, leading to the structural evolution of a smaller gold nucleus to 2D nanodendrimer and nanourchin at the interface. Simulations based on the phase field crystal model match well with experimental observations on the 2D branching of the nucleus, which occurs at the early stage of growth. Branching results in higher surface area and stronger near-field enhancement of 2D gold nanoparticles. This interfacial synthesis can be scaled up by creating an emulsion and the recovery of oleic acid is also achievable by centrifugation.
An Analysis on a Negotiation Model Based on Multiagent Systems with Symbiotic Learning and Evolution
NASA Astrophysics Data System (ADS)
Hossain, Md. Tofazzal
This study explores an evolutionary analysis on a negotiation model based on Masbiole (Multiagent Systems with Symbiotic Learning and Evolution) which has been proposed as a new methodology of Multiagent Systems (MAS) based on symbiosis in the ecosystem. In Masbiole, agents evolve in consideration of not only their own benefits and losses, but also the benefits and losses of opponent agents. To aid effective application of Masbiole, we develop a competitive negotiation model where rigorous and advanced intelligent decision-making mechanisms are required for agents to achieve solutions. A Negotiation Protocol is devised aiming at developing a set of rules for agents' behavior during evolution. Simulations use a newly developed evolutionary computing technique, called Genetic Network Programming (GNP) which has the directed graph-type gene structure that can develop and design the required intelligent mechanisms for agents. In a typical scenario, competitive negotiation solutions are reached by concessions that are usually predetermined in the conventional MAS. In this model, however, not only concession is determined automatically by symbiotic evolution (making the system intelligent, automated, and efficient) but the solution also achieves Pareto optimal automatically.
Can An Evolutionary Process Create English Text?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, David H.
Critics of the conventional theory of biological evolution have asserted that while natural processes might result in some limited diversity, nothing fundamentally new can arise from 'random' evolution. In response, biologists such as Richard Dawkins have demonstrated that a computer program can generate a specific short phrase via evolution-like iterations starting with random gibberish. While such demonstrations are intriguing, they are flawed in that they have a fixed, pre-specified future target, whereas in real biological evolution there is no fixed future target, but only a complicated 'fitness landscape'. In this study, a significantly more sophisticated evolutionary scheme is employed tomore » produce text segments reminiscent of a Charles Dickens novel. The aggregate size of these segments is larger than the computer program and the input Dickens text, even when comparing compressed data (as a measure of information content).« less
Going Public with Pedagogical Inquiries: SoTL as a Methodology for Faculty Professional Development
ERIC Educational Resources Information Center
Fanghanel, Joëlle
2013-01-01
In this paper, I discuss SoTL as a methodology for the professional development of academics. I propose that as an agentic form of inquiry that focuses on processes, boundary-crossing, and making public its findings, SoTL is a sophisticated methodology that brings the activities of teaching and research in close alignment, and contributes to…
A Platform for Simulating Language Evolution
NASA Astrophysics Data System (ADS)
Vogel, Carl; Woods, Justin
A platform for conducting experiments in the simulation of natural language evolution is presented. The system is paramaterized for independent specification of important features like: number of agents, communication attempt frequency, agent short term memory capacity, communicative urgency, etc. Representative experiments are demonstrated.
Continuing evolution of in-vitro diagnostic instrumentation
NASA Astrophysics Data System (ADS)
Cohn, Gerald E.
2000-04-01
The synthesis of analytical instrumentation and analytical biochemistry technologies in modern in vitro diagnostic instrumentation continues to generate new systems with improved performance and expanded capability. Detection modalities have expanded to include multichip modes of fluorescence, scattering, luminescence and reflectance so as to accommodate increasingly sophisticated immunochemical and nucleic acid based reagent systems. The time line graph of system development now extends from the earliest automated clinical spectrophotometers through molecule recognition assays and biosensors to the new breakthroughs of biochip and DNA diagnostics. This brief review traces some of the major innovations in the evolution of system technologies and previews the conference program.
Reverse engineering a social agent-based hidden markov model--visage.
Chen, Hung-Ching Justin; Goldberg, Mark; Magdon-Ismail, Malik; Wallace, William A
2008-12-01
We present a machine learning approach to discover the agent dynamics that drives the evolution of the social groups in a community. We set up the problem by introducing an agent-based hidden Markov model for the agent dynamics: an agent's actions are determined by micro-laws. Nonetheless, We learn the agent dynamics from the observed communications without knowing state transitions. Our approach is to identify the appropriate micro-laws corresponding to an identification of the appropriate parameters in the model. The model identification problem is then formulated as a mixed optimization problem. To solve the problem, we develop a multistage learning process for determining the group structure, the group evolution, and the micro-laws of a community based on the observed set of communications among actors, without knowing the semantic contents. Finally, to test the quality of our approximations and the feasibility of the approach, we present the results of extensive experiments on synthetic data as well as the results on real communities, such as Enron email and Movie newsgroups. Insight into agent dynamics helps us understand the driving forces behind social evolution.
Yoshida, Wako; Dolan, Ray J.; Friston, Karl J.
2008-01-01
This paper introduces a model of ‘theory of mind’, namely, how we represent the intentions and goals of others to optimise our mutual interactions. We draw on ideas from optimum control and game theory to provide a ‘game theory of mind’. First, we consider the representations of goals in terms of value functions that are prescribed by utility or rewards. Critically, the joint value functions and ensuing behaviour are optimised recursively, under the assumption that I represent your value function, your representation of mine, your representation of my representation of yours, and so on ad infinitum. However, if we assume that the degree of recursion is bounded, then players need to estimate the opponent's degree of recursion (i.e., sophistication) to respond optimally. This induces a problem of inferring the opponent's sophistication, given behavioural exchanges. We show it is possible to deduce whether players make inferences about each other and quantify their sophistication on the basis of choices in sequential games. This rests on comparing generative models of choices with, and without, inference. Model comparison is demonstrated using simulated and real data from a ‘stag-hunt’. Finally, we note that exactly the same sophisticated behaviour can be achieved by optimising the utility function itself (through prosocial utility), producing unsophisticated but apparently altruistic agents. This may be relevant ethologically in hierarchal game theory and coevolution. PMID:19112488
Autonomous System Technologies for Resilient Airspace Operations
NASA Technical Reports Server (NTRS)
Houston, Vincent E.; Le Vie, Lisa R.
2017-01-01
Increasing autonomous systems within the aircraft cockpit begins with an effort to understand what autonomy is and developing the technology that encompasses it. Autonomy allows an agent, human or machine, to act independently within a circumscribed set of goals; delegating responsibility to the agent(s) to achieve overall system objective(s). Increasingly Autonomous Systems (IAS) are the highly sophisticated progression of current automated systems toward full autonomy. Working in concert with humans, these types of technologies are expected to improve the safety, reliability, costs, and operational efficiency of aviation. IAS implementation is imminent, which makes the development and the proper performance of such technologies, with respect to cockpit operation efficiency, the management of air traffic and data communication information, vital. A prototype IAS agent that attempts to optimize the identification and distribution of "relevant" air traffic data to be utilized by human crews during complex airspace operations has been developed.
Towards a Bio-inspired Security Framework for Mission-Critical Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Ren, Wei; Song, Jun; Ma, Zhao; Huang, Shiyong
Mission-critical wireless sensor networks (WSNs) have been found in numerous promising applications in civil and military fields. However, the functionality of WSNs extensively relies on its security capability for detecting and defending sophisticated adversaries, such as Sybil, worm hole and mobile adversaries. In this paper, we propose a bio-inspired security framework to provide intelligence-enabled security mechanisms. This scheme is composed of a middleware, multiple agents and mobile agents. The agents monitor the network packets, host activities, make decisions and launch corresponding responses. Middleware performs an infrastructure for the communication between various agents and corresponding mobility. Certain cognitive models and intelligent algorithms such as Layered Reference Model of Brain and Self-Organizing Neural Network with Competitive Learning are explored in the context of sensor networks that have resource constraints. The security framework and implementation are also described in details.
The Search for 'Evolution-Proof' Antibiotics.
Bell, Graham; MacLean, Craig
2018-06-01
The effectiveness of antibiotics has been widely compromised by the evolution of resistance among pathogenic bacteria. It would be restored by the development of antibiotics to which bacteria cannot evolve resistance. We first discuss two kinds of 'evolution-proof' antibiotic. The first comprises literally evolution-proof antibiotics to which bacteria cannot become resistant by mutation or horizontal gene transfer. The second category comprises agents to which resistance may arise, but so rarely that it does not become epidemic. The likelihood that resistance to a novel agent will spread is evaluated here by a simple model that includes biological and therapeutic parameters governing the evolution of resistance within hosts and the transmission of resistant strains between hosts. This model leads to the conclusion that epidemic spread is unlikely if the frequency of mutations that confer resistance falls below a defined minimum value, and it identifies potential targets for intervention to prevent the evolution of resistance. Whether or not evolution-proof antibiotics are ever found, searching for them is likely to improve the deployment of new and existing agents by advancing our understanding of how resistance evolves. Copyright © 2017. Published by Elsevier Ltd.
The Evolution of Big Data and Learning Analytics in American Higher Education
ERIC Educational Resources Information Center
Picciano, Anthony G.
2012-01-01
Data-driven decision making, popularized in the 1980s and 1990s, is evolving into a vastly more sophisticated concept known as big data that relies on software approaches generally referred to as analytics. Big data and analytics for instructional applications are in their infancy and will take a few years to mature, although their presence is…
Social insects: from selfish genes to self organisation and beyond.
Boomsma, Jacobus J; Franks, Nigel R
2006-06-01
Selfish gene and self-organisation approaches have revolutionised the study of social insects and have provided unparalleled insights into the highly sophisticated nature of insect social evolution. Here, we briefly review the core programs and interfaces with communication and recognition studies that characterise these fields today, and offer an interdisciplinary future perspective for the study of social insect evolutionary biology.
Medicine as business, learned profession, and moral enterprise: an evolution of emphasis, 1905-2005.
Bryan, Charles S; Saunders, Donald E
2005-06-01
Despite criticisms of the medical profession from certain quarters, organized medicine has in many ways been a positive force for advancing physicians' ethics and professionalism. Review of articles published in The Journal of the South Carolina Medical Association through the past century suggests sustained concern and increasing sophistication in how we deal with these topics.
An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle
NASA Astrophysics Data System (ADS)
Gidden, Matthew J.
Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.
An Agent-Based Data Mining System for Ontology Evolution
NASA Astrophysics Data System (ADS)
Hadzic, Maja; Dillon, Darshan
We have developed an evidence-based mental health ontological model that represents mental health in multiple dimensions. The ongoing addition of new mental health knowledge requires a continual update of the Mental Health Ontology. In this paper, we describe how the ontology evolution can be realized using a multi-agent system in combination with data mining algorithms. We use the TICSA methodology to design this multi-agent system which is composed of four different types of agents: Information agent, Data Warehouse agent, Data Mining agents and Ontology agent. We use UML 2.1 sequence diagrams to model the collaborative nature of the agents and a UML 2.1 composite structure diagram to model the structure of individual agents. The Mental Heath Ontology has the potential to underpin various mental health research experiments of a collaborative nature which are greatly needed in times of increasing mental distress and illness.
Opinion evolution influenced by informed agents
NASA Astrophysics Data System (ADS)
Fan, Kangqi; Pedrycz, Witold
2016-11-01
Guiding public opinions toward a pre-set target by informed agents can be a strategy adopted in some practical applications. The informed agents are common agents who are employed or chosen to spread the pre-set opinion. In this work, we propose a social judgment based opinion (SJBO) dynamics model to explore the opinion evolution under the influence of informed agents. The SJBO model distinguishes between inner opinions and observable choices, and incorporates both the compromise between similar opinions and the repulsion between dissimilar opinions. Three choices (support, opposition, and remaining undecided) are considered in the SJBO model. Using the SJBO model, both the inner opinions and the observable choices can be tracked during the opinion evolution process. The simulation results indicate that if the exchanges of inner opinions among agents are not available, the effect of informed agents is mainly dependent on the characteristics of regular agents, including the assimilation threshold, decay threshold, and initial opinions. Increasing the assimilation threshold and decay threshold can improve the guiding effectiveness of informed agents. Moreover, if the initial opinions of regular agents are close to null, the full and unanimous consensus at the pre-set opinion can be realized, indicating that, to maximize the influence of informed agents, the guidance should be started when regular agents have little knowledge about a subject under consideration. If the regular agents have had clear opinions, the full and unanimous consensus at the pre-set opinion cannot be achieved. However, the introduction of informed agents can make the majority of agents choose the pre-set opinion.
Hybrid evolutionary computing model for mobile agents of wireless Internet multimedia
NASA Astrophysics Data System (ADS)
Hortos, William S.
2001-03-01
The ecosystem is used as an evolutionary paradigm of natural laws for the distributed information retrieval via mobile agents to allow the computational load to be added to server nodes of wireless networks, while reducing the traffic on communication links. Based on the Food Web model, a set of computational rules of natural balance form the outer stage to control the evolution of mobile agents providing multimedia services with a wireless Internet protocol WIP. The evolutionary model shows how mobile agents should behave with the WIP, in particular, how mobile agents can cooperate, compete and learn from each other, based on an underlying competition for radio network resources to establish the wireless connections to support the quality of service QoS of user requests. Mobile agents are also allowed to clone themselves, propagate and communicate with other agents. A two-layer model is proposed for agent evolution: the outer layer is based on the law of natural balancing, the inner layer is based on a discrete version of a Kohonen self-organizing feature map SOFM to distribute network resources to meet QoS requirements. The former is embedded in the higher OSI layers of the WIP, while the latter is used in the resource management procedures of Layer 2 and 3 of the protocol. Algorithms for the distributed computation of mobile agent evolutionary behavior are developed by adding a learning state to the agent evolution state diagram. When an agent is in an indeterminate state, it can communicate to other agents. Computing models can be replicated from other agents. Then the agents transitions to the mutating state to wait for a new information-retrieval goal. When a wireless terminal or station lacks a network resource, an agent in the suspending state can change its policy to submit to the environment before it transitions to the searching state. The agents learn the facts of agent state information entered into an external database. In the cloning process, two agents on a host station sharing a common goal can be merged or married to compose a new agent. Application of the two-layer set of algorithms for mobile agent evolution, performed in a distributed processing environment, is made to the QoS management functions of the IP multimedia IM sub-network of the third generation 3G Wideband Code-division Multiple Access W-CDMA wireless network.
Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther
2014-04-01
The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.
NASA Astrophysics Data System (ADS)
Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther
2014-04-01
The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.
Bacterial flagella and Type III secretion: case studies in the evolution of complexity.
Pallen, M J; Gophna, U
2007-01-01
Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.
The Evolution and Fossil History of Sensory Perception in Amniote Vertebrates
NASA Astrophysics Data System (ADS)
Müller, Johannes; Bickelmann, Constanze; Sobral, Gabriela
2018-05-01
Sensory perception is of crucial importance for animals to interact with their biotic and abiotic environment. In amniotes, the clade including modern mammals (Synapsida), modern reptiles (Reptilia), and their fossil relatives, the evolution of sensory perception took place in a stepwise manner after amniotes appeared in the Carboniferous. Fossil evidence suggests that Paleozoic taxa had only a limited amount of sensory capacities relative to later forms, with the majority of more sophisticated types of sensing evolving during the Triassic and Jurassic. Alongside the evolution of improved sensory capacities, various types of social communication evolved across different groups. At present there is no definitive evidence for a relationship between sensory evolution and species diversification. It cannot be excluded, however, that selection for improved sensing was partially triggered by biotic interactions, e.g., in the context of niche competition, whereas ecospace expansion, especially during the Mesozoic, might also have played an important role.
Physical realizability of continuous-time quantum stochastic walks
NASA Astrophysics Data System (ADS)
Taketani, Bruno G.; Govia, Luke C. G.; Wilhelm, Frank K.
2018-05-01
Quantum walks are a promising methodology that can be used to both understand and implement quantum information processing tasks. The quantum stochastic walk is a recently developed framework that combines the concept of a quantum walk with that of a classical random walk, through open system evolution of a quantum system. Quantum stochastic walks have been shown to have applications in as far reaching fields as artificial intelligence. However, there are significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution and the physical assumptions underpinning them. We show that general direct implementations would require the complete solution of the underlying unitary dynamics and sophisticated reservoir engineering, thus weakening the benefits of experimental implementation.
History, Evolution, and Continuing Innovations of Intracranial Aneurysm Surgery.
Lai, Leon T; O'Neill, Anthea H
2017-06-01
Evolution in the surgical treatment of intracranial aneurysms is driven by the need to refine and innovate. From an early application of the Hunterian carotid ligation to modern-day sophisticated aneurysm clip designs, progress has been made through dedication and technical maturation of cerebrovascular neurosurgeons to overcome challenges in their practices. The global expansion of endovascular services has challenged the existence of aneurysm surgery, changing the complexity of the aneurysm case mix and volume that are referred for surgical repair. Concepts of how to best treat intracranial aneurysms have evolved over generations and will continue to do so with further technological innovations. As with the evolution of any type of surgery, innovations frequently arise from the criticism of current techniques. Copyright © 2017 Elsevier Inc. All rights reserved.
Disk Evolution and the Fate of Water
NASA Astrophysics Data System (ADS)
Hartmann, Lee; Ciesla, Fred; Gressel, Oliver; Alexander, Richard
2017-10-01
We review the general theoretical concepts and observational constraints on the distribution and evolution of water vapor and ice in protoplanetary disks, with a focus on the Solar System. Water is expected to freeze out at distances greater than 1-3 AU from solar-type central stars; more precise estimates are difficult to obtain due to uncertainties in the complex processes involved in disk evolution, including dust growth, settling, and radial drift, and the level of turbulence and viscous dissipation within disks. Interferometric observations are now providing constraints on the positions of CO snow lines, but extrapolation to the unresolved regions where water ice sublimates will require much better theoretical understanding of mass and angular momentum transport in disks as well as more refined comparison of observations with sophisticated disk models.
NASA Astrophysics Data System (ADS)
Gimenez, M. Cecilia; Paz García, Ana Pamela; Burgos Paci, Maxi A.; Reinaudi, Luis
2016-04-01
The evolution of public opinion using tools and concepts borrowed from Statistical Physics is an emerging area within the field of Sociophysics. In the present paper, a Statistical Physics model was developed to study the evolution of the ideological self-positioning of an ensemble of agents. The model consists of an array of L components, each one of which represents the ideology of an agent. The proposed mechanism is based on the ;voter model;, in which one agent can adopt the opinion of another one if the difference of their opinions lies within a certain range. The existence of ;undecided; agents (i.e. agents with no definite opinion) was implemented in the model. The possibility of radicalization of an agent's opinion upon interaction with another one was also implemented. The results of our simulations are compared to statistical data taken from the Latinobarómetro databank for the cases of Argentina, Chile, Brazil and Uruguay in the last decade. Among other results, the effect of taking into account the undecided agents is the formation of a single peak at the middle of the ideological spectrum (which corresponds to a centrist ideological position), in agreement with the real cases studied.
ERIC Educational Resources Information Center
Burgin, Stephen R.; Oramous, Jennifer; Kaminski, Michael; Stocker, Linda; Moradi, Mahmoud
2018-01-01
Modeling is a practice of science that is underemphasized in biology classrooms in comparison to its central focus in the physical sciences. Visualizations of the submicroscopic world of molecules are becoming increasingly sophisticated with the evolution of new technologies. With this in mind, we introduced high school biology classrooms to a…
Lung Cancer: Posttreatment Imaging: Radiation Therapy and Imaging Findings.
Benveniste, Marcelo F; Welsh, James; Viswanathan, Chitra; Shroff, Girish S; Betancourt Cuellar, Sonia L; Carter, Brett W; Marom, Edith M
2018-05-01
In this review, we discuss the different radiation delivery techniques available to treat non-small cell lung cancer, typical radiologic manifestations of conventional radiotherapy, and different patterns of lung injury and temporal evolution of the newer radiotherapy techniques. More sophisticated techniques include intensity-modulated radiotherapy, stereotactic body radiotherapy, proton therapy, and respiration-correlated computed tomography or 4-dimensional computed tomography for radiotherapy planning. Knowledge of the radiation treatment plan and technique, the completion date of radiotherapy, and the temporal evolution of radiation-induced lung injury is important to identify expected manifestations of radiation-induced lung injury and differentiate them from tumor recurrence or infection. Published by Elsevier Inc.
The evolution of CMS software performance studies
NASA Astrophysics Data System (ADS)
Kortelainen, M. J.; Elmer, P.; Eulisse, G.; Innocente, V.; Jones, C. D.; Tuura, L.
2011-12-01
CMS has had an ongoing and dedicated effort to optimize software performance for several years. Initially this effort focused primarily on the cleanup of many issues coming from basic C++ errors, namely reducing dynamic memory churn, unnecessary copies/temporaries and tools to routinely monitor these things. Over the past 1.5 years, however, the transition to 64bit, newer versions of the gcc compiler, newer tools and the enabling of techniques like vectorization have made possible more sophisticated improvements to the software performance. This presentation will cover this evolution and describe the current avenues being pursued for software performance, as well as the corresponding gains.
Advances for studying clonal evolution in cancer.
Ding, Li; Raphael, Benjamin J; Chen, Feng; Wendl, Michael C
2013-11-01
The "clonal evolution" model of cancer emerged and "evolved" amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other's survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Scientific meaning of meanings: quests for discoveries concerning our cultural ills.
Patterson, C C
1998-08-01
This paper outlines pioneering concepts of fundamental physical and emotional features of the human brain which served as primary operators. These have developed during the past 10,000 years, giving rise to our present global megacultures and their various ancestral culture progenitors. Essential points are these: (1) Biological evolution endowed the human brain (quite inadvertently and unintentionally) with enormous latent powers for complex and sophisticated abstract ratiocinations. (2) Magnitudes of these latent powers grew exponentially with linear enlargements of brain size during the evolution of the genetic ancestors of Homo sapiens sapiens (Hss) during the past 3 million years, but these latent powers never materialized in utilized forms within the environmental contexts in which they evolved. (3) These sophisticated, abstract ratiocinations, both latent powers and operative forms in today's Hss brain, are divided between two major categories: utilitarian thinking and nonutilitarian thinking. (4) These two different types of thinking processes are carried out within separate, different regional combinations of neuronal biochemical entities within the same individual brain. (5) Sensitivities of abstract, sophisticated ratiocination processes within the human brain to influences from communication interactions with other human brains are exponentially greater in comparison with any other species of central nervous system in the earth's biosphere. This makes the brain population density the utmost critical factor, and determines the character of human thought within interacting populations of brains at a given time and place within a particular culture. (6) Abrupt increases of sedentary brain population densities, unnaturally greater by orders of magnitude than those that existed previously in biological evolutionary contexts, were engendered by the inauguration of agricultural practices 10,000 years ago. This enabled latent powers of the human brain used for complex and sophisticated abstract ratiocinations to become manifest in materialized forms of usage within relatively large groups of humans living i certain regions of the earth. (7) Thinking processes of the utilitarian category within brains living in such regions guided and dominated the development of sophisticated and complex social hierarchies and institutions, forms of communication, technologies, and cultures since that time. This dominating factor relegated thinking processes within the nonutilitarian categories of those brains to subservient roles during those developments. (8) Nonutilitarian abstracts ratiocinations possess a potential for proper adjudication and guidance of utilitarian abstract ratiocinations in the latter's development of culture. However, lack of the former's proper role in cultural developments since the beginning of the Holocene interglacial era has resulted in the imprisonment of Hss as aliens in an intellectual hell on a foreign planet.
Microbial Resistance to Triclosan: A Case Study in Natural Selection
ERIC Educational Resources Information Center
Serafini, Amanda; Matthews, Dorothy M.
2009-01-01
Natural selection is the mechanism of evolution caused by the environmental selection of organisms most fit to reproduce, sometimes explained as "survival of the fittest." An example of evolution by natural selection is the development of bacteria that are resistant to antimicrobial agents as a result of exposure to these agents. Triclosan, which…
Directional Communication in Evolved Multiagent Teams
2013-06-10
decentralized localization proposed by Franchi et al. [9]. Overall, the significant advantage of directional communication over non- directional...reception benefits the evolution of communicating autonomous agents because it simplifies the language required to express positional information, which...systems. This paper hypothesizes that such directional reception benefits the evolution of communicating autonomous agents because it simplifies the
QUALITY CONTROL OF PHARMACEUTICALS.
LEVI, L; WALKER, G C; PUGSLEY, L I
1964-10-10
Quality control is an essential operation of the pharmaceutical industry. Drugs must be marketed as safe and therapeutically active formulations whose performance is consistent and predictable. New and better medicinal agents are being produced at an accelerated rate. At the same time more exacting and sophisticated analytical methods are being developed for their evaluation. Requirements governing the quality control of pharmaceuticals in accordance with the Canadian Food and Drugs Act are cited and discussed.
2008-09-01
IWPC 21 Berners - Lee , Tim . (1999). Weaving the Web. New York: HarperCollins Publishers, Inc. 22... Berners - Lee , Tim . (1999). Weaving the Web. New York: HarperCollins Publishers, Inc. Berners - Lee , T., Hendler, J., & Lassila, O. (2001). The Semantic...environment where software agents roaming from page to page can readily carry out sophisticated tasks for users. T. Berners - Lee , J. Hendler, and O
Contrast-enhanced and targeted ultrasound.
Postema, Michiel; Gilja, Odd Helge
2011-01-07
Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested.
Contrast-enhanced and targeted ultrasound
Postema, Michiel; Gilja, Odd Helge
2011-01-01
Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081
Costly advertising and the evolution of cooperation.
Brede, Markus
2013-01-01
In this paper, I investigate the co-evolution of fast and slow strategy spread and game strategies in populations of spatially distributed agents engaged in a one off evolutionary dilemma game. Agents are characterized by a pair of traits, a game strategy (cooperate or defect) and a binary 'advertising' strategy (advertise or don't advertise). Advertising, which comes at a cost [Formula: see text], allows investment into faster propagation of the agents' traits to adjacent individuals. Importantly, game strategy and advertising strategy are subject to the same evolutionary mechanism. Via analytical reasoning and numerical simulations I demonstrate that a range of advertising costs exists, such that the prevalence of cooperation is significantly enhanced through co-evolution. Linking costly replication to the success of cooperators exposes a novel co-evolutionary mechanism that might contribute towards a better understanding of the origins of cooperation-supporting heterogeneity in agent populations.
Older partner selection promotes the prevalence of cooperation in evolutionary games.
Yang, Guoli; Huang, Jincai; Zhang, Weiming
2014-10-21
Evolutionary games typically come with the interplays between evolution of individual strategy and adaptation to network structure. How these dynamics in the co-evolution promote (or obstruct) the cooperation is regarded as an important topic in social, economic, and biological fields. Combining spatial selection with partner choice, the focus of this paper is to identify which neighbour should be selected as a role to imitate during the process of co-evolution. Age, an internal attribute and kind of local piece of information regarding the survivability of the agent, is a significant consideration for the selection strategy. The analysis and simulations presented, demonstrate that older partner selection for strategy imitation could foster the evolution of cooperation. The younger partner selection, however, may decrease the level of cooperation. Our model highlights the importance of agent׳s age on the promotion of cooperation in evolutionary games, both efficiently and effectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Evolution of ICT Markets: An Agent-Based Model on Complex Networks
NASA Astrophysics Data System (ADS)
Zhao, Liangjie; Wu, Bangtao; Chen, Zhong; Li, Li
Information and communication technology (ICT) products exhibit positive network effects.The dynamic process of ICT markets evolution has two intrinsic characteristics: (1) customers are influenced by each others’ purchasing decision; (2) customers are intelligent agents with bounded rationality.Guided by complex systems theory, we construct an agent-based model and simulate on complex networks to examine how the evolution can arise from the interaction of customers, which occur when they make expectations about the future installed base of a product by the fraction of neighbors who are using the same product in his personal network.We demonstrate that network effects play an important role in the evolution of markets share, which make even an inferior product can dominate the whole market.We also find that the intensity of customers’ communication can influence whether the best initial strategy for firms is to improve product quality or expand their installed base.
The R-Shell approach - Using scheduling agents in complex distributed real-time systems
NASA Technical Reports Server (NTRS)
Natarajan, Swaminathan; Zhao, Wei; Goforth, Andre
1993-01-01
Large, complex real-time systems such as space and avionics systems are extremely demanding in their scheduling requirements. The current OS design approaches are quite limited in the capabilities they provide for task scheduling. Typically, they simply implement a particular uniprocessor scheduling strategy and do not provide any special support for network scheduling, overload handling, fault tolerance, distributed processing, etc. Our design of the R-Shell real-time environment fcilitates the implementation of a variety of sophisticated but efficient scheduling strategies, including incorporation of all these capabilities. This is accomplished by the use of scheduling agents which reside in the application run-time environment and are responsible for coordinating the scheduling of the application.
Inspiration and application in the evolution of biomaterials.
Huebsch, Nathaniel; Mooney, David J
2009-11-26
Biomaterials, traditionally defined as materials used in medical devices, have been used since antiquity, but recently their degree of sophistication has increased significantly. Biomaterials made today are routinely information rich and incorporate biologically active components derived from nature. In the future, biomaterials will assume an even greater role in medicine and will find use in a wide variety of non-medical applications through biologically inspired design and incorporation of dynamic behaviour.
An Examination of the Evolution of Radiation and Advection Fogs
1993-01-01
and fog diagnostic and prediction models have developed in sophistication so that they can reproduce fairly accurate one- or two-dimensional...occurred only by molecular diffusion near the interface created between the species during the mixing process. The rate of homogenization is minimal until...of excess vapor by molecular diffusion at the interfaces of nearly saturated air mixing in eddies is faster than the relaxation time of droplet
Advances for Studying Clonal Evolution in Cancer
Raphael, Benjamin J.; Chen, Feng; Wendl, Michael C.
2013-01-01
The “clonal evolution” model of cancer emerged and “evolved” amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other’s survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. PMID:23353056
Clinically Evaluated Cancer Drugs Inhibiting Redox Signaling.
Kirkpatrick, D Lynn; Powis, Garth
2017-02-20
There are a number of redox-active anticancer agents currently in development based on the premise that altered redox homeostasis is necessary for cancer cell's survival. Recent Advances: This review focuses on the relatively few agents that target cellular redox homeostasis to have entered clinical trial as anticancer drugs. The success rate of redox anticancer drugs has been disappointing compared to other classes of anticancer agents. This is due, in part, to our incomplete understanding of the functions of the redox targets in normal and cancer tissues, leading to off-target toxicities and low therapeutic indexes of the drugs. The field also lags behind in the use biomarkers and other means to select patients who are most likely to respond to redox-targeted therapy. If we wish to derive clinical benefit from agents that attack redox targets, then the future will require a more sophisticated understanding of the role of redox targets in cancer and the increased application of personalized medicine principles for their use. Antioxid. Redox Signal. 26, 262-273.
Investment horizon heterogeneity and wavelet: Overview and further research directions
NASA Astrophysics Data System (ADS)
Chakrabarty, Anindya; De, Anupam; Gunasekaran, Angappa; Dubey, Rameshwar
2015-07-01
Wavelet based multi-scale analysis of financial time series has attracted much attention, lately, from both the academia and practitioners from all around the world. The unceasing metamorphosis of the discipline of finance from its humble beginning as applied economics to the more sophisticated depiction as applied physics and applied psychology has revolutionized the way we perceive the market and its complexities. One such complexity is the presence of heterogeneous horizon agents in the market. In this context, we have performed a generous review of different aspects of horizon heterogeneity that has been successfully elucidated through the synergy between wavelet theory and finance. The evolution of wavelet has been succinctly delineated to bestow necessary information to the readers who are new to this field. The migration of wavelet into finance and its subsequent branching into different sub-divisions have been sketched. The pertinent literature on the impact of horizon heterogeneity on risk, asset pricing and inter-dependencies of the financial time series are explored. The significant contributions are collated and classified in accordance to their purpose and approach so that potential researcher and practitioners, interested in this subject, can be benefited. Future research possibilities in the direction of "agency cost mitigation" and "synergy between econophysics and behavioral finance in stock market forecasting" are also suggested in the paper.
Assessing the determinants of evolutionary rates in the presence of noise.
Plotkin, Joshua B; Fraser, Hunter B
2007-05-01
Although protein sequences are known to evolve at vastly different rates, little is known about what determines their rate of evolution. However, a recent study using principal component regression (PCR) has concluded that evolutionary rates in yeast are primarily governed by a single determinant related to translation frequency. Here, we demonstrate that noise in biological data can confound PCRs, leading to spurious conclusions. When equalizing noise levels across 7 predictor variables used in previous studies, we find no evidence that protein evolution is dominated by a single determinant. Our results indicate that a variety of factors--including expression level, gene dispensability, and protein-protein interactions--may independently affect evolutionary rates in yeast. More accurate measurements or more sophisticated statistical techniques will be required to determine which one, if any, of these factors dominates protein evolution.
Horizontal Gene Exchange in Environmental Microbiota
Aminov, Rustam I.
2011-01-01
Horizontal gene transfer (HGT) plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs). The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT. PMID:21845185
Evolution of wealth in a non-conservative economy driven by local Nash equilibria.
Degond, Pierre; Liu, Jian-Guo; Ringhofer, Christian
2014-11-13
We develop a model for the evolution of wealth in a non-conservative economic environment, extending a theory developed in Degond et al. (2014 J. Stat. Phys. 154, 751-780 (doi:10.1007/s10955-013-0888-4)). The model considers a system of rational agents interacting in a game-theoretical framework. This evolution drives the dynamics of the agents in both wealth and economic configuration variables. The cost function is chosen to represent a risk-averse strategy of each agent. That is, the agent is more likely to interact with the market, the more predictable the market, and therefore the smaller its individual risk. This yields a kinetic equation for an effective single particle agent density with a Nash equilibrium serving as the local thermodynamic equilibrium. We consider a regime of scale separation where the large-scale dynamics is given by a hydrodynamic closure with this local equilibrium. A class of generalized collision invariants is developed to overcome the difficulty of the non-conservative property in the hydrodynamic closure derivation of the large-scale dynamics for the evolution of wealth distribution. The result is a system of gas dynamics-type equations for the density and average wealth of the agents on large scales. We recover the inverse Gamma distribution, which has been previously considered in the literature, as a local equilibrium for particular choices of the cost function. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Quality Control of Pharmaceuticals
Levi, Leo; Walker, George C.; Pugsley, L. I.
1964-01-01
Quality control is an essential operation of the pharmaceutical industry. Drugs must be marketed as safe and therapeutically active formulations whose performance is consistent and predictable. New and better medicinal agents are being produced at an accelerated rate. At the same time more exacting and sophisticated analytical methods are being developed for their evaluation. Requirements governing the quality control of pharmaceuticals in accordance with the Canadian Food and Drugs Act are cited and discussed. PMID:14199105
NASA Astrophysics Data System (ADS)
Duran, Karolina-Petkovic; Zhu, Yonggang; Chen, Chuanpin; Swallow, Anthony; Stewart, Robert; Hoobin, Pam; Leech, Patrick; Ovenden, Simon
2008-12-01
This paper reports on the development of a hand-held device for on-site detection of organophosphonate nerve agent degradation products. This field-deployable analyzer relies on efficient microchip electrophoresis separation of alkyl methylphosphonic acids and their sensitive contactless conductivity detection. Miniaturized, low-powered design is coupled with promising analytical performance for separating the breakdown products of chemical warfare agents such as Soman, Sarin and VX . The detector has a detection limit of about 10 μg/mL and has a good linear response in the range 10-300 μg/mL concentration range. Applicability to environmental samples is demonstrated .The new hand-held analyzer offers great promise for converting conventional ion chromatography or capillary electrophoresis sophisticated systems into a portable forensic laboratory for faster, simpler and more reliable on-site screening.
Auditory opportunity and visual constraint enabled the evolution of echolocation in bats.
Thiagavel, Jeneni; Cechetto, Clément; Santana, Sharlene E; Jakobsen, Lasse; Warrant, Eric J; Ratcliffe, John M
2018-01-08
Substantial evidence now supports the hypothesis that the common ancestor of bats was nocturnal and capable of both powered flight and laryngeal echolocation. This scenario entails a parallel sensory and biomechanical transition from a nonvolant, vision-reliant mammal to one capable of sonar and flight. Here we consider anatomical constraints and opportunities that led to a sonar rather than vision-based solution. We show that bats' common ancestor had eyes too small to allow for successful aerial hawking of flying insects at night, but an auditory brain design sufficient to afford echolocation. Further, we find that among extant predatory bats (all of which use laryngeal echolocation), those with putatively less sophisticated biosonar have relatively larger eyes than do more sophisticated echolocators. We contend that signs of ancient trade-offs between vision and echolocation persist today, and that non-echolocating, phytophagous pteropodid bats may retain some of the necessary foundations for biosonar.
The Multi-dimensional Character of Core-collapse Supernovae
Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; ...
2016-03-01
Core-collapse supernovae, the culmination of massive stellar evolution, are spectacular astronomical events and the principle actors in the story of our elemental origins. Our understanding of these events, while still incomplete, centers around a neutrino-driven central engine that is highly hydrodynamically unstable. Increasingly sophisticated simulations reveal a shock that stalls for hundreds of milliseconds before reviving. Though brought back to life by neutrino heating, the development of the supernova explosion is inextricably linked to multi-dimensional fluid flows. In this paper, the outcomes of three-dimensional simulations that include sophisticated nuclear physics and spectral neutrino transport are juxtaposed to learn about themore » nature of the three-dimensional fluid flow that shapes the explosion. Comparison is also made between the results of simulations in spherical symmetry from several groups, to give ourselves confidence in the understanding derived from this juxtaposition.« less
Molecular clocks and the early evolution of metazoan nervous systems.
Wray, Gregory A
2015-12-19
The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. © 2015 The Author(s).
Expanding the scale of molecular biophysics.
Levine, Herbert
2016-10-07
Here, I argue that some of the secrets of complex biological function rely on assemblies of many heterogeneous proteins that together enable sophisticated sensing and actuating processes. Evolution seems to delight in making these structures and in continually elaborating upon their capabilities. Developing tools that can go beyond the few protein limit, both on the experimental frontier and from a theoretical, conceptual framework, should be an extremely high priority for the next generation of molecular biophysicists.
Acoustic intrusion detection and positioning system
NASA Astrophysics Data System (ADS)
Berman, Ohad; Zalevsky, Zeev
2002-08-01
Acoustic sensors are becoming more and more applicable as a military battlefield technology. Those sensors allow a detection and direciton estimation with low false alarm rate and high probability of detection. The recent technological progress related to these fields of reserach, together with an evolution of sophisticated algorithms, allow the successful integration of those sensoe in battlefield technologies. In this paper the performances of an acoustic sensor for a detection of avionic vessels is investigated and analyzed.
White Dwarf Model Atmospheres: Synthetic Spectra for Supersoft Sources
NASA Astrophysics Data System (ADS)
Rauch, Thomas
2013-01-01
The Tübingen NLTE Model-Atmosphere Package (TMAP) calculates fully metal-line blanketed white dwarf model atmospheres and spectral energy distributions (SEDs) at a high level of sophistication. Such SEDs are easily accessible via the German Astrophysical Virtual Observatory (GAVO) service TheoSSA. We discuss applications of TMAP models to (pre) white dwarfs during the hottest stages of their stellar evolution, e.g. in the parameter range of novae and supersoft sources.
Conformity-driven agents support ordered phases in the spatial public goods game
NASA Astrophysics Data System (ADS)
Javarone, Marco Alberto; Antonioni, Alberto; Caravelli, Francesco
2016-05-01
We investigate the spatial Public Goods Game in the presence of fitness-driven and conformity-driven agents. This framework usually considers only the former type of agents, i.e., agents that tend to imitate the strategy of their fittest neighbors. However, whenever we study social systems, the evolution of a population might be affected also by social behaviors as conformism, stubbornness, altruism, and selfishness. Although the term evolution can assume different meanings depending on the considered domain, here it corresponds to the set of processes that lead a system towards an equilibrium or a steady state. We map fitness to the agents' payoff so that richer agents are those most imitated by fitness-driven agents, while conformity-driven agents tend to imitate the strategy assumed by the majority of their neighbors. Numerical simulations aim to identify the nature of the transition, on varying the amount of the relative density of conformity-driven agents in the population, and to study the nature of related equilibria. Remarkably, we find that conformism generally fosters ordered cooperative phases and may also lead to bistable behaviors.
ERIC Educational Resources Information Center
Sutherland, Douglas
2009-01-01
This paper examines the educational projects of Patrick Geddes in late-Victorian Scotland. Initially a natural scientist, Geddes drew on an eclectic mix of social theory to develop his own ideas on social evolution. For him education was a vital agent of social change which, he believed, had the potential to develop active citizens whose…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helled, Ravit
We explore the change in Jupiter's normalized axial moment of inertia (NMOI) assuming that Jupiter undergoes core erosion. It is found that Jupiter's contraction combined with an erosion of 20 M{sub Circled-Plus} from a primordial core of 30 M{sub Circled-Plus} can significantly change Jupiter's NMOI over time. It is shown that Jupiter's NMOI could have changed from {approx}0.235 to {approx}0.264 throughout its evolution. We find that an NMOI value of {approx}0.235 as suggested by dynamical models could, in principle, be consistent with Jupiter's primordial internal structure. Low NMOI values, however, persist only for the first {approx}10{sup 6} years of Jupiter'smore » evolution. Re-evaluation of dynamical stability models as well as more sophisticated evolution models of Jupiter with core erosion seem to be required in order to provide more robust estimates for Jupiter's primordial NMOI.« less
>From naive to sophisticated behavior in multiagents-based financial market models
NASA Astrophysics Data System (ADS)
Mansilla, R.
2000-09-01
The behavior of physical complexity and mutual information function of the outcome of a model of heterogeneous, inductive rational agents inspired by the El Farol Bar problem and the Minority Game is studied. The first magnitude is a measure rooted in the Kolmogorov-Chaitin theory and the second a measure related to Shannon's information entropy. Extensive computer simulations were done, as a result of which, is proposed an ansatz for physical complexity of the type C(l)=lα and the dependence of the exponent α from the parameters of the model is established. The accuracy of our results and the relationship with the behavior of mutual information function as a measure of time correlation of agents choice are discussed.
Elokely, Khaled M; Eldawy, Mohamed A; Elkersh, Mohamed A; El-Moselhy, Tarek F
2011-01-01
A simple spectrofluorometric method has been developed, adapted, and validated for the quantitative estimation of drugs containing α-methylene sulfone/sulfonamide functional groups using N(1)-methylnicotinamide chloride (NMNCl) as fluorogenic agent. The proposed method has been applied successfully to the determination of methyl sulfonyl methane (MSM) (1), tinidazole (2), rofecoxib (3), and nimesulide (4) in pure forms, laboratory-prepared mixtures, pharmaceutical dosage forms, spiked human plasma samples, and in volunteer's blood. The method showed linearity over concentration ranging from 1 to 150 μg/mL, 10 to 1000 ng/mL, 1 to 1800 ng/mL, and 30 to 2100 ng/mL for standard solutions of 1, 2, 3, and 4, respectively, and over concentration ranging from 5 to 150 μg/mL, 10 to 1000 ng/mL, 10 to 1700 ng/mL, and 30 to 2350 ng/mL in spiked human plasma samples of 1, 2, 3, and 4, respectively. The method showed good accuracy, specificity, and precision in both laboratory-prepared mixtures and in spiked human plasma samples. The proposed method is simple, does not need sophisticated instruments, and is suitable for quality control application, bioavailability, and bioequivalency studies. Besides, its detection limits are comparable to other sophisticated chromatographic methods.
Adaptive bill morphology for enhanced tool manipulation in New Caledonian crows
Matsui, Hiroshi; Hunt, Gavin R.; Oberhofer, Katja; Ogihara, Naomichi; McGowan, Kevin J.; Mithraratne, Kumar; Yamasaki, Takeshi; Gray, Russell D.; Izawa, Ei-Ichi
2016-01-01
Early increased sophistication of human tools is thought to be underpinned by adaptive morphology for efficient tool manipulation. Such adaptive specialisation is unknown in nonhuman primates but may have evolved in the New Caledonian crow, which has sophisticated tool manufacture. The straightness of its bill, for example, may be adaptive for enhanced visually-directed use of tools. Here, we examine in detail the shape and internal structure of the New Caledonian crow’s bill using Principal Components Analysis and Computed Tomography within a comparative framework. We found that the bill has a combination of interrelated shape and structural features unique within Corvus, and possibly birds generally. The upper mandible is relatively deep and short with a straight cutting edge, and the lower mandible is strengthened and upturned. These novel combined attributes would be functional for (i) counteracting the unique loading patterns acting on the bill when manipulating tools, (ii) a strong precision grip to hold tools securely, and (iii) enhanced visually-guided tool use. Our findings indicate that the New Caledonian crow’s innovative bill has been adapted for tool manipulation to at least some degree. Early increased sophistication of tools may require the co-evolution of morphology that provides improved manipulatory skills. PMID:26955788
Escaping compound eye ancestry: the evolution of single-chamber eyes in holometabolous larvae.
Buschbeck, Elke K
2014-08-15
Stemmata, the eyes of holometabolous insect larvae, have gained little attention, even though they exhibit remarkably different optical solutions, ranging from compound eyes with upright images, to sophisticated single-chamber eyes with inverted images. Such optical differences raise the question of how major transitions may have occurred. Stemmata evolved from compound eye ancestry, and optical differences are apparent even in some of the simplest systems that share strong cellular homology with adult ommatidia. The transition to sophisticated single-chamber eyes occurred many times independently, and in at least two different ways: through the fusion of many ommatidia [as in the sawfly (Hymenoptera)], and through the expansion of single ommatidia [as in tiger beetles (Coleoptera), antlions (Neuroptera) and dobsonflies (Megaloptera)]. Although ommatidia-like units frequently have multiple photoreceptor layers (tiers), sophisticated image-forming stemmata tend to only have one photoreceptor tier, presumably a consequence of the lens only being able to efficiently focus light on to one photoreceptor layer. An interesting exception is found in some diving beetles [Dytiscidae (Coleoptera)], in which two retinas receive sharp images from a bifocal lens. Taken together, stemmata represent a great model system to study an impressive set of optical solutions that evolved from a relatively simple ancestral organization. © 2014. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Dhesi, Gurjeet; Ausloos, Marcel
2016-07-01
Following a Geometrical Brownian Motion extension into an Irrational Fractional Brownian Motion model, we re-examine agent behaviour reacting to time dependent news on the log-returns thereby modifying a financial market evolution. We specifically discuss the role of financial news or economic information positive or negative feedback of such irrational (or contrarian) agents upon the price evolution. We observe a kink-like effect reminiscent of soliton behaviour, suggesting how analysts' forecasts errors induce stock prices to adjust accordingly, thereby proposing a measure of the irrational force in a market.
Herkovits, Jorge
2006-01-01
For most of evolutionary history, scientific understanding of the environment and life forms is extremely limited. In this commentary I discuss the hypothesis that ontogenetic features of living organisms can be considered biomarkers of coevolution between organisms and physicochemical agents during Earth’s history. I provide a new vision of evolution based on correlations between metabolic features and stage-dependent susceptibility of organisms to physicochemical agents with well-known environmental signatures. Thus, developmental features potentially reflect environmental changes during evolution. From this perspective, early multicellular life forms would have flourished in the anoxic Earth more than 2 billion years ago, which is at least 1.2 billion years in advance of available fossil evidence. The remarkable transition to aerobic metabolism in gastrula-stage embryos potentially reflects evolution toward tridermic organisms by 2 billion years ago. Noteworthy changes in embryonic resistance to physicochemical agents at different developmental stages that can be observed in living organisms potentially reflect the influence of environmental stress conditions during different periods of evolutionary history. Evoecotoxicology, as a multidisciplinary and transdisciplinary approach, can enhance our understanding of evolution, including the phylogenetic significance of differences in susceptibility/resistance to physicochemical agents in different organisms. PMID:16882515
The changing flow of management information systems in long-term care facilities.
Stokes, D F
1997-08-01
Over the past three decades, the long-term care community has seen continual increases in the complexity and sophistication of management information systems. These changes have been brought about by the ever-increasing demands on owners and managers to provide accurate and timely data to both regulators and financial investors. The evolution of these systems has increased rapidly in recent years as the nation attempts to reinvent the funding mechanisms for long-term care.
Magma oceanography. I - Thermal evolution. [of lunar surface
NASA Technical Reports Server (NTRS)
Solomon, S. C.; Longhi, J.
1977-01-01
Fractional crystallization and flotation of cumulate plagioclase in a cooling 'magma ocean' provides the simplest explanation for early emplacement of a thick feldspar-rich lunar crust. The complementary mafic cumulates resulting from the differentiation of such a magma ocean have been identified as the ultimate source of mare basalt liquids on the basis or rare-earth abundance patterns and experimental petrology studies. A study is conducted concerning the thermal evolution of the early differentiation processes. A range of models of increasing sophistication are considered. The models developed contain the essence of the energetics and the time scale for magma ocean differentiation. Attention is given to constraints on a magma ocean, modeling procedures, single-component magma oceans, fractionating magma oceans, and evolving magma oceans.
Nano/micromotors for security/defense applications. A review.
Singh, Virendra V; Wang, Joseph
2015-12-14
The new capabilities of man-made micro/nanomotors open up considerable opportunities for diverse security and defense applications. This review highlights new micromotor-based strategies for enhanced security monitoring and detoxification of chemical and biological warfare agents (CBWA). The movement of receptor-functionalized nanomotors offers great potential for sensing and isolating target bio-threats from complex samples. New mobile reactive materials based on zeolite or activated carbon offer considerable promise for the accelerated removal of chemical warfare agents. A wide range of proof-of-concept motor-based approaches, including the detection and destruction of anthrax spores, 'on-off' nerve-agent detection or effective neutralization of chemical warfare agents have thus been demonstrated. The propulsion of micromotors and their corresponding bubble tails impart significant mixing that greatly accelerates such detoxification processes. These nanomotors will thus empower sensing and destruction where stirring large quantities of decontaminating reagents and controlled mechanical agitation are impossible or undesired. New technological breakthroughs and greater sophistication of micro/nanoscale machines will lead to rapid translation of the micromotor research activity into practical defense applications, addressing the escalating threat of CBWA.
Nano/micromotors for security/defense applications. A review
NASA Astrophysics Data System (ADS)
Singh, Virendra V.; Wang, Joseph
2015-11-01
The new capabilities of man-made micro/nanomotors open up considerable opportunities for diverse security and defense applications. This review highlights new micromotor-based strategies for enhanced security monitoring and detoxification of chemical and biological warfare agents (CBWA). The movement of receptor-functionalized nanomotors offers great potential for sensing and isolating target bio-threats from complex samples. New mobile reactive materials based on zeolite or activated carbon offer considerable promise for the accelerated removal of chemical warfare agents. A wide range of proof-of-concept motor-based approaches, including the detection and destruction of anthrax spores, `on-off' nerve-agent detection or effective neutralization of chemical warfare agents have thus been demonstrated. The propulsion of micromotors and their corresponding bubble tails impart significant mixing that greatly accelerates such detoxification processes. These nanomotors will thus empower sensing and destruction where stirring large quantities of decontaminating reagents and controlled mechanical agitation are impossible or undesired. New technological breakthroughs and greater sophistication of micro/nanoscale machines will lead to rapid translation of the micromotor research activity into practical defense applications, addressing the escalating threat of CBWA.
Historical precedence and technical requirements of biological weapons use : a threat assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estes, Daniel P.; Vogel, Kathleen Margaret; Gaudioso, Jennifer Marie
2004-05-01
The threat from biological weapons is assessed through both a comparative historical analysis of the patterns of biological weapons use and an assessment of the technological hurdles to proliferation and use that must be overcome. The history of biological weapons is studied to learn how agents have been acquired and what types of states and substate actors have used agents. Substate actors have generally been more willing than states to use pathogens and toxins and they have focused on those agents that are more readily available. There has been an increasing trend of bioterrorism incidents over the past century, butmore » states and substate actors have struggled with one or more of the necessary technological steps. These steps include acquisition of a suitable agent, production of an appropriate quantity and form, and effective deployment. The technological hurdles associated with the steps present a real barrier to producing a high consequence event. However, the ever increasing technological sophistication of society continually lowers the barriers, resulting in a low but increasing probability of a high consequence bioterrorism event.« less
a Simulation-As Framework Facilitating Webgis Based Installation Planning
NASA Astrophysics Data System (ADS)
Zheng, Z.; Chang, Z. Y.; Fei, Y. F.
2017-09-01
Installation Planning is constrained by both natural and social conditions, especially for spatially sparse but functionally connected facilities. Simulation is important for proper deploy in space and configuration in function of facilities to make them a cohesive and supportive system to meet users' operation needs. Based on requirement analysis, we propose a framework to combine GIS and Agent simulation to overcome the shortness in temporal analysis and task simulation of traditional GIS. In this framework, Agent based simulation runs as a service on the server, exposes basic simulation functions, such as scenario configuration, simulation control, and simulation data retrieval to installation planners. At the same time, the simulation service is able to utilize various kinds of geoprocessing services in Agents' process logic to make sophisticated spatial inferences and analysis. This simulation-as-a-service framework has many potential benefits, such as easy-to-use, on-demand, shared understanding, and boosted performances. At the end, we present a preliminary implement of this concept using ArcGIS javascript api 4.0 and ArcGIS for server, showing how trip planning and driving can be carried out by agents.
Halloysite clay nanotubes for controlled release of protective agents.
Lvov, Yuri M; Shchukin, Dmitry G; Möhwald, Helmuth; Price, Ronald R
2008-05-01
Halloysite aluminosilicate nanotubes with a 15 nm lumen, 50 nm external diameter, and length of 800 +/- 300 nm have been developed as an entrapment system for loading, storage, and controlled release of anticorrosion agents and biocides. Fundamental research to enable the control of release rates from hours to months is being undertaken. By variation of internal fluidic properties, the formation of nanoshells over the nanotubes and by creation of smart caps at the tube ends it is possible to develop further means of controlling the rate of release. Anticorrosive halloysite coatings are in development and a self-healing approach has been developed for repair mechanisms through response activation to external impacts. In this Perspective, applications of halloysite as nanometer-scale containers are discussed, including the use of halloysite tubes as drug releasing agents, as biomimetic reaction vessels, and as additives in biocide and protective coatings. Halloysite nanotubes are available in thousands of tons, and remain sophisticated and novel natural nanomaterials which can be used for the loading of agents for metal and plastic anticorrosion and biocide protection.
Inconsistency as a diagnostic tool in a society of intelligent agents.
McShane, Marjorie; Beale, Stephen; Nirenburg, Sergei; Jarrell, Bruce; Fantry, George
2012-07-01
To use the detection of clinically relevant inconsistencies to support the reasoning capabilities of intelligent agents acting as physicians and tutors in the realm of clinical medicine. We are developing a cognitive architecture, OntoAgent, that supports the creation and deployment of intelligent agents capable of simulating human-like abilities. The agents, which have a simulated mind and, if applicable, a simulated body, are intended to operate as members of multi-agent teams featuring both artificial and human agents. The agent architecture and its underlying knowledge resources and processors are being developed in a sufficiently generic way to support a variety of applications. We show how several types of inconsistency can be detected and leveraged by intelligent agents in the setting of clinical medicine. The types of inconsistencies discussed include: test results not supporting the doctor's hypothesis; the results of a treatment trial not supporting a clinical diagnosis; and information reported by the patient not being consistent with observations. We show the opportunities afforded by detecting each inconsistency, such as rethinking a hypothesis, reevaluating evidence, and motivating or teaching a patient. Inconsistency is not always the absence of the goal of consistency; rather, it can be a valuable trigger for further exploration in the realm of clinical medicine. The OntoAgent cognitive architecture, along with its extensive suite of knowledge resources an processors, is sufficient to support sophisticated agent functioning such as detecting clinically relevant inconsistencies and using them to benefit patient-centered medical training and practice. Copyright © 2012 Elsevier B.V. All rights reserved.
Evolution of hemostatic agents in surgical practice
Sundaram, Chandru P.; Keenan, Alison C.
2010-01-01
Objective: Topical hemostatic agents are used in a wide variety of surgical settings, and the evolution of this class of surgical tools is an interesting topic. We reviewed and outlined the historical progress of topical hemostats into present day surgery and urology, and highlight opportunities for future research. Materials and Methods: A MEDLINE search of all available literature concerning several classes of topical hemostatic agents was performed. Fibrins sealants, Gelatin sponge hemostatics, cyanoacrylate adhesives, oxidized regenerated cellulose, and microfibrillar collagen were included. References were chosen from a broad range of surgical literature. Results: Topical hemostatic agents have historically taken advantage of a wide variety of mechanisms for hemostasis. Fibrin sealants have a rich history and large potential for further applications. Gelatin sponge hemostatics have been widely used since their introduction, but have changed little. Cyanoacrylate adhesives have a unique mechanism and opportunity for novel applications of existing products. Oxidized cellulose was original in the use of plant-based components. Microfibrillar collagen hemostats have evolved to a wide variety of formats. Conclusions: A review of the evolution of topical hemostatic agents highlights opportunities for potential novel research. Fibrin sealants may have the most opportunity for advancement, and understanding the history of these products is useful. With the drive in urology for minimally invasive surgical techniques, adaptation of topical hemostatic agents to this surgical approach would be valuable and offers an opportunity for novel contributions. PMID:21116358
Costly Advertising and the Evolution of Cooperation
Brede, Markus
2013-01-01
In this paper, I investigate the co-evolution of fast and slow strategy spread and game strategies in populations of spatially distributed agents engaged in a one off evolutionary dilemma game. Agents are characterized by a pair of traits, a game strategy (cooperate or defect) and a binary ‘advertising’ strategy (advertise or don’t advertise). Advertising, which comes at a cost , allows investment into faster propagation of the agents’ traits to adjacent individuals. Importantly, game strategy and advertising strategy are subject to the same evolutionary mechanism. Via analytical reasoning and numerical simulations I demonstrate that a range of advertising costs exists, such that the prevalence of cooperation is significantly enhanced through co-evolution. Linking costly replication to the success of cooperators exposes a novel co-evolutionary mechanism that might contribute towards a better understanding of the origins of cooperation-supporting heterogeneity in agent populations. PMID:23861752
Toward Agent-Based Models of the Development And Evolution of Business Relations and Networks
NASA Astrophysics Data System (ADS)
Wilkinson, Ian F.; Marks, Robert E.; Young, Louise
Firms achieve competitive advantage in part through the development of cooperative relations with other firms and organisations. We describe a program of research designed to map and model the development of cooperative inter-firm relations, including the processes and paths by which firms may evolve from adversarial to more cooperative relations. Narrative-event-history methods will be used to develop stylised histories of the emergence of business relations in various contexts and to identify relevant causal mechanisms to be included in the agent-based models of relationship and network evolution. The relationship histories will provide the means of assuring the agent-based models developed.
Unraveling the Chemical Evolution of the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Nidever, David L.; Hasselquist, Sten; Rochford Hayes, Christian; Majewski, Steven R.; Anguiano, Borja; Stringfellow, Guy S.; APOGEE Team
2018-06-01
How galaxies form and evolve remains one of the cornerstone questions in our understanding of the universe on grand scales. While much progress has been made in understanding the formation and chemical evolution of larger galaxies by studying the Milky Way and other nearby galaxies, our knowledge of the evolution of dwarf galaxies, especially the chemical component, is far more limited because these small galaxies and their constituent stars are quite faint. The SDSS-IV/APOGEE survey will dramatically improve the situation by conducting a large spectroscopic survey of 5,000 giant stars, sampling a large range of radius and position angle, in the nearby Magellanic Clouds (MCs). The main scientific goals of the project are to map out the chemical abundance patterns across the MCs, search for chemical and kinematical substructures, and unravel the chemical evolution of the MCs by comparing the APOGEE abundances to chemical evolution models and sophisticated chemo-hydrodynamical simulations. The observational campaign has just begun but we have already obtained high-quality data for several thousand stars. I will present some initial results of the APOGEE MC campaign including chemical abundance gradients, the metal-poor knee, and the origion of the retrograde metal-poor "Olsen" stellar stream in the LMC disk.
Modeling market mechanism with the minority game
NASA Astrophysics Data System (ADS)
Challet, Damien; Marsili, Matteo; Zhang, Yi-Cheng
2000-01-01
Using the minority game model we study a broad spectrum of problems of market mechanism. We study the role of different types of agents: producers, speculators as well as noise traders. The central issue here is the information flow: producers feed in the information whereas speculators make it away. How well each agent fares in the common game depends on the market conditions, as well as their sophistication. Sometimes there is much to gain with little effort, sometimes great effort virtually brings no more incremental gain. Market impact is also shown to play an important role, a strategy should be judged when it is actually used in play for its quality. Though the minority game is an extremely simplified market model, it allows to ask, analyze and answer many questions which arise in real markets.
Polymeric nanoparticles for targeted drug delivery system for cancer therapy.
Masood, Farha
2016-03-01
A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Pyrrolysyl-tRNA Synthetase, an Aminoacyl-tRNA Synthetase for Genetic Code Expansion
Crnkovic, Ana; Suzuki, Tateki; Soll, Dieter; ...
2016-06-14
Genetic code expansion (GCE) has become a central topic of synthetic biology. GCE relies on engineered aminoacyl-tRNA synthetases (aaRSs) and a cognate tRNA species to allow codon reassignment by co-translational insertion of non-canonical amino acids (ncAAs) into proteins. Introduction of such amino acids increases the chemical diversity of recombinant proteins endowing them with novel properties. Such proteins serve in sophisticated biochemical and biophysical studies both in vitro and in vivo, they may become unique biomaterials or therapeutic agents, and they afford metabolic dependence of genetically modified organisms for biocontainment purposes. In the Methanosarcinaceae the incorporation of the 22nd genetically encodedmore » amino acid, pyrrolysine (Pyl), is facilitated by pyrrolysyl-tRNA synthetase (PylRS) and the cognate UAG-recognizing tRNAPyl. This unique aaRS•tRNA pair functions as an orthogonal translation system (OTS) in most model organisms. The facile directed evolution of the large PylRS active site to accommodate many ncAAs, and the enzyme’s anticodon-blind specific recognition of the cognate tRNAPyl make this system highly amenable for GCE purposes. The remarkable polyspecificity of PylRS has been exploited to incorporate >100 different ncAAs into proteins. Here we review the Pyl-OT system and selected GCE applications to examine the properties of an effective OTS.« less
Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response.
Rodríguez Pulido, Miguel; Sáiz, Margarita
2017-01-01
Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.
Chemical and genetic defenses against disease in insect societies.
Stow, Adam; Beattie, Andrew
2008-10-01
The colonies of ants, bees, wasps and termites, the social insects, consist of large numbers of closely related individuals; circumstances ideal for contagious diseases. Antimicrobial assays of these animals have demonstrated a wide variety of chemical defenses against both bacteria and fungi that can be broadly classified as either external antiseptic compounds or internal immune molecules. Reducing the disease risks inherent in colonies of social insects is also achieved by behaviors, such as multiple mating or dispersal, that lower genetic relatedness both within- and among colonies. The interactions between social insects and their pathogens are complex, as illustrated by some ants that require antimicrobial and behavioral defenses against highly specialized fungi, such as those in the genus Cordyceps that attack larvae and adults and species in the genus Escovopsis that attack their food supplies. Studies of these defenses, especially in ants, have revealed remarkably sophisticated immune systems, including peptides induced by, and specific to, individual bacterial strains. The latter may be the result of the recruitment by the ants of antibiotic-producing bacteria but the extent of such three-way interactions remains unknown. There is strong experimental evidence that the evolution of sociality required dramatic increases in antimicrobial defenses and that microbes have been powerful selective agents. The antimicrobial chemicals and the insect-killing fungi may be useful in medicine and agriculture, respectively.
CELL-SELEX: Novel Perspectives of Aptamer-Based Therapeutics
Guo, Ke-Tai; Paul, Angela; Schichor, Christian; Ziemer, Gerhard; Wendel, Hans P.
2008-01-01
Aptamers, single stranded DNA or RNA molecules, generated by a method called SELEX (systematic evolution of ligands by exponential enrichment) have been widely used in various biomedical applications. The newly developed Cell-SELEX (cell based-SELEX) targeting whole living cells has raised great expectations for cancer biology, -therapy and regenerative medicine. Combining nanobiotechnology with aptamers, this technology opens the way to more sophisticated applications in molecular diagnosis. This paper gives a review of recent developments in SELEX technologies and new applications of aptamers. PMID:19325777
2017-01-01
Inverted effective ONVMS for an M30 Bomb in a test-stand scenario. The target is oriented 45 degrees at a depth of 150 cm depth (top) and oriented...vertically at a depth of 210 cm (bottom). The red lines are the total ONVMS for a library AN M30 Bomb , and the other lines correspond to the...Centimeter DE Differential Evolution DLL Dynamic Link Libraries DoD Department of Defense EM Electromagnetic EMA Expectation
The evolution of educational information systems and nurse faculty roles.
Nelson, Ramona; Meyers, Linda; Rizzolo, Mary Anne; Rutar, Pamela; Proto, Marcia B; Newbold, Susan
2006-01-01
Institutions of higher education are purchasing and/or designing sophisticated administrative information systems to manage such functions as the application, admissions, and registration process, grants management, student records, and classroom scheduling. Although faculty also manage large amounts of data, few automated systems have been created to help faculty improve teaching and learning through the management of information related to individual students, the curriculum, educational programs, and program evaluation. This article highlights the potential benefits that comprehensive educational information systems offer nurse faculty.
Diversification and cumulative evolution in New Caledonian crow tool manufacture.
Hunt, Gavin R; Gray, Russell D
2003-01-01
Many animals use tools but only humans are generally considered to have the cognitive sophistication required for cumulative technological evolution. Three important characteristics of cumulative technological evolution are: (i) the diversification of tool design; (ii) cumulative change; and (iii) high-fidelity social transmission. We present evidence that crows have diversified and cumulatively changed the design of their pandanus tools. In 2000 we carried out an intensive survey in New Caledonia to establish the geographical variation in the manufacture of these tools. We documented the shapes of 5550 tools from 21 sites throughout the range of pandanus tool manufacture. We found three distinct pandanus tool designs: wide tools, narrow tools and stepped tools. The lack of ecological correlates of the three tool designs and their different, continuous and overlapping geographical distributions make it unlikely that they evolved independently. The similarities in the manufacture method of each design further suggest that pandanus tools have gone through a process of cumulative change from a common historical origin. We propose a plausible scenario for this rudimentary cumulative evolution. PMID:12737666
Correlation between information diffusion and opinion evolution on social media
NASA Astrophysics Data System (ADS)
Xiong, Fei; Liu, Yun; Zhang, Zhenjiang
2014-12-01
Information diffusion and opinion evolution are often treated as two independent processes. Opinion models assume the topic reaches each agent and agents initially have their own ideas. In fact, the processes of information diffusion and opinion evolution often intertwine with each other. Whether the influence between these two processes plays a role in the system state is unclear. In this paper, we collected more than one million real data from a well-known social platform, and analysed large-scale user diffusion behaviour and opinion formation. We found that user inter-event time follows a two-scaling power-law distribution with two different power exponents. Public opinion stabilizes quickly and evolves toward the direction of convergence, but the consensus state is prevented by a few opponents. We propose a three-state opinion model accompanied by information diffusion. Agents form and exchange their opinions during information diffusion. Conversely, agents' opinions also influence their diffusion actions. Simulations show that the model with a correlation of the two processes produces similar statistical characteristics as empirical results. A fast epidemic process drives individual opinions to converge more obviously. Unlike previous epidemic models, the number of infected agents does not always increase with the update rate, but has a peak with an intermediate value of the rate.
Evolution of Linux operating system network
NASA Astrophysics Data System (ADS)
Xiao, Guanping; Zheng, Zheng; Wang, Haoqin
2017-01-01
Linux operating system (LOS) is a sophisticated man-made system and one of the most ubiquitous operating systems. However, there is little research on the structure and functionality evolution of LOS from the prospective of networks. In this paper, we investigate the evolution of the LOS network. 62 major releases of LOS ranging from versions 1.0 to 4.1 are modeled as directed networks in which functions are denoted by nodes and function calls are denoted by edges. It is found that the size of the LOS network grows almost linearly, while clustering coefficient monotonically decays. The degree distributions are almost the same: the out-degree follows an exponential distribution while both in-degree and undirected degree follow power-law distributions. We further explore the functionality evolution of the LOS network. It is observed that the evolution of functional modules is shown as a sequence of seven events (changes) succeeding each other, including continuing, growth, contraction, birth, splitting, death and merging events. By means of a statistical analysis of these events in the top 4 largest components (i.e., arch, drivers, fs and net), it is shown that continuing, growth and contraction events occupy more than 95% events. Our work exemplifies a better understanding and describing of the dynamics of LOS evolution.
Evolution of immune functions of the mammary gland and protection of the infant.
Goldman, Armond S
2012-06-01
Abstract The evolution of immunological agents in milk is intertwined with the general aspects of the evolution of the mammary gland. In that respect, mammalian precursors emerged from basal amniotes some 300 million years ago. In contrast to the predominant dinosaurs, proto-mammals possessed a glandular skin. A secondary palate in the roof of the mouth that directed airflow from the nostrils to the oropharynx and thus allowed mammals to ingest and breathe simultaneously first appeared in cynodonts 230 million years ago. This set the stage for mammalian newborns to nurse from the future mammary gland. Interplays between environmental and genetic changes shaped mammalian evolution including the mammary gland from dermal glands some 160 millions of years ago. It is likely that secretions from early mammary glands provided nutrients and immunological agents for the infant. Natural selection culminated in milks uniquely suited to nourish and protect infants of each species. In human milk, antimicrobial, anti-inflammatory, and immunoregulatory agents and living leukocytes are qualitatively or quantitatively different from those in other mammalian milks. Those in human milk compensate for developmental delays in the immunological system of the recipient infant. Consequently, the immune system in human milk provided by evolution is much of the basis for encouraging breastfeeding for human infants.
Biosafety and biosecurity in veterinary laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Melissa R.; Astuto-Gribble, Lisa M.; Brass, Van Hildren
Here, with recent outbreaks of MERS-Cov, Anthrax, Nipah, and Highly Pathogenic Avian Influenza, much emphasis has been placed on rapid identification of infectious agents globally. As a result, laboratories are building capacity, conducting more advanced and sophisticated research, increasing laboratory staff, and establishing collections of dangerous pathogens in an attempt to reduce the impact of infectious disease outbreaks and characterize disease causing agents. With this expansion, the global laboratory community has started to focus on laboratory biosafety and biosecurity to prevent the accidental and/or intent ional release o f these agents. Laboratory biosafety and biosecurity systems are used around themore » world to help mit igate the risks posed by dangerous pathogens in the laboratory. Veterinary laboratories carry unique responsibilities to workers and communities to safely and securely handle disease causing microorganisms. Many microorganisms studied in veterinary laboratories not only infect animals, but also have the potential to infect humans. This paper will discuss the fundamentals of laboratory biosafety and biosecurity.« less
Zhou, Zijian; Wu, Changqiang; Liu, Hanyu; Zhu, Xianglong; Zhao, Zhenghuan; Wang, Lirong; Xu, Ye; Ai, Hua; Gao, Jinhao
2015-03-24
Magnetic resonance angiography using gadolinium-based molecular contrast agents suffers from short diagnostic window, relatively low resolution and risk of toxicity. Taking into account the chemical exchange between metal centers and surrounding protons, magnetic nanoparticles with suitable surface and interfacial features may serve as alternative T1 contrast agents. Herein, we report the engineering on surface structure of iron oxide nanoplates to boost T1 contrast ability through synergistic effects between exposed metal-rich Fe3O4(100) facets and embedded Gd2O3 clusters. The nanoplates show prominent T1 contrast in a wide range of magnetic fields with an ultrahigh r1 value up to 61.5 mM(-1) s(-1). Moreover, engineering on nanobio interface through zwitterionic molecules adjusts the in vivo behaviors of nanoplates for highly efficient magnetic resonance angiography with steady-state acquisition window, superhigh resolution in vascular details, and low toxicity. This study provides a powerful tool for sophisticated design of MRI contrast agents for diverse use in bioimaging applications.
An Evolvable Multi-Agent Approach to Space Operations Engineering
NASA Technical Reports Server (NTRS)
Mandutianu, Sanda; Stoica, Adrian
1999-01-01
A complex system of spacecraft and ground tracking stations, as well as a constellation of satellites or spacecraft, has to be able to reliably withstand sudden environment changes, resource fluctuations, dynamic resource configuration, limited communication bandwidth, etc., while maintaining the consistency of the system as a whole. It is not known in advance when a change in the environment might occur or when a particular exchange will happen. A higher degree of sophistication for the communication mechanisms between different parts of the system is required. The actual behavior has to be determined while the system is performing and the course of action can be decided at the individual level. Under such circumstances, the solution will highly benefit from increased on-board and on the ground adaptability and autonomy. An evolvable architecture based on intelligent agents that communicate and cooperate with each other can offer advantages in this direction. This paper presents an architecture of an evolvable agent-based system (software and software/hardware hybrids) as well as some plans for further implementation.
Formal Modeling of Multi-Agent Systems using the Pi-Calculus and Epistemic Logic
NASA Technical Reports Server (NTRS)
Rorie, Toinette; Esterline, Albert
1998-01-01
Multi-agent systems have become important recently in computer science, especially in artificial intelligence (AI). We allow a broad sense of agent, but require at least that an agent has some measure of autonomy and interacts with other agents via some kind of agent communication language. We are concerned in this paper with formal modeling of multi-agent systems, with emphasis on communication. We propose for this purpose to use the pi-calculus, an extension of the process algebra CCS. Although the literature on the pi-calculus refers to agents, the term is used there in the sense of a process in general. It is our contention, however, that viewing agents in the AI sense as agents in the pi-calculus sense affords significant formal insight. One formalism that has been applied to agents in the AI sense is epistemic logic, the logic of knowledge. The success of epistemic logic in computer science in general has come in large part from its ability to handle concepts of knowledge that apply to groups. We maintain that the pi-calculus affords a natural yet rigorous means by which groups that are significant to epistemic logic may be identified, encapsulated, structured into hierarchies, and restructured in a principled way. This paper is organized as follows: Section 2 introduces the pi-calculus; Section 3 takes a scenario from the classical paper on agent-oriented programming [Sh93] and translates it into a very simple subset of the n-calculus; Section 4 then shows how more sophisticated features of the pi-calculus may bc brought into play; Section 5 discusses how the pi-calculus may be used to define groups for epistemic logic; and Section 6 is the conclusion.
A Multi Agent Based Approach for Prehospital Emergency Management.
Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh
2017-07-01
To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities. The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement.
A Multi Agent Based Approach for Prehospital Emergency Management
Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh
2017-01-01
Objective: To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Methods: Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Results: Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities. The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. Conclusion: In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement. PMID:28795061
Palaeolithic paintings. Evolution of prehistoric cave art.
Valladas, H; Clottes, J; Geneste, J M; Garcia, M A; Arnold, M; Cachier, H; Tisnérat-Laborde, N
2001-10-04
Sophisticated examples of European palaeolithic parietal art can be seen in the caves of Altamira, Lascaux and Niaux near the Pyrenees, which date to the Magdalenian period (12,000-17,000 years ago), but paintings of comparable skill and complexity were created much earlier, some possibly more than 30,000 years ago. We have derived new radiocarbon dates for the drawings that decorate the Chauvet cave in Vallon-Pont-d'Arc, Ardèche, France, which confirm that even 30,000 years ago Aurignacian artists, already known as accomplished carvers, could create masterpieces comparable to the best Magdalenian art. Prehistorians, who have traditionally interpreted the evolution of prehistoric art as a steady progression from simple to more complex representations, may have to reconsider existing theories of the origins of art.
Evolution of one-handed piano compositions.
Drozdov, Ignat; Kidd, Mark; Modlin, Irvin M
2008-01-01
Electronic searches were performed to investigate the evolution of one-handed piano compositions and one-handed music techniques, and to identify individuals responsible for the development of music meant for playing with one hand. Particularly, composers such as Liszt, Ravel, Scriabin, and Prokofiev established a new model in music by writing works to meet the demands of a variety of pianist-amputees that included Count Géza Zichy (1849-1924), Paul Wittgenstein (1887-1961), and Siegfried Rapp (b. 1915). Zichy was the first to amplify the scope of the repertoire to improve the variety of one-handed music; Wittgenstein developed and adapted specific and novel performance techniques to accommodate one-handedness; and Rapp sought to promote the stature of one-handed pianists among a musically sophisticated public able to appreciate the nuances of such maestros.
Evolution of a multi-agent system in a cyclical environment.
Baptista, Tiago; Costa, Ernesto
2008-06-01
The synchronisation phenomena in biological systems is a current and recurring subject of scientific study. This topic, namely that of circadian clocks, served as inspiration to develop an agent-based simulation that serves the main purpose of being a proof-of-concept of the model used in the BitBang framework, that implements a modern autonomous agent model. Despite having been extensively studied, circadian clocks still have much to be investigated. Rather than wanting to learn more about the internals of this biological process, we look to study the emergence of this kind of adaptation to a daily cycle. To that end we implemented a world with a day/night cycle, and analyse the ways the agents adapt to that cycle. The results show the evolution of the agents' ability to gather food. If we look at the total number of agents over the course of an experiment, we can pinpoint the time when reproductive technology emerges. We also show that the agents adapt to the daily cycle. This circadian rhythm can be shown by analysing the variation on the agents metabolic rate, which is affected by the variation of their movement patterns. In the experiments conducted we can observe that the metabolic rate of the agents varies according to the daily cycle.
Evolutionary dynamics and the phase structure of the minority game
NASA Astrophysics Data System (ADS)
Yuan, Baosheng; Chen, Kan
2004-06-01
We show that a simple evolutionary scheme, when applied to the minority game (MG), changes the phase structure of the game. In this scheme each agent evolves individually whenever his wealth reaches the specified bankruptcy level, in contrast to the evolutionary schemes used in the previous works. We show that evolution greatly suppresses herding behavior, and it leads to better overall performance of the agents. Similar to the standard nonevolutionary MG, the dependence of the standard deviation σ on the number of agents N and the memory length m can be characterized by a universal curve. We suggest a crowd-anticrowd theory for understanding the effect of evolution in the MG.
Reed, David L.; Currier, Russell W.; Walton, Shelley F.; Conrad, Melissa; Sullivan, Steven A.; Carlton, Jane M.; Read, Timothy D.; Severini, Alberto; Tyler, Shaun; Eberle, R.; Johnson, Welkin E.; Silvestri, Guido; Clarke, Ian N.; Lagergård, Teresa; Lukehart, Sheila A.; Unemo, Magnus; Shafer, William M.; Beasley, R. Palmer; Bergström, Tomas; Norberg, Peter; Davison, Andrew J.; Sharp, Paul M.; Hahn, Beatrice H.; Blomberg, Jonas
2013-01-01
The following series of concise summaries addresses the evolution of infectious agents in relation to sex in animals and humans from the perspective of three specific questions: (1) what have we learned about the likely origin and phylogeny, up to the establishment of the infectious agent in the genital econiche, including the relative frequency of its sexual transmission; (2) what further research is needed to provide additional knowledge on some of these evolutionary aspects; and (3) what evolutionary considerations might aid in providing novel approaches to the more practical clinical and public health issues facing us currently and in the future? PMID:21824167
NASA Astrophysics Data System (ADS)
Anghel, M.; Toroczkai, Zoltán; Bassler, Kevin E.; Korniss, G.
2004-02-01
Using the minority game as a model for competition dynamics, we investigate the effects of interagent communications across a network on the global evolution of the game. Agent communication across this network leads to the formation of an influence network, which is dynamically coupled to the evolution of the game, and it is responsible for the information flow driving the agents' actions. We show that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining a scale-free robust leadership structure. Furthermore, in realistic parameter ranges, facilitated by information exchange on the network, agents can generate a high degree of cooperation making the collective almost maximally efficient.
Schmitt, Paul J; Agarwal, Nitin; Prestigiacomo, Charles J
2012-01-01
Military explorations of the practical role of simulators have served as a driving force for much of the virtual reality technology that we have today. The evolution of 3-dimensional and virtual environments from the early flight simulators used during World War II to the sophisticated training simulators in the modern military followed a path that virtual surgical and neurosurgical devices have already begun to parallel. By understanding the evolution of military simulators as well as comparing and contrasting that evolution with current and future surgical simulators, it may be possible to expedite the development of appropriate devices and establish their validity as effective training tools. As such, this article presents a historical perspective examining the progression of neurosurgical simulators, the establishment of effective and appropriate curricula for using them, and the contributions that the military has made during the ongoing maturation of this exciting treatment and training modality. Copyright © 2012. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Billingham, J.; Brocker, D. H.
1991-01-01
In 1959, it was proposed that a sensible way to conduct interstellar communication would be to use radio at or near the frequency of hydrogen. In 1960, the first Search for Extraterrestrial Intelligence (SETI) was conducted using a radiotelescope at Green Bank in West Virginia. Since 1970, NASA has systematically developed a definitive program to conduct a sophisticated search for evidence of extraterrestrial intelligent life. The basic hypothesis is that life may be widespread in the univers, and that in many instances extraterrestrial life may have evolved into technological civilizations. The underlying scientific arguments are based on the continuously improving knowledge of astronomy and astrophysics, especially star system formation, and of planetary science, chemical evolution, and biological evolution. If only one in a million sun-like stars in our galaxy harbors species with cognitive intelligence, then there are 100,000 civilizations in the Milky Way alone. The fields of radioastronomy digital electronic engineering, spectrum analysis, and signal detection have advanced rapidly in the last twenty years and now allow for sophisticated systems to be built in order to attempt the detection of extraterrestrial intelligence signals. In concert with the scientific and engineering communities, NASA has developed, over the last several years, a Microwave Observing Project whose goal is to design, build, and operate SETI systems during the decade of the nineties in pursuit of the goal signal detection. The Microwave Observing Project is now approved and underway. There are two major components in the project: the Target Search Element and the Sky Survey Element.
Multi Sensor Fusion Using Fitness Adaptive Differential Evolution
NASA Astrophysics Data System (ADS)
Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam
The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).
The influence of UV radiation on protistan evolution
NASA Technical Reports Server (NTRS)
Rothschild, L. J.
1999-01-01
Ultraviolet radiation has provided an evolutionary challenge to life on Earth. Recent increases in surficial ultraviolet B fluxes have focused attention on the role of UV radiation in protistan ecology, cancer, and DNA damage. Exploiting this new wealth of data, I examine the possibility that ultraviolet radiation may have played a significant role in the evolution of the first eukaryotes, that is, protists. Protists probably arose well before the formation of a significant ozone shield, and thus were probably subjected to substantial ultraviolet A, ultraviolet B, and ultraviolet C fluxes early in their evolution. Evolution consists of the generation of heritable variations and the subsequent selection of these variants. Ultraviolet radiation has played a role both as a mutagen and as a selective agent. In its role as a mutagen, it may have been crucial in the origin of sex and as a driver of molecular evolution. As a selective agent, its influence has been broad. Discussed in this paper are the influence of ultraviolet radiation on biogeography, photosynthesis, and desiccation resistance.
Developing close combat behaviors for simulated soldiers using genetic programming techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor, Richard J.; Schaller, Mark J.
2003-10-01
Genetic programming is a powerful methodology for automatically producing solutions to problems in a variety of domains. It has been used successfully to develop behaviors for RoboCup soccer players and simple combat agents. We will attempt to use genetic programming to solve a problem in the domain of strategic combat, keeping in mind the end goal of developing sophisticated behaviors for compound defense and infiltration. The simplified problem at hand is that of two armed agents in a small room, containing obstacles, fighting against each other for survival. The base case and three changes are considered: a memory of positionsmore » using stacks, context-dependent genetic programming, and strongly typed genetic programming. Our work demonstrates slight improvements from the first two techniques, and no significant improvement from the last.« less
Mouse blood vessel imaging by in-line x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
Zhang, Xi; Liu, Xiao-Song; Yang, Xin-Rong; Chen, Shao-Liang; Zhu, Pei-Ping; Yuan, Qing-Xi
2008-10-01
It is virtually impossible to observe blood vessels by conventional x-ray imaging techniques without using contrast agents. In addition, such x-ray systems are typically incapable of detecting vessels with diameters less than 200 µm. Here we show that vessels as small as 30 µm could be detected using in-line phase-contrast x-ray imaging without the use of contrast agents. Image quality was greatly improved by replacing resident blood with physiological saline. Furthermore, an entire branch of the portal vein from the main axial portal vein to the eighth generation of branching could be captured in a single phase-contrast image. Prior to our work, detection of 30 µm diameter blood vessels could only be achieved using x-ray interferometry, which requires sophisticated x-ray optics. Our results thus demonstrate that in-line phase-contrast x-ray imaging, using physiological saline as a contrast agent, provides an alternative to the interferometric method that can be much more easily implemented and also offers the advantage of a larger field of view. A possible application of this methodology is in animal tumor models, where it can be used to observe tumor angiogenesis and the treatment effects of antineoplastic agents.
NASA Astrophysics Data System (ADS)
Zhang, Wenyu; Zhang, Shuai; Cai, Ming; Jian, Wu
2015-04-01
With the development of virtual enterprise (VE) paradigm, the usage of serviceoriented architecture (SOA) is increasingly being considered for facilitating the integration and utilisation of distributed manufacturing resources. However, due to the heterogeneous nature among VEs, the dynamic nature of a VE and the autonomous nature of each VE member, the lack of both sophisticated coordination mechanism in the popular centralised infrastructure and semantic expressivity in the existing SOA standards make the current centralised, syntactic service discovery method undesirable. This motivates the proposed agent-based peer-to-peer (P2P) architecture for semantic discovery of manufacturing services across VEs. Multi-agent technology provides autonomous and flexible problemsolving capabilities in dynamic and adaptive VE environments. Peer-to-peer overlay provides highly scalable coupling across decentralised VEs, each of which exhibiting as a peer composed of multiple agents dealing with manufacturing services. The proposed architecture utilises a novel, efficient, two-stage search strategy - semantic peer discovery and semantic service discovery - to handle the complex searches of manufacturing services across VEs through fast peer filtering. The operation and experimental evaluation of the prototype system are presented to validate the implementation of the proposed approach.
Ultrasound imaging beyond the vasculature with new generation contrast agents.
Perera, Reshani H; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan; Exner, Agata A
2015-01-01
Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 µm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. © 2015 Wiley Periodicals, Inc.
Ultrasound Imaging Beyond the Vasculature with New Generation Contrast Agents
Perera, Reshani H.; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan
2015-01-01
Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 μm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. PMID:25580914
Study on system dynamics of evolutionary mix-game models
NASA Astrophysics Data System (ADS)
Gou, Chengling; Guo, Xiaoqian; Chen, Fang
2008-11-01
Mix-game model is ameliorated from an agent-based MG model, which is used to simulate the real financial market. Different from MG, there are two groups of agents in Mix-game: Group 1 plays a majority game and Group 2 plays a minority game. These two groups of agents have different bounded abilities to deal with historical information and to count their own performance. In this paper, we modify Mix-game model by assigning the evolution abilities to agents: if the winning rates of agents are smaller than a threshold, they will copy the best strategies the other agent has; and agents will repeat such evolution at certain time intervals. Through simulations this paper finds: (1) the average winning rates of agents in Group 1 and the mean volatilities increase with the increases of the thresholds of Group 1; (2) the average winning rates of both groups decrease but the mean volatilities of system increase with the increase of the thresholds of Group 2; (3) the thresholds of Group 2 have greater impact on system dynamics than the thresholds of Group 1; (4) the characteristics of system dynamics under different time intervals of strategy change are similar to each other qualitatively, but they are different quantitatively; (5) As the time interval of strategy change increases from 1 to 20, the system behaves more and more stable and the performances of agents in both groups become better also.
Partner switching promotes cooperation among myopic agents on a geographical plane
NASA Astrophysics Data System (ADS)
Li, Yixiao; Min, Yong; Zhu, Xiaodong; Cao, Jie
2013-02-01
We study the coupling dynamics between the evolution of cooperation and the evolution of partnership network on a geographical plane. While agents play networked prisoner’s dilemma games, they can dynamically adjust their partnerships based on local information about reputation. We incorporate geographical features into the process of the agent’s partner switching and investigate the corresponding effects. At each time step of the coevolution, a random agent can either update his strategy by imitation or adjust his partnership by switching from the lowest reputation partner to the highest reputation one among his neighbors. We differentiate two types of neighbors: geographical neighbors (i.e., the set of agents who are close to the focal agent in terms of geographical distance) and connectivity neighbors (i.e., the set of agents who are close to the focal agent in the partnership network in terms of geodesic distance). We find that switching to either geographical neighbors or connectivity neighbors enhances cooperation greatly in a wide parameter range. Cooperation can be favored in a much stricter condition when agents switch to connectivity neighbors more frequently. However, an increasing tendency of reconnecting to geographical neighbors shortens the geographical distance between a pair of partners on average. When agents consider the cost of geographical distance in adjusting the partnership, they are prone to reconnect to geographical neighbors.
Nano-biosilica from marine diatoms: A brand new material for photonic applications
NASA Astrophysics Data System (ADS)
De Stefano, L.; Maddalena, P.; Moretti, L.; Rea, I.; Rendina, I.; De Tommasi, E.; Mocella, V.; De Stefano, M.
2009-07-01
Several biological organisms, from some sea shells to butterflies, exhibit sophisticated optical systems, which have been developed during the evolution of each species. The diatoms are microscopic algae enclosed between two valves of hydrated amorphous silica. These intricate structures, called frustules, show quite symmetric patterns of micrometric and nanometric pores. Their strong similarity with man-made objects suggests to exploit the optical properties of the frustules in light guiding and optical transducing. We have found very interesting results, both from the experimental and numerical points of view.
George, Daniel R
2012-01-01
Major concerns about privacy have limited health professionals' usage of popular social networking sites such as Facebook. However, the landscape of social media is changing in favor of more sophisticated privacy controls that enable users to more carefully manage public and private information. This evolution in technology makes it potentially less hazardous for health professionals to consider accepting colleagues and patients into their online networks, and invites medicine to think constructively about how social media may add value to contemporary healthcare.
Concluding Thoughts on New Directions in Infrared Astronomy
NASA Astrophysics Data System (ADS)
Harwit, Martin
Currently planned infrared space missions are ambitious and bound to be rewarding. We ask whether design criteria of the past still hold for these projects, and suggest that accumulating experience dictates new engineering guidelines for these increasingly sophisticated missions. Striking spectroscopic advances presented at this symposium indicate that generally held beliefs about the chemical evolution of galaxies may need to be revised. Similar changes in attitude may be required by the results of deep infrared surveys and the recent detectedion of a diffuse far-infrared (FIR) extragalactic background
Lee, Seungwoo; Kang, Hong Suk; Park, Jung-Ki
2012-04-24
This review demonstrates directional photofluidization lithography (DPL), which makes it possible to fabricate a generic and sophisticated micro/nanoarchitecture that would be difficult or impossible to attain with other methods. In particular, DPL differs from many of the existing micro/nanofabrication methods in that the post-treatment (i.e., photofluidization), after the preliminary fabrication process of the original micro/nanostructures, plays a pivotal role in the various micro/nanostructural evolutions including the deterministic reshaping of architectures, the reduction of structural roughness, and the dramatic enhancement of pattern resolution. Also, DPL techniques are directly compatible with a parallel and scalable micro/nanofabrication. Thus, DPL with such extraordinary advantages in micro/nanofabrication could provide compelling opportunities for basic micro/nanoscale science as well as for general technology applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evolution of Cooperation in Social Dilemmas on Complex Networks
Iyer, Swami; Killingback, Timothy
2016-01-01
Cooperation in social dilemmas is essential for the functioning of systems at multiple levels of complexity, from the simplest biological organisms to the most sophisticated human societies. Cooperation, although widespread, is fundamentally challenging to explain evolutionarily, since natural selection typically favors selfish behavior which is not socially optimal. Here we study the evolution of cooperation in three exemplars of key social dilemmas, representing the prisoner’s dilemma, hawk-dove and coordination classes of games, in structured populations defined by complex networks. Using individual-based simulations of the games on model and empirical networks, we give a detailed comparative study of the effects of the structural properties of a network, such as its average degree, variance in degree distribution, clustering coefficient, and assortativity coefficient, on the promotion of cooperative behavior in all three classes of games. PMID:26928428
Primate empathy: three factors and their combinations for empathy-related phenomena.
Yamamoto, Shinya
2017-05-01
Empathy as a research topic is receiving increasing attention, although there seems some confusion on the definition of empathy across different fields. Frans de Waal (de Waal FBM. Putting the altruism back into altruism: the evolution of empathy. Annu Rev Psychol 2008, 59:279-300. doi:10.1146/annurev.psych.59.103006.093625) used empathy as an umbrella term and proposed a comprehensive model for the evolution of empathy with some of its basic elements in nonhuman animals. In de Waal's model, empathy consists of several layers distinguished by required cognitive levels; the perception-action mechanism plays the core role for connecting ourself and others. Then, human-like empathy such as perspective-taking develops in outer layers according to cognitive sophistication, leading to prosocial acts such as targeted helping. I agree that animals demonstrate many empathy-related phenomena; however, the species differences and the level of cognitive sophistication of the phenomena might be interpreted in another way than this simple linearly developing model. Our recent studies with chimpanzees showed that their perspective-taking ability does not necessarily lead to proactive helping behavior. Herein, as a springboard for further studies, I reorganize the empathy-related phenomena by proposing a combination model instead of the linear development model. This combination model is composed of three organizing factors: matching with others, understanding of others, and prosociality. With these three factors and their combinations, most empathy-related matters can be categorized and mapped to appropriate context; this may be a good first step to discuss the evolution of empathy in relation to the neural connections in human and nonhuman animal brains. I would like to propose further comparative studies, especially from the viewpoint of Homo-Pan (chimpanzee and bonobo) comparison. WIREs Cogn Sci 2017, 8:e1431. doi: 10.1002/wcs.1431 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Biological agents with potential for misuse: a historical perspective and defensive measures.
Bhalla, Deepak K; Warheit, David B
2004-08-15
Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of these agents. International treaties limiting development and proliferation of weapons and continuing development of defense strategies and safe guards against agents of concern are important elements of plans for eliminating this threat.
A Hybrid Procedural/Deductive Executive for Autonomous Spacecraft
NASA Technical Reports Server (NTRS)
Pell, Barney; Gamble, Edward B.; Gat, Erann; Kessing, Ron; Kurien, James; Millar, William; Nayak, P. Pandurang; Plaunt, Christian; Williams, Brian C.; Lau, Sonie (Technical Monitor)
1998-01-01
The New Millennium Remote Agent (NMRA) will be the first AI system to control an actual spacecraft. The spacecraft domain places a strong premium on autonomy and requires dynamic recoveries and robust concurrent execution, all in the presence of tight real-time deadlines, changing goals, scarce resource constraints, and a wide variety of possible failures. To achieve this level of execution robustness, we have integrated a procedural executive based on generic procedures with a deductive model-based executive. A procedural executive provides sophisticated control constructs such as loops, parallel activity, locks, and synchronization which are used for robust schedule execution, hierarchical task decomposition, and routine configuration management. A deductive executive provides algorithms for sophisticated state inference and optimal failure recover), planning. The integrated executive enables designers to code knowledge via a combination of procedures and declarative models, yielding a rich modeling capability suitable to the challenges of real spacecraft control. The interface between the two executives ensures both that recovery sequences are smoothly merged into high-level schedule execution and that a high degree of reactivity is retained to effectively handle additional failures during recovery.
Wang, Chi-Hsu; Chen, Chun-Yao; Hung, Kun-Neng
2015-06-01
In this paper, a new adaptive self-organizing map (SOM) with recurrent neural network (RNN) controller is proposed for task assignment and path evolution of missile defense system (MDS). We address the problem of N agents (defending missiles) and D targets (incoming missiles) in MDS. A new RNN controller is designed to force an agent (or defending missile) toward a target (or incoming missile), and a monitoring controller is also designed to reduce the error between RNN controller and ideal controller. A new SOM with RNN controller is then designed to dispatch agents to their corresponding targets by minimizing total damaging cost. This is actually an important application of the multiagent system. The SOM with RNN controller is the main controller. After task assignment, the weighting factors of our new SOM with RNN controller are activated to dispatch the agents toward their corresponding targets. Using the Lyapunov constraints, the weighting factors for the proposed SOM with RNN controller are updated to guarantee the stability of the path evolution (or planning) system. Excellent simulations are obtained using this new approach for MDS, which show that our RNN has the lowest average miss distance among the several techniques.
Evolution of cooperative strategies from first principles.
Burtsev, Mikhail; Turchin, Peter
2006-04-20
One of the greatest challenges in the modern biological and social sciences is to understand the evolution of cooperative behaviour. General outlines of the answer to this puzzle are currently emerging as a result of developments in the theories of kin selection, reciprocity, multilevel selection and cultural group selection. The main conceptual tool used in probing the logical coherence of proposed explanations has been game theory, including both analytical models and agent-based simulations. The game-theoretic approach yields clear-cut results but assumes, as a rule, a simple structure of payoffs and a small set of possible strategies. Here we propose a more stringent test of the theory by developing a computer model with a considerably extended spectrum of possible strategies. In our model, agents are endowed with a limited set of receptors, a set of elementary actions and a neural net in between. Behavioural strategies are not predetermined; instead, the process of evolution constructs and reconstructs them from elementary actions. Two new strategies of cooperative attack and defence emerge in simulations, as well as the well-known dove, hawk and bourgeois strategies. Our results indicate that cooperative strategies can evolve even under such minimalist assumptions, provided that agents are capable of perceiving heritable external markers of other agents.
Construction of a microscopic agent-based model for firms' dynamics
NASA Astrophysics Data System (ADS)
Iyetomi, Hiroshi; Aoyama, Hideaki; Fujiwara, Yoshi; Ikeda, Yuichi; Kaizoji, Taisei; Soma, Wataru
2005-07-01
A workable microscopic model for firms' dynamics has been constructed. The model consists of firm agents and a bank agent dynamics of which are described by balance sheets. The size distribution of firms and the temporal evolution of the bank show critical dependence on whether or not firms use perfect information on their financial conditions to draw up next production plans.
Evolutionary game dynamics of controlled and automatic decision-making
NASA Astrophysics Data System (ADS)
Toupo, Danielle F. P.; Strogatz, Steven H.; Cohen, Jonathan D.; Rand, David G.
2015-07-01
We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model in which agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions in which having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition and suggest necessary conditions for the rise and fall of rationality.
Evolutionary game dynamics of controlled and automatic decision-making.
Toupo, Danielle F P; Strogatz, Steven H; Cohen, Jonathan D; Rand, David G
2015-07-01
We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model in which agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions in which having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition and suggest necessary conditions for the rise and fall of rationality.
High strength-of-ties and low mobility enable the evolution of third-party punishment
Roos, Patrick; Gelfand, Michele; Nau, Dana; Carr, Ryan
2014-01-01
As punishment can be essential to cooperation and norm maintenance but costly to the punisher, many evolutionary game-theoretic studies have explored how direct punishment can evolve in populations. Compared to direct punishment, in which an agent acts to punish another for an interaction in which both parties were involved, the evolution of third-party punishment (3PP) is even more puzzling, because the punishing agent itself was not involved in the original interaction. Despite significant empirical studies of 3PP, little is known about the conditions under which it can evolve. We find that punishment reputation is not, by itself, sufficient for the evolution of 3PP. Drawing on research streams in sociology and psychology, we implement a structured population model and show that high strength-of-ties and low mobility are critical for the evolution of responsible 3PP. Only in such settings of high social-structural constraint are punishers able to induce self-interested agents toward cooperation, making responsible 3PP ultimately beneficial to individuals as well as the collective. Our results illuminate the conditions under which 3PP is evolutionarily adaptive in populations. Responsible 3PP can evolve and induce cooperation in cases where other mechanisms alone fail to do so. PMID:24335985
Effects of adaptive dynamical linking in networked games
NASA Astrophysics Data System (ADS)
Yang, Zhihu; Li, Zhi; Wu, Te; Wang, Long
2013-10-01
The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population.
Domain learning naming game for color categorization.
Li, Doujie; Fan, Zhongyan; Tang, Wallace K S
2017-01-01
Naming game simulates the evolution of vocabulary in a population of agents. Through pairwise interactions in the games, agents acquire a set of vocabulary in their memory for object naming. The existing model confines to a one-to-one mapping between a name and an object. Focus is usually put onto name consensus in the population rather than knowledge learning in agents, and hence simple learning model is usually adopted. However, the cognition system of human being is much more complex and knowledge is usually presented in a complicated form. Therefore, in this work, we extend the agent learning model and design a new game to incorporate domain learning, which is essential for more complicated form of knowledge. In particular, we demonstrate the evolution of color categorization and naming in a population of agents. We incorporate the human perceptive model into the agents and introduce two new concepts, namely subjective perception and subliminal stimulation, in domain learning. Simulation results show that, even without any supervision or pre-requisition, a consensus of a color naming system can be reached in a population solely via the interactions. Our work confirms the importance of society interactions in color categorization, which is a long debate topic in human cognition. Moreover, our work also demonstrates the possibility of cognitive system development in autonomous intelligent agents.
Domain learning naming game for color categorization
2017-01-01
Naming game simulates the evolution of vocabulary in a population of agents. Through pairwise interactions in the games, agents acquire a set of vocabulary in their memory for object naming. The existing model confines to a one-to-one mapping between a name and an object. Focus is usually put onto name consensus in the population rather than knowledge learning in agents, and hence simple learning model is usually adopted. However, the cognition system of human being is much more complex and knowledge is usually presented in a complicated form. Therefore, in this work, we extend the agent learning model and design a new game to incorporate domain learning, which is essential for more complicated form of knowledge. In particular, we demonstrate the evolution of color categorization and naming in a population of agents. We incorporate the human perceptive model into the agents and introduce two new concepts, namely subjective perception and subliminal stimulation, in domain learning. Simulation results show that, even without any supervision or pre-requisition, a consensus of a color naming system can be reached in a population solely via the interactions. Our work confirms the importance of society interactions in color categorization, which is a long debate topic in human cognition. Moreover, our work also demonstrates the possibility of cognitive system development in autonomous intelligent agents. PMID:29136661
Distributed reinforcement learning for adaptive and robust network intrusion response
NASA Astrophysics Data System (ADS)
Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel
2015-07-01
Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.
Technology Review of Multi-Agent Systems and Tools
2005-06-01
over a network, including the Internet. A web services architecture is the logical evolution of object-oriented analysis and design coupled with...the logical evolution of components geared towards the architecture, design, implementation, and deployment of e-business solutions. As in object...querying. The Web Services architecture describes the principles behind the next generation of e- business architectures, presenting a logical evolution
Proceedings of the Agent 2002 Conference on Social Agents : Ecology, Exchange, and Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macal, C., ed.; Sallach, D., ed.
2003-04-10
Welcome to the ''Proceedings'' of the third in a series of agent simulation conferences cosponsored by Argonne National Laboratory and The University of Chicago. The theme of this year's conference, ''Social Agents: Ecology, Exchange and Evolution'', was selected to foster the exchange of ideas on some of the most important social processes addressed by agent simulation models, namely: (1) The translation of ecology and ecological constraints into social dynamics; (2) The role of exchange processes, including the peer dependencies they create; and (3) The dynamics by which, and the attractor states toward which, social processes evolve. As stated in themore » ''Call for Papers'', throughout the social sciences, the simulation of social agents has emerged as an innovative and powerful research methodology. The promise of this approach, however, is accompanied by many challenges. First, modeling complexity in agents, environments, and interactions is non-trivial, and these representations must be explored and assessed systematically. Second, strategies used to represent complexities are differentially applicable to any particular problem space. Finally, to achieve sufficient generality, the design and experimentation inherent in agent simulation must be coupled with social and behavioral theory. Agent 2002 provides a forum for reviewing the current state of agent simulation scholarship, including research designed to address such outstanding issues. This year's conference introduces an extensive range of domains, models, and issues--from pre-literacy to future projections, from ecology to oligopolistic markets, and from design to validation. Four invited speakers highlighted major themes emerging from social agent simulation.« less
Mu Opioids and Their Receptors: Evolution of a Concept
Pan, Ying-Xian
2013-01-01
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes—primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated. PMID:24076545
Diffuse reflectance study of the effects of bleaching agents in damaged dental pieces
NASA Astrophysics Data System (ADS)
Bante-Guerra, J.; Trejo-Tzab, R.; Macias, J. D.; Quintana, P.; Alvarado-Gil, J. J.
2011-03-01
One of the most important subjects of interest in dentistry and teeth preservation is related to the effects of bleaching agents on the integrity of the dental pieces. This is especially crucial when teeth surface has received some damage, generated by chemical, biological and mechanical agents or weathering in the case of dental pieces recovered from burial sites. In this work the time evolution of the effects of bleaching agents on the surface of dental pieces is monitored using diffuse reflectance in the visible spectrum is reported. The effects were monitored in teeth previously subject to chemical agents. Bleaching was induced using commercial whitening products. It is shown that the time evolution of the reflectance depends strongly on the condition of the surface as well as on the thickness of enamel. Additionally the colorimetric analysis of the samples during the bleaching is presented. This is especially useful in for comparing with previous studies. In order to complement our studies, the effects of the bleaching on the surface of the teeth were monitored by scanning electron microscopy.
Constructive neutral evolution: exploring evolutionary theory's curious disconnect.
Stoltzfus, Arlin
2012-10-13
Constructive neutral evolution (CNE) suggests that neutral evolution may follow a stepwise path to extravagance. Whether or not CNE is common, the mere possibility raises provocative questions about causation: in classical neo-Darwinian thinking, selection is the sole source of creativity and direction, the only force that can cause trends or build complex features. However, much of contemporary evolutionary genetics departs from the conception of evolution underlying neo-Darwinism, resulting in a widening gap between what formal models allow, and what the prevailing view of the causes of evolution suggests. In particular, a mutationist conception of evolution as a 2-step origin-fixation process has been a source of theoretical innovation for 40 years, appearing not only in the Neutral Theory, but also in recent breakthroughs in modeling adaptation (the "mutational landscape" model), and in practical software for sequence analysis. In this conception, mutation is not a source of raw materials, but an agent that introduces novelty, while selection is not an agent that shapes features, but a stochastic sieve. This view, which now lays claim to important theoretical, experimental, and practical results, demands our attention. CNE provides a way to explore its most significant implications about the role of variation in evolution. Alex Kondrashov, Eugene Koonin and Johann Peter Gogarten reviewed this article.
Constructive neutral evolution: exploring evolutionary theory’s curious disconnect
2012-01-01
Abstract Constructive neutral evolution (CNE) suggests that neutral evolution may follow a stepwise path to extravagance. Whether or not CNE is common, the mere possibility raises provocative questions about causation: in classical neo-Darwinian thinking, selection is the sole source of creativity and direction, the only force that can cause trends or build complex features. However, much of contemporary evolutionary genetics departs from the conception of evolution underlying neo-Darwinism, resulting in a widening gap between what formal models allow, and what the prevailing view of the causes of evolution suggests. In particular, a mutationist conception of evolution as a 2-step origin-fixation process has been a source of theoretical innovation for 40 years, appearing not only in the Neutral Theory, but also in recent breakthroughs in modeling adaptation (the “mutational landscape” model), and in practical software for sequence analysis. In this conception, mutation is not a source of raw materials, but an agent that introduces novelty, while selection is not an agent that shapes features, but a stochastic sieve. This view, which now lays claim to important theoretical, experimental, and practical results, demands our attention. CNE provides a way to explore its most significant implications about the role of variation in evolution. Reviewers Alex Kondrashov, Eugene Koonin and Johann Peter Gogarten reviewed this article. PMID:23062217
Recent advances in non-LTE stellar atmosphere models
NASA Astrophysics Data System (ADS)
Sander, Andreas A. C.
2017-11-01
In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.
Evolution with Reinforcement Learning in Negotiation
Zou, Yi; Zhan, Wenjie; Shao, Yuan
2014-01-01
Adaptive behavior depends less on the details of the negotiation process and makes more robust predictions in the long term as compared to in the short term. However, the extant literature on population dynamics for behavior adjustment has only examined the current situation. To offset this limitation, we propose a synergy of evolutionary algorithm and reinforcement learning to investigate long-term collective performance and strategy evolution. The model adopts reinforcement learning with a tradeoff between historical and current information to make decisions when the strategies of agents evolve through repeated interactions. The results demonstrate that the strategies in populations converge to stable states, and the agents gradually form steady negotiation habits. Agents that adopt reinforcement learning perform better in payoff, fairness, and stableness than their counterparts using classic evolutionary algorithm. PMID:25048108
Evolution with reinforcement learning in negotiation.
Zou, Yi; Zhan, Wenjie; Shao, Yuan
2014-01-01
Adaptive behavior depends less on the details of the negotiation process and makes more robust predictions in the long term as compared to in the short term. However, the extant literature on population dynamics for behavior adjustment has only examined the current situation. To offset this limitation, we propose a synergy of evolutionary algorithm and reinforcement learning to investigate long-term collective performance and strategy evolution. The model adopts reinforcement learning with a tradeoff between historical and current information to make decisions when the strategies of agents evolve through repeated interactions. The results demonstrate that the strategies in populations converge to stable states, and the agents gradually form steady negotiation habits. Agents that adopt reinforcement learning perform better in payoff, fairness, and stableness than their counterparts using classic evolutionary algorithm.
Joint attention and language evolution
NASA Astrophysics Data System (ADS)
Kwisthout, Johan; Vogt, Paul; Haselager, Pim; Dijkstra, Ton
2008-06-01
This study investigates how more advanced joint attentional mechanisms, rather than only shared attention between two agents and an object, can be implemented and how they influence the results of language games played by these agents. We present computer simulations with language games showing that adding constructs that mimic the three stages of joint attention identified in children's early development (checking attention, following attention, and directing attention) substantially increase the performance of agents in these language games. In particular, the rates of improved performance for the individual attentional mechanisms have the same ordering as that of the emergence of these mechanisms in infants' development. These results suggest that language evolution and joint attentional mechanisms have developed in a co-evolutionary way, and that the evolutionary emergence of the individual attentional mechanisms is ordered just like their developmental emergence.
Noise-driven bias in the non-local voter model
NASA Astrophysics Data System (ADS)
Minors, Kevin; Rogers, Tim; Yates, Christian A.
2018-04-01
Is it more effective to have a strong influence over a small domain, or a weaker influence over a larger one? Here, we introduce and analyse an off-lattice generalisation of the voter model, in which the range and strength of agents' influence are control parameters. We consider both low- and high-density regimes and, using distinct mathematical approaches, derive analytical predictions for the evolution of agent densities. We find that, even when the agents are equally persuasive on average, those whose influence is wider but weaker have an overall noise-driven advantage allowing them to reliably dominate the entire population. We discuss the implications of our results and the potential of our model (or adaptations thereof) to improve the understanding of political campaign strategies and the evolution of disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudioso, Jennifer Marie
2006-02-01
Over 300 Asian life scientists were surveyed to provide insight into work with infectious agents. This report provides the reader with a more complete understanding of the current practices employed to study infectious agents by laboratories located in Asian countries--segmented by level of biotechnology sophistication. The respondents have a variety of research objectives and study over 60 different pathogens and toxins. Many of the respondents indicated that their work was hampered by lack of adequate resources and the difficulty of accessing critical resources. The survey results also demonstrate that there appears to be better awareness of laboratory biosafety issues comparedmore » to laboratory biosecurity. Perhaps not surprisingly, many of these researchers work with pathogens and toxins under less stringent laboratory biosafety and biosecurity conditions than would be typical for laboratories in the West.« less
PROGRESS AND PROBLEMS IN THE APPLICATION OF FOCUSED ULTRASOUND FOR BLOOD-BRAIN BARRIER DISRUPTION
Vykhodtseva, Natalia; McDannold, Nathan; Hynynen, Kullervo
2008-01-01
Advances in neuroscience have resulted in the development of new diagnostic and therapeutic agents for potential use in the central nervous system (CNS). However, the ability to deliver the majority of these agents to the brain is limited by the blood–brain barrier (BBB), a specialized structure of the blood vessel wall that hampers transport and diffusion from the blood to the brain. Many CNS disorders could be treated with drugs, enzymes, genes, or large-molecule biotechnological products such as recombinant proteins, if they could cross the BBB. This article reviews the problems of the BBB presence in treating the vast majority of CNS diseases and the efforts to circumvent the BBB through the design of new drugs and the development of more sophisticated delivery methods. Recent advances in the development of noninvasive, targeted drug delivery by MRI-guided ultrasound-induced BBB disruption are also summarized. PMID:18511095
SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.
Jimenez-Romero, Cristian; Johnson, Jeffrey
2017-01-01
The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.
Evidence of size-selective evolution in the fighting conch from prehistoric subsistence harvesting.
O'Dea, Aaron; Shaffer, Marian Lynne; Doughty, Douglas R; Wake, Thomas A; Rodriguez, Felix A
2014-05-07
Intensive size-selective harvesting can drive evolution of sexual maturity at smaller body size. Conversely, prehistoric, low-intensity subsistence harvesting is not considered an effective agent of size-selective evolution. Uniting archaeological, palaeontological and contemporary material, we show that size at sexual maturity in the edible conch Strombus pugilis declined significantly from pre-human (approx. 7 ka) to prehistoric times (approx. 1 ka) and again to the present day. Size at maturity also fell from early- to late-prehistoric periods, synchronous with an increase in harvesting intensity as other resources became depleted. A consequence of declining size at maturity is that early prehistoric harvesters would have received two-thirds more meat per conch than contemporary harvesters. After exploring the potential effects of selection biases, demographic shifts, environmental change and habitat alteration, these observations collectively implicate prehistoric subsistence harvesting as an agent of size-selective evolution with long-term detrimental consequences. We observe that contemporary populations that are protected from harvesting are slightly larger at maturity, suggesting that halting or even reversing thousands of years of size-selective evolution may be possible.
Evidence of size-selective evolution in the fighting conch from prehistoric subsistence harvesting
O'Dea, Aaron; Shaffer, Marian Lynne; Doughty, Douglas R.; Wake, Thomas A.; Rodriguez, Felix A.
2014-01-01
Intensive size-selective harvesting can drive evolution of sexual maturity at smaller body size. Conversely, prehistoric, low-intensity subsistence harvesting is not considered an effective agent of size-selective evolution. Uniting archaeological, palaeontological and contemporary material, we show that size at sexual maturity in the edible conch Strombus pugilis declined significantly from pre-human (approx. 7 ka) to prehistoric times (approx. 1 ka) and again to the present day. Size at maturity also fell from early- to late-prehistoric periods, synchronous with an increase in harvesting intensity as other resources became depleted. A consequence of declining size at maturity is that early prehistoric harvesters would have received two-thirds more meat per conch than contemporary harvesters. After exploring the potential effects of selection biases, demographic shifts, environmental change and habitat alteration, these observations collectively implicate prehistoric subsistence harvesting as an agent of size-selective evolution with long-term detrimental consequences. We observe that contemporary populations that are protected from harvesting are slightly larger at maturity, suggesting that halting or even reversing thousands of years of size-selective evolution may be possible. PMID:24648229
Model and simulation of Krause model in dynamic open network
NASA Astrophysics Data System (ADS)
Zhu, Meixia; Xie, Guangqiang
2017-08-01
The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.
[The specific bronchial provocation test in the diagnosis of occupational asthma].
Fraj, J; Duce, F; Lezaun, A; Colás, C; Domínguez, M A; Abadía, M C
1997-10-01
Specific bronchial challenge (SBC) testing is a key technique for diagnosing the origin of occupational asthma (OA). SBC is indicated in specific circumstances, including whenever several agents present in the work environment may be the cause of OA, when new or unusual occupational agents need to be identified, when evidence for legal action is required, or when research is conducted. SBC procedures are not standardized, because of the great diversity of occupational agents and the variety of physical and chemical properties involved. Thus, SBC testing with agents found in fumes, gases or vapors can be administered in special cabins or in closed circuits with continuous monitoring of sub-irritant concentrations. Agents found in dust, most but not all of which have high molecular weights, may be appropriate for routine SBC testing in an allergy laboratory. This paper will treat only these cases. SBC must be formed in specialized centers by experienced personnel, as it is a sophisticated and potentially dangerous technique. We describe a series of 20 patients diagnosed of OA in our unit over the past two years in whom SBC provided an etiologic diagnosis. All were exposed to dust or aerosols at work. The cause was a substance of high molecular weight in 17 cases, and low molecular weight in 3. The procedure used is described and models of bronchial response are discussed.
Nanoplatforms for Detection, Remediation and Protection Against Chem-Bio Warfare
NASA Astrophysics Data System (ADS)
Denkbaş, E. B.; Bayram, C.; Kavaz, D.; Çirak, T.; Demirbilek, M.
Chemical and biological substances have been used as warfare agents by terrorists by varying degree of sophistication. It is critical that these agents be detected in real-time with high level of sensitively, specificity, and accuracy. Many different types of techniques and systems have been developed to detect these agents. But there are some limitations in these conventional techniques and systems. Limitations include the collection, handling and sampling procedures, detection limits, sample transfer, expensive equipment, personnel training, and detection materials. Due to the unique properties such as quantum effect, very high surface/volume ratio, enhanced surface reactivity, conductivity, electrical and magnetic properties of the nanomaterials offer great opportunity to develop very fast, sensitive, accurate and cost effective detection techniques and systems to detect chemical and biological (chem.-bio) warfare agents. Furthermore, surface modification of the materials is very easy and effective way to get functional or smart surfaces to be used as nano-biosensor platform. In that respect many different types of nanomaterials have been developed and used for the detection, remediation and protection, such as gold and silver nanoparticles, quantum dots, Nano chips and arrays, fluorescent polymeric and magnetic nanoparticles, fiber optic and cantilever based nanobiosensors, nanofibrillar nanostructures etc. This study summarizes preparation and characterization of nanotechnology based approaches for the detection of and remediation and protection against chem.-bio warfare agents.
Distributed Adaptive Control: Beyond Single-Instant, Discrete Variables
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Bieniawski, Stefan
2005-01-01
In extensive form noncooperative game theory, at each instant t, each agent i sets its state x, independently of the other agents, by sampling an associated distribution, q(sub i)(x(sub i)). The coupling between the agents arises in the joint evolution of those distributions. Distributed control problems can be cast the same way. In those problems the system designer sets aspects of the joint evolution of the distributions to try to optimize the goal for the overall system. Now information theory tells us what the separate q(sub i) of the agents are most likely to be if the system were to have a particular expected value of the objective function G(x(sub 1),x(sub 2), ...). So one can view the job of the system designer as speeding an iterative process. Each step of that process starts with a specified value of E(G), and the convergence of the q(sub i) to the most likely set of distributions consistent with that value. After this the target value for E(sub q)(G) is lowered, and then the process repeats. Previous work has elaborated many schemes for implementing this process when the underlying variables x(sub i) all have a finite number of possible values and G does not extend to multiple instants in time. That work also is based on a fixed mapping from agents to control devices, so that the the statistical independence of the agents' moves means independence of the device states. This paper also extends that work to relax all of these restrictions. This extends the applicability of that work to include continuous spaces and Reinforcement Learning. This paper also elaborates how some of that earlier work can be viewed as a first-principles justification of evolution-based search algorithms.
Password Cracking Using Sony Playstations
NASA Astrophysics Data System (ADS)
Kleinhans, Hugo; Butts, Jonathan; Shenoi, Sujeet
Law enforcement agencies frequently encounter encrypted digital evidence for which the cryptographic keys are unknown or unavailable. Password cracking - whether it employs brute force or sophisticated cryptanalytic techniques - requires massive computational resources. This paper evaluates the benefits of using the Sony PlayStation 3 (PS3) to crack passwords. The PS3 offers massive computational power at relatively low cost. Moreover, multiple PS3 systems can be introduced easily to expand parallel processing when additional power is needed. This paper also describes a distributed framework designed to enable law enforcement agents to crack encrypted archives and applications in an efficient and cost-effective manner.
Archeological insights into hominin cognitive evolution.
Wynn, Thomas; Coolidge, Frederick L
2016-07-01
How did the human mind evolve? How and when did we come to think in the ways we do? The last thirty years have seen an explosion in research related to the brain and cognition. This research has encompassed a range of biological and social sciences, from epigenetics and cognitive neuroscience to social and developmental psychology. Following naturally on this efflorescence has been a heightened interest in the evolution of the brain and cognition. Evolutionary scholars, including paleoanthropologists, have deployed the standard array of evolutionary methods. Ethological and experimental evidence has added significantly to our understanding of nonhuman brains and cognition, especially those of nonhuman primates. Studies of fossil brains through endocasts and sophisticated imaging techniques have revealed evolutionary changes in gross neural anatomy. Psychologists have also gotten into the game through application of reverse engineering to experimentally based descriptions of cognitive functions. For hominin evolution, there is another rich source of evidence of cognition, the archeological record. Using the methods of Paleolithic archeology and the theories and models of cognitive science, evolutionary cognitive archeology documents developments in the hominin mind that would otherwise be inaccessible. © 2016 Wiley Periodicals, Inc.
An emergence of coordinated communication in populations of agents.
Kvasnicka, V; Pospichal, J
1999-01-01
The purpose of this article is to demonstrate that coordinated communication spontaneously emerges in a population composed of agents that are capable of specific cognitive activities. Internal states of agents are characterized by meaning vectors. Simple neural networks composed of one layer of hidden neurons perform cognitive activities of agents. An elementary communication act consists of the following: (a) two agents are selected, where one of them is declared the speaker and the other the listener; (b) the speaker codes a selected meaning vector onto a sequence of symbols and sends it to the listener as a message; and finally, (c) the listener decodes this message into a meaning vector and adapts his or her neural network such that the differences between speaker and listener meaning vectors are decreased. A Darwinian evolution enlarged by ideas from the Baldwin effect and Dawkins' memes is simulated by a simple version of an evolutionary algorithm without crossover. The agent fitness is determined by success of the mutual pairwise communications. It is demonstrated that agents in the course of evolution gradually do a better job of decoding received messages (they are closer to meaning vectors of speakers) and all agents gradually start to use the same vocabulary for the common communication. Moreover, if agent meaning vectors contain regularities, then these regularities are manifested also in messages created by agent speakers, that is, similar parts of meaning vectors are coded by similar symbol substrings. This observation is considered a manifestation of the emergence of a grammar system in the common coordinated communication.
Impact of Social Reward on the Evolution of the Cooperation Behavior in Complex Networks
NASA Astrophysics Data System (ADS)
Wu, Yu'E.; Chang, Shuhua; Zhang, Zhipeng; Deng, Zhenghong
2017-01-01
Social reward, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this paper, we study the evolution of cooperation by proposing a reward model in network population, where a third strategy, reward, as an independent yet particular type of cooperation is introduced in 2-person evolutionary games. Specifically, a new kind of role corresponding to reward strategy, reward agents, is defined, which is aimed at increasing the income of cooperators by applying to them a social reward. Results from numerical simulations show that consideration of social reward greatly promotes the evolution of cooperation, which is confirmed for different network topologies and two evolutionary games. Moreover, we explore the microscopic mechanisms for the promotion of cooperation in the three-strategy model. As expected, the reward agents play a vital role in the formation of cooperative clusters, thus resisting the aggression of defectors. Our research might provide valuable insights into further exploring the nature of cooperation in the real world.
Impact of Social Reward on the Evolution of the Cooperation Behavior in Complex Networks
Wu, Yu’e; Chang, Shuhua; Zhang, Zhipeng; Deng, Zhenghong
2017-01-01
Social reward, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this paper, we study the evolution of cooperation by proposing a reward model in network population, where a third strategy, reward, as an independent yet particular type of cooperation is introduced in 2-person evolutionary games. Specifically, a new kind of role corresponding to reward strategy, reward agents, is defined, which is aimed at increasing the income of cooperators by applying to them a social reward. Results from numerical simulations show that consideration of social reward greatly promotes the evolution of cooperation, which is confirmed for different network topologies and two evolutionary games. Moreover, we explore the microscopic mechanisms for the promotion of cooperation in the three-strategy model. As expected, the reward agents play a vital role in the formation of cooperative clusters, thus resisting the aggression of defectors. Our research might provide valuable insights into further exploring the nature of cooperation in the real world. PMID:28112276
Generative Representations for Computer-Automated Evolutionary Design
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2006-01-01
With the increasing computational power of computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design systems is the representation with which they encode designs. If the representation cannot encode a certain design, then the design system cannot produce it. To be able to produce new types of designs, and not just optimize pre-defined parameterizations, evolutionary design systems must use generative representations. Generative representations are assembly procedures, or algorithms, for constructing a design thereby allowing for truly novel design solutions to be encoded. In addition, by enabling modularity, regularity and hierarchy, the level of sophistication that can be evolved is increased. We demonstrate the advantages of generative representations on two different design domains: the evolution of spacecraft antennas and the evolution of 3D objects.
Tracing Monotreme Venom Evolution in the Genomics Era
Whittington, Camilla M.; Belov, Katherine
2014-01-01
The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves. PMID:24699339
Tracing monotreme venom evolution in the genomics era.
Whittington, Camilla M; Belov, Katherine
2014-04-02
The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves.
Plant photosystem I design in the light of evolution.
Amunts, Alexey; Nelson, Nathan
2009-05-13
Photosystem I (PSI) is a membrane protein complex that catalyzes sunlight-driven transmembrane electron transfer as part of the photosynthetic machinery. Photosynthetic organisms appeared on the Earth about 3.5 billion years ago and provided an essential source of potential energy for the development of life. During the course of evolution, these primordial organisms were phagocytosed by more sophisticated eukaryotic cells, resulting in the evolvement of algae and plants. Despite the extended time interval between primordial cyanobacteria and plants, PSI has retained its fundamental mechanism of sunlight conversion. Being probably the most efficient photoelectric apparatus in nature, PSI operates with a quantum efficiency close to 100%. However, adapting to different ecological niches necessitated structural changes in the PSI design. Based on the recently solved structure of plant PSI, which revealed a complex of 17 protein subunits and 178 prosthetic groups, we analyze the evolutionary development of PSI. In addition, some aspects of PSI structure determination are discussed.
NASA Astrophysics Data System (ADS)
Dupuy, Pascal; Harter, Jean
1995-09-01
Iris is a modular infrared thermal image developed by SAGEM since 1988, based on a 288 by 4 IRCCD detector. The first section of the presentation gives a description of the different modules of the IRIS thermal imager and their evolution in recent years. The second section covers the description of the major evolution, namely the integrated detector cooler assembly (IDCA), using a SOFRADIR 288 by 4 detector and a SAGEM microcooler, now integrated in the IRIS thermal imagers. The third section gives the description of two functions integrated in the IRIS thermal imager: (1) image enhancement, using a digital convolution filter, and (2) automatic hot points detection and tracking, offering an assistance to surveillance and automatic detection. The last section presents several programs for navy, air forces, and land applications for which IRIS has already been selected and achieved.
Eocene evolution of whale hearing.
Nummela, Sirpa; Thewissen, J G M; Bajpai, Sunil; Hussain, S Taseer; Kumar, Kishor
2004-08-12
The origin of whales (order Cetacea) is one of the best-documented examples of macroevolutionary change in vertebrates. As the earliest whales became obligately marine, all of their organ systems adapted to the new environment. The fossil record indicates that this evolutionary transition took less than 15 million years, and that different organ systems followed different evolutionary trajectories. Here we document the evolutionary changes that took place in the sound transmission mechanism of the outer and middle ear in early whales. Sound transmission mechanisms change early on in whale evolution and pass through a stage (in pakicetids) in which hearing in both air and water is unsophisticated. This intermediate stage is soon abandoned and is replaced (in remingtonocetids and protocetids) by a sound transmission mechanism similar to that in modern toothed whales. The mechanism of these fossil whales lacks sophistication, and still retains some of the key elements that land mammals use to hear airborne sound.
Agent-based models of cellular systems.
Cannata, Nicola; Corradini, Flavio; Merelli, Emanuela; Tesei, Luca
2013-01-01
Software agents are particularly suitable for engineering models and simulations of cellular systems. In a very natural and intuitive manner, individual software components are therein delegated to reproduce "in silico" the behavior of individual components of alive systems at a given level of resolution. Individuals' actions and interactions among individuals allow complex collective behavior to emerge. In this chapter we first introduce the readers to software agents and multi-agent systems, reviewing the evolution of agent-based modeling of biomolecular systems in the last decade. We then describe the main tools, platforms, and methodologies available for programming societies of agents, possibly profiting also of toolkits that do not require advanced programming skills.
P Hauser, Oliver; A Nowak, Martin; G Rand, David
2014-11-07
It has been argued that punishment promotes the evolution of cooperation when mutation rates are high (i.e. when agents engage in 'exploration dynamics'). Mutations maintain a steady supply of agents that punish free-riders, and thus free-riders are at a disadvantage. Recent experiments, however, have demonstrated that free-riders sometimes also pay to punish cooperators. Inspired by these empirical results, theoretical work has explored evolutionary dynamics where mutants are rare, and found that punishment does not promote the evolution of cooperation when this 'anti-social punishment' is allowed. Here we extend previous theory by studying the effect of anti-social punishment on the evolution of cooperation across higher mutation rates, and by studying voluntary as well as compulsory Public Goods Games. We find that for intermediate and high mutation rates, adding punishment does not promote cooperation in either compulsory or voluntary public goods games if anti-social punishment is possible. This is because mutations generate agents that punish cooperators just as frequently as agents that punish defectors, and these two effects cancel each other out. These results raise questions about the effectiveness of punishment for promoting cooperation when mutations are common, and highlight how decisions about which strategies to include in the strategy set can have profound effects on the resulting dynamics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coupling mRNA processing with transcription in time and space
Bentley, David L.
2015-01-01
Maturation of mRNA precursors often occurs simultaneously with their synthesis by RNA polymerase II (Pol II). The co-transcriptional nature of mRNA processing has permitted the evolution of coupling mechanisms that coordinate transcription with mRNA capping, splicing, editing and 3′ end formation. Recent experiments using sophisticated new methods for analysis of nascent RNA have provided important insights into the relative amount of co-transcriptional and post-transcriptional processing, the relationship between mRNA elongation and processing, and the role of the Pol II carboxy-terminal domain (CTD) in regulating these processes. PMID:24514444
Xenohormesis: health benefits from an eon of plant stress response evolution
Hooper, Paul L.; Tytell, Michael; Vígh, Lászlo
2010-01-01
Xenohormesis is a biological principle that explains how environmentally stressed plants produce bioactive compounds that can confer stress resistance and survival benefits to animals that consume them. Animals can piggyback off products of plants' sophisticated stress response which has evolved as a result of their stationary lifestyle. Factors eliciting the plant stress response can judiciously be employed to maximize yield of health-promoting plant compounds. The xenohormetic plant compounds can, when ingested, improve longevity and fitness by activating the animal's cellular stress response and can be applied in drug discovery, drug production, and nutritional enhancement of diet. PMID:20524162
The importance of context in the evolution of health promotion.
Sparks, Michael
2013-06-01
The world has changed dramatically since the Ottawa Charter was developed in 1986. Contemporary health promotion responses continue to evolve and become more sophisticated in response to the multiple challenges created by an ever-changing world. This commentary discusses some of the challenges facing health promotion professionals today and some of the responses that are being developed to address them. The importance of contextual considerations for both the worker and the work of health promotion are emphasised. The author then suggests ways that organisations and individuals can meet modern-day health promotion challenges through specific courses of action.
Two-dimensional NMR spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, T.C.
1987-06-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.
Movement Patterns, Social Dynamics, and the Evolution of Cooperation
Smaldino, Paul E.; Schank, Jeffrey C.
2012-01-01
The structure of social interactions influences many aspects of social life, including the spread of information and behavior, and the evolution of social phenotypes. After dispersal, organisms move around throughout their lives, and the patterns of their movement influence their social encounters over the course of their lifespan. Though both space and mobility are known to influence social evolution, there is little analysis of the influence of specific movement patterns on evolutionary dynamics. We explored the effects of random movement strategies on the evolution of cooperation using an agent-based prisoner’s dilemma model with mobile agents. This is the first systematic analysis of a model in which cooperators and defectors can use different random movement strategies, which we chose to fall on a spectrum between highly exploratory and highly restricted in their search tendencies. Because limited dispersal and restrictions to local neighborhood size are known to influence the ability of cooperators to effectively assort, we also assessed the robustness of our findings with respect to dispersal and local capacity constraints. We show that differences in patterns of movement can dramatically influence the likelihood of cooperator success, and that the effects of different movement patterns are sensitive to environmental assumptions about offspring dispersal and local space constraints. Since local interactions implicitly generate dynamic social interaction networks, we also measured the average number of unique and total interactions over a lifetime and considered how these emergent network dynamics helped explain the results. This work extends what is known about mobility and the evolution of cooperation, and also has general implications for social models with randomly moving agents. PMID:22838026
McEwan, Gregor F; Groner, Maya L; Fast, Mark D; Gettinby, George; Revie, Crawford W
2015-01-01
A major challenge for Atlantic salmon farming in the northern hemisphere is infestation by the sea louse parasite Lepeophtheirus salmonis. The most frequent method of controlling these sea louse infestations is through the use of chemical treatments. However, most major salmon farming areas have observed resistance to common chemotherapeutants. In terrestrial environments, many strategies employed to manage the evolution of resistance involve the use of refugia, where a portion of the population is left untreated to maintain susceptibility. While refugia have not been deliberately used in Atlantic salmon farming, wild salmon populations that migrate close to salmon farms may act as natural refugia. In this paper we describe an agent-based model that explores the influence of different sizes of wild salmon populations on resistance evolution in sea lice on a salmon farm. Using the model, we demonstrate that wild salmon populations can act as refugia that limit the evolution of resistance in the sea louse populations. Additionally, we demonstrate that an increase in the size of the population of wild salmon results in an increased effect in slowing the evolution of resistance. We explore the effect of a population fitness cost associated with resistance, finding that in some cases it substantially reduces the speed of evolution to chemical treatments.
2004-05-01
grounded in structuration theory (Giddens, 1984), social information processing theory (Salancik and Pfeffer, 1978) and symbolic interactionism (Manis...and B. N. Meltzer. Symbolic interaction: A reader in social psychology. Boston: Allyn & Bacon. 1978 Mcpherson, J. M. and L. Smith-Lovin
Evolution and anti-evolution in a minimal stock market model
NASA Astrophysics Data System (ADS)
Rothenstein, R.; Pawelzik, K.
2003-08-01
We present a novel microscopic stock market model consisting of a large number of random agents modeling traders in a market. Each agent is characterized by a set of parameters that serve to make iterated predictions of two successive returns. The future price is determined according to the offer and the demand of all agents. The system evolves by redistributing the capital among the agents in each trading cycle. Without noise the dynamics of this system is nearly regular and thereby fails to reproduce the stochastic return fluctuations observed in real markets. However, when in each cycle a small amount of noise is introduced we find the typical features of real financial time series like fat-tails of the return distribution and large temporal correlations in the volatility without significant correlations in the price returns. Introducing the noise by an evolutionary process leads to different scalings of the return distributions that depend on the definition of fitness. Because our realistic model has only very few parameters, and the results appear to be robust with respect to the noise level and the number of agents we expect that our framework may serve as new paradigm for modeling self-generated return fluctuations in markets.
Evolution of public opinions in closed societies influenced by broadcast media
NASA Astrophysics Data System (ADS)
Fan, Kangqi; Pedrycz, Witold
2017-04-01
Studies on opinion evolution in a closed society can help people design strategies to emancipate from the control of public opinions and prevent the diffusion of extremism. In this work, the social judgment based opinion (SJBO) dynamics model is extended to explore the collective debates in a closed system that consists of a social network and a broadcast network. The broadcast network is a group of channels through which the so-called broadcast media or mainstream media transmit the same opinion to social agents. Numerical experiments show that the broadcast media can assimilate most of the agents when contrarians are absent. Including agents' diverse attitudes toward the broadcast media, although downsizes the supporters of broadcast media, fails to make contrarians outnumber the supporters. The dominance of broadcast media in a closed system can be overturned by introducing a small number of inflexible contrarians. Influenced by the competition between contrarians and broadcast media, few centrists survive the collective debates. The scale of supporters is maximized when agents neither have their own initial opinions nor have access to the contrarians, whereas the development of contrarians can be boosted when agents start with non-zero opinions and the repulsion to broadcast media is taken into consideration.
PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.
Wu, Huizi; Huang, Jiaguo
2016-01-01
Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on their target capability, clearance kinetics and metabolic stability are depicted. Problems and issues relating to the pharmacokinetic and optimization design of peptide-based imaging agents are also discussed.
Origin and evolution of Near Earth Asteroids
NASA Astrophysics Data System (ADS)
Morbidelli, A.
Our current understanding of the origin and evolution of NEAs is the result of several research steps done essentially over the last 30 years. J. G. Williams and J. Wisdom have been the pioneer researchers who showed that some resonances may increase the eccentricity of the asteroids, thus transporting them from the main belt to terrestrial planets crossing orbits. G. Wetherill with a large number of sophisticated Monte Carlo simulations, designed a scenario for the origin and evolution of NEAs. Furthermore, Farinella and collaborators found that a typical end-state for NEAs is the collision with the Sun and Gladman and collaborators showed, with a large number of numerical simulations, that these collisions make the dynamical lifetime of the NEAs one order of magnitude shorter than previously believed. Even more recently, Migliorini and collaborators brought attention to the fact that asteroids can leave the main belt and reach Mars-crossing orbits also under the action of numerous weak mean motion resonances and that this mechanism could account for the origin of several among the multi-kilometer NEAs. The state of the art is still in rapid evolution. It should be possible in the close future to quantify the relative importance of the different escape routes from the main belt, and to better understand the mechanisms by which the transporting resonances are resupplied of bodies.
Fritzsch, Bernd; Straka, Hans
2014-01-01
Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation, were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development. PMID:24281353
Morris, Gerwyn; Berk, Michael; Walder, Ken; Maes, Michael
2016-05-01
Patients who present with severe intractable apparently idiopathic fatigue accompanied by profound physical and or cognitive disability present a significant therapeutic challenge. The effect of psychological counseling is limited, with significant but very slight improvements in psychometric measures of fatigue and disability but no improvement on scientific measures of physical impairment compared to controls. Similarly, exercise regimes either produce significant, but practically unimportant, benefit or provoke symptom exacerbation. Many such patients are afforded the exclusionary, non-specific diagnosis of chronic fatigue syndrome if rudimentary testing fails to discover the cause of their symptoms. More sophisticated investigations often reveal the presence of a range of pathogens capable of establishing life-long infections with sophisticated immune evasion strategies, including Parvoviruses, HHV6, variants of Epstein-Barr, Cytomegalovirus, Mycoplasma, and Borrelia burgdorferi. Other patients have a history of chronic fungal or other biotoxin exposure. Herein, we explain the epigenetic factors that may render such individuals susceptible to the chronic pathology induced by such agents, how such agents induce pathology, and, indeed, how such pathology can persist and even amplify even when infections have cleared or when biotoxin exposure has ceased. The presence of active, reactivated, or even latent Herpes virus could be a potential source of intractable fatigue accompanied by profound physical and or cognitive disability in some patients, and the same may be true of persistent Parvovirus B12 and mycoplasma infection. A history of chronic mold exposure is a feasible explanation for such symptoms, as is the presence of B. burgdorferi. The complex tropism, life cycles, genetic variability, and low titer of many of these pathogens makes their detection in blood a challenge. Examination of lymphoid tissue or CSF in such circumstances may be warranted.
Heckbert, Scott; Wilson, Jeffrey J.; Vandenbroeck, Andrew J. K.; Cranston, Jerome; Farr, Daniel R.
2016-01-01
The science of ecosystem service (ES) mapping has become increasingly sophisticated over the past 20 years, and examples of successfully integrating ES into management decisions at national and sub-national scales have begun to emerge. However, increasing model sophistication and accuracy—and therefore complexity—may trade-off with ease of use and applicability to real-world decision-making contexts, so it is vital to incorporate the lessons learned from implementation efforts into new model development. Using successful implementation efforts for guidance, we developed an integrated ES modelling system to quantify several ecosystem services: forest timber production and carbon storage, water purification, pollination, and biodiversity. The system is designed to facilitate uptake of ES information into land-use decisions through three principal considerations: (1) using relatively straightforward models that can be readily deployed and interpreted without specialized expertise; (2) using an agent-based modelling framework to enable the incorporation of human decision-making directly within the model; and (3) integration among all ES models to simultaneously demonstrate the effects of a single land-use decision on multiple ES. We present an implementation of the model for a major watershed in Alberta, Canada, and highlight the system’s capabilities to assess a suite of ES under future management decisions, including forestry activities under two alternative timber harvest strategies, and through a scenario modelling analysis exploring different intensities of hypothetical agricultural expansion. By using a modular approach, the modelling system can be readily expanded to evaluate additional ecosystem services or management questions of interest in order to guide land-use decisions to achieve socioeconomic and environmental objectives. PMID:28028479
The Evolution of Sonic Ecosystems
NASA Astrophysics Data System (ADS)
McCormack, Jon
This chapter describes a novel type of artistic artificial life software environment. Agents that have the ability to make and listen to sound populate a synthetic world. An evolvable, rule-based classifier system drives agent behavior. Agents compete for limited resources in a virtual environment that is influenced by the presence and movement of people observing the system. Electronic sensors create a link between the real and virtual spaces, virtual agents evolve implicitly to try to maintain the interest of the human audience, whose presence provides them with life-sustaining food.
[Gardnerella vaginalis: transport, microscopy, testing resistance].
Altrichter, T; Heizmann, W R
1994-11-01
G. vaginalis is an important pathogen in the aetiology of bacterial vaginosis. Therefore, we investigated the influence of transport systems in isolation, a scoring system for Gram stains, and susceptibility to antimicrobial agents. The comparison between a simple (Transwab) and a sophisticated (Port-A-Cul) system showed no differences with regard to for instance Enterococcus faecalis or Escherichia coli; however, isolation of G. vaginalis, a fastidious microorganism, was significantly higher (alpha < 0.0001) in Port-A-Cul. There was a strong correlation (97.5%) using the scoring system indicating bacterial vaginosis and isolation of G. vaginalis. The minimal inhibitory concentrations (MIC) of metronidazole for 60 strains of G. vaginalis were higher than 32 mg/l, some strains showing heteroresistance. This phenomenon may be an explanation for treatment failures. Clindamycin and erythromycin were much more active, with MIC's between 0.016 and 0.19 mg/l, in-vitro development of resistance being slower for clindamycin than for erythromycin. (I) for isolation of G. vaginalis, a sophisticated transport system is mandatory; (II) a scoring system for Gram staining is helpful in diagnosis of bacterial vaginosis; (III) in patients with metronidazole treatment failures, clindamycin should be used.
Teleological and referential understanding of action in infancy.
Csibra, Gergely
2003-01-01
There are two fundamentally different ways to attribute intentional mental states to others upon observing their actions. Actions can be interpreted as goal-directed, which warrants ascribing intentions, desires and beliefs appropriate to the observed actions, to the agents. Recent studies suggest that young infants also tend to interpret certain actions in terms of goals, and their reasoning about these actions is based on a sophisticated teleological representation. Several theorists proposed that infants rely on motion cues, such as self-initiated movement, in selecting goal-directed agents. Our experiments revealed that, although infants are more likely to attribute goals to self-propelled than to non-self-propelled agents, they do not need direct evidence about the source of motion for interpreting actions in teleological terms. The second mode of action-based mental state attribution interprets actions as referential, and allows ascription of attentional states, referential intents, communicative messages, etc., to the agents. Young infants also display evidence of interpreting actions in referential terms (for example, when following others' gaze or pointing gesture) and are very sensitive to the communicative situations in which these actions occur. For example, young infants prefer faces with eye-contact and objects that react to them contingently, and these are the very situations that later elicit gaze following. Whether or not these early abilities amount to a 'theory of mind' is a matter of debate among infant researchers. Nevertheless, they represent skills that are vital for understanding social agents and engaging in social interactions. PMID:12689372
NASA Astrophysics Data System (ADS)
Qin, Shengping; Caskey, Charles F.; Ferrara, Katherine W.
2009-03-01
Microbubble contrast agents and the associated imaging systems have developed over the past 25 years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium.
Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering
Qin, Shengping; Caskey, Charles F; Ferrara, Katherine W
2010-01-01
Microbubble contrast agents and the associated imaging systems have developed over the past twenty-five years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium. PMID:19229096
Information of Complex Systems and Applications in Agent Based Modeling.
Bao, Lei; Fritchman, Joseph C
2018-04-18
Information about a system's internal interactions is important to modeling the system's dynamics. This study examines the finer categories of the information definition and explores the features of a type of local information that describes the internal interactions of a system. Based on the results, a dual-space agent and information modeling framework (AIM) is developed by explicitly distinguishing an information space from the material space. The two spaces can evolve both independently and interactively. The dual-space framework can provide new analytic methods for agent based models (ABMs). Three examples are presented including money distribution, individual's economic evolution, and artificial stock market. The results are analyzed in the dual-space, which more clearly shows the interactions and evolutions within and between the information and material spaces. The outcomes demonstrate the wide-ranging applicability of using the dual-space AIMs to model and analyze a broad range of interactive and intelligent systems.
The Peace Mediator effect: Heterogeneous agents can foster consensus in continuous opinion models
NASA Astrophysics Data System (ADS)
Vilone, Daniele; Carletti, Timoteo; Bagnoli, Franco; Guazzini, Andrea
2016-11-01
Statistical mechanics has proven to be able to capture the fundamental rules underlying phenomena of social aggregation and opinion dynamics, well studied in disciplines like sociology and psychology. This approach is based on the underlying paradigm that the interesting dynamics of multi-agent systems emerge from the correct definition of few parameters governing the evolution of each individual. In this context, we propose a particular model of opinion dynamics based on the psychological construct named ;cognitive dissonance;. Our system is made of interacting individuals, the agents, each bearing only two dynamical variables (respectively ;opinion; and ;affinity;) self-consistently adjusted during time evolution. We also define two special classes of interacting entities, both acting for a peace mediation process but via different course of action: ;diplomats; and ;auctoritates;. The behavior of the system with and without peace mediators (PMs) is investigated and discussed with reference to corresponding psychological and social implications.
Evolution of Implicit and Explicit Communication in Mobile Robots
NASA Astrophysics Data System (ADS)
de Greeff, Joachim; Nolfi, Stefano
This work investigates the conditions in which a population of embodied agents evolved for the ability to display coordinated/cooperative skills can develop an ability to communicate, whether and to what extent the evolved communication system can complexify during the course of the evolutionary process, and how the characteristics of such communication system varies evolutionarily. The analysis of the obtained results indicates that evolving robots develop a capacity to access/generate information which has a communicative value, an ability to produce different signals encoding useful regularities, and an ability to react appropriately to explicit and implicit signals. The analysis of the obtained results allows us to formulate detailed hypothesis on the evolution of communication for what concern aspects such us: (i) how communication can emerge from a population of initially non-communicating agents, (ii) how communication systems can complexify, (iii) how signals/meanings can originate and how they can be grounded in agents' sensory-motor states.
NASA Astrophysics Data System (ADS)
Shi, Ya-Cheng; Chen, Sai-Sai; Feng, Jiu-Ju; Lin, Xiao-Xiao; Wang, Weiping; Wang, Ai-Jun
2018-05-01
Ionic liquids as templates or directing agents have attracted great attention for shaping-modulated synthesis of advanced nanomaterials. In this work, reduced graphene oxide supported uniform core-shell Au@Pt nanoparticles (Au@Pt NPs/rGO) were fabricated by a simple one-pot aqueous approach, using N-methylimidazolium-based dicationic ionic liquid (1,1-bis(3-methylimadazoilum-1-yl)butylene bromide, [C4(Mim)2]2Br) as the shape-directing agent. The morphology evolution, structural information and formation mechanism of Au@Pt NPs anchored on rGO were investigated by a series of characterization techniques. The obtained nanocomposites displayed superior electrocatalytic features toward hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) compared with commercial Pt/C catalyst. This approach provides a novel route for facile synthesis of nanocatalysts in fuel cells.
NASA Astrophysics Data System (ADS)
Wang, Yi Jiao; Feng, Qing Yi; Chai, Li He
As one of the most important financial markets and one of the main parts of economic system, the stock market has become the research focus in economics. The stock market is a typical complex open system far from equilibrium. Many available models that make huge contribution to researches on market are strong in describing the market however, ignoring strong nonlinear interactions among active agents and weak in reveal underlying dynamic mechanisms of structural evolutions of market. From econophysical perspectives, this paper analyzes the complex interactions among agents and defines the generalized entropy in stock markets. Nonlinear evolutionary dynamic equation for the stock markets is then derived from Maximum Generalized Entropy Principle. Simulations are accordingly conducted for a typical case with the given data, by which the structural evolution of the stock market system is demonstrated. Some discussions and implications are finally provided.
Masitinib in treatment of pancreatic cancer.
Waheed, Anem; Purvey, Sneha; Saif, Muhammad Wasif
2018-05-01
Pancreatic cancer continues to have high mortality despite the development of many chemotherapeutic agents. The 5-year relative survival for stage IV patients is less than 3%. This urgent unmet need warrants the development of novel and active therapeutic agents, which focus both on targeting cancer cells and modifying the microenvironment of cancer cells. Areas covered: In this article, the authors review the development of masitinib, a novel tyrosine kinase inhibitor of numerous targets, including c-Kit, PDGFR and FGFR. This review covers its development from the bench to clinical trials assessing its potential in pancreatic cancer. Expert opinion: While masitinib has not shown an increase in overall survival (OS) or progression free survival (PFS) compared to the current standard of care in patients with pancreatic adenocarcinoma, masitinib may have a role in decreasing inflammation related to those patients with increased pain scores with pancreatic adenocarcinoma. If we have the tools to identify accurate subgroups of patients who may benefit from particular therapies, this agent may be of benefit to these patients. Indeed, if more sophisticated biomarkers and the identification of patient subgroups are better explained, the authors believe that masitinib will become part of the armamentarium against pancreatic adenocarcinoma.
Dediu, Dan
2009-08-07
The recent Bayesian approaches to language evolution and change seem to suggest that genetic biases can impact on the characteristics of language, but, at the same time, that its cultural transmission can partially free it from these same genetic constraints. One of the current debates centres on the striking differences between sampling and a posteriori maximising Bayesian learners, with the first converging on the prior bias while the latter allows a certain freedom to language evolution. The present paper shows that this difference disappears if populations more complex than a single teacher and a single learner are considered, with the resulting behaviours more similar to the sampler. This suggests that generalisations based on the language produced by Bayesian agents in such homogeneous single agent chains are not warranted. It is not clear which of the assumptions in such models are responsible, but these findings seem to support the rising concerns on the validity of the "acquisitionist" assumption, whereby the locus of language change and evolution is taken to be the first language acquirers (children) as opposed to the competent language users (the adults).
Antibiotic-Free Selection in Biotherapeutics: Now and Forever
Mignon, Charlotte; Sodoyer, Régis; Werle, Bettina
2015-01-01
The continuously improving sophistication of molecular engineering techniques gives access to novel classes of bio-therapeutics and new challenges for their production in full respect of the strengthening regulations. Among these biologic agents are DNA based vaccines or gene therapy products and to a lesser extent genetically engineered live vaccines or delivery vehicles. The use of antibiotic-based selection, frequently associated with genetic manipulation of microorganism is currently undergoing a profound metamorphosis with the implementation and diversification of alternative selection means. This short review will present examples of alternatives to antibiotic selection and their context of application to highlight their ineluctable invasion of the bio-therapeutic world. PMID:25854922
Unicellular but not asocial. Life in community of a bacterium.
Romero, Diego
2016-06-01
All living organisms have acquired the outstanding ability to overcome the limitations imposed by changeable environments through the gain of genetic traits over years of evolution and the tendency of individuals to associate in communities. The complementation of a singular weakness, the deployment of reinforcement for the good of the community, the better use of resources, or effective defense against external aggression are advantages gained by this communal behavior. Communication has been the cohesive element prompting the global responses that promote efficiency in two features of any community: specialization in differentiated labor and the spatio-temporal organization of the environment. These principles illustrate that what we call human ecology also applies to the cellular world and is exemplified in eukaryotic organisms, where sophisticated cell-to-cell communication networks coordinate cell differentiation and the specialization of multiple tissues consisting of numerous cells embedded in a multifunctional extracellular matrix. This sophisticated molecular machinery appears, however, to be invented by the "simple" but still fascinating bacteria. What I will try to expand in the following sections are notions of how "single prokaryotic cells" organize a multicellular community. [Int Microbiol 19(2):81-90 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.
Role of Atmospheric Chemistry in the Climate Impacts of Stratospheric Volcanic Injections
NASA Technical Reports Server (NTRS)
Legrande, Allegra N.; Tsigaridis, Kostas; Bauer, Susanne E.
2016-01-01
The climate impact of a volcanic eruption is known to be dependent on the size, location and timing of the eruption. However, the chemistry and composition of the volcanic plume also control its impact on climate. It is not just sulfur dioxide gas, but also the coincident emissions of water, halogens and ash that influence the radiative and climate forcing of an eruption. Improvements in the capability of models to capture aerosol microphysics, and the inclusion of chemistry and aerosol microphysics modules in Earth system models, allow us to evaluate the interaction of composition and chemistry within volcanic plumes in a new way. These modeling efforts also illustrate the role of water vapor in controlling the chemical evolution, and hence climate impacts, of the plume. A growing realization of the importance of the chemical composition of volcanic plumes is leading to a more sophisticated and realistic representation of volcanic forcing in climate simulations, which in turn aids in reconciling simulations and proxy reconstructions of the climate impacts of past volcanic eruptions. More sophisticated simulations are expected to help, eventually, with predictions of the impact on the Earth system of any future large volcanic eruptions.
An Investigation of Secondary Students' Mental Models of Climate Change and the Greenhouse Effect
NASA Astrophysics Data System (ADS)
Varela, Begoña; Sesto, Vanessa; García-Rodeja, Isabel
2018-03-01
There are several studies dealing with students' conceptions on climate change, but most of them refer to understanding before instruction. In contrast, this study investigates students' conceptions and describes the levels of sophistication of their mental models on climate change and the greenhouse effect. The participants were 40 secondary students (grade 7) in Spain. As a method of data collection, a questionnaire was designed with open-ended questions focusing on the mechanism, causes, and actions that could be useful in reducing climate change. Students completed the same questionnaire before and after instruction. The students' conceptions and mental models were identified by an inductive and iterative analysis of the participants' explanations. With regard to the students' conceptions, the results show that they usually link climate change to an increase in temperature, and they tend to mention, even after instruction, generic actions to mitigate climate change, such as not polluting. With regard to the students' mental models, the results show an evolution of models with little consistency and coherence, such as the models on level 1, towards higher levels of sophistication. The paper concludes with educational implications proposed for solving learning difficulties regarding the greenhouse effect and climate change.
Heterogeneous update mechanisms in evolutionary games: Mixing innovative and imitative dynamics
NASA Astrophysics Data System (ADS)
Amaral, Marco Antonio; Javarone, Marco Alberto
2018-04-01
Innovation and evolution are two processes of paramount relevance for social and biological systems. In general, the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative ones change strategy without the need for a copying source. The proposed model is analyzed by means of analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision methods, highlighting the role of innovation in evolutionary games.
Heterogeneous update mechanisms in evolutionary games: Mixing innovative and imitative dynamics.
Amaral, Marco Antonio; Javarone, Marco Alberto
2018-04-01
Innovation and evolution are two processes of paramount relevance for social and biological systems. In general, the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative ones change strategy without the need for a copying source. The proposed model is analyzed by means of analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision methods, highlighting the role of innovation in evolutionary games.
Photocatalytic hydrogen evolution over β-iron silicide under infrared-light irradiation.
Yoshimizu, Masaharu; Kobayashi, Ryoya; Saegusa, Makoto; Takashima, Toshihiro; Funakubo, Hiroshi; Akiyama, Kensuke; Matsumoto, Yoshihisa; Irie, Hiroshi
2015-02-18
We investigated the ability of β-iron silicide (β-FeSi2) to serve as a hydrogen (H2)-evolution photocatalyst due to the potential of its conduction band bottom, which may allow thermodynamically favorable H2 evolution in spite of its small band-gap of 0.80 eV. β-FeSi2 had an apparent quantum efficiency for H2 evolution of ∼24% up to 950 nm (near infrared light), in the presence of the dithionic acid ion (S2O6(2-)) as a sacrificial agent. It was also sensitive to infrared light (>1300 nm) for H2 evolution.
NASA Astrophysics Data System (ADS)
Graeser, Oliver
This thesis comprises three parts, reporting research results in Fluid Dynamics (Part I), Particle Separation (Part II) and Co-evolving Networks (Part III). Part I deals with the simulation of fluid dynamics using the lattice-Boltzmann method. Microfluidic devices often feature two-dimensional, repetitive arrays. Flows through such devices are pressure-driven and confined by solid walls. We have defined new adaptive generalised periodic boundary conditions to represent the effects of outer solid walls, and are thus able to exploit the periodicity of the array by simulating the flow through one unit cell in lieu of the entire device. The so-calculated fully developed flow describes the flow through the entire array accurately, but with computational requirements that are reduced according to the dimensions of the array. Part II discusses the problem of separating macromolecules like proteins or DNA coils. The reliable separation of such molecules is a crucial task in molecular biology. The use of Brownian ratchets as mechanisms for the separation of such particles has been proposed and discussed during the last decade. Pressure-driven flows have so far been dismissed as possible driving forces for Brownian ratchets, as they do not generate ratchet asymmetry. We propose a microfluidic design that uses pressure-driven flows to create asymmetry and hence allows particle separation. The dependence of the asymmetry on various factors of the microfluidic geometry is discussed. We further exemplify the feasibility of our approach using Brownian dynamics simulations of particles of different sizes in such a device. The results show that ratchet-based particle separation using flows as the driving force is possible. Simulation results and ratchet theory predictions are in excellent agreement. Part III deals with the co-evolution of networks and dynamic models. A group of agents occupies the nodes of a network, which defines the relationship between these agents. The evolution of the agents is defined by the rules of the dynamic model and depends on the relationship between agents, i.e., the state of the network. In return, the evolution of the network depends on the state of the dynamic model. The concept is introduced through the adaptive SIS model. We show that the previously used criterion determining the critical infected fraction, i.e., the number of infected agents required to sustain the epidemic, is inappropriate for this model. We introduce a different criterion and show that the critical infected fraction so determined is in good agreement with results obtained by numerical simulations. We further discuss the concept of co-evolving dynamics using the Snowdrift Game as a model paradigm. Co-evolution occurs through agents cutting dissatisfied links and rewiring to other agents at random. The effect of co-evolution on the emergence of cooperation is discussed using a mean-field theory and numerical simulations. A transition between a connected and a disconnected, highly cooperative state of the system is observed, and explained using the mean-field model. Quantitative deviations regarding the level of cooperation in the disconnected regime can be fully resolved through an improved mean-field theory that includes the effect of random fluctuations into its model.
Reptilian heart development and the molecular basis of cardiac chamber evolution.
Koshiba-Takeuchi, Kazuko; Mori, Alessandro D; Kaynak, Bogac L; Cebra-Thomas, Judith; Sukonnik, Tatyana; Georges, Romain O; Latham, Stephany; Beck, Laurel; Beck, Laural; Henkelman, R Mark; Black, Brian L; Olson, Eric N; Wade, Juli; Takeuchi, Jun K; Nemer, Mona; Gilbert, Scott F; Bruneau, Benoit G
2009-09-03
The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles? Here we examine heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution.
Reptilian heart development and the molecular basis of cardiac chamber evolution
Koshiba-Takeuchi, Kazuko; Mori, Alessandro D.; Kaynak, Bogac L.; Cebra-Thomas, Judith; Sukonnik, Tatyana; Georges, Romain O.; Latham, Stephany; Beck, Laural; Henkelman, R. Mark; Black, Brian L.; Olson, Eric N.; Wade, Juli; Takeuchi, Jun K.; Nemer, Mona; Gilbert, Scott F.; Bruneau, Benoit G.
2009-01-01
The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals, and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy1–3. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles4–7? We examined heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors8,9. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus, ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution. PMID:19727199
Neo-Sophistic Rhetorical Theory: Sophistic Precedents for Contemporary Epistemic Rhetoric.
ERIC Educational Resources Information Center
McComiskey, Bruce
Interest in the sophists has recently intensified among rhetorical theorists, culminating in the notion that rhetoric is epistemic. Epistemic rhetoric has its first and deepest roots in sophistic epistemological and rhetorical traditions, so that the view of rhetoric as epistemic is now being dubbed "neo-sophistic." In epistemic…
McEwan, Gregor F.; Groner, Maya L.; Fast, Mark D.; Revie, Crawford W.
2015-01-01
A major challenge for Atlantic salmon farming in the northern hemisphere is infestation by the sea louse parasite Lepeophtheirus salmonis. The most frequent method of controlling these sea louse infestations is through the use of chemical treatments. However, most major salmon farming areas have observed resistance to common chemotherapeutants. In terrestrial environments, many strategies employed to manage the evolution of resistance involve the use of refugia, where a portion of the population is left untreated to maintain susceptibility. While refugia have not been deliberately used in Atlantic salmon farming, wild salmon populations that migrate close to salmon farms may act as natural refugia. In this paper we describe an agent-based model that explores the influence of different sizes of wild salmon populations on resistance evolution in sea lice on a salmon farm. Using the model, we demonstrate that wild salmon populations can act as refugia that limit the evolution of resistance in the sea louse populations. Additionally, we demonstrate that an increase in the size of the population of wild salmon results in an increased effect in slowing the evolution of resistance. We explore the effect of a population fitness cost associated with resistance, finding that in some cases it substantially reduces the speed of evolution to chemical treatments. PMID:26485023
Reconstructing the origin and elaboration of insect-trapping inflorescences in the Araceae1
Bröderbauer, David; Diaz, Anita; Weber, Anton
2016-01-01
Premise of the study Floral traps are among the most sophisticated devices that have evolved in angiosperms in the context of pollination, but the evolution of trap pollination has not yet been studied in a phylogenetic context. We aim to determine the evolutionary history of morphological traits that facilitate trap pollination and to elucidate the impact of pollinators on the evolution of inflorescence traps in the family Araceae. Methods Inflorescence morphology was investigated to determine the presence of trapping devices and to classify functional types of traps. We inferred phylogenetic relationships in the family using maximum likelihood and Bayesian methods. Character evolution of trapping devices, trap types, and pollinator types was then assessed with maximum parsimony and Bayesian methods. We also tested for an association of trap pollination with specific pollinator types. Key results Inflorescence traps have evolved independently at least 10 times within the Araceae. Trapping devices were found in 27 genera. On the basis of different combinations of trapping devices, six functional types of traps were identified. Trap pollination in Araceae is correlated with pollination by flies. Conclusions Trap pollination in the Araceae is more common than was previously thought. Preadaptations such as papillate cells or elongated sterile flowers facilitated the evolution of inflorescence traps. In some clades, imperfect traps served as a precursor for the evolution of more elaborate traps. Traps that evolved in association with fly pollination were most probably derived from mutualistic ancestors, offering a brood-site to their pollinators. PMID:22965851
Evolution of axis ratios from phase space dynamics of triaxial collapse
NASA Astrophysics Data System (ADS)
Nadkarni-Ghosh, Sharvari; Arya, Bhaskar
2018-04-01
We investigate the evolution of axis ratios of triaxial haloes using the phase space description of triaxial collapse. In this formulation, the evolution of the triaxial ellipsoid is described in terms of the dynamics of eigenvalues of three important tensors: the Hessian of the gravitational potential, the tensor of velocity derivatives, and the deformation tensor. The eigenvalues of the deformation tensor are directly related to the parameters that describe triaxiality, namely, the minor-to-major and intermediate-to-major axes ratios (s and q) and the triaxiality parameter T. Using the phase space equations, we evolve the eigenvalues and examine the evolution of the probability distribution function (PDF) of the axes ratios as a function of mass scale and redshift for Gaussian initial conditions. We find that the ellipticity and prolateness increase with decreasing mass scale and decreasing redshift. These trends agree with previous analytic studies but differ from numerical simulations. However, the PDF of the scaled parameter {\\tilde{q}} = (q-s)/(1-s) follows a universal distribution over two decades in mass range and redshifts which is in qualitative agreement with the universality for conditional PDF reported in simulations. We further show using the phase space dynamics that, in fact, {\\tilde{q}} is a phase space invariant and is conserved individually for each halo. These results demonstrate that the phase space analysis is a useful tool that provides a different perspective on the evolution of perturbations and can be applied to more sophisticated models in the future.
Software algorithms for false alarm reduction in LWIR hyperspectral chemical agent detection
NASA Astrophysics Data System (ADS)
Manolakis, D.; Model, J.; Rossacci, M.; Zhang, D.; Ontiveros, E.; Pieper, M.; Seeley, J.; Weitz, D.
2008-04-01
The long-wave infrared (LWIR) hyperpectral sensing modality is one that is often used for the problem of detection and identification of chemical warfare agents (CWA) which apply to both military and civilian situations. The inherent nature and complexity of background clutter dictates a need for sophisticated and robust statistical models which are then used in the design of optimum signal processing algorithms that then provide the best exploitation of hyperspectral data to ultimately make decisions on the absence or presence of potentially harmful CWAs. This paper describes the basic elements of an automated signal processing pipeline developed at MIT Lincoln Laboratory. In addition to describing this signal processing architecture in detail, we briefly describe the key signal models that form the foundation of these algorithms as well as some spatial processing techniques used for false alarm mitigation. Finally, we apply this processing pipeline to real data measured by the Telops FIRST hyperspectral (FIRST) sensor to demonstrate its practical utility for the user community.
Exploring exposure to Agent Orange and increased mortality due to bladder cancer.
Mossanen, Matthew; Kibel, Adam S; Goldman, Rose H
2017-11-01
During the Vietnam War, many veterans were exposed to Agent Orange (AO), a chemical defoliant containing varying levels of the carcinogen dioxin. The health effects of AO exposure have been widely studied in the VA population. Here we review and interpret data regarding the association between AO exposure and bladder cancer (BC) mortality. Data evaluating the association between AO and BC is limited. Methods characterizing exposure have become more sophisticated over time. Several studies support the link between AO exposure and increased mortality due to BC, including the Korean Veterans Health Study. Available data suggest an association with exposure to AO and increased mortality due to BC. In patients exposed to AO, increased frequency of cystoscopic surveillance and potentially more aggressive therapy for those with BC may be warranted but utility of these strategies remains to be proven. Additional research is required to better understand the relationship between AO and BC. Copyright © 2017 Elsevier Inc. All rights reserved.
Detecting Distributed SQL Injection Attacks in a Eucalyptus Cloud Environment
NASA Technical Reports Server (NTRS)
Kebert, Alan; Barnejee, Bikramjit; Solano, Juan; Solano, Wanda
2013-01-01
The cloud computing environment offers malicious users the ability to spawn multiple instances of cloud nodes that are similar to virtual machines, except that they can have separate external IP addresses. In this paper we demonstrate how this ability can be exploited by an attacker to distribute his/her attack, in particular SQL injection attacks, in such a way that an intrusion detection system (IDS) could fail to identify this attack. To demonstrate this, we set up a small private cloud, established a vulnerable website in one instance, and placed an IDS within the cloud to monitor the network traffic. We found that an attacker could quite easily defeat the IDS by periodically altering its IP address. To detect such an attacker, we propose to use multi-agent plan recognition, where the multiple source IPs are considered as different agents who are mounting a collaborative attack. We show that such a formulation of this problem yields a more sophisticated approach to detecting SQL injection attacks within a cloud computing environment.
2004-04-15
Ribbons is a program developed at UAB used worldwide to graphically depict complicated protein structures in a simplified format. The program uses sophisticated computer systems to understand the implications of protein structures. The Influenza virus remains a major causative agent for a large number of deaths among the elderly and young children and huge economic losses due to illness. Finding a cure will have a general impact both on the basic research of viral pathologists of fast evolving infectious agents and clinical treatment of influenza virus infection. The reproduction process of all strains of influenza are dependent on the same enzyme neuraminidase. Shown here is a segmented representation of the neuraminidase inhibitor compound sitting inside a cave-like contour of the neuraminidase enzyme surface. This cave-like formation present in every neuraminidase enzyme is the active site crucial to the flu's ability to infect. The space-grown crystals of neuraminidase have provided significant new details about the three-dimensional characteristics of this active site thus allowing researchers to design drugs that fit tighter into the site. Principal Investigator: Dr. Larry DeLucas
New advances in lower gastrointestinal bleeding management with embolotherapy
Ierardi, Anna Maria; Urbano, Josè; De Marchi, Giuseppe; Micieli, Camilla; Duka, Ejona; Iacobellis, Francesca; Fontana, Federico
2016-01-01
Lower gastrointestinal bleeding (LGIB) is associated with high morbidity and mortality. Embolization is currently proposed as the first step in the treatment of acute, life-threatening LGIB, when endoscopic approach is not possible or is unsuccessful. Like most procedures performed in emergency setting, time represents a significant factor influencing outcome. Modern tools permit identifying and reaching the bleeding site faster than two-dimensional angiography. Non-selective cone-beam CT arteriography can identify a damaged vessel. Moreover, sophisticated software able to detect the vessel may facilitate direct placement of a microcatheter into the culprit vessel without the need for sequential angiography. A further important aspect is the use of an appropriate technique of embolization and a safe and effective embolic agent. Current evidence shows the use of detachable coils (with or without a triaxial system) and liquid embolics has proven advantages compared with other embolic agents. The present article analyses these modern tools, making embolization of acute LGIB safer and more effective. PMID:26764281
Delivery of large biopharmaceuticals from cardiovascular stents: a review
Takahashi, Hironobu; Letourneur, Didier; Grainger, David W.
2008-01-01
This review focuses on the new and emerging large-molecule bioactive agents delivered from stent surfaces in drug-eluting stents (DES) to inhibit vascular restenosis in the context of interventional cardiology. New therapeutic agents representing proteins, nucleic acids (small interfering RNAs and large DNA plasmids), viral delivery vectors and even engineered cell therapies require specific delivery designs distinct from traditional smaller molecule approaches on DES. While small molecules are currently the clinical standard for coronary stenting, extension of the DES to other lesion types, peripheral vasculature and non-vasculature therapies will seek to deliver an increasingly sophisticated armada of drug types. This review describes many of the larger molecule and biopharmaceutical approaches reported recently for stent-based delivery with the challenges associated with formulating and delivering these drug classes compared to the current small molecule drugs. It also includes perspectives on possible future applications that may improve safety and efficacy and facilitate diversification of the DES to other clinical applications. PMID:17929968
Davila-Ross, Marina; Hutchinson, Johanna; Russell, Jamie L; Schaeffer, Jennifer; Billard, Aude; Hopkins, William D; Bard, Kim A
2014-05-01
Even the most rudimentary social cues may evoke affiliative responses in humans and promote social communication and cohesion. The present work tested whether such cues of an agent may also promote communicative interactions in a nonhuman primate species, by examining interaction-promoting behaviours in chimpanzees. Here, chimpanzees were tested during interactions with an interactive humanoid robot, which showed simple bodily movements and sent out calls. The results revealed that chimpanzees exhibited two types of interaction-promoting behaviours during relaxed or playful contexts. First, the chimpanzees showed prolonged active interest when they were imitated by the robot. Second, the subjects requested 'social' responses from the robot, i.e. by showing play invitations and offering toys or other objects. This study thus provides evidence that even rudimentary cues of a robotic agent may promote social interactions in chimpanzees, like in humans. Such simple and frequent social interactions most likely provided a foundation for sophisticated forms of affiliative communication to emerge.
On the kinematics of scalar iso-surfaces in turbulent flow
NASA Astrophysics Data System (ADS)
Blakeley, Brandon C.; Riley, James J.; Storti, Duane W.; Wang, Weirong
2017-11-01
The behavior of scalar iso-surfaces in turbulent flows is of fundamental interest and importance in a number of problems, e.g., the stoichiometric surface in non-premixed reactions, and the turbulent/non-turbulent interface in localized turbulent shear flows. Of particular interest here is the behavior of the average surface area per unit volume, Σ. We report on the use of direct numerical simulations and sophisticated surface tracking techniques to directly compute Σ and model its evolution. We consider two different scalar configurations in decaying, isotropic turbulence: first, the iso-surface is initially homogenous and isotropic in space, second, the iso-surface is initially planar. A novel method of computing integral properties from regularly-sampled values of a scalar function is leveraged to provide accurate estimates of Σ. Guided by simulation results, modeling is introduced from two perspectives. The first approach models the various terms in the evolution equation for Σ, while the second uses Rice's theorem to model Σ directly. In particular, the two principal effects on the evolution of Σ, i.e., the growth of the surface area due to local surface stretching, and the ultimate decay due to molecular destruction, are addressed.
[Genodiagnosis and molecular typing of the pathogens for plague, cholera, and anthrax].
Kutyrev, V V; Smirnova, N I
2003-01-01
The paper contains a survey of published data about the use of DNA-diagnostics in indicating and identifying the causative agents of highly dangerous infections like plague, cholera and anthrax. A discussion of data about the genetic relationship between strains of the mentioned causative agents isolated from different sources by using the molecular-typing methods as well as about the evolution ties between strains of different origins is in the focus of attention. Results of comparative studies of nucleotide sequences of genomes or of individual genomes in different Yersinia pestis, Vibrio cholerae and Bacillus anthracis strains, which are indicative of the evolution of their pathogenicity, are also under discussion.
Evolvable social agents for bacterial systems modeling.
Paton, Ray; Gregory, Richard; Vlachos, Costas; Saunders, Jon; Wu, Henry
2004-09-01
We present two approaches to the individual-based modeling (IbM) of bacterial ecologies and evolution using computational tools. The IbM approach is introduced, and its important complementary role to biosystems modeling is discussed. A fine-grained model of bacterial evolution is then presented that is based on networks of interactivity between computational objects representing genes and proteins. This is followed by a coarser grained agent-based model, which is designed to explore the evolvability of adaptive behavioral strategies in artificial bacteria represented by learning classifier systems. The structure and implementation of the two proposed individual-based bacterial models are discussed, and some results from simulation experiments are presented, illustrating their adaptive properties.
The comparison of the use of holonic and agent-based methods in modelling of manufacturing systems
NASA Astrophysics Data System (ADS)
Foit, K.; Banaś, W.; Gwiazda, A.; Hryniewicz, P.
2017-08-01
The rapid evolution in the field of industrial automation and manufacturing is often called the 4th Industry Revolution. Worldwide availability of the internet access contributes to the competition between manufacturers, gives the opportunity for buying materials, parts and for creating the partnership networks, like cloud manufacturing, grid manufacturing (MGrid), virtual enterprises etc. The effect of the industry evolution is the need to search for new solutions in the field of manufacturing systems modelling and simulation. During the last decade researchers have developed the agent-based approach of modelling. This methodology have been taken from the computer science, but was adapted to the philosophy of industrial automation and robotization. The operation of the agent-based system depends on the simultaneous acting of different agents that may have different roles. On the other hand, there is the holon-based approach that uses the structures created by holons. It differs from the agent-based structure in some aspects, while the other ones are quite similar in both methodologies. The aim of this paper is to present the both methodologies and discuss the similarities and the differences. This may could help to select the optimal method of modelling, according to the considered problem and software resources.
Space environment and lunar surface processes
NASA Technical Reports Server (NTRS)
Comstock, G. M.
1979-01-01
The development of a general rock/soil model capable of simulating in a self consistent manner the mechanical and exposure history of an assemblage of solid and loose material from submicron to planetary size scales, applicable to lunar and other space exposed planetary surfaces is discussed. The model was incorporated into a computer code called MESS.2 (model for the evolution of space exposed surfaces). MESS.2, which represents a considerable increase in sophistication and scope over previous soil and rock surface models, is described. The capabilities of previous models for near surface soil and rock surfaces are compared with the rock/soil model, MESS.2.
Today's and Tomorrow's Instruments.
Conty, Claude
2001-03-01
This article will discuss the importance of Raimond Castaing's thesis on the genesis of a nondestructive and truly quantitative microanalytical method that assisted the scientific community in moving forward in the development of microanalytical instruments. I will also share with you my recollection of the decades of improvement in the electron probe microanalyzer (EPMA), that has allowed us to reach our present level of instrument sophistication, and I will explore with you my thoughts on the future evolution of this technique. To conclude, I will present the current status of related microanalysis techniques developed under Castaing in Orsay in the 1960s, as Castaing's interest in microanalysis was not limited to electron probe microanalysis alone.
Abele, Rupert; Tampé, Robert
2009-08-01
Cells are metastable per se and a fine-tuned balance of de novo protein synthesis and degradation shapes their proteome. The primary function of peptides is to supply amino acids for de novo protein synthesis or as an energy source during starvation. Peptides are intrinsically short-lived and steadily trimmed by an armada of intra and extracellular peptidases. However, peptides acquired additional, more sophisticated tasks already early in evolution. Here, we summarize current knowledge on intracellular peptide trafficking and translocation mediated by ATP-binding cassette (ABC) transport machineries with a focus on the functions of protein degradation products as important signaling molecules in self-defense mechanisms.
In vitro models of the metastatic cascade: from local invasion to extravasation
Bersini, S.; Jeon, J.S.; Moretti, Matteo; Kamm, R.D.
2014-01-01
A crucial event in the metastatic cascade is the extravasation of circulating cancer cells from blood capillaries to the surrounding tissues. The past 5 years have been characterized by a significant evolution in the development of in vitro extravasation models, which moved from traditional transmigration chambers to more sophisticated microfluidic devices, enabling the study of complex cell–cell and cell–matrix interactions in multicellular, controlled environments. These advanced assays could be applied to screen easily and rapidly a broad spectrum of molecules inhibiting cancer cell endothelial adhesion and extravasation, thus contributing to the design of more focused in vivo tests. PMID:24361339
The Matter Simulation (R)evolution
2018-01-01
To date, the program for the development of methods and models for atomistic and continuum simulation directed toward chemicals and materials has reached an incredible degree of sophistication and maturity. Currently, one can witness an increasingly rapid emergence of advances in computing, artificial intelligence, and robotics. This drives us to consider the future of computer simulation of matter from the molecular to the human length and time scales in a radical way that deliberately dares to go beyond the foreseeable next steps in any given discipline. This perspective article presents a view on this future development that we believe is likely to become a reality during our lifetime. PMID:29532014
Watts, Mary Lee; Hager, Mary H; Toner, Cheryl D; Weber, Jennifer A
2011-07-01
The United States government has published official Dietary Guidelines for Americans (DGA) since 1980 and has recently released the 2010 version. Serving as a foundational cornerstone for federal nutrition policy, the DGA embrace current nutritional science and translate it into practical guidance to enhance the overall health of Americans. This article reviews the history and process for developing the DGA, including the incorporation of sophisticated and systematic techniques for reviewing emerging evidence. It also explores issues related to implementation of the guidelines through federal policy, the food supply, and consumer knowledge and behavior. © 2011 International Life Sciences Institute.
Kitano, Hiroaki
2004-11-01
Robustness is a ubiquitously observed property of biological systems. It is considered to be a fundamental feature of complex evolvable systems. It is attained by several underlying principles that are universal to both biological organisms and sophisticated engineering systems. Robustness facilitates evolvability and robust traits are often selected by evolution. Such a mutually beneficial process is made possible by specific architectural features observed in robust systems. But there are trade-offs between robustness, fragility, performance and resource demands, which explain system behaviour, including the patterns of failure. Insights into inherent properties of robust systems will provide us with a better understanding of complex diseases and a guiding principle for therapy design.
Life on Mars? 1: The chemical environment
NASA Technical Reports Server (NTRS)
Banin, A.; Mancinelli, R. L.
1995-01-01
The origin of life at its abiotic evolutionary stage, requires a combination of constituents and environmental conditions that enable the synthesis of complex replicating macromolecules from simpler monomeric molecules. It is very likely that the early stages of this evolutionary process have been spontaneous, rapid and widespread on the surface of the primitive Earth, resulting in the formation of quite sophisticated living organisms within less than a billion years. To what extend did such conditions prevail on Mars? Two companion-papers will review and discuss the available information related to the chemical, physical and environmental conditions on Mars and assess it from the perspective of potential exobiological evolution.
Delineation of separate brain regions used for scientific versus engineering modes of thinking
NASA Astrophysics Data System (ADS)
Patterson, Clair C.
1994-08-01
Powerful, latent abilities for extreme sophistication in abstract rationalization as potential biological adaptive behavioral responses were installed entirely through accident and inadvertence by biological evolution in the Homo sapiens sapiens species of brain. These potentials were never used, either in precursor species as factors in evolutionary increase in hominid brain mass, nor in less sophisticated forms within social environments characterized by Hss tribal brain population densities. Those latent abilities for unnatural biological adaptive behavior were forced to become manifest in various ways by growths in sophistication of communication interactions engendered by large growths in brain population densities brought on by developments in agriculture at the onset of the Holocene. It is proposed that differences probably exist between regions of the Hss brain involved in utilitarian, engineering types of problem conceptualization-solving versus regions of the brain involved in nonutilitarian, artistic-scientific types of problem conceptualization-solving. Populations isolated on separate continents from diffusive contact and influence on cultural developments, and selected for comparison of developments during equivalent stages of technological and social sophistication in matching 4000 year periods, show, at the ends of those periods, marked differences in aesthetic attributes expressed in cosmogonies, music, and writing (nonutilitarian thinking related to science and art). On the other hand the two cultures show virtually identical developments in three major stages of metallurgical technologies (utilitarian thinking related to engineering). Such archaeological data suggest that utilitarian modes of thought may utilize combinations of neuronal circuits in brain regions that are conserved among tribal populations territorially separated from each other for tens of thousands of years. Such conservation may not be true for neuronal circuits involved in nonutilitarian modes of thought. It is postulated that neuronal circuits involved in nonutilitarian modes of thought are located in specific regions of the brain that are divergent features between populations that have been territorially separated for tens of thousands of years. Anatomical PET and NMRI studies of brains of modern descendants of these cultures are proposed that would seek to define these inferred differences through proper protocols of stimulation devised by those investigators.
Lind, O; Delhey, K
2015-03-01
Birds have sophisticated colour vision mediated by four cone types that cover a wide visual spectrum including ultraviolet (UV) wavelengths. Many birds have modest UV sensitivity provided by violet-sensitive (VS) cones with sensitivity maxima between 400 and 425 nm. However, some birds have evolved higher UV sensitivity and a larger visual spectrum given by UV-sensitive (UVS) cones maximally sensitive at 360-370 nm. The reasons for VS-UVS transitions and their relationship to visual ecology remain unclear. It has been hypothesized that the evolution of UVS-cone vision is linked to plumage colours so that visual sensitivity and feather coloration are 'matched'. This leads to the specific prediction that UVS-cone vision enhances the discrimination of plumage colours of UVS birds while such an advantage is absent or less pronounced for VS-bird coloration. We test this hypothesis using knowledge of the complex distribution of UVS cones among birds combined with mathematical modelling of colour discrimination during different viewing conditions. We find no support for the hypothesis, which, combined with previous studies, suggests only a weak relationship between UVS-cone vision and plumage colour evolution. Instead, we suggest that UVS-cone vision generally favours colour discrimination, which creates a nonspecific selection pressure for the evolution of UVS cones. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
A Cultural Evolution Approach to Digital Media.
Acerbi, Alberto
2016-01-01
Digital media have today an enormous diffusion, and their influence on the behavior of a vast part of the human population can hardly be underestimated. In this review I propose that cultural evolution theory, including both a sophisticated view of human behavior and a methodological attitude to modeling and quantitative analysis, provides a useful framework to study the effects and the developments of media in the digital age. I will first give a general presentation of the cultural evolution framework, and I will then introduce this more specific research program with two illustrative topics. The first topic concerns how cultural transmission biases, that is, simple heuristics such as "copy prestigious individuals" or "copy the majority," operate in the novel context of digital media. The existence of transmission biases is generally justified with their adaptivity in small-scale societies. How do they operate in an environment where, for example, prestigious individuals possess not-relevant skills, or popularity is explicitly quantified and advertised? The second aspect relates to fidelity of cultural transmission. Digitally-mediated interactions support cheap and immediate high-fidelity transmission, in opposition, for example, to oral traditions. How does this change the content that is more likely to spread? Overall, I suggest the usefulness of a "long view" to our contemporary digital environment, contextualized in cognitive science and cultural evolution theory, and I discuss how this perspective could help us to understand what is genuinely new and what is not.
Evolution of the VEGF-regulated vascular network from a neural guidance system.
Ponnambalam, Sreenivasan; Alberghina, Mario
2011-06-01
The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF-VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson's disease, Alzheimer's disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.
NASA Technical Reports Server (NTRS)
Kilgore, R. A.; Dress, D. A.
1984-01-01
During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.
Trade-off between Transcriptome Plasticity and Genome Evolution in Cephalopods.
Liscovitch-Brauer, Noa; Alon, Shahar; Porath, Hagit T; Elstein, Boaz; Unger, Ron; Ziv, Tamar; Admon, Arie; Levanon, Erez Y; Rosenthal, Joshua J C; Eisenberg, Eli
2017-04-06
RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals for this purpose. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of the nature and effects of these events. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous system, affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein-coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.
Evolution of cognitive-behavioral therapy for eating disorders.
Agras, W Stewart; Fitzsimmons-Craft, Ellen E; Wilfley, Denise E
2017-01-01
The evolution of cognitive-behavioral therapy (CBT) for the treatment of bulimic disorders is described in this review. The impacts of successive attempts to enhance CBT such as the addition of exposure and response prevention; the development of enhanced CBT; and broadening the treatment from bulimia nervosa to binge eating disorder are considered. In addition to developing advanced forms of CBT, shortening treatment to guided self-help was the first step in broadening access to treatment. The use of technology such as computer-based therapy and more recently the Internet, promises further broadening of access to self-help and to therapist guided treatment. Controlled studies in this area are reviewed, and the balance of risks and benefits that accompany the use of technology and lessened therapist input are considered. Looking into the future, more sophisticated forms of treatment delivered as mobile applications ("apps") may lead to more personalized and efficacious treatments for bulimic disorders, thus enhancing the delivery of treatments for eating disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structure and function of a compound eye, more than half a billion years old.
Schoenemann, Brigitte; Pärnaste, Helje; Clarkson, Euan N K
2017-12-19
Until now, the fossil record has not been capable of revealing any details of the mechanisms of complex vision at the beginning of metazoan evolution. Here, we describe functional units, at a cellular level, of a compound eye from the base of the Cambrian, more than half a billion years old. Remains of early Cambrian arthropods showed the external lattices of enormous compound eyes, but not the internal structures or anything about how those compound eyes may have functioned. In a phosphatized trilobite eye from the lower Cambrian of the Baltic, we found lithified remnants of cellular systems, typical of a modern focal apposition eye, similar to those of a bee or dragonfly. This shows that sophisticated eyes already existed at the beginning of the fossil record of higher organisms, while the differences between the ancient system and the internal structures of a modern apposition compound eye open important insights into the evolution of vision. Copyright © 2017 the Author(s). Published by PNAS.
Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase.
Obexer, Richard; Godina, Alexei; Garrabou, Xavier; Mittl, Peer R E; Baker, David; Griffiths, Andrew D; Hilvert, Donald
2017-01-01
Designing catalysts that achieve the rates and selectivities of natural enzymes is a long-standing goal in protein chemistry. Here, we show that an ultrahigh-throughput droplet-based microfluidic screening platform can be used to improve a previously optimized artificial aldolase by an additional factor of 30 to give a >10 9 rate enhancement that rivals the efficiency of class I aldolases. The resulting enzyme catalyses a reversible aldol reaction with high stereoselectivity and tolerates a broad range of substrates. Biochemical and structural studies show that catalysis depends on a Lys-Tyr-Asn-Tyr tetrad that emerged adjacent to a computationally designed hydrophobic pocket during directed evolution. This constellation of residues is poised to activate the substrate by Schiff base formation, promote mechanistically important proton transfers and stabilize multiple transition states along a complex reaction coordinate. The emergence of such a sophisticated catalytic centre shows that there is nothing magical about the catalytic activities or mechanisms of naturally occurring enzymes, or the evolutionary process that gave rise to them.
The individual, the group and the psychology of terrorism.
Lord Alderdice
2007-06-01
Northern Ireland lived through a campaign of terrorism for thirty years. This has now ended and substantial progress has been made towards political stability through a long-term peace process. Using his experience as a psychiatrist and psychotherapist, but also as leader of a political party, negotiator in the peace process and subsequently Speaker of the Northern Ireland Assembly, Lord Alderdice explores the psychology of political terrorism. He examines the role of individual and group psychology, the evolution and dissolution of a 'group mind', splitting, and the factors that contribute to division and violence. He describes the frustration of healthy pathways for change, and humiliation, shame and rage as key factors in triggering regression into political violence. Containment, respect and a group psychological process are identified as necessary for evolution towards a more healthy state. It is suggested that application of these Northern Irish insights to the issue of terrorism in other places and especially in the Middle East, may open new and more psychologically sophisticated ways of addressing the problem of terrorism.
NASA Astrophysics Data System (ADS)
Koutiva, Ifigeneia; Makropoulos, Christos
2015-04-01
The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model integration is that it allows the investigation of the effects of different water demand management strategies to an urban population's water demand behaviour and ultimately the effects of these policies to the volume of domestic water demand and the water resources system. The proposed modelling platform is optimised to simulate the effects of water policies during the Athens drought period of 1988-1994. The calibrated modelling platform is then applied to evaluate scenarios of water supply, water demand and water demand management strategies.
NASA Astrophysics Data System (ADS)
Wang, Xian-Jia; Quan, Ji; Liu, Wei-Bing
2012-05-01
This paper studies the continuous prisoner's dilemma games (CPDG) on Barabasi—Albert (BA) networks. In the model, each agent on a vertex of the networks makes an investment and interacts with all of his neighboring agents. Making an investment is costly, but which benefits its neighboring agents, where benefit and cost depend on the level of investment made. The payoff of each agent is given by the sum of payoffs it receives in its interactions with all its neighbors. Not only payoff, individual's guilty emotion in the games has also been considered. The negative guilty emotion produced in comparing with its neighbors can reduce the utility of individuals directly. We assume that the reduction amount depends on the individual's degree and a baseline level parameter. The group's cooperative level is characterized by the average investment of the population. Each player makes his investment in the next step based on a convex combination of the investment of his best neighbors in the last step, his best history strategies in the latest steps which number is controlled by a memory length parameter, and a uniformly distributed random number. Simulation results show that this degree-dependent guilt mechanism can promote the evolution of cooperation dramatically comparing with degree-independent guilt or no guilt cases. Imitation, memory, uncertainty coefficients and network structure also play determinant roles in the cooperation level of the population. All our results may shed some new light on studying the evolution of cooperation based on network reciprocity mechanisms.
ERIC Educational Resources Information Center
Coyle, Do; Halbach, Ana; Meyer, Oliver; Schuck, Kevin
2018-01-01
This article explores how a group of educators and researchers enacted an inclusive process of conceptual growth involving teachers and teacher educators as active agents, knowledge builders and meaning-makers in the development of a Pluriliteracies approach to Teaching for Learning (PTL). The evolution of a working model based on five emergent…
Symmetry-based reciprocity: evolutionary constraints on a proximate mechanism
Campennì, Marco
2016-01-01
Background. While the evolution of reciprocal cooperation has attracted an enormous attention, the proximate mechanisms underlying the ability of animals to cooperate reciprocally are comparatively neglected. Symmetry-based reciprocity is a hypothetical proximate mechanism that has been suggested to be widespread among cognitively unsophisticated animals. Methods. We developed two agent-based models of symmetry-based reciprocity (one relying on an arbitrary tag and the other on interindividual proximity) and tested their ability both to reproduce significant emergent features of cooperation in group living animals and to promote the evolution of cooperation. Results. Populations formed by agents adopting symmetry-based reciprocity showed differentiated “social relationships” and a positive correlation between cooperation given and received: two common aspects of animal cooperation. However, when reproduction and selection across multiple generations were added to the models, agents adopting symmetry-based reciprocity were outcompeted by selfish agents that never cooperated. Discussion. In order to evolve, hypothetical proximate mechanisms must be able to stand competition from alternative strategies. While the results of our simulations require confirmation using analytical methods, we provisionally suggest symmetry-based reciprocity is to be abandoned as a possible proximate mechanism underlying the ability of animals to reciprocate cooperative interactions. PMID:26998412
Symmetry-based reciprocity: evolutionary constraints on a proximate mechanism.
Campennì, Marco; Schino, Gabriele
2016-01-01
Background. While the evolution of reciprocal cooperation has attracted an enormous attention, the proximate mechanisms underlying the ability of animals to cooperate reciprocally are comparatively neglected. Symmetry-based reciprocity is a hypothetical proximate mechanism that has been suggested to be widespread among cognitively unsophisticated animals. Methods. We developed two agent-based models of symmetry-based reciprocity (one relying on an arbitrary tag and the other on interindividual proximity) and tested their ability both to reproduce significant emergent features of cooperation in group living animals and to promote the evolution of cooperation. Results. Populations formed by agents adopting symmetry-based reciprocity showed differentiated "social relationships" and a positive correlation between cooperation given and received: two common aspects of animal cooperation. However, when reproduction and selection across multiple generations were added to the models, agents adopting symmetry-based reciprocity were outcompeted by selfish agents that never cooperated. Discussion. In order to evolve, hypothetical proximate mechanisms must be able to stand competition from alternative strategies. While the results of our simulations require confirmation using analytical methods, we provisionally suggest symmetry-based reciprocity is to be abandoned as a possible proximate mechanism underlying the ability of animals to reciprocate cooperative interactions.
Evolution of tag-based cooperation on Erdős-Rényi random graphs
NASA Astrophysics Data System (ADS)
Lima, F. W. S.; Hadzibeganovic, Tarik; Stauffer, Dietrich
2014-12-01
Here, we study an agent-based model of the evolution of tag-mediated cooperation on Erdős-Rényi random graphs. In our model, agents with heritable phenotypic traits play pairwise Prisoner's Dilemma-like games and follow one of the four possible strategies: Ethnocentric, altruistic, egoistic and cosmopolitan. Ethnocentric and cosmopolitan strategies are conditional, i.e. their selection depends upon the shared phenotypic similarity among interacting agents. The remaining two strategies are always unconditional, meaning that egoists always defect while altruists always cooperate. Our simulations revealed that ethnocentrism can win in both early and later evolutionary stages on directed random graphs when reproduction of artificial agents was asexual; however, under the sexual mode of reproduction on a directed random graph, we found that altruists dominate initially for a rather short period of time, whereas ethnocentrics and egoists suppress other strategists and compete for dominance in the intermediate and later evolutionary stages. Among our results, we also find surprisingly regular oscillations which are not damped in the course of time even after half a million Monte Carlo steps. Unlike most previous studies, our findings highlight conditions under which ethnocentrism is less stable or suppressed by other competing strategies.
Co-composting of vegetable wastes and carton: Effect of carton composition and parameter variations.
Rawoteea, Soonita Anjeena; Mudhoo, Ackmez; Kumar, Sunil
2017-03-01
The aim of the study was to investigate the effects of carton in the composting process of mixed vegetable wastes using an experimental composter of capacity 80L. Three different mixes were set-up (Mixes 1, 2 and 3) which consisted of vegetable wastes, 2.0kg paper and bulking agents, vegetable wastes, 1.5kg carton and bulking agents, vegetable wastes, 4.5kg carton and bulking agents, respectively. Temperature evolution, pH trends, moisture levels, respiration rates, percentage volatile solids and electrical conductivity were monitored for a period of 50days. The system remained under thermophilic conditions for a very short period due to the small size of the reactor. The three mixes did not exceed a temperature of 55°C, where sanitization takes place by the destruction of pathogens. The highest peak of CO 2 evolution was observed in Mix 2 indicating that maximum microbial degradation took place in that mix. Copyright © 2016. Published by Elsevier Ltd.
EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalomeni, B.; Rappaport, S.; Molnar, M.
We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43more » donor-star masses (0.1–4.7 M {sub ⊙}), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P {sub orb}– M {sub don}) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P {sub orb}( M {sub wd}) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P {sub orb}– M {sub don} the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.« less
Evolution of Cataclysmic Variables and Related Binaries Containing a White Dwarf
NASA Astrophysics Data System (ADS)
Kalomeni, B.; Nelson, L.; Rappaport, S.; Molnar, M.; Quintin, J.; Yakut, K.
2016-12-01
We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1-4.7 M ⊙), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass (P orb-M don) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P orb(M wd) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P orb-M don the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.
Scheen, A J
1998-05-01
The demonstration that stains reduce the risk of cardiovascular diseases, in both secondary and primary prevention trials, led to the recent publication of sophisticated pharmaco-economical studies. A lot of factors may influence the cost-effectiveness ratio of the pharmacological intervention, especially the mode of calculation of various costs, the initial level of cardiovascular risk of the patients and the medico-economical particularities of each country. What so ever, available studies appear to justify the use of statins in secondary prevention, i.e. in coronary patients, even those with only a moderate hypercholesterolaemia, and, in primary prevention, i.e in hypercholesterolaemia individuals with obvious high risk of cardiovascular disease.
Cutaneous Scarring: A Clinical Review
Baker, Richard; Urso-Baiarda, Fulvio; Linge, Claire; Grobbelaar, Adriaan
2009-01-01
Cutaneous scarring can cause patients symptoms ranging from the psychological to physical pain. Although the process of normal scarring is well described the ultimate cause of pathological scarring remains unknown. Similarly, exactly how early gestation fetuses can heal scarlessly remains unsolved. These questions are crucial in the search for a preventative or curative antiscarring agent. Such a discovery would be of enormous medical and commercial importance, not least because it may have application in other tissues. In the clinical context the assessment of scars is becoming more sophisticated and new physical, medical and surgical therapies are being introduced. This review aims to summarise some of the recent developments in scarring research for non-specialists and specialists alike. PMID:20585482
Nano-Carbon-Based Systems for the Delivery of Bioactive Agents:. Pros and Cons
NASA Astrophysics Data System (ADS)
Nayak, Tapas R.; Pastorin, Giorgia
2013-09-01
Nanotechnology has become a distinctive field of research, aimed to modernize the way scientists have addressed urgent needs and sophisticated problems, towards the achievement of unprecedented discoveries. Amidst the myriad of materials extensively used in the modern society, carbon-based systems seem to embody a significant role especially where endurance and strength are required: carbon nanoparticles, nanotubes, graphite, diamonds and fullerenes et al. In addition to the above advantages, this review also emphasizes some concerns on the carbonnanosystems and which are mainly attributable to the lack of an exhaustive characterization and to the potential hazardous effects deriving from their potential accumulation in the environment and inside the body.
Agent-Based Model Approach to Complex Phenomena in Real Economy
NASA Astrophysics Data System (ADS)
Iyetomi, H.; Aoyama, H.; Fujiwara, Y.; Ikeda, Y.; Souma, W.
An agent-based model for firms' dynamics is developed. The model consists of firm agents with identical characteristic parameters and a bank agent. Dynamics of those agents are described by their balance sheets. Each firm tries to maximize its expected profit with possible risks in market. Infinite growth of a firm directed by the ``profit maximization" principle is suppressed by a concept of ``going concern". Possibility of bankruptcy of firms is also introduced by incorporating a retardation effect of information on firms' decision. The firms, mutually interacting through the monopolistic bank, become heterogeneous in the course of temporal evolution. Statistical properties of firms' dynamics obtained by simulations based on the model are discussed in light of observations in the real economy.
The evolution of gadolinium based contrast agents: from single-modality to multi-modality
NASA Astrophysics Data System (ADS)
Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.
2016-05-01
Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.
Multi-Agent Simulations of Earth's Dynamics: Towards a Virtual Laboratory for Plate Tectonics
NASA Astrophysics Data System (ADS)
Grigne, C.; Combes, M.; Tisseau, C.; LeYaouanq, S.; Parenthoen, M.; Tisseau, J.
2012-12-01
MACMA (Multi-Agent Convective MAntle) is a new tool developed at Laboratoire Domaines Océaniques (UMR CNRS 6538) and CERV-LabSTICC (Centre Européen de Réalité Virtuelle, UMR CNRS 6285) to simulate evolutive plates tectonics and mantle convection in a 2-D cylindrical geometry (Combes et al., 2012). In this approach, ridges, subduction zones, continents and convective cells are agents, whose behavior is controlled by analytical and phenomenological laws. These agents are autonomous entities which collect information from their environment and interact with each other. The dynamics of the system is mainly based on a force balance on each plate, that accounts for slab pull, ridge push, bending dissipation and viscous convective drag. Insulating continents are accounted for. Tectonic processes such as trench migration, plate suturing or continental breakup are controlled by explicit parameterizations. A heat balance is used to compute Earth's thermal evolution as a function of seafloor age distribution. We thereby obtain an evolutive system where the geometry and the number of tectonic plates are not imposed but emerge naturally from its dynamical history. Our approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the Earth. MACMA can thus be seen as a 'plate tectonics virtual laboratory'. We can test not only the effect of input parameters, such as mantle initial temperature and viscosity, initial plate tectonics configuration, number and geometry of continents etc., but also study the effect of the analytical and empirical rules that we are using to describe the system. These rules can be changed at any time, and MACMA is an evolutive tool that can easily integrate new behavioral laws. Even poorly understood processes, that cannot be accounted for with differential equations, can be studied with this virtual laboratory. For Earth-like input parameters, MACMA yields plate velocities and heat flux that are in good agreement with observations. The long-term thermal evolution of the Earth obtained with our model shows a slow monotonous decrease of mantle mean temperature, with a cooling rate of around 50-100 K per billion years, which is in good agreement with petrological and geochemical constraints. Heat flux and plate velocities show a more irregular evolution, because tectonic events, such as a continental breakup, give rise to abrupt changes in Earth's surface dynamics and heat loss. Therefore MACMA is a powerful tool to study in a systematic way the effect of local events (subduction initiation, continental breakup, ridge vanishing) on plate reorganizations and global surface dynamics.
Iterated learning and the evolution of language.
Kirby, Simon; Griffiths, Tom; Smith, Kenny
2014-10-01
Iterated learning describes the process whereby an individual learns their behaviour by exposure to another individual's behaviour, who themselves learnt it in the same way. It can be seen as a key mechanism of cultural evolution. We review various methods for understanding how behaviour is shaped by the iterated learning process: computational agent-based simulations; mathematical modelling; and laboratory experiments in humans and non-human animals. We show how this framework has been used to explain the origins of structure in language, and argue that cultural evolution must be considered alongside biological evolution in explanations of language origins. Copyright © 2014 Elsevier Ltd. All rights reserved.
An agent-based approach to financial stylized facts
NASA Astrophysics Data System (ADS)
Shimokawa, Tetsuya; Suzuki, Kyoko; Misawa, Tadanobu
2007-06-01
An important challenge of the financial theory in recent years is to construct more sophisticated models which have consistencies with as many financial stylized facts that cannot be explained by traditional models. Recently, psychological studies on decision making under uncertainty which originate in Kahneman and Tversky's research attract a lot of interest as key factors which figure out the financial stylized facts. These psychological results have been applied to the theory of investor's decision making and financial equilibrium modeling. This paper, following these behavioral financial studies, would like to propose an agent-based equilibrium model with prospect theoretical features of investors. Our goal is to point out a possibility that loss-averse feature of investors explains vast number of financial stylized facts and plays a crucial role in price formations of financial markets. Price process which is endogenously generated through our model has consistencies with, not only the equity premium puzzle and the volatility puzzle, but great kurtosis, asymmetry of return distribution, auto-correlation of return volatility, cross-correlation between return volatility and trading volume. Moreover, by using agent-based simulations, the paper also provides a rigorous explanation from the viewpoint of a lack of market liquidity to the size effect, which means that small-sized stocks enjoy excess returns compared to large-sized stocks.
Hofree, Galit; Ruvolo, Paul; Reinert, Audrey; Bartlett, Marian S; Winkielman, Piotr
2018-01-01
Facial actions are key elements of non-verbal behavior. Perceivers' reactions to others' facial expressions often represent a match or mirroring (e.g., they smile to a smile). However, the information conveyed by an expression depends on context. Thus, when shown by an opponent, a smile conveys bad news and evokes frowning. The availability of anthropomorphic agents capable of facial actions raises the question of how people respond to such agents in social context. We explored this issue in a study where participants played a strategic game with or against a facially expressive android. Electromyography (EMG) recorded participants' reactions over zygomaticus muscle (smiling) and corrugator muscle (frowning). We found that participants' facial responses to android's expressions reflect their informational value, rather than a direct match. Overall, participants smiled more, and frowned less, when winning than losing. Critically, participants' responses to the game outcome were similar regardless of whether it was conveyed via the android's smile or frown. Furthermore, the outcome had greater impact on people's facial reactions when it was conveyed through android's face than a computer screen. These findings demonstrate that facial actions of artificial agents impact human facial responding. They also suggest a sophistication in human-robot communication that highlights the signaling value of facial expressions.
Synthesis of Elongated Microcapsules
NASA Technical Reports Server (NTRS)
Li, Wenyan; Buhrow, Jerry; Calle, Luz M.
2011-01-01
One of the factors that influence the effectiveness of self-healing in functional materials is the amount of liquid healing agents that can be delivered to the damaged area. The use of hollow tubes or fibers and the more sophisticated micro-vascular networks has been proposed as a way to increase the amount of healing agents that can be released when damage is inflicted. Although these systems might be effective in some specific applications, they are not practical for coatings applications. One possible practical way to increase the healing efficiency is to use microcapsules with high-aspect-ratios, or elongated microcapsules. It is understood that elongated microcapsules will be more efficient because they can release more healing agent than a spherical microcapsule when a crack is initiated in the coating. Although the potential advantage of using elongated microcapsules for self healing applications is clear, it is very difficult to make elongated microcapsules from an emulsion system because spherical microcapsules are normally formed due to the interfacial tension between the dispersed phase and the continuous phase. This paper describes the two methods that have been developed by the authors to synthesize elongated microcapsules. The first method involves the use of an emulsion with intermediate stability and the second involves the application of mechanical shear conditions to the emulsion.
Network flow of mobile agents enhances the evolution of cooperation
NASA Astrophysics Data System (ADS)
Ichinose, G.; Satotani, Y.; Nagatani, T.
2018-01-01
We study the effect of contingent movement on the persistence of cooperation on complex networks with empty nodes. Each agent plays the Prisoner's Dilemma game with its neighbors and then it either updates the strategy depending on the payoff difference with neighbors or it moves to another empty node if not satisfied with its own payoff. If no neighboring node is empty, each agent stays at the same site. By extensive evolutionary simulations, we show that the medium density of agents enhances cooperation where the network flow of mobile agents is also medium. Moreover, if the movements of agents are more frequent than the strategy updating, cooperation is further promoted. In scale-free networks, the optimal density for cooperation is lower than other networks because agents get stuck at hubs. Our study suggests that keeping a smooth network flow is significant for the persistence of cooperation in ever-changing societies.
Adaptive evolution of voltage-gated sodium channels: The first 800 million years
Zakon, Harold H.
2012-01-01
Voltage-gated Na+-permeable (Nav) channels form the basis for electrical excitability in animals. Nav channels evolved from Ca2+ channels and were present in the common ancestor of choanoflagellates and animals, although this channel was likely permeable to both Na+ and Ca2+. Thus, like many other neuronal channels and receptors, Nav channels predated neurons. Invertebrates possess two Nav channels (Nav1 and Nav2), whereas vertebrate Nav channels are of the Nav1 family. Approximately 500 Mya in early chordates Nav channels evolved a motif that allowed them to cluster at axon initial segments, 50 million years later with the evolution of myelin, Nav channels “capitalized” on this property and clustered at nodes of Ranvier. The enhancement of conduction velocity along with the evolution of jaws likely made early gnathostomes fierce predators and the dominant vertebrates in the ocean. Later in vertebrate evolution, the Nav channel gene family expanded in parallel in tetrapods and teleosts (∼9 to 10 genes in amniotes, 8 in teleosts). This expansion occurred during or after the late Devonian extinction, when teleosts and tetrapods each diversified in their respective habitats, and coincided with an increase in the number of telencephalic nuclei in both groups. The expansion of Nav channels may have allowed for more sophisticated neural computation and tailoring of Nav channel kinetics with potassium channel kinetics to enhance energy savings. Nav channels show adaptive sequence evolution for increasing diversity in communication signals (electric fish), in protection against lethal Nav channel toxins (snakes, newts, pufferfish, insects), and in specialized habitats (naked mole rats). PMID:22723361
2011-01-01
Background We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. Results The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. Conclusions Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution. PMID:21854559
Renfree, Marilyn B; Papenfuss, Anthony T; Deakin, Janine E; Lindsay, James; Heider, Thomas; Belov, Katherine; Rens, Willem; Waters, Paul D; Pharo, Elizabeth A; Shaw, Geoff; Wong, Emily S W; Lefèvre, Christophe M; Nicholas, Kevin R; Kuroki, Yoko; Wakefield, Matthew J; Zenger, Kyall R; Wang, Chenwei; Ferguson-Smith, Malcolm; Nicholas, Frank W; Hickford, Danielle; Yu, Hongshi; Short, Kirsty R; Siddle, Hannah V; Frankenberg, Stephen R; Chew, Keng Yih; Menzies, Brandon R; Stringer, Jessica M; Suzuki, Shunsuke; Hore, Timothy A; Delbridge, Margaret L; Patel, Hardip R; Mohammadi, Amir; Schneider, Nanette Y; Hu, Yanqiu; O'Hara, William; Al Nadaf, Shafagh; Wu, Chen; Feng, Zhi-Ping; Cocks, Benjamin G; Wang, Jianghui; Flicek, Paul; Searle, Stephen M J; Fairley, Susan; Beal, Kathryn; Herrero, Javier; Carone, Dawn M; Suzuki, Yutaka; Sugano, Sumio; Toyoda, Atsushi; Sakaki, Yoshiyuki; Kondo, Shinji; Nishida, Yuichiro; Tatsumoto, Shoji; Mandiou, Ion; Hsu, Arthur; McColl, Kaighin A; Lansdell, Benjamin; Weinstock, George; Kuczek, Elizabeth; McGrath, Annette; Wilson, Peter; Men, Artem; Hazar-Rethinam, Mehlika; Hall, Allison; Davis, John; Wood, David; Williams, Sarah; Sundaravadanam, Yogi; Muzny, Donna M; Jhangiani, Shalini N; Lewis, Lora R; Morgan, Margaret B; Okwuonu, Geoffrey O; Ruiz, San Juana; Santibanez, Jireh; Nazareth, Lynne; Cree, Andrew; Fowler, Gerald; Kovar, Christie L; Dinh, Huyen H; Joshi, Vandita; Jing, Chyn; Lara, Fremiet; Thornton, Rebecca; Chen, Lei; Deng, Jixin; Liu, Yue; Shen, Joshua Y; Song, Xing-Zhi; Edson, Janette; Troon, Carmen; Thomas, Daniel; Stephens, Amber; Yapa, Lankesha; Levchenko, Tanya; Gibbs, Richard A; Cooper, Desmond W; Speed, Terence P; Fujiyama, Asao; Graves, Jennifer A M; O'Neill, Rachel J; Pask, Andrew J; Forrest, Susan M; Worley, Kim C
2011-08-29
We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.
Invisible hand effect in an evolutionary minority game model
NASA Astrophysics Data System (ADS)
Sysi-Aho, Marko; Saramäki, Jari; Kaski, Kimmo
2005-03-01
In this paper, we study the properties of a minority game with evolution realized by using genetic crossover to modify fixed-length decision-making strategies of agents. Although the agents in this evolutionary game act selfishly by trying to maximize their own performances only, it turns out that the whole society will eventually be rewarded optimally. This “invisible hand” effect is what Adam Smith over two centuries ago expected to take place in the context of free market mechanism. However, this behaviour of the society of agents is realized only under idealized conditions, where all agents are utilizing the same efficient evolutionary mechanism. If on the other hand part of the agents are adaptive, but not evolutionary, the system does not reach optimum performance, which is also the case if part of the evolutionary agents form a uniformly acting “cartel”.
Theory of networked minority games based on strategy pattern dynamics.
Lo, T S; Chan, H Y; Hui, P M; Johnson, N F
2004-11-01
We formulate a theory of agent-based models in which agents compete to be in a winning group. The agents may be part of a network or not, and the winning group may be a minority group or not. An important feature of the present formalism is its focus on the dynamical pattern of strategy rankings, and its careful treatment of the strategy ties which arise during the system's temporal evolution. We apply it to the minority game with connected populations. Expressions for the mean success rate among the agents and for the mean success rate for agents with k neighbors are derived. We also use the theory to estimate the value of connectivity p above which the binary-agent-resource system with high resource levels makes the transition into the high-connectivity state.
Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite
Mikheyev, Alexander; Tin, Mandy M. Y.; Watanabe, Yutaka; Matsuura, Kenji
2016-01-01
The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects. PMID:26760975
Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite.
Mitaka, Yuki; Kobayashi, Kazuya; Mikheyev, Alexander; Tin, Mandy M Y; Watanabe, Yutaka; Matsuura, Kenji
2016-01-01
The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects.
Environmental agency in read-alouds
NASA Astrophysics Data System (ADS)
Oliveira, Alandeom W.; Rogers, Patterson; Quigley, Cassie F.; Samburskiy, Denis; Barss, Kimberly; Rivera, Seema
2015-06-01
Despite growing interest in helping students become agents of environmental change who can, through informed decision-making and action-taking, transform environmentally detrimental forms of human activity, science educators have reduced agency to rationality by overlooking sociocultural influences such as norms and values. We tackle this issue by examining how elementary teachers and students negotiate and attribute responsibility, credit, or blame for environmental events during three environmental read-alouds. Our verbal analysis and visual representation of meta-agentive discourse revealed varied patterns of agential attribution. First, humans were simultaneously attributed negative agentive roles (agents of endangerment and imbalance) and positive agentive roles (agents of prevention, mitigation, and balance). Second, while wolves at Yellowstone were constructed as intentional (human-like) agents when they crossed over into the human world to kill livestock in nearby farms, polar bears in the Arctic were denied any form of agential responsibility when they approached people's homes. Third, anthropogenic causation of global warming was constructed as distal and indirect chains of cause and effect (i.e., sophisticated sequences of ripple effects), whereas its mitigation and prevention assumed the form of simple and unidirectional causative links (direct and proximal causality). Fourth, the notion of balance of nature was repeatedly used as a justification for environmental conservation but its cause and dynamic nature remained unclear. And, fifth, while one teacher promoted environmental agency by encouraging students to experience positive emotions such as love of nature, freedom, and oneness with nature, the other teachers encouraged students to experience negative emotions such as self-blame and guilt. This study's main significance is that it highlights the need for environmental educators who set out to promote environmental agency to expand the focus of their instructional efforts beyond rational argumentation and reasoning. It also underscores the importance of increasing school teachers' awareness of implicit discursive messages in particular patterns of environmental agency attribution when discussing environmental issues with students and implementing pedagogical strategies centered on oral deliberation such as read-alouds.
From molecular evolution to biobricks and synthetic modules: a lesson by the bacterial flagellum.
Altegoer, Florian; Schuhmacher, Jan; Pausch, Patrick; Bange, Gert
2014-10-01
The bacterial flagellum is a motility structure and represents one of the most sophisticated nanomachines in the biosphere. Here, we review the current knowledge on the flagellum, its architecture with respect to differences between Gram-negative and Gram-positive bacteria and other species-specific variations (e.g. the flagellar filament protein, Flagellin). We further focus on the mechanism by which the two nucleotide-binding proteins FlhF and FlhG ensure the correct reproduction of flagella place and number (the flagellation pattern). We will finish the review with an overview of current biotechnological applications, and a perspective of how understanding flagella can contribute to developing modules for synthetic approaches.
Substrate-Influenced Thermo-Mechanical Fatigue of Copper Metallizations: Limits of Stoney’s Equation
Bigl, Stephan; Wurster, Stefan; Cordill, Megan J.
2017-01-01
Rapid progress in the reduction of substrate thickness for silicon-based microelectronics leads to a significant reduction of the device bending stiffness and the need to address its implication for the thermo-mechanical fatigue behavior of metallization layers. Results on 5 µm thick Cu films reveal a strong substrate thickness-dependent microstructural evolution. Substrates with hs = 323 and 220 µm showed that the Cu microstructure exhibits accelerated grain growth and surface roughening. Moreover, curvature-strain data indicates that Stoney’s simplified curvature-stress relation is not valid for thin substrates with regard to the expected strains, but can be addressed using more sophisticated plate bending theories. PMID:29120407
Phylogenetic Analyses: A Toolbox Expanding towards Bayesian Methods
Aris-Brosou, Stéphane; Xia, Xuhua
2008-01-01
The reconstruction of phylogenies is becoming an increasingly simple activity. This is mainly due to two reasons: the democratization of computing power and the increased availability of sophisticated yet user-friendly software. This review describes some of the latest additions to the phylogenetic toolbox, along with some of their theoretical and practical limitations. It is shown that Bayesian methods are under heavy development, as they offer the possibility to solve a number of long-standing issues and to integrate several steps of the phylogenetic analyses into a single framework. Specific topics include not only phylogenetic reconstruction, but also the comparison of phylogenies, the detection of adaptive evolution, and the estimation of divergence times between species. PMID:18483574
Hybrid and endovascular therapy for extensive thoracoabdominal aortic disease.
Riga, Celia V; Bicknell, Colin D; Cheshire, Nicholas J W
2010-12-01
The past 4 decades have witnessed tremendous strides in the evolution of endovascular technology with increased operator experience, greater availability of more sophisticated and versatile endovascular devices, and advances in imaging modalities. In an attempt to limit the physiologic derangements associated with aortic crossclamping and extensive tissue dissection during traditional open surgical repair of extensive thoracoabdominal aortic aneurysms, less invasive strategies have been explored using endovascular technology: hybrid approaches and solely endovascular techniques. This article describes these techniques and their advantages, their current role in thoracoabdominal aortic aneurysm repair and potential future developments in this field. Copyright © 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
El Karkouri, Khalid; Kowalczewska, Malgorzata; Armstrong, Nicholas; Azza, Said; Fournier, Pierre-Edouard; Raoult, Didier
2017-01-01
Arthropod-borne Rickettsia species are obligate intracellular bacteria which are pathogenic for humans. Within this genus, Rickettsia slovaca and Rickettsia conorii cause frequent and potentially severe infections, whereas Rickettsia raoultii and Rickettsia massiliae cause rare and milder infections. All four species belong to spotted fever group (SFG) rickettsiae. However, R. slovaca and R. raoultii cause scalp eschar and neck lymphadenopathy (SENLAT) and are mainly associated with Dermacentor ticks, whereas the other two species cause Mediterranean spotted fever (MSF) and are mainly transmitted by Rhipicephalus ticks. To identify the potential genes and protein profiles and to understand the evolutionary processes that could, comprehensively, relate to the differences in virulence and pathogenicity observed between these four species, we compared their genomes and proteomes. The virulent and milder agents displayed divergent phylogenomic evolution in two major clades, whereas either SENLAT or MSF disease suggests a discrete convergent evolution of one virulent and one milder agent, despite their distant genetic relatedness. Moreover, the two virulent species underwent strong reductive genomic evolution and protein structural variations, as well as a probable loss of plasmid(s), compared to the two milder species. However, an abundance of mobilome genes was observed only in the less pathogenic species. After infecting Xenopus laevis cells, the virulent agents displayed less up-regulated than down-regulated proteins, as well as less number of identified core proteins. Furthermore, their similar and distinct protein profiles did not contain some genes (e.g., omp A/B and rick A) known to be related to rickettsial adhesion, motility and/or virulence, but may include other putative virulence-, antivirulence-, and/or disease-related proteins. The identified evolutionary forces herein may have a strong impact on intracellular expressions and strategies in these rickettsiae, and that may contribute to the emergence of distinct virulence and diseases in humans. Thus, the current multi-omics data provide new insights into the evolution and fitness of SFG virulence and pathogenicity, and intracellular pathogenic bacteria.
Does the nature of science influence college students' learning of biological evolution?
NASA Astrophysics Data System (ADS)
Butler, Wilbert, Jr.
This quasi-experimental, mixed-methods study assessed the influence of the nature of science (NOS) instruction on college students' learning of biological evolution. In this research, conducted in two introductory biology courses, in each course the same instruction was employed, with one important exception: in the experimental section students were involved in an explicit, reflective treatment of the nature of science (Explicit, reflective NOS), in the traditional treatment section, NOS was implicitly addressed (traditional treatment). In both sections, NOS aspects of science addressed included is tentative, empirically based, subjective, inferential, and based on relationship between scientific theories and laws. Students understanding of evolution, acceptance of evolution, and understanding of the nature of science were assessed before, during and after instruction. Data collection entailed qualitative and quantitative methods including Concept Inventory for Natural Selection (CINS), Measure of Acceptance of the Theory of Evolution (MATE) survey, Views of nature of Science (VNOS-B survey), as well as interviews, classroom observations, and journal writing to address understand students' views of science and understanding and acceptance of evolution. The quantitative data were analyzed via inferential statistics and the qualitative data were analyzed using grounded theory. The data analysis allowed for the construction and support for four assertions: Assertion 1: Students engaged in explicit and reflective NOS specific instruction significantly improved their understanding of the nature of science concepts. Alternatively, students engaged in instruction using an implicit approach to the nature of science did not improve their understanding of the nature of science to the same degree. The VNOS-B results indicated that students in the explicit, reflective NOS class showed the better understanding of the NOS after the course than students in the implicit NOS class. The increased understanding of NOS demonstrated by students in the explicit, reflective NOS class compared to students in the implicit NOS class can be attributed to the students' engagement in explicit and reflective NOS instruction that was absent in the implicit NOS class. Post VNOS results from students in the explicit, reflective NOS class showed marked improvement in the targeted aspects of NOS (empirical nature of scientific knowledge, inferential nature of scientific knowledge, subjective nature of scientific knowledge, the distinction between scientific law and theory, and the tentative nature of scientific knowledge) compared to the result of the pretest while the scores of students in the implicit NOS class demonstrated little change. Assertion 2: Students in the explicit, reflective NOS class section made greater gains in their understanding of evolution than students in the traditional class. The explicit, reflective NOS class demonstrated a statistically significant improvement in their understanding of biological evolution after the course, while the changes observed in the implicit NOS group were not found to be statistically significant---this despite that the manner in which evolution was taught was held constant across the two sections. Thus, the explicit, reflective NOS approach to the teaching of biological evolution seems to be more effective than many discussed in the literature in supporting student learning about evolution. Assertion 3: The conceptual gains by students in the explicit, reflective NOS course section were allowed by the affective "room" that a sophisticated understanding of the nature of the nature of science provides in a classroom. The data collected from this study collectively indicate that a sophisticated understanding of NOS allows students to recognize the boundaries of science. We argue that an explicit and reflective engagement of the NOS aspects helps the students understand the defining aspects of science better. Assertion 4: A change in students' understanding of evolution does not necessitate a change in students' acceptance of evolution. The results showed that students engaged in explicit and reflective NOS specific instruction significantly improved their understanding of NOS concepts and the understanding of evolution. However, there was not a significant change in acceptance of evolution related to the change in understanding. These results demonstrate that the nature of science instruction plays an important role in the teaching and learning of biological evolution. Nevertheless, this NOS instruction must be explicit and reflective in nature. Students that engage explicitly and reflectively on specific tenets of NOS not only developed a better understanding of the NOS aspects but also a better understanding of biological evolution. Therefore, science teachers in elementary, middle, secondary and post-secondary education should consider implementing an explicit, reflective approach to the nature of science into their science curriculum not only for teaching evolution but for other controversial topics as well. (Abstract shortened by UMI.)
An Agent-Based Dynamic Model for Analysis of Distributed Space Exploration Architectures
NASA Astrophysics Data System (ADS)
Sindiy, Oleg V.; DeLaurentis, Daniel A.; Stein, William B.
2009-07-01
A range of complex challenges, but also potentially unique rewards, underlie the development of exploration architectures that use a distributed, dynamic network of resources across the solar system. From a methodological perspective, the prime challenge is to systematically model the evolution (and quantify comparative performance) of such architectures, under uncertainty, to effectively direct further study of specialized trajectories, spacecraft technologies, concept of operations, and resource allocation. A process model for System-of-Systems Engineering is used to define time-varying performance measures for comparative architecture analysis and identification of distinguishing patterns among interoperating systems. Agent-based modeling serves as the means to create a discrete-time simulation that generates dynamics for the study of architecture evolution. A Solar System Mobility Network proof-of-concept problem is introduced representing a set of longer-term, distributed exploration architectures. Options within this set revolve around deployment of human and robotic exploration and infrastructure assets, their organization, interoperability, and evolution, i.e., a system-of-systems. Agent-based simulations quantify relative payoffs for a fully distributed architecture (which can be significant over the long term), the latency period before they are manifest, and the up-front investment (which can be substantial compared to alternatives). Verification and sensitivity results provide further insight on development paths and indicate that the framework and simulation modeling approach may be useful in architectural design of other space exploration mass, energy, and information exchange settings.
Evolution and the origin of the visual retinoid cycle in vertebrates.
Kusakabe, Takehiro G; Takimoto, Noriko; Jin, Minghao; Tsuda, Motoyuki
2009-10-12
Absorption of a photon by visual pigments induces isomerization of 11-cis-retinaldehyde (RAL) chromophore to all-trans-RAL. Since the opsins lacking 11-cis-RAL lose light sensitivity, sustained vision requires continuous regeneration of 11-cis-RAL via the process called 'visual cycle'. Protostomes and vertebrates use essentially different machinery of visual pigment regeneration, and the origin and early evolution of the vertebrate visual cycle is an unsolved mystery. Here we compare visual retinoid cycles between different photoreceptors of vertebrates, including rods, cones and non-visual photoreceptors, as well as between vertebrates and invertebrates. The visual cycle systems in ascidians, the closest living relatives of vertebrates, show an intermediate state between vertebrates and non-chordate invertebrates. The ascidian larva may use retinochrome-like opsin as the major isomerase. The entire process of the visual cycle can occur inside the photoreceptor cells with distinct subcellular compartmentalization, although the visual cycle components are also present in surrounding non-photoreceptor cells. The adult ascidian probably uses RPE65 isomerase, and trans-to-cis isomerization may occur in distinct cellular compartments, which is similar to the vertebrate situation. The complete transition to the sophisticated retinoid cycle of vertebrates may have required acquisition of new genes, such as interphotoreceptor retinoid-binding protein, and functional evolution of the visual cycle genes.
Evolution of language: Lessons from the genome.
Fisher, Simon E
2017-02-01
The post-genomic era is an exciting time for researchers interested in the biology of speech and language. Substantive advances in molecular methodologies have opened up entire vistas of investigation that were not previously possible, or in some cases even imagined. Speculations concerning the origins of human cognitive traits are being transformed into empirically addressable questions, generating specific hypotheses that can be explicitly tested using data collected from both the natural world and experimental settings. In this article, I discuss a number of promising lines of research in this area. For example, the field has begun to identify genes implicated in speech and language skills, including not just disorders but also the normal range of abilities. Such genes provide powerful entry points for gaining insights into neural bases and evolutionary origins, using sophisticated experimental tools from molecular neuroscience and developmental neurobiology. At the same time, sequencing of ancient hominin genomes is giving us an unprecedented view of the molecular genetic changes that have occurred during the evolution of our species. Synthesis of data from these complementary sources offers an opportunity to robustly evaluate alternative accounts of language evolution. Of course, this endeavour remains challenging on many fronts, as I also highlight in the article. Nonetheless, such an integrated approach holds great potential for untangling the complexities of the capacities that make us human.
Danes commemorating Darwin: apes and evolution at the 1909 anniversary.
Hjermitslev, Hans Henrik
2010-10-01
This article analyses the Danish 1909 celebrations of the centenary of Charles Darwin's birth on 12 February 1809. I argue that the 1909 meetings, lectures and publications devoted to Darwin and his theory of evolution by natural selection can be characterised by ambivalence: on the one hand, tribute to a great man of science who established a new view of nature and, on the other hand, scepticism towards the Darwinian mechanism of natural selection and the wider religious and political implications drawn from his theory. The article examines both professional and popular commemorative activities, focusing primarily on celebratory articles carried in widely circulated magazines and newspapers. I identify three types of interpretations of Darwin's ideas which I characterise as 'radical', 'evangelical' and 'safe' science. These different positions were closely linked to the political and cultural divisions of the periodical press. Moreover, my analysis of the popular press offers a solid basis for asserting that to most people Darwinism was associated with human evolution, primarily the relationship between man and apes, while more sophisticated discussions about the crisis of Darwinism prominent among naturalists played only a secondary role in the public arena. This article demonstrates the value of using newspapers as historical sources when looking for public images of Darwin, popular receptions of Darwinism and representations of science in general.
Sophistry, the Sophists and modern medical education.
Macsuibhne, S P
2010-01-01
The term 'sophist' has become a term of intellectual abuse in both general discourse and that of educational theory. However the actual thought of the fifth century BC Athenian-based philosophers who were the original Sophists was very different from the caricature. In this essay, I draw parallels between trends in modern medical educational practice and the thought of the Sophists. Specific areas discussed are the professionalisation of medical education, the teaching of higher-order characterological attributes such as personal development skills, and evidence-based medical education. Using the specific example of the Sophist Protagoras, it is argued that the Sophists were precursors of philosophical approaches and practices of enquiry underlying modern medical education.
Bickel, Balthasar; Witzlack-Makarevich, Alena; Choudhary, Kamal K; Schlesewsky, Matthias; Bornkessel-Schlesewsky, Ina
2015-01-01
Do principles of language processing in the brain affect the way grammar evolves over time or is language change just a matter of socio-historical contingency? While the balance of evidence has been ambiguous and controversial, we identify here a neurophysiological constraint on the processing of language that has a systematic effect on the evolution of how noun phrases are marked by case (i.e. by such contrasts as between the English base form she and the object form her). In neurophysiological experiments across diverse languages we found that during processing, participants initially interpret the first base-form noun phrase they hear (e.g. she…) as an agent (which would fit a continuation like … greeted him), even when the sentence later requires the interpretation of a patient role (as in … was greeted). We show that this processing principle is also operative in Hindi, a language where initial base-form noun phrases most commonly denote patients because many agents receive a special case marker ("ergative") and are often left out in discourse. This finding suggests that the principle is species-wide and independent of the structural affordances of specific languages. As such, the principle favors the development and maintenance of case-marking systems that equate base-form cases with agents rather than with patients. We confirm this evolutionary bias by statistical analyses of phylogenetic signals in over 600 languages worldwide, controlling for confounding effects from language contact. Our findings suggest that at least one core property of grammar systematically adapts in its evolution to the neurophysiological conditions of the brain, independently of socio-historical factors. This opens up new avenues for understanding how specific properties of grammar have developed in tight interaction with the biological evolution of our species.
Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G
2012-06-01
This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wattawa, Scott
1995-11-01
Offering interactive services and data in a hybrid fiber/coax cable system requires the coordination of a host of operations and business support systems. New service offerings and network growth and evolution create never-ending changes in the network infrastructure. Agent-based enterprise models provide a flexible mechanism for systems integration of service and support systems. Agent models also provide a mechanism to decouple interactive services from network architecture. By using the Java programming language, agents may be made safe, portable, and intelligent. This paper investigates the application of the Object Management Group's Common Object Request Brokering Architecture to the integration of a multiple services metropolitan area network.
Formation of Common Investment Networks by Project Establishment between Agents
NASA Astrophysics Data System (ADS)
Navarro-Barrientos, Jesús Emeterio
We present an investment model integrated with trust and reputation mechanisms where agents interact with each other to establish investment projects. We investigate the establishment of investment projects, the influence of the interaction between agents in the evolution of the distribution of wealth as well as the formation of common investment networks and some of their properties. Simulation results show that the wealth distribution presents a power law in its tail. Also, it is shown that the trust and reputation mechanism proposed leads to the establishment of networks among agents, presenting some of the typical characteristics of real-life networks like a high clustering coefficient and short average path length.
Facile synthesis and shape evolution of oleic acid decorated Cu2O microcrystals
NASA Astrophysics Data System (ADS)
Xu, Bin; Cao, Xiaohai; Zhu, Bingchun; Lou, Baiyang; Ma, Xiaocun; Li, Xiao; Wang, Yuguang
2015-11-01
A facile synthetic method of oleic acid decorated Cu2O microcrystals has been developed by thermal decomposition of copper formate-octylamine complexes in paraffin using oleic acid as dispersing agent. This new method showed many advantages, which include free-reducing agent, enhancing antioxidant properties of Cu2O and good dispersity in paraffin, etc. The phase structure and morphology were investigated by means of XRD, SEM and TEM. It is found that the reaction time and temperature play the important roles in the crystallite morphology. With the increase of the reaction time, the Cu2O rhombic dodecahedron is gradually transformed into the spherical particle by intraparticle ripening. The shape evolution of Cu2O microcrystals can be accelerated with the increase of temperature.
de la Escosura-Muñiz, Alfredo; Sánchez-Espinel, Christian; Díaz-Freitas, Belén; González-Fernández, Africa; Maltez-da Costa, Marisa; Merkoçi, Arben
2009-12-15
There is a high demand for simple, rapid, efficient, and user-friendly alternative methods for the detection of cells in general and, in particular, for the detection of cancer cells. A biosensor able to detect cells would be an all-in-one dream device for such applications. The successful integration of nanoparticles into cell detection assays could allow for the development of this novel class of cell sensors. Indeed, their application could well have a great future in diagnostics, as well as other fields. As an example of a novel biosensor, we report here an electrocatalytic device for the specific identification of tumor cells that quantifies gold nanoparticles (AuNPs) coupled with an electrotransducing platform/sensor. Proliferation and adherence of tumor cells are achieved on the electrotransducer/detector, which consists of a mass-produced screen-printed carbon electrode (SPCE). In situ identification/quantification of tumor cells is achieved with a detection limit of 4000 cells per 700 microL of suspension. This novel and selective cell-sensing device is based on the reaction of cell surface proteins with specific antibodies conjugated with AuNPs. Final detection requires only a couple of minutes, taking advantage of the catalytic properties of AuNPs on hydrogen evolution. The proposed detection method does not require the chemical agents used in most existing assays for the detection of AuNPs. It allows for the miniaturization of the system and is much cheaper than other expensive and sophisticated methods used for tumor cell detection. We envisage that this device could operate in a simple way as an immunosensor or DNA sensor. Moreover, it could be used, even by inexperienced staff, for the detection of protein molecules or DNA strands.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Smith, J. A.; Yang, L.; Baeck, M. L.; Liu, S.; Ten Veldhuis, M. C.
2016-12-01
The objective of this study is to develop a broad characterization of land surface and hydrometeorological controls of urban flood frequency. We focus on a collection of "small" urban watersheds (with drainage area ranging from 7 to 200 km2) in Charlotte metropolitan region, North Carolina. These watersheds are contrasted by a variety of land surface properties, such as size, shape, land use/land cover type, impervious coverage pattern, stormwater infrastructure, etc. We carried out empirical analyses based on long-term (15 years), high-resolution (1 15 minutes) instantaneous USGS stream gaging observations as well as bias-corrected, high-resolution (1 km2, 15 min) radar rainfall fields developed through the Hydro-NEXRAD system. Extreme floods in Charlotte urban watersheds are primarily induced by a mixture of flood agents including warm season thunderstorms and tropical cyclones, which ultimately contributed to the upper-tail properties of flood frequency. Flood response in urban watersheds is dominantly dictated by space-time characteristics of rainfall, with relatively significant correlation between runoff and rainfall over more developed watersheds. The roles of antecedent soil moisture and stormwater management infrastructure in flood response are also contrasted across the urban watersheds. The largest variability of flood response, in terms of flood peak and timing, exists in the watershed at a scale of 100 km2. The scale-dependent hydrological response is closely related to the pattern and evolution of urban development across watersheds. Our analyses show the complexities of urban flood response in Charlotte metropolitan region. There are no simple metrics that could perfectly explain the contrasts in flood response across urban watersheds. Future research is directed towards sophisticated modeling studies for a predictive understanding of flood frequency in urban watersheds.
Intensified agriculture favors evolved resistance to biological control.
Tomasetto, Federico; Tylianakis, Jason M; Reale, Marco; Wratten, Steve; Goldson, Stephen L
2017-04-11
Increased regulation of chemical pesticides and rapid evolution of pesticide resistance have increased calls for sustainable pest management. Biological control offers sustainable pest suppression, partly because evolution of resistance to predators and parasitoids is prevented by several factors (e.g., spatial or temporal refuges from attacks, reciprocal evolution by control agents, and contrasting selection pressures from other enemy species). However, evolution of resistance may become more probable as agricultural intensification reduces the availability of refuges and diversity of enemy species, or if control agents have genetic barriers to evolution. Here we use 21 y of field data from 196 sites across New Zealand to show that parasitism of a key pasture pest ( Listronotus bonariensis ; Argentine stem weevil) by an introduced parasitoid ( Microctonus hyperodae ) was initially nationally successful but then declined by 44% (leading to pasture damage of c. 160 million New Zealand dollars per annum). This decline was not attributable to parasitoid numbers released, elevation, or local climatic variables at sample locations. Rather, in all locations the decline began 7 y (14 host generations) following parasitoid introduction, despite releases being staggered across locations in different years. Finally, we demonstrate experimentally that declining parasitism rates occurred in ryegrass Lolium perenne , which is grown nationwide in high-intensity was significantly less than in adjacent plots of a less-common pasture grass ( Lolium multiflorum ), indicating that resistance to parasitism is host plant-dependent. We conclude that low plant and enemy biodiversity in intensive large-scale agriculture may facilitate the evolution of host resistance by pests and threaten the long-term viability of biological control.
A Cultural Evolution Approach to Digital Media
Acerbi, Alberto
2016-01-01
Digital media have today an enormous diffusion, and their influence on the behavior of a vast part of the human population can hardly be underestimated. In this review I propose that cultural evolution theory, including both a sophisticated view of human behavior and a methodological attitude to modeling and quantitative analysis, provides a useful framework to study the effects and the developments of media in the digital age. I will first give a general presentation of the cultural evolution framework, and I will then introduce this more specific research program with two illustrative topics. The first topic concerns how cultural transmission biases, that is, simple heuristics such as “copy prestigious individuals” or “copy the majority,” operate in the novel context of digital media. The existence of transmission biases is generally justified with their adaptivity in small-scale societies. How do they operate in an environment where, for example, prestigious individuals possess not-relevant skills, or popularity is explicitly quantified and advertised? The second aspect relates to fidelity of cultural transmission. Digitally-mediated interactions support cheap and immediate high-fidelity transmission, in opposition, for example, to oral traditions. How does this change the content that is more likely to spread? Overall, I suggest the usefulness of a “long view” to our contemporary digital environment, contextualized in cognitive science and cultural evolution theory, and I discuss how this perspective could help us to understand what is genuinely new and what is not. PMID:28018200
NASA Astrophysics Data System (ADS)
Berges, J. A.; Raphael, T.; Rafa Todd, C. S.; Bate, T. C.; Hellweger, F. L.
2016-02-01
Engaging undergraduate students in research projects that require expertise in multiple disciplines (e.g. cell biology, population ecology, and mathematical modeling) can be challenging because they have often not developed the expertise that allows them to participate at a satisfying level. Use of agent-based modeling can allow exploration of concepts at more intuitive levels, and encourage experimentation that emphasizes processes over computational skills. Over the past several years, we have involved undergraduate students in projects examining both ecological and cell biological aspects of aquatic microbial biology, using the freely-downloadable, agent-based modeling environment NetLogo (https://ccl.northwestern.edu/netlogo/). In Netlogo, actions of large numbers of individuals can be simulated, leading to complex systems with emergent behavior. The interface features appealing graphics, monitors, and control structures. In one example, a group of sophomores in a BioMathematics program developed an agent-based model of phytoplankton population dynamics in a pond ecosystem, motivated by observed macroscopic changes in cell numbers (due to growth and death), and driven by responses to irradiance, temperature and a limiting nutrient. In a second example, junior and senior undergraduates conducting Independent Studies created a model of the intracellular processes governing stress and cell death for individual phytoplankton cells (based on parameters derived from experiments using single-cell culturing and flow cytometry), and then this model was embedded in the agents in the pond ecosystem model. In our experience, students with a range of mathematical abilities learned to code quickly and could use the software with varying degrees of sophistication, for example, creation of spatially-explicit two and three-dimensional models. Skills developed quickly and transferred readily to other platforms (e.g. Matlab).
Real-time measurement and control of waste anesthetic gases during veterinary surgeries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhart, J.E.; Stobbe, T.J.
1990-12-01
Veterinary clinics are typically small businesses without access to sophisticated occupational safety and health programs that may exist for larger firms or hospitals. Exposures to waste anesthetic gases have been linked to a myriad of adverse health-related conditions. Excessive exposures to anesthetic agents are possible because many of the clinics use portable gas delivery carts that are not designed to capture waste gases. While scavenging systems are available to remove waste anesthetic gases, the cost may be prohibitive for smaller clinics and the effectiveness of these systems has not been fully established in veterinary clinics. The National Institute for Occupationalmore » Safety and Health (NIOSH) recommends limiting exposures to nitrous oxide (N2O) to a time-weighted average (TWA) concentration of 25 ppm and halogenated agents to 2 ppm. The NIOSH TWA is based on the weight of the agent collected from a 45-L air sample by charcoal adsorption over a sampling period not to exceed 1 hr. The NIOSH criteria state that, in most situations, control of N2O to the TWA as defined will result in levels of approximately 0.5 ppm of the halogenated agent. At present, no Occupational Safety and Health Administration (OSHA) permissible exposure level (PEL) exists for exposure to anesthetic agents; nor do specific recommendations exist for veterinary scavenging systems. Waste anesthetic gas exposures were determined using a modified MIRAN 1A at five veterinary clinics operating within the Morgantown, West Virginia, vicinity. For unscavenged systems of methoxyflurane and halothane, 1-hr time-weighted average exposures ranged from 0.5 to 45.5 ppm and 0.2 to 105.4 ppm, respectively.« less
Agent Based Study of Surprise Attacks:. Roles of Surveillance, Prompt Reaction and Intelligence
NASA Astrophysics Data System (ADS)
Shanahan, Linda; Sen, Surajit
Defending a confined territory from a surprise attack is seldom possible. We use molecular dynamics and statistical physics inspired agent-based simulations to explore the evolution and outcome of such attacks. The study suggests robust emergent behavior, which emphasizes the importance of accurate surveillance, automated and powerful attack response, building layout, and sheds light on the role of communication restrictions in defending such territories.
Evolution of tinea capitis in the Nanchang area, Southern China: a 50-year survey (1965-2014).
Zhan, Ping; Geng, Chengfang; Li, Zhihua; Jin, Yun; Jiang, Qing; Tao, Li; Luo, Yunpeng; Xiong, Zhiwei; Wu, Shaoxi; Li, Dongmei; Liu, Weida; de Hoog, G Sybren
2015-05-01
Tinea capitis remains a common public health problem worldwide especially in developing areas. Aetiologic agents and clinical pattern vary with geography and history of socioeconomic conditions. Three community surveys and a prospective study were carried out over the past 50 years (1965-2014) in the Qingyunpu District of Nanchang, Southern China. Clinical presentation and spectrum of aetiological agents were monitored to understand the evolution of tinea capitis. In 1965 favus was highly epidemic and Trichophyton schoenleinii presented as the overwhelming aetiological agents of scalp infection in the study area, with a prevalence of 3.41% of the population. During a governmental campaign to eliminate tinea capitis initiated in mid of 1960s, favus was successfully controlled and the prevalence decreased to less than 0.01% in 1977. After that period, clinical presentation and spectrum of fungi changed with social development. Trichophyton schoenleinii was replaced by Trichophyton violaceum and Trichophyton mentagrophytes. Nowadays, the species corresponds with a dominant black dot type of tinea capitis in the Nanchang area. The prevalence of causative agents of tinea capitis is not only related to geography but also to socioeconomic factors. Multiple factors have to be considered for the management for control of this disease. © 2015 Blackwell Verlag GmbH.
Monte Carlo Planning Method Estimates Planning Horizons during Interactive Social Exchange.
Hula, Andreas; Montague, P Read; Dayan, Peter
2015-06-01
Reciprocating interactions represent a central feature of all human exchanges. They have been the target of various recent experiments, with healthy participants and psychiatric populations engaging as dyads in multi-round exchanges such as a repeated trust task. Behaviour in such exchanges involves complexities related to each agent's preference for equity with their partner, beliefs about the partner's appetite for equity, beliefs about the partner's model of their partner, and so on. Agents may also plan different numbers of steps into the future. Providing a computationally precise account of the behaviour is an essential step towards understanding what underlies choices. A natural framework for this is that of an interactive partially observable Markov decision process (IPOMDP). However, the various complexities make IPOMDPs inordinately computationally challenging. Here, we show how to approximate the solution for the multi-round trust task using a variant of the Monte-Carlo tree search algorithm. We demonstrate that the algorithm is efficient and effective, and therefore can be used to invert observations of behavioural choices. We use generated behaviour to elucidate the richness and sophistication of interactive inference.
Interest contagion in violation-of-expectation-based false-belief tasks.
Falck, Andreas; Brinck, Ingar; Lindgren, Magnus
2014-01-01
In the debate about how to interpret Violation-of-Expectation (VoE) based false-belief experiments, it has been suggested that infants are predicting the actions of the agent based on more or less sophisticated cognitive means. We present an alternative, more parsimonious interpretation, exploring the possibility that the infants' reactions are not governed by rational expectation but rather of memory strength due to differences in the allocation of cognitive resources earlier in the experiment. Specifically, it is argued that (1) infants' have a tendency to find more interest in events that observed agents are attending to as opposed to unattended events ("interest contagion"), (2) the object-location configurations that result from such interesting events are remembered more strongly by the infants, and (3) the VoE contrast arises as a consequence of the difference in memory strength between more and less interesting object-location configurations. We discuss two published experiments, one which we argue that our model can explain (Kovács etal., 2010), and one which we argue cannot be readily explained by our model (Onishi and Baillargeon, 2005).
NASA Technical Reports Server (NTRS)
2004-01-01
Ribbons is a program developed at UAB used worldwide to graphically depict complicated protein structures in a simplified format. The program uses sophisticated computer systems to understand the implications of protein structures. The Influenza virus remains a major causative agent for a large number of deaths among the elderly and young children and huge economic losses due to illness. Finding a cure will have a general impact both on the basic research of viral pathologists of fast evolving infectious agents and clinical treatment of influenza virus infection. The reproduction process of all strains of influenza are dependent on the same enzyme neuraminidase. Shown here is a segmented representation of the neuraminidase inhibitor compound sitting inside a cave-like contour of the neuraminidase enzyme surface. This cave-like formation present in every neuraminidase enzyme is the active site crucial to the flu's ability to infect. The space-grown crystals of neuraminidase have provided significant new details about the three-dimensional characteristics of this active site thus allowing researchers to design drugs that fit tighter into the site. Principal Investigator: Dr. Larry DeLucas
Minority games, evolving capitals and replicator dynamics
NASA Astrophysics Data System (ADS)
Galla, Tobias; Zhang, Yi-Cheng
2009-11-01
We discuss a simple version of the minority game (MG) in which agents hold only one strategy each, but in which their capitals evolve dynamically according to their success and in which the total trading volume varies in time accordingly. This feature is known to be crucial for MGs to reproduce stylized facts of real market data. The stationary states and phase diagram of the model can be computed, and we show that the ergodicity breaking phase transition common for MGs, and marked by a divergence of the integrated response, is present also in this simplified model. An analogous majority game turns out to be relatively void of interesting features, and the total capital is found to diverge in time. Introducing a restraining force leads to a model akin to the replicator dynamics of evolutionary game theory, and we demonstrate that here a different type of phase transition is observed. Finally we briefly discuss the relation of this model with one strategy per player to more sophisticated minority games with dynamical capitals and several trading strategies per agent.
Mustard Gas: Its Pre-World War I History
NASA Astrophysics Data System (ADS)
Duchovic, Ronald J.; Vilensky, Joel A.
2007-06-01
Mustard gas is perhaps the best-known chemical warfare agent and is commonly associated with World War I, both in its first use in warfare and its first synthesis. Although the former is correct, the latter is not. We review here the history of the repeated synthesis of mustard gas by 19th century European chemists. The techniques developed by these chemists were the ones relied upon by both the Central Powers and the Allies to manufacture this agent during World War I. Further, a historical review of mustard gas synthesis highlights the increasing sophistication of the chemical sciences. In particular, during the latter half of the 19th century, the concepts of atomic mass, chemical periodicity, and chemical structure underwent a rapid development that culminated in the application of quantum mechanics to chemistry in the 20th century. A comparison is made of the molecular formula for mustard gas from the 19th century with that of the 21st century, demonstrating that the concept of atomic mass has undergone significant refinement over this period of time.
Ait Ouarabi, Mohand; Antonaci, Paola; Boubenider, Fouad; Gliozzi, Antonio S; Scalerandi, Marco
2017-01-07
Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems.
NASA Astrophysics Data System (ADS)
Schinckus, C.
2016-12-01
This article aimed at presenting the scattered econophysics literature as a unified and coherent field through a specific lens imported from philosophy science. More precisely, I used the methodology developed by Imre Lakatos to cover the methodological evolution of econophysics over these last two decades. In this perspective, three co-existing approaches have been identified: statistical econophysics, bottom-up agent based econophysics and top-down agent based econophysics. Although the last is presented here as the last step of the methodological evolution of econophysics, it is worth mentioning that this tradition is still very new. A quick look on the econophysics literature shows that the vast majority of works in this field deal with a strictly statistical approach or a classical bottom-up agent-based modelling. In this context of diversification, the objective (and contribution) of this article is to emphasize the conceptual coherence of econophysics as a unique field of research. With this purpose, I used a theoretical framework coming from philosophy of science to characterize how econophysics evolved by combining a methodological enrichment with the preservation of its core conceptual statements.
Kinetics of wealth and the Pareto law
NASA Astrophysics Data System (ADS)
Boghosian, Bruce M.
2014-04-01
An important class of economic models involve agents whose wealth changes due to transactions with other agents. Several authors have pointed out an analogy with kinetic theory, which describes molecules whose momentum and energy change due to interactions with other molecules. We pursue this analogy and derive a Boltzmann equation for the time evolution of the wealth distribution of a population of agents for the so-called Yard-Sale Model of wealth exchange. We examine the solutions to this equation by a combination of analytical and numerical methods and investigate its long-time limit. We study an important limit of this equation for small transaction sizes and derive a partial integrodifferential equation governing the evolution of the wealth distribution in a closed economy. We then describe how this model can be extended to include features such as inflation, production, and taxation. In particular, we show that the model with taxation exhibits the basic features of the Pareto law, namely, a lower cutoff to the wealth density at small values of wealth, and approximate power-law behavior at large values of wealth.
Gene transfer agents: phage-like elements of genetic exchange
Lang, Andrew S.; Zhaxybayeva, Olga; Beatty, J. Thomas
2013-01-01
Horizontal gene transfer is important in the evolution of bacterial and archaeal genomes. An interesting genetic exchange process is carried out by diverse phage-like gene transfer agents (GTAs) that are found in a wide range of prokaryotes. Although GTAs resemble phages, they lack the hallmark capabilities that define typical phages, and they package random pieces of the producing cell’s genome. In this Review, we discuss the defining characteristics of the GTAs that have been identified to date, along with potential functions for these agents and the possible evolutionary forces that act on the genes involved in their production. PMID:22683880
Blackboxing: social learning strategies and cultural evolution.
Heyes, Cecilia
2016-05-05
Social learning strategies (SLSs) enable humans, non-human animals, and artificial agents to make adaptive decisions aboutwhenthey should copy other agents, andwhothey should copy. Behavioural ecologists and economists have discovered an impressive range of SLSs, and explored their likely impact on behavioural efficiency and reproductive fitness while using the 'phenotypic gambit'; ignoring, or remaining deliberately agnostic about, the nature and origins of the cognitive processes that implement SLSs. Here I argue that this 'blackboxing' of SLSs is no longer a viable scientific strategy. It has contributed, through the 'social learning strategies tournament', to the premature conclusion that social learning is generally better than asocial learning, and to a deep puzzle about the relationship between SLSs and cultural evolution. The puzzle can be solved by recognizing that whereas most SLSs are 'planetary'--they depend on domain-general cognitive processes--some SLSs, found only in humans, are 'cook-like'--they depend on explicit, metacognitive rules, such ascopy digital natives. These metacognitive SLSs contribute to cultural evolution by fostering the development of processes that enhance the exclusivity, specificity, and accuracy of social learning. © 2016 The Author(s).
Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos
NASA Astrophysics Data System (ADS)
Li, Xue-yan; Li, Xue-mei; Li, Xue-wei; Qiu, He-ting
2017-03-01
This paper proposes a new framework of fare optimization & game model for studying the competition between two travel modes (high speed railway and civil aviation) in which passengers' group behavior is taken into consideration. The small-world network is introduced to construct the multi-agent model of passengers' travel mode choice. The cumulative prospect theory is adopted to depict passengers' bounded rationality, the heterogeneity of passengers' reference point is depicted using the idea of group emotion computing. The conceptions of "Langton parameter" and "evolution entropy" in the theory of "edge of chaos" are introduced to create passengers' "decision coefficient" and "evolution entropy of travel mode choice" which are used to quantify passengers' group behavior. The numerical simulation and the analysis of passengers' behavior show that (1) the new model inherits the features of traditional model well and the idea of self-organizing traffic flow evolution fully embodies passengers' bounded rationality, (2) compared with the traditional model (logit model), when passengers are in the "edge of chaos" state, the total profit of the transportation system is higher.
AMPA RECEPTOR POTENTIATORS: FROM DRUG DESIGN TO COGNITIVE ENHANCEMENT
PARTIN, KATHRYN M.
2014-01-01
Positive allosteric modulators of ionotropic glutamate receptors have emerged as a target for treating cognitive impairment and neurodegeneration, but also mental illnesses such as major depressive disorder. The possibility of creating a new class of pharmaceutical agent to treat refractive mental health issues has compelled researchers to redouble their efforts to develop a safe, effective treatment for memory and cognition impairments. Coupled with the more robust research methodologies that have emerged, including more sophisticated high-throughput-screens, higher resolution structural biology techniques, and more focused assessment on pharmacokinetics, the development of positive modulators of AMPA receptors holds great promise. We describe recent approaches that improve our understanding of the basic physiology underlying memory and cognition, and their application towards promoting human health. PMID:25462292
NASA Technical Reports Server (NTRS)
1988-01-01
Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.
Infectious Disease risks associated with exposure to stressful environments
NASA Technical Reports Server (NTRS)
Meehan, Ichard T.; Smith, Morey; Sams, Clarence
1993-01-01
Multiple environmental factors asociated with space flight can increase the risk of infectious illness among crewmembers thereby adversely affecting crew health and mission success. Host defences can be impaired by multiple physiological and psychological stressors including: sleep deprivation, disrupted circadian rhythms, separation from family, perceived danger, radiation exposure, and possibly also by the direct and indirect effects of microgravity. Relevant human immunological data from isolated or stressful environments including spaceflight will be reviewed. Long-duration missions should include reliable hardware which supports sophisticated immunodiagnostic capabilities. Future advances in immunology and molecular biology will continue to provide therapeutic agents and biologic response modifiers which should effectively and selectively restore immune function which has been depressed by exposure to environmental stressors.
[When textiles help your recovery].
Martel, Bernard; Campagne, Christine; Behary Massika, Nemeshwaree
2017-01-01
Textiles are widely used in the biomedical domain, particularly in wound dressings or as implantable devices for strengthening or even replacing some damaged organs. Nowadays they present more and more sophisticated functionalities contributing to the healing process, to the organs regeneration, and fight against infection or thrombosis. Advanced spinning technologies of biostable or bioresorbable polymers and surface treatment technologies are often used, as well as nanotechnologies, to implement two main strategies for development of bio-active textiles. A long or medium term technology is obtained by grafting the bio-active molecule through stable chemical bonds while a short term activity is produced by using "reservoir" systems such as hydrogels and cyclodextrins that release the active agents in situ. ‡. © 2017 médecine/sciences – Inserm.
NASA Astrophysics Data System (ADS)
Bowman, Catherine Dodds Dunham
Unease about declining U.S. science literacy and inquiry skills drives much innovation in science education, including the quest for authentic science experiences for students. One response is student-scientist partnerships (SSP), involving small numbers of students in scientific investigations with scientist mentors. Alternatively, science inquiry programs provide large numbers of students with opportunities to pursue their own investigations but without extensive access to experts, potentially limiting the possible cognitive and affective gains. This mixed methods study investigates whether it is possible to replicate some of SSPs' benefits on a larger scale through use of a computerized agent designed as a "virtual" scientist mentor. Middle school students (N=532) were randomly assigned to two versions of an agent (or to a control group) providing either content-only or content and interpersonal mentoring while they participated in a three-week curriculum. Results indicate that, on average, students gained in content knowledge but there was no statistically significant difference between the three conditions. In terms of motivation, students exhibited no change, on average, with no statistically significant difference between the three conditions. These data indicate that the treatment conditions neither facilitate nor inhibit student learning and motivation. Interviews with a subsample (n=70), however, suggest that students believe the agents facilitated their learning, eased the workload, provided a trusted source of information, and were enjoyable to use. Teachers reported that the agents provided alternative views of scientists and science, generated class discussion, and met the needs of high and low-achieving students. This difference between measured and perceived benefits may result from measures that were not sufficiently sensitive to capture differences. Alternatively, a more sophisticated agent might better replicate mentoring functions known to produce cognitive and affective gains. Even without established learning or motivational gains, practitioners may want to employ agents for their ability to provide reliable information, expanded perspectives on science and scientists, and a non-intimidating setting for students to ask questions. For computerized agent researchers, this study provides a first step in exploring the affordances and challenges of sustained use of agents in real school settings with the goal of improving science education.
Grounding language in action and perception: From cognitive agents to humanoid robots
NASA Astrophysics Data System (ADS)
Cangelosi, Angelo
2010-06-01
In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition.
Distributed Cooperation Solution Method of Complex System Based on MAS
NASA Astrophysics Data System (ADS)
Weijin, Jiang; Yuhui, Xu
To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.
NASA Technical Reports Server (NTRS)
Kempler, Steven; Lynnes, Christopher; Vollmer, Bruce; Alcott, Gary; Berrick, Stephen
2009-01-01
Increasingly sophisticated National Aeronautics and Space Administration (NASA) Earth science missions have driven their associated data and data management systems from providing simple point-to-point archiving and retrieval to performing user-responsive distributed multisensor information extraction. To fully maximize the use of remote-sensor-generated Earth science data, NASA recognized the need for data systems that provide data access and manipulation capabilities responsive to research brought forth by advancing scientific analysis and the need to maximize the use and usability of the data. The decision by NASA to purposely evolve the Earth Observing System Data and Information System (EOSDIS) at the Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC) and other information management facilities was timely and appropriate. The GES DISC evolution was focused on replacing the EOSDIS Core System (ECS) by reusing the In-house developed disk-based Simple, Scalable, Script-based Science Product Archive (S4PA) data management system and migrating data to the disk archives. Transition was completed in December 2007
The evolution of global disaster risk assessments: from hazard to global change
NASA Astrophysics Data System (ADS)
Peduzzi, Pascal
2013-04-01
The perception of disaster risk as a dynamic process interlinked with global change is a fairly recent concept. It gradually emerged as an evolution from new scientific theories, currents of thinking and lessons learned from large disasters since the 1970s. The interest was further heighten, in the mid-1980s, by the Chernobyl nuclear accident and the discovery of the ozone layer hole, both bringing awareness that dangerous hazards can generate global impacts. The creation of the UN International Decade for Natural Disaster Reduction (IDNDR) and the publication of the first IPCC report in 1990 reinforced the interest for global risk assessment. First global risk models including hazard, exposure and vulnerability components were available since mid-2000s. Since then increased computation power and more refined datasets resolution, led to more numerous and sophisticated global risk models. This article presents a recent history of global disaster risk models, the current status of researches for the Global Assessment Report on Disaster Risk Reduction (GAR 2013) and future challenges and limitations for the development of next generation global disaster risk models.
Simulations of Precipitate Microstructure Evolution during Heat Treatment
NASA Astrophysics Data System (ADS)
Wu, Kaisheng; Sterner, Gustaf; Chen, Qing; Jou, Herng-Jeng; Jeppsson, Johan; Bratberg, Johan; Engström, Anders; Mason, Paul
Precipitation, a major solid state phase transformation during heat treatment processes, has for more than one century been intensively employed to improve the strength and toughness of various high performance alloys. Recently, sophisticated precipitation reaction models, in assistance with well-developed CALPHAD databases, provide an efficient and cost-effective way to tailor precipitate microstructures that maximize the strengthening effect via the optimization of alloy chemistries and heat treatment schedules. In this presentation, we focus on simulating precipitate microstructure evolution in Nickel-base superalloys under arbitrary heat treatment conditions. The newly-developed TC-PRISMA program has been used for these simulations, with models refined especially for non-isothermal conditions. The effect of different cooling profiles on the formation of multimodal microstructures has been thoroughly examined in order to understand the underlying thermodynamics and kinetics. Meanwhile, validations against several experimental results have been carried out. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean-field approximations, compatibility between CALPHAD databases, selection of key parameters (particularly interfacial energy and nucleation site densities), etc., are also addressed.
Factors shaping the evolution of electronic documentation systems
NASA Technical Reports Server (NTRS)
Dede, Christopher J.; Sullivan, Tim R.; Scace, Jacque R.
1990-01-01
The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments.
Price, Tom A R; Lizé, Anne; Marcello, Marco; Bretman, Amanda
2012-12-01
Male responses to risk of sperm competition play an important role in sexual selection, sexual conflict, and the evolution of mating systems. Such responses can combine behavioural and physiological processes, and can be mediated through different components of the ejaculate such as sperm numbers and seminal proteins. An additional level of ejaculate complexity is sperm heteromorphism, with the inclusion of non-fertilising parasperm in the ejaculate. We now test the response to rivals in a sperm heteromorphic species, Drosophila pseudoobscura, measuring the behavioural response and sperm transfer and, crucially, relating these to short-term fitness. Males respond to exposure to conspecific rivals by increasing mating duration, but do not respond to heterospecific rivals. In addition, after exposure to a conspecific rival, males increased the transfer of fertilising eusperm, but not non-fertilising parasperm. Males exposed to a conspecific rival also achieve higher offspring production. This suggests that the evolution of parasperm in flies was not driven by sperm competition and adds to the increasing evidence that males can make extremely sophisticated responses to mating competition. Copyright © 2012. Published by Elsevier Ltd.
Emerging Concepts of Data Integration in Pathogen Phylodynamics.
Baele, Guy; Suchard, Marc A; Rambaut, Andrew; Lemey, Philippe
2017-01-01
Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics.
Emerging Concepts of Data Integration in Pathogen Phylodynamics
Baele, Guy; Suchard, Marc A.; Rambaut, Andrew; Lemey, Philippe
2017-01-01
Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics. PMID:28173504
Hepatocellular Carcinoma: Molecular Biology and Therapy
Abou-Alfa, Ghassan
2007-01-01
Advanced and metastatic hepatocellular carcinomas (HCC) are challenging to treat, and no cytotoxic agents have impacted survival. The underlying liver cirrhosis that commonly accompanies HCC provides an additional challenge; indeed, functional scoring of cirrhosis and HCC is a critical component of patient evaluation. Currently, the molecular biology and pathogenesis of HCC are being increasingly investigated, which may lead to better understanding of the evolution of the disease, especially differing etiologies and identification of survival genes that may affect outcome. Early studies of targeted therapies in HCC have shown disease stabilization, and an increased understanding of the mechanism(s) of these novel agents combined with correlative studies may lead to the identification of an active agent or combination of agents that impacts the natural history of HCC. PMID:17178294
Functional pleiotropy and mating system evolution in plants: frequency-independent mating.
Jordan, Crispin Y; Otto, Sarah P
2012-04-01
Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems
NASA Astrophysics Data System (ADS)
Mason, E.; Giuliani, M.; Castelletti, A.; Amigoni, F.
2018-04-01
Multipurpose water systems are usually operated on a tradeoff of conflicting operating objectives. Under steady state climatic and socioeconomic conditions, such tradeoff is supposed to represent a fair and/or efficient preference. Extreme variability in external forcing might affect water operators' risk aversion and force a change in her/his preference. Properly accounting for these shifts is key to any rigorous retrospective assessment of the operator's behaviors, and to build descriptive models for projecting the future system evolution. In this study, we explore how the selection of different preferences is linked to variations in the external forcing. We argue that preference selection evolves according to recent, extreme variations in system performance: underperforming in one of the objectives pushes the preference toward the harmed objective. To test this assumption, we developed a rational procedure to simulate the operator's preference selection. We map this selection onto a multilateral negotiation, where multiple virtual agents independently optimize different objectives. The agents periodically negotiate a compromise policy for the operation of the system. Agents' attitudes in each negotiation step are determined by the recent system performance measured by the specific objective they maximize. We then propose a numerical model of preference dynamics that implements a concept from cognitive psychology, the availability bias. We test our modeling framework on a synthetic lake operated for flood control and water supply. Results show that our model successfully captures the operator's preference selection and dynamic evolution driven by extreme wet and dry situations.
Dynamic social networks facilitate cooperation in the N-player Prisoner’s Dilemma
NASA Astrophysics Data System (ADS)
Rezaei, Golriz; Kirley, Michael
2012-12-01
Understanding how cooperative behaviour evolves in network communities, where the individual members interact via social dilemma games, is an on-going challenge. In this paper, we introduce a social network based model to investigate the evolution of cooperation in the N-player Prisoner’s Dilemma game. As such, this work complements previous studies focused on multi-player social dilemma games and endogenous networks. Agents in our model, employ different game-playing strategies reflecting varying cognitive capacities. When an agent plays cooperatively, a social link is formed with each of the other N-1 group members. Subsequent cooperative actions reinforce this link. However, when an agent defects, the links in the social network are broken. Computational simulations across a range of parameter settings are used to examine different scenarios: varying population and group sizes; the group formation process (or partner selection); and agent decision-making strategies under varying dilemma constraints (cost-to-benefit ratios), including a “discriminator” strategy where the action is based on a function of the weighted links within an agent’s social network. The simulation results show that the proposed social network model is able to evolve and maintain cooperation. As expected, as the value of N increases the equilibrium proportion of cooperators in the population decreases. In addition, this outcome is dependent on the dilemma constraint (cost-to-benefit ratio). However, in some circumstances the dynamic social network plays an increasingly important role in promoting and sustaining cooperation, especially when the agents adopt the discriminator strategy. The adjustment of social links results in the formation of communities of “like-minded” agents. Subsequently, this local optimal behaviour promotes the evolution of cooperative behaviour at the system level.
Use of piezoelectric actuators in active vibration control of rotating machinery
NASA Technical Reports Server (NTRS)
Lin, Reng Rong; Palazzolo, Alan B.; Kascak, Albert F.; Montague, Gerald
1990-01-01
Theoretical and test results for the development of piezoelectric-actuator-based active vibration control (AVC) are presented. The evolution of this technology starts with an ideal model of the actuator and progresses to a more sophisticated model where the pushers force the squirrel cage ball bearing supports of a rotating shaft. The piezoelectric pushers consist of a stack of piezoelectric ceramic disks that are arranged on top of one another and connected in parallel electrically. This model consists of a prescribed displacement that is proportional to the input voltage and a spring that represents the stiffness of the stack of piezoelectric disks. System tests were carried out to stabilize the AVC system, verify its effectiveness in controlling vibration, and confirm the theory presented.
Integrated 3-D vision system for autonomous vehicles
NASA Astrophysics Data System (ADS)
Hou, Kun M.; Shawky, Mohamed; Tu, Xiaowei
1992-03-01
Nowadays, autonomous vehicles have become a multidiscipline field. Its evolution is taking advantage of the recent technological progress in computer architectures. As the development tools became more sophisticated, the trend is being more specialized, or even dedicated architectures. In this paper, we will focus our interest on a parallel vision subsystem integrated in the overall system architecture. The system modules work in parallel, communicating through a hierarchical blackboard, an extension of the 'tuple space' from LINDA concepts, where they may exchange data or synchronization messages. The general purpose processing elements are of different skills, built around 40 MHz i860 Intel RISC processors for high level processing and pipelined systolic array processors based on PLAs or FPGAs for low-level processing.
Evolution and intelligent design in drug development.
Agafonov, Roman V; Wilson, Christopher; Kern, Dorothee
2015-01-01
Sophisticated protein kinase networks, empowering complexity in higher organisms, are also drivers of devastating diseases such as cancer. Accordingly, these enzymes have become major drug targets of the twenty-first century. However, the holy grail of designing specific kinase inhibitors aimed at specific cancers has not been found. Can new approaches in cancer drug design help win the battle with this multi-faced and quickly evolving enemy? In this perspective we discuss new strategies and ideas that were born out of a recent breakthrough in understanding the molecular basis underlying the clinical success of the cancer drug Gleevec. An "old" method, stopped-flow kinetics, combined with old enzymes, the ancestors dating back up to about billion years, provides an unexpected outlook for future intelligent design of drugs.
Evolution of the INMARSAT aeronautical system: Service, system, and business considerations
NASA Technical Reports Server (NTRS)
Sengupta, Jay R.
1995-01-01
A market-driven approach was adopted to develop enhancements to the Inmarsat-Aeronautical system, to address the requirements of potential new market segments. An evolutionary approach and well differentiated product/service portfolio was required, to minimize system upgrade costs and market penetration, respectively. The evolved system definition serves to minimize equipment cost/size/mass for short/medium range aircraft, by reducing the antenna gain requirement and relaxing the performance requirements for non safety-related communications. A validation program involving simulation, laboratory tests, over-satellite tests and flight trials is being conducted to confirm the system definition. Extensive market research has been conducted to determine user requirements and to quantify market demand for future Inmarsat Aero-1 AES, using sophisticated computer assisted survey techniques.
Introduction to Technologies in the Daily Lives of Individuals with Autism.
Shic, Frederick; Goodwin, Matthew
2015-12-01
In this introduction to the Special Issue on Technology we explore the continued evolution of technologies designed to help individuals with autism. Through review articles, empirical reports, and perspectives, we examine how far the field has come and how much further we still can go. Notably, even as we highlight the continuing need for larger empirical studies of autism-focused technology, we note how improvements in the portability, sophistication, ubiquity, and reach of daily technologies are providing new opportunities for research, education, enhancement, knowledge, and inspiration. We conclude by discussing how the next generation of technologies may leverage the increasing promise of big-data approaches to move us towards a future where technology is more personal, more relevant, and pervasively transformative.
Secrets of the Dark Universe: Simulating the Sky on the Blue Gene/Q
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
An astonishing 99.6% of our Universe is dark. Observations indicate that the Universe consists of 70% of a mysterious dark energy and 25% of a yet unidentified dark matter component, and only 0.4% of the remaining ordinary matter is visible. Understanding the physics of this dark sector is the foremost challenge in cosmology today. Sophisticated simulations of the evolution of the Universe play a crucial task in this endeavor. Credits: Science: Hal Finkel, Salman Habib, Katrin Heitmann, Kalyan Kumaran, Vitali Morozov, Tom Peterka, Adrian Pope, Tim Williams, David Daniel, Patricia Fasel, Nicholas Frontiere and Zarija Lukic Visualization: Mark Herald, Josephmore » A. Insley, Aaron Knoll, Michael E. Papka, Venkatram Vishwanath and Eric C. Olson« less
Kong, Hua; Yu, Fanglin; Liu, Yan; Yang, Yang; Li, Mingyuan; Cheng, Xiaohui; Hu, Xiaoqin; Tang, Xuemei; Li, Zhiping; Mei, Xingguo
2018-01-01
Frequent administration caused by short half-life and low bioavailability due to poor solubility and low dissolution rate limit the further application of poorly water-soluble nimodipine, although several new indications have been developed. To overcome these shortcomings, sophisticated technologies had to be used since the dose of nimodipine was not too low and the addition of solubilizers could not resolve the problem of poor release. The purpose of this study was to obtain sustained and complete release of nimodipine with a simple and easily industrialized technology. The expandable monolithic osmotic pump tablets containing nimodipine combined with poloxamer 188 and carboxymethylcellulose sodium were prepared. The factors affecting drug release including the amount of solubilizing agent, expanding agent, retarding agent in core tablet and porogenic agent in semipermeable film were optimized. The release behavior was investigated both in vitro and in beagle dogs. It was proved that the anticipant release of nimodipine could be realized in vitro. The sustained and complete release of nimodipine was also realized in beagles because the mean residence time of nimodipine from the osmotic pump system was longer and Cmax was lower than those from the sustained-release tablets in market while there was no difference in AUC(0-t) of the monolithic osmotic pump tablets and the sustained release tablets in market. It was reasonable to believe that the sustained and complete release of poorly watersoluble nimodipine could be realized by using simple expandable monolithic osmotic pump technology combined with surfactant. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Hofree, Galit; Ruvolo, Paul; Reinert, Audrey; Bartlett, Marian S.; Winkielman, Piotr
2018-01-01
Facial actions are key elements of non-verbal behavior. Perceivers’ reactions to others’ facial expressions often represent a match or mirroring (e.g., they smile to a smile). However, the information conveyed by an expression depends on context. Thus, when shown by an opponent, a smile conveys bad news and evokes frowning. The availability of anthropomorphic agents capable of facial actions raises the question of how people respond to such agents in social context. We explored this issue in a study where participants played a strategic game with or against a facially expressive android. Electromyography (EMG) recorded participants’ reactions over zygomaticus muscle (smiling) and corrugator muscle (frowning). We found that participants’ facial responses to android’s expressions reflect their informational value, rather than a direct match. Overall, participants smiled more, and frowned less, when winning than losing. Critically, participants’ responses to the game outcome were similar regardless of whether it was conveyed via the android’s smile or frown. Furthermore, the outcome had greater impact on people’s facial reactions when it was conveyed through android’s face than a computer screen. These findings demonstrate that facial actions of artificial agents impact human facial responding. They also suggest a sophistication in human-robot communication that highlights the signaling value of facial expressions. PMID:29740307
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Wolpert, David
2004-01-01
Due to the increasing sophistication and miniaturization of computational components, complex, distributed systems of interacting agents are becoming ubiquitous. Such systems, where each agent aims to optimize its own performance, but where there is a well-defined set of system-level performance criteria, are called collectives. The fundamental problem in analyzing/designing such systems is in determining how the combined actions of self-interested agents leads to 'coordinated' behavior on a iarge scale. Examples of artificial systems which exhibit such behavior include packet routing across a data network, control of an array of communication satellites, coordination of multiple deployables, and dynamic job scheduling across a distributed computer grid. Examples of natural systems include ecosystems, economies, and the organelles within a living cell. No current scientific discipline provides a thorough understanding of the relation between the structure of collectives and how well they meet their overall performance criteria. Although still very young, research on collectives has resulted in successes both in understanding and designing such systems. It is eqected that as it matures and draws upon other disciplines related to collectives, this field will greatly expand the range of computationally addressable tasks. Moreover, in addition to drawing on them, such a fully developed field of collective intelligence may provide insight into already established scientific fields, such as mechanism design, economics, game theory, and population biology. This chapter provides a survey to the emerging science of collectives.
A resonance based model of biological evolution
NASA Astrophysics Data System (ADS)
Damasco, Achille; Giuliani, Alessandro
2017-04-01
We propose a coarse grained physical model of evolution. The proposed model 'at least in principle' is amenable of an experimental verification even if this looks as a conundrum: evolution is a unique historical process and the tape cannot be reversed and played again. Nevertheless, we can imagine a phenomenological scenario tailored upon state transitions in physical chemistry in which different agents of evolution play the role of the elements of a state transition like thermal noise or resonance effects. The abstract model we propose can be of help for sketching hypotheses and getting rid of some well-known features of natural history like the so-called Cambrian explosion. The possibility of an experimental proof of the model is discussed as well.
Exploring social structure effect on language evolution based on a computational model
NASA Astrophysics Data System (ADS)
Gong, Tao; Minett, James; Wang, William
2008-06-01
A compositionality-regularity coevolution model is adopted to explore the effect of social structure on language emergence and maintenance. Based on this model, we explore language evolution in three experiments, and discuss the role of a popular agent in language evolution, the relationship between mutual understanding and social hierarchy, and the effect of inter-community communications and that of simple linguistic features on convergence of communal languages in two communities. This work embodies several important interactions during social learning, and introduces a new approach that manipulates individuals' probabilities to participate in social interactions to study the effect of social structure. We hope it will stimulate further theoretical and empirical explorations on language evolution in a social environment.
Microsporidians as evolution-proof agents of malaria control?
Koella, Jacob C; Lorenz, Lena; Bargielowski, Irka
2009-01-01
Despite our efforts at malaria control, malaria remains one of our most serious and deadly diseases. The failure of control stems in part from the parasite's intense transmission in many areas and from the emergence and spread of resistance of the malaria parasites and their mosquito vectors against most of the chemicals used to attack them. New methods for control are desperately needed. However, new methods will be useful only if they are effective (i.e., decrease transmission substantially) and evolutionarily sustainable (i.e., evolution-proof, in that they prevent evolution from eroding efficacy). We suggest microsporidian parasites that infect mosquitoes could be potentially effective and sustainable agents for malaria control. They may be effective because they target several epidemiologically important traits: survival of larvae (and thus number of adult mosquitoes), adult longevity, biting rate and the development of malaria within the mosquitoes. Even if each trait is affected only moderately, the intensity of transmission can be reduced considerably. They may be evolution-proof, for the evolutionarily most important trait is juvenile survival, whereas the two epidemiologically most important factors are traits of the adult mosquito: biting rate and longevity. Under the intense microsporidian pressure of a control programme, it is likely (if not inevitable) that the larvae evolve to survive microsporidian infection. However, if this larval tolerance to microsporidians is genetically correlated with the adult traits, tolerant mosquitoes may not live as long and bite less frequently than microsporidian-sensitive ones. While such a trade-off has not been measured, combining several studies suggests indirectly a negative genetic correlation between larval tolerance and adult longevity. Therefore, evolution might not undermine control; rather it might increase its effectiveness. While the evolution of resistance may be inevitable, the failure of control need not be.
Metareasoning and Social Evaluations in Cognitive Agents
NASA Astrophysics Data System (ADS)
Pinyol, Isaac; Sabater-Mir, Jordi
Reputation mechanisms have been recognized one of the key technologies when designing multi-agent systems. They are specially relevant in complex open environments, becoming a non-centralized mechanism to control interactions among agents. Cognitive agents tackling such complex societies must use reputation information not only for selecting partners to interact with, but also in metareasoning processes to change reasoning rules. This is the focus of this paper. We argue about the necessity to allow, as a cognitive systems designers, certain degree of freedom in the reasoning rules of the agents. We also describes cognitive approaches of agency that support this idea. Furthermore, taking as a base the computational reputation model Repage, and its integration in a BDI architecture, we use the previous ideas to specify metarules and processes to modify at run-time the reasoning paths of the agent. In concrete we propose a metarule to update the link between Repage and the belief base, and a metarule and a process to update an axiom incorporated in the belief logic of the agent. Regarding this last issue we also provide empirical results that show the evolution of agents that use it.
Evolutionary game theory using agent-based methods.
Adami, Christoph; Schossau, Jory; Hintze, Arend
2016-12-01
Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Gibson, Walker
1993-01-01
Discusses the thinking of the Greek Sophist philosophers, particularly Gorgias and Protagoras, and their importance and relevance for contemporary English instructors. Considers the problem of language as signs of reality in the context of Sophist philosophy. (HB)
Prospects for development of unified global flood observation and prediction systems (Invited)
NASA Astrophysics Data System (ADS)
Lettenmaier, D. P.
2013-12-01
Floods are among the most damaging of natural hazards, with global flood losses in 2011 alone estimated to have exceeded $100B. Historically, flood economic damages have been highest in the developed world (due in part to encroachment on historical flood plains), but loss of life, and human impacts have been greatest in the developing world. However, as the 2011 Thailand floods show, industrializing countries, many of which do not have well developed flood protection systems, are increasingly vulnerable to economic damages as they become more industrialized. At present, unified global flood observation and prediction systems are in their infancy; notwithstanding that global weather forecasting is a mature field. The summary for this session identifies two evolving capabilities that hold promise for development of more sophisticated global flood forecast systems: global hydrologic models and satellite remote sensing (primarily of precipitation, but also of flood inundation). To this I would add the increasing sophistication and accuracy of global precipitation analysis (and forecast) fields from numerical weather prediction models. In this brief overview, I will review progress in all three areas, and especially the evolution of hydrologic data assimilation which integrates modeling and data sources. I will also comment on inter-governmental and inter-agency cooperation, and related issues that have impeded progress in the development and utilization of global flood observation and prediction systems.
Material quality assessment of silk nanofibers based on swarm intelligence
NASA Astrophysics Data System (ADS)
Brandoli Machado, Bruno; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir
2013-02-01
In this paper, we propose a novel approach for texture analysis based on artificial crawler model. Our method assumes that each agent can interact with the environment and each other. The evolution process converges to an equilibrium state according to the set of rules. For each textured image, the feature vector is composed by signatures of the live agents curve at each time. Experimental results revealed that combining the minimum and maximum signatures into one increase the classification rate. In addition, we pioneer the use of autonomous agents for characterizing silk fibroin scaffolds. The results strongly suggest that our approach can be successfully employed for texture analysis.
Tampa, M; Sarbu, I; Matei, C; Benea, V; Georgescu, SR
2014-01-01
Abstract Before the discovery of Treponema pallidum as the etiologic agent, the origins of syphilis have been the subject of several debates. Diverse therapeutic agents were employed in an attempt to cure the disease. Examining the milestones in the history of syphilis, the present article reviews the existing theories that tried to explain the origins of the disease, the approach in art, the cultural and the evolution of the treatments from the empiric means to the discovery of penicillin. PMID:24653750
El Karkouri, Khalid; Kowalczewska, Malgorzata; Armstrong, Nicholas; Azza, Said; Fournier, Pierre-Edouard; Raoult, Didier
2017-01-01
Arthropod-borne Rickettsia species are obligate intracellular bacteria which are pathogenic for humans. Within this genus, Rickettsia slovaca and Rickettsia conorii cause frequent and potentially severe infections, whereas Rickettsia raoultii and Rickettsia massiliae cause rare and milder infections. All four species belong to spotted fever group (SFG) rickettsiae. However, R. slovaca and R. raoultii cause scalp eschar and neck lymphadenopathy (SENLAT) and are mainly associated with Dermacentor ticks, whereas the other two species cause Mediterranean spotted fever (MSF) and are mainly transmitted by Rhipicephalus ticks. To identify the potential genes and protein profiles and to understand the evolutionary processes that could, comprehensively, relate to the differences in virulence and pathogenicity observed between these four species, we compared their genomes and proteomes. The virulent and milder agents displayed divergent phylogenomic evolution in two major clades, whereas either SENLAT or MSF disease suggests a discrete convergent evolution of one virulent and one milder agent, despite their distant genetic relatedness. Moreover, the two virulent species underwent strong reductive genomic evolution and protein structural variations, as well as a probable loss of plasmid(s), compared to the two milder species. However, an abundance of mobilome genes was observed only in the less pathogenic species. After infecting Xenopus laevis cells, the virulent agents displayed less up-regulated than down-regulated proteins, as well as less number of identified core proteins. Furthermore, their similar and distinct protein profiles did not contain some genes (e.g., ompA/B and rickA) known to be related to rickettsial adhesion, motility and/or virulence, but may include other putative virulence-, antivirulence-, and/or disease-related proteins. The identified evolutionary forces herein may have a strong impact on intracellular expressions and strategies in these rickettsiae, and that may contribute to the emergence of distinct virulence and diseases in humans. Thus, the current multi-omics data provide new insights into the evolution and fitness of SFG virulence and pathogenicity, and intracellular pathogenic bacteria. PMID:28775717
Detoxification of organophosphate nerve agents by bacterial phosphotriesterase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghanem, Eman; Raushel, Frank M.
2005-09-01
Organophosphates have been widely used as insecticides and chemical warfare agents. The health risks associated with these agents have necessitated the need for better detoxification and bioremediation tools. Bacterial enzymes capable of hydrolyzing the lethal organophosphate nerve agents are of special interest. Phosphotriesterase (PTE) isolated from the soil bacteria Pseudomonas diminuta displays a significant rate enhancement and substrate promiscuity for the hydrolysis of organophosphate triesters. Directed evolution and rational redesign of the active site of PTE have led to the identification of new variants with enhanced catalytic efficiency and stereoselectivity toward the hydrolysis of organophosphate neurotoxins. PTE has been utilizedmore » to protect against organophosphate poisoning in vivo. Biotechnological applications of PTE for detection and decontamination of insecticides and chemical warfare agents are developing into useful tools. In this review, the catalytic properties and potential applications of this remarkable enzyme are discussed.« less
Evolution of neurotransmitter receptor systems.
Venter, J C; di Porzio, U; Robinson, D A; Shreeve, S M; Lai, J; Kerlavage, A R; Fracek, S P; Lentes, K U; Fraser, C M
1988-01-01
The presence of hormones, neurotransmitters, their receptors and biosynthetic and degradative enzymes is clearly not only associated with the present and the recent past but with the past several hundred million years. Evidence is mounting which indicates substantial conservation of protein structure and function of these receptors and enzymes over these tremendous periods of time. These findings indicate that the evolution and development of the nervous system was not dependent upon the formation of new or better transmitter substances, receptor proteins, transducers and effector proteins but involved better utilization of these highly developed elements in creating advanced and refined circuitry. This is not a new concept; it is one that is now substantiated by increasingly sophisticated studies. In a 1953 article discussing chemical aspects of evolution (Danielli, 1953) Danielli quotes Medawar, "... endocrine evolution is not an evolution of hormones but an evolution of the uses to which they are put; an evolution not, to put it crudely, of chemical formulae but of reactivities, reaction patterns and tissue competences." To also quote Danielli, "In terms of comparative biochemistry, one must ask to what extent the evolution of these reactivities, reaction patterns and competences is conditional upon the evolution of methods of synthesis of new proteins, etc., and to what extent the proteins, etc., are always within the synthetic competence of an organism. In the latter case evolution is the history of changing uses of molecules, and not of changing synthetic abilities." (Danielli, 1953). Figure 4 outlines a phylogenetic tree together with an indication of where evidence exists for both the enzymes that determine the biosynthesis and metabolism of the cholinergic and adrenergic transmitters and their specific cholinergic and adrenergic receptors. This figure illustrates a number of important points. For example, the evidence appears to show that the transmitters and their associated enzymes existed for a substantial period before their respective receptor proteins. While the transmitters and enzymes appear to exist in single cellular organisms, there is no solid evidence for the presence of adrenergic or cholinergic receptors until multicellular organisms where the receptors appear to be clearly associated with specific cellular and neuronal communication (Fig. 4). One can only speculate as to the possible role for acetylcholine and the catecholamine in single cell organisms.(ABSTRACT TRUNCATED AT 400 WORDS)
Leung, Preston; Eltahla, Auda A; Lloyd, Andrew R; Bull, Rowena A; Luciani, Fabio
2017-07-15
With the advent of affordable deep sequencing technologies, detection of low frequency variants within genetically diverse viral populations can now be achieved with unprecedented depth and efficiency. The high-resolution data provided by next generation sequencing technologies is currently recognised as the gold standard in estimation of viral diversity. In the analysis of rapidly mutating viruses, longitudinal deep sequencing datasets from viral genomes during individual infection episodes, as well as at the epidemiological level during outbreaks, now allow for more sophisticated analyses such as statistical estimates of the impact of complex mutation patterns on the evolution of the viral populations both within and between hosts. These analyses are revealing more accurate descriptions of the evolutionary dynamics that underpin the rapid adaptation of these viruses to the host response, and to drug therapies. This review assesses recent developments in methods and provide informative research examples using deep sequencing data generated from rapidly mutating viruses infecting humans, particularly hepatitis C virus (HCV), human immunodeficiency virus (HIV), Ebola virus and influenza virus, to understand the evolution of viral genomes and to explore the relationship between viral mutations and the host adaptive immune response. Finally, we discuss limitations in current technologies, and future directions that take advantage of publically available large deep sequencing datasets. Copyright © 2016 Elsevier B.V. All rights reserved.
Dissecting the evolution of dark matter subhaloes in the Bolshoi simulation
NASA Astrophysics Data System (ADS)
van den Bosch, Frank C.
2017-06-01
We present a comprehensive analysis of the evolution of dark matter subhaloes in the cosmological Bolshoi simulation. We identify a complete set of 12 unique evolution channels by which subhaloes evolve in between simulation outputs, and study their relative importance and demographics. We show that instantaneous masses and maximum circular velocities of individual subhaloes are extremely noisy, despite the use of a sophisticated, phase-space-based halo finder. We also show that subhaloes experience frequent penetrating encounters with other subhaloes (on average about one per dynamical time), and that subhaloes whose apo-centre lies outside the virial radius of their host (the 'ejected' or 'backsplash' haloes) experience tidal forces that modify their orbits. This results in an average fractional subhalo exchange rate among host haloes of ˜0.01 Gyr-1 (at the present time). In addition, we show that there are three distinct disruption channels; one in which subhaloes drop below the mass resolution limit of the simulation, one in which subhaloes 'merge' with their host halo largely driven by dynamical friction, and one in which subhaloes abruptly disintegrate. We estimate that roughly 80 per cent of all subhalo disruption in the Bolshoi simulation is numerical, rather than physical. This 'overmerging' is a serious road-block for the use of numerical simulations to interpret small-scale clustering, or for any other study that is sensitive to the detailed demographics of dark matter substructure.
Phylogenetic distribution of plant snoRNA families.
Patra Bhattacharya, Deblina; Canzler, Sebastian; Kehr, Stephanie; Hertel, Jana; Grosse, Ivo; Stadler, Peter F
2016-11-24
Small nucleolar RNAs (snoRNAs) are one of the most ancient families amongst non-protein-coding RNAs. They are ubiquitous in Archaea and Eukarya but absent in bacteria. Their main function is to target chemical modifications of ribosomal RNAs. They fall into two classes, box C/D snoRNAs and box H/ACA snoRNAs, which are clearly distinguished by conserved sequence motifs and the type of chemical modification that they govern. Similarly to microRNAs, snoRNAs appear in distinct families of homologs that affect homologous targets. In animals, snoRNAs and their evolution have been studied in much detail. In plants, however, their evolution has attracted comparably little attention. In order to chart the phylogenetic distribution of individual snoRNA families in plants, we applied a sophisticated approach for identifying homologs of known plant snoRNAs across the plant kingdom. In response to the relatively fast evolution of snoRNAs, information on conserved sequence boxes, target sequences, and secondary structure is combined to identify additional snoRNAs. We identified 296 families of snoRNAs in 24 species and traced their evolution throughout the plant kingdom. Many of the plant snoRNA families comprise paralogs. We also found that targets are well-conserved for most snoRNA families. The sequence conservation of snoRNAs is sufficient to establish homologies between phyla. The degree of this conservation tapers off, however, between land plants and algae. Plant snoRNAs are frequently organized in highly conserved spatial clusters. As a resource for further investigations we provide carefully curated and annotated alignments for each snoRNA family under investigation.
Pruetz, Jill D; LaDuke, Thomas C
2010-04-01
The use and control of fire are uniquely human traits thought to have come about fairly late in the evolution of our lineage, and they are hypothesized to correlate with an increase in intellectual complexity. Given the relatively sophisticated cognitive abilities yet small brain size of living apes compared to humans and even early hominins, observations of wild chimpanzees' reactions to naturally occurring fire can help inform hypotheses about the likely responses of early hominins to fire. We use data on the behavior of savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal during two encounters with wildfires to illuminate the similarities between great apes and humans regarding their reaction to fire. Chimpanzees' close relatedness to our lineage makes them phylogenetically relevant to the study of hominid evolution, and the open, hot and dry environment at Fongoli, similar to the savanna mosaic thought to characterize much of hominid evolution, makes these apes ecologically important as a living primate model as well. Chimpanzees at Fongoli calmly monitor wildfires and change their behavior in anticipation of the fire's movement. The ability to conceptualize the "behavior" of fire may be a synapomorphic trait characterizing the human-chimpanzee clade. If the cognitive underpinnings of fire conceptualization are a primitive hominid trait, hypotheses concerning the origins of the control and use of fire may need revision. We argue that our findings exemplify the importance of using living chimpanzees as models for better understanding human evolution despite recently published suggestions to the contrary. (c) 2009 Wiley-Liss, Inc.
The pharmacology and toxicology of three new biologic agents used in pulmonary medicine.
Albertson, T E; Walby, W F; Allen, R P; Tharratt, R S
1995-01-01
Biological agents have played an important role in the evolution of modern medical therapeutics. Recent advances in biologicals have in part been stimulated by the biotechnology revolution seen over the last several years. Toxicologists need to be aware of the proposed mechanisms and approved and experimental uses of these new biologic agents. Further, controversies about their use, efficacy, cost issues and potential toxicities should be known. Often these drugs are designed for small patient populations thus limiting the availability of human toxicological data bases. This paper reviews the pharmacology and toxicology of three new biologics (recombinant human DNase I, alpha 1-protease inhibitor, and nitric oxide). These agents appear to have important roles in treating specific diseases or disease states seen in pulmonary medicine.
Efficient Agent-Based Models for Non-Genomic Evolution
NASA Technical Reports Server (NTRS)
Gupta, Nachi; Agogino, Adrian; Tumer, Kagan
2006-01-01
Modeling dynamical systems composed of aggregations of primitive proteins is critical to the field of astrobiological science involving early evolutionary structures and the origins of life. Unfortunately traditional non-multi-agent methods either require oversimplified models or are slow to converge to adequate solutions. This paper shows how to address these deficiencies by modeling the protein aggregations through a utility based multi-agent system. In this method each agent controls the properties of a set of proteins assigned to that agent. Some of these properties determine the dynamics of the system, such as the ability for some proteins to join or split other proteins, while additional properties determine the aggregation s fitness as a viable primitive cell. We show that over a wide range of starting conditions, there are mechanisins that allow protein aggregations to achieve high values of overall fitness. In addition through the use of agent-specific utilities that remain aligned with the overall global utility, we are able to reach these conclusions with 50 times fewer learning steps.
Nyström, Andreas M; Wooley, Karen L
2011-10-18
Nanomedicine is a rapidly evolving field, for which polymer building blocks are proving useful for the construction of sophisticated devices that provide enhanced diagnostic imaging and treatment of disease, known as theranostics. These well-defined nanoscopic objects have high loading capacities, can protect embedded therapeutic cargo, and offer control over the conditions and rates of release. Theranostics also offer external surface area for the conjugation of ligands to impart stealth characteristics and/or direct their interactions with biological receptors and provide a framework for conjugation of imaging agents to track delivery to diseased site(s). The nanoscopic dimensions allow for extensive biological circulation. The incorporation of such multiple functions is complicated, requiring exquisite chemical control during production and rigorous characterization studies to confirm the compositions, structures, properties, and performance. We are particularly interested in the study of nanoscopic objects designed for treatment of lung infections and acute lung injury, urinary tract infections, and cancer. This Account highlights our work over several years to tune the assembly of unique nanostructures. We provide examples of how the composition, structure, dimensions, and morphology of theranostic devices can tune their performance as drug delivery agents for the treatment of infectious diseases and cancer. The evolution of nanostructured materials from relatively simple overall shapes and internal morphologies to those of increasing complexity is driving the development of synthetic methodologies for the preparation of increasingly complex nanomedicine devices. Our nanomedicine devices are derived from macromolecules that have well-defined compositions, structures, and topologies, which provide a framework for their programmed assembly into nanostructures with controlled sizes, shapes, and morphologies. The inclusion of functional units within selective compartments/domains allows us to create (multi)functional materials. We employ combinations of controlled radical and ring-opening polymerizations, chemical transformations, and supramolecular assembly to construct such materials as functional entities. The use of multifunctional monomers with selective polymerization chemistries affords regiochemically functionalized polymers. Further supramolecular assembly processes in water with further chemical transformations provide discrete nanoscopic objects within aqueous solutions. This approach echoes processes in nature, whereby small molecules (amino acids, nucleic acids, saccharides) are linked into polymers (proteins, DNA/RNA, polysaccharides, respectively) and then those polymers fold into three-dimensional conformations that can lead to nanoscopic functional entities.
Solar Energy Evolution and Diffusion Studies Webinars | Solar Research |
video Download the transcript Agent-based Models of How Segregation and Peer Effects Influence Solar PV to estimate the relative influence of peer effects, cognitive factors, and economic factors in solar
The evolution of stem-cell transplantation in multiple myeloma.
Mahajan, Sarakshi; Tandon, Nidhi; Kumar, Shaji
2018-05-01
Autologous stem-cell transplantation (ASCT) remains an integral part of treatment for previously untreated, and may have value in the treatment of relapsed patients with, multiple myeloma (MM). The addition of novel agents like immunomodulators and proteasome inhibitors as induction therapy before and as consolidation/maintenance therapy after ASCT has led to an improvement in complete response (CR) rates, progression-free survival (PFS) and overall survival (OS). With advances in supportive care, older patients and patients with renal insufficiency are now able to safely undergo the procedure. The data concerning the timing of ASCT (early in the disease course or at first relapse), single versus tandem (double) ASCT and the role and duration of consolidation and maintenance therapy post ASCT remain conflicting. This review aims to discuss the evolution of stem-cell transplant over the past 3 decades and its current role in the context of newer, safer and more effective therapeutic agents.
The organization and control of an evolving interdependent population
Vural, Dervis C.; Isakov, Alexander; Mahadevan, L.
2015-01-01
Starting with Darwin, biologists have asked how populations evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. Specifically of interest is the emergence of cooperation and multicellularity where the fitness of individuals often appears in conflict with that of the population. Theories of social evolution and evolutionary game theory have produced a number of fruitful results employing two-state two-body frameworks. In this study, we depart from this tradition and instead consider a multi-player, multi-state evolutionary game, in which the fitness of an agent is determined by its relationship to an arbitrary number of other agents. We show that populations organize themselves in one of four distinct phases of interdependence depending on one parameter, selection strength. Some of these phases involve the formation of specialized large-scale structures. We then describe how the evolution of independence can be manipulated through various external perturbations. PMID:26040593
Statistical dynamics of religion evolutions
NASA Astrophysics Data System (ADS)
Ausloos, M.; Petroni, F.
2009-10-01
A religion affiliation can be considered as a “degree of freedom” of an agent on the human genre network. A brief review is given on the state of the art in data analysis and modelization of religious “questions” in order to suggest and if possible initiate further research, after using a “statistical physics filter”. We present a discussion of the evolution of 18 so-called religions, as measured through their number of adherents between 1900 and 2000. Some emphasis is made on a few cases presenting a minimum or a maximum in the investigated time range-thereby suggesting a competitive ingredient to be considered, besides the well accepted “at birth” attachment effect. The importance of the “external field” is still stressed through an Avrami late stage crystal growth-like parameter. The observed features and some intuitive interpretations point to opinion based models with vector, rather than scalar, like agents.
NASA Astrophysics Data System (ADS)
Zhou, Jianfeng; Lou, Yang; Chen, Guanrong; Tang, Wallace K. S.
2018-04-01
Naming game is a simulation-based experiment used to study the evolution of languages. The conventional naming game focuses on a single language. In this paper, a novel naming game model named multi-language naming game (MLNG) is proposed, where the agents are different-language speakers who cannot communicate with each other without a translator (interpreter) in between. The MLNG model is general, capable of managing k different languages with k ≥ 2. For illustration, the paper only discusses the MLNG with two different languages, and studies five representative network topologies, namely random-graph, WS small-world, NW small-world, scale-free, and random-triangle topologies. Simulation and analysis results both show that: 1) using the network features and based on the proportion of translators the probability of establishing a conversation between two or three agents can be theoretically estimated; 2) the relationship between the convergence speed and the proportion of translators has a power-law-like relation; 3) different agents require different memory sizes, thus a local memory allocation rule is recommended for saving memory resources. The new model and new findings should be useful for further studies of naming games and for better understanding of languages evolution from a dynamical network perspective.
The evolving cobweb of relations among partially rational investors.
DeLellis, Pietro; DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco
2017-01-01
To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents' behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors.
Physical Scaffolding Accelerates the Evolution of Robot Behavior.
Buckingham, David; Bongard, Josh
2017-01-01
In some evolutionary robotics experiments, evolved robots are transferred from simulation to reality, while sensor/motor data flows back from reality to improve the next transferral. We envision a generalization of this approach: a simulation-to-reality pipeline. In this pipeline, increasingly embodied agents flow up through a sequence of increasingly physically realistic simulators, while data flows back down to improve the next transferral between neighboring simulators; physical reality is the last link in this chain. As a first proof of concept, we introduce a two-link chain: A fast yet low-fidelity ( lo-fi) simulator hosts minimally embodied agents, which gradually evolve controllers and morphologies to colonize a slow yet high-fidelity ( hi-fi) simulator. The agents are thus physically scaffolded. We show here that, given the same computational budget, these physically scaffolded robots reach higher performance in the hi-fi simulator than do robots that only evolve in the hi-fi simulator, but only for a sufficiently difficult task. These results suggest that a simulation-to-reality pipeline may strike a good balance between accelerating evolution in simulation while anchoring the results in reality, free the investigator from having to prespecify the robot's morphology, and pave the way to scalable, automated, robot-generating systems.
Solar Radiation as Driving Force In Early Evolution
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)
2002-01-01
Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.
Bean, Dan W; Dalin, Peter; Dudley, Tom L
2012-01-01
In classical weed biological control, small collections of arthropods are made from one or a few sites in the native range of the target plant and are introduced to suppress the plant where it has become invasive, often across a wide geographic range. Ecological mismatches in the new range are likely, and success using the biocontrol agent may depend on postrelease evolution of beneficial life history traits. In this study, we measure the evolution of critical day length for diapause induction (day length at which 50% of the population enters dormancy), in a beetle (Diorhabda carinulata) introduced into North America from China to control an exotic shrub, Tamarix spp. Beetle populations were sampled from four sites in North America 7 years after introduction, and critical day length was shown to have declined, forming a cline over a latitudinal gradient At one field site, decreased critical day length was correlated with 16 additional days of reproductive activity, resulting in a closer match between beetle life history and the phenology of Tamarix. These findings indicate an enhanced efficacy and an increasingly wider range for D. carinulata in Tamarix control. PMID:22949926
Relaxation of selection, niche construction, and the Baldwin effect in language evolution.
Yamauchi, Hajime; Hashimoto, Takashi
2010-01-01
Deacon has suggested that one of the key factors of language evolution is not characterized by an increase in genetic contribution, often known as the Baldwin effect, but rather by a decrease. This process effectively increases linguistic learning capability by organizing a novel synergy of multiple lower-order functions previously irrelevant to the process of language acquisition. Deacon posits that this transition is not caused by natural selection. Rather, it is due to the relaxation of natural selection. While there are some cases in which relaxation caused by some external factors indeed induces the transition, we do not know what kind of relaxation has worked in language evolution. In this article, a genetic-algorithm-based computer simulation is used to investigate how the niche-constructing aspect of linguistic behavior may trigger the degradation of genetic predisposition related to language learning. The results show that agents initially increase their genetic predisposition for language learning—the Baldwin effect. They create a highly uniform sociolinguistic environment—a linguistic niche construction. This means that later generations constantly receive very similar inputs from adult agents, and subsequently the selective pressure to retain the genetic predisposition is relaxed.
Opinion formation in time-varying social networks: The case of the naming game
NASA Astrophysics Data System (ADS)
Maity, Suman Kalyan; Manoj, T. Venkat; Mukherjee, Animesh
2012-09-01
We study the dynamics of the naming game as an opinion formation model on time-varying social networks. This agent-based model captures the essential features of the agreement dynamics by means of a memory-based negotiation process. Our study focuses on the impact of time-varying properties of the social network of the agents on the naming game dynamics. In particular, we perform a computational exploration of this model using simulations on top of real networks. We investigate the outcomes of the dynamics on two different types of time-varying data: (1) the networks vary on a day-to-day basis and (2) the networks vary within very short intervals of time (20 sec). In the first case, we find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the naming game in these networks maintains clusters of coexisting opinions indefinitely leading to metastability. In the second case, we investigate the evolution of the naming game in perfect synchronization with the time evolution of the underlying social network shedding new light on the traditional emergent properties of the game that differ largely from what has been reported in the existing literature.
AST: Activity-Security-Trust driven modeling of time varying networks.
Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen
2016-02-18
Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents' interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.
Blackboxing: social learning strategies and cultural evolution
Heyes, Cecilia
2016-01-01
Social learning strategies (SLSs) enable humans, non-human animals, and artificial agents to make adaptive decisions about when they should copy other agents, and who they should copy. Behavioural ecologists and economists have discovered an impressive range of SLSs, and explored their likely impact on behavioural efficiency and reproductive fitness while using the ‘phenotypic gambit’; ignoring, or remaining deliberately agnostic about, the nature and origins of the cognitive processes that implement SLSs. Here I argue that this ‘blackboxing' of SLSs is no longer a viable scientific strategy. It has contributed, through the ‘social learning strategies tournament', to the premature conclusion that social learning is generally better than asocial learning, and to a deep puzzle about the relationship between SLSs and cultural evolution. The puzzle can be solved by recognizing that whereas most SLSs are ‘planetary'—they depend on domain-general cognitive processes—some SLSs, found only in humans, are ‘cook-like'—they depend on explicit, metacognitive rules, such as copy digital natives. These metacognitive SLSs contribute to cultural evolution by fostering the development of processes that enhance the exclusivity, specificity, and accuracy of social learning. PMID:27069046
Dávid-Barrett, T.; Dunbar, R. I. M.
2013-01-01
Sociality is primarily a coordination problem. However, the social (or communication) complexity hypothesis suggests that the kinds of information that can be acquired and processed may limit the size and/or complexity of social groups that a species can maintain. We use an agent-based model to test the hypothesis that the complexity of information processed influences the computational demands involved. We show that successive increases in the kinds of information processed allow organisms to break through the glass ceilings that otherwise limit the size of social groups: larger groups can only be achieved at the cost of more sophisticated kinds of information processing that are disadvantageous when optimal group size is small. These results simultaneously support both the social brain and the social complexity hypotheses. PMID:23804623
Semantic message oriented middleware for publish/subscribe networks
NASA Astrophysics Data System (ADS)
Li, Han; Jiang, Guofei
2004-09-01
The publish/subscribe paradigm of Message Oriented Middleware provides a loosely coupled communication model between distributed applications. Traditional publish/subscribe middleware uses keywords to match advertisements and subscriptions and does not support deep semantic matching. To this end, we designed and implemented a Semantic Message Oriented Middleware system to provide such capabilities for semantic description and matching. We adopted the DARPA Agent Markup Language and Ontology Inference Layer, a formal knowledge representation language for expressing sophisticated classifications and enabling automated inference, as the topic description language in our middleware system. A simple description logic inference system was implemented to handle the matching process between the subscriptions of subscribers and the advertisements of publishers. Moreover our middleware system also has a security architecture to support secure communication and user privilege control.
Review of Adaptive Programmable Materials and Their Bioapplications.
Fan, Xiaoshan; Chung, Jing Yang; Lim, Yong Xiang; Li, Zibiao; Loh, Xian Jun
2016-12-14
Adaptive programmable materials have attracted increasing attention due to their high functionality, autonomous behavior, encapsulation, and site-specific confinement capabilities in various applications. Compared to conventional materials, adaptive programmable materials possess unique single-material architecture that can maintain, respond, and change their shapes and dimensions when they are subjected to surrounding environment changes, such as alternation in temperature, pH, and ionic strength. In this review, the most-recent advances in the design strategies of adaptive programmable materials are presented with respect to different types of architectural polymers, including stimuli-responsive polymers and shape-memory polymers. The diverse functions of these sophisticated materials and their significance in therapeutic agent delivery systems are also summarized in this review. Finally, the challenges for facile fabrication of these materials and future prospective are also discussed.
NASA Astrophysics Data System (ADS)
Kopwitthaya, Atcha; Yong, Ken-Tye; Hu, Rui; Roy, Indrajit; Ding, Hong; Vathy, Lisa A.; Bergey, Earl J.; Prasad, Paras N.
2010-08-01
In this contribution, we report the use of a PEGylated gold nanorods formulation as a colored dye for tumor labeling in vivo. We have demonstrated that the nanorod-targeted tumor site can be easily differentiated from the background tissues by the 'naked eye' without the need of sophisticated imaging instruments. In addition to tumor labeling, we have also performed in vivo toxicity and biodistribution studies of PEGylated gold nanorods in vivo by using BALB/c mice as the model. In vivo toxicity studies indicated no mortality or adverse effects or weight changes in BALB/c mice treated with PEGylated gold nanorods. This finding will provide useful guidelines in the future development of diagnostic probes for cancer diagnosis, optically guided tumor surgery, and lymph node mapping applications.
Computational Modeling and Treatment Identification in the Myelodysplastic Syndromes.
Drusbosky, Leylah M; Cogle, Christopher R
2017-10-01
This review discusses the need for computational modeling in myelodysplastic syndromes (MDS) and early test results. As our evolving understanding of MDS reveals a molecularly complicated disease, the need for sophisticated computer analytics is required to keep track of the number and complex interplay among the molecular abnormalities. Computational modeling and digital drug simulations using whole exome sequencing data input have produced early results showing high accuracy in predicting treatment response to standard of care drugs. Furthermore, the computational MDS models serve as clinically relevant MDS cell lines for pre-clinical assays of investigational agents. MDS is an ideal disease for computational modeling and digital drug simulations. Current research is focused on establishing the prediction value of computational modeling. Future research will test the clinical advantage of computer-informed therapy in MDS.
Some basic properties of immune selection.
Iwasa, Yoh; Michor, Franziska; Nowak, Martin
2004-07-21
We analyze models for the evolutionary dynamics of viral or other infectious agents within a host. We study how the invasion of a new strain affects the composition and diversity of the viral population. We show that--under strain-specific immunity--the equilibrium abundance of uninfected cells declines during viral evolution. In addition, for cytotoxic immunity the absolute force of infection, and for non-cytotoxic immunity the absolute cellular virulence increases during viral evolution. We prove global stability by means of Lyapunov functions. These unidirectional trends of virus evolution under immune selection do not hold for general cross-reactive immune responses, which introduce frequency-dependent selection among viral strains. Therefore, appropriate cross-reactive immunity can lead to a viral evolution within a host which limits the extent of the disease.
Grounding language in action and perception: from cognitive agents to humanoid robots.
Cangelosi, Angelo
2010-06-01
In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition. Copyright 2010 Elsevier B.V. All rights reserved.
Information, knowledge and the future of machines.
MacFarlane, Alistair G J
2003-08-15
This wide-ranging survey considers the future of machines in terms of information, complexity and the growth of knowledge shared amongst agents. Mechanical and human agents are compared and contrasted, and it is argued that, for the foreseeable future, their roles will be complementary. The future development of machines is examined in terms of unions of human and machine agency evolving as part of economic activity. Limits to, and threats posed by, the continuing evolution of such a society of agency are considered.
The Role of Intelligent Agents in Advanced Information Systems
NASA Technical Reports Server (NTRS)
Kerschberg, Larry
1999-01-01
In this presentation we review the current ongoing research within George Mason University's (GMU) Center for Information Systems Integration and Evolution (CISE). We define characteristics of advanced information systems, discuss a family of agents for such systems, and show how GMU's Domain modeling tools and techniques can be used to define a product line Architecture for configuring NASA missions. These concepts can be used to define Advanced Engineering Environments such as those envisioned for NASA's new initiative for intelligent design and synthesis environments.
Opinion evolution in open community
NASA Astrophysics Data System (ADS)
Pan, Qiuhui; Qin, Yao; Xu, Yiqun; Tong, Mengfei; He, Mingfeng
We consider a dynamic group composed with a constant number of people and the people will change periodically. Every member in the community owns a value of confidence — a mechanism that measures the agent’s coherence to his or her own attitude. Based on Cellular Automata, the opinions of all agents are synchronously updated. As long as the updating frequency and updating proportion are appropriate, the open system can reach a democracy-like steady state. The majority of agents in the community will hold the same opinion.
Evolving nutritional strategies in the presence of competition: a geometric agent-based model.
Senior, Alistair M; Charleston, Michael A; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J
2015-03-01
Access to nutrients is a key factor governing development, reproduction and ultimately fitness. Within social groups, contest-competition can fundamentally affect nutrient access, potentially leading to reproductive asymmetry among individuals. Previously, agent-based models have been combined with the Geometric Framework of nutrition to provide insight into how nutrition and social interactions affect one another. Here, we expand this modelling approach by incorporating evolutionary algorithms to explore how contest-competition over nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically, we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbalanced foods, which we term 'nutritional latitude'; a higher degree of nutritional latitude constitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a transition between two alternative strategies occurs at moderate to high levels of competition. When competition is low, individuals display a low level of nutritional latitude and regularly switch foods in search of an optimum. When food is scarce and contest-competition is intense, high nutritional latitude appears optimal, and individuals continue to consume an imbalanced food for longer periods before attempting to switch to an alternative. However, the relative balance of nutrients within available foods also strongly influences at what levels of competition, if any, transitions between these two strategies occur. Our models imply that competition combined with reproductive skew in social groups can play a role in the evolution of diet breadth. We discuss how the integration of agent-based, nutritional and evolutionary modelling may be applied in future studies to further understand the evolution of nutritional strategies across social and ecological contexts.
Simulating the elimination of sleeping sickness with an agent-based model.
Grébaut, Pascal; Girardin, Killian; Fédérico, Valentine; Bousquet, François
2016-01-01
Although Human African Trypanosomiasis is largely considered to be in the process of extinction today, the persistence of human and animal reservoirs, as well as the vector, necessitates a laborious elimination process. In this context, modeling could be an effective tool to evaluate the ability of different public health interventions to control the disease. Using the Cormas ® system, we developed HATSim, an agent-based model capable of simulating the possible endemic evolutions of sleeping sickness and the ability of National Control Programs to eliminate the disease. This model takes into account the analysis of epidemiological, entomological, and ecological data from field studies conducted during the last decade, making it possible to predict the evolution of the disease within this area over a 5-year span. In this article, we first present HATSim according to the Overview, Design concepts, and Details (ODD) protocol that is classically used to describe agent-based models, then, in a second part, we present predictive results concerning the evolution of Human African Trypanosomiasis in the village of Lambi (Cameroon), in order to illustrate the interest of such a tool. Our results are consistent with what was observed in the field by the Cameroonian National Control Program (CNCP). Our simulations also revealed that regular screening can be sufficient, although vector control applied to all areas with human activities could be significantly more efficient. Our results indicate that the current model can already help decision-makers in planning the elimination of the disease in foci. © P. Grébaut et al., published by EDP Sciences, 2016.
Cationic antimicrobial polymers and their assemblies.
Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias
2013-05-10
Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.
Cationic Antimicrobial Polymers and Their Assemblies
Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias
2013-01-01
Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898
Monitoring of In-Situ Remediation By Time Lapse 3D Geo-Electric Measurements
NASA Astrophysics Data System (ADS)
Kanli, A. I.; Tildy, P.; Neducza, B.; Nagy, P.; Hegymegi, C.
2017-12-01
Injection of chemical oxidant solution to degrade the subsurface contaminants can be used for hydrocarbon contamination remediation. In this study, we developed a non-destructive measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations. Due to the effect of conductive groundwater and the high clay content of the targeted layer and the small volume of conductive solution that can be used due to environmental considerations, a site specific synthetic modelling is necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. Because of chemical biodegradation, the results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressure of injection. 3D time-lapse geo-electric measurements were proven to provide a usable monitoring tool for in-situ remediation as a result of our sophisticated tests and synthetic modelling.
Motivated mind perception: treating pets as people and people as animals.
Epley, Nicholas; Schroeder, Juliana; Waytz, Adam
2013-01-01
Human beings have a sophisticated ability to reason about the minds of others, often referred to as using one's theory of mind or mentalizing. Just like any other cognitive ability, people engage in reasoning about other minds when it seems useful for achieving particular goals, but this ability remains disengaged otherwise. We suggest that understanding the factors that engage our ability to reason about the minds of others helps to explain anthropomorphism: cases in which people attribute minds to a wide range of nonhuman agents, including animals, mechanical and technological objects, and supernatural entities such as God. We suggest that engagement is guided by two basic motivations: (1) the motivation to explain and predict others' actions, and (2) the motivation to connect socially with others. When present, these motivational forces can lead people to attribute minds to almost any agent. When absent, the likelihood of attributing a mind to others, even other human beings, decreases. We suggest that understanding the factors that engage our theory of mind can help to explain the inverse process of dehumanization, and also why people might be indifferent to other people even when connecting to them would improve their momentary wellbeing.
Morse oscillator propagator in the high temperature limit I: Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae
2017-02-15
In an earlier work of the author the time evolution of Morse oscillator was studied analytically and exactly at low temperatures whereupon optical correlation functions were calculated using Morse oscillator coherent states were employed. Morse oscillator propagator in the high temperature limit is derived and a closed form of its corresponding canonical partition function is obtained. Both diagonal and off-diagonal forms of Morse oscillator propagator are derived in the high temperature limit. Partition functions of diatomic molecules are calculated. - Highlights: • Derives the quantum propagator of Morse oscillator in the high temperature limit. • Uses the resulting diagonal propagatormore » to derive a closed form of Morse oscillator partition function. • Provides a more sophisticated formula of the quantum propagator to test the accuracy of the herein results.« less
Model systems: how chemical biologists study RNA
Rios, Andro C.; Tor, Yitzhak
2009-01-01
Ribonucleic acids are structurally and functionally sophisticated biomolecules and the use of models, frequently truncated or modified sequences representing functional domains of the natural systems, is essential to their exploration. Functional non-coding RNAs such as miRNAs, riboswitches, and, in particular, ribozymes, have changed the view of RNA’s role in biology and its catalytic potential. The well-known truncated hammerhead model has recently been refined and new data provide a clearer molecular picture of the elements responsible for its catalytic power. A model for the spliceosome, a massive and highly intricate ribonucleoprotein, is also emerging, although its true utility is yet to be cemented. Such catalytic model systems could also serve as “chemo-paleontological” tools, further refining the RNA world hypothesis and its relevance to the origin and evolution of life. PMID:19879179
Design Principles of Regulatory Networks: Searching for the Molecular Algorithms of the Cell
Lim, Wendell A.; Lee, Connie M.; Tang, Chao
2013-01-01
A challenge in biology is to understand how complex molecular networks in the cell execute sophisticated regulatory functions. Here we explore the idea that there are common and general principles that link network structures to biological functions, principles that constrain the design solutions that evolution can converge upon for accomplishing a given cellular task. We describe approaches for classifying networks based on abstract architectures and functions, rather than on the specific molecular components of the networks. For any common regulatory task, can we define the space of all possible molecular solutions? Such inverse approaches might ultimately allow the assembly of a design table of core molecular algorithms that could serve as a guide for building synthetic networks and modulating disease networks. PMID:23352241
Using Publish-Subscribe Messaging for System Status and Automation
NASA Technical Reports Server (NTRS)
Smith, Danford S.
2015-01-01
The NASA Goddard Mission Services Evolution Center (GMSEC) system is a message-based plug-and-play open system architecture used in many of NASA mission operations centers. This presentation will focus on the use of GMSEC standard messages to report and analyze the status of a system and enable the automation of the system's components. In GMSEC systems, each component reports its status using a keep-alive message and also publishes status and activities as log messages. In addition, the components can accept functional directive messages from the GMSEC message bus. Over the past several years, development teams have found ways to utilize these messages to create innovative display pages and increasingly sophisticated approaches to automation. This presentation will show the flexibility and value of the message-based approach to system awareness and automation.
NASA Astrophysics Data System (ADS)
Nack, Frank
Stories have been shared in every culture because they are a powerful means to entertain, educate, and preserve traditions or instill values. In the history of storytelling technological evolution has changed the tools available to storytellers, from primarily oral representations that have been enriched with gestures and expressions to the sophisticated forms we enjoy today, such as film or complex layered hypermedia environments. Despite these developments the traditional linear presentation of a story is still the most dominant. Yet, the first decade of the twenty-first century established a technology that finally, after many attempts, can challenge the dogma of passive linearity. It is mobile technology that makes people aware that a digital environment opens opportunities to everybody to freely socialize through and with stories relevant for the current spatial, temporal, and social context.
Early evolution and ecology of camouflage in insects
Pérez-de la Fuente, Ricardo; Delclòs, Xavier; Peñalver, Enrique; Speranza, Mariela; Wierzchos, Jacek; Ascaso, Carmen; Engel, Michael S.
2012-01-01
Taxa within diverse lineages select and transport exogenous materials for the purposes of camouflage. This adaptive behavior also occurs in insects, most famously in green lacewing larvae who nestle the trash among setigerous cuticular processes, known as trash-carrying, rendering them nearly undetectable to predators and prey, as well as forming a defensive shield. We report an exceptional discovery of a green lacewing larva in Early Cretaceous amber from Spain with specialized cuticular processes forming a dorsal basket that carry a dense trash packet. The trash packet is composed of trichomes of gleicheniacean ferns, which highlight the presence of wildfires in this early forest ecosystem. This discovery provides direct evidence of an early acquisition of a sophisticated behavioral suite in stasis for over 110 million years and an ancient plant–insect interaction. PMID:23236135
Pyle, Thomas O
2008-01-01
Thomas O. Pyle served in the top echelons of the Harvard Community Health Plan (HCHP) for nineteen years. In that time, HCHP became the largest health maintenance organization (HMO) in New England, and its reputation for innovation and entrepreneurship rose to the top ranks of the industry. HCHP pioneered the automated medical record, nurse practitioners, quality measurement, and sophisticated disease management. In this interview, Berwick and the Institute for Healthcare Improvement's Madge Kaplan explore Pyle's background, his interpretation of HCHP's evolution and eventual transition to a much different organization, and his recommendations for the future. At the time of this interview, Tom was suffering from advanced pancreatic cancer, from which he died ten weeks later, 18 July 2007.
Early evolution and ecology of camouflage in insects.
Pérez-de la Fuente, Ricardo; Delclòs, Xavier; Peñalver, Enrique; Speranza, Mariela; Wierzchos, Jacek; Ascaso, Carmen; Engel, Michael S
2012-12-26
Taxa within diverse lineages select and transport exogenous materials for the purposes of camouflage. This adaptive behavior also occurs in insects, most famously in green lacewing larvae who nestle the trash among setigerous cuticular processes, known as trash-carrying, rendering them nearly undetectable to predators and prey, as well as forming a defensive shield. We report an exceptional discovery of a green lacewing larva in Early Cretaceous amber from Spain with specialized cuticular processes forming a dorsal basket that carry a dense trash packet. The trash packet is composed of trichomes of gleicheniacean ferns, which highlight the presence of wildfires in this early forest ecosystem. This discovery provides direct evidence of an early acquisition of a sophisticated behavioral suite in stasis for over 110 million years and an ancient plant-insect interaction.
Digital stethoscope: technology update.
Swarup, Supreeya; Makaryus, Amgad N
2018-01-01
Cardiovascular disease (CVD) is recognized as the leading cause of mortality throughout the world. About one-third of global mortality is attributable to CVD. In addition to clinical presentation, specific clinical exam findings can assist in treating and preventing CVD. CVD may initially manifest as pulmonary pathology, and thus, accurate cardiopulmonary auscultation is paramount to establishing accurate diagnosis. One of the most powerful tools available to physicians is the stethoscope. The stethoscope first emerged in the year 1818, invented by a French physician, René Laennec. Since then, the initial modest monaural wooden tube has evolved into a sophisticated digital device. This paper provides an analysis of the evolution of the stethoscope as well as highlights the advancement made by the modern digital stethoscope including the application of this tool in advancing care for patients suffering from CVD.
Minority game with arbitrary cutoffs
NASA Astrophysics Data System (ADS)
Johnson, N. F.; Hui, P. M.; Zheng, Dafang; Tai, C. W.
1999-07-01
We study a model of a competing population of N adaptive agents, with similar capabilities, repeatedly deciding whether to attend a bar with an arbitrary cutoff L. Decisions are based upon past outcomes. The agents are only told whether the actual attendance is above or below L. For L∼ N/2, the game reproduces the main features of Challet and Zhang's minority game. As L is lowered, however, the mean attendances in different runs tend to divide into two groups. The corresponding standard deviations for these two groups are very different. This grouping effect results from the dynamical feedback governing the game's time-evolution, and is not reproduced if the agents are fed a random history.
The Impact of Financial Sophistication on Adjustable Rate Mortgage Ownership
ERIC Educational Resources Information Center
Smith, Hyrum; Finke, Michael S.; Huston, Sandra J.
2011-01-01
The influence of a financial sophistication scale on adjustable-rate mortgage (ARM) borrowing is explored. Descriptive statistics and regression analysis using recent data from the Survey of Consumer Finances reveal that ARM borrowing is driven by both the least and most financially sophisticated households but for different reasons. Less…
The First Sophists and the Uses of History.
ERIC Educational Resources Information Center
Jarratt, Susan C.
1987-01-01
Reviews the history of intellectual views on the Greek sophists in three phases: (1) their disparagement by Plato and Aristotle as the morally disgraceful "other"; (2) nineteenth century British positivists' reappraisal of these relativists as ethically and scientifically superior; and (3) twentieth century versions of the sophists as…
The Sophistical Attitude and the Invention of Rhetoric
ERIC Educational Resources Information Center
Crick, Nathan
2010-01-01
Traditionally, the Older Sophists were conceived as philosophical skeptics who rejected speculative inquiry to focus on rhetorical methods of being successful in practical life. More recently, this view has been complicated by studies revealing the Sophists to be a diverse group of intellectuals who practiced their art prior to the categorization…
Automatically Assessing Lexical Sophistication: Indices, Tools, Findings, and Application
ERIC Educational Resources Information Center
Kyle, Kristopher; Crossley, Scott A.
2015-01-01
This study explores the construct of lexical sophistication and its applications for measuring second language lexical and speaking proficiency. In doing so, the study introduces the Tool for the Automatic Analysis of LExical Sophistication (TAALES), which calculates text scores for 135 classic and newly developed lexical indices related to word…
Diversity of rationality affects the evolution of cooperation
NASA Astrophysics Data System (ADS)
Chen, Yu-Zhong; Huang, Zi-Gang; Wang, Sheng-Jun; Zhang, Yan; Wang, Ying-Hai
2009-05-01
By modifying the Fermi updating rule, we present the diversity of individual rationality to the evolutionary prisoner’s dilemma game, and our results shows that this diversity heavily influences the evolution of cooperation. Cluster-forming mechanism of cooperators can either be highly enhanced or severely deteriorated by different distributions of rationality. Slight change in the rationality distribution may transfer the whole system from the global absorbing state of cooperators to that of defectors. Based on mean-field argument, quantitative analysis of the stability of cooperative clusters reveals the critical role played by agents with moderate degree values in the evolution of the whole system. The inspiration from our work may provide us a deeper comprehension toward some social phenomena.
Wencewicz, Timothy A; Long, Timothy E; Möllmann, Ute; Miller, Marvin J
2013-03-20
Siderophores are multidentate iron(III) chelators used by bacteria for iron assimilation. Sideromycins, also called siderophore-antibiotic conjugates, are a unique subset of siderophores that enter bacterial cells via siderophore uptake pathways and deliver the toxic antibiotic in a "Trojan horse" fashion. Sideromycins represent a novel antibiotic delivery technology with untapped potential for developing sophisticated microbe-selective antibacterial agents that limit the emergence of bacterial resistance. The chemical synthesis of a series of mono-, bis-, and trihydroxamate sideromycins are described here along with their biological evaluation in antibacterial susceptibility assays. The linear hydroxamate siderophores used for the sideromycins in this study were derived from the ferrioxamine family and inspired by the naturally occurring salmycin sideromycins. The antibacterial agents used were a β-lactam carbacepholosporin, Lorabid, and a fluoroquinolone, ciprofloxacin, chosen for the different locations of their biological targets, the periplasm (extracellular) and the cytoplasm (intracellular). The linear hydroxamate-based sideromycins were selectively toxic toward Gram-positive bacteria, especially Staphylococcus aureus SG511 (MIC = 1.0 μM for the trihydroxamate-fluoroquinolone sideromycin). Siderophore-sideromycin competition assays demonstrated that only the fluoroquinolone sideromycins required membrane transport to reach their cytoplasmic biological target and that a trihydroxamate siderophore backbone was required for protein-mediated active transport of the sideromycins into S. aureus cells via siderophore uptake pathways. This work represents a comprehensive study of linear hydroxamate sideromycins and teaches how to build effective hydroxamate-based sideromycins as Gram-positive selective antibiotic agents.
Function allocation for humans and automation in the context of team dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. Joe; John O'Hara; Jacques Hugo
Within Human Factors Engineering, a decision-making process called function allocation (FA) is used during the design life cycle of complex systems to distribute the system functions, often identified through a functional requirements analysis, to all human and automated machine agents (or teammates) involved in controlling the system. Most FA methods make allocation decisions primarily by comparing the capabilities of humans and automation, but then also by considering secondary factors such as cost, regulations, and the health and safety of workers. The primary analysis of the strengths and weaknesses of humans and machines, however, is almost always considered in terms ofmore » individual human or machine capabilities. Yet, FA is fundamentally about teamwork in that the goal of the FA decision-making process is to determine what are the optimal allocations of functions among agents. Given this framing of FA, and the increasing use of and sophistication of automation, there are two related social psychological issues that current FA methods need to address more thoroughly. First, many principles for effective human teamwork are not considered as central decision points or in the iterative hypothesis and testing phase in most FA methods, when it is clear that social factors have numerous positive and negative effects on individual and team capabilities. Second, social psychological factors affecting team performance and can be difficult to translate to automated agents, and most FA methods currently do not account for this effect. The implications for these issues are discussed.« less
Molecular Imaging: Current Status and Emerging Strategies
Pysz, Marybeth A.; Gambhir, Sanjiv S.; Willmann, Jürgen K.
2011-01-01
In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific therapeutic treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use PET- or SPECT-based techniques. In ongoing preclinical research novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multimodality molecular imaging. Contrast-enhanced molecular ultrasound with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and ultrasound imaging with molecularly-targeted microbubbles are attractive strategies since they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and ultrasound modalities involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with ultrasound. Current preclinical findings and advances in instrumentation such as endoscopes and microcatheters suggest that these molecular imaging modalities have numerous clinical applications and will be translated into clinical use in the near future. PMID:20541650
Myers, Rachel; Grundy, Megan; Rowe, Cliff; Coviello, Christian M; Bau, Luca; Erbs, Philippe; Foloppe, Johann; Balloul, Jean-Marc; Story, Colin; Coussios, Constantin C; Carlisle, Robert
2018-01-01
The treatment of cancer using nanomedicines is limited by the poor penetration of these potentially powerful agents into and throughout solid tumors. Externally controlled mechanical stimuli, such as the generation of cavitation-induced microstreaming using ultrasound (US), can provide a means of improving nanomedicine delivery. Notably, it has been demonstrated that by focusing, monitoring and controlling the US exposure, delivery can be achieved without damage to surrounding tissue or vasculature. However, there is a risk that such stimuli may disrupt the structure and thereby diminish the activity of the delivered drugs, especially complex antibody and viral-based nanomedicines. In this study, we characterize the impact of cavitation on four different agents, doxorubicin (Dox), cetuximab, adenovirus (Ad) and vaccinia virus (VV), representing a scale of sophistication from a simple small-molecule drug to complex biological agents. To achieve tight regulation of the level and duration of cavitation exposure, a "cavitation test rig" was designed and built. The activity of each agent was assessed with and without exposure to a defined cavitation regime which has previously been shown to provide effective and safe delivery of agents to tumors in preclinical studies. The fluorescence profile of Dox remained unchanged after exposure to cavitation, and the efficacy of this drug in killing a cancer cell line remained the same. Similarly, the ability of cetuximab to bind its epidermal growth factor receptor target was not diminished following exposure to cavitation. The encoding of the reporter gene luciferase within the Ad and VV constructs tested here allowed the infectivity of these viruses to be easily quantified. Exposure to cavitation did not impact on the activity of either virus. These data provide compelling evidence that the US parameters used to safely and successfully delivery nanomedicines to tumors in preclinical models do not detrimentally impact on the structure or activity of these nanomedicines.
Myers, Rachel; Grundy, Megan; Rowe, Cliff; Coviello, Christian M; Bau, Luca; Erbs, Philippe; Foloppe, Johann; Balloul, Jean-Marc; Story, Colin; Coussios, Constantin C; Carlisle, Robert
2018-01-01
The treatment of cancer using nanomedicines is limited by the poor penetration of these potentially powerful agents into and throughout solid tumors. Externally controlled mechanical stimuli, such as the generation of cavitation-induced microstreaming using ultrasound (US), can provide a means of improving nanomedicine delivery. Notably, it has been demonstrated that by focusing, monitoring and controlling the US exposure, delivery can be achieved without damage to surrounding tissue or vasculature. However, there is a risk that such stimuli may disrupt the structure and thereby diminish the activity of the delivered drugs, especially complex antibody and viral-based nanomedicines. In this study, we characterize the impact of cavitation on four different agents, doxorubicin (Dox), cetuximab, adenovirus (Ad) and vaccinia virus (VV), representing a scale of sophistication from a simple small-molecule drug to complex biological agents. To achieve tight regulation of the level and duration of cavitation exposure, a “cavitation test rig” was designed and built. The activity of each agent was assessed with and without exposure to a defined cavitation regime which has previously been shown to provide effective and safe delivery of agents to tumors in preclinical studies. The fluorescence profile of Dox remained unchanged after exposure to cavitation, and the efficacy of this drug in killing a cancer cell line remained the same. Similarly, the ability of cetuximab to bind its epidermal growth factor receptor target was not diminished following exposure to cavitation. The encoding of the reporter gene luciferase within the Ad and VV constructs tested here allowed the infectivity of these viruses to be easily quantified. Exposure to cavitation did not impact on the activity of either virus. These data provide compelling evidence that the US parameters used to safely and successfully delivery nanomedicines to tumors in preclinical models do not detrimentally impact on the structure or activity of these nanomedicines. PMID:29391793
Natural selection. VII. History and interpretation of kin selection theory.
Frank, S A
2013-06-01
Kin selection theory is a kind of causal analysis. The initial form of kin selection ascribed cause to costs, benefits and genetic relatedness. The theory then slowly developed a deeper and more sophisticated approach to partitioning the causes of social evolution. Controversy followed because causal analysis inevitably attracts opposing views. It is always possible to separate total effects into different component causes. Alternative causal schemes emphasize different aspects of a problem, reflecting the distinct goals, interests and biases of different perspectives. For example, group selection is a particular causal scheme with certain advantages and significant limitations. Ultimately, to use kin selection theory to analyse natural patterns and to understand the history of debates over different approaches, one must follow the underlying history of causal analysis. This article describes the history of kin selection theory, with emphasis on how the causal perspective improved through the study of key patterns of natural history, such as dispersal and sex ratio, and through a unified approach to demographic and social processes. Independent historical developments in the multivariate analysis of quantitative traits merged with the causal analysis of social evolution by kin selection. © 2013 The Author. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Space power subsystem automation technology
NASA Technical Reports Server (NTRS)
Graves, J. R. (Compiler)
1982-01-01
The technology issues involved in power subsystem automation and the reasonable objectives to be sought in such a program were discussed. The complexities, uncertainties, and alternatives of power subsystem automation, along with the advantages from both an economic and a technological perspective were considered. Whereas most spacecraft power subsystems now use certain automated functions, the idea of complete autonomy for long periods of time is almost inconceivable. Thus, it seems prudent that the technology program for power subsystem automation be based upon a growth scenario which should provide a structured framework of deliberate steps to enable the evolution of space power subsystems from the current practice of limited autonomy to a greater use of automation with each step being justified on a cost/benefit basis. Each accomplishment should move toward the objectives of decreased requirement for ground control, increased system reliability through onboard management, and ultimately lower energy cost through longer life systems that require fewer resources to operate and maintain. This approach seems well-suited to the evolution of more sophisticated algorithms and eventually perhaps even the use of some sort of artificial intelligence. Multi-hundred kilowatt systems of the future will probably require an advanced level of autonomy if they are to be affordable and manageable.
NASA Astrophysics Data System (ADS)
Wang, Ge; Berk, H. L.
2011-10-01
The frequency chirping signal arising from spontaneous a toroidial Alfven eigenmode (TAE) excited by energetic particles is studied for both numerical and analytic models. The time-dependent numerical model is based on the 1D Vlasov equation. We use a sophisticated tracking method to lock onto the resonant structure to enable the chirping frequency to be nearly constant in the calculation frame. The accuracy of the adiabatic approximation is tested during the simulation which justifies the appropriateness of our analytic model. The analytic model uses the adiabatic approximation which allows us to solve the wave evolution equation in frequency space. Then, the resonant interactions between energetic particles and TAE yield predictions for the chirping rate, wave frequency and amplitudes vs. time. Here, an adiabatic invariant J is defined on the separatrix of a chirping mode to determine the region of confinement of the wave trapped distribution function. We examine the asymptotic behavior of the chirping signal for its long time evolution and find agreement in essential features with the results of the simulation. Work supported by Department of Energy contract DE-FC02-08ER54988.
Mietchen, Daniel; Gaser, Christian
2009-01-01
The brain, like any living tissue, is constantly changing in response to genetic and environmental cues and their interaction, leading to changes in brain function and structure, many of which are now in reach of neuroimaging techniques. Computational morphometry on the basis of Magnetic Resonance (MR) images has become the method of choice for studying macroscopic changes of brain structure across time scales. Thanks to computational advances and sophisticated study designs, both the minimal extent of change necessary for detection and, consequently, the minimal periods over which such changes can be detected have been reduced considerably during the last few years. On the other hand, the growing availability of MR images of more and more diverse brain populations also allows more detailed inferences about brain changes that occur over larger time scales, way beyond the duration of an average research project. On this basis, a whole range of issues concerning the structures and functions of the brain are now becoming addressable, thereby providing ample challenges and opportunities for further contributions from neuroinformatics to our understanding of the brain and how it changes over a lifetime and in the course of evolution. PMID:19707517
Evolution of the phase 2 preparation and observation tools at ESO
NASA Astrophysics Data System (ADS)
Dorigo, D.; Amarand, B.; Bierwirth, T.; Jung, Y.; Santos, P.; Sogni, F.; Vera, I.
2012-09-01
Throughout the course of many years of observations at the VLT, the phase 2 software applications supporting the specification, execution and reporting of observations have been continuously improved and refined. Specifically the introduction of astronomical surveys propelled the creation of new tools to express more sophisticated, longer-term observing strategies often consisting of several hundreds of observations. During the execution phase, such survey programs compete with other service and visitor mode observations and a number of constraints have to be considered. In order to maximize telescope utilization and execute all programs in a fair way, new algorithms have been developed to prioritize observable OBs taking into account both current and future constraints (e.g. OB time constraints, technical telescope time) and suggest the next OB to be executed. As a side effect, a higher degree of observation automation enables operators to run telescopes mostly autonomously with little supervision by a support astronomer. We describe the new tools that have been deployed and the iterative and incremental software development process applied to develop them. We present our key software technologies used so far and discuss potential future evolution both in terms of features as well as software technologies.
First 3-D simulations of meteor plasma dynamics and turbulence
NASA Astrophysics Data System (ADS)
Oppenheim, Meers M.; Dimant, Yakov S.
2015-02-01
Millions of small but detectable meteors hit the Earth's atmosphere every second, creating trails of hot plasma that turbulently diffuse into the background atmosphere. For over 60 years, radars have detected meteor plasmas and used these signals to infer characteristics of the meteoroid population and upper atmosphere, but, despite the importance of meteor radar measurements, the complex processes by which these plasmas evolve have never been thoroughly explained or modeled. In this paper, we present the first fully 3-D simulations of meteor evolution, showing meteor plasmas developing instabilities, becoming turbulent, and inhomogeneously diffusing into the background ionosphere. These instabilities explain the characteristics and strength of many radar observations, in particular the high-resolution nonspecular echoes made by large radars. The simulations reveal how meteors create strong electric fields that dig out deep plasma channels along the Earth's magnetic fields. They also allow researchers to explore the impacts of the intense winds and wind shears, commonly found at these altitudes, on meteor plasma evolution. This study will allow the development of more sophisticated models of meteor radar signals, enabling the extraction of detailed information about the properties of meteoroid particles and the atmosphere.
Krsmanovic, Pavle
2017-12-01
Discussions of the survival determinism concept have previously focused on its primary role in the evolution of early unicellular organisms in the light of findings which have been reported on a number of diseases. The rationale for such parallel was in the view according to which multicellular organisms could be regarded as sophisticated colonies of semi-autonomous, single-celled entities, whereby various diseases were described as conditions arising upon the activation of the respective survival mechanisms in a milieu unsuitable for such robust stress response. The cellular mechanisms that were discussed in these contexts have been known to play various roles in other biological processes. The proposed notion could thereby be further extended to discussion on mechanisms for the implementation of the respective survival pathways in the development of metazoa, considering that they would have been propagated in their evolution for so long. This manuscript first presents a concise overview of the model previously discussed, followed by the discussion on the role of respective mechanism(s) in origins and development of metazoa. Finally, a reflection on the concept in relation to the prominent evolutionary models is put forward to illustrate a broader context of what is being discussed.
Interdependency enriches the spatial reciprocity in prisoner's dilemma game on weighted networks
NASA Astrophysics Data System (ADS)
Meng, Xiaokun; Sun, Shiwen; Li, Xiaoxuan; Wang, Li; Xia, Chengyi; Sun, Junqing
2016-01-01
To model the evolution of cooperation under the realistic scenarios, we propose an interdependent network-based game model which simultaneously considers the difference of individual roles in the spatial prisoner's dilemma game. In our model, the system is composed of two lattices on which an agent designated as a cooperator or defector will be allocated, meanwhile each agent will be endowed as a specific weight taking from three typical distributions on one lattice (i.e., weighted lattice), and set to be 1.0 on the other one (i.e., un-weighted or standard lattice). In addition, the interdependency will be built through the utility coupling between point-to-point partners. Extensive simulations indicate that the cooperation will be continuously elevated for the weighted lattice as the utility coupling strength (α) increases; while the cooperation will take on a nontrivial evolution on the standard lattice as α varies, and will be still greatly promoted when compared to the case of α = 0. At the same time, the full T - K phase diagrams are also explored to illustrate the evolutionary behaviors, and it is powerfully shown that the interdependency drives the defectors to survive within the narrower range, but individual weighting of utility will further broaden the coexistence space of cooperators and defectors, which renders the nontrivial evolution of cooperation in our model. Altogether, the current consequences about the evolution of cooperation will be helpful for us to provide the insights into the prevalent cooperation phenomenon within many real-world systems.
Simulation of Corrosion Process for Structure with the Cellular Automata Method
NASA Astrophysics Data System (ADS)
Chen, M. C.; Wen, Q. Q.
2017-06-01
In this paper, from the mesoscopic point of view, under the assumption of metal corrosion damage evolution being a diffusive process, the cellular automata (CA) method was proposed to simulate numerically the uniform corrosion damage evolution of outer steel tube of concrete filled steel tubular columns subjected to corrosive environment, and the effects of corrosive agent concentration, dissolution probability and elapsed etching time on the corrosion damage evolution were also investigated. It was shown that corrosion damage increases nonlinearly with increasing elapsed etching time, and the longer the etching time, the more serious the corrosion damage; different concentration of corrosive agents had different impacts on the corrosion damage degree of the outer steel tube, but the difference between the impacts was very small; the heavier the concentration, the more serious the influence. The greater the dissolution probability, the more serious the corrosion damage of the outer steel tube, but with the increase of dissolution probability, the difference between its impacts on the corrosion damage became smaller and smaller. To validate present method, corrosion damage measurements for concrete filled square steel tubular columns (CFSSTCs) sealed at both their ends and immersed fully in a simulating acid rain solution were conducted, and Faraday’s law was used to predict their theoretical values. Meanwhile, the proposed CA mode was applied for the simulation of corrosion damage evolution of the CFSSTCs. It was shown by the comparisons of results from the three methods aforementioned that they were in good agreement, implying that the proposed method used for the simulation of corrosion damage evolution of concrete filled steel tubular columns is feasible and effective. It will open a new approach to study and evaluate further the corrosion damage, loading capacity and lifetime prediction of concrete filled steel tubular structures.
Zhang, Shouwei; Yang, Hongcen; Gao, Huihui; Cao, Ruya; Huang, Jinzhao; Xu, Xijin
2017-07-19
Robust and highly active photocatalysts, CdS@MoS 2 , for hydrogen evolution were successfully fabricated by one-step growth of oxygen-incorporated defect-rich MoS 2 ultrathin nanosheets on the surfaces of CdS with irregular fissures. Under optimized experimental conditions, the CdS@MoS 2 displayed a quantum yield of ∼24.2% at 420 nm and the maximum H 2 generation rate of ∼17203.7 umol/g/h using Na 2 S-Na 2 SO 3 as sacrificial agents (λ ≥ 420 nm), which is ∼47.3 and 14.7 times higher than CdS (∼363.8 μmol/g/h) and 3 wt % Pt/CdS (∼1173.2 μmol/g/h), respectively, and far exceeds all previous hydrogen evolution reaction photocatalysts with MoS 2 as co-catalysts using Na 2 S-Na 2 SO 3 as sacrificial agents. Large volumes of hydrogen bubbles were generated within only 2 s as the photocatalysis started, as demonstrated by the photocatalytic video. The high hydrogen evolution activity is attributed to several merits: (1) the intimate heterojunctions formed between the MoS 2 and CdS can effectively enhance the charge transfer ability and retard the recombination of electron-hole pairs; and (2) the defects in the MoS 2 provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H 2 evolution and increases the electric conductivity of the MoS 2 . Considering its low cost and high efficiency, this highly efficient hybrid photocatalysts would have great potential in energy-generation and environment-restoration fields.
Cariou, Stephane; Guillot, Jean-Michel
2006-01-01
Tedlar bags, which are widely used to collect air samples, especially VOCs and odorous atmospheres, can allow humidity to diffuse when relative humidity levels differ between the inside and outside. Starting with dry air inside the bag and humid air outside, we monitored equilibrium times under several conditions showing the evolution and influence of collected volumes and exposed surfaces. A double-film Tedlar bag was made, to limit the impact of external humidity on a sample at low humidity level. With the addition of a drying agent between both films, the evolution of humidity of a sample can be stopped for several hours. When a VOC mixture was monitored in a humid atmosphere, humidity was decreased but no significant evolution of VOC concentrations was observed.
Aristotle and Social-Epistemic Rhetoric: The Systematizing of the Sophistic Legacy.
ERIC Educational Resources Information Center
Allen, James E.
While Aristotle's philosophical views are more foundational than those of many of the Older Sophists, Aristotle's rhetorical theories inherit and incorporate many of the central tenets ascribed to Sophistic rhetoric, albeit in a more systematic fashion, as represented in the "Rhetoric." However, Aristotle was more than just a rhetorical…
ERIC Educational Resources Information Center
Kim, Minkyung; Crossley, Scott A.; Kyle, Kristopher
2018-01-01
This study conceptualizes lexical sophistication as a multidimensional phenomenon by reducing numerous lexical features of lexical sophistication into 12 aggregated components (i.e., dimensions) via a principal component analysis approach. These components were then used to predict second language (L2) writing proficiency levels, holistic lexical…
Designing Agent Collectives For Systems With Markovian Dynamics
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Lawson, John W.
2004-01-01
The Collective Intelligence (COIN) framework concerns the design of collectives of agents so that as those agents strive to maximize their individual utility functions, their interaction causes a provided world utility function concerning the entire collective to be also maximized. Here we show how to extend that framework to scenarios having Markovian dynamics when no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. Our approach transforms the (time-extended) argument of each agent's utility function before evaluating that function. This transformation has benefits in scenarios not involving Markovian dynamics of an agent's utility function are observable. We investigate this transformation in simulations involving both hear and quadratic (nonlinear) dynamics. In addition, we find that a certain subset of these transformations, which result in utilities that have low opacity (analogous to having high signal to noise) but are not factored (analogous to not being incentive compatible), reliably improve performance over that arising with factored utilities. We also present a Taylor Series method for the fully general nonlinear case.
Excavations at Schöningen and paradigm shifts in human evolution.
Conard, Nicholas J; Serangeli, Jordi; Böhner, Utz; Starkovich, Britt M; Miller, Christopher E; Urban, Brigitte; Van Kolfschoten, Thijs
2015-12-01
The exceptional preservation at Schöningen together with a mixture of perseverance, hard work, and sheer luck led to the recovery of unique finds in an exceptional context. The 1995 discovery of numerous wooden artifacts, most notably at least 10 carefully made spears together with the skeletons of at least 20 to 25 butchered horses, brought the debate about hunting versus scavenging among late archaic hominins and analogous arguments about the purportedly primitive behavior of Homo heidelbergensis and Neanderthals to an end. Work under H. Thieme's lead from 1992 to 2008 and results from the current team since 2008 demonstrate that late H. heidelbergensis or early Neanderthals used sophisticated artifacts made from floral and faunal materials, in addition to lithic artifacts more typically recovered at Lower Paleolithic sites. The finds from the famous Horse Butchery Site and two dozen other archaeological horizons from the edges of the open-cast mine at Schöningen provide many new insights into the technology and behavioral patterns of hominins about 300 ka BP during MIS 9 on the Northern European Plain. An analysis of the finds from Schöningen and their contexts shows that the inhabitants of the site were skilled hunters at the top of the food chain and exhibited a high level of planning depth. These hominins had command of effective means of communication about the here and now, and the past and the future, that allowed them to repeatedly execute well-coordinated and successful group activities that likely culminated in a division of labor and social and economic patterns radically different from those of all non-human primates. The unique preservation and high quality excavations have led to a major paradigm shift or "Schöningen Effect" that changed our views of human evolution during the late Lower Paleolithic. In this respect, we can view the behaviors documented at Schöningen as a plausible baseline for the behavioral sophistication of archaic hominins of the late Middle Pleistocene and subsequent periods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Di Paola, Vieri; Marijuán, Pedro C; Lahoz-Beltra, Rafael
2004-01-01
Adaptive behavior in unicellular organisms (i.e., bacteria) depends on highly organized networks of proteins governing purposefully the myriad of molecular processes occurring within the cellular system. For instance, bacteria are able to explore the environment within which they develop by utilizing the motility of their flagellar system as well as a sophisticated biochemical navigation system that samples the environmental conditions surrounding the cell, searching for nutrients or moving away from toxic substances or dangerous physical conditions. In this paper we discuss how proteins of the intervening signal transduction network could be modeled as artificial neurons, simulating the dynamical aspects of the bacterial taxis. The model is based on the assumption that, in some important aspects, proteins can be considered as processing elements or McCulloch-Pitts artificial neurons that transfer and process information from the bacterium's membrane surface to the flagellar motor. This simulation of bacterial taxis has been carried out on a hardware realization of a McCulloch-Pitts artificial neuron using an operational amplifier. Based on the behavior of the operational amplifier we produce a model of the interaction between CheY and FliM, elements of the prokaryotic two component system controlling chemotaxis, as well as a simulation of learning and evolution processes in bacterial taxis. On the one side, our simulation results indicate that, computationally, these protein 'switches' are similar to McCulloch-Pitts artificial neurons, suggesting a bridge between evolution and learning in dynamical systems at cellular and molecular levels and the evolutive hardware approach. On the other side, important protein 'tactilizing' properties are not tapped by the model, and this suggests further complexity steps to explore in the approach to biological molecular computing.
Structure and dynamics of the coronal magnetic field
NASA Technical Reports Server (NTRS)
VanHoven, Gerard; Schnack, Dalton D.
1996-01-01
The last few years have seen a marked increase in the sophistication of models of the solar corona. This has been brought about by a confluence of three key elements. First, the collection of high-resolution observations of the Sun, both in space and time, has grown tremendously. The SOHO (Solar Heliospheric Observatory) mission is providing additional correlated high-resolution magnetic, white-light and spectroscopic observations. Second, the power and availability of supercomputers has made two- and three-dimensional modeling routine. Third, the sophistication of the models themselves, both in their geometrical realism and in the detailed physics that has been included, has improved significantly. The support from our current Space Physics Theory grant has allowed us to exploit this confluence of capabilities. We have carried out direct comparisons between observations and models of the solar corona. The agreement between simulated coronal structure and observations has verified that the models are mature enough for detailed analysis, as we will describe. The development of this capability is especially timely, since observations obtained from three space missions that are underway (Ulysses, WIND and SOHO) offer an opportunity for significant advances in our understanding of the corona and heliosphere. Through this interplay of observations and theory we can improve our understanding of the Sun. Our achievements thus far include progress modeling the large-scale structure of the solar corona, three-dimensional models of active region fields, development of emerging flux and current, formation and evolution of coronal loops, and coronal heating by current filaments.
Moran, Michael E
2007-01-01
The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.
Bridging Inter- and Intraspecific Trait Evolution with a Hierarchical Bayesian Approach.
Kostikova, Anna; Silvestro, Daniele; Pearman, Peter B; Salamin, Nicolas
2016-05-01
The evolution of organisms is crucially dependent on the evolution of intraspecific variation. Its interactions with selective agents in the biotic and abiotic environments underlie many processes, such as intraspecific competition, resource partitioning and, eventually, species formation. Nevertheless, comparative models of trait evolution neither allow explicit testing of hypotheses related to the evolution of intraspecific variation nor do they simultaneously estimate rates of trait evolution by accounting for both trait mean and variance. Here, we present a model of phenotypic trait evolution using a hierarchical Bayesian approach that simultaneously incorporates interspecific and intraspecific variation. We assume that species-specific trait means evolve under a simple Brownian motion process, whereas species-specific trait variances are modeled with Brownian or Ornstein-Uhlenbeck processes. After evaluating the power of the method through simulations, we examine whether life-history traits impact evolution of intraspecific variation in the Eriogonoideae (buckwheat family, Polygonaceae). Our model is readily extendible to more complex scenarios of the evolution of inter- and intraspecific variation and presents a step toward more comprehensive comparative models for macroevolutionary studies. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Representation in dynamical agents.
Ward, Ronnie; Ward, Robert
2009-04-01
This paper extends experiments by Beer [Beer, R. D. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior. In P. Maes, M. Mataric, J. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats 4: Proceedings of the fourth international conference on simulation of adaptive behavior (pp. 421-429). MIT Press; Beer, R. D. (2003). The dynamics of active categorical perception in an evolved model agent (with commentary and response). Adaptive Behavior, 11 (4), 209-243] with an evolved, dynamical agent to further explore the question of representation in cognitive systems. Beer's environmentally-situated visual agent was controlled by a continuous-time recurrent neural network, and evolved to perform a categorical perception task, discriminating circles from diamonds. Despite the agent's high levels of discrimination performance, Beer found no evidence of internal representation in the best-evolved agent's nervous system. Here we examine the generality of this result. We evolved an agent for shape discrimination, and performed extensive behavioral analyses to test for representation. In this case we find that agents developed to discriminate equal-width shapes exhibit what Clark [Clark, A. (1997). The dynamical challenge. Cognitive Science, 21 (4), 461-481] calls "weak-substantive representation". The agent had internal configurations that (1) were understandably related to the object in the environment, and (2) were functionally used in a task relevant way when the target was not visible to the agent.
Evolving Nutritional Strategies in the Presence of Competition: A Geometric Agent-Based Model
Senior, Alistair M.; Charleston, Michael A.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.
2015-01-01
Access to nutrients is a key factor governing development, reproduction and ultimately fitness. Within social groups, contest-competition can fundamentally affect nutrient access, potentially leading to reproductive asymmetry among individuals. Previously, agent-based models have been combined with the Geometric Framework of nutrition to provide insight into how nutrition and social interactions affect one another. Here, we expand this modelling approach by incorporating evolutionary algorithms to explore how contest-competition over nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically, we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbalanced foods, which we term ‘nutritional latitude’; a higher degree of nutritional latitude constitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a transition between two alternative strategies occurs at moderate to high levels of competition. When competition is low, individuals display a low level of nutritional latitude and regularly switch foods in search of an optimum. When food is scarce and contest-competition is intense, high nutritional latitude appears optimal, and individuals continue to consume an imbalanced food for longer periods before attempting to switch to an alternative. However, the relative balance of nutrients within available foods also strongly influences at what levels of competition, if any, transitions between these two strategies occur. Our models imply that competition combined with reproductive skew in social groups can play a role in the evolution of diet breadth. We discuss how the integration of agent-based, nutritional and evolutionary modelling may be applied in future studies to further understand the evolution of nutritional strategies across social and ecological contexts. PMID:25815976
Complexity of life via collective mind
NASA Technical Reports Server (NTRS)
Zak, Michail
2004-01-01
e mind is introduced as a set of simple intelligent units (say, neurons, or interacting agents), which can communicate by exchange of information without explicit global control. Incomplete information is compensated by a sequence of random guesses symmetrically distributed around expectations with prescribed variances. Both the expectations and variances are the invariants characterizing the whole class of agents. These invariants are stored as parameters of the collective mind, while they contribute into dynamical formalism of the agents' evolution, and in particular, into the reflective chains of their nested abstract images of the selves and non-selves. The proposed model consists of the system of stochastic differential equations in the Langevin form representing the motor dynamics, and the corresponding Fokker-Planck equation representing the mental dynamics (Motor dynamics describes the motion in physical space, while mental dynamics simulates the evolution of initial errors in terms of the probability density). The main departure of this model from Newtonian and statistical physics is due to a feedback from the mental to the motor dynamics which makes the Fokker-Planck equation nonlinear. Interpretation of this model from mathematical and physical viewpoints, as well as possible interpretation from biological, psychological, and social viewpoints are discussed. The model is illustrated by the dynamics of a dialog.
Prediction of stock markets by the evolutionary mix-game model
NASA Astrophysics Data System (ADS)
Chen, Fang; Gou, Chengling; Guo, Xiaoqian; Gao, Jieping
2008-06-01
This paper presents the efforts of using the evolutionary mix-game model, which is a modified form of the agent-based mix-game model, to predict financial time series. Here, we have carried out three methods to improve the original mix-game model by adding the abilities of strategy evolution to agents, and then applying the new model referred to as the evolutionary mix-game model to forecast the Shanghai Stock Exchange Composite Index. The results show that these modifications can improve the accuracy of prediction greatly when proper parameters are chosen.
NASA Astrophysics Data System (ADS)
Maghami, Mahsa; Sukthankar, Gita
In this paper, we introduce an agent-based simulation for investigating the impact of social factors on the formation and evolution of task-oriented groups. Task-oriented groups are created explicitly to perform a task, and all members derive benefits from task completion. However, even in cases when all group members act in a way that is locally optimal for task completion, social forces that have mild effects on choice of associates can have a measurable impact on task completion performance. In this paper, we show how our simulation can be used to model the impact of stereotypes on group formation. In our simulation, stereotypes are based on observable features, learned from prior experience, and only affect an agent's link formation preferences. Even without assuming stereotypes affect the agents' willingness or ability to complete tasks, the long-term modifications that stereotypes have on the agents' social network impair the agents' ability to form groups with sufficient diversity of skills, as compared to agents who form links randomly. An interesting finding is that this effect holds even in cases where stereotype preference and skill existence are completely uncorrelated.
2013-01-01
Background Effective population sizes of 140 populations (including 60 dog breeds, 40 sheep breeds, 20 cattle breeds and 20 horse breeds) were computed using pedigree information and six different computation methods. Simple demographical information (number of breeding males and females), variance of progeny size, or evolution of identity by descent probabilities based on coancestry or inbreeding were used as well as identity by descent rate between two successive generations or individual identity by descent rate. Results Depending on breed and method, effective population sizes ranged from 15 to 133 056, computation method and interaction between computation method and species showing a significant effect on effective population size (P < 0.0001). On average, methods based on number of breeding males and females and variance of progeny size produced larger values (4425 and 356, respectively), than those based on identity by descent probabilities (average values between 93 and 203). Since breeding practices and genetic substructure within dog breeds increased inbreeding, methods taking into account the evolution of inbreeding produced lower effective population sizes than those taking into account evolution of coancestry. The correlation level between the simplest method (number of breeding males and females, requiring no genealogical information) and the most sophisticated one ranged from 0.44 to 0.60 according to species. Conclusions When choosing a method to compute effective population size, particular attention should be paid to the species and the specific genetic structure of the population studied. PMID:23281913
Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry
Liang, Yingkai; Li, Linqing; Scott, Rebecca A.; Kiick, Kristi L.
2017-01-01
Biomaterials have been extensively used to leverage beneficial outcomes in various therapeutic applications, such as providing spatial and temporal control over the release of therapeutic agents in drug delivery as well as engineering functional tissues and promoting the healing process in tissue engineering and regenerative medicine. This perspective presents important milestones in the development of polymeric biomaterials with defined structures and properties. Contemporary studies of biomaterial design have been reviewed with focus on constructing materials with controlled structure, dynamic functionality, and biological complexity. Examples of these polymeric biomaterials enabled by advanced synthetic methodologies, dynamic chemistry/assembly strategies, and modulated cell-material interactions have been highlighted. As the field of polymeric biomaterials continues to evolve with increased sophistication, current challenges and future directions for the design and translation of these materials are also summarized. PMID:29151616
Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip.
Tehran, Domenico Azarnia; Pirazzini, Marco
2018-05-10
Botulinum neurotoxins (BoNTs), the etiological agents of botulism, are the deadliest toxins known to humans. Yet, thanks to their biological and toxicological features, BoNTs have become sophisticated tools to study neuronal physiology and valuable therapeutics for an increasing number of human disorders. BoNTs are produced by multiple bacteria of the genus Clostridium and, on the basis of their different immunological properties, were classified as seven distinct types of toxin. BoNT classification remained stagnant for the last 50 years until, via bioinformatics and high-throughput sequencing techniques, dozens of BoNT variants, novel serotypes as well as BoNT-like toxins within non-clostridial species have been discovered. Here, we discuss how the now “booming field” of botulinum neurotoxin may shed light on their evolutionary origin and open exciting avenues for future therapeutic applications.
Isocratean Discourse Theory and Neo-Sophistic Pedagogy: Implications for the Composition Classroom.
ERIC Educational Resources Information Center
Blair, Kristine L.
With the recent interest in the fifth century B.C. theories of Protagoras and Gorgias come assumptions about the philosophical affinity of the Greek educator Isocrates to this pair of older sophists. Isocratean education in discourse, with its emphasis on collaborative political discourse, falls within recent definitions of a sophist curriculum.…
From Poetry to Prose: Sophistic Rhetoric and the Epistemic Music of Language.
ERIC Educational Resources Information Center
Katz, Steven B.
Much revisionist scholarship has focused on sophistic epistemology and its relationship to the current revival of epistemic rhetoric in the academy. However, few scholars have recognized the sensuous substance of words as sounds, and the role it played in sophistic philosophy and rhetoric. Before the invention of the Greek alphabet, poetry was…
Untangling the origin of viruses and their impact on cellular evolution.
Nasir, Arshan; Sun, Feng-Jie; Kim, Kyung Mo; Caetano-Anollés, Gustavo
2015-04-01
The origin and evolution of viruses remain mysterious. Here, we focus on the distribution of viral replicons in host organisms, their morphological features, and the evolution of highly conserved protein and nucleic acid structures. The apparent inability of RNA viral replicons to infect contemporary akaryotic species suggests an early origin of RNA viruses and their subsequent loss in akaryotes. A census of virion morphotypes reveals that advanced forms were unique to viruses infecting a specific supergroup, while simpler forms were observed in viruses infecting organisms in all forms of cellular life. Results hint toward an ancient origin of viruses from an ancestral virus harboring either filamentous or spherical virions. Finally, phylogenetic trees built from protein domain and tRNA structures in thousands of genomes suggest that viruses evolved via reductive evolution from ancient cells. The analysis presents a complete account of the evolutionary history of cells and viruses and identifies viruses as crucial agents influencing cellular evolution. © 2015 New York Academy of Sciences.
Explicit equilibria in a kinetic model of gambling
NASA Astrophysics Data System (ADS)
Bassetti, F.; Toscani, G.
2010-06-01
We introduce and discuss a nonlinear kinetic equation of Boltzmann type which describes the evolution of wealth in a pure gambling process, where the entire sum of wealths of two agents is up for gambling, and randomly shared between the agents. For this equation the analytical form of the steady states is found for various realizations of the random fraction of the sum which is shared to the agents. Among others, the exponential distribution appears as steady state in case of a uniformly distributed random fraction, while Gamma distribution appears for a random fraction which is Beta distributed. The case in which the gambling game is only conservative-in-the-mean is shown to lead to an explicit heavy tailed distribution.
Hypercompetitive Environments: An Agent-based model approach
NASA Astrophysics Data System (ADS)
Dias, Manuel; Araújo, Tanya
Information technology (IT) environments are characterized by complex changes and rapid evolution. Globalization and the spread of technological innovation have increased the need for new strategic information resources, both from individual firms and management environments. Improvements in multidisciplinary methods and, particularly, the availability of powerful computational tools, are giving researchers an increasing opportunity to investigate management environments in their true complex nature. The adoption of a complex systems approach allows for modeling business strategies from a bottom-up perspective — understood as resulting from repeated and local interaction of economic agents — without disregarding the consequences of the business strategies themselves to individual behavior of enterprises, emergence of interaction patterns between firms and management environments. Agent-based models are at the leading approach of this attempt.
Quantitative Agent Based Model of User Behavior in an Internet Discussion Forum
Sobkowicz, Pawel
2013-01-01
The paper presents an agent based simulation of opinion evolution, based on a nonlinear emotion/information/opinion (E/I/O) individual dynamics, to an actual Internet discussion forum. The goal is to reproduce the results of two-year long observations and analyses of the user communication behavior and of the expressed opinions and emotions, via simulations using an agent based model. The model allowed to derive various characteristics of the forum, including the distribution of user activity and popularity (outdegree and indegree), the distribution of length of dialogs between the participants, their political sympathies and the emotional content and purpose of the comments. The parameters used in the model have intuitive meanings, and can be translated into psychological observables. PMID:24324606
Multiagent cooperation and competition with deep reinforcement learning.
Tampuu, Ardi; Matiisen, Tambet; Kodelja, Dorian; Kuzovkin, Ilya; Korjus, Kristjan; Aru, Juhan; Aru, Jaan; Vicente, Raul
2017-01-01
Evolution of cooperation and competition can appear when multiple adaptive agents share a biological, social, or technological niche. In the present work we study how cooperation and competition emerge between autonomous agents that learn by reinforcement while using only their raw visual input as the state representation. In particular, we extend the Deep Q-Learning framework to multiagent environments to investigate the interaction between two learning agents in the well-known video game Pong. By manipulating the classical rewarding scheme of Pong we show how competitive and collaborative behaviors emerge. We also describe the progression from competitive to collaborative behavior when the incentive to cooperate is increased. Finally we show how learning by playing against another adaptive agent, instead of against a hard-wired algorithm, results in more robust strategies. The present work shows that Deep Q-Networks can become a useful tool for studying decentralized learning of multiagent systems coping with high-dimensional environments.
Dual Rationality and Deliberative Agents
NASA Astrophysics Data System (ADS)
Debenham, John; Sierra, Carles
Human agents deliberate using models based on reason for only a minute proportion of the decisions that they make. In stark contrast, the deliberation of artificial agents is heavily dominated by formal models based on reason such as game theory, decision theory and logic—despite that fact that formal reasoning will not necessarily lead to superior real-world decisions. Further the Nobel Laureate Friedrich Hayek warns us of the ‘fatal conceit’ in controlling deliberative systems using models based on reason as the particular model chosen will then shape the system’s future and either impede, or eventually destroy, the subtle evolutionary processes that are an integral part of human systems and institutions, and are crucial to their evolution and long-term survival. We describe an architecture for artificial agents that is founded on Hayek’s two rationalities and supports the two forms of deliberation used by mankind.
Promotion of cooperation by payoff-driven migration
NASA Astrophysics Data System (ADS)
Chen, Ya-Shan; Yang, Han-Xin; Guo, Wen-Zhong
2016-05-01
Migration plays an important role in the evolution of cooperation. Previous studies concerning mobile population often assumed that all agents move with the identical velocity. In this paper, we propose a payoff-driven migration in which the velocity of an agent depends on his/her payoff. A parameter α is introduced to adjust the influence of payoff, when α = 0 means that agents all move with the identical velocity while α > 0 means that the lower the payoff is, the faster the moving speed is, and vice versa. For the prisoner's dilemma game, we find that in comparison with the case that agents all move with the same speed, cooperation could be promoted strongly when payoff-dependent velocity is considered. Remarkably, the cooperation level is not a monotonic function of α, and there exists an optimal value of α which can lead to the maximum cooperation level. For the snowdrift game, the cooperation level increases with α.
Towards a mathematical theory of meaningful communication
NASA Astrophysics Data System (ADS)
Corominas-Murtra, Bernat; Fortuny, Jordi; Solé, Ricard V.
2014-04-01
Meaning has been left outside most theoretical approaches to information in biology. Functional responses based on an appropriate interpretation of signals have been replaced by a probabilistic description of correlations between emitted and received symbols. This assumption leads to potential paradoxes, such as the presence of a maximum information associated to a channel that creates completely wrong interpretations of the signals. Game-theoretic models of language evolution and other studies considering embodied communicating agents show that the correct (meaningful) match resulting from agent-agent exchanges is always achieved and natural systems obviously solve the problem correctly. Inspired by the concept of duality of the communicative sign stated by the swiss linguist Ferdinand de Saussure, here we present a complete description of the minimal system necessary to measure the amount of information that is consistently decoded. Several consequences of our developments are investigated, such as the uselessness of a certain amount of information properly transmitted for communication among autonomous agents.
Effects of convincing power and neutrality on minority opinion spreading
NASA Astrophysics Data System (ADS)
Wu, Yue; Xiong, Xi; Zhang, Yi
2017-02-01
The dynamics evolution of the minority opinion in public debates is studied using a convincing power (CP) model with neutrality. In a given group, an agent with a definite standpoint (yes or no) can be persuaded to be a neutral agent, if its capacity of persuasion is lower than the average CP of its opponents. Besides that a neutral agent will change its state and follow a more persuasive opinion. Starting from two opposite opinions with different rates, repeated local discussions are found to drive the minority reversal. It reveals that in addition to the initial minority, the number of neutral agents is also an important factor to the eventual winners. During the process of consensus, there exists a threshold of initial fraction to guarantee one side win. The results have a guiding significance for designing strategies to win a public debate.
Multiagent cooperation and competition with deep reinforcement learning
Kodelja, Dorian; Kuzovkin, Ilya; Korjus, Kristjan; Aru, Juhan; Aru, Jaan; Vicente, Raul
2017-01-01
Evolution of cooperation and competition can appear when multiple adaptive agents share a biological, social, or technological niche. In the present work we study how cooperation and competition emerge between autonomous agents that learn by reinforcement while using only their raw visual input as the state representation. In particular, we extend the Deep Q-Learning framework to multiagent environments to investigate the interaction between two learning agents in the well-known video game Pong. By manipulating the classical rewarding scheme of Pong we show how competitive and collaborative behaviors emerge. We also describe the progression from competitive to collaborative behavior when the incentive to cooperate is increased. Finally we show how learning by playing against another adaptive agent, instead of against a hard-wired algorithm, results in more robust strategies. The present work shows that Deep Q-Networks can become a useful tool for studying decentralized learning of multiagent systems coping with high-dimensional environments. PMID:28380078
Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity
Wobus, C.W.; Kean, J.W.; Tucker, G.E.; Anderson, R. Scott
2008-01-01
The cross-sectional shape of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate evolution of channel cross-sectional geometry. However, fully two-dimensional (2-D) flow models are too computationally expensive to implement in large-scale landscape evolution models, while available simple empirical relationships between width and discharge do not adequately capture the dynamics of channel adjustment. We have developed a simplified 2-D numerical model of channel evolution in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Erosion is assumed to be proportional to boundary shear stress, which is calculated using an approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local channel bed. Model predictions of the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ???3%, and the predicted peak shear stress is consistent to within ???7%. Furthermore, the shear stress distributions predicted by our model compare favorably with available laboratory measurements for prescribed channel shapes. A modification to our simplified code in which the flow includes a high-velocity core allows the model to be extended to estimate shear stress distributions in channels with large width-to-depth ratios. Our model is efficient enough to incorporate into large-scale landscape evolution codes and can be used to examine how channels adjust both cross-sectional shape and slope in response to tectonic and climatic forcing. Copyright 2008 by the American Geophysical Union.
Robotics technology discipline
NASA Technical Reports Server (NTRS)
Montemerlo, Melvin D.
1990-01-01
Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.
Genomic diversity and evolution of the fish pathogen Flavobacterium psychrophilum
USDA-ARS?s Scientific Manuscript database
Flavobacterium psychrophilum, the etiological agent of rainbow trout fry syndrome and bacterial cold-water disease in salmonid fish, is currently one of the main bacterial pathogens hampering the productivity of salmonid farming worldwide. In this study, the genomic diversity of the F. psychrophilum...
Evolution in Medicinal Chemistry of Ursolic Acid Derivatives as Anticancer Agents
Chen, Haijun; Gao, Yu; Wang, Ailan; Zhou, Xiaobin; Zheng, Yunquan; Zhou, Jia
2015-01-01
Currently, there is a renewed interest in common dietaries and plant-based traditional medicines for the prevention and treatment of cancer. In the search for potential anticancer agents from natural sources, ursolic acid (UA), a pentacyclic triterpenoid widely found in various medicinal herbs and fruits, exhibits powerful biological effects including its attractive anticancer activity against various types of cancer cells. However, the limited solubility, rapid metabolism and poor bioavailability of UA restricted its further clinical applications. In the past decade, with substantial progress toward the development of new chemical entities for the treatment of cancer, numerous UA derivatives have been designed and prepared to overcome its disadvantages. Despite extensive effort, discovery of effective UA derivatives has so far met with only limited success. This review summarizes the current status of the structural diversity and evolution in medicinal chemistry of UA analogues and provides a detailed discussion of future direction for further research in the chemical modifications of UA. PMID:25617694
Selection and Transmission of Antibiotic-Resistant Bacteria.
Andersson, Dan I; Hughes, Diarmaid
2017-07-01
Ever since antibiotics were introduced into human and veterinary medicine to treat and prevent bacterial infections there has been a steady selection and increase in the frequency of antibiotic resistant bacteria. To be able to reduce the rate of resistance evolution, we need to understand how various biotic and abiotic factors interact to drive the complex processes of resistance emergence and transmission. We describe several of the fundamental factors that underlay resistance evolution, including rates and niches of emergence and persistence of resistant bacteria, time- and space-gradients of various selective agents, and rates and routes of transmission of resistant bacteria between humans, animals and other environments. Furthermore, we discuss the options available to reduce the rate of resistance evolution and/ or transmission and their advantages and disadvantages.
Effect of self-interaction on the evolution of cooperation in complex topologies
NASA Astrophysics Data System (ADS)
Wu, Yu'e.; Zhang, Zhipeng; Chang, Shuhua
2017-09-01
Self-interaction, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this text, we consider a new self-interaction mechanism in the two typical pairwise models including the prisoner's dilemma and the snowdrift games, where the cooperative agents will gain extra bonus for their selfless behavior. We find that under the mechanism the collective cooperation is elevated to a very high level especially after adopting the finite population analogue of replicator dynamics for evolution. The robustness of the new mechanism is tested for different complex topologies for the prisoner's dilemma game. All the presented results demonstrate that the enhancement effects are independent of the structure of the applied spatial networks and the potential evolutionary games, and thus showing a high degree of universality. Our conclusions might shed light on the understanding of the evolution of cooperation in the real world.
Political Trust and Sophistication: Taking Measurement Seriously.
Turper, Sedef; Aarts, Kees
2017-01-01
Political trust is an important indicator of political legitimacy. Hence, seemingly decreasing levels of political trust in Western democracies have stimulated a growing body of research on the causes and consequences of political trust. However, the neglect of potential measurement problems of political trust raises doubts about the findings of earlier studies. The current study revisits the measurement of political trust and re-examines the relationship between political trust and sophistication in the Netherlands by utilizing European Social Survey (ESS) data across five time points and four-wave panel data from the Panel Component of ESS. Our findings illustrate that high and low political sophistication groups display different levels of political trust even when measurement characteristics of political trust are taken into consideration. However, the relationship between political sophistication and political trust is weaker than it is often suggested by earlier research. Our findings also provide partial support for the argument that the gap between sophistication groups is widening over time. Furthermore, we demonstrate that, although the between-method differences between the latent means and the composite score means of political trust for high- and low sophistication groups are relatively minor, it is important to analyze the measurement characteristics of the political trust construct.
An insect-like mushroom body in a crustacean brain
Wolff, Gabriella Hannah; Thoen, Hanne Halkinrud; Marshall, Justin; Sayre, Marcel E
2017-01-01
Mushroom bodies are the iconic learning and memory centers of insects. No previously described crustacean possesses a mushroom body as defined by strict morphological criteria although crustacean centers called hemiellipsoid bodies, which serve functions in sensory integration, have been viewed as evolutionarily convergent with mushroom bodies. Here, using key identifiers to characterize neural arrangements, we demonstrate insect-like mushroom bodies in stomatopod crustaceans (mantis shrimps). More than any other crustacean taxon, mantis shrimps display sophisticated behaviors relating to predation, spatial memory, and visual recognition comparable to those of insects. However, neuroanatomy-based cladistics suggesting close phylogenetic proximity of insects and stomatopod crustaceans conflicts with genomic evidence showing hexapods closely related to simple crustaceans called remipedes. We discuss whether corresponding anatomical phenotypes described here reflect the cerebral morphology of a common ancestor of Pancrustacea or an extraordinary example of convergent evolution. PMID:28949916
Arboreality, terrestriality and bipedalism
Crompton, Robin Huw; Sellers, William I.; Thorpe, Susannah K. S.
2010-01-01
The full publication of Ardipithecus ramidus has particular importance for the origins of hominin bipedality, and strengthens the growing case for an arboreal origin. Palaeontological techniques however inevitably concentrate on details of fragmentary postcranial bones and can benefit from a whole-animal perspective. This can be provided by field studies of locomotor behaviour, which provide a real-world perspective of adaptive context, against which conclusions drawn from palaeontology and comparative osteology may be assessed and honed. Increasingly sophisticated dynamic modelling techniques, validated against experimental data for living animals, offer a different perspective where evolutionary and virtual ablation experiments, impossible for living mammals, may be run in silico, and these can analyse not only the interactions and behaviour of rigid segments but increasingly the effects of compliance, which are of crucial importance in guiding the evolution of an arboreally derived lineage. PMID:20855304
NASA Technical Reports Server (NTRS)
Kim, Myoung K.; Jeon, Jae-Heung; Davin, Laurence B.; Lewis, Norman G.
2002-01-01
The discovery of a nine-member multigene dirigent family involved in control of monolignol radical-radical coupling in the ancient gymnosperm, western red cedar, suggested that a complex multidimensional network had evolved to regulate such processes in vascular plants. Accordingly, in this study, the corresponding promoter regions for each dirigent multigene member were obtained by genome-walking, with Arabidopsis being subsequently transformed to express each promoter fused to the beta-glucuronidase (GUS) reporter gene. It was found that each component gene of the proposed network is apparently differentially expressed in individual tissues, organs and cells at all stages of plant growth and development. The data so obtained thus further support the hypothesis that a sophisticated monolignol radical-radical coupling network exists in plants which has been highly conserved throughout vascular plant evolution.
Surgical Oncology Nursing: Looking Back, Looking Forward.
Crane, Patrick C; Selanders, Louise
2017-02-01
To provide a historical perspective in the development of oncology nursing and surgical oncology as critical components of today's health care system. Review of the literature and Web sites of key organizations. The evolution of surgical oncology nursing has traversed a historical journey from that of a niche subspecialty of nursing that had very little scientific underpinning, to a highly sophisticated discipline within a very short time. Nursing continues to contribute its expertise to the encyclopedic knowledge base of surgical oncology and cancer care, which have helped improve the lives of countless patients and families who have had to face the difficulties of this diagnosis. An understanding of the historical context for which a nursing specialty such as surgical oncology nursing evolves is critical to gaining an appreciation for the contributions of nursing. Copyright © 2016 Elsevier Inc. All rights reserved.
Evolution of centrosomes and the nuclear lamina: Amoebozoan assets.
Gräf, Ralph; Batsios, Petros; Meyer, Irene
2015-06-01
The current eukaryotic tree of life groups most eukaryotes into one of five supergroups, the Opisthokonta, Amoebozoa, Archaeplastida, Excavata and SAR (Stramenopile, Alveolata, Rhizaria). Molecular and comparative morphological analyses revealed that the last eukaryotic common ancestor (LECA) already contained a rather sophisticated equipment of organelles including a mitochondrion, an endomembrane system, a nucleus with a lamina, a microtubule-organizing center (MTOC), and a flagellar apparatus. Recent studies of MTOCs, basal bodies/centrioles, and nuclear envelope organization of organisms in different supergroups have clarified our picture of how the nucleus and MTOCs co-evolved from LECA to extant eukaryotes. In this review we summarize these findings with special emphasis on valuable contributions of research on a lamin-like protein, nuclear envelope proteins, and the MTOC in the amoebozoan model organism Dictyostelium discoideum. Copyright © 2015 Elsevier GmbH. All rights reserved.
Signal processing: opportunities for superconductive circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralston, R.W.
1985-03-01
Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data-processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examplesmore » of superconductive implementations given. A canonic signal-processing system is then configured using these components and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. (Reprints)« less
NASA Astrophysics Data System (ADS)
Dong, Chuanfei; Lee, Yuni; Ma, Yingjuan; Lingam, Manasvi; Bougher, Stephen; Luhmann, Janet; Curry, Shannon; Toth, Gabor; Nagy, Andrew; Tenishev, Valeriy; Fang, Xiaohua; Mitchell, David; Brain, David; Jakosky, Bruce
2018-05-01
In this Letter, we make use of sophisticated 3D numerical simulations to assess the extent of atmospheric ion and photochemical losses from Mars over time. We demonstrate that the atmospheric ion escape rates were significantly higher (by more than two orders of magnitude) in the past at ∼4 Ga compared to the present-day value owing to the stronger solar wind and higher ultraviolet fluxes from the young Sun. We found that the photochemical loss of atomic hot oxygen dominates over the total ion loss at the current epoch, while the atmospheric ion loss is likely much more important at ancient times. We briefly discuss the ensuing implications of high atmospheric ion escape rates in the context of ancient Mars, and exoplanets with similar atmospheric compositions around young solar-type stars and M-dwarfs.
Evolution of a minimal parallel programming model
Lusk, Ewing; Butler, Ralph; Pieper, Steven C.
2017-04-30
Here, we take a historical approach to our presentation of self-scheduled task parallelism, a programming model with its origins in early irregular and nondeterministic computations encountered in automated theorem proving and logic programming. We show how an extremely simple task model has evolved into a system, asynchronous dynamic load balancing (ADLB), and a scalable implementation capable of supporting sophisticated applications on today’s (and tomorrow’s) largest supercomputers; and we illustrate the use of ADLB with a Green’s function Monte Carlo application, a modern, mature nuclear physics code in production use. Our lesson is that by surrendering a certain amount of generalitymore » and thus applicability, a minimal programming model (in terms of its basic concepts and the size of its application programmer interface) can achieve extreme scalability without introducing complexity.« less
Fellow travellers: Working memory and mental time travel in rodents.
Dere, Ekrem; Dere, Dorothea; de Souza Silva, Maria Angelica; Huston, Joseph P; Zlomuzica, Armin
2017-03-19
The impairment of mental time travel is a severe cognitive symptom in patients with brain lesions and a number of neuropsychiatric disorders. Whether animals are also able to mentally travel in time both forward and backward is still a matter of debate. In this regard, we have proposed a continuum of mental time travel abilities across different animal species, with humans being the species with the ability to perform most sophisticated forms of mental time travel. In this review and perspective article, we delineate a novel approach to understand the evolution, characteristics and function of human and animal mental time travel. Furthermore, we propose a novel approach to measure mental time travel in rodents in a comprehensive manner using a test battery composed of well-validated and easy applicable tests. Copyright © 2017. Published by Elsevier B.V.
The Glostavent: evolution of an anaesthetic machine for developing countries.
Beringer, R M; Eltringham, R J
2008-05-01
The sophisticated anaesthetic machines designed for use in modem hospitals are not appropriate for many parts of the developing world, as they are reliant on regular servicing by skilled engineers and an uninterrupted supply of electricity and compressed gases, which are not always available. The Glostavent has been designed specifically to meet the challenges faced by anaesthetists working in these countries. It is robust, simple to use, economical, easy to service and will continue to run during an interruption of the supply of oxygen or electricity. Feedback from widespread use throughout the developing world over the last 10 years has led to significant improvements to the original design. This article describes the basic components of the original version and the modifications which have been introduced as a result of practical experience in the developing world.
Adaptive Practice: Next Generation Evidence-Based Practice in Digital Environments.
Kennedy, Margaret Ann
2016-01-01
Evidence-based practice in nursing is considered foundational to safe, competent care. To date, rigid traditional perceptions of what constitutes 'evidence' have constrained the recognition and use of practice-based evidence and the exploitation of novel forms of evidence from data rich environments. Advancements such as the conceptualization of clinical intelligence, the prevalence of increasingly sophisticated digital health information systems, and the advancement of the Big Data phenomenon have converged to generate a new contemporary context. In today's dynamic data-rich environments, clinicians have new sources of valid evidence, and need a new paradigm supporting clinical practice that is adaptive to information generated by diverse electronic sources. This opinion paper presents adaptive practice as the next generation of evidence-based practice in contemporary evidence-rich environments and provides recommendations for the next phase of evolution.