Sorbents for mercury removal from flue gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.
1998-01-01
A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.
NASA Technical Reports Server (NTRS)
Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard
2015-01-01
The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.
Pamela M. Kinsey
2015-09-30
The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemsitry analysis, and rare earth removal efficiency from select sorbents.
NASA - Johnson Space Center's New Capabilities for Air Purification
NASA Technical Reports Server (NTRS)
Graf, John
2015-01-01
NASA has some unique and challenging air purification problems that cannot be adequately met with COTS technology: 1) ammonia removal from air, 2) hydrazine removal from air, 3) CO conversion to CO2 in low temperature, high humidity environments. NASA has sponsored the development of new sorbents and new catalysts. These new sorbents and catalysts work better than COTS technology for our application. If attendees have a need for an effective ammonia sorbent, an effective hydrazine sorbent, or an effective CO conversion catalyst, we should learn to see if NASA sponsored technology development can help.
The report discusses recent work addressing lime enhancement by slurrying with siliceous materials and testing in a laboratory packed-bed reactor, as part of EPA's efforts to develop low cost, retrofit flue gas cleaning technology, including the development of highly reactive sor...
The first purpose of this project is to complete bench and pilot scale testing of promising mercury sorbents. This work would apply findings from fundamental, mechanistic efforts over the past three years that have developed sorbents which show improved capture of elemental and ...
High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications
NASA Technical Reports Server (NTRS)
Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.
2007-01-01
Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.
Addleman, Shane; Chouyyok, Wilaiwan; Palo, Daniel; Dunn, Brad M.; Brann, Michelle; Billingsley, Gary; Johnson, Darren; Nell, Kara M.
2017-05-25
This work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals beyond commercially available sorbents. This report details the organic and inorganic sorbent uptake, performance, and collection efficiency results for La, Eu, Ho, Ag, Cu and Zn, as well as the characterization of these select sorbent materials. The report also contains estimated costs from an in-depth techno-economic analysis of a scaled up separation process. The estimated financial payback period for installing this equipment varies between 3.3 to 5.7 years depending on the brine flow rate of the geothermal resource.
Advanced in-duct sorbent injection for SO{sub 2} control. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stouffer, M.R.; Withium, J.A.; Rosenhoover, W.A.
1994-12-01
The objective of this research project was to develop a second generation duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Research and development work was focused on the Advanced Coolside process, which showed the potential for exceeding the original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. Process development was conducted in a 1000 acfm pilot plant. The pilot plant testing showed that the Advanced Coolside process can achieve 90% SO{sub 2} removal at sorbent utilizations up to 75%. The testing also showed that the process has the potentialmore » to achieve very high removal efficiency (90 to >99%). By conducting conceptual process design and economic evaluations periodically during the project, development work was focused on process design improvements which substantially lowered process capital and operating costs, A final process economic study projects capital costs less than one half of those for limestone forced oxidation wet FGD. Projected total SO{sub 2} control cost is about 25% lower than wet FGD for a 260 MWe plant burning a 2.5% sulfur coal. A waste management study showed the acceptability of landfill disposal; it also identified a potential avenue for by-product utilization which should be further investigated. Based on the pilot plant performance and on the above economic projections, future work to scale up the Advanced Coolside process is recommended.« less
Reversible Ammonia Sorption for the Primary Life Support System (PLSS)
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Jennings, Mallory A.
2012-01-01
Results are presented on the development of regenerable trace-contaminant (TC) sorbent for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). Since ammonia is the most important TC to be captured, data presented in this paper are limited to ammonia sorption, with results relevant to other TCs to be reported at a later time. The currently available TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal. The sorbent is non-regenerable, and its use is associated with appreciable pressure drop, i.e. power consumption. The objective of this work is to demonstrate the feasibility of using vacuum-regenerable sorbents for PLSS application. In this study, several carbon sorbent monoliths were fabricated and tested. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, as well as carbon surface conditioning that enhances ammonia sorption without impairing sorbent regeneration. Depending on sorbent monolith geometry, the reduction in pressure drop with respect to granular sorbent was found to be between 50% and two orders of magnitude. Resistive heating of the carbon sorbent monolith was demonstrated by applying voltage to the opposite ends of the monolith.
Carrageenan-grafted magnetite nanoparticles as recyclable sorbents for dye removal
NASA Astrophysics Data System (ADS)
Daniel-da-Silva, Ana L.; Salgueiro, Ana M.; Creaney, Bianca; Oliveira-Silva, Rui; Silva, Nuno J. O.; Trindade, Tito
2015-07-01
The efforts dedicated to improving water decontamination procedures have prompted the interest in the development of efficient, inexpensive, and reusable sorbents for the uptake of dye pollutants. In this work, novel sorbents consisting of carrageenan polysaccharides grafted to magnetic iron oxide nanoparticles were prepared. κ- and ι-carrageenan were first chemically modified by carboxymethylation and then covalently attached via amide bond to the surface of aminated silica-coated magnetite nanoparticles, both steps monitored using infrared spectroscopy (FTIR) analysis. The kinetics and the equilibrium behavior of the cationic dye methylene blue (MB) adsorption onto the carrageenan sorbents were investigated. ι-carrageenan sorbents displayed higher MB adsorption capacity that was ascribed to high content of sulfonate groups. Overall, the pseudo-second order equation provided a good description of the adsorption kinetics. The κ-carrageenan sorbents followed an unusual Z-type equilibrium adsorption isotherm whereas the isotherm of ι-carrageenan sorbents, although displaying a conventional shape, could not be successfully predicted by isotherm models commonly used. Noteworthy, both sorbents were long-term stable and could easily be recycled by simply rinsing with KCl aqueous solution. The removal efficiency of κ-carrageenan sorbents was 92 % in the first adsorption cycle and kept high (>80 %) even after six consecutive adsorption/desorption cycles.
Carbon-Containing Waste of Coal Enterprises in Magnetic Sorbents Technology
NASA Astrophysics Data System (ADS)
Kvashevaya, Ekaterina; Ushakova, Elena; Ushakov, Andrey
2017-11-01
The article shows the issues state of coal-mining enterprises carbonaceous wastes utilization, including by obtaining oil-sorbent. The characteristics of the feedstock are presented; experiment methods of obtaining a binder based on the livestock enterprises waste, of forming binder with filler (sawdust, coal waste); of pyrogenetic processing to obtain a sorbent are described. Possible options for the introduction of magnetite (a magnetic component) in the composition of the oil sorbent are considered: on the surface, in the volume of the granule and the magnetite core. In the course of the work it was found that the optimum content of coal dust in the sorbent granules is 75% by weight, and the most effective way of obtaining the magnetic sorbent is to apply the carbon material directly to the "core" of magnetite. However, in this case, the problem of finding an effective binder for magnetite arises. The option of applying magnetite on the surface of a carbon sorbent is not effective. Thus, at present, we use a mixture of coal waste, which binds to the uniform distribution of magnetite in the volume. The developed magnetic sorbents can be used in various weather conditions, including strong winds and icing of water bodies, as well as for small and medium currents.
NASA Astrophysics Data System (ADS)
Buelna Quijada, Genoveva
2001-07-01
Regenerative, alumina-supported, copper-based sorbent/catalysts provide a promising technique for simultaneous removal of SO2 and NO x from flue gas. These sorbents can remove over 90% of SO2 and 70+% of NOx while generating no wastes, reducing energy consumption, and producing valuable by-products. The lack of a cost-effective sorbent with low attrition rate and good reactivity has been the main hurdle to commercialization of this copper oxide process. Developing such a sorbent is the focus of this dissertation. This work examines using sol-gel techniques rather than traditional processes to produce gamma-alumina and copper coated 7-alumina granular sorbents. Important modifications to the established sol-gel synthesis process were made, which minimized generated wastes and reduced preparation time and sorbent cost. A laboratory scale semi-continuous process providing a basis for large-scale synthesis was developed. The effect of the copper content on the surface area and dispersion of the active species on sol-gel-derived sorbents coated by the one step and wet-impregnation methods was studied. The sol-gel-derived sorbents showed superior sulfation and regeneration properties than the existing commercial sorbents used in the copper oxide process in terms of sulfation capacity, fast regeneration, recovery of sorption capacity, and SO2 concentration in the regenerated effluent. The optimum temperature for NO reduction by NH3 over sol-gel-derived CuO/gamma-Al2O3 was found to be 350°C for both fresh and sulfated catalysts. This was also the optimum operating temperature for simultaneous removal of SO2 and NOx from simulated flue gas. At 350°C, the adsorption capacity of the sol-gel sorbent/catalyst was higher than UOP's sorbent, and very close to the capacity of ALCOA's sorbent, while the catalytic activity for NO reduction of the sol-gel-derived CuO/gamma-Al 2O3 sorbent fell between the commercial sorbents. The new mesoporous sol-gel-derived materials showed larger surface area, better mechanical strength, and more uniform dispersion of the copper species than existing commercially available sorbents. The superior mechanical properties, better cost effectiveness, and comparable efficiency for simultaneous removal of SO2 and NOx of the sol-gel-derived CuO/gamma-Al 2O3 sorbents with respect to the commercial ones make them a good option for use in the copper oxide process for combined removal of SO2 and NOx from flue gas.
Sebei, Haroun; Pham Minh, Doan; Lyczko, Nathalie; Sharrock, Patrick; Nzihou, Ange
2017-10-01
Hydroxyapatite (HAP) is highly considered as good sorbent for the removal of metals from the aqueous phase. However, soluble metals co-exist with organic pollutants in wastewaters. But little work has been devoted to investigate the reactivity of HAP for the removal of organic compounds. The main objective of this work is to study the reactivity of HAP-based sorbents for the removal of catechol as a model organic pollutant from an aqueous solution. Thus, HAP sorbents were firstly synthesized using calcium carbonate and potassium dihydrogen phosphate under moderate conditions (25-80°C, atmospheric pressure). A zinc-doped HAP was also used as sorbent, which was obtained from the contact of HAP with an aqueous solution of zinc nitrate. All the sorbents were characterized by different standard physico-chemical techniques. The sorption of catechol was carried out in a batch reactor under stirring at room temperature and pressure. Zinc-doped HAP sorbent was found to be more reactive than non-doped HAP sorbents for the fixation of catechol. The highest sorption capacity was of 15 mg of C per gram of zinc-doped HAP sorbent. The results obtained suggest the reaction scheme of HAP sorbents with metals and organic pollutants when HAP sorbents were used for the treatment of complex wastewaters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Thomas; Kataria, Atish; Soukri, Mustapha
It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less
Hu, Zhang-Jun; Xiao, Yan; Zhao, Dan-Hua; Shen, Yu-Lin; Gao, Hong-Wen
2010-03-15
A new hybrid material was developed by the template-free hybridization of weak acidic pink red B (APRB, C.I. 18073) with BaSO(4). The composition and structure of the material were determined and characterized. In contrast to conventional sorbents, the hybrid material has a specific surface area of 0.89 m(2)/g, but it contains lots of negative charges and lipophilic groups as the basis of specific adsorption. The efficient removal of cationic dyes and persistent organic pollutants (POPs) indicates that it has an improved adsorption capacity and selectivity with a short removal time less than 2 min; while the hybrid sorbents fit the Langmuir isotherm model, and follow the octanol-water partition law. Instead of using APRB reagent, an APRB-producing wastewater was reused to prepare the cost-effective sorbent, and the equilibrium adsorption capacities of which reached 222 and 160 mg/g for EV and BPR, respectively. The sorbents was then used to treat three wastewater samples with satisfactory results of over 97% decolonization and 88% COD-decreasing. In addition, the hybrid sorbent was regenerated from sludge over five cycles, and its adsorption capacity was not appreciably changed. This work has developed a simple and eco-friendly method for synthesizing a practical and efficient sorbent. (c) 2009 Elsevier B.V. All rights reserved.
Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung
2014-10-01
To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO 2 from CO 2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution ismore » examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO 2 desorption can be implemented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keener, T.C.; Khang, S.J.
1996-07-31
This research was focused on evaluating hydrated cement sorbents in the U. C. pilot spray dryer. The main goal of this work was to determine the hydration conditions resulting in reactive hydrated cement sorbents. Hydration of cement was achieved by stirring or by grinding in a ball mill at either room temperature or elevated temperatures. Also, the effects of several additives were studied. Additives investigated include calcium chloride, natural diatomite, calcined diatomaceous earth, and fumed silica. The performance of these sorbents was compared with conventional slaked lime. Further, the specific surface area and pore volume of the dried SDA sorbentsmore » were measured and compared to reactivity. Bench-scale tests were performed to obtain a more detailed picture of the development of the aforementioned physical properties as a function of hydration time.« less
SO 2-Resistant Immobilized Amine Sorbents for CO 2 Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluri, Uma
2014-01-01
The solid amine sorbent for CO 2 capture process has advantages of simplicity and low operating cost compared to the MEA (monoethanolamine) process. Solid amine sorbents reported so far suffered from either low CO 2 capture capacity or low stability in the flue gas environment. This project is aimed at developing a SO 2-resistant solid amine sorbent for capturing CO 2 from coal–fired power plants with SCR/FGD which emits SO 2ranging from 15 to 30 ppm and NO ranging from 5 to 10 ppm. The amine sorbent we developed in a previous project degraded rapidly with 65% decrease in themore » initial capture capacity in presence of 1% SO 2. This amine sorbent was further modified by coating with polyethyleneglycol (PEG) to increase the SO 2-resistance. Polyethylene glycol (PEG) was found to decrease the SO 2-amine interaction, resulting in the decrease in the maximum SO desorption temperature (Tmax ) of amine sorbent. The PEG-coated amine sorbent exhibited higher stability with only 40% decrease in the initial capture capacity compared to un-coated amine sorbents. The cost of the solid amine sorbent developed in this project is estimated to be less than $7.00/lb; the sorbent exhibited CO 2 capture capacity more than 2.3 mmol/g. The results of this study provided the scientific basis for further development of SO 2-resistant sorbents.« less
JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Benson
2007-06-15
This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.
Borisover, Mikhail; Bukhanovsky, Nadezhda; Lado, Marcos
2017-09-19
Typical experimental time frames allowed for equilibrating water-organic vapors with soil sorbents might lead to overlooking slow chemical reactions finally controlling a thermodynamically stable state. In this work, long-term gravimetric examination of kinetics covering about 4000 h was performed for phenol-water vapor interacting with four materials pre-equilibrated at three levels of air relative humidity (RHs 52, 73, and 92%). The four contrasting sorbents included an organic matter (OM)-rich peat soil, an OM-poor clay soil, a hydrophilic Aldrich humic acid salt, and water-insoluble leonardite. Monitoring phenol-water vapor interactions with the prehydrated sorbents, as compared with the sorbent samples in phenol-free atmosphere at the same RH, showed, for the first time, a sigmoid kinetics of phenol-induced mass uptake typical for second-order autocatalytic reactions. The apparent rate constants were similar for all the sorbents, RHs and phenol activities studied. A significant part of sorbed phenol resisted extraction, which was attributed to its abiotic oxidative coupling. Phenol uptake by peat and clay soils was also associated with a significant enhancement of water retention. The delayed development of the sigmoidal kinetics in phenol-water uptake demonstrates that long-run abiotic interactions of water-organic vapor with soil may be overlooked, based on short-term examination.
Paulauskiene, Tatjana
2018-04-01
This work aimed to evaluate the sorption capacity of natural sorbents (wool, moss, straw, peat) and their composites during the sorption of crude oil and of diesel overspread on the water surface. The work presents the research results of the maximum sorption capacity of the sorbents/their composites using crude oil/diesel; the sorption capacity of the sorbents/their composites when crude oil/diesel is spilled on the water surface; and the research results of the unrealized part of the crude oil/diesel in the sorbents. The results of the analysis showed that all the sorbents and their composites have their selectivity to crude oil less than 50%. Also the results showed that the distribution of diesel and water in the sorbents and their composites is very different compared with the distribution of crude oil during the sorption analyses. In total, the diesel in the liquid mass absorbed by the straw and the peat amounted to 17 and 20%, respectively. This shows that these sorbents are much more selective for water but not for diesel. A larger part of the diesel was in the liquid amount absorbed by the composites-up to 33%. Accordingly, the use of these composites in watery environments is much more effective than the use of individual sorbents. The composition of sorbents in the composite enhanced both the hydrophobic and the oleophilic properties; as a result, a more effective removal of the diesel and oil from the water surface was achieved.
The paper discusses current efforts to improve the uptake of mercury species by increasing active sites and adding oxidative species to the sorbent. (NOTE: Previous work showed that mercury chloride vapor is readily absorbed by calcium-based sorbents as an acid gas in environmen...
Musile, Giacomo; Cenci, Lucia; Piletska, Elena; Gottardo, Rossella; Bossi, Alessandra M; Bortolotti, Federica
2018-07-27
The aim of the present work was to develop a novel in-house mixed-mode SPE sorbent to be used for the HPLC-Ion TrapMS determination of 16 basic drugs in urine. By using a computational modelling, a virtual monomer library was screened identifying three suitable functional monomers, methacrylic acid (MAA), itaconic acid (IA) and 2-acrylamide-2-methylpropane sulfonic acid (AMPSA), respectively. Three different sorbents were then synthetized based on these monomers, and using as cross-linker trimethylolpropane trimethacrylate (TMPTMA). The sorbent characterization analyses brought to the selection of the AMPSA based phase. Using this novel in-house sorbent, a SPE-HPLC-Ion TrapMS method for drug analysis in urine was validated proving to be selective and accurate and showing a sensitivity adequate for toxicological urine analysis. The comparison of the in-house mixed-mode SPE sorbent with two analogous commercial mixed-mode SPE phases showed that the first one was better not only in terms of process efficiency, but also in terms of quality-price rate. To the best of our knowledge, this is the first time in which an in-house SPE procedure has been applied to the toxicological analysis of a complex matrix, such as urine. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Howard, David F.; Knox, James C.; Long, David A.; Miller, Lee; Cmaric, Gregory; Thomas, John
2016-01-01
The Long Duration Sorbent Testbed (LDST) is a flight experiment demonstration designed to expose current and future candidate carbon dioxide removal system sorbents to an actual crewed space cabin environment to assess and compare sorption working capacity degradation resulting from long term operation. An analysis of sorbent materials returned to Earth after approximately one year of operation in the International Space Station's (ISS) Carbon Dioxide Removal Assembly (CDRA) indicated as much as a 70% loss of working capacity of the silica gel desiccant material at the extreme system inlet location, with a gradient of capacity loss down the bed. The primary science objective is to assess the degradation of potential sorbents for exploration class missions and ISS upgrades when operated in a true crewed space cabin environment. A secondary objective is to compare degradation of flight test to a ground test unit with contaminant dosing to determine applicability of ground testing.
Heat recovery from sorbent-based CO.sub.2 capture
Jamal, Aqil; Gupta, Raghubir P
2015-03-10
The present invention provides a method of increasing the efficiency of exothermic CO.sub.2 capture processes. The method relates to withdrawing heat generated during the exothermic capture of CO.sub.2 with various sorbents via heat exchange with a working fluid. The working fluid is provided at a temperature and pressure such that it is in the liquid state, and has a vaporization temperature in a range such that the heat arising from the reaction of the CO.sub.2 and the sorbent causes a phase change from liquid to vapor state in whole or in part and transfers heat from to the working fluid. The resulting heated working fluid may subsequently be used to generate power.
Novel sorbents for environmental remediation
NASA Astrophysics Data System (ADS)
Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David
2014-05-01
Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session on Novel sorbents for environmental remediation, will also be evaluated and presented.
Multi-component testing using HZ-PAN and AgZ-PAN Sorbents for OSPREY Model validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garn, Troy G.; Greenhalgh, Mitchell; Lyon, Kevin L.
2015-04-01
In efforts to further develop the capability of the Off-gas SeParation and RecoverY (OSPREY) model, multi-component tests were completed using both HZ-PAN and AgZ-PAN sorbents. The primary purpose of this effort was to obtain multi-component xenon and krypton capacities for comparison to future OSPREY predicted multi-component capacities using previously acquired Langmuir equilibrium parameters determined from single component isotherms. Experimental capacities were determined for each sorbent using two feed gas compositions of 1000 ppmv xenon and 150 ppmv krypton in either a helium or air balance. Test temperatures were consistently held at 220 K and the gas flowrate was 50 sccm.more » Capacities were calculated from breakthrough curves using TableCurve® 2D software by Jandel Scientific. The HZ-PAN sorbent was tested in the custom designed cryostat while the AgZ-PAN was tested in a newly installed cooling apparatus. Previous modeling validation efforts indicated the OSPREY model can be used to effectively predict single component xenon and krypton capacities for both engineered form sorbents. Results indicated good agreement with the experimental and predicted capacity values for both krypton and xenon on the sorbents. Overall, the model predicted slightly elevated capacities for both gases which can be partially attributed to the estimation of the parameters and the uncertainty associated with the experimental measurements. Currently, OSPREY is configured such that one species adsorbs and one does not (i.e. krypton in helium). Modification of OSPREY code is currently being performed to incorporate multiple adsorbing species and non-ideal interactions of gas phase species with the sorbent and adsorbed phases. Once these modifications are complete, the sorbent capacities determined in the present work will be used to validate OSPREY multicomponent adsorption predictions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, McMahan L.; Shipley, Greg
Currently, landfill gases are flared-off, which creates carbon dioxide (CO 2) and particulate matter air emissions, while still containing small amounts of unburned methane (CH 4). All of these pollutants contribute to environmental health hazards and global climate change. The same is true with industrial processes that use thermal technologies to process biomass, as these also generate the pollutant gases and particulates. In conjunction with BioEnegy Development (BED), NETL researchers will adapt the Basic Immobilized Amine Sorbent (BIAS) material technology for use in BED’s biorefineries. The goal of this proposed work is to develop NETL’s immobilized hydrophobic amino-silane/amine pellets inmore » combination with BED’s biochar materials (derived from the pyrolysis of biomass) into a commercially-accepted means of capturing/recovering CH 4 and CO 2 gases from landfills. Overall, the NETL-BioEnergy Development partnership will focus on the development and application of this carbon management sorbent technology to commercial carbon capture processes and promotion of clean methane based fuel streams.« less
KINETICS OF Mn-BASED SORBENTS FOR HOT COAL GAS DESULFURIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.J. BERNS; K.A. SADECKI; M.T. HEPWORTH
1997-09-15
Mixed manganese oxide sorbents have been investigated for high-temperature removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases. The sorbents were screened by thermodynamic equilibrium considerations for sulfidation. Preliminary experimental work using thermogravimetric analysis (TGA) indicated titania to be a superior substrate than alumina. Four formulations showing superior reactivity in a TGA were then tested in an ambient pressure fixed-bed reactor to determine steady state H 2 S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. Eight tests were conducted with each test consisting of five cycles ofmore » sulfidation and regeneration. Sulfidation occurred at 600 o C using a simulated coal gas at an empty-bed space velocity of approximately 12,000 per hour. Manganese-based sorbents with molar ratios > 1:1 Mn:Substrate were effective in reducing the H 2 S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent at 600 o C. Regeneration tests determined that loaded pellets can be essentially completely regenerated in an air/steam mixture at 750 o C with minimal sulfate formation. The leading formulation (designated C6-2) from the fixed-bed tests was then further tested under varying sorbent induration temperature, sulfidation temperature and superficial gas velocity. Four tests were conducted with each test consisting of four cycles of sulfidation and regeneration. Results showed that the induration temperature of the sorbent and the reaction temperature greatly affected the H 2 S removal capacity of the sorbent while the superficial gas velocity between 1090 and 1635 cm/min had minimal affect on the sorbent's breakthrough capacity. Testing showed that the sorbent's strength was a strong function of the sorbent induration temperature. Sorbent also showed 30 to 53% loss of its strength over four cycles of sulfidation and regeneration. The former being sorbent indurated at 1115 o C and the prior being sorbent indurated at 1100 o C. A mathematical model was developed to describe the reaction of H 2 S with the mixed metal oxide in a fixed-bed reactor, where the individual pellets react according to the shrinking core model. The effective diffusivity within a single pellet was estimated by adjusting its value until a good match between the experimental and model H 2 S breakthrough curves was obtained. Predicted sorbent conversion at the conclusion of test FB3A compared well with experimental sulfur analysis.« less
Huang, Chaonan; Li, Yun; Yang, Jiajia; Peng, Junyu; Jin, Jing; Dhanjai; Wang, Jincheng; Chen, Jiping
2017-10-27
The present work represents a simple and effective preparation of a novel mixed-mode anion-exchange (MAX) sorbent based on porous poly[2-(diethylamino)ethyl methacrylate-divinylbenzene] (poly(DEAEMA-DVB)) spherical particles synthesized by one-step Pickering emulsion polymerization. The poly(DEAEMA-DVB) particles were quaternized with 1,4-butanediol diglycidyl ether (BDDE) followed by triethylamine (TEA) via epoxy-amine reaction to offer strong anion exchange properties. The synthesized MAX sorbent was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, nitrogen adsorption-desorption measurements and elemental analysis. The MAX sorbent possessed regular spherical shape and narrow diameter distribution (15-35μm), a high IEC of 0.54meq/g, with carbon and nitrogen contents of 80.3% and 1.62%, respectively. Compared to poly(DEAEMA-DVB), the MAX sorbent exhibited decreased S BET (390.5 vs. 515.3m 2 g -1 ), pore volume (0.74 vs. 0.85cm 3 g -1 ) and pore size (16.8 vs. 17.3nm). Moreover, changes of N content for producing the MAX sorbent reveal a successful two-step quaternization, which can be highly related to such a high IEC. Finally, the MAX sorbent was successfully evaluated for selective isolation and purification of some selected acidic pharmaceuticals (ketoprofen, KEP; naproxen, NAP; and ibuprofen, IBP) from neutral (hydrocortisone, HYC), basic (carbamazepine, CAZ; amitriptyline, AMT) pharmaceuticals and other interferences in water samples using solid phase extraction (SPE). An efficient analytical method based on the MAX-based mixed-mode SPE coupled with HPLC-UV was developed for highly selective extraction and cleanup of acidic KEP, NAP and IBP in spiked wastewater samples. The developed method exhibited good sensitivity (0.009-0.085μgL -1 limit of detection), satisfactory recoveries (82.1%-105.5%) and repeatabilities (relative standard deviation < 7.9%, n=3). Copyright © 2017 Elsevier B.V. All rights reserved.
Bagheri, Habib; Bayat, Parisa; Piri-Moghadam, Hamed
2013-11-29
The present work deals with a novel approach for grafting a sol-gel based sorbent, using diazonium salts for preparation of an unbreakable capillary microextraction (CME) device in on-line combination with high performance liquid chromatography (HPLC). The use of diazonium salts modifier allowed all types of metallic and non-metallic substrates to be used without any limitation. Substrates including copper, brass, stainless steel and polytetrafluoroethylene (PTFE) were chosen to be functionalized by chemical or electrochemical reduction of 4-amino phenyl acetic acid. Then, 3-(trimethoxysilyl)propylamine (3TMSPA) was selected as the precursor and the only reagent for preparation of the desired surface chemical bonded sorbent. The presence of chemical bond between substrate, diazonium salts and 3TMSPA is more probably responsible for thermal and solvent stability and long lifetime of the prepared sorbent. Characterization of the aryl group formation on the various substrates along with the prepared sorbents was thoroughly investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry analysis (TGA). Typically, one of the prepared sorbents, deposited on the inner surface of the copper tube, was selected for assessing the developed method. The CME device was used for on-line extraction of atrazine, ametryn and terbutryn, as model compounds, from the aquatic media. After extraction, the HPLC mobile phase was used for on-line desorption and elution of the extracted analytes from the CME loop, containing the grafted sol-gel based sorbent, through the HPLC column. Figures of merit of the developed method were also obtained in which the linearity for the analytes was in the range of 30-1000μgL(-1). The value of LOD (S/N=3) for all analytes was 10μgL(-1) and the RSD% values (n=5) were all below 9.4% at the 500μgL(-1) level. Applicability of the developed method was examined by analyzing some real water samples in which the relative recovery percentage ranged from 75 to 95%. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krutka, Holly; Sjostrom, Sharon
2011-07-31
Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWemore » was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant’s Martin Lake Steam Electric Station and Xcel Energy’s Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials, sorbents AX, F, and BN, were selected for evaluation using the 1 kW pilot at Sherco. Sorbent AX was operated in batch mode and performed similarly to sorbent R (i.e. could achieve up to 90% removal when given adequate regeneration time). Sorbent BN was not expected to be subject to the same mass diffusion limitations as experienced with sorbent R. When sorbent BN was used in continuous mode the steady state CO{sub 2} removal was approximately double that of sorbent R, which highlighted the importance of sorbents without kinetic limitations. Many different processes and equipment designs exist that may be applicable for postcombustion CO{sub 2} capture using solids in a temperature-swing system. A thorough technology survey was completed to identify the most promising options, which were grouped and evaluated based on the four main unit operations involved with sorbent based capture: Adsorption; Heating and cooling, or heat transfer; Conveying; Desorption. The review included collecting information from a wide variety of sources, including technology databases, published papers, advertisements, web searches, and vendor interviews. Working with power producers, scoring sheets were prepared and used to compare the different technology options. Although several technologies were interesting and promising, those that were selected for the final conceptual design were commercially available and performed multiple steps simultaneously. For the adsorption step, adsorption and conveying were both accomplished in a circulating fluidized bed. A rotary kiln was selected for desorption and cooling because it can simultaneously accomplish conveying and effective heat transfer. The final technology selection was used to complete preliminary costs assessments for a conceptual 500 MW CO{sub 2} capture process. The high level cost analysis was completed to determine the key cost drivers. The conceptual sorbent-based capture options yielded significant energy penalty and cost savings versus an aqueous amine system. Specifically, the estimated levelized cost of electricity (LCOE) for final concept design without a CO{sub 2} laden/lean sorbent heat exchanger or any other integration, was over 30% lower than that of the MEA capture process. However, this cost savings was not enough to meet the DOE’s target of ≤35% increase in LCOE. In order to reach this target, the incremental LCOE due to the CO{sub 2} capture can be no higher than 2.10 ¢/kWh above the LCOE of the non-capture equivalent power plant (6.0 ¢/kWh). Although results of the 1 kWe pilot evaluations suggest that the initial full-scale concept design must be revisited to address the technical targets, the cost assessment still provides a valuable high-level estimate of the potential costs of a solids-based system. A sensitivity analysis was conducted to determine the cost drivers and the results of the sensitivity analysis will be used to direct future technology development efforts. The overall project objective was to assess the viability and accelerate development of a solid-based post-combustion CO{sub 2} capture technology that can be retrofit to the existing fleet of coal-fired power plants. This objective was successfully completed during the project along with several specific budget period goals. Based on sorbent screening and a full-scale equipment evaluation, it was determined that solid sorbents for post-combustion capture is promising and warrants continued development efforts. Specifically, the lower sensible heat could result in a significant reduction in the energy penalty versus solvent based capture systems, if the sorbents can be paired with a process and equipment that takes advantage of the beneficial sorbent properties. It was also determined that a design using a circulating fluidized bed adsorber with rotary kilns for heating during regeneration, cooling, and conveying highlighted the advantage of sorbents versus solvents. However, additional technology development and cost reductions will be required to meet the DOE’s final technology goal of 90% CO{sub 2} capture with ≤35% increase in the cost of electricity. The cost analysis identified specific targets for the capital and operating costs, which will be used as the targets for future technology development efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi
In this paper, we report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloridemore » from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ~91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. Finally, the present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.« less
Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; Hoke, Thomas; Ucar, Huseyin; Moyer, Bruce A; Harrison, Stephen
2017-11-21
We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.
Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; ...
2017-10-27
In this paper, we report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloridemore » from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ~91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. Finally, the present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.« less
Zhou, Guiyin; Liu, Chengbin; Chu, Lin; Tang, Yanhong; Luo, Shenglian
2016-11-01
In this study, a new type of double-network hydrogel sorbent was developed to remove heavy metals in wastewater. The amino-functionalized Starch/PAA hydrogel (NH2-Starch/PAA) could be conducted in a wide pH and the adsorption process could rapidly achieve the equilibrium. The adsorption capacity got to 256.4mg/g for Cd(II). Resultantly, even though Cd(II) concentration was as high as 180mg/L, the Cd(II) could be entirely removed using 1g/L sorbent. Furthermore, the desirable mechanical durability of the adsorbent allowed easy separation and reusability. In the fixed-bed column experiments, the treatment volume of the effluent with a high Cd(II) concentration of 200mg/L reached 2400BV (27.1L) after eight times cycle. The NH2-Starch/PAA overcame the deficiency of conventional sorbents that could not effectively treat the wastewater with relatively high metal concentrations. This work provides a new insight into omnidirectional enhancement of sorbents for removing high-concentration heavy metals in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sorbent-based Oxygen Production for Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethi, Vijay
Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO 2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a majormore » advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O 2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.« less
Yuan, Li-Yong; Zhu, Lin; Xiao, Cheng-Liang; Wu, Qun-Yan; Zhang, Nan; Yu, Ji-Pan; Chai, Zhi-Fang; Shi, Wei-Qun
2017-02-01
A preorganized tetradentate phenanthrolineamide (DAPhen) ligand with hard and soft donors combined in the same molecule has been found to possess high extraction ability toward actinides over lanthanides from acidic aqueous solution in our previous work. Herein we grafted phenanthrolineamide groups onto a large-pore three-dimensional cubic silica support by the reaction of DAPhen siloxane with KIT-6 substrate to prepare a novel uranium-selective sorbent, KIT-6-DAPhen. The as-synthesized sorbent was well-characterized by scanning electron microscopy, high-resolution transmission electron microscopy, N 2 adsorption/desorption, X-ray diffraction, FT-IR, 13 C cross-polarization magic-angle spinning NMR, and TGA techniques, which confirmed the consummation of the functionalization. Subsequently, the effects of contact time, solution pH, initial U(VI) concentration, and the presence of competing metal ions on the U(VI) sorption onto KIT-6-DAPhen sorbent were investigated in detail. It was found that KIT-6-DAPhen showed largely enhanced sorption capacity and excellent selectivity toward U(VI). The maximum sorption capacity of KIT-6-DAPhen at pH 5.0 reaches 328 mg of U/g of sorbent, which is superior to most of functionalized mesoporous silica materials. Density functional theory coupled with quasi-relativistic small-core pseudopotentials was used to explore the sorption interaction between U(VI) and KIT-6-DAPhen, which gives a sorption reaction of KIT-6-DAPhen + [UO 2 (H 2 O) 5 ] 2+ + NO 3 - ⇄ [UO 2 (KIT-6-DAPhen)(NO 3 )] + + 5H 2 O. The findings of the present work provide new clues for developing new actinide sorbents by combining new ligands with various mesoporous matrixes.
Carbon sorbent based on flax boon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramov, M.V.; Tyulina, R.M.; Yaroslavtsev, V.T.
1994-11-10
Flax-fiber production wastes such as boon can be used effectively as the starting material for producing carbon sorbents. Activated carbons are among the most widely used sorbents in industrial wastewater and waste gas treatment. A single-stage process has been developed for producing an efficient, cheap carbon sorbent based on flax boon.
EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holly Krutka; Sharon Sjostrom
2011-07-31
Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designedmore » and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the cocurrent adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials, sorbents AX, F, and BN, were selected for evaluation using the 1 kW pilot at Sherco. Sorbent AX was operated in batch mode and performed similarly to sorbent R (i.e. could achieve up to 90% removal when given adequate regeneration time). Sorbent BN was not expected to be subject to the same mass diffusion limitations as experienced with sorbent R. When sorbent BN was used in continuous mode the steady state CO{sub 2} removal was approximately double that of sorbent R, which highlighted the importance of sorbents without kinetic limitations.« less
Garn, Troy G.; Greenhalgh, Mitchell; Law, Jack D.
2015-12-22
A new engineered form composite sorbent for the selective separation of xenon from krypton in simulant composition off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A sodium mordenite powder was incorporated into a macroporous polymer binder, formed into spherical beads and successfully converted to a 9 wt.% silver form composite sorbent. The final engineered form sorbent retained the characteristic surface area indicative of sodium mordenite powder. The sorbent was evaluated for xenon adsorption potential with capacities measured as high as 30 millimoles of xenon per kilogram of sorbent achieved at ambient temperature andmore » 460 millimoles of xenon per kilogram sorbent at 220 K. Xenon/krypton selectivity was calculated to be 22.4 with a 1020 µL/L xenon, 150 µL/L krypton in a balance of air feed gas at 220 K. Furthermore, adsorption/desorption thermal cycling effects were evaluated with results indicating sorbent performance was not significantly impacted while undergoing numerous adsorption/desorption thermal cycles.« less
Bench Scale Development and Testing of Aerogel Sorbents for CO 2 Capture Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begag, Redouane
The primary objective of this project was scaling up and evaluating a novel Amine Functionalized Aerogel (AFA) sorbent in a bench scale fluidized bed reactor. The project team (Aspen Aerogels, University of Akron, ADA-ES, and Longtail Consulting) has carried out numerous tests and optimization studies to demonstrate the CO 2 capture performance of the AFA sorbent in all its forms: powder, pellet, and bead. The CO 2 capture target performance of the AFA sorbent (all forms) were set at > 12 wt.% and > 6 wt.% for total and working CO 2 capacity, respectively (@ 40 °C adsorption / 100more » – 120 °C desorption). The optimized AFA powders outperformed the performance targets by more than 30%, for the total CO 2 capacity (14 - 20 wt.%), and an average of 10 % more for working CO 2 capacity (6.6 – 7.0 wt.%, and could be as high as 9.6 wt. % when desorbed at 120 °C). The University of Akron developed binder formulations, pellet production methods, and post treatment technology for increased resistance to attrition and flue gas contaminants. In pellet form the AFA total CO 2 capacity was ~ 12 wt.% (over 85% capacity retention of that of the powder), and there was less than 13% degradation in CO 2 capture capacity after 20 cycles in the presence of 40 ppm SO 2. ADA-ES assessed the performance of the AFA powder, pellet, and bead by analyzing sorption isotherms, water uptake analysis, cycling stability, jet cup attrition and crush tests. At bench scale, the hydrodynamic and heat transfer properties of the AFA sorbent pellet in fluidized bed conditions were evaluated at Particulate Solid Research, Inc. (PSRI). After the process design requirements were completed, by Longtail Consulting LLC, a techno-economic analysis was achieved using guidance from The National Energy Technology Laboratory (NETL) report. This report provides the necessary framework to estimate costs for a temperature swing post combustion CO 2 capture process using a bituminous coal fired, super-critical steam cycle power plant producing 550 MWe net generation with 90% CO 2 capture using a methylethylamine (MEA) solvent. Using the NETL report as guidance, the designed CO 2 capture system was analyzed on a cost basis to determine relative cost estimates between the benchmark MEA system and the AFA sorbent system.« less
Papastavros, Efthimia; Remmers, Rachael A; Snow, Daniel D; Cassada, David A; Hage, David S
2018-03-01
Affinity sorbents using bovine serum albumin as a binding agent were developed and tested for the extraction of environmental contaminants from water. Computer simulations based on a countercurrent distribution model were also used to study the behavior of these sorbents. Several model drugs, pesticides, and hormones of interest as emerging contaminants were considered in this work, with carbamazepine being used as a representative analyte when coupling the albumin column on-line with liquid chromatography and tandem mass spectrometry. The albumin column was found to be capable of extracting carbamazepine from aqueous solutions that contained trace levels of this analyte. Further studies of the bovine serum albumin sorbent indicated that it had higher retention under aqueous conditions than a traditional C 18 support for most of the tested emerging contaminants. Potential advantages of using these protein-based sorbents included the low cost of bovine serum albumin and its ability to bind to a relatively wide range of drugs and related compounds. It was also shown how simulations could be used to describe the elution behavior of the model compounds on the bovine serum albumin sorbents as an aid in optimizing the retention and selectivity of these supports for use with liquid chromatography or methods such as liquid chromatography with tandem mass spectrometry. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of sintering-resistant sorbents for CO2 capture.
Liu, Wenqiang; Feng, Bo; Wu, Yueqin; Wang, Guoxiong; Barry, John; da Costa, João C Diniz
2010-04-15
Sorbents for high temperature CO2 capture are under intensive development owing to their potential applications in advanced zero emission power, sorption-enhanced steam methane reforming for hydrogen production and energy storage systems in chemical heat pumps. One of the challenges in the development is the prevention of sintering of the sorbent (normally a calcium oxide derivative) which causes the CO2 capture capacity of the material to deteriorate rapidly after a few cycles of utilization. Here we show that a simple wet mixing method can produce sintering-resistant sorbents from calcium and magnesium salts of d-gluconic acid. It was found that calcium oxide was well distributed in the sorbents with metal oxide nanoparticles on the surface acting as physical barriers, and the CO2 capture capacity of the sorbents was largely maintained over multiple cycles of utilization. This method was also applied to other organometallic salts of calcium and magnesium/aluminum and the produced sorbents showed similarly high reversibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacciani, R.; Muller, C.R.; Davidson, J.F.
2009-08-05
The extent and mechanism of sulfation and carbonation of limestone, dolomite, and chalk, were compared with a novel, synthetic sorbent (85 wt % CaO and 15 wt % Ca{sub 12}A{sub l14}O{sub 33}), by means of experiments undertaken in a small, electrically heated fluidized bed. The sorbent particles were used either (I) untreated, sieved to two particle sizes and reacted with two different concentrations of SO{sub 2}, or (ii) after being cycled 20 times between carbonation, in 15 vol % CO{sub 2} in N2, and calcination, in pure N2, at 750 degrees C. The uptake of untreated limestone and dolomite wasmore » generally low (<0.2 g(SO{sub 2})/g(sorbent)), confirming previous results, However, the untreated chalk and the synthetic sorbent were found to be substantially more reactive with SO{sub 2}, and their final uptake was significantly higher (>0.5 g(SO{sub 2})/g(sorbent)) and essentially independent of the particle size. Here, comparisons are made on the basis of the sorbents in the calcined state. The capacities for the uptake of SO{sub 2}, on a basis of unit mass of calcined sorbent, were comparable for the chalk and the synthetic sorbent. However, previous work has demonstrated the ability of the synthetic sorbent to retain its capacity for CO{sub 2} over many cycles of carbonation and calcination: much more so than natural sorbents such as chalk and limestone. Accordingly, the advantage of the synthetic sorbent is that it could be used to remove CO{sub 2} from flue gases and, at the end of its life, to remove SO{sub 2} on a once-through basis.« less
Woolfenden, Elizabeth
2010-04-16
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation. Copyright 2009 Elsevier B.V. All rights reserved.
Regenerable sorbents for mercury capture in simulated coal combustion flue gas.
Rodríguez-Pérez, Jorge; López-Antón, M Antonia; Díaz-Somoano, Mercedes; García, Roberto; Martínez-Tarazona, M Rosa
2013-09-15
This work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents. The main factor that determines the retention of mercury and the regeneration of the sorbent is the presence of reactive gases that enhance mercury retention capacity. The capture of mercury is a consequence of two mechanisms: (i) the retention of elemental mercury by amalgamation with gold and (ii) the retention of oxidized mercury on the activated carbon support. These sorbents were specifically designed for retaining the mercury remaining in gas phase after the desulfurization units in coal power plants. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane
The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbentsmore » was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude higher than those of the sol-gel based sorbents. The results of the tests conducted with various dolomite-based sorbent indicate that the reactivity of the modified dolomite sorbent increases with increasing potassium concentration, while higher calcination temperature adversely affects the sorbent reactivity. Furthermore, the results indicate that as long as the absorption temperature is well below the equilibrium temperature, the reactivity of the sorbent improves with increasing temperature (350-425 C). As the temperature approaches the equilibrium temperature, because of the significant increase in the rate of reverse (i.e., regeneration) reaction, the rate of CO{sub 2} absorption decreases. The results of cyclic tests show that the reactivity of the sorbent gradually decreases in the cyclic process. To improve long-term durability (i.e., reactivity and capacity) of the sorbent, the sorbent was periodically re-impregnated with potassium additive and calcined. The results indicate that, in general, re-treatment improves the performance of the sorbent, and that, the extent of improvement gradually decreases in the cyclic process. The presence of steam significantly enhances the sorbent reactivity and significantly decreases the rate of decline in sorbent deactivation in the cyclic process.« less
Analysis of Ethane and Diethylbenzene Bridged Sorbents
2017-12-13
Leska; P.T. Charles; B.J. Melde; J.R. Taft, "Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants ," Chemosensors 2, 131...monitoring of contaminants in groundwater: Sorbent development; Naval Research Laboratory: 2013. Analysis of Ethane and Diethylbenzene Bridged Sorbents 7...
Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, C.K.; Lee, J.B.; Ahn, D.H.
2002-09-19
Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermicmore » nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.« less
Innovative nano-layered solid sorbents for CO2 capture.
Li, Bingyun; Jiang, Bingbing; Fauth, Daniel J; Gray, McMahan L; Pennline, Henry W; Richards, George A
2011-02-14
Nano-layered sorbents for CO(2) capture, for the first time, were developed using layer-by-layer nanoassembly. A CO(2)-adsorbing polymer and a strong polyelectrolyte were alternately immobilized within porous particles. The developed sorbents had fast CO(2) adsorption and desorption properties and their CO(2) capture capacity increased with increasing nano-layers of the CO(2)-adsorbing polymer.
A VARIABLE REACTIVITY MODEL FOR ION BINDING TO ENVIRONMENTAL SORBENTS
The conceptual and mathematical basis for a new general-composite modeling approach for ion binding to environmental sorbents is presented. The work extends the Simple Metal Sorption (SiMS) model previously presented for metal and proton binding to humic substances. A surface com...
Es'haghi, Zarrin; Nezhadali, Azizollah; Khatibi, Aram-Dokht
2016-08-01
A new Fe3O4/poly(є-caprolactone) (PCL) magnetite nanocomposite was fabricated and used as a sorbent for magnetically mediated PCL microspheres solid-phase extraction (MM-PCL-SPE) followed by gas chromatography-flame ionization detection (GC-FID) for monitoring of progesterone (PGN) hormone in biological and environmental matrices, namely blood serum, tap water, urine, and hospital wastewater. The nanomagnetite core of the sorbent was synthesized by a co-precipitation method. Magnetic nanoparticles (MNPs) were then microencapsulated with PCL microspheres using emulsion polymerization. The nanocomposite was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The magnetite sorbent can be effectively dispersed in aqueous solution and attracted to an external magnetic field. The MM-PCL-SPE process for PGN assay involved (a) dispersion of the sorbent in the donor phase aqueous solution with sonication, (b) exposure to a magnetic field to collect sorbent that had adsorbed the analyte, and (c) solvent desorption of extracted PGN for GC-FID analysis. The work demonstrates the usefulness of MM-PCL-SPE in the rapid and sensitive monitoring of trace amounts of PGN in real samples. The limit of detection (LOD) and limit of quantification (LOQ) were 1.00 and 3.30 ng/mL, respectively. The relative recoveries in real samples were adequate. Linearity was observed over a wide range of 2.2-10,000.0 ng/mL in aqueous media and urine and 0.01-70.0 μg/mL in blood serum. Graphical Abstract In this research new Fe3O4/poly(є-caprolactone) (PCL) magnetite microspheres were developed as an efficient sorbent for solid-phase extraction of progesterone hormone in biological and environmental matrices.
Moret, Sònia; Sánchez, Juan M; Salvadó, Victòria; Hidalgo, Manuela
2005-12-16
A procedure using alkaline extraction, solid-phase extraction (SPE) and HPLC is developed to analyze the polar herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) together with their main metabolites in soils. An ion-pairing HPLC method is used for the determination as it permits the baseline separation of these highly polar herbicides and their main metabolites. The use of a highly cross-linked polystyrene-divinylbenzene sorbent (PS-DVB) gives the best results for the analysis of these compounds. This sorbent allows the direct preconcentration of the analytes at the high pH values obtained after quantitative alkaline extraction of the herbicides from soil samples. Different parameters are evaluated for the SPE preconcentration step. The high polarity of the main analytes of interest (2,4-D and MCPA) makes it necessary to work at low flow rates (< or =0.5 mL min(-1)) in order for these compounds to be retained by the PS-DVB sorbent. A two stage desorption from the SPE sorbent is required to obtain the analytes in solvents that are appropriate for HPLC determination. A first desorption with a 50:50 methanol:water mixture elutes the most polar analytes (2,4-D, MCPA and 2CP). The second elution step with methanol permits the analysis of the other phenol derivatives. The humic and fulvic substances present in the soil are not efficiently retained by PS-DVB sorbents at alkaline pH's and so do not interfere in the analysis. This method has been successfully applied in the analysis of soil samples from a golf course treated with a commercial product containing esters of 2,4-D and MCPA as the active components.
Musijowski, Jacek; Trojanowicz, Marek; Szostek, Bogdan; da Costa Lima, José Luis Fontes; Lapa, Rui; Yamashita, Hiroki; Takayanagi, Toshio; Motomizu, Shoji
2007-09-26
Considering recent reports on widespread occurrence and concerns about perfluoroalkyl substances (PFAS) in environmental and biological systems, analysis of these compounds have gained much attention in recent years. Majority of analyte-specific methods are based on a LC/MS/MS or a GC/MS detection, however many environmental or biological studies would benefit from a total organic fluorine (TOF) determination. Presented work was aimed at developing a method for TOF determination. TOF is determined as an amount of inorganic fluoride obtained after defluorination reaction conducted off-line using sodium biphenyl reagent directly on the sorbent without elution of retained analytes. Recovered fluoride was analyzed using flow-injection system with either fluorimetric or potentiometric detection. The TOF method was tested using perfluorocarboxylic acids (PFCA), including perfluorooctanoic acid (PFOA), as model compounds. Considering low concentrations of PFAS in natural samples, solid-phase extraction as a preconcentration procedure was evaluated. Several carbon-based sorbents were tested, namely multi-wall carbon nanotubes, carbon nanofibres and activated carbon. Good sorption of all analytes was achieved and defluorination reaction was possible to carry out directly on a sorbent bed. Recoveries obtained for PFCAs, adsorbed on an activated carbon sorbent, and measured as TOF, were 99.5+/-1.7, 110+/-9.4, 95+/-26, 120+/-32, 110+/-12 for C4, C6, C8, C10 and C12-PFCA, respectively. Two flow systems that would enable the defluorination reaction and fluoride determination in a single system were designed and tested.
Silica-Silver Nanocomposites as Regenerable Sorbents for Hg0 Removal from Flue Gases.
Cao, Tiantian; Li, Zhen; Xiong, Yong; Yang, Yue; Xu, Shengming; Bisson, Teresa; Gupta, Rajender; Xu, Zhenghe
2017-10-17
Silica-silver nanocomposites (Ag-SBA-15) are a novel class of multifunctional materials with potential applications as sorbents, catalysts, sensors, and disinfectants. In this work, an innovative yet simple and robust method of depositing silver nanoparticles on a mesoporous silica (SBA-15) was developed. The synthesized Ag-SBA-15 was found to achieve a complete capture of Hg 0 at temperatures up to 200 °C. Silver nanoparticles on the SBA-15 were shown to be the critical active sites for the capture of Hg 0 by the Ag-Hg 0 amalgamation mechanism. An Hg 0 capture capacity as high as 13.2 mg·g -1 was achieved by Ag(10)-SBA-15, which is much higher than that achievable by existing Ag-based sorbents and comparable with that achieved by commercial activated carbon. Even after exposure to more complex simulated flue gas flow for 1 h, the Ag(10)-SBA-15 could still achieve an Hg 0 removal efficiency as high as 91.6% with a Hg 0 capture capacity of 457.3 μg·g -1 . More importantly, the spent sorbent could be effectively regenerated and reused without noticeable performance degradation over five cycles. The excellent Hg 0 removal efficiency combined with a simple synthesis procedure, strong tolerance to complex flue gas environment, great thermal stability, and outstanding regeneration capability make the Ag-SBA-15 a promising sorbent for practical applications to Hg 0 capture from coal-fired flue gases.
Zou, Sijie; Liao, Yong; Xiong, Shangchao; Huang, Nan; Geng, Yang; Yang, Shijian
2017-03-21
The nonrecyclability of the sorbents used to capture Hg 0 from flue gas causes a high operation cost and the potential risk of exposure to Hg. The installation of wet electrostatic precipitators (WESPs) in coal-fired plants makes possible the recovery of spent sorbents for recycling and the centralized control of Hg pollution. In this work, a H 2 S-modified Fe-Ti spinel was developed as a recyclable magnetic sorbent to recover Hg 0 from flue gas as a co-benefit of the WESP. Although the Fe-Ti spinel exhibited poor Hg 0 capture activity in the temperature range of flue gas downstream of flue gas desulfurization, the H 2 S-modified Fe-Ti spinel exhibited excellent Hg 0 capture performance with an average adsorption rate of 1.92 μg g -1 min -1 at 60 °C and a capacity of 0.69 mg g -1 (5% of the breakthrough threshold) due to the presence of S 2 2- on its surface. The five cycles of Hg 0 capture, Hg 0 recovery, and sorbent regeneration demonstrated that the ability of the modified Fe-Ti spinel to capture Hg 0 did not degrade remarkably. Meanwhile, the ultralow concentration of Hg 0 in flue gas was increased to a high concentration of Hg 0 , which facilitated the centralized control of Hg pollution.
[The progress in speciation analysis of trace elements by atomic spectrometry].
Wang, Zeng-Huan; Wang, Xu-Nuo; Ke, Chang-Liang; Lin, Qin
2013-12-01
The main purpose of the present work is to review the different non-chromatographic methods for the speciation analysis of trace elements in geological, environmental, biological and medical areas. In this paper, the sample processing methods in speciation analysis were summarized, and the main strategies for non-chromatographic technique were evaluated. The basic principles of the liquid extractions proposed in the published literatures recently and their advantages and disadvantages were discussed, such as conventional solvent extraction, cloud point extraction, single droplet microextraction, and dispersive liquid-liquid microextraction. Solid phase extraction, as a non-chromatographic technique for speciation analysis, can be used in batch or in flow detection, and especially suitable for the online connection to atomic spectrometric detector. The developments and applications of sorbent materials filled in the columns of solid phase extraction were reviewed. The sorbents include chelating resins, nanometer materials, molecular and ion imprinted materials, and bio-sorbents. Other techniques, e. g. hydride generation technique and coprecipitation, were also reviewed together with their main applications.
NASA Technical Reports Server (NTRS)
Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir
2011-01-01
Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.
Dahlan, Irvan; Lee, Keat Teong; Kamaruddin, Azlina Harun; Mohamed, Abdul Rahman
2009-07-30
In this work, the removal of SO(2) and NO from simulated flue gas from combustion process was investigated in a fixed-bed reactor using rice husk ash (RHA)/CaO-based sorbent. Various metal precursors were used in order to select the best metal impregnated over RHA/CaO sorbents. The results showed that RHA/CaO sorbents impregnated with CeO(2) had the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NO. Infrared spectroscopic results indicated the formation of both sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) species due to the catalytic role played by CeO(2). Apart from that, the catalytic activity of the RHA/CaO/CeO(2) sorbent was found to be closely related to its physical properties (specific surface area, total pore volume and average pore diameter).
PLSS Scale Demonstration of MTSA Temperature Swing Adsorption Bed Concept for CO2 Removal/Rejection
NASA Technical Reports Server (NTRS)
Iacomini, Christine S.; Powers, Aaron; Paul, Heather L.
2009-01-01
Metabolic heat regenerated temperature swing adsorption (MTSA) incorporated into a portable life support system (PLSS) is being explored as a viable means of removing and rejecting carbon dioxide (CO2) from an astronaut s ventilation loop. Sorbent pellets used in previous work are inherently difficult to quickly heat and cool. Further, their use in packed beds create large undesirable pressure drop. Thus work has been done to assess the application and performance of aluminum foam wash coated with a layer of sorbent. A to-scale sorbent bed, as envisioned studying use by a Martian PLSS, was designed, built, and tested. Performance of the assembly in regards to CO2 adsorption and pressure drop were assessed and the results are presented.
Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents.
Ghorishi, S Behrooz; Singer, Carl F; Jozewicz, Wojciech S; Sedman, Charles B; Srivastava, Ravi K
2002-03-01
Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chancellor, Christopher John
2016-11-14
The Los Alamos National Laboratory–Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste thatmore » will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.« less
Woolfenden, Elizabeth
2010-04-16
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouyyok, Wilaiwan; Pittman, Jonathan W.; Warner, Marvin G.
2016-05-02
The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructuredmore » silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.« less
Thief process for the removal of mercury from flue gas
Pennline, Henry W.; Granite, Evan J.; Freeman, Mark C.; Hargis, Richard A.; O'Dowd, William J.
2003-02-18
A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.
Pang, Simon H; Lee, Li-Chen; Sakwa-Novak, Miles A; Lively, Ryan P; Jones, Christopher W
2017-03-15
Studies on aminopolymer/oxide composite materials for direct CO 2 capture from air have often focused on the prototypical poly(ethylenimine) (PEI) as the aminopolymer. However, it is known that PEI will oxidatively degrade at elevated temperatures. This degradation has been ascribed to the presence of secondary amines, which, when oxidized, lose their CO 2 capture capacity. Here, we demonstrate the use of small molecule poly(propylenimine) (PPI) in linear and dendritic architectures supported in silica as adsorbent materials for direct CO 2 capture from air. Regardless of amine loading or aminopolymer architecture, the PPI-based sorbents are found to be more efficient for CO 2 capture than PEI-based sorbents. Moreover, PPI is found to be more resistant to oxidative degradation than PEI, even while containing secondary amines, as supported by FTIR, NMR, and ESI-MS studies. These results suggest that PPI-based CO 2 sorbents may allow for longer sorbent working lifetimes due to an increased tolerance to sorbent regeneration conditions and suggest that the presence of secondary amines may not mean that all aminopolymers will oxidatively degrade.
SIMULTANEOUS CONTROL OF HG(0), SO2, AND NOX BY NOVEL OXIDIZED CALCIUM-BASED SORBENTS
The paper gives results of an investigation of two classes of calcium (Ca)-based sorbents (hydrated limes and silicate compounds). {NOTE: Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents ...
SIMULTANEOUS CONTROL OF HGO, SO2, AND NOX BY NOVEL OXIDIZED CALCIUM-BASED SORBENTS
The paper gives results of an investigation of two classes of calcium (Ca)-based sorbents (hydrated limes and silicate compounds). (NOTE: Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents...
Toward in situ monitoring of water contamination by nitroenergetic compounds.
Johnson, Brandy J; Leska, Iwona A; Medina, Alejandro; Dyson, Norris F; Nasir, Mansoor; Melde, Brian J; Taft, Jenna R; Charles, Paul T
2012-11-06
We have previously described the application of novel porous organosilicate materials to the preconcentration of nitroenergetic targets from aqueous solution prior to HPLC analysis. The performance of the sorbents and the advantages of these types of materials over commercially available solid phase extraction sorbents have been demonstrated. Here, the development of systems for application of those sorbents to in situ monitoring is described. Considerations such as column pressure, particulate filtration, and component durability are discussed. The diameter of selected column housings, the sorbent bed depth, and the frits utilized significantly impact the utility of the sorbent columns in the prototype system. The impact of and necessity for improvements in the morphological characteristics of the sorbents as they relate to reduction in column pressure are detailed. The results of experiments utilizing a prototype system are presented. Data demonstrating feasibility for use of the sorbents in preconcentration prior to ion mobility spectrometry is also presented.
NOVEL MERCURY OXIDANT AND SORBENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED POWER PLANTS
The authors have successfully developed novel efficient and cost-effective sorbent and oxidant for removing mercury from power plant flue gases. These sorbent and oxidant offer great promise for controlling mercury emissions from coal-fired power plants burning a wide range of c...
CHARACTERIZATION OF ADVANCED SORBENTS FOR DRY SO2 CONTROL
The paper discusses the development of new flyash/lime sorbents for removing SO2 from coal-fired flue gas. Flyash/lime weight ratios of 1:1 to 10:1 and several additives to these sorbents for promoting their reactivity were evaluated in a bench-scale reactor simulating conditions...
Dong, Sheying; Huang, Guiqi; Su, Meiling; Huang, Tinglin
2015-10-14
We developed two simple, fast, and environmentally friendly methods using carbon aerogel (CA) and magnetic CA (mCA) materials as sorbents for micro-solid-phase extraction (μ-SPE) and magnetic solid-phase extraction (MSPE) techniques. The material performances such as adsorption isotherm, adsorption kinetics, and specific surface area were discussed by N2 adsorption-desorption isotherm measurements, ultraviolet and visible (UV-vis) spectrophotometry, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HR-TEM). The experimental results proved that the heterogeneities of CA and mCA were well modeled with the Freundlich isotherm model, and the sorption process well followed the pseudo-second-order rate equation. Moreover, plant growth regulators (PGRs) such as kinetin (6-KT), 6-benzylaminopurine (6-BA), 2,4-dichlorophenoxyacetic acid (2,4-D), and uniconazole (UN) in a reservoir raw water sample were selected as the evaluation of applicability for the proposed μ-SPE and MSPE techniques using high performance liquid chromatography (HPLC). The experimental conditions of two methods such as the amount of sorbent, extraction time, pH, salt concentration, and desorption conditions were studied. Under the optimized conditions, two extraction methods provided high recoveries (89-103%), low the limits of detection (LODs) (0.01-0.2 μg L(-1)), and satisfactory analytical features in terms of precision (relative standard deviation, RSD, 1.7-5.1%, n=3). This work demonstrates the feasibility and the potential of CA and mCA materials as sorbents for μ-SPE and MSPE techniques. Besides, it also could serve as a basis for future development of other functional CAs in pretreatment technology and make them valuable for analysis of pollutants in environmental applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, Gokhan
The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for overmore » 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chancellor, Christopher John
2016-11-07
The purpose of this report is to present the results of the acceptable knowledge (AK) review of oxidizers present in active waste streams, provide a technical analysis of the oxidizers, and report the results of the scoping study testing. This report will determine the fastest burning oxidizer to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-002, Sorbent Scoping Studies, contains similar information for sorbents identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scopingmore » studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.« less
Makkliang, Fonthip; Kanatharana, Proespichaya; Thavarungkul, Panote; Thammakhet, Chongdee
2015-01-01
A novel, simple and low cost magnetic multi-walled carbon nanotubes-poly (vinyl alcohol) cryogel-micro-solid phase extraction (magnetic-MWCNTs-PVA cryogel-μ-SPE) sorbent was synthesized by incorporating magnetic particles and MWCNTs into a PVA cryogel. The magnetic-MWCNTs-PVA cryogel-μ-SPE sorbent developed, with a large surface area and macro-porous structure, provided good sorbent-to-sorbent reproducibility (%RSD<8) and each sorbent could be used up to 30 times (%RSD<6). This sorbent was applied for the extraction of dibutyl phthalate (DBP) and di-2-(ethylhexyl) phthalate (DEHP) in packaged food prior to analysis by gas chromatograph coupled with flame ionisation detector (GC-FID). The concentration of DBP and DEHP in hot-water samples from plastic bags were found in the range 0.04-0.15 μg mL(-1) and 0.03-0.20 μg mL(-1), respectively, but only DEHP was found in clear chicken soup samples in the range 0.02-0.07 μg mL(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.
Post-combustion CO2 capture with activated carbons using fixed bed adsorption
NASA Astrophysics Data System (ADS)
Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon
2018-03-01
In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.
Polymeric ionic liquid bucky gels as sorbent coatings for solid-phase microextraction.
Zhang, Cheng; Anderson, Jared L
2014-05-30
Novel cross-linked polymeric ionic liquid (PIL) bucky gels were formed by free-radical polymerization of polymerizable ionic liquids gelled with multi-walled carbon nanotubes (MWCNT) and used as sorbent coatings for solid-phase microextraction (SPME). The combination of PIL with MWCNTs significantly enhanced the π-π interaction between the sorbent coatings and the aromatic analytes. Compared to the neat PIL-based sorbent coating, the PIL bucky gel sorbent coatings demonstrated higher extraction efficiency for the extraction of polycyclic aromatic hydrocarbons (PAHs). A partitioning extraction mechanism was observed for the PIL/MWCNT-based sorbent coatings indicating that the addition of MWCNTs did not seem to affect the extraction mechanism of the sorbent coating. The analyte-to-coating partition coefficients (logKfs) were estimated and the limits of detection (LOD) for selected PIL bucky gel sorbent coating were determined to be in the range of 1-2.5 ng L(-1). Recovery studies were also performed for PAHs in river and tap water to validate the applicability of the developed method. Copyright © 2014 Elsevier B.V. All rights reserved.
Carbon capture test unit design and development using amine-based solid sorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, Ronald W.; Spenik, James L.; Shadle, Lawrence J.
This study presents the design and development of a reactor system and the subsequent modifications to evaluate an integrated process to scrub carbon dioxide (CO 2) from synthetic flue gas using amine based solid sorbents. The paper presents the initial system design and then discusses the various changes implemented to address the change in sorbent from a 180 μm Geldart group B material to a 115 μm Geldart group A material as well as issues discovered during experimental trials where the major obstacle in system operation was the ability to maintain a constant circulation of a solid sorbent stemming frommore » this change in sorbent material. The system primarily consisted of four fluid beds, through which an amine impregnated solid sorbent was circulated and adsorption, pre-heat, regeneration, and cooling processes occurred. Instrumentation was assembled to characterize thermal, hydrodynamic, and gas adsorption performance in this integrated unit. A series of shakedown tests were performed and the configuration altered to meet the needs of the sorbent performance and achieve desired target capture efficiencies. Finally, methods were identified, tested, and applied to continuously monitor critical operating parameters including solids circulation rate, adsorbed and desorbed CO 2, solids inventories, and pressures.« less
Fabrication and characterization of buckypapers for use in air sampling
NASA Astrophysics Data System (ADS)
Oh, Jonghwa
Occupational exposure to volatile organic compounds (VOCs) is a concern from a public health perspective. In many industrial activities, workers' exposure to VOCs can be sufficiently high to induce adverse health effects, so their monitoring is necessary. In exposure assessment, post sampling extraction and quantification are the typical analytical procedures. Recently, our group developed the photothermal desorption (PTD) technique in which a pulse of light thermally desorbs an analyte directly from a sorbent. Advantages of this technique are; it is solvent free, repeated analysis is possible, sorbents are reusable, and no high cost of equipment is required. PTD overcomes almost all drawbacks of current extraction methods. This study was aimed to develop and test a new sorbent which will efficiently work with PTD. Single-walled carbon nanotubes (SWNTs) were examined as potential sorbents because of their high surface area, great thermal conductivity, and efficient light absorption. SWNTs were fabricated into a self-supporting form (i.e., buckypaper (BP)) which will preserve its physical integrity under normal working conditions. Largely two types of SWNTs were used, arc discharge (AD) and high-pressure carbon monoxide (HiPco), and different fabrication methods were examined. Upon fabrication, their adsorption properties were characterized in terms of Brunauer, Emmett, and Teller (BET) surface area, pore size, and toluene adsorption capacity. HiPco BP and methanol-cleaned AD BP (suspended/rinsed with methanol) were the top two materials, showing the highest surface area (649 and 387 m²/g, respectively) and adsorption capacity (106 and 46 mg/g, respectively) with relatively small mean pore diameter (7.7 and 8.8 nm, respectively). To further improve the adsorption properties, specific heat treatment conditions for each type of BPs were employed. After initial treatments only HiPco BP and acetone-cleaned AD BP (suspended/rinsed with acetone) were selected for further investigations based on obtained surface area (933 and 970 m²/g, respectively) and physical integrity. These two BPs were then examined for PTD and the AD BP showed higher recovery rate (0.016 - 0.431 %) at all energy levels examined (1.84 - 7.37 J). The AD BP has been shown to be an efficient sorbent for toluene and possibly a good candidate for PTD.
Combating oil spill problem using plastic waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleem, Junaid, E-mail: junaidupm@gmail.com; Ning, Chao; Barford, John
Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plasticmore » waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.« less
Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangwal, Santosh; Muto, Andrew
Southern Research has developed a thermochemical energy storage (TCES) technology that utilizes the endothermic-exothermic reversible carbonation of calcium oxide (lime) to store thermal energy at high-temperatures, such as those achieved by next generation concentrating solar power (CSP) facilities. The major challenges addressed in the development of this system include refining a high capacity, yet durable sorbent material and designing a low thermal resistance low-cost heat exchanger reactor system to move heat between the sorbent and a heat transfer fluid under conditions relevant for CSP operation (e.g., energy density, reaction kinetics, heat flow). The proprietary stabilized sorbent was developed by Precisionmore » Combustion, Inc. (PCI). A factorial matrix of sorbent compositions covering the design space was tested using accelerated high throughput screening in a thermo-gravimetric analyzer. Several promising formulations were selected for more thorough evaluation and one formulation with high capacity (0.38 g CO 2/g sorbent) and durability (>99.7% capacity retention over 100 cycles) was chosen as a basis for further development of the energy storage reactor system. In parallel with this effort, a full range of currently available commercial and developmental heat exchange reactor systems and sorbent loading methods were examined through literature research and contacts with commercial vendors. Process models were developed to examine if a heat exchange reactor system and balance of plant can meet required TCES performance and cost targets, optimizing tradeoffs between thermal performance, exergetic efficiency, and cost. Reactor types evaluated included many forms, from microchannel reactor, to diffusion bonded heat exchanger, to shell and tube heat exchangers. The most viable design for application to a supercritical CO 2 power cycle operating at 200-300 bar pressure and >700°C was determined to be a combination of a diffusion bonded heat exchanger with a shell and tube reactor. A bench scale reactor system was then designed and constructed to test sorbent performance under more commercially relevant conditions. This system utilizes a tube-in tube reactor design containing approximately 250 grams sorbent and is able to operate under a wide range of temperature, pressure and flow conditions as needed to explore system performance under a variety of operating conditions. A variety of sorbent loading methods may be tested using the reactor design. Initial bench test results over 25 cycles showed very high sorbent stability (>99%) and sufficient capacity (>0.28 g CO 2/g sorbent) for an economical commercial-scale system. Initial technoeconomic evaluation of the proposed storage system show that the sorbent cost should not have a significant impact on overall system cost, and that the largest cost impacts come from the heat exchanger reactor and balance of plant equipment, including compressors and gas storage, due to the high temperatures for sCO 2 cycles. Current estimated system costs are $47/kWhth based on current material and equipment cost estimates.« less
Oil sorbents from plastic wastes and polymers: A review.
Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay
2018-01-05
A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arastoopour, Hamid; Abbasian, Javad
2014-07-31
This project describes the work carried out to prepare a highly reactive and mechanically strong MgO based sorbents and to develop a Population Balance Equations (PBE) approach to describe the evolution of the particle porosity distribution that is linked with Computational Fluid Dynamics (CFD) to perform simulations of the CO2 capture and sorbent regeneration. A large number of MgO-based regenerable sorbents were prepared using low cost and abundant dolomite as the base material. Among various preparation parameters investigated the potassium/magnesium (K/Mg) ratio was identified as the key variable affecting the reactivity and CO2 capacity of the sorbent. The optimum K/Mgmore » ratio is about 0.15. The sorbent formulation HD52-P2 was identified as the “best” sorbent formulation and a large batch (one kg) of the sorbent was prepared for the detailed study. The results of parametric study indicate the optimum carbonation and regeneration temperatures are 360° and 500°C, respectively. The results also indicate that steam has a beneficial effect on the rate of carbonation and regeneration of the sorbent and that the reactivity and capacity of the sorbent decreases in the cycling process (sorbent deactivation). The results indicate that to achieve a high CO2 removal efficiency, the bed of sorbent should be operated at a temperature range of 370-410°C which also favors production of hydrogen through the WGS reaction. To describe the carbonation reaction kinetics of the MgO, the Variable Diffusivity shrinking core Model (VDM) was developed in this project, which was shown to accurately fit the experimental data. An important advantage of this model is that the changes in the sorbent conversion with time can be expressed in an explicit manner, which will significantly reduce the CFD computation time. A Computational Fluid Dynamic/Population Balance Equations (CFD/PBE) model was developed that accounts for the particle (sorbent) porosity distribution and a new version of the method of moments, called Finite size domain Complete set of trial functions Method Of Moments (FCMOM) was used to solve the population balance equations. The PBE model was implemented in a commercial CFD code, Ansys Fluent 13.0. The code was used to test the model in some simple cases and the results were verified against available analytical solution in the literature. Furthermore, the code was used to simulate CO2 capture in a packed-bed and the results were in excellent agreement with the experimental data obtained in the packed bed. The National Energy Laboratory (NETL) Carbon Capture Unit (C2U) design was used in simulate of the hydrodynamics of the cold flow gas/solid system (Clark et al.58). The results indicate that the pressure drop predicted by the model is in good agreement with the experimental data. Furthermore, the model was shown to be able to predict chugging behavior, which was observed during the experiment. The model was used as a base-case for simulations of reactive flow at elevated pressure and temperatures. The results indicate that by controlling the solid circulation rate, up to 70% CO2 removal can be achieved and that the solid hold up in the riser is one of the main factors controlling the extent of CO2 removal. The CFD/PBE simulation model indicates that by using a simulated syngas with a composition of 20% CO2, 20% H2O, 30% CO, and 30% H2, the composition (wet basis) in the reactor outlet corresponded to about 60% CO2 capture with and exit gas containing 65% H2. A preliminary base-case-design was developed for a regenerative MgO-based pre-combustion carbon capture process for a 500 MW IGCC power plant. To minimize the external energy requirement, an extensive heat integration network was developed in Aspen/HYSYS® to produce the steam required in the regenerator and heat integration. In this process, liquid CO2 produced at 50 atm can easily be pumped and sequestered or stored. The preliminary economic analyses indicate that the estimated cost of carbon v capture is in the range of $31-$44/ton, suggesting that a regenerative MgO-Based process can be a viable option for pre-combustion carbon dioxide capture in advanced gasification based power systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y.S.
Dry regenerative sorption processes have recently attracted increasing attention in flue gas desulfurization (FGD) because of their several advantages over the conventional wet-scrubbing processes. Dry sorbents are usually made by coating a transition or alkaline earth metal precursor on the surface of a porous support. Major disadvantages of these sorbents prepared by the conventional methods include relatively poor attrition resistance and low SO{sub 2} sorption capacity. The physical and especially chemical attrition (associated with the sulphation-oxidation-reduction cycles in the process) deteriorates the performance of the sorbents. The low SO{sub 2} sorption capacity is primarily due to the small surface areamore » of the support. Materials with a high surface area are not used as the supports for FGD sorbents because these materials usually are not thermally stable at high temperatures. In the past year, the research supported by Ohio Coal Development Office was focused on synthesis and properties of sol-gel derived alumina and zeolite sorbents with improved properties for FGD. The sol-gel derived alumina has large surface area, mesopore size and excellent mechanical strength. Some alumina-free zeolites not only posses the basic properties required as a sorbent for FGD (hydrophobicity, thermal and chemical stability, mechanical strength) but also have extremely large surface area and selective surface chemistry. The major objectives of this research program were to synthesize the sol-gel derived sorbents and to explore the use of the zeolites either directly as adsorbents or as sorbent support for FGD. The research was aimed at developing novel FGD sorbents possessing better sorption equilibrium and kinetic properties and improved physical and chemical attrition resistance.« less
Naga Babu, A; Reddy, D Srinivasa; Kumar, G Suresh; Ravindhranath, K; Krishna Mohan, G V
2018-07-15
Water pollution by industrial and anthropogenic actives has become a serious threat to the environment. World Health Organization (WHO) has identified that lead and fluoride amid the environmental pollutants are most poisonous water contaminants with devastating impact on the human race. The present work proposes a study on economical bio-adsorbent based technique using exhausted coffee grounds in the removal of lead and fluoride contaminants from water. The exhausted coffee grounds gathered from industrial wastes have been acid-activated and examined for their adsorption capacity. The surface morphology and elemental characterization of pre-and-post adsorption operations by FESEM, EDX and FTIR spectral analysis confirmed the potential of the exhausted coffee ground as successful bio-sorbent. However, thermodynamic analysis confirmed the adsorption to be spontaneous physisorption with Langmuir mode of homogenous monolayer deposition. The kinetics of adsorption is well defined by pseudo second order model for both lead and fluoride. A significant quantity of lead and fluoride is removed from the synthetic contaminated water by the proposed bio-sorbent with the respective sorption capabilities of 61.6 mg/g and 9.05 mg/g. However, the developed bio-sorbent is also recyclable and is capable of removing the lead and fluoride from the domestic and industrial waste-water sources with an overall removal efficiency of about 90%. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Smith, Fred; Perry, Jay; Nalette, Tim; Papale, William
2006-01-01
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T. As part of the original project effort, basic sorbent development was continued with the University of Connecticut and dynamic equilibrium trace contaminant adsorption characteristics were evaluated by NASA. This paper summarizes the University sorbent research effort, the basic trace contaminant loading characteristics of the SA9T sorbent, design support testing, and the status of the full-scale system hardware design and manufacturing effort.
Martin, Alexis; Margoum, Christelle; Coquery, Marina; Randon, Jérôme
2016-10-01
Passive sampling techniques have been developed as an alternative method for in situ integrative monitoring of trace levels of neutral pesticides in environmental waters. The objective of this work was to develop a new receiving phase for pesticides with a wide range of polarities in a single step. We describe the development of three new composite silicone rubbers, combining polydimethylsiloxane mechanical and sorption properties with solid-phase extraction sorbents, prepared as a receiving phase for passive sampling. A composite silicone rubber composed of polydimethylsiloxane/poly(divinylbenzene-co-N-vinylpyrrolidone) was selected by batch experiments for its high sorption properties for pesticides with octanol-water partition coefficients ranging from 2.3 to 5.5. We named this composite material "Polar/Apolar Composite Silicone Rubber". A structural study by scanning electron microscopy confirmed the homogeneous dispersion of the sorbent particles and the encapsulation of particles within the polydimethylsiloxane matrix. We also demonstrate that this composite material is resistant to common solvents used for the back-extraction of analytes and has a maximal resistance temperature of 350°C. Therefore, the characteristics of the "Polar/Apolar Composite Silicone Rubber" meet most of the criteria for use as a receiving phase for the passive sampling of pesticides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Knox, James C.; Stanley, Christine M.
2015-01-01
The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The Carbon Dioxide (CO2) removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort utilizes a virtual Carbon Dioxide Removal Assembly, revision 4 (CDRA-4) test bed to test a large number of potential operational configurations with independent variations in flow rate, cycle time, heater ramp rate, and set point. Initial ground testing will provide prerequisite source data and provide baseline data in support of the virtual CDRA. Once the configurations with the highest performance and lowest power requirements are determined by the virtual CDRA, the results will be confirmed by testing these configurations with the CDRA-4EU ground test hardware. This paper describes the initial ground testing of select configurations. The development of the virtual CDRA under the AES-LSS Project will be discussed in a companion paper.
Evaluation of Solid Sorbents as a Retrofit Technology for CO 2 Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjostrom, Sharon
2016-06-02
ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO 2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO 2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO 2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbentmore » CO 2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO 2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO 2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO 2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was primarily the result of sorbent circulation limitations at operating temperatures combined with pre-loading of the sorbent with CO 2 prior to entering the adsorber. Specifically, CO 2-rich gas was utilized to convey sorbent from the regenerator to the adsorber. This gas was nominally 45°C below the regenerator temperature during testing. ADA’s post-combustion capture system with modifications to overcome pilot constraints, in conjunction with incorporating a sorbent with CO 2 working capacity of 15 g CO 2/100 g sorbent and a contact time of 10 to 15 minutes or less with flue gas could provide significant cost and performance benefits when compared to an MEA system.« less
Optimizing the Costs of Solid Sorbent-Based CO 2 Capture Process Through Heat Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjostrom, Sharon
2016-03-18
The focus of this project was the ADAsorb™ CO 2 Capture Process, a temperature-swing adsorption process that incorporates a three-stage fluidized bed as the adsorber and a single-stage fluidized bed as the regenerator. ADAsorb™ system was designed, fabricated, and tested under DOE award DEFE0004343. Two amine-based sorbents were evaluated in conjunction with the ADAsorb™ process: “BN”, an ion-exchange resin; and “OJ”, a metal organic framework (MOF) sorbent. Two cross heat exchanger designs were evaluated for use between the adsorber and regenerator: moving bed and fluidized bed. The fluidized bed approach was rejected fairly early in the project because the additionalmore » electrical load to power blowers or fans to overcome the pressure drop required for fluidization was estimated to be nominally three times the electrical power that could be generated from the steam saved through the use of the cross heat exchanger. The Energy Research Center at Lehigh University built and utilized a process model of the ADAsorb™ capture process and integrated this model into an existing model of a supercritical PC power plant. The Lehigh models verified that, for the ADAsorb™ system, the largest contributor to parasitic power was lost electrical generation, which was primarily electric power which the host plant could not generate due to the extraction of low pressure (LP) steam for sorbent heating, followed by power for the CO 2 compressor and the blower or fan power required to fluidize the adsorber and regenerator. Sorbent characteristics such as the impacts of moisture uptake, optimized adsorption and regeneration temperature, and sensitivity to changes in pressure were also included in the modeling study. Results indicate that sorbents which adsorb more than 1-2% moisture by weight are unlikely to be cost competitive unless they have an extremely high CO 2 working capacity that well exceeds 15% by weight. Modeling also revealed that reductions in adsorber pressure drop could negatively affect the CO 2 adsorption characteristics for sorbents with certain isobar adsorption characteristics like sorbent BN. Thus, reductions in pressure drop do not provide the efficiency benefits expected. A techno-economic assessment conducted during the project revealed that without heat integration, the a metal organic framework (MOF) sorbent used in conjunction with the ADAsorb™ process provided the opportunity for improved performance over the benchmark MEA process. While the addition of a cross heat exchanger and heat integration was found to significantly improve net unit heat rate, the additional equipment costs required to realize these improvements almost always outweighed the improvement in performance. The exception to this was for a supported amine sorbent and the addition of a moving bed cross heat exchanger alone or in conjunction with waste heat from the compressor used for supplemental regenerator heating. Perhaps one of the most important points to be drawn from the work conducted during this project is the significant influence of sorbent characteristics alone on the projected COE and LCOE associated with the ADAsorb™ process, and the implications associated with future improvements to solid sorbent CO 2 capture. The results from this project suggest that solid sorbent CO 2 capture will continue to see performance gains and lower system costs as further sorbent improvements are realized.« less
Influence of high-temperature steam on the reactivity of CaO sorbent for CO₂ capture.
Donat, Felix; Florin, Nicholas H; Anthony, Edward J; Fennell, Paul S
2012-01-17
Calcium looping is a high-temperature CO(2) capture technology applicable to the postcombustion capture of CO(2) from power station flue gas, or integrated with fuel conversion in precombustion CO(2) capture schemes. The capture technology uses solid CaO sorbent derived from natural limestone and takes advantage of the reversible reaction between CaO and CO(2) to form CaCO(3); that is, to achieve the separation of CO(2) from flue or fuel gas, and produce a pure stream of CO(2) suitable for geological storage. An important characteristic of the sorbent, affecting the cost-efficiency of this technology, is the decay in reactivity of the sorbent over multiple CO(2) capture-and-release cycles. This work reports on the influence of high-temperature steam, which will be present in flue (about 5-10%) and fuel (∼20%) gases, on the reactivity of CaO sorbent derived from four natural limestones. A significant increase in the reactivity of these sorbents was found for 30 cycles in the presence of steam (from 1-20%). Steam influences the sorbent reactivity in two ways. Steam present during calcination promotes sintering that produces a sorbent morphology with most of the pore volume associated with larger pores of ∼50 nm in diameter, and which appears to be relatively more stable than the pore structure that evolves when no steam is present. The presence of steam during carbonation reduces the diffusion resistance during carbonation. We observed a synergistic effect, i.e., the highest reactivity was observed when steam was present for both calcination and carbonation.
Development of a Rapid Cycling CO2 and H2O Removal Sorbent
NASA Technical Reports Server (NTRS)
Alptekin, Gokhan; Cates, Matthew; Bernal, Casey; Dubovik, Margarita; Paul, Heather L.
2007-01-01
The National Aeronautics and Space Administration (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store eight hours worth of carbon dioxide (CO2). If the sorbent regeneration can be carried out during the Extravehicular Activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. TDA Research, Inc. is developing compact, regenerable sorbent materials to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all CO2 and humidity duration-limiting elements in the life support system. The material also has applications in other areas of space exploration including long duration exploration missions requiring regenerable technologies and possibly the Crew Exploration Vehicle (CEV) spacecraft. This paper summarizes the results of the sorbent development, testing, and evaluation efforts to date.
Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I
2013-09-06
In this work, humic substances (HS) immobilized, as a thin layer or as aggregates, on silica gel were tested as material for solid phase extraction. Some triazines (simazine, atrazine, therbutylazine, atrazine-desethyl-desisopropyl-2-hydroxy, ametryn and terbutryn), have been selected as test analytes due to their environmental importance and to span a large range of solubility and octanol/water partition coefficient (logP). The sorbent was obtained immobilizing a thin layer of HS via physisorption on a pre-coated silica gel with a cationic polymer (polybrene). While the sorbent could be used as it is, it was demonstrated that additional HS could be immobilized, via weak interactions, to form stable humic aggregates. However, while a higher quantity of HS could be immobilized, no significant differences were observed in the sorption parameters. This sorbent have been tested for solid phase extraction to concentrate triazines from aqueous matrixes. The sorbent demonstrated performances equivalent to commercial alternatives as a concentration factor between 50 and 200, depending on the type of triazines, was obtained. Moreover the low cost and the high flow rate of sample through the column allowed using high quantity of sorbent. The analytical procedure was tested with different matrixes including tap water, river water and estuarine water. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dorneanu, Petronela Pascariu; Cojocaru, Corneliu; Olaru, Niculae; Samoila, Petrisor; Airinei, Anton; Sacarescu, Liviu
2017-12-01
In this work, pure polyvinylidene fluoride (PVDF) and PVDF/cobalt ferrite (CoFe2O4) magnetic fibrous composite were successfully prepared by electrospinning method for oil spill sorption applications. The pure spinel phase of CoFe2O4 and PVDF/CoFe2O4 composites were confirmed by X-ray diffraction analysis (XRD). Electrospun sorbent materials were characterized by scanning and transmission electron microscopy (SEM and TEM) as well as by contact angle measurements. In addition, the composite sorbent (PVDF/CoFe2O4) was characterized by magnetic measurements. It revealed good magnetic properties that are of real interest to facilitate the separation of the oil-loaded sorbent under the external magnetic field. Finally, the produced electrospun sorbents were tested for sorption of oily liquids, such as: decane, dodecane and commercial motor oils. We obtained good oil sorption capacity (between 9.751-23.615 g/g of pure PVDF) and (8.133-18.074 g/g for the magnetic composite) depending on the nature of oil tested. The present electrospun magnetic PVDF/CoFe2O4 fibrous composite could be potentially useful for the efficient removal of oil in water and recovery of sorbent material.
Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment
NASA Astrophysics Data System (ADS)
Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda
2015-04-01
For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested. Acknowledgement: Support from a project 2014/0009/1DP/1.1.1.2.0/13/APIA/VIAA/044
Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.
1982-01-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Lewis pressurized, fluidized-bed combustion program. Data and calculated results
NASA Astrophysics Data System (ADS)
Rollbuhler, R. J.
1982-03-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Simulation of mercury capture by sorbent injection using a simplified model.
Zhao, Bingtao; Zhang, Zhongxiao; Jin, Jing; Pan, Wei-Ping
2009-10-30
Mercury pollution by fossil fuel combustion or solid waste incineration is becoming the worldwide environmental concern. As an effective control technology, powdered sorbent injection (PSI) has been successfully used for mercury capture from flue gas with advantages of low cost and easy operation. In order to predict the mercury capture efficiency for PSI more conveniently, a simplified model, which is based on the theory of mass transfer, isothermal adsorption and mass balance, is developed in this paper. The comparisons between theoretical results of this model and experimental results by Meserole et al. [F.B. Meserole, R. Chang, T.R. Carrey, J. Machac, C.F.J. Richardson, Modeling mercury removal by sorbent injection, J. Air Waste Manage. Assoc. 49 (1999) 694-704] demonstrate that the simplified model is able to provide good predictive accuracy. Moreover, the effects of key parameters including the mass transfer coefficient, sorbent concentration, sorbent physical property and sorbent adsorption capacity on mercury adsorption efficiency are compared and evaluated. Finally, the sensitive analysis of impact factor indicates that the injected sorbent concentration plays most important role for mercury capture efficiency.
Highly attrition-resistant zinc oxide-based sorbents for H{sub 2}S removal by spray-drying technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.B.; Baek, J.I.; Ryu, C.K.
2008-07-15
A ZnO-based sorbent, ZAC 32N, applicable to transport reactors was successfully prepared by the spray-drying technique. Another sorbent, ZAC 32SU, was prepared by scale-up preparation of ZAC 32N sorbent. The physical properties of the sorbents such as attrition resistance, specific surface area, pore volume, and particle size were extensively characterized and exhibited a good potential for use in transport applications. The chemical reactivity tested in the thermogravimetric analyzer and microreactor exhibited desirable characteristics for effective desulfurization of syngas streams in the range of 450-550{sup o}C. Bench-scale tests for the sorbent ZAC 32SU were performed for a continuous 160 h withmore » a steady solid circulation of 54.6 kg/h. The results showed 99.5%+ desulfurization at 500-550{sup o}C and reasonable regenerability at 550-620{sup o}C. Test results on the physical properties and chemical reactivity indicated that the performance of developed sorbents proved to be outstanding.« less
Moghadam Zadeh, Hamid Reza; Ahmadvand, Parvaneh; Behbahani, Ali; Amini, Mostafa M; Sayar, Omid
2015-01-01
Graphene oxide nano-sheet was modified with dithizone as a novel sorbent for selective pre-concentration and determination of Cd(II) and Pb(II) in food. The sorbent was characterised by various analytical methods and the effective parameters for Cd(II) and Pb(II) adsorption were optimised during this work. The high adsorption capacity and selectivity of this sorbent makes the method capable of fast determinations of the Cd(II) and Pb(II) content in complicated matrices even at μg l(-1) levels using commonly available instrumentation. The precision of this method was < 1.9% from 10 duplicate determinations and its accuracy verified using standard reference materials. Finally, this method was applied to the determination of Cd(II) and Pb(II) ions in common food samples and satisfactory results were obtained.
Method and system to reclaim functional sites on a sorbent contaminated by heat stable salts
Krutka, Holly; Sjostrom, Sharon; Morris, William J.
2016-03-08
The objective of this invention is to develop a method to reclaim functional sites on a CO.sub.2 sorbent that have reacted with an acid gas (other than CO.sub.2) to form heat stable salts (HSS). HSS are a significant concern for dry sorbent based CO.sub.2 capture because over time the buildup of HSS will reduce the overall functionality of the CO.sub.2 sorbent. A chemical treatment can remove the non-CO.sub.2 acid gas and reclaim functional sites that can then be used for further CO.sub.2 adsorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hong-Cai; Liu, Di-Jia
This report provides a review of the objectives, progress, and milestones of the research conducted during this project on the topic of developing innovative metal-organic frameworks (MOFs) and porous organic polymers (POPs) for high-capacity and low-cost hydrogen-storage sorbents in automotive applications.1 The objectives of the proposed research were to develop new materials as next-generation hydrogen storage sorbents that meet or exceed DOE’s 2017 performance targets of gravimetric capacity of 0.055 kg H 2/kg system and volumetric capacity of 0.040 kg H 2/L system at a cost of $400/kg H 2 stored. Texas A&M University (TAMU) and Argonne National Laboratory (ANL)more » collaborated in developing low-cost and high-capacity hydrogen-storage sorbents with appropriate stability, sorption kinetics, and thermal conductivity. The research scope and methods developed to achieve the project’s goals include the following: Advanced ligand design and synthesis to construct MOF sorbents with optimal hydrogen storage capacities, low cost and high stability; Substantially improve the hydrogen uptake capacity and chemical stability of MOF-based sorbents by incorporating high valent metal ions during synthesis or through the post-synthetic metal metathesis oxidation approach; Enhance sorbent storage capacity through material engineering and characterization; Generate a better understanding of the H 2-sorbent interaction through advanced characterization and simulation. Over the course of the project 5 different MOFs were developed and studied: PCN-250, PCN-12, PCN-12’, PCN-608 and PCN-609.2-3 Two different samples were submitted to the National Renewable Energy Laboratory (NREL) in order to validate their hydrogen adsorption capacity, PCN-250 and PCN-12. Neither of these samples reached the project’s Go/No-Go requirements but the data obtained did further prove the hypothesis that the presence of open metal sites oriented towards MOF pores help to surpass the predicted hydrogen uptakes described by Chahine’s rule.4 These observations are believed to have a major impact on the hydrogen storage community, and may potentially lead to the development of a material that could meet the DOE goals for hydrogen storage systems for automotive applications.« less
Wang, Ying; Gao, Wei; Wu, Jing; Liu, Huijin; Wang, Yingjun; Wang, Yawei; Jiang, Guibin
2017-12-01
Chlorinated paraffins (SCCPs) are widely used worldwide, and they can be released into the environment during their production, transport, usage and disposal, which pose potential risks for human health. In this work, an efficient, reliable and rapid pretreatment method based on matrix solid-phase dispersion (MSPD) was developed for the analysis of short-chain CPs (SCCPs) in human placenta by gas chromatograph-electron capture negative ion low-resolution mass spectrometry (GC-ECNI-LRMS) and gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-HRMS). The MSPD-relevant parameters including dispersing sorbent, sample-to-sorbent mass ratio, and elution solvent were optimized using the orthogonal test. Silica gel was found to be the optimal dispersing sorbent among the selected matrices. Under the optimal conditions, 44% acidic silica gel can be used as the co-sorbent to remove lipid and eluted by the mixture of hexane and dichloromethane (7:3, V/V). The spiked recoveries of the optimized method were 77.4% and 91.4% for analyzing SCCPs in human placenta by GC-ECNI-LRMS and GC-QTOF-HRMS, and the corresponding relative standard deviations were 10.2% and 5.6%, respectively. The method detection limit for the total SCCPs was 36.8ng/g (dry weight, dw) and 19.2ng/g (dw) as measured by GC-ECNI-LRMS and GC-QTOF-HRMS, respectively. The concentrations of SCCPs in four human placentas were in the range of
SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles.
Manovic, Vasilije; Anthony, Edward J
2007-06-15
This paper examines the reactivation of spent sorbent, produced from multiple CO2 capture cycles, for use in SO2 capture. CaO-based sorbent samples were obtained from Kelly Rock limestone using three particle size ranges, each containing different impurities levels. Using a thermogravimetric analyzer (TGA), the sulfation behavior of partially sulfated and unsulfated samples obtained after multiple calcination-carbonation cycles in a tube furnace (TF), following steam reactivation in a pressurized reactor, is examined. In addition, samples calcined/sintered under different conditions after hydration are also examined. The results show that suitably treated spent sorbent has better sulfation characteristics than that of the original sorbent. Thus for example, after 2 h sulfation, > 80% of the CaO was sulfated. In addition, the sorbent showed significant activity even after 4 h when > 95% CaO was sulfated. The results were confirmed by X-ray diffraction (XRD) analysis, which showed that, by the end of the sulfation process, samples contained CaSO4 with only traces of unreacted CaO. The superior behavior of spent reactivated sorbent appears to be due to swelling of the sorbent particles during steam hydration. This enables the development of a more suitable pore surface area and pore volume distribution for sulfation, and this has been confirmed by N2 adsorption-desorption isotherms and the Barrett-Joyner-Halenda (BJH) method. The surface area morphology of sorbent after reactivation was examined by scanning electron microscopy (SEM). Ca(OH)2 crystals were seen, which displayed their regular shape, and their elemental composition was confirmed by energy-dispersive X-ray (EDX) analysis. The improved characteristics of spent reactivated sorbent in comparison to the original and to the sorbent calcined under different conditions and hydrated indicate the beneficial effect of CO2 cycles on sorbent reactivation and subsequent sulfation. These results allow us to propose a new process for the use of CaO-based sorbent in fluidized bed combustion (FBC) systems, which incorporates CO2 capture, sorbent reactivation, and SO2 retention.
Hussain, Shah; Schönbichler, Stefan A; Güzel, Yüksel; Sonderegger, Harald; Abel, Gudrun; Rainer, Matthias; Huck, Christian W; Bonn, Günther K
2013-10-01
Galloyl- and caffeoylquinic acids are among the most important pharmacological active groups of natural compounds. This study describes a pre-step in isolation of some selected representatives of these groups from biological samples. A selective solid-phase extraction (SPE) method for these compounds may help assign classes and isomer designations within complex mixtures. Pure zirconium silicate and bismuth citrate powders (325 mesh) were employed as two new sorbents for optimized SPE of phenolic acids. These sorbents possess electrostatic interaction sites which accounts for additional interactions for carbon acid moieties as compared to hydrophilic and hydrophobic sorbents alone. Based on this principle, a selective SPE method for 1,3,4,5-tetragalloylquinic acid (an anti-HIV and anti-asthamatic agent) as a starting compound was developed and then deployed upon other phenolic acids with success. The recoveries and selectivities of both sorbents were compared to most commonly applied and commercially available sorbents by using high performance liquid chromatography. The nature of interaction between the carrier sorbent and the acidic target molecules was investigated by studying hydrophilic (silica), hydrophobic (C18), mixed-mode (ionic and hydrophobic: Oasis(®) MAX) and predominantly electrostatic (zirconium silicate) materials. The newly developed zirconium silicate and bismuth citrate stationary phases revealed promising results for the selective extraction of galloyl- and caffeoylquinic acids from natural sources. It was observed that zirconium silicate exhibited maximum recovery and selectivity for tetragalloylquinic acid (84%), chlorogenic acid (82%) and dicaffeoylquinic acid (94%) among all the tested sorbents. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Manthina, Venkata; Singh, Prabhakar; Chullen, Cinda
2014-01-01
Results are presented on the development of reversible sorbents for the combined carbon dioxide and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs). Since ammonia is the most important TC to be captured, data on TC sorption presented in this paper are limited to ammonia, with results relevant to other TCs to be reported at a later time. The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. The objective of this study was to demonstrate the feasibility of using carbon sorbents for the reversible, concurrent sorption of carbon dioxide and ammonia. Several carbon sorbents were fabricated and tested, and multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also a carbon surface conditioning technique that enhances the combined carbon dioxide and ammonia sorption without impairing sorbent regeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenhoover, W.A.; Stouffer, M.R.; Withum, J.A.
1994-12-01
The objective of this research project is to develop second-generation duct injection technology as a cost-effective SO{sub 2} control option for the 1990 Clean Air Act Amendments. Research is focused on the Advanced Coolside process, which has shown the potential for achieving the performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. In Subtask 2.2, Design Optimization, process improvement was sought by optimizing sorbent recycle and by optimizing process equipment for reduced cost. The pilot plant recycle testing showed that 90% SO{sub 2} removal could be achieved at sorbent utilizations up to 75%. This testing also showed thatmore » the Advanced Coolside process has the potential to achieve very high removal efficiency (90 to greater than 99%). Two alternative contactor designs were developed, tested and optimized through pilot plant testing; the improved designs will reduce process costs significantly, while maintaining operability and performance essential to the process. Also, sorbent recycle handling equipment was optimized to reduce cost.« less
Deng, Zhifen; Hu, Kai; Zhang, Yongming; Zhao, Wenjie; Wang, Fei; Guo, Ling; Zhang, Wenfen; He, Juan; Huang, Yanjie; Zhang, Shusheng
2016-11-15
This work demonstrates the successful application of an on-cartridge derivatisation procedure for facile, fast and sensitive determination of formaldehyde in beer by HPLC-UV. The derivatisation and solid-phase extraction (SPE) were integrated into a novel calixarene SPE sorbent: tetraazacalix[2]arene[2]triazine bonded silica gel. Specifically, 2,4-dinitrophenylhydrazine was adsorbed onto the sorbent in advance, based on the charge-transfer interaction between the macrocyclic molecule and nitrobenzenes. The method was optimised and validated: under the optimal conditions of derivatisation, SPE and HPLC separation, good linearity was obtained in the range of 0.080-3.2μgmL(-1) with a correlation coefficient of 0.9939, the limit of detection was 3.0ngmL(-1) (S/N=3), the limit of quantification was 10ngmL(-1) (S/N=10), and the recovery level using this method was desirable at 75-84%. The developed method was successfully applied to determine formaldehyde content in real beer samples; the results were in the range of 0.11-1.1μgmL(-1). Copyright © 2016. Published by Elsevier Ltd.
2008-01-01
The projected increase in the use of compact fluorescent lamps (CFLs) motivates the development of methods to manage consumer exposure to mercury and its environmental release at the end of lamp life. This work characterizes the time-resolved release of mercury vapor from broken CFLs and from underlying substrates after removal of glass fragments to simulate cleanup. In new lamps, mercury vapor is released gradually in amounts that reach 1.3 mg or 30% of the total lamp inventory after four days. Similar time profiles but smaller amounts are released from spent lamps or from underlying substrates. Nanoscale formulations of S, Se, Cu, Ni, Zn, Ag, and WS2 are evaluated for capture of Hg vapor under these conditions and compared to conventional microscale formulations. Adsorption capacities range over 7 orders of magnitude, from 0.005 (Zn micropowder) to 188 000 μg/g (unstabilized nano-Se), depending on sorbent chemistry and particle size. Nanosynthesis offers clear advantages for most sorbent chemistries. Unstabilized nano-selenium in two forms (dry powder and impregnated cloth) was successfully used in a proof-of-principle test for the in situ, real-time suppression of Hg vapor escape following CFL fracture. PMID:18754507
Johnson, Natalie C; Manchester, Shawn; Sarin, Love; Gao, Yuming; Kulaots, Indrek; Hurt, Robert H
2008-08-01
The projected increase in the use of compact fluorescent lamps (CFLs) motivates the development of methods to manage consumer exposure to mercury and its environmental release at the end of lamp life. This work characterizes the time-resolved release of mercury vapor from broken CFLs and from underlying substrates after removal of glass fragments to simulate cleanup. In new lamps, mercury vapor is released gradually in amounts that reach 1.3 mg or 30% of the total lamp inventory after four days. Similar time profiles but smaller amounts are released from spent lamps or from underlying substrates. Nanoscale formulations of S, Se, Cu, Ni, Zn, Ag, and WS2 are evaluated for capture of Hg vapor under these conditions and compared to conventional microscale formulations. Adsorption capacities range over 7 orders of magnitude, from 0.005 (Zn micropowder) to 188 000 microg/g (unstabilized nano-Se), depending on sorbent chemistry and particle size. Nanosynthesis offers clear advantages for most sorbent chemistries. Unstabilized nano-selenium in two forms (dry powder and impregnated cloth) was successfully used in a proof-of-principle test for the in situ, real-time suppression of Hg vapor escape following CFL fracture.
Sorption of Arsenic from Drinking Water to Mg(OH)2 Sorrel's Cements, and Zirconium Doped Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
MOORE, ROBERT C.; ZHAO, HONGTING; SANCHEZ, CHARLES ANTHONY
2002-11-01
It was discovered that MgO or Mg(OH){sub 2} when it reacts with water is a very strong sorbent for arsenic. Distribution constants, or K{sub d} values, are as high as 1 x 10{sup 6} L/mole. In this work, Mg(OH){sub 2} and other compounds have been investigated as sorbents for arsenic and other contaminants. This work has resulted in several major accomplishments including: (1) design, construction, and testing of a pressure sand filter to remove Mg(OH){sub 2} after it has sorbed arsenic from water, (2) stabilization of Mg(OH){sub 2} as a Sorrel's cement against reaction with carbonate that results in MgCO{submore » 3} formation decreasing the efficiency of Mg(OH){sub 2} to sorb arsenic, and (3) the development of a new, very promising sorbent for arsenic based on zirconium. Zirconium is an environmentally benign material found in many common products such as toothpaste. It is currently used in water treatment and is very inexpensive. In this work, zirconium has been bonded to activated carbon, zeolites, sand and montmorillonite. Because of its high charge in ionic form (+6), zirconium is a strong sorbent for many anions including arsenic. In equilibrium experiments arsenic concentrations in water were reduced from 200 ppb to less than 1 ppb in less than 1 minute of contact time. Additionally, analytical methods for detecting arsenic in water have also been investigated. Various analytical techniques including HPLC, AA and ICP-MS are used for quantification of arsenic. Due to large matrix interferences HPLC and AA techniques are not very selective and are time consuming. ICP-MS is highly efficient, requires a low sample volume and has a high tolerance for interferences. All these techniques are costly and require trained staff, and with the exception of ICP-MS, these methods cannot be used at low ppb arsenic concentration without using a pre-concentration step. An alternative to these traditional techniques is to use a colorimetric method based on leucocrystal violet dye interaction with iodine. This method has been adapted in our facility for quantifying arsenic concentrations down to 14 ppb.« less
NASA Astrophysics Data System (ADS)
Knabner, P.; Totsche, K. U.; Kögel-Knabner, I.
Modeling carrier-influenced transport needs to take into account the reactivity of the carrier itself. This paper presents a mathematical model of reactive solute transport with sorption to mobile and immobile sorbents. The mobile sorbent is also considered to be reactive. To justify the assumptions and generality of our modeling approach, experimental findings are reviewed and analyzed. A transformation of the model in terms of total concentrations of solute and mobile sorbents is presented which simplifies the mathematical formulations. Breakthrough data on dissolved organic carbon are presented to exemplify the need to take into account the reactivity of the mobile sorbent. Data on hexachlorobiphenyl and cadmium are presented to demonstrate carrier-introduced increased mobility, whereas data on anthracene and pyrene are presented to demonstrate carrier-introduced reduced mobility. The experimental conditions leading to the different findings are pointed out. The sorption processes considered in the model are both equilibrium and nonequilibrium processes, allowing for different sorption sites and nonlinear isotherms and rate functions. Effective isotherms, which describe the sorption to the immobile sorbent in the presence of a mobile sorbent and rate functions, are introduced and their properties are discussed.
Shiu, Ruei-Feng; Lee, Chon-Lin; Hsieh, Ping-Yen; Chen, Chi-Shuo; Kang, Yun-Yi; Chin, Wei-Chun; Tai, Nyan-Hwa
2018-05-15
Mechanical recovery of oils using oil sorbents is one of the most important approaches to manage marine oil spills. However, the properties of the oils spilled into sea are influenced by external environmental conditions. In this study, we present a graphene-based (GB) sponge as a novel sorbent for crude oil removal and compare its performance with that of a commercial sorbent sheet under various environmental parameters. The GB sponge with excellent superhydrophobic and superoleophilic characteristics is demonstrated to be an efficient sorbent for crude oils, with high sorption capacity (up to 85-95 times its weight) and good reusability. The crude-oil-sorption capacity of our GB sponge is remarkably higher (about 4-5 times) than that of the commercial sheet and most other previously reported sponge sorbents. Moreover, several challenging environmental conditions were examined for their effects on the sorption performance, including the weathering time of oils, seawater temperature, and turbulence (wave effect). The results show that the viscosity of the oil increased with increasing weathering time or decreasing temperature; therefore, the sorption rate seemed to decrease with longer weathering times and lower temperatures. Turbulence can facilitate inner sorption and promote higher oil sorption. Our results indicate that the extent of the effects of weather and other environmental factors on crude oil should be considered in the assessment of the effective adsorption capacity and efficiency of sorbents. The present work also highlights the widespread potential applications of our GB sponge in marine spilled-oil cleanup and hydrophobic solvent removal. Copyright © 2018 Elsevier Ltd. All rights reserved.
Metal oxide nanoparticle-modified graphene oxide for removal of elemental mercury.
Liu, Yuxi; Chen, Gang; Tian, Chong; Gupta, Rajender; Wang, Xiaogang; Zeng, Hongbo
2018-06-05
Mercury is an extremely toxic element that is primarily released by anthropogenic activities and natural sources. Controlling Hg emissions, especially from coal combustion flue gas, is of practical importance in protecting the environment and preventing human health risks. In the present work, three metal oxides (MnO 2 , CuO, and ZnO) were loaded on graphene oxide (GO) sorbents (designated as MnO 2 -GO, CuO-GO, and ZnO-GO). All three adsorbents were successfully synthesized and were well characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the metal oxide nanoparticles (NPs) successfully decorated the GO. The elemental Hg adsorption capabilities of the three sorbents were subsequently evaluated using an in-house built setup for cold vapour atomic fluorescence spectrophotometry (CVAFS) with argon as the carrier gas for mercury detection. The testing temperature ranged from 50°C to 200°C at intervals of 50°C. MnO 2 -GO showed an excel lent Hg 0 adsorption capacity via chemisorption from 50 to 150°C and a mercury removal efficiency as high as 85% at 200°C, indicating that the MnO 2 -NP-modified GO is applicable for enhancing gas-phase elemental mercury removal. However, neither CuO-GO nor ZnO-GO performed well. This work provides useful insights into the development of novel sorbent materials for the elemental mercury removal from flue gases.
Liu, Shou-Heng; Kuok, Chi-Hong
2018-01-01
It is well-known that global warming of the earth is caused by the progressive increase of CO 2 concentration in the environment due to the huge utilization of fossil fuels. As a result, the development of an efficient and economic method to capture CO 2 from large stationary sources, such as coal-fired power plants, cement and steel factories, and so on is urgent. In this study, ordered mesoporous silicas (E-SBA-15) have been prepared by using Equisetum ramosissimum plants as the silica sources and their subsequently incorporating with amino-containing compounds (tetraethylenepentamine, TEPA) and stabilizers (titanium isopropoxide, TIP). A variety of different spectroscopic and analytical techniques, such as nitrogen adsorption-desorption isotherms, low-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transformed infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) are used to characterize the physicochemical properties of various materials. CO 2 adsorption capacities of prepared sorbents at 75 °C are obtained by TGA at atmospheric pressure. Among all sorbents, TEPA impregnated E-SBA-15 sorbents possess the highest CO 2 sorption capacity (1.60 mmol CO 2 g -1 sorbent ) under ambient pressure using dry 15% CO 2 . However, TEPA/TIP incorporated E-SBA-15 sorbents exhibit enhanced durability during repeated sorption-desorption cycles compared to the above-mentioned sorbents. This significant enhancement in the stability of CO 2 sorption-desorption process is most likely due to the decreased decomposition/leaching of TEPA which is restricted via the steric effect of TIP. These synthesized sorbents from inexpensive resources (agricultural waste) exhibit good sorbent capacity and surpassing regenerability, revealing a promising CO 2 sorbent for the cost-effective applications in a cyclic adsorption process. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique S.
2016-01-01
Results are presented on the development of a reversible carbon sorbent for trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is deemed non-regenerable, while the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on concurrent sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, are presented in this paper. A carbon sorbent was fabricated by dry impregnation of a reticulated carbon-foam support with polyvinylidene chloride, followed by carbonization and thermal oxidation in air. Sorbent performance was tested for ammonia and formaldehyde sorption and vacuum regeneration, with and without water present in the gas stream. It was found that humidity in the gas phase enhanced ammonia-sorption capacity by a factor larger than two. Co-adsorption of ammonia and formaldehyde in the presence of water resulted in strong formaldehyde sorption (to the point that it was difficult to saturate the sorbent on the time scales used in this study). In the absence of humidity, adsorption of formaldehyde on the carbon surface was found to impair ammonia sorption in subsequent runs; in the presence of water, however, both ammonia and formaldehyde could be efficiently removed from the gas phase by the sorbent. The efficiency of vacuum regeneration could be enhanced by gentle heating to temperatures below 60 deg.
Investigation of Desiccants and CO2 Sorbents for Exploration Systems 2016-2017
NASA Technical Reports Server (NTRS)
Knox, James C.; Watson, David W.; Giesy, Timothy J.; Cmarik, Gregory E.; Miller, Lee A.
2017-01-01
NASA has embarked on the mission to enable humans to explore deep space, including the goal of sending humans to Mars. This journey will require significant developments in a wide range of technical areas as resupply and early return are not possible. Additionally, mass, power, and volume must be minimized for all phases to maximize propulsion availability. Among the critical areas identified for development are life support systems, which will require increases in reliability as well as reduce resource usage. Two primary points for reliability are the mechanical stability of sorbent pellets and recovery of CO2 sorbent productivity after off-nominal events. In this paper, we discuss the present efforts towards screening and characterizing commercially-available sorbents for extended operation in desiccant and CO2 removal beds. With minimized dusting as the primary criteria, a commercial 13X zeolite was selected and tested for performance and risk.
Atom-efficient route for converting incineration ashes into heavy metal sorbents.
Chiang, Yi Wai; Santos, Rafael M; Vanduyfhuys, Kenneth; Meesschaert, Boudewijn; Martens, Johan A
2014-01-01
Bottom ashes produced from municipal solid-waste incineration are suitable for sorbent synthesis because of their inherent composition, high alkalinity, metastable mineralogy, and residual heat. This work shows that bottom ashes can be atom-efficiently converted into valuable sorbents without the need for costly and hazardous chemicals. The ashes were hydrothermally treated in rotary autoclaves at autogenic pH conditions to promote the conversion of precursor mineral phases into zeolites and layered silicate hydrates. Two main mineral phases were formed: katoite and sodium aluminum phosphate silicate hydrate. These mineral alterations are accompanied by a tenfold increase in specific surface area and a twofold reduction in average particle size. Performance evaluation of the new sorbents for Cd(2+), Zn(2+), and Pb(2+) adsorption at pH5 indicates sorption capacities of 0.06, 0.08, and 0.22 mmol g(-1), respectively, which are similar to those of natural adsorbents and synthetic materials obtained from more demanding synthesis conditions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of a Rapid Cycling CO(sub 2) and H(sub 2)O Removal Sorbent
NASA Technical Reports Server (NTRS)
Paul, Heather; Alptekin, Goekhan; Cates, Matthew; Bernal, Casey; Dubovik, Margarita; Gershanovich, Yevgenia
2007-01-01
The National Aeronautics and Space Administration (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store 8 hours worth of CO2. If the sorbent regeneration can be carried out during the extravehicular activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. The progress of regenerable CO2 and humidity control is leading us towards the use of a rapid cycling amine system. TDA Research, Inc. is developing compact, regenerable sorbent materials to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all carbon dioxide and humidity duration-limiting elements in the life support system. The material also has applications in other areas of space exploration such as the Orion spacecraft and other longer duration exploration missions requiring regenerable technologies. This paper summarizes the results of the sorbent development, testing, and evaluation efforts to date. The results of a preliminary system analysis are also included, showing the size and volume reductions for PLSS provided by the new system.
Novel Sorbent to Clean Up Biogas for CHPs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, Gökhan O.; Jayataman, Ambalavanan; Schaefer, Matthew
2015-05-30
In this project, TDA Research Inc. (TDA) has developed low-cost (on a per unit volume of gas processed basis), high-capacity expendable sorbents that can remove both the H 2S and organic sulfur species in biogas to the ppb levels. The proposed sorbents will operate downstream of a bulk desulfurization system as a polishing bed to provide an essentially sulfur-free gas to a fuel cell (or any other application that needs a completely sulfur-free feed). Our sorbents use a highly dispersed mixed metal oxides active phase with desired modifiers prepared over on a mesoporous support. The support structure allows the largemore » organic sulfur compounds (such as the diethyl sulfide and dipropyl sulfide phases with a large kinetic diameter) to enter the sorbent pores so that they can be adsorbed and removed from the gas stream.« less
Zhao, Yi; Lin, Wen-Chiang
2003-10-01
A multi-functional sorbent is developed for the simultaneous removal of PbCl(2) vapor and sulfur dioxide from the combustion gases. The sorbent is tested in a bench-scale reactor at the temperature of 700 degrees C, using simulated flue gas (SFG) containing controlled amounts of PbCl(2) and SO(2) compounds. The removal characteristics of PbCl(2) and SO(2), individually and in combination, are investigated. The results show that the mechanism of capture by the sorbent is not a simple physical adsorption process but seems to involve a chemical reaction between the Ca-based sorbent and the contaminants from the simulated flue gas. The porous product layer in the case of individual SO(2) sorption is in a molten state at the reaction temperature. In contrast, the combined sorption of lead and sulfur compounds generates a flower-shaped polycrystalline product layer.
Experimental investigation of various vegetable fibers as sorbent materials for oil spills.
Annunciado, T R; Sydenstricker, T H D; Amico, S C
2005-11-01
Oil spills are a global concern due to their environmental and economical impact. Various commercial systems have been developed to control these spills, including the use of fibers as sorbents. This research investigates the use of various vegetable fibers, namely mixed leaves residues, mixed sawdust, sisal (Agave sisalana), coir fiber (Cocos nucifera), sponge-gourd (Luffa cylindrica) and silk-floss as sorbent materials of crude oil. Sorption tests with crude oil were conducted in deionized and marine water media, with and without agitation. Water uptake by the fibers was investigated by tests in dry conditions and distillation of the impregnated sorbent. The silk-floss fiber showed a very high degree of hydrophobicity and oil sorption capacity of approximately 85goil/g sorbent (in 24hours). Specific gravity measurements and buoyancy tests were also used to evaluate the suitability of these fibers for the intended application.
Process for the enhanced capture of heavy metal emissions
Biswas, Pratim; Wu, Chang-Yu
2001-01-01
This invention is directed to a process for forming a sorbent-metal complex. The process includes oxidizing a sorbent precursor and contacting the sorbent precursor with a metallic species. The process further includes chemically reacting the sorbent precursor and the metallic species, thereby forming a sorbent-metal complex. In one particular aspect of the invention, at least a portion of the sorbent precursor is transformed into sorbent particles during the oxidation step. These sorbent particles then are contacted with the metallic species and chemically reacted with the metallic species, thereby forming a sorbent-metal complex. Another aspect of the invention is directed to a process for forming a sorbent metal complex in a combustion system. The process includes introducing a sorbent precursor into a combustion system and subjecting the sorbent precursor to an elevated temperature sufficient to oxidize the sorbent precursor and transform the sorbent precursor into sorbent particles. The process further includes contacting the sorbent particles with a metallic species and exposing the sorbent particles and the metallic species to a complex-forming temperature whereby the metallic species reacts with the sorbent particles thereby forming a sorbent-metal complex under UV irradiation.
Ozone removal capability of a welding fume respirator containing activated charcoal.
Johnston, A R; Dyrud, J F; Shih, Y T
1989-09-01
Development of air purifying respirators for protection against ozone has been slowed by concerns about oxidation of charcoal and other available sorbents. The suitability of a charcoal sorbent for low concentrations of ozone was evaluated as a part of the development of a half-mask air purifying respirator designed for welding fumes and ozone. Testing of the respirator confirmed that charcoal can be a suitable sorbent for low levels of ozone. Where the respirator is properly selected, fit tested, and worn, respirator use against welding fumes and ozone at concentrations not exceeding 10 times the permissible exposure limit had been recommended.
Rapid Cycling CO2 and H2O Removal System for EMU
NASA Technical Reports Server (NTRS)
Alptekin, Gokhan; Cates, Matthew; Dubovik, Margarita; Gershanovich, Yevgenia; Paul, Heather; Thomas, Gretchen
2006-01-01
NASA's planned future missions set stringent demands on the design of the Portable Life Support Systems (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the EMU is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The CO2 and humidity control unit in the existing PLSS design is relatively large, since it has to remove 8 hours worth of CO2. If the sorbent regeneration can be carried out during the extravehicular activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. TDA Research, Inc. (TDA) is developing a compact, regenerable sorbent-based system to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all duration-limiting elements in the life support system. This paper summarizes the results of the sorbent development and testing, and evaluation efforts. The results of a preliminary system analysis are also included, showing the size and volume reductions provided by the new system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at thismore » site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.« less
Marín-Benito, Jesús M; Rodríguez-Cruz, M Sonia; Andrades, M Soledad; Sánchez-Martín, María J
2012-01-01
The capacity of spent mushroom substrate (SMS) as a sorbent of fungicides was evaluated for its possible use in regulating pesticide mobility in the environment. The sorption studies involved four different SMS types in terms of nature and treatment and eight fungicides selected as representative compounds from different chemical groups. Nonlinear sorption isotherms were observed for all SMS-fungicide combinations. The highest sorption was obtained by composted SMS from Agaricus bisporus cultivation. A significant negative and positive correlation was obtained between the K(OC) sorption constants and the polarity index values of sorbents and the K(OW) of fungicides, respectively. The statistic revealed that more than 77% of the variability in the K(OW) could be explained considering these properties jointly. The other properties of both the sorbent (total carbon, dissolved organic carbon, or pH) and the sorbate (water solubility) were nonsignificant. The hysteresis values for cyprodinil (log K(OW)= 4) were for all the sorbents much higher (>3) than for other fungicides. This was consistent with the remaining sorption after desorption considered as an indicator of the sorption efficiency of SMS for fungicides. Changes in the absorption bands of fungicides sorbed by SMS observed by FTIR permitted establishing the interaction mechanism of fungicides with SMS. The findings of this work provide evidence for the potential capacity of SMS as a sorbent of fungicides and the low desorption observed especially for some fungicides, although they suggest that more stabilized or humified organic substrates should be produced to enhance their efficiency in environmental applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modekurti, S.; Bhattacharyya, D.; Zitney, S.
2012-01-01
Solid-sorbent-based CO{sub 2} capture processes have strong potential for reducing the overall energy penalty for post-combustion capture from the flue gas of a conventional pulverized coal power plant. However, the commercial success of this technology is contingent upon it operating over a wide range of capture rates, transient events, malfunctions, and disturbances, as well as under uncertainties. To study these operational aspects, a dynamic model of a solid-sorbent-based CO{sub 2} capture process has been developed. In this work, a one-dimensional (1D), non-isothermal, dynamic model of a two-stage bubbling fluidized bed (BFB) adsorber-reactor system with overflow-type weir configuration has been developedmore » in Aspen Custom Modeler (ACM). The physical and chemical properties of the sorbent used in this study are based on a sorbent (32D) developed at National Energy Technology Laboratory (NETL). Each BFB is divided into bubble, emulsion, and cloud-wake regions with the assumptions that the bubble region is free of solids while both gas and solid phases coexist in the emulsion and cloud-wake regions. The BFB dynamic model includes 1D partial differential equations (PDEs) for mass and energy balances, along with comprehensive reaction kinetics. In addition to the two BFB models, the adsorber-reactor system includes 1D PDE-based dynamic models of the downcomer and outlet hopper, as well as models of distributors, control valves, and other pressure-drop devices. Consistent boundary and initial conditions are considered for simulating the dynamic model. Equipment items are sized and appropriate heat transfer options, wherever needed, are provided. Finally, a valid pressure-flow network is developed and a lower-level control system is designed. Using ACM, the transient responses of various process variables such as flue gas and sorbent temperatures, overall CO{sub 2} capture, level of solids in the downcomer and hopper have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the flue gas. To maintain the overall CO{sub 2} capture at a desired level in face of the typical disturbances, two control strategies were considered–a proportional-integral-derivative (PID)-based feedback control strategy and a feedforward-augmented feedback control strategy. Dynamic simulation results show that both the strategies result in unacceptable overshoot/undershoot and a long settling time. To improve the control system performance, a linear model predictive controller (LMPC) is designed. In summary, the overall results illustrate how optimizing the operation and control of carbon capture systems can have a significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come.« less
Regenerable Sorbent for CO2 Removal
NASA Technical Reports Server (NTRS)
Alptekin, Gokhan; Jayaraman, Ambal
2013-01-01
A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.
Craig, Laura; Stillings, Lisa; Decker, David L.; Thomas, James M.
2015-01-01
Fluoride is considered beneficial to teeth and bones when consumed in low concentrations, but at elevated concentrations it can cause dental and skeletal fluorosis. Most fluoride-related health problems occur in poor, rural communities of the developing world where groundwater fluoride concentrations are high and the primary sources of drinking water are from community hand-pump borehole drilled wells. One solution to drinking high fluoride water is to attach a simple de-fluoridation filter to the hand-pump; and indigenous materials have been recommended as low-cost sorbents for use in these filters. In an effort to develop an effective, inexpensive, and low-maintenance de-fluoridation filter for a high fluoride region in rural northern Ghana, this study conducted batch fluoride adsorption experiments and potentiometric titrations to investigate the effectiveness of indigenous laterite and bauxite as sorbents for fluoride removal. It also determined the physical and chemical properties of each sorbent. Their properties and the experimental results, including fluoride adsorption capacity, were then compared to those of activated alumina, which has been identified as a good sorbent for removing fluoride from drinking water. The results indicate that, of the three sorbents, bauxite has the highest fluoride adsorption capacity per unit area, but is limited by a low specific surface area. When considering fluoride adsorption per unit weight, activated alumina has the highest fluoride adsorption capacity because of its high specific surface area. Activated alumina also adsorbs fluoride well in a wider pH range than bauxite, and particularly laterite. The differences in adsorption capacity are largely due to surface area, pore size, and mineralogy of the sorbent.
In Situ Immobilization of Selenium in Sediment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Robert C.; Stewart, Thomas Austin
2014-09-01
This project focused on the use of a sorbent, carbonated apatite, to immobilize selenium in the environment. It is know that apatite will sorb selenium and based on the mechanism of sorption it is theorized that carbonated apatite will be more effective that pure apatite. Immobilization of selenium in the environment is through the use of a sorbent in a permeable reactive barrier (PRB). A PRB can be constructed by trenching and backfill with the sorbent or in the case of apatite as the sorbent formed in situ using the apatite forming solution of Moore (2003, 2004). There is verymore » little data on selenium sorption by carbonated apatite in the literature. Therefore, in this work, the basic sorptive properties of carbonated apatite were investigated. Carbonated apatite was synthesized by a precipitation method and characterized. Batch selenium kinetic and equilibrium experiments were performed. The results indicate the carbonated apatite contained 9.4% carbonate and uptake of selenium as selenite was rapid; 5 hours for complete uptake of selenium vs. more than 100 hours for pure hydroxyapatite reported in the literature. Additionally, the carbonated apatite exhibited significantly higher distribution coefficients in equilibrium experiments than pure apatite under similar experimental conditions. The next phase of this work will be to seek additional funds to continue the research with the goal of eventually demonstrating the technology in a field application.« less
Hybrid biosorbents for removal of pollutants and remediation
NASA Astrophysics Data System (ADS)
Burlakovs, Juris; Klavins, Maris; Robalds, Artis; Ansone, Linda
2014-05-01
For remediation of soils and purification of polluted waters, wastewaters, biosorbents might be considered as prospective groups of materials. Amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However, peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes thereby, to expand peat application sphere, the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in understanding of biosorbent means natural, biomass based modified material, covered with another sorbent material, thus combining properties of both such as sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyappatite) and organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area and elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature as the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested.
HIGH REACTIVITY SORBENTS FOR SO2 CONTROL
The paper discusses studies, relating to air pollution control from coal-fired utility boilers, that show that the primary variable affecting sorbent reactivity at high temperature or at low temperature with water droplets is surface area. For the development of high surface area...
STRUCTURAL CHANGES IN SURFACTANT-MODIFIED SORBENTS DURING FURNACE INJECTION
A calcium hydroxide [Ca(OH)2] sorbent modified by the addition of calcium lignosulfonate has recently been developed for use in the Environmental Protection Agency's limestone injection multistage burner process. The increased reactivity with sulfur dioxide (SO2) displayed by thi...
COMBINED SORBENT/CATALYST MEDIA FOR DESTRUCTION OF HALOGENATED VOCS
Several chromium modified zeolites have been developed and tested for their ability to physisorb chlorinated VOCs (CVOCs) at ambient and then catalytically destroy them at elevated temperatures (ca. 300 degrees C). These dual function materials, which act as both sorbents and cat...
Comparison of mercury retention by fly ashes using different experimental devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Anton, M.A.; Abad-Valle, P.; Diaz-Somoano, M.
2009-12-15
To study mercury (Hg) retention in solid sorbents, researchers generally employ similar laboratory-scale devices. However, despite their similarities, these devices are generally used under different experimental conditions. The Hg concentration in the gas phase, gas flow, and sorbent-bed characteristics are variables that influence the contact time, mass transfer, and kinetics and may greatly modify the quantities of Hg retained when the same sorbents are compared. These differences in the experimental conditions do not impede an evaluation of the sorbents as long as the results obtained points toward the same qualitative conclusions. However, the extent of variation needs to be definedmore » to avoid misinterpretation. To illustrate the range of interpretations, the results of a preliminary approach using four experimental devices in two laboratories have been compared in this work. All the experiments were carried out under a nitrogen atmosphere and Hg{sup 0} in the gas phase. The same sorbents were employed in all the devices. These were fly ashes obtained from the combustion of coals of different rank and with different unburned carbon contents. From the results obtained it can be inferred that it is necessary to strictly control the influence of the experimental variables to infer a correct interpretation of the results.« less
NASA Technical Reports Server (NTRS)
Bower, Chad; Padilla, Sebastian; Iacomini, Christie; Paul, Heather L.
2010-01-01
This paper details the validation of modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly, developed for use in a Portable Life Support System (PLSS). The first core component in the subassembly is a sorbent bed, used to capture and reject metabolically produced carbon dioxide (CO2). The sorbent bed performance can be augmented with a temperature swing driven by a liquid CO2 (LCO2) sublimation heat exchanger (SHX) for cooling the sorbent bed, and a condensing, icing heat exchanger (CIHX) for warming the sorbent bed. As part of the overall MTSA effort, scaled design validation test articles for each of these three components have been independently tested in laboratory conditions. Previously described modeling methodologies developed for implementation in Thermal Desktop and SINDA/FLUINT are reviewed and updated, their application in test article models outlined, and the results of those model correlations relayed. Assessment of the applicability of each modeling methodology to the challenge of simulating the response of the test articles and their extensibility to a full scale integrated subassembly model is given. The independent verified and validated modeling methods are applied to the development of a MTSA subassembly prototype model and predictions of the subassembly performance are given. These models and modeling methodologies capture simulation of several challenging and novel physical phenomena in the Thermal Desktop and SINDA/FLUINT software suite. Novel methodologies include CO2 adsorption front tracking and associated thermal response in the sorbent bed, heat transfer associated with sublimation of entrained solid CO2 in the SHX, and water mass transfer in the form of ice as low as 210 K in the CIHX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, S.S.; Attari, A.
1995-01-01
The discovery of arsenic compounds, as alkylarsines, in natural gas prompted this research program to develop reliable measurement techniques needed to assess the efficiency of removal processes for these environmentally sensitive substances. These techniques include sampling, speciation, quantitation and on-line instrumental methods for monitoring the total arsenic concentration. The current program has yielded many products, including calibration standards, arsenic-specific sorbents, sensitive analytical methods and instrumentation. Four laboratory analytical methods have been developed and successfully employed for arsenic determination in natural gas. These methods use GC-AED and GC-MS instruments to speciate alkylarsines, and peroxydisulfate extraction with FIAS, special carbon sorbent withmore » XRF and an IGT developed sorbent with GFAA for total arsenic measurement.« less
Combating oil spill problem using plastic waste.
Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon
2015-10-01
Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5-15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark.
Fiol, Núria; Escudero, Carlos; Villaescusa, Isabel
2008-07-01
In this work, two low cost sorbents, grape stalks and yohimbe bark wastes were used to remove Cr(VI) and Cr(III) from aqueous solutions. Batch experiments were designed to obtain Cr(VI) and Cr(III) sorption data. The mechanism of Cr(III) and Cr(VI) removal and Cr(VI) reduction to Cr(III) by the two vegetable wastes, has been investigated. Fourier transform infrared rays (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis on solid phase were performed to determine the main functional groups that might be involved in metal uptake and to confirm the presence of Cr(III) on the sorbent, respectively. Results put into evidence that both sorbents are able to reduce Cr(VI) to its trivalent form.
Adsorption of Ammonia on Regenerable Carbon Sorbents
NASA Technical Reports Server (NTRS)
Wójtowicz, Marek A.; Cosgrove, Jesph E.; Serio, Michael A..; Wilburn, Monique
2015-01-01
Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Data on sorption and desorption of ammonia, which is a major TC of concern, are presented in this paper. The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for ammonia sorption. Ammonia-sorption capacity was related to carbon pore structure characteristics, and the temperature of oxidative carbon-surface treatment was optimized for enhanced ammonia-sorption performance.
NASA Technical Reports Server (NTRS)
Knox, James C.; Gauto, Hernando; Miller, Lee A.
2015-01-01
The International Space Station Carbon Dioxide Removal Assembly uses zeolite 5A molecular sieve material packed into beds for the capture of cabin CO2. The beds are cyclically heated to drive off the CO2 and restore the removal capacity. Over time, the sorbent material has been found to break down resulting in dust that restricts flow through the beds. Humidity adsorbed in the 5A zeolite when it is heated is a suspected cause of this sorbent degradation. To evaluate the impact of adsorbed water during thermal cycling, the Hydrothermal Stability Test was developed. The test configuration provides comparative side-by-side flow restriction data for two sorbent materials at specifically controlled humidity levels. While the initial focus of the testing is on 5A zeolite materials currently used on the ISS, the system will also be used to evaluate future candidate materials. This paper describes the approach, the test system, current results, and future testing.
Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique
2015-01-01
Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.
Novel nanoporous sorbent for solid-phase extraction in petroleum fingerprinting
NASA Astrophysics Data System (ADS)
Alayande, S. Oluwagbemiga; Hlengilizwe, Nyoni; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.
2016-04-01
Sample preparation is crucial in the analysis of petroleum and its derivatives. In this study, developing affordable sorbent for petroleum fingerprinting analysis using polymer waste such expanded polystyrene was explored. The potential of electrospun expanded polystyrene (EPS) as a sorbent for the solid-phase extraction (SPE) technique was investigated, and its efficiency was compared with commercial cartridges such as alumina, silica and alumina/silica hybrid commercial for petroleum fingerprinting analysis. The chromatograms showed that the packed electrospun EPS fibre demonstrated excellent properties for SPE applications relative to the hybrid cartridges.
El-Sheikh, Amjad H; Sweileh, Jamal A; Al-Degs, Yahya S; Insisi, Ahmad A; Al-Rabady, Nancy
2008-02-15
In this work, optimization of multi-residue solid phase extraction (SPE) procedures coupled with high-performance liquid chromatography for the determination of Propoxur, Atrazine and Methidathion from environmental waters is reported. Three different sorbents were used in this work: multi-walled carbon nanotubes (MWCNTs), C18 silica and activated carbon (AC). The three optimized SPE procedures were compared in terms of analytical performance, application to environmental waters, cartridge re-use, adsorption capacity and cost of adsorbent. Although the adsorption capacity of MWCNT was larger than AC and C18, however, the analytical performance of AC could be made close to the other sorbents by appropriate optimization of the SPE procedures. A sample of AC was then oxidized with various oxidizing agents to show that ACs of various surface properties has different enrichment efficiencies. Thus researchers are advised to try AC of various surface properties in SPE of pollutants prior to using expensive sorbents (such as MWCNT and C18 silica).
Performance and Mechanism of Uranium Adsorption from Seawater to Poly(dopamine)-Inspired Sorbents.
Wu, Fengcheng; Pu, Ning; Ye, Gang; Sun, Taoxiang; Wang, Zhe; Song, Yang; Wang, Wenqing; Huo, Xiaomei; Lu, Yuexiang; Chen, Jing
2017-04-18
Developing facile and robust technologies for effective enrichment of uranium from seawater is of great significance for resource sustainability and environmental safety. By exploiting mussel-inspired polydopamine (PDA) chemistry, diverse types of PDA-functionalized sorbents including magnetic nanoparticle (MNP), ordered mesoporous carbon (OMC), and glass fiber carpet (GFC) were synthesized. The PDA functional layers with abundant catechol and amine/imine groups provided an excellent platform for binding to uranium. Due to the distinctive structure of PDA, the sorbents exhibited multistage kinetics which was simultaneously controlled by chemisorption and intralayer diffusion. Applying the diverse PDA-modified sorbents for enrichment of low concentration (parts per billion) uranium in laboratory-prepared solutions and unpurified seawater was fully evaluated under different scenarios: that is, by batch adsorption for MNP and OMC and by selective filtration for GFC. Moreover, high-resolution X-ray photoelectron spectroscopic and extended X-ray absorption fine structure studies were performed for probing the underlying coordination mechanism between PDA and U(VI). The catechol hydroxyls of PDA were identified as the main bidentate ligands to coordinate U(VI) at the equatorial plane. This study assessed the potential of versatile PDA chemistry for development of efficient uranium sorbents and provided new insights into the interaction mechanism between PDA and uranium.
Ivanets, A I; Srivastava, V; Kitikova, N V; Shashkova, I L; Sillanpää, M
2017-03-01
The aim of this work was to study the sorption kinetics and thermodynamics of Co(II) and Ni(II) from aqueous solutions by sorbents on the basis of hydrogen (PD-1) and tertiary (PD-2) Ca-Mg phosphates depending on the solution temperature and sorbents chemical composition. Kinetic studies of adsorption of Co(II) and Ni(II) ions onto samples of phosphate sorbents were performed in batch experiment at the temperatures 288, 303, 318 and 333 K. The sorbent dose was fixed at 10 g L -1 , initial pH value 2.6, and contact time varied from 5 to 600 min. The kinetics of Co(II) and Ni(II) adsorption were analyzed by using pseudo-first order, pseudo-second order and intraparticle diffusion models. Thermodynamic parameters (ΔG°, ΔH° and ΔS°) for the sorption of Co(II) and Ni(II) were determined using the Gibbs-Helmholtz equation. The calculated kinetic parameters and corresponding correlation coefficients revealed that Co(II) and Ni(II) uptake process followed the pseudo-second order rate expression. Thermodynamic studies confirmed the spontaneous and endothermic nature of removal process which indicate that sorption of Co(II) and Ni(II) ions onto both phosphate sorbents is favoured at higher temperatures and has the chemisorptive mechanism. The data thus obtained would be useful for practical application of the low cost and highly effective Ca-Mg phosphate sorbents. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Glier, Justin C.
In an effort to lower future CO2 emissions, a wide range of technologies are being developed to scrub CO2 from the flue gases of fossil fuel-based electric power and industrial plants. This thesis models one of several early-stage post-combustion CO2 capture technologies, solid sorbent-based CO2 capture process, and presents performance and cost estimates of this system on pulverized coal power plants. The spreadsheet-based software package Microsoft Excel was used in conjunction with AspenPlus modelling results and the Integrated Environmental Control Model to develop performance and cost estimates for the solid sorbent-based CO2 capture technology. A reduced order model also was created to facilitate comparisons among multiple design scenarios. Assumptions about plant financing and utilization, as well as uncertainties in heat transfer and material design that affect heat exchanger and reactor design were found to produce a wide range of cost estimates for solid sorbent-based systems. With uncertainties included, costs for a supercritical power plant with solid sorbent-based CO2 capture ranged from 167 to 533 per megawatt hour for a first-of-a-kind installation (with all costs in constant 2011 US dollars) based on a 90% confidence interval. The median cost was 209/MWh. Post-combustion solid sorbent-based CO2 capture technology is then evaluated in terms of the potential cost for a mature system based on historic experience as technologies are improved with sequential iterations of the currently available system. The range costs for a supercritical power plant with solid sorbent-based CO2 capture was found to be 118 to 189 per megawatt hour with a nominal value of 163 per megawatt hour given the expected range of technological improvement in the capital and operating costs and efficiency of the power plant after 100 GW of cumulative worldwide experience. These results suggest that the solid sorbent-based system will not be competitive with currently available liquid amine-systems in the absence of significant new improvements in solid sorbent properties and process system design to reduce the heat exchange surface area in the regenerator and cross-flow heat exchanger. Finally, the importance of these estimates for policy makers is discussed.
The report describes the development of (1) a modified procedure for obtaining consistent and reproducible laboratory resistivity values for mixtures of coal fly ash and partially spent sorbent, and (2) an approach for predicting resistivity based on the chemical composition of t...
ACTIVATION AND REACTIVITY OF NOVEL CALCIUM-BASED SORBENTS FOR DRY SO2 CONTROL IN BOILERS
Chemically modified calcium hydroxide (Ca(OH)2) sorbents developed in the U.S. Environmental Protection Agency's Air and Energy Engineering Research Laboratory (AEERL) for sulfur dioxide (SO2) control in utility boilers were tested in an electrically heated, bench-scale isotherma...
REACTIVITY STUDY OF SO2 CONTROL WITH ATMOSPHERIC AND PRESSURE HYDRATED SORBENTS
The report gives results of a study to develop an understanding of the factors that control the reactivity of hydrated sorbents toward SO2 in coal fired furnaces. It focused on the impacts of hydrate properties (e.g., particle size, surface area, and chemical composition) and the...
Development and Test Evaluations for Ni-DOBDC Metal Organic Framework (MOF) Engineered Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Mitchell Greenhalgh
2013-07-01
A joint effort to prepare engineered forms of a Ni-DOBDC metal organic framework (MOF) was completed with contributions from PNNL, SNL and the INL. Two independent methods were used at INL and SNL to prepare engineered form (EF) sorbents from Ni-DOBDC MOF powder developed and prepared at PNNL. Xe and Kr capacity test evaluations were performed at ambient temperature with the cryostat experimental setup at INL. The initial INL EF MOF test results indicated a Xe capacity of 1.6 mmol/kg sorbent and no Kr capacity. A large loss of surface area also occurred during minimal testing rendering the INL EFmore » MOF unusable. Four capacity tests were completed using the SNL EF MOF at ambient temperature and resulted in Xe capacities of 1.4, 4.2, 5.0 and 3.8 mmol/kg sorbent with no Kr capacity observed in any ambient temperature tests. Two additional capacity tests were performed at 240 K to further evaluate SNL EF MOF performance. Xe capacities of 50.7 and 49.3 mmol/kg of sorbent and Kr capacities of 0.77 and 0.69 mmol/kg of sorbent were obtained, respectively. Following the adsorption evaluations, the SNL EF MOF material had lost about 40 % of the initial mass and 40 % of the initial surface area. In general, the Xe capacity results at ambient temperature for the INL and SNL EF Ni-DOBDC MOF’s were lower than 9.8 mmol Xe/kg sorbent test results reported by INL in FY-12 using PNNL’s inital EF supplied material.« less
Enhanced Hydrogen Dipole Physisorption, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Channing
2014-01-03
The hydrogen gas adsorption effort at Caltech was designed to probe and apply our understanding of known interactions between molecular hydrogen and adsorbent surfaces as part of a materials development effort to enable room temperature storage of hydrogen at nominal pressure. The work we have performed over the past five years has been tailored to address the outstanding issues associated with weak hydrogen sorbent interactions in order to find an adequate solution for storage tank technology.
Process development for production of coal/sorbent agglomerates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, D.M.
1991-01-01
The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spacesmore » are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.« less
Fixing atmospheric CO2 by environment adaptive sorbent and renewable energy
NASA Astrophysics Data System (ADS)
Wang, T.; Liu, J.; Ge, K.; Fang, M.
2014-12-01
Fixing atmospheric CO2, followed by geologic storage in remote areas is considered an environmentally secure approach to climate mitigation. A moisture swing sorbent was investigated in the laboratory for CO2 capture at a remote area with humid and windy conditions. The energy requirement of moisture swing absorption could be greatly reduced compared to that of traditional high-temperature thermal swing, by assuming that the sorbent can be naturally dried and regenerated at ambient conditions. However, for currently developed moisture swing materials, the CO2 capacity would drop significantly at high relative humidity. The CO2 capture amount can be reduced by the poor thermodynamics and kinetics at high relative humidity or low temperature. Similar challenges also exist for thermal or vacuum swing sorbents. Developing sorbent materials which adapt to specific environments, such as high humidity or low temperature, can ensure sufficient capture capacity on the one hand, and realize better economics on the other hand (Figure 1) .An environment adaptive sorbent should have the abilities of tunable capacity and fast kinetics at extreme conditions, such as high humidity or low temperature. In this presentation, the possibility of tuning CO2 absorption capacity of a polymerized ionic liquid material is discussed. The energy requirement evaluation shows that tuning the CO2 binding energy of sorbent, rather than increasing the temperature or reducing the humidity of air, could be much more economic. By determining whether the absorption process is controlled by physical diffusion controlled or chemical reaction, an effective approach to fast kinetics at extreme conditions is proposed. A shrinking core model for mass transfer kinetics is modified to cope with the relatively poor kinetics of air capture. For the studied sample which has a heterogeneous structure, the kinetic analysis indicates a preference of sorbent particle size optimization, rather than support layer optimization. Chemical reaction kinetics could be enhanced by stronger binding energy or higher temperature. However, the total kinetics can only be significantly improved by chemical reaction enhancement if the physical diffusion is fast enough.
Rivoira, Luca; Appendini, Marta; Fiorilli, Sonia; Onida, Barbara; Del Bubba, Massimo; Bruzzoniti, Maria Concetta
2016-11-01
Glyphosate is a worldwide-used herbicide occurring in many monitoring campaigns. Efficient technologies are currently unavailable for glyphosate removal from waters. In this work, a SBA-15 mesoporous silica-based material (Fe-NH 2 -SBA-15) was synthesized and studied for the adsorption of glyphosate from waters. In order to promote specific interactions between the sorbent and glyphosate via phosphoric group, iron oxide nanoparticles were encapsulated and a surface functionalization with (3-aminopropyl)triethoxysilane was accomplished. The adsorption of glyphosate on Fe-NH 2 -SBA-15 was investigated as a function of (i) pH, (ii) ionic strength (I), and (iii) adsorbate to adsorbent ratio (C), using a two-level, three-factor experimental design. The experimental design allowed for understanding the effect of the abovementioned variables and for proposing experimental conditions for quantitative removal (pH = 2.1, I = 1⋅10 -2 M and C = 0.35) under both batch and dynamic conditions. Interaction mechanism between glyphosate and Fe-NH 2 -SBA-15 sorbent was elucidated by studying the adsorption behavior of sorbents derived from the intermediate stages of synthesis and by desorption tests. Fe-NH 2 -SBA-15 sorbent can be quantitatively regenerated by 12.5 mM NaOH, and can be reused at least for five adsorption/desorption cycles. Quantitative removal of glyphosate from inlet and effluent wastewaters from a wastewater treatment plant is shown.
Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad
2016-10-01
In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
2018-05-28
Solid-state synthesis ensures a high loading and well-dispersed growth of a large collection of metal-organic framework (MOF) nanostructures within a series of commercially available mesoporous silica. This approach provides a general, highly efficient, scalable, environmentally friendly, and inexpensive strategy for shaping MOFs into a fluidized form, thereby allowing their application in fluidized-bed reactors for diverse applications, such as CO 2 capture from post-combustion flue gas. A collection of polyamine-impregnated MOF/SiO 2 hybrid sorbents were evaluated for CO 2 capture under simulated flue gas conditions in a packed-bed reactor. Hybrid sorbents containing a moderate loading of (Zn)ZIF-8 are the most promising sorbents in terms of CO 2 adsorption capacity and long-term stability (up to 250 cycles in the presence of contaminants: SO 2 , NO x and H 2 S) and were successfully prepared at the kilogram scale. These hybrid sorbents demonstrated excellent fluidizability and performance under the relevant process conditions in a visual fluidized-bed reactor. Moreover, a biochemically inspired strategy for covalently linking polyamines to MOF/SiO 2 through strong phosphine bonds has been first introduced in this work as a powerful and highly versatile post-synthesis modification for MOF chemistry, thus providing a novel alternative towards more stable CO 2 solid sorbents.
Kim, Sok; Choi, Yoon-E; Yun, Yeoung-Sang
2016-08-05
Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28±13.15mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume. Copyright © 2016 Elsevier B.V. All rights reserved.
You, Changfu; Li, Yuan
2013-03-19
Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, Steven; Envergex, Srivats; Browers, Bruce
Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development ofmore » process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.« less
Tran, MinhPhuong; Turner, Erica B; Segro, Scott S; Fang, Li; Seyyal, Emre; Malik, Abdul
2017-11-03
A sol-gel organic-inorganic hybrid sorbent, consisting of chemically integrated tantalum (V) ethoxide (TaEO) and polypropylene glycol methacrylate (PPGM), was developed for capillary microextraction (CME). The sol-gel sorbent was synthesized within a fused silica capillary through hydrolytic polycondensation of TaEO and chemical incorporation of PPGM into the evolving sol-gel tantala network. A part of the organic-inorganic hybrid sol-gel network evolving in the vicinity of the capillary walls had favorable conditions to get chemically bonded to the silanol groups on the capillary surface forming a surface-bonded coating. The newly developed sol-gel sorbent was employed to isolate and enrich a variety of analytes from aqueous samples for on-line analysis by high-performance liquid chromatography (HPLC) equipped with a UV detector. CME was performed on aqueous samples containing trace concentrations of analytes representing polycyclic aromatic hydrocarbons, ketones, alcohols, amines, nucleosides, and nucleotides. This sol-gel hybrid coating provided efficient extraction with CME-HPLC detection limits ranging from 4.41pM to 28.19 pM. Due to direct chemical bonding between the sol-gel sorbent coating and the fused silica capillary inner surface, this sol-gel sorbent exhibited enhanced solvent stability. The sol-gel tantala-based sorbent also exhibited excellent pH stability over a wide pH range (pH 0-pH 14). Furthermore, it displayed great performance reproducibility in CME-HPLC providing run-to-run HPLC peak area relative standard deviation (RSD) values between 0.23% and 3.83%. The capillary-to-capillary RSD (n=3), characterizing capillary preparation method reproducibility, ranged from 0.24% to 4.11%. The results show great performance consistency and application potential for the sol-gel tantala-PPGM sorbent in various fields including biomedical, pharmaceutical, and environmental areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Predicting sorption of organic acids to a wide range of carbonized sorbents
NASA Astrophysics Data System (ADS)
Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo
2016-04-01
Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model may serve as a base to estimate the environmental fate of organic acids in the presence of carbonized sorbents such as biochar, and help assess (i) the potential application of biochar for remediation purposes and (ii) the potential effect of biochar addition to soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giner, J.; Cropley, C.C.
Technology for the direct desulfurization of unprocessed diesel fuel using regenerable copper-based mixed metal oxide sorbents was developed for incorporation in modular phosphoric acid fuel cell (PAFC) generators. Removal of greater 60% of the sulfur in diesel fuel was demonstrated, and sorbent sulfur loadings of approximately 1 wt% were attained. Preliminary studies indicated that the sorbents are regenerable, with up to 70% of the sorbed sulfur removed during regeneration. Incorporation of this technology into a PAFC power plant should reduce the weight of the sulfur removal unit by a minimum of 25%.
The objective of the study is the development of sorbents where the sorption sites are highly accessible for the capture of mercury from aqueous and vapor streams. Only a small fraction of the equilibrium capacity is utilized for a sorbent in applications involving short residenc...
Various sorbent/ion exchange materials have been reported in the literature for metal ion entrapment. We have developed a highly innovative and new approach to obtain high metal pick-up utilizing poly-amino acids (poly-L-glutamic acid, 14,000 MW) covalently attached to membrane p...
NASA Astrophysics Data System (ADS)
Tsivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardyshev, I. I.; Gorbunov, A. M.; Polyakova, I. Ya.; Titova, V. N.; Yavich, A. A.; Novikov, A. K.; Petrova, N. V.
2016-07-01
Aquacomplexes of sulfuric acid and sodium hydroxide with aza-crown groups are synthesized in cavities of a sorbent from the porous layer of a PVC cyclam-derivative grafted onto fibers of asbestos fabric. The structure of sorbents with complexes is studied and their adsorption characteristics are determined. It is shown that the affinity of the developed surface toward ethanol, benzene, and hexane depends on the nature of complexes in the pore walls, and the volume of cavities formed as a result of the pores on the developed asbestos surface being coated with networks of aza-crown groups is larger than that of cavities with walls of aza-crown groups in the layers of a PVC cyclam derivative. Indicators of H+- and OH--conductivity of sorbents with complexes as electrochemical bridges are determined. It is shown that the major part of H+- and OH--ions moves through complexes with aza-crown groups in the region of cavities formed of pores on the surface of asbestos.
Ueta, Ikuo; Mizuguchi, Ayako; Fujimura, Koji; Kawakubo, Susumu; Saito, Yoshihiro
2012-10-09
A novel needle-type sample preparation device was developed for the effective preconcentration of volatile organic compounds (VOCs) in indoor air before gas chromatography-mass spectrometry (GC-MS) analysis. To develop a device for extracting a wide range of VOCs typically found in indoor air, several types of particulate sorbents were tested as the extraction medium in the needle-type extraction device. To determine the content of these VOCs, air samples were collected for 30min with the packed sorbent(s) in the extraction needle, and the extracted VOCs were thermally desorbed in a GC injection port by the direct insertion of the needle. A double-bed sorbent consisting of a needle packed with divinylbenzene and activated carbon particles exhibited excellent extraction and desorption performance and adequate extraction capacity for all the investigated VOCs. The results also clearly demonstrated that the proposed sample preparation method is a more rapid, simpler extraction/desorption technique than traditional sample preparation methods. Copyright © 2012 Elsevier B.V. All rights reserved.
Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.
2012-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.
Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.
2011-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.
Continuous fluidized-bed contactor with recycle of sorbent
Scott, Charles D.; Petersen, James N.; Davison, Brian H.
1996-01-01
A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.
Continuous fluidized-bed contactor with recycle of sorbent
Scott, C.D.; Petersen, J.N.; Davison, B.H.
1996-07-09
A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, and larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. 8 figs.
Development of Trace Contaminant Control Prototypes for the Primary Life Support System (PLSS)
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek; Cosgrove, Joseph E.; Serio, Michael E.; Nalette, Tim; Guerrero, Sandra V.; Papale, William; Wilburn, Monique S.
2017-01-01
Results are presented on the development of Trace Contaminant Control (TCC) Prototypes for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, as well as pressure-drop calculations were used to design and test 1/6-scale and full-scale trace contaminant control system (TCCS) prototypes. Carbon sorbents were fabricated in both the granular and foam-supported forms. Sorbent performance was tested for ammonia sorption and vacuum regeneration in 1/6-scale, and pressure-drop characteristics were measured at flow rates relevant to the PLSS application.
Liang, Xiaotong; Liu, Shengquan; Zhu, Rong; Xiao, Lixia; Yao, Shouzhuo
2016-07-01
In this work, novel cellulose/zeolitic imidazolate frameworks-8 composite microspheres have been successfully fabricated and utilized as sorbent for environmental polycyclic aromatic hydrocarbons efficient extraction and sensitive analysis. The composite microspheres were synthesized through the in situ hydrothermal growth of zeolitic imidazolate frameworks-8 on cellulose matrix, and exhibited favorable hierarchical structure with chemical composition as assumed through scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, and Brunauer-Emmett-Teller surface areas characterization. A robust and highly efficient method was then successfully developed with as-prepared composite microspheres as novel solid-phase extraction sorbent with optimum extraction conditions, such as sorbent amount, sample volume, extraction time, desorption conditions, volume of organic modifier, and ionic strength. The method exhibited high sensitivity with low limit of detection down to 0.1-1.0 ng/L and satisfactory linearity with correlation coefficients ranging from 0.9988 to 0.9999, as well as good recoveries of 66.7-121.2% with relative standard deviations less than 10% for environmental polycyclic aromatic hydrocarbons analysis. Thus, our method was convenient and efficient for polycyclic aromatic hydrocarbons extraction and detection, potential for future environmental water samples analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Xianying; Song, Guoxin; Deng, Chunhui
2015-01-01
Magnetic graphene @hydrophilic polydopamine composites were successfully fabricated via a simple solvothermal reaction and self-polymerization of dopamine. Benefit from the excellent characteristics of strong magnetic responsivity, super-hydrophilicity and abundant π-electron system, the prepared material showed great potential as a magnetic solid phase extraction (MSPE) sorbent. In this work, six kinds of phthalates (PAEs) were selected as the target analytes to evaluate the extraction ability of the adsorbents combined with MSPE-GC-MS. And various extraction parameters were optimized by selecting the pH value of samples, the amount of sorbents, adsorption and desorption time, the type and volume of eluting solution. Meanwhile, the whole extraction process could be finished in 30 min. Under the optimized conditions, validations of the method were evaluated as well. And the results presented excellent linearity with a wide range of 50-20,000 μg/L (R(2)>0.9991). The detection of limits were in the range from 0.05-5 μg/L (S/N=3). Therefore, the novel magnetic graphene@polydopamine composites were successfully used as the sorbents for the enrichment and analysis of PAEs in real water samples. This proposed method provided a simple, efficient and sensitive approach for the determination of aromatic compounds in real environmental samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Adsorption properties of Silochrom chemically modified with nickel acetylacetonate
NASA Astrophysics Data System (ADS)
Pakhnutova, Evgeniya; Slizhov, Yuriy
2017-11-01
One of the areas of development of gas chromatography is the creation of new chromatographic materials that have improved sorption and analytical characteristics. In this work, for the first time, a new sorbent based on Silochrom C-120 modified with nickel acetylacetonate was studied using a complex of physico-chemical methods. It has been established that due to chemical modification of silica gel surface with nickel acetylacetonate the surface area of the specific surface decreases from 112 to 98 m2/g and surface acidity diminishes by 1.2 pH units. Using the thermogravimetric analysis it has been revealed that the obtained sorbent can be used in gas chromatography up to 290°C. Gas chromatography method was used to investigate the adsorption properties of the modified materials. According to the retention data of adsorbates: n-alkanes (C6-C9), benzene, ethanol, nitropropane and butanone-2 the differential molar adsorption energy q¯dif, 1, Henry adsorption constants K1,C, the differential molar entropy ΔS¯S1 and Δ q¯dif, 1 (special) of adsorbates in dispersion and specific interactions were calculated. The influence of the modifying additive on the changings in the thermodynamic retention characteristics of all sorbates because of the manifestation of specific sorbate-sorbent interactions has been shown. The highest values of the thermodynamic parameters were indicative for sorbates forming hydrogen bonds and capable of donor-acceptor interaction.
Farajzadeh, Mir Ali; Mohebbi, Ali
2018-01-12
In this study, for the first time, a magnetic dispersive solid phase extraction method using an easy-accessible, cheap, and efficient magnetic sorbent (toner powder) combined with dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of some widely used pesticides (diazinon, ametryn, chlorpyrifos, penconazole, oxadiazon, diniconazole, and fenazaquin) from fruit juices prior to their determination by gas chromatography-flame ionization detection. In this method, the magnetic sorbent is mixed with an appropriate dispersive solvent (methanol-water, 80:20, v/v) and then injected into an aqueous sample containing the analytes. By this action the analytes are rapidly adsorbed on the sorbent by binding to its carbon. The sorbent particles are isolated from the aqueous solution in the presence of an external magnetic field. Then an appropriate organic solvent (acetone) is used to desorb the analytes from the sorbent. Finally, the obtained supernatant is mixed with an extraction solvent and injected into deionized water in order to achieve high enrichment factors and sensitivity. Several significant factors affecting the performance of the introduced method were investigated and optimized. Under the optimum experimental conditions, the extraction recoveries of the proposed method for the selected analytes ranged from 49-75%. The relative standard deviations were ≤7% for intra- (n = 6) and inter-day (n = 4) precisions at a concentration of 10 μg L -1 of each analyte. The limits of detection were in the range of 0.15-0.36 μg L -1 . Finally, the applicability of the proposed method was evaluated by analysis of the selected analytes in some fruit juices. Copyright © 2017 Elsevier B.V. All rights reserved.
Hydrogen sulfide capture by limestone and dolomite at elevated pressure. 1: Sorbent performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yrjas, K.P.; Zevenhoven, C.A.P.; Hupa, M.M.
1996-01-01
Sulfur emission control in fossil fuel gasification plants implies the removal of H{sub 2}S from the product gas either inside the furnace or in the gas clean-up system. In a fluidized-bed gasifier, in-bed sulfur capture can be accomplished by adding a calcium-based sorbent such as limestone or dolomite to the bend and removing the sulfur from the system with the bottom ash in the form of CaS. This work describes the H{sub 2}S uptake by a set of physically and chemically different limestones and dolomites under pressurized conditions, typically for those in a pressurized fluidized-bed gasifier (2 MPa, 950 C).more » The tests were done with a pressurized thermobalance at two p{sub CO{sub 2}} levels. Thus, the sulfidation of both calcined and uncalcined sorbents could be analyzed. The effect of p{sub H{sub 2}S} was also investigated for uncalcined limestones and half-calcined dolomites. The results are presented as conversion of CaCO{sub 3} or CaO to CaS vs time plots. The results are also compared with the sulfur capture performance of the same sorbents under pressurized combustion conditions.« less
Sajid, Muhammad; Basheer, Chanbasha; Daud, Muhammad; Alsharaa, Abdulnaser
2017-03-17
In this work, the potential of layered double hydroxide/graphene (LDH-G) hybrid as a sorbent for extraction and preconcentration of fifteen organochlorine pesticides (OCPs) in urine samples was evaluated. The LDH-G hybrid was synthesized by co-precipitation method and it was then characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The sorbent was then employed in membrane-protected stir-bar supported micro-solid-phase extraction (SB-μ-SPE) of OCPs in urine samples. This extraction approach is highly suitable for the samples representing matrix complexity such as urine because the sorbent is effectively protected inside the membrane. The extracted samples were analyzed by gas chromatography mass spectrometry. The factors that affect the performance of SB-μ-SPE were suitably optimized. This method demonstrated good linearity with coefficients of determination up to 0.9996. The limits of detection ranged between 0.22 and 1.38ngmL -1 . The RSD values for intra and inter-day precision were also in a satisfactory range (2.7-9.5%). Copyright © 2017 Elsevier B.V. All rights reserved.
Sorbents for the oxidation and removal of mercury
Olson, Edwin S; Holmes, Michael J; Pavlish, John Henry
2013-08-20
A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.
Sorbents for the oxidation and removal of mercury
Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN
2008-10-14
A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.
Sorbents for the oxidation and removal of mercury
Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN
2012-05-01
A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.
Sorbents for the oxidation and removal of mercury
Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry
2014-09-02
A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.
Sarbatly, Rosalam; Krishnaiah, Duduku; Kamin, Zykamilia
2016-05-15
The growths of oil and gas exploration and production activities have increased environmental problems, such as oil spillage and the resulting pollution. The study of the methods for cleaning up oil spills is a critical issue to protect the environment. Various techniques are available to contain oil spills, but they are typically time consuming, energy inefficient and create secondary pollution. The use of a sorbent, such as a nanofibre sorbent, is a technique for controlling oil spills because of its good physical and oil sorption properties. This review discusses about the application of nanofibre sorbent for oil removal from water and its current developments. With their unique physical and mechanical properties coupled with their very high surface area and small pore sizes, nanofibre sorbents are alternative materials for cleaning up oil spills. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fujikawa, Y; Hamasaki, T; Sugahara, M; Ozaki, H; Prasai, G; Yano, T; Imada, R; Tainaka, Y; Nakamura, W; Haruki, F
2004-01-01
The purpose of our study is to develop a treatment procedure for humic substances (HS hereafter) and phosphate ion in wastewater and environmental water by percolation of the water through a constructed soil layer at the hydraulic loading of a few metres per day. In the present work, batch sorption tests were conducted for more than 80 samples of soil, sludge, mineral and organic materials in order to find good sorbents for fulvic acid (FA hereafter) and phosphate ion. The results showed that the sorption of FA was high for some charcoal, and apatite and goethite minerals. Comparatively high sorption of FA was found for some Andosols and volcanic ash soil. Significant sorption of phosphate ion, on the other hand, was found for various types of soil, sludge from water treatment plants and some waste materials. The linear isotherm was obtained for the sorption of FA to a charcoal, apatite and goethite minerals, and Andosols.
Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Dong-Myung; Sun, Xin
2013-09-01
In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, causedmore » by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.« less
A U.S. EPA team, consisting of the Office of Research and Development and Region 6 (Dallas) and Region 8 (Denver), deployed passive-diffusive sorbent tubes as part of a method evaluation study around one oil and natural gas production pad in both the Barnett Shale Basin in Texas ...
USDA-ARS?s Scientific Manuscript database
A method of preparation of Chromatorotor or plates with a reversed phase (RP) solid silica gel sorbent layer has been developed for preparative centrifugal chromatography. The RP-rotor plates consist of binder free RP solid SiO2 sorbent layers of different thicknesses paked between two supported cir...
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Paul, Heather L.
2011-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Ice Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously each the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU to the future flight unit are considered.
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Bower, Chad E.; Paul, Heather L.
2012-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Icing Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU and the future flight unit are considered.
CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials.
Kierzkowska, Agnieszka M; Pacciani, Roberta; Müller, Christoph R
2013-07-01
The enormous anthropogenic emission of the greenhouse gas CO2 is most likely the main reason for climate change. Considering the continuing and indeed growing utilisation of fossil fuels for electricity generation and transportation purposes, development and implementation of processes that avoid the associated emissions of CO2 are urgently needed. CO2 capture and storage, commonly termed CCS, would be a possible mid-term solution to reduce the emissions of CO2 into the atmosphere. However, the costs associated with the currently available CO2 capture technology, that is, amine scrubbing, are prohibitively high, thus making the development of new CO2 sorbents a highly important research challenge. Indeed, CaO, readily obtained through the calcination of naturally occurring limestone, has been proposed as an alternative CO2 sorbent that could substantially reduce the costs of CO2 capture. However, one of the major drawbacks of using CaO derived from natural sources is its rapidly decreasing CO2 uptake capacity with repeated carbonation-calcination reactions. Here, we review the current understanding of fundamental aspects of the cyclic carbonation-calcination reactions of CaO such as its reversibility and kinetics. Subsequently, recent attempts to develop synthetic, CaO-based sorbents that possess high and cyclically stable CO2 uptakes are presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sorption Modeling and Verification for Off-Gas Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavlarides, Lawrence L.; Lin, Ronghong; Nan, Yue
2015-04-29
The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorptionmore » modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient uptake data. Two parallel approaches have been explored for integrating the kernels described above into a mass-transport model for adsorption in fixed beds. In one, the GSTA isotherm kernel has been incorporated into the MOOSE framework; in the other approach, a focused finite-difference framework and PDE kernels have been developed. Issues, including oscillatory behavior in MOOSE solutions to advection-diffusion problems, and opportunities have been identified for each approach, and a path forward has been identified toward developing a stronger modeling platform. Experimental systems were established for collection of microscopic kinetics and equilibria data for single and multicomponent uptake of gaseous species on solid sorbents. The systems, which can operate at ambient temperature to 250°C and dew points from -69 to 17°C, are useful for collecting data needed for modeling performance of sorbents of interest. Experiments were conducted to determine applicable models and parameters for isotherms and mass transfer for water and/or iodine adsorption on MS3A. Validation experiments were also conducted for water adsorption on fixed beds of MS3A. For absorption, work involved modeling with supportive experimentation. A dynamic model was developed to simulate CO 2 absorption with chemical reaction using high alkaline content water solutions. A computer code was developed to implement the model based upon transient mass and energy balances. Experiments were conducted in a laboratory-scale column to determine model parameters. The influence of geometric parameters and operating variables on CO 2 absorption was studied over a wide range of conditions. This project has resulted in 7 publications, with 3 manuscripts in preparation. Also, 15 presentations were given at national meetings of ANS and AIChE and at Material Recovery and Waste Forms Campaign Working Group meetings.« less
Measurement of Mercury in Flue Gas Based on an Aluminum Matrix Sorbent
Wang, Juan; Xu, Wei; Wang, Xiaohao; Wang, Wenhua
2011-01-01
The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7% recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg0 on the sorbent media, the analytical bias test on tube 3 spiked with Hg0 was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field. PMID:22235178
Potassium-based sorbents from fly ash for high-temperature CO2 capture.
Sanna, Aimaro; Maroto-Valer, M Mercedes
2016-11-01
Potassium-fly ash (K-FA) sorbents were investigated for high-temperature CO 2 sorption. K-FAs were synthesised using coal fly ash as source of silica and aluminium. The synthesised materials were also mixed with Li 2 CO 3 and Ca(OH) 2 to evaluate their effect on CO 2 capture. Temperature strongly affected the performance of the K-FA sorbents, resulting in a CO 2 uptake of 1.45 mmol CO 2 /g sorbent for K-FA 1:1 at 700 °C. The CO 2 sorption was enhanced by the presence of Li 2 CO 3 (10 wt%), with the K-FA 1:1 capturing 2.38 mmol CO 2 /g sorbent at 700 °C in 5 min. This sorption was found to be similar to previously developed Li-Na-FA (2.54 mmol/g) and Li-FA (2.4 mmol/g) sorbents. The presence of 10 % Li 2 CO 3 also accelerated sorption and desorption. The results suggest that the increased uptake of CO 2 and faster reaction rates in presence of K-FA can be ascribed to the formation of K-Li eutectic phase, which favours the diffusion of potassium and CO 2 in the material matrix. The cyclic experiments showed that the K-FA materials maintained stable CO 2 uptake and reaction rates over 10 cycles.
Yan, Feng; Jiang, Jianguo; Li, Kaimin; Liu, Nuo; Chen, Xuejing; Gao, Yuchen; Tian, Sicong
2017-07-05
High-temperature sorption of CO 2 via calcium looping has wide applications in postcombustion carbon capture, sorption-enhanced hydrogen production, and inherent energy storage. However, fast deactivations of CaO sorbents and low CO 2 uptake in the fast carbonation stage are major drawbacks of this technology. For the first time, we developed a green approach through the reuse of nanosilica derived from coal fly ash (CFA) to enhance both the cyclic CO 2 uptakes and the sorption kinetics of CaO sorbents. The as-synthesized nanosilica-supported CaO sorbent showed superior cyclic stability even under realistic carbonation/calcination conditions, and maintained a final CO 2 uptake of 0.20 g(CO 2 ) g(sorbent) -1 within short carbonation time, markedly increased by 155% over conventional CaO sorbent. Significantly, it also exhibited very fast sorption rate and could achieve almost 90% of the total CO 2 uptake within ∼20 s after the second cycle, which is critical for practical applications. These positive effects were attributed to the formation of larnite (Ca 2 SiO 4 ) and the physical nanostructure of silica, which could yield and keep abundant reactive small pores directly exposed to CO 2 throughout multiple cycles. The proposed strategy, integrating the on-site recycling of CFA, appears to be promising for CO 2 abatement from coal-fired power plants.
Experimental investigations into cryosorption pumping of plasma exhaust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perinic, D.; Mack, A.
1988-09-01
Within the framework of the European Fusion Technology Programme the Karlsruhe Nuclear Research Centre has been awarded a contract for the development of cryosorption panels for compound cryopumps of the NEt plasma exhaust pumping system. This task includes the development of a bonding technique for porous sorbent materials with metal substrates and a test programme for development and optimization of cryopanels. A variety of material combinations for sorbent, bonding and substrate were evaluated and listed in a test matrix. Bonding tests involving soldering, cementing and plasma spraying techniques have been carried out.
Mitigation of Syngas Cooler Plugging and Fouling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bockelie, Michael J.
This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling ofmore » the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better understanding of deposit formation mechanisms; • performing Techno-Economic-Analysis for a representative IGCC plant to investigate the impact on plant economics, in particular the impacts on the Cost of Electricity (COE), due to plant shutdowns caused by syngas cooler plugging and fouling and potential benefits to plant economics of developing strategies to mitigate syngas cooler fouling; and • performing modeling and pilot scale tests to investigate the potential benefits of using a sorbent (fuel additive) to capture the vaporized metals that result in syngas cooler fouling. All project milestones for BP 1 and BP 2 were achieved. DOE was provided a briefing on our accomplishments in BP1 and BP2 and our proposed plans for Budget Period 3 (BP 3). Based on our research the mitigation technology selected to investigate in BP 3 was the use of a sorbent that can be injected into the gasifier with the fuel slurry to capture vaporized metals that lead to the deposit formation in the syngas cooler. The work effort proposed for BP 3 would have focused on addressing concerns raised by gasification industry personnel for the impacts on gasifier performance of sorbent injection, so that at the end of BP 3 the use of sorbent injection would be at “pre-commercial” stage and ready for use in a Field Demonstration that could be funded by industry or DOE. A Budget Continuation Application (BCA) was submitted to obtain funding for BP3 DOE but DOE chose to not fund the proposed BP3 effort.« less
Wang, Jiancheng; Qiu, Biao; Han, Lina; Feng, Gang; Hu, Yongfeng; Chang, Liping; Bao, Weiren
2012-04-30
Activated carbon (AC) supported manganese oxide sorbents were prepared by the supercritical water impregnation (SCWI) using two different precursor of Mn(NO(3))(2) (SCW(N)) and Mn(Ac)(2)·4H(2)O (SCW(A)). Their capacities of removing H(2)S from coal gas were evaluated and compared to the sorbents prepared by the pore volume impregnation (PVI) method. The structure and composition of different sorbents were characterized by XRD, SEM, TEM, XPS and XANES techniques. It is found that the precursor of active component plays the crucial role and SCW(N) sorbents show much better sulfidation performance than the SCW(A) sorbents. This is because the Mn(3)O(4) active phase of the SCW(N) sorbents are well dispersed on the AC support, while the Mn(2)SiO(4)-like species in the SCW(A) sorbent can be formed and seriously aggregated. The SCW(N) sorbents with 2.80% and 5.60% manganese are favorable for the sulfidation reaction, since the Mn species are better dispersed on the SCW(N) sorbents than those on the PV(N) sorbents and results in the better sulfidation performance of the SCW(N) sorbents. As the Mn content increases to 11.20%, the metal oxide particles on AC supports aggregate seriously, which leads to poorer sulfidation performance of the SCW(N)11.20% sorbents than that of the PV(N)11.20% sorbents. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Hong-Yan; Gao, Hong-Wen
2009-05-01
Dye pollutants are a major class of environmental contaminants. Over 100,000 dyes have been synthesized worldwide and more than 700,000 tons are produced annually and over 5% are discharged into aquatic environments. The adsorption or sorption is one of the most efficient methods to remove dye and heavy metal pollutants from wastewater. However, most of the present sorbents often bear some disadvantages, e.g. low sorption capacity, difficult separation of spoil, complex reproduction, or secondary pollution. Development of novel sorbents that can overcome these limitations is desirable. On the basis of the chemical coprecipitation of calcium oxalate (CaC(2)O(4)), bromopyrogallol red (BPR) was embedded during the growing of CaC(2)O(4) particles. The ternary C(2)O(4) (2-)-BPR-Ca(2+) sorbent was yielded by the centrifugation. Its composition was determined by spectrophotometry and AAS, and its structure and morphology were characterized by powder X-ray diffraction (XRD), laser particle-size analysis, and scanning electron microscopy (SEM). The adsorption of ethyl violet (EV) and heavy metals, e.g. Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) were carried out and their removal rate determined by spectrophotometry and ICP-OES. The adsorption performance of the sorbent was compared with powder activated carbon. The Langmuir isothermal model was applied to fit the embedment of BPR and adsorption of EV. The saturation number of BPR binding to CaC(2)O(4) reached 0.0105 mol/mol and the adsorption constant of the complex was 4.70 x 10(5) M(-1). Over 80% of the sorbent particles are between 0.7 and 1.02 microm, formed by the aggregation of the global CaC(2)O(4)/BPR inclusion grains of 30-50 nm size. Such a material was found to adsorb cationic dyes selectively and sensitively. Ethyl violet (EV) was used to investigate the adsorption mechanism of the material. One BPR molecule may just bind with one EV molecule. The CaC(2)O(4)/BPR inclusion material adsorbed EV over two times more efficiently than the activated carbon. The adsorption of EV on the CaC(2)O(4)/BPR inclusion sorbent was complete in only 5 min and the sedimentation complete in 1 h. However, those of EV onto activated carbon took more than 1.5 and 5 h, respectively. The treatment of methylene blue and malachite green dye wastewaters indicated that only 0.4% of the sorbent adsorbed over 80% of color substances. Besides, the material can also adsorb heavy metals by complexation with BPR. Over 90% of Pb(2+), and approximately 50% of Cd(2+) and Cu(2+), were removed in a high Zn(2+)-electroplating wastewater when 3% of the material was added. Eighty-six percent of Cu(2+), and 60% of Ni(2+) and Cd(2+), were removed in a high Cd(2+)-electroplating wastewater. The embedment of BPR into CaC(2)O(4) particles responded to the Langmuir isothermal adsorption. As the affinity ligand of Ca(2+), BPR with sulfonic groups may be adsorbed into the temporary electric double layer during the growing of CaC(2)O(4) particles. Immediately, C(2)O(4) (2-) captured the Ca(2+) to form the CaC(2)O(4) outer enclosed sphere. Thus, BPR may be released and embedded as a sandwich between CaC(2)O(4) layers. The adsorption of EV on the sorbent obeyed the Langmuir isothermal equation and adsorption is mainly due to the ion-pair attraction between EV and BPR. Different from the inclusion sorbent, the activated carbon depended on the specific surface area to adsorb organic substances. Therefore, the adsorption capacity, equilibrium, and sedimentation time of the sorbent are much better than activated carbon. The interaction of heavy metals with the inclusion sorbent responded to their coordination. By characterizing the C(2)O(4) (2-)-BPR-Ca(2+) inclusion material using various modern instruments, the ternary in situ embedment particle, [(CaC(2)O(4))(95)(BPR)]( n ) (2n-), an electronegative, micron-sized adsorbent was synthesized. It is selective, rapid, and highly effective for adsorbing cationic dyes and heavy metals. Moreover, the adsorption is hardly subject to the impact of electrolytes. The present work provides a simple and valuable method for preparing the highly effective adsorbent. If a concentrated BPR wastewater was reused as the inclusion reactant, the sorbent will be low cost. By selecting the inclusion ligand with a special structure, we may prepare some particular functional materials to recover the valuable substances from seriously polluted wastewaters. The recommended method will play a significant role in development of advanced adsorption materials.
Lee, Yung-Shan; Otton, S Victoria; Campbell, David A; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C
2012-01-03
Methods for rapid and cost-effective assessment of the biotransformation potential of very hydrophobic and potentially bioaccumulative chemicals in mammals are urgently needed for the ongoing global evaluation of the environmental behavior of commercial chemicals. We developed and tested a novel solvent-free, thin-film sorbent-phase in vitro dosing system to measure the in vitro biotransformation rates of very hydrophobic chemicals in male Sprague-Dawley rat liver S9 homogenates and compared the rates to those measured by conventional solvent-delivery dosing. The thin-film sorbent-phase dosing system using ethylene vinyl acetate coated vials was developed to eliminate the incomplete dissolution of very hydrophobic substances in largely aqueous liver homogenates, to determine biotransformation rates at low substrate concentrations, to measure the unbound fraction of substrate in solution, and to simplify chemical analysis by avoiding the difficult extraction of test chemicals from complex biological matrices. Biotransformation rates using sorbent-phase dosing were 2-fold greater than those measured using solvent-delivery dosing. Unbound concentrations of very hydrophobic test chemicals were found to decline with increasing S9 and protein concentrations, causing measured biotransformation rates to be independent of S9 or protein concentrations. The results emphasize the importance of specifying both protein content and unbound substrate fraction in the measurement and reporting of in vitro biotransformation rates of very hydrophobic substances, which can be achieved in a thin-film sorbent-phase dosing system.
Herrington, Jason S; Fan, Zhi-Hua Tina; Lioy, Paul J; Zhang, Junfeng Jim
2007-01-15
Airborne aldehyde and ketone (carbonyl) sampling methodologies based on derivatization with 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents could unequivocally be considered the "gold" standard. Originally developed in the late 1970s, these methods have been extensively evaluated and developed up to the present day. However, these methods have been inadequately evaluated for the long-term (i.e., 24 h or greater) sampling collection efficiency (CE) of carbonyls other than formaldehyde. The current body of literature fails to demonstrate that DNPH-coated solid sorbent sampling methods have acceptable CEs for the long-term sampling of carbonyls other than formaldehyde. Despite this, such methods are widely used to report the concentrations of multiple carbonyls from long-term sampling, assuming approximately 100% CEs. Laboratory experiments were conducted in this study to evaluate the long-term formaldehyde and acetaldehyde sampling CEs for several commonly used DNPH-coated solid sorbents. Results from sampling known concentrations of formaldehyde and acetaldehyde generated in a dynamic atmosphere generation system demonstrate that the 24-hour formaldehyde sampling CEs ranged from 83 to 133%, confirming the findings made in previous studies. However, the 24-hour acetaldehyde sampling CEs ranged from 1 to 62%. Attempts to increase the acetaldehyde CEs by adding acid to the samples post sampling were unsuccessful. These results indicate that assuming approximately 100% CEs for 24-hour acetaldehyde sampling, as commonly done with DNPH-coated solid sorbent methods, would substantially under estimate acetaldehyde concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenney, M.C.; Chiang, R.K.; Fillgrove, K.L.
1995-02-01
A search is being carried out for new calcium-based S0{sub 2} sorbents for induct injection. More specifically, a search is being carried out for induct injection calcium silicate sorbents that are highly cost effective. The objectives for the current year include the study of sorbents made from Ca(OH){sub 2}, from mixtures of Ca(OH){sub 2} and SiO{sub 2}, and from portland cement. They also include the study of sorbents made from model compounds. During this year, sorbents prepared from Ca(OH){sub 2} and from mixtures of Ca(OH){sub 2} and fumed SiO{sub 2} were investigated. The results show that very good SiO{sub 2}-modifiedmore » Ca(OH){sub 2} sorbents in which the Si-to-Ca reactant ratio is low can be prepared from Ca(OH){sub 2} and fumed SiO{sub 2}. Sorbents prepared from Ca(OH){sub 2} and natural SiO{sub 2} or natural SiO{sub 2} sources were also studied. The results obtained show that very good SiO{sub 2}-modified Ca(OH){sub 2} sorbents and calcium silicate hydrate sorbents, C-S-H sorbents, can be prepared from Ca(OH){sub 2} and diatomite, pumice or perlite, minerals that are readily available. In addition. sorbents prepared from Ca{sub 3}SiO{sub 5} and {beta}-Ca{sub 2}SiO{sub 4} and from mixtures of these compounds and SiO{sub 2} were studied. The results secured demonstrate that very good C-S-H rich sorbents can be prepared from these compounds and from mixtures of them with SiO{sub 2}. They also provide information useful for interpreting the cement sorbent results. Sorbents prepared from cement and from mixtures of cement and natural SiO{sub 2} or SiO{sub 2} sources were investigated as well. The results secured show that cement and mixtures of it with diatomite, pumice or perlite rapidly yield excellent sorbents with the proper reaction conditions.« less
A U.S. EPA team, consisting of the Office of Research and Development and Region 6 (Dallas) and Region 8 (Denver), deployed passive-diffusive sorbent tubes as part of a method evaluation study around one oil and natural gas production pad in both the Barnett Shale Basin in Texas ...
Sorption Equilibria of Vapor Phase Organic Pollutants on Unsaturated Soils and Soil Minerals
1990-04-01
Sorbent Characterization .. ........ .......... 6 a. Description of Inorganic Solids and Soils. .... ........ 6 b. Moisture Content...compounds (TCE and toluene) is compared for a cored depth profile obtained from an unsaturated soil and for simulated profiles using inorganic solids. The...Sorbent Characterization a. Description of Inorganic Solids and Soils Inorganic solids were used for initial sorption studies to develop experimental
Salisaeng, Pawina; Arnnok, Prapha; Patdhanagul, Nopbhasinthu; Burakham, Rodjana
2016-03-16
A vortex-assisted dispersive micro-solid phase extraction (VA-D-μ-SPE) based on cetyltrimethylammonium bromide (CTAB)-modified zeolite NaY was developed for preconcentration of carbamate pesticides in fruits, vegetables, and natural surface water prior to analysis by high performance liquid chromatography with photodiode array detection. The small amounts of solid sorbent were dispersed in a sample solution, and extraction occurred by adsorption in a short time, which was accelerated by vortex agitation. Finally, the sorbents were filtered from the solution, and the analytes were subsequently desorbed using an appropriate solvent. Parameters affecting the VA-D-μ-SPE performance including sorbent amount, sample volume, desorption solvent ,and vortex time were optimized. Under the optimum condition, linear dynamic ranges were achieved between 0.004-24.000 mg kg(-1) (R(2) > 0.9946). The limits of detection (LODs) ranged from 0.004-4.000 mg kg(-1). The applicability of the developed procedure was successfully evaluated by the determination of the carbamate residues in fruits (dragon fruit, rambutan, and watermelon), vegetables (cabbage, cauliflower, and cucumber), and natural surface water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law
2013-10-01
The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law
2013-09-01
The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less
Spivakov, Boris Ya; Shkinev, Valeriy M; Danilova, Tatiana V; Knyazkov, Nikolai N; Kurochkin, Vladimir E; Karandashev, Vasiliy K
2012-12-15
A novel approach to sorption recovery and separation of different substances is proposed which is based on the use of suspended bead sorbents instead of conventional packed beds of such sorbents. This makes it possible to employ small-sized beads which are trapped in a low-pressure column due to ultrasound-assisted retention, without any frits to hold the sorption material. A flow system including a separation mini-column, named herein a suspension column, has been developed and tested by the studies of solid phase extraction (SPE) of trace metals from bi-distilled water and sea water using a 150-μL column with a silica-based sorbent containing iminodiacetic groups (DIAPAK IDA) and having a grain size of 6 μm. The adsorption properties of DIAPAK IDA suspension (9.5mg) were evaluated through adsorption/desorption experiments, where the effect of solution pH and eluent on the SPE of trace metals were examined by ICP-MS or ICP-AES measurements. When sample solution was adjusted to pH 8.0 and 1 mol L(-1) nitric acid was used as eluent, very good recoveries of more than 90% were obtained for a number of elements in a single-step extraction. To demonstrate the versatility of the approach proposed and to show another advantage of ultrasonic field (acceleration of sorbate/sorbent interaction), a similar system was used for heterogeneous immunoassays of some antigens in ultrasonic field using agarose sorbents modified by corresponding antibodies. It has been shown that immunoglobulins, chlamidia, and brucellos bacteria can be quantitatively adsorbed on 15-μm sorbent (15 particles in 50 μL) and directly determined in a 50-μL mini-chamber using fluorescence detection. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun
2015-12-01
A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.
Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont
2009-01-30
A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) < or = 4 min), 1:10 for HD (t(1/2) < 2 min with molybdate), and 1:10 for GD (t(1/2) < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, D.M.
1991-12-31
The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spacesmore » are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.« less
Cholesterol-imprinted macroporous monoliths: Preparation and characterization.
Stepanova, Mariia А; Kinziabulatova, Lilia R; Nikitina, Anna A; Korzhikova-Vlakh, Evgenia G; Tennikova, Tatiana B
2017-11-01
The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reactivity of Metal Oxide Sorbents for Removal of H{sub 2}S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, K.C.; Crowe, E.R.
1996-12-31
Removal of hydrogen sulfide contained in hot coal gases produced from integrated gasification combined cycle power generation systems is required to protect downstream combustion turbines from being corroded with sulfur compounds. Removal of sulfur compounds from hot coal gas products is investigated by using various metal oxide sorbents and membrane separation methods. The main requirements of these metal oxide sorbents are durability and high sulfur loading capacity during absorption-regeneration cycles. In this research, durable metal oxide sorbents were formulated. Reactivity of the formulated metal oxide sorbents with simulated coal gas mixtures was examined to search for an ideal sorbent formulationmore » with a high-sulfur loading capacity suitable for removal of hydrogen sulfide from coal gases. The main objectives of this research are to formulate durable metal oxide sorbents with high-sulfur loading capacity by a physical mixing method, to investigate reaction kinetics on the removal of sulfur compounds from coal gases at high temperature and pressure, to study reaction kinetics on the regeneration of sulfided sorbents, to identify effects of hydrogen partial pressures and moisture on equilibrium/dynamic absorption of hydrogen sulfide into formulated metal oxide sorbents as well as initial reaction rates of H{sub 2}S with formulated metal oxide sorbents, and to evaluate intraparticular diffusivity of H{sub 2}S into formulated sorbents at various reaction conditions. The metal oxide sorbents such as TU-1, TU-19, TU-24, TU-25 and TU-28 were formulated with zinc oxide powder as an active sorbent ingredient, bentonite as a binding material and titanium oxide as a supporting metal oxide.« less
Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization.
Zhang, Jie; You, Changfu; Zhao, Suwei; Chen, Changhe; Qi, Haiying
2008-03-01
Semidry flue gas desulfurization with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH)2 content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH)2 particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH)2 particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH)2 particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray.
The applications of populus fiber in removal of Cr(VI) from aqueous solution
NASA Astrophysics Data System (ADS)
Li, Miaomiao; Gong, Yumei; Lyu, Aichao; Liu, Yuanfa; Zhang, Hong
2016-10-01
The surface modification of natural materials to be applied in removal of Cr(VI) from aqueous solutions has attracted much attention. A natural sorbent for Cr(VI) based on natural populus fibers (PF) is prepared by transforming the cyano groups (AN) in polyacrylonitriles (PAN) grafted from PF into amidoxime groups (AO), which has strong ability to attract and chelate heavy metal ions. The prepared sorbent is characterized by Fourier Transform Infrared Spectra (FT-IR), thermogravimetric analysis (TGA), solid-state nuclear magnetic resonance (13C NMR) and scanning electron microscope (SEM). As potassium dichromate solution (K2Cr2O7) is used as a target solution for detecting adsorption capacity of the sorbent, the adsorption kinetics of the sorbent for chromiun is consistent with the pseudo-second-order kinetic model by analyzing the adsorption amount as a function of the sorbent dispersed duration in solution at pH = 2. The expected adsorption mechanism is that the Cr(VI) in anionic ions Cr2O72- and HCrO4- are adsorbed through electrostatic attraction but when Cr(VI) is reduced to Cr(III) by AO, the electronegative nitrogen and oxygen in AO chelate it through coordination bond. The as-prepared PF derivant with high adsorption efficiency of chromium 180.5 mg/g (3.47 mmol/g), low cost, reusability and greenly preparation process suggests that the development of natural PF as a sorbent in removal of Cr(VI) from aqueous solutions is a destined significant approach.
[Optimization of solid-phase extraction for enrichment of toxic organic compounds in water samples].
Zhang, Ming-quan; Li, Feng-min; Wu, Qian-yuan; Hu, Hong-ying
2013-05-01
A concentration method for enrichment of toxic organic compounds in water samples has been developed based on combined solid-phase extraction (SPE) to reduce impurities and improve recoveries of target compounds. This SPE method was evaluated in every stage to identify the source of impurities. Based on the analysis of Waters Oasis HLB without water samples, the eluent of SPE sorbent after dichloromethane and acetone contributed 85% of impurities during SPE process. In order to reduce the impurities from SPE sorbent, soxhlet extraction of dichloromethane followed by acetone and lastly methanol was applied to the sorbents for 24 hours and the results had proven that impurities were reduced significantly. In addition to soxhlet extraction, six types of prevalent SPE sorbents were used to absorb 40 target compounds, the lgK(ow) values of which were within the range of 1.46 and 8.1, and recovery rates were compared. It was noticed and confirmed that Waters Oasis HLB had shown the best recovery results for most of the common testing samples among all three styrenedivinylbenzene (SDB) polymer sorbents, which were 77% on average. Furthermore, Waters SepPak AC-2 provided good recovery results for pesticides among three types of activated carbon sorbents and the average recovery rates reached 74%. Therefore, Waters Oasis HLB and Waters SepPak AC-2 were combined to obtain a better recovery and the average recovery rate for the tested 40 compounds of this new SPE method was 87%.
NASA Astrophysics Data System (ADS)
Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun
2014-01-01
A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g-1, respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L-1 EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results.
Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun
2014-01-03
A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g(-1), respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L(-1) EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pavlova, Julia A.; Ivanov, Andrei V.; Maksimova, Natalia V.; Pokholok, Konstantin V.; Vasiliev, Alexander V.; Malakho, Artem P.; Avdeev, Victor V.
2018-05-01
Due to the macropore structure and the hydrophobic properties, exfoliated graphite (EG) is considered as a perspective sorbent for oil and liquid hydrocarbons from the water surface. However, there is the problem of EG collection from the water surface. One of the solutions is the modification of EG by a magnetic compound and the collection of EG with sorbed oil using the magnetic field. In this work, the method of the two-stage preparation of exfoliated graphite with ferrite phases is proposed. This method includes the impregnation of expandable graphite in the mixed solution of iron (III) chloride and cobalt (II) or nickel (II) nitrate in the first stage and the thermal exfoliation of impregnated expandable graphite with the formation of exfoliated graphite containing cobalt and nickel ferrites in the second stage. Such two-stage method makes it possible to obtain the sorbent based on EG modified by ferrimagnetic phases with high sorption capacity toward oil (up to 45-51 g/g) and high saturation magnetization (up to 42 emu/g). On the other hand, this method allows to produce the magnetic sorbent in a short period of time (up to 10 s) during which the thermal exfoliation is carried out in the air atmosphere.
Full-scale results for TAM limestone injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, S.
1996-12-31
Information is outlined on the use of thermally active marble (TAM) sorbents in boilers. Data are presented on: the comparison of TAM to limestone; NOVACON process development history; CFB test history; CFB pilot scale test; full-scale CFB trial; August, 1996 CFB demonstration; Foster Wheeler Mount Carmel sorbent feed rate comparison and Ca:S comparison; unburned carbon is ash; and advantages and savings in CFB boilers.
Ferrer, I.; Lanza, F.; Tolokan, A.; Horvath, V.; Sellergren, B.; Horvai, G.; Barcelo, D.
2000-01-01
Two molecularly imprinted polymers were synthesized using either dichloromethane or toluene as the porogen and terbuthylazine as the template and were used as solid-phase extraction cartridges for the enrichment of six chlorotriazines (deisopropylatrazine, deethylatrazine, simazine, atrazine, propazine, and terbuthylazine) in natural water and sediment samples. The extracted samples were analyzed by liquid chromatography/diode array detection (LC/DAD). Several washing solvents, as well as different volumes, were tested for their ability to remove the matrix components nonspecifically adsorbed on the sorbents. This cleanup step was shown to be of prime importance to the successful extraction of the pesticides from the aqueous samples. The optimal analytical conditions were obtained when the MIP imprinted using dichloromethane was the sorbent, 2 mL of dichloromethane was used in the washing step, and the preconcentrated analytes were eluted with 8 mL of methanol. The recoveries were higher than 80% for all the chlorotriazines except for propazine (53%) when 50- or 100-mL groundwater samples, spiked at 1 ??g/L level, were analyzed. The limits of detection varied from 0.05 to 0.2 ??g/L when preconcentrating a 100-mL groundwater sample. Natural sediment samples from the Ebre Delta area (Tarragona, Spain) containing atrazine and deethylatrazine were Soxhlet extracted and analyzed by the methodology developed in this work. No significant interferences from the sample matrix were noticed, thus indicating good selectivity of the MIP sorbents used.
Xu, Li; Lee, Hian Kee
2008-05-30
A single-step extraction-cleanup procedure involving microwave-assisted extraction (MAE) and micro-solid-phase extraction (micro-SPE) has been developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) from soil samples. Micro-SPE is a relatively new extraction procedure that makes use of a sorbent enclosed within a sealed polypropylene membrane envelope. In the present work, for the first time, graphite fiber was used as a sorbent material for extraction. MAE-micro-SPE was used to cleanup sediment samples and to extract and preconcentrate five PAHs in sediment samples prepared as slurries with addition of water. The best extraction conditions comprised of microwave heating at 50 degrees C for a duration of 20 min, and an elution (desorption) time of 5 min using acetonitrile with sonication. Using gas chromatography (GC)-flame ionization detection (FID), the limits of detection (LODs) of the PAHs ranged between 2.2 and 3.6 ng/g. With GC-mass spectrometry (MS), LODs were between 0.0017 and 0.0057 ng/g. The linear ranges were between 0.1 and 50 or 100 microg/g for GC-FID analysis, and 1 and 500 or 1000 ng/g for GC-MS analysis. Granular activated carbon was also used for the micro-SPE device but was found to be not as efficient in the PAH extraction. The MAE-micro-SPE method was successfully used for the extraction of PAHs in river and marine sediments, demonstrating its applicability to real environmental solid matrixes.
Socas-Rodríguez, Bárbara; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Ángel
2018-03-01
In this work, the suitability of Fe 3 O 4 nanoparticles coated with polydopamine was evaluated as sorbent for the extraction of a group of 21 compounds with oestrogenic activity including seven phytoestrogens, six mycotoxins as well as four synthetic and four natural oestrogens from different types of milk, including sheep milk, in which the evaluation of oestrogenic compounds have never been developed before. Extraction was carried out using magnetic micro-dispersive solid-phase extraction after a previous deproteinisation step. Separation, determination and quantification of the target analytes were achieved by ultra-high-performance liquid chromatography coupled to triple quadrupole-tandem mass spectrometry. The methodology was validated for five milk samples using 17β-estradiol-2,4,16,16,17-d 5 as internal standard for natural and synthetic oestrogens, β-zearalanol-10,10,11,12,12-d 5 for mycotoxins and prunetin for phytoestrogens. Recovery values ranged from 70 to 120% for the five types of matrices with relative standard deviation values lower than 18%. Limits of quantification of the method were in the range 0.55-11.8 μg L -1 for all samples. Graphical abstract General scheme of the multiresidue analysis of oestrogenic compounds in milk using core-shell polydopamine coated magnetic nanoparticles as extraction sorbent in μ-dSPE.
Enhanced capture of elemental mercury by bamboo-based sorbents.
Tan, Zengqiang; Xiang, Jun; Su, Sheng; Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong
2012-11-15
To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO2 on gas-phase Hg0 adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 °C and 180 °C. The presence of NO or SO2 could inhibit Hg0 capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed. Copyright © 2012 Elsevier B.V. All rights reserved.
The spectroscopic study of building composites containing natural sorbents.
Król, M; Mozgawa, W
2011-08-15
This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag(+), Pb(2+), Zn(2+), Cd(2+) and Cr(3+)) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm(-1)). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm(-1)--the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm(-1)--the range of the bands originating from OH(-) groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials. Copyright © 2010 Elsevier B.V. All rights reserved.
Biomass-Derived Porous Carbonaceous Aerogel as Sorbent for Oil-Spill Remediation.
Wang, Zhuqing; Jin, Pengxiang; Wang, Min; Wu, Genhua; Dong, Chen; Wu, Aiguo
2016-12-07
We prepared a cost-effective, environmentally friendly carbonaceuous oil sorbent with a lotus effect structure using a simple one-pot hydrothermal reaction and a mild modification process. The carbonaceous oil sorbent can rapidly, efficiently, and continuously collect oil in situ from a water surface. This sorbent was unlike traditional sorbents because it was not dependent on the weight and volume of the sorption material. The sorbent was also successfully used to separate and collect crude oil from the water surface and can collect organic solvents underwater. This novel oil sorbent and oil-collection device can be used in case of emergency for organic solvent leakages, as well as leakages in tankers and offshore drilling platforms.
Sorbents for the oxidation and removal of mercur
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry
A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbentmore » into the mercury contaminated gas stream are described.« less
Doping Li and K into Na2ZrO3 Sorbent to Improve Its CO2 Capture Capability
NASA Astrophysics Data System (ADS)
Duan, Yuhua
Carbon dioxide is one of the major combustion products which once released into the air can contribute to global climate change. Solid sorbents have been reported in several previous studies to be promising candidates for CO2 sorbent applications due to their high CO2 absorption capacities at moderate working temperatures. However, at a given CO2 pressure, the turnover temperature (Tt) of an individual solid capture CO2 reaction is fixed and may be outside the operating temperature range (ΔTo) for a particularly capture technology. In order to shift such Tt for a solid into the range of ΔTo, its corresponding thermodynamic property must be changed by changing its structure by reacting (mixing) with other materials or doping with other elements. As an example, by combining thermodynamic database searching with ab initio thermodynamics calculations, in this work, we explored the Li- and K-doping effects on the Tt shifts of Na2ZrO3 at different doping levels. The obtained results showed that compared to pure Na2ZrO3, the Li- and K-doped mixtures Na2-αMαZrO3 (M =Li, K) have lower Tt and higher CO2 capture capacities.
Oil removal from runoff with natural sorbing filter fillers.
Mažeikienė, Aušra; Vaiškūnaitė, Rasa; Vaišis, Vaidotas
2014-08-01
The aim of this paper was to investigate the ability of Lithuanian sheep wool waste and reeds (Phragmites australis) to absorb oil from runoff when it flows through filters filled with these materials. The third material that was analysed, the synthetic sorbent Fibroil, was chosen for comparing the results. The laboratory experiments were performed in several stages, with the following being filtrated: tap water with a diesel admixture, road runoff contaminated with oils, and also suspended solids. The significance of this work is due to the high runoff filtering rate (∼10 m/h) and high oil concentrations in the runoff (50-230 mg/L) used in the experiment. In these cases the use of sorbents is limited. Wool waste and reed (Phragmites australis) fillers are quite efficient (98-99%) in oil removal from runoff at a 10 m/h filtering rate. However, wool fillers clog up quickly. Reeds of the genus Phragmites australis are a natural source for the production of oil sorbents. The results obtained in this experimental work can be used in the design of equipment for the treatment of oil-contaminated runoff from gas stations as well as sullage from roads and tunnels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Horstkotte, Burkhard; Chocholouš, Petr; Solich, Petr
2016-04-01
We report on a Lab-On-Valve (LOV) configuration for analyte preconcentration from milliliter sample volumes using confluent mixing in the holding coil for in-line addition of loading buffer. The system was applied to the spectrophotometric determination of iron(II) in acidified seawater using 1,10-phenanthroline as color reagent. A cellulose-based chelating sorbent containing 8-hydroxyquinoline was used for the first time in LOV and excellent retention behavior and loading capacity were found. The flow system employs a syringe pump for handling all solutions (sorbent suspension, loading buffer, water, eluent, and color reagent) and a peristaltic pump for sample propulsion and includes a fit-for-purpose 14 cm long detection glass flow cell and a bubble trap for in-line carrier degasification. Advantage was taken of the LOV flow-through port to keep the eluted analytes for re-aspiration for subsequent chromogenic reaction. In effect, a universal analyzer configuration and preconcentration procedure was developed, which is combinable with other analytes, sorbents, and reagents. Among the studied parameters were the compositions, pH, volumes, and flow rates of loading buffer, eluent, and color reagent, as well as the microcolumn size, repeatability, and system stability. Reproducibility of 4.1% RSD over the entire working range, a LOD of down to 5 nmol L(-1), sampling frequency of 12h(-1), and linearity up to 1 µmol L(-1) for 3.3 mL of sample were obtained and applicability to real samples was demonstrated. It was proven that both Fe(III) and Fe(II) were retained and yielded similar recovery and sensitivity values. The method was applied to coastal seawater samples and spiking experiments yielded recovery values close to 100%. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Wei; Zhang, Xiaofang; Zhao, Jiangqi; Li, Qingye; Ao, Chenghong; Xia, Tian; Zhang, Wei; Lu, Canhui
Sorbents derived from biomass provide a novel approach to settle issues of organic solvent and/or oil leakage. In this work, a novel carbon aerogel (CA) was prepared as sorbents using the cheap and abundant bamboo pulp fibers as precursors through the pyrolysis method. The CA displayed an ultra-low density (5.65 mg cm-3), high hydrophobicity (water contact angle of 135.9°) and a large specific surface area (379.39 m2 g-1) as well as great mechanical properties. The absorption capacities of CA for organic solvents/oils were extraordinary (50-150 g/g). Particularly, its absorption on organic solvents was superior to many other bio-based CAs. The reusability of CA was also found impressive. For over five absorption-desorption cycles, the CA still showed excellent absorption behaviors on organic solvents and oils. Importantly, the fabrication process of CA is quite simple and environmentally friendly, demonstrating high potentials for future water treatment applications.
Process and system for removing impurities from a gas
Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S
2014-04-15
A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.
Solid sorbents for removal of carbon dioxide from gas streams at low temperatures
Sirwardane, Ranjani V.
2005-06-21
New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.
Ultrafast and Stable CO2 Capture Using Alkali Metal Salt-Promoted MgO-CaCO3 Sorbents.
Cui, Hongjie; Zhang, Qiming; Hu, Yuanwu; Peng, Chong; Fang, Xiangchen; Cheng, Zhenmin; Galvita, Vladimir V; Zhou, Zhiming
2018-06-20
As a potential candidate for precombustion CO 2 capture at intermediate temperatures (200-400 °C), MgO-based sorbents usually suffer from low kinetics and poor cyclic stability. Herein, a general and facile approach is proposed for the fabrication of high-performance MgO-based sorbents via incorporation of CaCO 3 into MgO followed by deposition of a mixed alkali metal salt (AMS). The AMS-promoted MgO-CaCO 3 sorbents are capable of adsorbing CO 2 at an ultrafast rate, high capacity, and good stability. The CO 2 uptake of sorbent can reach as high as above 0.5 g CO 2 g sorbent -1 after only 5 min of sorption at 350 °C, accounting for vast majority of the total uptake. In addition, the sorbents are very stable even under severe but more realistic conditions (desorption in CO 2 at 500 °C), where the CO 2 uptake of the best sorbent is stabilized at 0.58 g CO 2 g sorbent -1 in 20 consecutive cycles. The excellent CO 2 capture performance of the sorbent is mainly due to the promoting effect of molten AMS, the rapid formation of CaMg(CO 3 ) 2 , and the plate-like structure of sorbent. The exceptional ultrafast rate and the good stability of the AMS-promoted MgO-CaCO 3 sorbents promise high potential for practical applications, such as precombustion CO 2 capture from integrated gasification combined cycle plants and sorption-enhanced water gas shift process.
Assessing sorbent injection mercury control effectiveness in flue gas streams
Carey, T.R.; Richardson, C.F.; Chang, R.; Meserole, F.B.; Rostam-Abadi, M.; Chen, S.
2000-01-01
One promising approach for removing mercury from coal-fired, utility flue gas involves the direct injection of mercury sorbents. Although this method has been effective at removing mercury in municipal waste incinerators, tests conducted to date on utility coal-fired boilers show that mercury removal is much more difficult in utility flue gas. EPRI is conducting research to investigate mercury removal using sorbents in this application. Bench-scale, pilot-scale, and field tests have been conducted to determine the ability of different sorbents to remove mercury in simulated and actual flue gas streams. This paper focuses on recent bench-scale and field test results evaluating the adsorption characteristics of activated carbon and fly ash and the use of these results to develop a predictive mercury removal model. Field tests with activated carbon show that adsorption characteristics measured in the lab agree reasonably well with characteristics measured in the field. However, more laboratory and field data will be needed to identify other gas phase components which may impact performance. This will allow laboratory tests to better simulate field conditions and provide improved estimates of sorbent performance for specific sites. In addition to activated carbon results, bench-scale and modeling results using fly ash are presented which suggest that certain fly ashes are capable of adsorbing mercury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, G.P.; Delzer, G.A.; Kubicek, D.H.
Phillips Z-Sorb sorbents have been evaluated successfully as regenerable sorbents for hydrogen sulfide in the fuel gas that is produced in a clean coal technology power plant. Tests have been carried out in fixed-,moving-, and fluid-bed applications. The fixed-bed tests completed at the Morgantown Energy Technology Center showed that Phillips Z-Sorb sorbent performed better than zinc titanate. The performance of Phillips Z-Sorb sorbent in a moving-bed application was very encouraging. The sorbent flowed well, H{sub 2}S was reduced to less than 50 ppm at the absorber outlet over long periods and post-test analysis of the sorbent indicated very low sulfatemore » levels at the regenerator exit. The fluidizable version of Phillips Z-Sorb sorbent was tested in Research Triangle Institutes`s high temperature, high pressure, semi-bath, fluidized-bed reactor system. in a life cycle test consisting of 50 cycles of sulfidation and regeneration, this sorbent exhibited excellent activity and regenerability. The sulfur loading was observed to be 90 + percent of the theoretical capacity. The sorbent consistently demonstrated a sharp regeneration profile with no evidence of sulfate accumulation. 7 refs., 7 fig., 5 tabs.« less
Sorbent Structural Testing on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Watson, David; Knox, James C.; West, Phillip; Bush, Richard
2016-01-01
Long term space missions require carbon dioxide removal systems that can function with minimal downtime required for maintenance, low power consumption and maximum efficiency for CO2 removal. A major component of such a system are the sorbents used for the CO2 and desiccant beds. Sorbents must not only have adequate CO2 and H2O removal properties, but they must have the mechanical strength to prevent structural breakdown due to pressure and temperature changes during operation and regeneration, as well as resistance to breakdown due to moisture in the system from cabin air. As part of the studies used to select future CO2 sorbent materials, mechanical tests are performed on various zeolite sorbents to determine mechanical performance while dry and at various humidified states. Tests include single pellet crush, bulk crush and attrition tests. We have established a protocol for testing sorbents under dry and humid conditions, and previously tested the sorbents used on the International Space Station carbon dioxide removal assembly. This paper reports on the testing of a series of commercial sorbents considered as candidates for use on future exploration missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, Jeff
One-step hydrogen generation, using Sorption Enhanced Reforming (SER) technology, is an innovative means of providing critical energy and environmental improvements to US manufacturing processes. The Gas Technology Institute (GTI) is developing a Compact Hydrogen Generator (CHG) process, based on SER technology, which successfully integrates previously independent process steps, achieves superior energy efficiency by lowering reaction temperatures, and provides pathways to doubling energy productivity with less environmental pollution. GTI’s prior CHG process development efforts have culminated in an operational pilot plant. During the initial pilot testing, GTI identified two operating risks- 1) catalyst coating with calcium aluminate compounds, 2) limited solidsmore » handling of the sorbent. Under this contract GTI evaluated alternative materials (one catalyst and two sorbents) to mitigate both risks. The alternate catalyst met performance targets and did not experience coating with calcium aluminate compounds of any kind. The alternate sorbent materials demonstrated viable operation, with one material enabling a three-fold increase in sorbent flow. The testing also demonstrated operation at 90% of its rated capacity. Lastly, a carbon dioxide co-production study was performed to assess the advantage of the solid phase separation of carbon dioxide- inherent in the CHG process. Approximately 70% lower capital cost is achievable compared to SMR-based hydrogen production with CO2 capture, as well as improved operating costs.« less
Bunkoed, Opas; Rueankaew, Thanaschaphorn; Nurerk, Piyaluk; Kanatharana, Proespichaya
2016-06-01
Polyaniline coated cigarette filters were successfully synthesized and used as a solid-phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π-π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5-10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost-effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85-98%) and a relative standard deviation <10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermochromatography and activation analysis
NASA Astrophysics Data System (ADS)
Stattarov, G. S.; Kist, A. A.
1999-01-01
Gas thermochromatography is a promising method in combination with neutron activation analysis. The procedure includes heating of irradiated samples in a stream of reacting gas carrier (air, chlorine, etc.) or heating in presence of compounds evolving gas at high temperatures. Gaseous products are passed through a tube with certain temperature gradient filled with various sorbents and the gases condense in different parts of the column. Studies of the processes of producing and trapping of volatile compounds allowed to work out various set-ups of apparatus with sorption tubes of various length and various temperature gradients, various filters, sorbents, etc. Sensitivity of these methods is sufficiently better then in INAA.
Begag, Redouane; Rhine, Wendell E.; Dong, Wenting
2018-04-03
The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.
Begag, Redouane; Rhine, Wendell E; Dong, Wenting
2016-04-05
The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.
Use of biomass sorbents for oil removal from gas station runoff.
Khan, Eakalak; Virojnagud, Wanpen; Ratpukdi, Thunyalux
2004-11-01
The use of biomass sorbents, which are less expensive and more biodegradable than synthetic sorbents, for oil removal from gas station runoff was investigated. A bench-scale flume experiment was conducted to evaluate the oil removal and retention capabilities of the biomass sorbents which included kapok fiber, cattail fiber, Salvinia sp., wood chip, rice husk, coconut husk, and bagasse. Polyester fiber, a commercial synthetic sorbent, was also experimented for comparison purpose. Oil sorption and desorption tests were performed at a water flow rate of 20 lmin-1. In the oil sorption tests, a 50 mgl(-1) of used engine oil-water mixture was synthesized to simulate the gas station runoff. The mass of oil sorbed for all sorbents, except coconut husk and bagasse, was greater than 70%. Cattail fiber and polyester fiber were the sorbents that provided the least average effluent oil concentrations. Oil selectivity (hydrophobic properties) and physical characteristics of the sorbents are the two main factors that influence the oil sorption capability. The used sorbents from the sorption tests were employed in the desorption tests. Results indicated that oil leached out of all the sorbents tested. Polyester fiber released the highest amount of oil, approximately 4% (mass basis) of the oil sorbed. copyright 2004 Elsevier Ltd.
Multicomponent gas sorption Joule-Thomson refrigeration
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Bard, Steven (Inventor)
1991-01-01
The present invention relates to a cryogenic Joule-Thomson refrigeration capable of pumping multicomponent gases with a single stage sorption compressor system. Alternative methods of pumping a multicomponent gas with a single stage compressor are disclosed. In a first embodiment, the sorbent geometry is such that a void is defined near the output of the sorption compressor. When the sorbent is cooled, the sorbent primarily adsorbs the higher boiling point gas such that the lower boiling point gas passes through the sorbent to occupy the void. When the sorbent is heated, the higher boiling point gas is desorbed at high temperature and pressure and thereafter propels the lower boiling point gas out of the sorption compressor. A mixing chamber is provided to remix the constituent gases prior to expansion of the gas through a Joule-Thomson valve. Other methods of pumping a multicomponent gas are disclosed. For example, where the sorbent is porous and the low boiling point gas does not adsorb very well, the pores of the sorbent will act as a void space for the lower boiling point gas. Alternatively, a mixed sorbent may be used where a first sorbent component physically adsorbs the high boiling point gas and where the second sorbent component chemically absorbs the low boiling point gas.
Volkova, V N; Mukhina, L P; Chistova, Zh A; Fedorova, S G
Polyoxin B being an effective inhibitor of synthesis of chitin of the cell wall of many phytopathogenic fungi, is recommended as a fungicide for control of phytopathogenic organisms that cause damage to crop. For the determination of the exposure of employees working with pesticides there was developed the method of the measurement of concentrations of polyoxin B in air of working area, atmospheric air of populated areas and washouts from the operators ’ integuments, based on high performance liquid chromatography with ultraviolet detector (detection wavelength of270 nm), including sampling air environment in the sorption tube ORBO-44, filled with sorbent XAD-2, extraction of the sorbent with polyoxin by a mixture of carbinol-water (in a ratio of 95:5,on volume), washout from the surface of the skin with ethyl alcohol by way of washing, concentrating, quantitative chromatographic analysis. Lower limits of the quantification ofpolyoxin B in the air ofworking area - 0.2 mg/m at the aspiration of 2 dm of air, atmospheric air - 0.016 mg/m at the aspiration of 25 dm of air, in washouts from the operators’ integuments - 0.4 pg/wash, the linear range of the defined concentrations accounted for of 0.2 - 2.4 pg/cm, the total error of measurement of the concentrations of polyoxin B in air is 17%; in washouts from the operators’ integuments - 16%. The developed method was approbated for the determination of polyoxin in samples of air of working zone, atmospheric air within the sanitary gap, washouts from the operators ’ integuments and air drift samples taken under processing of roses in the hothouse and in the monitoring of the phytosanitary condition of the plants every other day after treatment.
EVALUATION OF SORBENTS FOR INDUSTRIAL SLUDGE LEACHATE TREATMENT
A laboratory and outdoor pilot-scale investigation was conducted on the use of selected sorbents for removing leachate contaminants from three industrial sludges. The laboratory results indicated that, rather than a single sorbent, a combination of acidic and basic sorbents is re...
Silva, Camilla Fonseca; Borges, Keyller Bastos; do Nascimento, Clebio Soares
2017-12-18
In this work, we studied theoretically the formation process of a molecularly imprinted polymer (MIP) for dinotefuran (DNF), testing distinct functional monomers (FM) in various solvents through density functional theory calculations. The results revealed that the best conditions for MIP synthesis were established with methacrylic acid (MAA) as FM in a 1 : 4 stoichiometry and with chloroform as the solvent. This protocol showed the most favourable stabilization energies for the pre-polymerization complexes. Furthermore, the formation of the FM/template complex is enthalpy driven and the occurrence of hydrogen bonds between the DNF and MAA plays a major role in the complex stability. To confirm the theoretical results, MIP was experimentally synthesized considering the best conditions found at the molecular level and characterized by scanning electron microscopy and thermogravimetric analysis. After that, the synthesized material was efficiently employed in microextraction by packed sorbent combined with high-performance liquid chromatography in a preliminary study of the recovery of DNF from water and artificial saliva samples.
Sulphation of CaO-Based Sorbent Modified in CO2 Looping Cycles
NASA Astrophysics Data System (ADS)
Manovic, Vasilije; Anthony, Edward J.; Loncarevic, Davor
CaO-based looping cycles for CO2 capture at high temperatures are based on cyclical carbonation of CaO and regeneration of CaCO3. The main limitation of natural sorbents is the loss of carrying capacity with increasing numbers of reaction cycles, resulting in spent sorbent ballast. Use of spent sorbent from CO2 looping cycles for SO2 capture is a possible solution investigated in this study. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain) and Katowice (Poland). Carbonation/calcination cycles were performed in a tube furnace with original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulphated in a thermogravimetric analyzer. Changes in the resulting pore structure were then investigated using mercury porosimetry. Final conversions of both spent and pretreated sorbents after longer sulphation times were comparable or higher than those observed for the original sorbents. Maximum sulphation levels strongly depend on sorbent porosity and pore surface area. The shrinkage of sorbent particles during calcination/cycling resulted in a loss of sorbent porosity (≤48%), which corresponds to maximum sulphation levels ˜55% for spent Kelly Rock and Katowice. However, this is ˜10% higher than for the original samples. By contrast, La Blanca limestone had more pronounced particle shrinkage during pretreatment and cycling, leading to lower porosity, <35%, resulting in sulphation conversion of spent samples <30%, significantly lower than for the original sample (45%). These results showed that spent sorbent samples from CO2 looping cycles can be used as sorbents for SO2 retention if significant porosity loss does not occur during CO2 reaction cycles. For spent Kelly Rock and Katowice samples final conversions are determined by the total pore volume available for the bulky CaSO4 product.
Space-filling polyhedral sorbents
Haaland, Peter
2016-06-21
Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.
Circulating moving bed system for CO.sub.2 separation, and method of same
Elliott, Jeannine Elizabeth; Copeland, Robert James
2016-12-27
A circulating moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The circulating moving bed can include an adsorption reactor and a desorption reactor, and a sorbent that moves through the two reactors. The sorbent can enter the adsorptive reactor and one end and move to an exit point distal to its entry point, while a CO.sub.2 feed stream can enter near the distal point and move countercurrently through the sorbent to exit at a position near the entry point of the sorbent. The sorbent can adsorb the CO.sub.2 by concentration swing adsorption and adsorptive displacement. The sorbent can then transfer to a regeneration reactor and can move countercurrently against a flow of steam through the regeneration reactor. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing desorption and desorptive displacement with steam.
Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Knox, James C.; Trinh, Diep; Gostowski, Rudy; King, Eric; Mattox, Emily M.; Watson, David; Thomas, John
2012-01-01
"NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the carbon dioxide (CO2) removal hardware design and sorbent screening and characterization effort in support of the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project within the AES program. A companion paper discusses development of atmosphere revitalization models and simulations for this project.
Developments in Atmosphere Revitalization Modeling and Simulation
NASA Technical Reports Server (NTRS)
Knox, James C.; Kittredge, Kenneth; Xoker, Robert F.; Cummings, Ramona; Gomez, Carlos F.
2012-01-01
"NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the development of atmosphere revitalization models and simulations. A companion paper discusses the hardware design and sorbent screening and characterization effort in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.
Nelson, Sidney [Hudson, OH
2011-02-15
Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.
Method of burning sulfur-containing fuels in a fluidized bed boiler
Jones, Brian C.
1982-01-01
A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.
Tarhan, Tuba; Tural, Bilsen; Tural, Servet; Topal, Giray
2015-11-01
In this study, R(+)-α-methylbenzylamine-modified magnetic chiral sorbent was synthesized and assessed as a new enantioselective solid phase sorbent for separation of mandelic acid enantiomers from aqueous solutions. The chemical structures and magnetic properties of the new sorbent were characterized by vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and dynamic light scattering. The effects of different variables such as the initial concentration of racemic mandelic acid, dosage of sorbent, and contact time upon sorption characteristics of mandelic acid enantiomers on magnetic chiral sorbent were investigated. The sorption of mandelic acid enantiomers followed a pseudo-second-order reaction and equilibrium experiments were well fitted to a Langmuir isotherm model. The maximum adsorption capacity of racemic mandelic acid on to the magnetic chiral sorbent was found to be 405 mg g(-1). The magnetic chiral sorbent has a greater affinity for (S)-(+)-mandelic acid compared to (R)-(-)-mandelic acid. The optimum resolution was achieved with 10 mL 30 mM of racemic mandelic acid and 110 mg of magnetic chiral sorbent. The best percent enantiomeric excess values (up to 64%) were obtained by use of a chiralpak AD-H column. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, K.C.; Crowe, E.R.; Gangwal, S.K.
1997-01-01
Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated to effectively remove hydrogen sulfide with various metal oxide sorbents at high temperatures and pressures. Metal oxide sorbents such as zinc titanate oxide, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide were found to be promising sorbents in comparison with other removal methods such as membrane separation and reactive membrane separation. The removal reaction of H{sub 2}S from coal gas mixtures with zinc titanate oxide sorbents was conducted in a batch reactor. The main objectives of this research are to formulate promising metal oxide sorbentsmore » for removal of hydrogen sulfide from coal gas mixtures, to compare reactivity of a formulated sorbent with a sorbent supplied by the Research Triangle Institute at high temperatures and pressures, and to determine effects of concentrations of moisture contained in coal gas mixtures on equilibrium absorption of H{sub 2}S into metal oxide sorbents. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures.« less
Removal of emerging micropollutants from water using cyclodextrin.
Nagy, Zsuzsanna Magdolna; Molnár, Mónika; Fekete-Kertész, Ildikó; Molnár-Perl, Ibolya; Fenyvesi, Éva; Gruiz, Katalin
2014-07-01
Small scale laboratory experiment series were performed to study the suitability of a cyclodextrin-based sorbent (ß-cyclodextrin bead polymer, BCDP) for modelling the removal of micropollutants from drinking water and purified waste water using simulated inflow test solutions containing target analytes (ibuprofen, naproxen, ketoprofen, bisphenol-A, diclofenac, β-estradiol, ethinylestradiol, estriol, cholesterol at 2-6 μg/L level). This work was focused on the preliminary evaluation of BCDP as a sorbent in two different model systems (filtration and fluidization) applied for risk reduction of emerging micropollutants. For comparison different filter systems combined with various sorbents (commercial filter and activated carbon) were applied and evaluated in the filtration experiment series. The spiked test solution (inflow) and the treated outflows were characterized by an integrated methodology including chemical analytical methods gas chromatography-tandem mass spectrometry (GC-MS/MS) and various environmental toxicity tests to determine the efficiency and selectivity of the applied sorbents. Under experimental conditions the cyclodextrin-based filters used for purification of drinking water in most cases were able to absorb more than 90% of the bisphenol-A and of the estrogenic compounds. Both the analytical chemistry and toxicity results showed efficient elimination of these pollutants. Especially the toxicity of the filtrate decreased considerably. Laboratory experiment modelling post-purification of waste water was also performed applying fluidization technology by ß-cyclodextrin bead polymer. The BCDP removed efficiently from the spiked test solution most of the micropollutants, especially the bisphenol-A (94%) and the hormones (87-99%) The results confirmed that the BCDP-containing sorbents provide a good solution to water quality problems and they are able to decrease the load and risk posed by micropollutants to the water systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Hale, Sarah E; Arp, Hans Peter H; Slinde, Gøril Aasen; Wade, Emma Jane; Bjørseth, Kamilla; Breedveld, Gijs D; Straith, Bengt Fredrik; Moe, Kamilla Grotthing; Jartun, Morten; Høisæter, Åse
2017-03-01
Aqueous film-forming foams (AFFF) containing poly- and perfluoroalkyl substances (PFAS) used for firefighting have led to the contamination of soil and water at training sites. The unique physicochemical properties of PFAS results in environmental persistency, threatening water quality and making remediation of such sites a necessity. This work investigated the role of sorbent amendment to PFAS contaminated soils in order to immobilise PFAS and reduce mobility and leaching to groundwater. Soil was sampled from a firefighting training facility at a Norwegian airport and total and leachable PFAS concentrations were quantified. Perfluorooctanesulfonic acid (PFOS) was the most dominant PFAS present in all soil samples (between 9 and 2600 μg/kg). Leaching was quantified using a one-step batch test with water (L/S 10). PFOS concentrations measured in leachate water ranged between 1.2 μg/L and 212 μg/L. Sorbent amendment (3%) was tested by adding activated carbon (AC), compost soil and montmorillonite to selected soils. The extent of immobilisation was quantified by measuring PFAS concentrations in leachate before and after amendment. Leaching was reduced between 94 and 99.9% for AC, between 29 and 34% for compost soil and between 28 and 40% for the montmorillonite amended samples. Sorbent + soil/water partitioning coefficients (K D ) were estimated following amendment and were around 8 L/kg for compost soil and montmorillonite amended soil and ranged from 1960 to 16,940 L/kg for AC amended soil. The remediation of AFFF impacted soil via immobilisation of PFAS following sorbent amendment with AC is promising as part of an overall remediation strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sakr, Tamer M; Nawar, Mohamed F; Fasih, T W; El-Bayoumy, S; Abd El-Rehim, H A
2017-11-01
Nanostructured materials attracted considerable attention because of its high surface area to volume ratio resulting from their nano-scale dimensions. This class of sorbents is expected to have a potential impact on enhancement the efficacy of radioisotope generators for diagnostic and therapeutic applications in nuclear medicine. This review provides a summary on the importance of nanostructured materials as effective sorbents for the development of clinical-scale radioisotope generators and outlining the assessment of recent developments, key challenges and promising access to the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of an adsorption compressor for use in cryogenic refrigeration
NASA Technical Reports Server (NTRS)
Schember, Helen R.
1989-01-01
A new compressor with no moving parts has been developed which is able to supply a source of high-pressure gas to a Joule-Thompson based cryogenic refrigerator. The compressor relies on a newly implemented combination of high-surface-area Saran carbon (sorbent) and krypton gas (working fluid). In addition, an integral gas-gap heat switch is used to provide improved overall efficiency. A prototype compressor has been designed, built, and tested as a part of the Jet Propulsion Laboratory effort in sorption refrigeration. Performance data from the prototype unit described here demonstrate successful compressor performance and good agreement with theoretical predictions.
Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, G.O.; Copeland, R.; Dubovik, M.
2002-09-20
Gasification technologies convert coal and other heavy feedstocks into synthesis gas feed streams that can be used in the production of a wide variety of chemicals, ranging from hydrogen through methanol, ammonia, acetic anhydride, dimethyl ether (DME), methyl tertiary butyl ether (MTBE), high molecular weight liquid hydrocarbons and waxes. Syngas can also be burned directly as a fuel in advanced power cycles to generate electricity with very high efficiency. However, the coal-derived synthesis gas contains a myriad of trace contaminants that may poison the catalysts that are used in the downstream manufacturing processes and may also be regulated in powermore » plant emissions. Particularly, the catalysts used in the conversion of synthesis gas to methanol and other liquid fuels (Fischer-Tropsch liquids) have been found to be very sensitive to the low levels of poisons, especially arsenic, that are present in the synthesis gas from coal. TDA Research, Inc. (TDA) is developing an expendable high capacity, low-cost chemical absorbent to remove arsenic from coal-derived syngas. Unlike most of the commercially available sorbents that physically adsorb arsenic, TDA's sorbent operates at elevated temperatures and removes the arsenic through chemical reaction. The arsenic content in the coal gas stream is reduced to ppb levels with the sorbent by capturing and stabilizing the arsenic gas (As4) and arsenic hydrides (referred to as arsine, AsH3) in the solid state. To demonstrate the concept of high temperature arsenic removal from coal-derived syngas, we carried out bench-scale experiments to test the absorption capacity of a variety of sorbent formulations under representative conditions. Using on-line analysis techniques, we monitored the pre- and post-breakthrough arsine concentrations over different sorbent samples. Some of these samples exhibited pre-breakthrough arsine absorption capacity over 40% wt. (capacity is defined as lb of arsenic absorbed/lb of sorbent), while maintaining an arsine outlet concentration at less than 10 ppb.« less
ADVANCED SULFUR CONTROL CONCEPTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael
Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce themore » number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).« less
Han, Deman; Jia, Wenping; Liang, Huading
2010-01-01
A molecularly-imprinted amino-functionalized sorbent for selective removal of 2,4-dichlorophenoxyacetic acid (2,4-D) was prepared by a surface imprinting technique in combination with a sol-gel process. The 2,4-D-imprinted amino-functionalized silica sorbent was characterized by FT-IR, nitrogen adsorption and static adsorption experiments. The selectivity of the sorbent was investigated by a batch competitive binding experiment using an aqueous 2,4-D and 2,4-dichlorophenol (2,4-DCP) mixture or using an aqueous 2,4-D and 2,4-dichlorophenylacetic acid (DPAC) mixture. The largest selectivity coefficient for 2,4-D in the presence of 2,4-DCP was found to be over 18, the largest relative selectivity coefficient between 2,4-D and 2,4-DCP over 9. The static uptake capacity and selectivity coefficient of the 2,4-D-imprinted functionalized sorbent are higher than those of the non-imprinted sorbent. The imprinted functionalized silica gel sorbent offered a fast kinetics for the extraction/stripping of 2,4-D, 73% of binding capacity (200 mg/L 2,4-D onto 20 mg of imprinted sorbent) was obtained within 5 min and the adsorbed 2,4-D can be easily stripped by the mixture solution of ethanol and 6 mol/L HCl (V:V = 1:1). In a test of five extraction/stripping cycles, the adsorption capacity of the sorbent was all above 93% of that of the fresh sorbent. Experimental result showed the potential of molecularly-imprinted amino-functionalized sorbent for selective removal of 2,4-D.
A regenerative process for carbon dioxide removal and hydrogen production in IGCC
NASA Astrophysics Data System (ADS)
Hassanzadeh Khayyat, Armin
Advanced power generation technologies, such as Integrated Gasification-Combined Cycles (IGCC) processes, are among the leading contenders for power generation conversion because of their significantly higher efficiencies and potential environmental advantages, compared to conventional coal combustion processes. Although the increased in efficiency in the IGCC processes will reduce the emissions of carbon dioxide per unit of power generated, further reduction in CO2 emissions is crucial due to enforcement of green house gases (GHG) regulations. In IGCC processes to avoid efficiency losses, it is desirable to remove CO2 in the temperature range of 300° to 500°C, which makes regenerable MgO-based sorbents ideal for such operations. In this temperature range, CO2 removal results in the shifting of the water-gas shift (WGS) reaction towards significant reduction in carbon monoxide (CO), and enhancement in hydrogen production. However, regenerable, reactive and attrition resistant sorbents are required for such application. In this work, a highly reactive and attrition resistant regenerable MgO-based sorbent is prepared through dolomite modification, which can simultaneously remove carbon dioxide and enhance hydrogen production in a single reactor. The results of the experimental tests conducted in High-Pressure Thermogravimetric Analyzer (HP-TGA) and high-pressure packed-bed units indicate that in the temperature range of 300° to 500°C at 20 atm more than 95 molar percent of CO2 can be removed from the simulated coal gas, and the hydrogen concentration can be increased to above 70 percent. However, a declining trend is observed in the capacity of the sorbent exposed to long-term durability analysis, which appears to level off after about 20 cycles. Based on the physical and chemical analysis of the sorbent, a two-zone expanding grain model was applied to obtain an excellent fit to the carbonation reaction rate data at various operating conditions. The modeling results indicate that more than 90 percent purification of hydrogen is achievable, either by increasing the activity of the sorbent towards water-gas shift reaction or by mixing the sorbent bed with a commercialized water-gas shift catalyst. The preliminary economical evaluation of the MgO-based process indicates that this process can be economically viable compared to the commercially available WGS/Selexol(TM) processes.
NASA Astrophysics Data System (ADS)
Gargiulo, Valentina; Alfè, Michela; Ammendola, Paola; Raganati, Federica; Chirone, Riccardo
2016-01-01
The use of solid sorbents is a convenient option in post-combustion CO2 capture strategies. Sorbents selection is a key point because the materials are required to be both low-cost and versatile in typical post-combustion conditions in order to guarantee an economically advantageous overall process. This work compares strategies to tailor the chemico-physical features of carbon black (CB) by surface-modification and/or coating with a CO2-sorbent phase. The influence of the CB microporosity, enhanced by chemical/thermal treatments, is also taken into account. Three CB surface modifications are performed and compared: (i) oxidation and functionalization with amino-groups, (ii) coating with iron oxides and (iii) impregnation with an ionic liquid (IL). The CO2 capture performance is evaluated on the basis of the breakthrough curves measured at atmospheric pressure and room temperature in a lab-scale fixed bed micro-reactor. Most of tested solids adsorb a CO2 amount significantly higher than a 13X zeolite and DARCO FGD (Norit) activated carbon (up to 4 times more in the best case). The sorbents bearing basic functionalities (amino-groups and IL) exhibit the highest CO2 sorption capacity. The use of a microporous carbonaceous support limits the accessibility of CO2 toward the adsorbing phase (IL or FM) lowering the number of accessible binding sites for CO2.
40 CFR 75.39 - Missing data procedures for sorbent trap monitoring systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Missing data procedures for sorbent... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.39 Missing data procedures for sorbent trap monitoring systems. (a) If a primary sorbent trap...
Rapid Cycle Amine (RCA 2.0) System Development
NASA Technical Reports Server (NTRS)
Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin
2012-01-01
The Rapid Cycle Amine (RCA) system is a low power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water vapor, while during the regeneration mode, the sorbent rejects the adsorbed CO2 and water vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low power controller design with several modes of operation available to the user. Together with NASA, United Technologies Corporation Aerospace Systems has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA-JSC in September 2012. This paper will provide an overview on the RCA system design and results of pre-delivery testing.
Rapid Cycle Amine (RCA 2.0) System Development
NASA Technical Reports Server (NTRS)
Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin
2013-01-01
The Rapid Cycle Amine (RCA) system is a low-power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water (H2O) vapor, whereas during the regeneration mode, the sorbent rejects the adsorbed CO2 and H2O vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low-power controller design with several modes of operation available to the user. Together with NASA Johnson Space Center, Hamilton Sundstrand Space Systems International, Inc. has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design of RCA 2.0 was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA Johnson Space Center in September 2012. This paper provides an overview of the RCA system design and results of pre-delivery testing.
Fernández, P; González, M; Regenjo, M; Ares, A M; Fernández, A M; Lorenzo, R A; Carro, A M
2017-02-17
A miniaturized and simple method based on digitally programmed microextraction by packed sorbent (eVol ® -MEPS) coupled to ultra-performance liquid chromatography (UPLC) has been developed for quantitative determination of three synthetic cathinones and seven conventional drugs of abuse and metabolites. The influence of several extraction parameters, such as washing and elution solvents were tested. In addition important variables affecting MEPS performance, namely sample volume, sorbent drying time, washing solvent volume, elution volume, number of extraction cycles, sorbent phase and pH, were evaluated using an asymmetrical screening design. The optimal experimental conditions involved 300μL of plasma, loading 10×100μL of sample through a C8/SCX sorbent in a MEPS syringe placed in the semi-automatic eVol ® system, washing using 150μL H 2 O:MeOH (90:10, v/v), drying for 0.5min and elution using 200μL dichloromethane:2-propanol:ammonium hydroxide (78:20:2, v/v/v). The drugs separation was achieved using an ACQUITY BEH Shield RP18 column (2.1mm×100mm×1.7μm) in 3min. Under optimized conditions the proposed method was validated in terms of selectivity, linearity, limits of detection (LOD) and quantitation (LOQ), precision and matrix effect, using standard addition calibration. The combination of MEPS and UPLC provides a method for the primary screening of the analytes in 18min with excellent recoveries at three concentration levels, ranging between 80 and 104% (relative standard deviation <11%). The developed methodology has been successfully applied to plasma samples from polydrug abusers. Copyright © 2017 Elsevier B.V. All rights reserved.
Ionic liquids: solvents and sorbents in sample preparation.
Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L
2018-01-01
The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Du, Li-Jing; Yi, Ling; Ye, Li-Hong; Chen, Yu-Bo; Cao, Jun; Peng, Li-Qing; Shi, Yu-Ting; Wang, Qiu-Yan; Hu, Yu-Han
2018-02-16
A simple and effective method of miniaturized solid-phase extraction (mini-SPE) was developed for the simultaneous purification and enrichment of macrolide antibiotics (MACs) (i.e. azithromycin, clarithromycin, erythromycin, lincomycin and roxithromycin) from honey and skim milk. Mesoporous MCM-41 silica was synthesized and used as sorbent in mini-SPE. Several key parameters affecting the performance of mini-SPE procedure were thoroughly investigated, including sorbent materials, amount of sorbent and elution solvents. Under the optimized condition, satisfactory linearity (r 2 > 0.99), acceptable precision (RSDs, 0.3-7.1%), high sensitivity (limit of detection in the range of 0.01-0.76 μg/kg), and good recoveries (83.21-105.34%) were obtained. With distinct advantages of simplicity, reliability and minimal sample requirement, the proposed mini-SPE procedure coupled with ultrahigh performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry could become an alternative tool to analyze the residues of MACs in complex food matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinal, Laura; Wong-Ng, Winnie; Kaduk, James A.
2014-09-24
The development of sorbents for next-generation CO{sub 2} mitigation technologies will require better understanding of CO{sub 2}/sorbent interactions. Among the sorbents under consideration are shape-selective microporous molecular sieves with hierarchical pore morphologies of reduced dimensionality. We have characterized the non-equilibrium CO{sub 2} sorption of OMS-2, a well-known one-dimensional microporous octahedral molecular sieve with manganese oxide framework. Remarkably, we find that the degree of CO{sub 2} sorption hysteresis increases when the gas/sorbent system is allowed to equilibrate for longer times at each pressure step. Density functional theory calculations indicate a 'gate-keeping' role of the cation in the tunnel, only allowing CO{submore » 2} molecules to enter fully into the tunnel via a highly unstable transient state when CO{sub 2} loadings exceed 0.75 mmol/g. The energy barrier associated with the gate-keeping effect suggests an adsorption mechanism in which kinetic trapping of CO{sub 2} is responsible for the observed hysteretic behavior.« less
Regenerable solid imine sorbents
Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric
2013-09-10
Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.
Sulfur tolerant highly durable CO.sub.2 sorbents
Smirniotis, Panagiotis G [Cincinnati, OH; Lu, Hong [Urbana, IL
2012-02-14
A sorbent for the capture of carbon dioxide from a gas stream is provided, the sorbent containing calcium oxide (CaO) and at least one refractory dopant having a Tammann temperature greater than about 530.degree. C., wherein the refractory dopant enhances resistance to sintering, thereby conserving performance of the sorbent at temperatures of at least about 530.degree. C. Also provided are doped CaO sorbents for the capture of carbon dioxide in the presence of SO.sub.2.
Organogelator-Cellulose Composite for Practical and Eco-Friendly Marine Oil-Spill Recovery.
Prathap, Annamalai; Sureshan, Kana M
2017-08-01
Marine oil spills pose serious threats to the ecosystem and economy. There is much interest in developing sorbents that can tackle such spills. We have developed a novel sorbent by impregnating cellulose pulp with a sugar-derived oleogelator, 1,2:5,6-di-O-cyclohexylidene-mannitol. The gelator molecules mask the surface-exposed hydroxyl groups of cellulose fibrils by engaging them in H-bonding and expose their hydrophobic parts making the fibers temporarily hydrophobic (water contact angle 110°). This sorbent absorbs oil effectively, selectively and instantly from oil-water mixtures due to its hydrophobicity. Then the gelator molecules get released uniformly in the oil and later self-assemble to fibers, as evident from SEM analysis, congealing the oil within the matrix. This hierarchical entrapment of the oil by non-covalent polymeric fibers within a covalent polymer matrix makes the gel very strong (230-fold increase in the yield stress) and rigid, making it suitable for practical use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-phase CFD modeling of solid sorbent carbon capture system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, E. M.; DeCroix, D.; Breault, R.
2013-07-01
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less
Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Emily M.; DeCroix, David; Breault, Ronald W.
2013-07-30
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less
Arsenic removal using natural biomaterial-based sorbents.
Ansone, Linda; Klavins, Maris; Viksna, Arturs
2013-10-01
Arsenic contamination of water is a major problem worldwide. A possible solution can be approached through developing new sorbents based on cost-effective and environmentally friendly natural biomaterials. We have developed new sorbents based on biomaterial impregnation with iron oxyhydroxide. In this study, raw peat material, iron-modified peat, iron-modified biomass (shingles, straw, sands, cane and moss) as well as iron humate were used for the removal of arsenate from contaminated water. The highest sorption capacity was observed in iron-modified peat, and kinetic studies indicated that the amount of arsenic sorbed on this material exceeds 90 % in 5 h. Arsenate sorption on iron-modified peat is characterised by the pseudo-second-order mechanism. The results of arsenic sorption in the presence of competing substances indicated that sulphate, nitrate, chloride and tartrate anions have practically no influence on As(V) sorption onto Fe-modified peat, whereas the presence of phosphate ions and humic acid significantly lowers the arsenic removal efficiency.
Salas, Daniela; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa Maria
2018-01-01
The aim of the present study is to broaden the applications of mixed-mode ion-exchange solid-phase extraction sorbents to extract both basic and acidic compounds simultaneously by combining the sorbents in a single cartridge and developing a simplified extraction procedure. Four different cartridges containing negative and positive charges in the same configuration were evaluated and compared to extract a group of basic, neutral, and acidic pharmaceuticals selected as model compounds. After a thorough optimization of the extraction conditions, the four different cartridges showed to be capable of retaining basic and acidic pharmaceuticals simultaneously through ionic interactions, allowing the introduction of a washing step with 15 mL methanol to eliminate interferences retained by hydrophobic interactions. Using the best combined cartridge, a method was developed, validated, and further applied to environmental waters to demonstrate that the method is promising for the extraction of basic and acidic compounds from very complex samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kress, Joel David
The development and scale up of cost effective carbon capture processes is of paramount importance to enable the widespread deployment of these technologies to significantly reduce greenhouse gas emissions. The U.S. Department of Energy initiated the Carbon Capture Simulation Initiative (CCSI) in 2011 with the goal of developing a computational toolset that would enable industry to more effectively identify, design, scale up, operate, and optimize promising concepts. The first half of the presentation will introduce the CCSI Toolset consisting of basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework,more » and high-resolution filtered computationalfluid- dynamics (CFD) submodels. The second half of the presentation will describe a high-fidelity model of a mesoporous silica supported, polyethylenimine (PEI)-impregnated solid sorbent for CO 2 capture. The sorbent model includes a detailed treatment of transport and amine-CO 2- H 2O interactions based on quantum chemistry calculations. Using a Bayesian approach for uncertainty quantification, we calibrate the sorbent model to Thermogravimetric (TGA) data.« less
Additional Developments in Atmosphere Revitalization Modeling and Simulation
NASA Technical Reports Server (NTRS)
Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.
2013-01-01
NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monazam, Esmail R.; Breault, Ronald W.; Fauth, Daniel J.
Thermogravimetric analysis was employed to investigate the CO 2 and H 2O adsorption rates and water vapor equilibrium on anhydrous and pre-hydrate linear polyethylenimine (LPEI) sorbent impregnated within a commercially functional CARiACT G10 (HPV) silica support. Water vapor experiments utilizing specific humidity of 2%, 8%, and 16% in contact with an anhydrous PEI sorbent resulted in proportional quantities of water vapor uptake. Subsequently, both anhydrous and pre-hydrated PEI-impregnated sorbents were made available to identical humidified gaseous streams containing a CO 2 concentration of 10% at 60oC. CO 2 capacity increased dramatically in the presence of different levels of humidity. Variousmore » kinetic models were systematically employed to interpret the experimental data including single and multiple-step models. The rate data was best represented by a reaction mechanism pathway involving the interplay of CO 2 with PEI-impregnated sorbents exhibited a quick adsorption phase followed by a slow approach to equilibrium. Moreover, a phenomenological rate model was developed to describe the dynamic H 2O and CO 2 uptakes at specific humidity levels studied. The kinetic study showed good agreement with experimental data. Furthermore, the effects observed during the adsorption and hydration are shown to be complementary to known chemical and physical transformations within the polyethylenimine’s macromolecule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanda, M.; Rempel, G.L.
A new process has been developed for making granular gel-type sorbents from chelating resins using metal ion as template. Named as templated gel-filling, the process uses the chosen metal as templating host ion on high-surface-area silica to build a templated gel layer from a solution of the chelating resin in a suitable solvent in which the resin is soluble but its metal complex is insoluble. After cross-linking the templated gel layer, the silica support is removed by alkali to produce a hollow shell of the templated gel. The shells are then soaked in a concentrated aqueous solution of the samemore » metal ion and suspended in the same resin solution to afford gel-filling. The shells thus filled with metal-templated gel are treated with cross-linking agent, followed by acid to remove the template ion and activate the resin for metal sorption. Poly(ethyleneimine) and its partially ethylated derivative have been used to produce granular gel-type sorbents by this process, with Cu(II) as the template ion. These sorbents are found to offer high capacity and selectivity for copper over nickel, cobalt, and zinc in both acidic and alkaline media. Containing a relatively high fraction of imbibed water, the sorbents exhibit markedly enhanced rate behavior, in both sorption and stripping.« less
Monazam, Esmail R.; Breault, Ronald W.; Fauth, Daniel J.; ...
2017-07-20
Thermogravimetric analysis was employed to investigate the CO 2 and H 2O adsorption rates and water vapor equilibrium on anhydrous and pre-hydrate linear polyethylenimine (LPEI) sorbent impregnated within a commercially functional CARiACT G10 (HPV) silica support. Water vapor experiments utilizing specific humidity of 2%, 8%, and 16% in contact with an anhydrous PEI sorbent resulted in proportional quantities of water vapor uptake. Subsequently, both anhydrous and pre-hydrated PEI-impregnated sorbents were made available to identical humidified gaseous streams containing a CO 2 concentration of 10% at 60oC. CO 2 capacity increased dramatically in the presence of different levels of humidity. Variousmore » kinetic models were systematically employed to interpret the experimental data including single and multiple-step models. The rate data was best represented by a reaction mechanism pathway involving the interplay of CO 2 with PEI-impregnated sorbents exhibited a quick adsorption phase followed by a slow approach to equilibrium. Moreover, a phenomenological rate model was developed to describe the dynamic H 2O and CO 2 uptakes at specific humidity levels studied. The kinetic study showed good agreement with experimental data. Furthermore, the effects observed during the adsorption and hydration are shown to be complementary to known chemical and physical transformations within the polyethylenimine’s macromolecule.« less
CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach
NASA Technical Reports Server (NTRS)
Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim
2017-01-01
In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.
CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach
NASA Technical Reports Server (NTRS)
Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, James; Cmarik, Gregory E.; Ebner, Armin; Ritter, James
2017-01-01
In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0 C, 10 C, 25 C, 50 C, and 75 C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.
Technetium-99m generator system
Mirzadeh, Saed; Knapp, Jr., Furn F.; Collins, Emory D.
1998-01-01
A .sup.99 Mo/.sup.99m Tc generator system includes a sorbent column loaded with a composition containing .sup.99 Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating .sup.99m Tc eluted from the sorbent column. A method of preparing a concentrated solution of .sup.99m Tc includes the general steps of: a. providing a sorbent column loaded with a composition containing .sup.99 Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; b. eluting the sorbent column with a salt solution to elute .sup.99m Tc from the sorbent and to trap and concentrate the eluted .sup.99m Tc on the ion-exchange column; and c. eluting the concentrated .sup.99m Tc from the ion-exchange column with a solution comprising a reductive complexing agent.
Technetium-99m generator system
Mirzadeh, S.; Knapp, F.F. Jr.; Collins, E.D.
1998-06-30
A {sup 99}Mo/{sup 99m}Tc generator system includes a sorbent column loaded with a composition containing {sup 99}Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating {sup 99m}Tc eluted from the sorbent column. A method of preparing a concentrated solution of {sup 99m}Tc includes the general steps of: (a) providing a sorbent column loaded with a composition containing {sup 99}Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; (b) eluting the sorbent column with a salt solution to elute {sup 99m}Tc from the sorbent and to trap and concentrate the eluted {sup 99m}Tc on the ion-exchange column; and (c) eluting the concentrated {sup 99m}Tc from the ion-exchange column with a solution comprising a reductive complexing agent. 1 fig.
Jalan, Vinod M.; Frost, David G.
1984-01-01
A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.
Attrition resistant, zinc titanate-containing, reduced sulfur sorbents
Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.
2004-11-02
The disclosure is directed to sorbent compositions for removing reduced sulfur species (e.g., H.sub.2 S, COS and CS.sub.2) a feed stream. The sorbent is formed from a multi-phase composition including a zinc titanate phase and a zinc oxide-aluminate phase. The sorbent composition is substantially free of unreacted alumina.
40 CFR Table 3 to Subpart Jjjjjj... - Operating Limits for Boilers With Emission Limits
Code of Federal Regulations, 2012 CFR
2012-07-01
... performance test demonstrating compliance with the PM emission limitation. 4. Dry sorbent or carbon injection control Maintain the sorbent or carbon injection rate at or above the lowest 2-hour average sorbent flow... emissions limitation. When your boiler operates at lower loads, multiply your sorbent or carbon injection...
40 CFR Table 7 to Subpart Jjjjjj... - Demonstrating Continuous Compliance
Code of Federal Regulations, 2013 CFR
2013-07-01
... § 63.11211. 4. Dry Scrubber Sorbent or Activated Carbon Injection Rate a. Collecting the sorbent or activated carbon injection rate monitoring system data for the dry scrubber according to §§ 63.11224 and 63... average sorbent or activated carbon injection rate at or above the minimum sorbent or activated carbon...
40 CFR Table 7 to Subpart Jjjjjj... - Demonstrating Continuous Compliance
Code of Federal Regulations, 2014 CFR
2014-07-01
... § 63.11211. 4. Dry Scrubber Sorbent or Activated Carbon Injection Rate a. Collecting the sorbent or activated carbon injection rate monitoring system data for the dry scrubber according to §§ 63.11224 and 63... average sorbent or activated carbon injection rate at or above the minimum sorbent or activated carbon...
Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin.
Wilson, Lee D; Mohamed, Mohamed H; Berhaut, Christopher L
2011-08-29
Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 10¹ m²/g), CDI-X copolymers (< 10¹ m²/g), and granular activated carbon (GAC ~10³ m²/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material.
Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin
Wilson, Lee D.; Mohamed, Mohamed H.; Berhaut, Christopher L.
2011-01-01
Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g), CDI-X copolymers (< 101 m2/g), and granular activated carbon (GAC ~103 m2/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material. PMID:28824156
EVALUATION OF SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGY
The report gives results of work concentrating on characterizing three process operational parameters of a technology that combines sorbent injection and selective non-catalytic reduction for simultaneous sulfur dioxide/nitrogen oxide (SO2/NOx) removal from coal-fired industrial ...
Direct capture of CO 2 from ambient air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanz-Perez, Eloy S.; Murdock, Christopher R.; Didas, Stephanie A.
The increase in the global atmospheric CO 2 concentration resulting from over a century of combustion of fossil fuels has been associated with significant global climate change. With the global population increase driving continued increases in fossil fuel use, humanity’s primary reliance on fossil energy for the next several decades is assured. Traditional modes of carbon capture such as precombustion and postcombustion CO 2 capture from large point sources can help slow the rate of increase of the atmospheric CO 2 concentration, but only the direct removal of CO 2 from the air, or “direct air capture” (DAC), can actuallymore » reduce the global atmospheric CO 2 concentration. The past decade has seen a steep rise in the use of chemical sorbents that are cycled through sorption and desorption cycles for CO 2 removal from ultradilute gases such as air. This Review provides a historical overview of the field of DAC, along with an exhaustive description of the use of chemical sorbents targeted at this application. Solvents and solid sorbents that interact strongly with CO 2 are described, including basic solvents, supported amine and ammonium materials, and metal-organic frameworks (MOFs), as the primary classes of chemical sorbents. Hypothetical processes for the deployment of such sorbents are discussed, as well as the limited array of technoeconomic analyses published on DAC. Overall, it is concluded that there are many new materials that could play a role in emerging DAC technologies. Furthermore, these materials need to be further investigated and developed with a practical sorbent-air contacting process in mind if society is to make rapid progress in deploying DAC as a means of mitigating climate change.« less
Kobayashi, Makoto; Akiho, Hiroyuki
2017-12-01
Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direct capture of CO 2 from ambient air
Sanz-Perez, Eloy S.; Murdock, Christopher R.; Didas, Stephanie A.; ...
2016-08-25
The increase in the global atmospheric CO 2 concentration resulting from over a century of combustion of fossil fuels has been associated with significant global climate change. With the global population increase driving continued increases in fossil fuel use, humanity’s primary reliance on fossil energy for the next several decades is assured. Traditional modes of carbon capture such as precombustion and postcombustion CO 2 capture from large point sources can help slow the rate of increase of the atmospheric CO 2 concentration, but only the direct removal of CO 2 from the air, or “direct air capture” (DAC), can actuallymore » reduce the global atmospheric CO 2 concentration. The past decade has seen a steep rise in the use of chemical sorbents that are cycled through sorption and desorption cycles for CO 2 removal from ultradilute gases such as air. This Review provides a historical overview of the field of DAC, along with an exhaustive description of the use of chemical sorbents targeted at this application. Solvents and solid sorbents that interact strongly with CO 2 are described, including basic solvents, supported amine and ammonium materials, and metal-organic frameworks (MOFs), as the primary classes of chemical sorbents. Hypothetical processes for the deployment of such sorbents are discussed, as well as the limited array of technoeconomic analyses published on DAC. Overall, it is concluded that there are many new materials that could play a role in emerging DAC technologies. Furthermore, these materials need to be further investigated and developed with a practical sorbent-air contacting process in mind if society is to make rapid progress in deploying DAC as a means of mitigating climate change.« less
NASA Astrophysics Data System (ADS)
Hasler, David Johann Ludwig
The reactivity of various Ca-based sorbent materials in pelletized form with H2S or CO2 was investigated at high temperatures (750--880°C). An extensive study was conducted to compare the performance of sorbent pellets derived from plaster of Paris and limestone. Multicycle absorption and regeneration tests showed that plaster-based pellets out performed the limestone-based pellets primarily due to a higher surface area and mesoporosity. The effect of pore-modifiers on the reactivity of limestone with H 2S was investigated by incorporating additives such as cornstarch, graphite and polyvinylalcohol (PVA) in the sorbent. Multicycle sulfidation and regeneration tests of the modified sorbent showed that starch did not improve the reactivity of the limestone, graphite reduced the reactivity, while PVA improved it. The effect of the chemical additives MgO and SrO on the performance of CaO-based sorbent pellets was investigated. The effect of MgO was tested by starting with materials that contained MgCO3 in a natural form, such as dolomite. The effect of SrO was tested by starting with SrCO 3 either co-precipitated with CaCO3 or by wet-mixing SrCO 3 with limestone in slurry form. The MgO was found to improve the thermal stability of the CaO-based sorbent but lowered the overall absorption capacity of the material when reacted with CO2 or H2S, while SrO decreased the thermal stability of the sorbent when it was reacted with CO2; no absorption tests were run with H2S. A study of the performance of pelletized CaO-based cores coated with a refractory material such as alumina and limestone or alumina and kaolin was conducted. The reactivity of the core and shell pellets with H2S was determined. The strength and durability of the pellets were determined by using crushing strength analysis and abrasion resistance tests. Pellets coated with either alumina and limestone or alumina and kaolin proved to be strong and adequate for use in industrial reactors. A semi-empirical mathematical model was developed to represent the reaction of H2S with a sorbent pellet. The model was based on the well-known shrinking core model and it was applied successfully for the analysis of both pellet cores and core and shell pellets reacting with H2S.
Apparatus for hot-gas desulfurization of fuel gases
Bissett, Larry A.
1992-01-01
An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.
Sumathi, S; Bhatia, S; Lee, K T; Mohamed, A R
2010-04-15
This work examines the impregnated carbon-based sorbents for simultaneous removal of SO(2) and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO(2) and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO(2) (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO(2) and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO(2) and NOx. The formation of both sulfate (SO(4)(2-)) and nitrate (NO(3-)) species on spent PSAC-Ce further prove the catalytic role played by CeO(2). 2009 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Junaedi, Christian; Roychoudhury, SUbir; Howard, David F.; Perry, Jay L.; Knox, James C.
2011-01-01
To support continued manned space exploration, the development of atmosphere revitalization systems that are lightweight, compact, durable, and power efficient is a key challenge. The systems should be adaptable for use in a variety of habitats and should offer operational functionality to either expel removed constituents or capture them for closedloop recovery. As mission durations increase and exploration goals reach beyond low earth orbit, the need for regenerable adsorption processes for continuous removal of CO2 and trace contaminants from cabin air becomes critical. Precision Combustion, Inc. (PCI) and NASA Marshall (MSFC) have been developing an Engineered Structured Sorbents (ESS) approach based on PCI s patented Microlith technology to meet the requirements of future, extended human spaceflight explorations. This technology offers the inherent performance and safety attributes of zeolite and other sorbents with greater structural integrity, regenerability, and process control, thereby providing potential durability and efficiency improvements over current state-of-the-art systems. The major advantages of the ESS explored in this study are realized through the use of metal substrates to provide structural integrity (i.e., less partition of sorbents) and enhanced thermal control during the sorption process. The Microlith technology also offers a unique internal resistive heating capability that shows potential for short regeneration time and reduced power requirement compared to conventional systems. This paper presents the design, development, and performance results of the integrated adsorber modules for removing CO2, water vapor, and trace chemical contaminants. A related effort that utilizes the adsorber modules for sorption of toxic industrial chemicals is also discussed. Finally, the development of a 4-person two-leg ESS system for continuous CO2 removal is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jean Bustard; Charles Lindsey; Paul Brignac
With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particlemore » control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.« less
Low-Cost Options for Moderate Levels of Mercury Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharon Sjostrom
2008-02-09
This is the final technical report for a three-site project that is part of an overall program funded by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) and industry partners to obtain the necessary information to assess the feasibility and costs of controlling mercury from coal-fired utility plants. This report summarizes results from tests conducted at MidAmerican's Louisa Generating Station and Entergy's Independence Steam Electric Station (ISES) and sorbent screening at MidAmerican's Council Bluffs Energy Center (CBEC) (subsequently renamed Walter Scott Energy Center (WSEC)). Detailed results for Independence and Louisa are presented in the respective Topical Reports. Asmore » no full-scale testing was conducted at CBEC, screening updates were provided in the quarterly updates to DOE. ADA-ES, Inc., with support from DOE/NETL, EPRI, and other industry partners, has conducted evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. An overview of each plant configuration is presented: (1) MidAmerican's Louisa Generating Station burns Powder River Basin (PRB) coal in its 700-MW Unit 1 and employs hot-side electrostatic precipitators (ESPs) with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal. (2) MidAmerican's Council Bluffs Energy Center typically burns PRB coal in its 88-MW Unit 2. It employs a hot-side ESP for particulate control. Solid sorbents were screened for hot-side injection. (3) Entergy's Independence Steam Electric Station typically burns PRB coal in its 880-MW Unit 2. Various sorbent injection tests were conducted on 1/8 to 1/32 of the flue gas stream either within or in front of one of four ESP boxes (SCA = 542 ft{sup 2}/kacfm), specifically ESP B. Initial mercury control evaluations indicated that although significant mercury control could be achieved by using the TOXECON II{trademark} design, the sorbent concentration required was higher than expected, possibly due to poor sorbent distribution. Subsequently, the original injection grid design was modeled and the results revealed that the sorbent distribution pattern was determined by the grid design, fluctuations in flue gas flow rates, and the structure of the ESP box. To improve sorbent distribution, the injection grid and delivery system were redesigned and the effectiveness of the redesigned system was evaluated. This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase II project with the goal of developing mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. Results from testing at Independence indicate that the DOE goal was successfully achieved. Further improvements in the process are recommended, however. Results from testing at Louisa indicate that the DOE goal was not achievable using the tested high-temperature sorbent. Sorbent screening at Council Bluffs also indicated that traditional solid sorbents may not achieve significant mercury removal in hot-side applications.« less
NASA Astrophysics Data System (ADS)
Huang, Z. B.; Liu, B. S.; Wang, F.; Amin, R.
2015-10-01
MCM-48 was synthesized using a rapid and facile process at room temperature. A series of 50%Zn-Fe-Mn/MCM-48 sorbents were prepared and their performance of hot coal gas desulfurization was investigated. High breakthrough sulfur capacity (13.2 g-S/100 g sorbent) and utilization (66.1%) of 50%1Zn2Fe2Mn/MCM-48 sorbent at 550 °C was achieved. The characterization results of XRD, BET, TPR and FT-IR revealed that MCM-48 had excellent thermal stability at less than 700 °C, ZnMn2O4 and (Mn, Zn)Fe2O4 were mainly active particles in fresh sorbents which were highly dispersed on support. The MCM-48 mesoporous structure remained intact after eight successive desulfurization/regeneration cycles. The regeneration process of 50%1Zn2Fe2Mn/MCM-48 sorbent was analyzed, it indicated that the breakthrough sulfur capacity decline of sorbent was due to the migration of Zn onto the sorbent surface and Zn accumulated on the surface and vaporized to the exterior from the surface. In the TPO test, the oxidation of Zn was different for 50%Zn/MCM-48 at 700 °C. It revealed that the temperature of regeneration for ZnO sorbent should be higher than 700 °C.
High copper level comulled and impregnated sulfur sorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, K.C.
A porous sulfur sorbent is disclosed which has principal use in desulfurizing reformer feedstreams. The sorbent is prepared by peptizing alumina with acid and mulling the peptized alumina with a copper compound to form an extrudable dough. The dough is extruded, dried and impregnated with additional copper. The resulting sorbent has a higher capacity for adsorbing sulfur compounds than conventional prior art materials.
Removal of sulphur dioxide from flue gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ersoy-Mericboyu, A.
1999-08-01
Mixtures of Ca(OH){sub 2} and different siliceous materials such as fly ash, bentonite, silica fume, and diatomite were hydrated to produce reactive SO{sub 2} sorbents. It was observed that these sorbents showed a better reactivity toward SO{sub 2} than the Ca(OH){sub 2} itself. This behavior is closely related to the pozzolanic nature of the hydrated sorbents and to the greater surface area. The reactivity of the sorbents was strongly influenced by the source of siliceous material and the hydration conditions. The total sulphation capacities of the sorbents were determined at 338 K with a synthetic gaseous mixture containing 5,000 ppmmore » SO{sub 2} and 55% relative humidity. Depending on the chemical and physical properties of the sorbents, the SO{sub 2} captures ranged from 1.20 to 5.58 mmol SO{sub 2}/g sorbent. The amount of SO{sub 2} capture increased with the increasing surface area of the sorbent. The utilization of Ca(OH){sub 2} with SO{sub 2} improved significantly when Ca(OH){sub 2} was hydrated with siliceous materials first and later exposed to SO{sub 2}.« less
NASA Astrophysics Data System (ADS)
Postnov, V. N.; Rodinkov, O. V.; Moskvin, L. N.; Novikov, A. G.; Bugaichenko, A. S.; Krokhina, O. A.
2016-02-01
Information on carbon nanostructures (fullerenes, nanotubes, graphene, nanodiamond and nanodispersed active carbon) used to develop high-performance sorbents of organics and heavy metal ions from aqueous solutions is collected and analyzed. The advantages in the synthesis of hybrid carbon nanostructures and the possibilities of surface modification of these systems in order to carry out fast sorption pre-concentration are considered. Prospects for application of these materials in sorption technologies and analytical chemistry are discussed. The bibliography includes 364 references.
Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts
Gangwal, S.; Jothimurugesan, K.
1999-07-27
A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.
Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts
Gangwal, Santosh; Jothimurugesan, Kandaswamy
1999-01-01
A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.
NASA Astrophysics Data System (ADS)
Pijarowski, Piotr Marek; Tic, Wilhelm Jan
2014-06-01
A research on diatomite sorbents was carried out to investigate their ability to remove hazardous substances from oil spillages. We used two types of sorbents available on the market with differences in material density and particles size of composition. As sorbents we used Ekoterm oil and unleaded petrol 95 coming from refinery PKN Orlen S.A. Two types of sorbents with similar chemical composition but different granulometric composition were used. They are marked as D1 and C1 samples. The fastest absorbent was C1, but D1 sample was the most absorptive.
Development of design information for molecular-sieve type regenerative CO2-removal systems
NASA Technical Reports Server (NTRS)
Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.
1973-01-01
Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.
Yu, Honglian; Merib, Josias; Anderson, Jared L
2016-03-18
Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Gasse, Angela; Pfeiffer, Heidi; Köhler, Helga; Schürenkamp, Jennifer
2016-07-01
The aim of this work was to develop and validate a solid-phase extraction (SPE) method for the analysis of cannabinoids with emphasis on a very extensive and effective matrix reduction in order to ensure constant good results in selectivity and sensitivity regardless of the applied measuring technology. This was obtained by the use of an anion exchange sorbent (AXS) and the purposive ionic interaction between matrix components and this sorbent material. In a first step, the neutral cannabinoids ∆9-tetrahydrocannabinol (THC) and 11-hydroxy-∆9-tetrahydrocannabinol (11-OH-THC) were eluted, leaving 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THC-COOH) and the main interfering matrix components bound to the AXS. In a second step, exploiting differences in pH and polarity, it was possible to separate matrix components and THC-COOH, thereby yielding a clean elution of THC-COOH into the same collecting tube as THC and 11-OH-THC. Even when using a simple measuring technology like gas chromatography with single quadrupole mass spectrometry, this two-step elution allows for an obvious decrease in number and intensity of matrix interference in the chromatogram. Hence, in both plasma and serum, the AXS extracts resulted in very good selectivity. Limits of detection and limits of quantification were below 0.25 and 0.35 ng/mL for the neutral cannabinoids in both matrices, 2.0 and 3.0 ng/mL in plasma and 1.6 and 3.3 ng/mL in serum for THC-COOH. The recoveries were ≥79.8 % for all analytes. Interday and intraday imprecisions ranged from 0.8 to 6.1 % relative standard deviation, and accuracy bias ranged from -12.6 to 3.6 %.
Development of a prototype regeneration carbon dioxide absorber. [for use in EVA conditions
NASA Technical Reports Server (NTRS)
Patel, P. S.; Baker, B. S.
1977-01-01
A prototype regenerable carbon dioxide absorber was developed to maintain the environmental quality of the portable life support system. The absorber works on the alkali metal carbonate-bicarbonate solid-gas reaction to remove carbon dioxide from the atmosphere. The prototype sorber module was designed, fabricated, and tested at simulated extravehicular activity conditions to arrive at optimum design. The unit maintains sorber outlet concentration below 5 mm Hg. An optimization study was made with respect to heat transfer, temperature control, sorbent utilization, sorber life and regenerability, and final size of the module. Important parameters influencing the capacity of the final absorber unit were identified and recommendations for improvement were made.
Kesani, Sheshanka; Malik, Abdul
2018-04-01
A niobia-based sol-gel organic-inorganic hybrid sorbent carrying a positively charged C 18 ligand (Nb 2 O 5 -C 18 (+ve)) was synthesized to achieve enhanced enrichment capability in capillary microextraction of organophosphorus compounds (which include organophosphorus pesticides and nucleotides) before their online analysis by high-performance liquid chromatography. The sorbent was designed to simultaneously provide three different types of molecular level interactions: electrostatic, Lewis acid-base, and van der Waals interactions. To understand relative contributions of various molecular level analyte-sorbent interactions in the extraction process, two other sol-gel niobia sorbents were also created: (a) a purely inorganic sol-gel niobia sorbent (Nb 2 O 5 ) and (b) an organic-inorganic hybrid sol-gel niobia sorbent carrying an electrically neutral-bonded octadecyl ligand (Nb 2 O 5 -C 18 ). The extraction efficiency of the created sol-gel niobia sorbent (Nb 2 O 5 -C 18 (+ve)) was compared with that of analogously designed and synthesized titania-based sol-gel sorbent (TiO 2 -C 18 (+ve)), taking into consideration that titania-based sorbents present state-of-the-art extraction media for organophosphorus compounds. In capillary microextraction with high-performance liquid chromatography analysis, Nb 2 O 5 -C 18 (+ve) had shown 40-50% higher specific extraction values (a measure of extraction efficiency) over that of TiO 2 -C 18 (+ve). Compared to TiO 2 -C 18 (+ve), Nb 2 O 5 -C 18 (+ve) also provided superior analyte desorption efficiency (96 vs. 90%) during the online release of the extracted organophosphorus pesticides from the sorbent coating in the capillary microextraction capillary to the chromatographic column using reversed-phase high-performance liquid chromatography mobile phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pardo, Antonelle; Mespouille, Laetitia; Blankert, Bertrand; Trouillas, Patrick; Surin, Mathieu; Dubois, Philippe; Duez, Pierre
2014-10-17
Molecularly imprinted polymers (MIPs) based on quercetin and synthesized by either bulk, precipitation or suspension polymerization were characterized in terms of size and shape by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After a study of rebinding protocols, the optimal materials were evaluated as sorbents for solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) to confirm the presence of imprinted cavities and to assess their selectivity. Besides quercetin, other structurally related natural compounds, naringenin, daidzein and curcumin, were employed for selectivity tests of MIPs. Although rebinding protocols previously described for such MIPs are typically based on binding, washing and eluting methanol-based solutions, we show that this highly polar solvent leads to weak specific interactions (imprinting factor<1) and poor sorbent properties, most probably because of hydrogen-bonding interferences between the MIP and MeOH. Similar experiments performed in tetrahydrofuran yield to much more improved properties (imprinting factor>2.4). This calls for reviewing most of previously published data on quercetin-MIPs; in proper binding conditions, published MIPs may prove more performing than initially assessed. As expected, tested MIPs exhibited the highest selective rebinding towards quercetin template (imprinting effect, quercetin, 3.41; naringenin, 1.54; daidzein, 1.38; curcumin, 1.67); the differences in selectivity between quercetin analogues were explained by the ligand geometries and H-bonding patterns obtained from quantum-chemical calculations. The evaluation of MIPs under identical analytical conditions allowed investigating the effect of the production method on chromatographic performances. The MIPs in bead materials (for quercetin, peak width, 0.69; number of theoretical plates, 143; symmetry factor, 2.22) provided a significant improvement in chromatographic efficiency over the bulk materials (for quercetin, peak width, 1.25; number of theoretical plates, 115; symmetry factor, 2.92). Using the quercetin-beaded MIP as SPE sorbent, quercetin was selectively extracted from Allium cepa L. extract. The MIP developed in this work therefore appears highly promising for the enrichment and determination of quercetin in natural products. Copyright © 2014 Elsevier B.V. All rights reserved.
Amine–Oxide Hybrid Materials for CO 2 Capture from Ambient Air
Didas, Stephanie A.; Choi, Sunho; Chaikittisilp, Watcharop; ...
2015-09-10
Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO 2 on global climate change, the study of the use of amine-oxide hybrid materials as CO 2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO 2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO 2 from ultradilute gas mixtures, such as ambientmore » air. As unique, low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO 2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO 2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO 2 extraction from simulated ambient air (400 ppm of CO 2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO 2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine-oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a “direct air capture” process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas-solid contacting strategy. In conclusion, the utility of low pressure drop monolith contactors is suggested to offer a practical mode of amine sorbent/air contacting for direct air capture.« less
Amine–Oxide Hybrid Materials for CO 2 Capture from Ambient Air
Didas, Stephanie A.; Choi, Sunho; Chaikittisilp, Watcharop; ...
2015-09-10
CONSPECTUS: Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO2 on global climate change, the study of the use of amine-oxide hybrid materials as CO2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO2 from ultradilute gas mixtures, such as ambient air. As unique,more » low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO2 extraction from simulated ambient air (400 ppm of CO2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine−oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a “direct air capture” process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas−solid contacting strategy. In this regard, the utility of low pressure drop monolith contactors is suggested to offer a practical mode of amine sorbent/air contacting for direct air capture.« less
Li, Feng; Jiang, Hongquan; Zhang, Shusheng
2007-03-15
Ion-imprinting concept and polysaccharide incorporated sol-gel process were applied to the preparation of a new silica-supported organic-inorganic hybrid sorbent for selective separation of Cd(II) from aqueous solution. In the prepared shell/core composite sorbent, covalently surface coating on the supporting silica gel was achieved by using a Cd(II)-imprinting sol-gel process starting from an inorganic precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS), and a functional biopolymer, chitosan (CS). The sorbent was prepared through self-hydrolysis of GPTMS, self-condensation and co-condensation of silanol groups (Si-OH) from siloxane and silica gel surface, in combination with in situ covalent cross-linking of CS with partial amine shielded by Cd(II) complexation. Extraction of the imprinting molecules left a predetermined arrangement of ligands and tailored binding pockets for Cd(II). The prepared sorbent was characterized by using X-ray energy dispersion spectroscopy (EDX), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Batch experiments were conducted to study the sorption performance by removal of Cd(II) when present singly or in binary system, an aqueous Cd(II) and Zn(II) mixture. The ion-imprinted composite sorbent offered a fast kinetics for the sorption of Cd(II) and the maximum capacity was 1.14mmolg(-1). The uptake capacity of the imprinted sorbent and the selectivity coefficient were much higher than that of the non-imprinted sorbent. The imprinted sorbent exhibited high reusability. The prepared functional sorbent was shown to be promising for the preconcentration of cadmium in environmental and biological samples.
NASA Technical Reports Server (NTRS)
Knox, James C.; Howard, David F.; Perry, Jay L.
2007-01-01
In NASA s Vision for Space Exploration, humans will once again travel beyond the confines of earth s gravity, this time to remain there for extended periods. These forays will place unprecedented demands on launch systems. They must not only blast out of earth s gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a larger crew over much longer periods. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. This paper describes efforts to improve on typical packed beds of sorbent pellets by making use of structured sorbents and alternate bed configurations to improve system efficiency and reliability. The development efforts described offer a complimentary approach combining testing of subscale systems and multiphysics computer simulations to characterize the regenerative heating substrates and evaluation of engineered structured sorbent geometries. Mass transfer, heat transfer, and fluid dynamics are included in the transient simulations.
Two-step rapid sulfur capture. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-04-01
The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the rangemore » of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.« less
Development of cost-effective noncarbon sorbents for Hg(0) removal from coal-fired power plants.
Lee, Joo-Youp; Ju, Yuhong; Keener, Tim C; Varma, Rajender S
2006-04-15
Noncarbonaceous materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea, and active additives such as elemental sulfur, sodium sulfide, and sodium polysulfide to examine their potential as sorbents for the removal of elemental mercury (Hg(0)) vapor at coal-fired utility power plants. A number of sorbent candidates such as amine- silica gel, urea- silica gel, thiol- silica gel, amide-silica gel, sulfur-alumina, sulfur-molecular sieve, sulfur-montmorillonite, sodium sulfide-montmorillonite, and sodium polysulfide-montmorillonite, were synthesized and tested in a lab-scale fixed-bed system under an argon flow for screening purposes at 70 degrees C and/or 140 degrees C. Several functionalized silica materials reported in previous studies to effectively control heavy metals in the aqueous phase showed insignificant adsorption capacities for Hg(0) control in the gas phase, suggesting that mercury removal mechanisms in both phases are different. Among elemental sulfur-, sodium sulfide-, and sodium polysulfide-impregnated inorganic samples, sodium polysulfide-impregnated montmorillonite K 10 showed a moderate adsorption capacity at 70 degrees C, which can be used for sorbent injection prior to the wet FGD system.
de Carvalho, Pedro Henrique Viana; Barreto, Alysson Santos; Rodrigues, Marcelo O; Prata, Vanessa de Menezes; Alves, Péricles Barreto; de Mesquita, Maria Eliane; Alves, Severino; Navickiene, Sandro
2009-06-01
The 2D coordination polymer (infinity[Gd(DPA)(HDPA)]) was tested for extraction of acephate, chlorpropham, pirimicarb, bifenthrin, tetradifon, and phosalone from the medicinal plant Cordia salicifolia, whose extracts are commercialized in Brazil as diuretic, appetite suppressant, and weight loss products, using GC/MS, SIM. Considering that there are no Brazilian regulations concerning maximum permissible pesticide residue concentrations in medicinal herbs, recovery experiments were carried out (seven replicates), at two arbitrary fortification levels (0.5 and 1.0 mg/kg), resulting in recoveries in range of 20 to 107.7% and SDRSDs were between 5.6 and 29.1% for infinity[Gd(DPA)(HDPA)] sorbent. Detection and quantification limits for herb ranged from 0.10 to 0.15 mg/kg and from 0.15 to 0.25 mg/kg, respectively, for the different pesticides studied. The developed method is linear over the range assayed, 0.5-10.0 microg/mL, with correlation coefficients ranging from 0.9975 to 0.9986 for all pesticides. Comparison between infinity[Gd(DPA)(HDPA)] sorbent and conventional sorbent (neutral alumina) showed similar performance of infinity[Gd(DPA)(HDPA)] polymeric sorbent for three (bifenthrin, tetradifon, and phosalone) out of six pesticides tested.
Treatment of crude oil-contaminated water with chemically modified natural fiber
NASA Astrophysics Data System (ADS)
Onwuka, Jude Chinedu; Agbaji, Edith Bolanle; Ajibola, Victor Olatunji; Okibe, Friday Godwin
2018-06-01
The dependence of Nigerian Government on foreign technology for oil spill cleanup in its water bodies does not add local content value in the development of the Nation's economy. Acetylation of natural cellulose gives a material with high sorption capacity for oil in water. This research investigates crude oil sorption from water using acetylated and unacetylated lignocellulose. Oil palm empty fruit bunch (OPEFB) and cocoa pod (CP) were acetylated under mild conditions. The acetylated (modified) and unacetylated (unmodified) sorbents were used to sorb oil from water, and their sorption capacities and mechanisms were compared. Paired t test showed there was significant difference in the sorption capacities of modified and unmodified sorbents. Sorption of oil from water was found to be time and concentration dependent. Equilibrium studies showed that CP has higher sorption capacity than OPEFB and acetylation enhanced the crude sorption capacities of the sorbents. Crude oil sorption from water is a monolayer process that might have progressed from multilayer processes. Kinetic studies showed that sorption of crude oil by the sorbents was diffusion-controlled with the aid of physisorption and chemisorption mechanisms. Fourier transform infrared and scanning electron microscope analyses showed clear evidence of successful acetylation and oil sorption.
Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents
Bissett, Larry A.; Strickland, Larry D.; Rockey, John M.
1994-01-01
The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.
Additional Developments in Atmosphere Revitalization Modeling and Simulation
NASA Technical Reports Server (NTRS)
Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.; Gomez, Carlos
2013-01-01
NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.
Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.
Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T
2010-04-01
Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.
Liu, Yue; Hu, Jia; Li, Yan; Shang, Yun-Tao; Wang, Jia-Qi; Zhang, Ye; Wang, Zhong-Liang
2017-10-01
In this work, a CE method was developed to separate five anthraquinones: aloe-emodin, rhein, emodin, chrysophanol, and physcion. The CE method used a nano-sized metal organic framework MIL-101 (nMIL-101) as pseudostationary phase (PSP) and sorbent for dispersed particle extraction (DPE). The nMIL-101 was synthesized by microwave technique and was characterized by UV-vis, TEM, Zeta potential, X-ray diffraction spectrometry and micropore physisorption. In this method, anthraquinones were adsorbed by nMIL-101 of a fast kinetics within 10 min and then separated by CE. The CE conditions were optimized considering time, pH, buffer ionic strength, and nanoparticles concentration. The optimal CE condition is using 20 mM sodium borate buffer (pH 9.1) containing 15% methanol (v/v) and 400 mg/L nMIL-101 as additives within 8 min. The LODs varied from 24 to 57 μg/L, which were lower than those previously reported. Our method has been successfully applied to determine trace anthraquinones in environmental water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development and calibration of a passive sampler for N-nitrosodimethylamine (NDMA) in water.
Kaserzon, Sarit L; Kennedy, Karen; Hawker, Darryl W; Holling, Neil; Escher, Beate I; Booij, Kees; Mueller, Jochen F
2011-07-01
N-Nitrosamines such as N-nitrosodimethylamine (NDMA) are organic compounds of environmental concern in groundwater, wastewater and potable water due to their potent carcinogenicity in laboratory animal studies and probable human carcinogenicity. While passive sampling techniques have become a widely used tool for providing time-averaged estimates of trace pollutant concentration, for chemicals such as NDMA that have relatively high water solubility, the selection of a suitable sorbent is difficult. This work is a proof of principle study that investigated for the first time the use of coconut charcoal as a passive sampler sorbent. Apparent charcoal/water sorption coefficients for NDMA were >551 mL g(-1) at environmentally relevant aqueous concentrations of less than 1 μg L(-1). Under the experimental conditions employed, a sampling rate of 0.45 L d(-1) was determined and for an aqueous concentration of 1000 ng L(-1), it is predicted that the sampler remains in the linear uptake stage for approximately 4d, while equilibrium attainment would require about 26 d. The presence of humic acid, used as a surrogate for DOC, enhanced NDMA sorption on the coconut charcoal. Copyright © 2011 Elsevier Ltd. All rights reserved.
A transient performance method for CO2 removal with regenerable adsorbents
NASA Technical Reports Server (NTRS)
Hwang, K. C.
1972-01-01
A computer program is described which can be used to predict the transient performance of vacuum-desorbed sorbent beds for CO2 or water removal, and composite beds of two sorbents for simultaneous humidity control and CO2 removal. The program was written primarily for silica gel and molecular sieve inorganic sorbents, but can be used for a variety of adsorbent materials. Part 2 of this report describes a computer program which can be used to predict performance for multiple-bed CO2-removal sorbent systems. This program is an expanded version of the composite sorbent bed program described in Part 1.
Method and system for radioisotope generation
Toth, James J.; Soderquist, Chuck Z.; Greenwood, Lawrence R.; Mattigod, Shas V.; Fryxell, Glen E.; O'Hara, Matthew J.
2014-07-15
A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.
Sequential capture of CO2 and SO2 in a pressurized TGA simulating FBC conditions.
Sun, Ping; Grace, John R; Lim, C Jim; Anthony, Edward J
2007-04-15
Four FBC-based processes were investigated as possible means of sequentially capturing SO2 and CO2. Sorbent performance is the key to their technical feasibility. Two sorbents (a limestone and a dolomite) were tested in a pressurized thermogravimetric analyzer (PTGA). The sorbent behaviors were explained based on complex interaction between carbonation, sulfation, and direct sulfation. The best option involved using limestone or dolomite as a SO2-sorbent in a FBC combustor following cyclic CO2 capture. Highly sintered limestone is a good sorbent for SO2 because of the generation of macropores during calcination/carbonation cycling.
Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh
2013-11-15
A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Ji, Shilei; Li, Nan; Qi, Li; Wang, Minglin
2017-01-01
In this study, poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles were constructed and used as magnetic solid-phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)-based sorbents, N-methacryloyl-l-phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)-based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)-based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid-phase extraction sorbents have a great potential for the analysis of preservatives in food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Olivares-Marín, M; García, S; Pevida, C; Wong, M S; Maroto-Valer, M
2011-10-01
Adsorption is one of the most promising technologies for reducing CO(2) emissions and at present several different types of sorbents are being investigated. The use of sorbents obtained from low-cost and abundant precursors (i.e. solid wastes) appears an attractive strategy to adopt because it will contribute to a reduction not only in operational costs but also in the amount of waste that is dumped and burned in landfills every year. Following on from previous studies by the authors, in this work several carbon-based adsorbents were developed from different carpet wastes (pre-consumer and post-consumer wastes) by chemical activation with KOH at various activation temperatures (600-900 °C) and KOH:char impregnation ratios (0.5:1 to 4:1). The prepared materials were characterised by chemical analysis and gas adsorption (N(2), -196 °C; CO(2), 0 °C), and tested for CO(2) adsorption at temperatures of 25 and 100 °C. It was found that both the type of precursor and the conditions of activation (i.e. impregnation ratios, and activation temperatures), had a huge influence on the microporosity of the resultant samples and their CO(2) capture capacities. The carbon-based adsorbent that presented the maximum CO(2) capture capacities at 25 and 100 °C (13.8 wt.% and 3.1 wt.%, respectively), was prepared from a pre-consumer carpet waste and was activated at 700 °C using a KOH:char impregnation ratio of 1:1. This sample showed the highest narrow microporosity volume (0.47 cm(3) g(-1)), thus confirming that only pores of less than 1 nm are effective for CO(2) adsorption at atmospheric pressure. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cagliero, Cecilia; Ho, Tien D; Zhang, Cheng; Bicchi, Carlo; Anderson, Jared L
2016-06-03
This study describes a simple and rapid sampling method employing a polymeric ionic liquid (PIL) sorbent coating in direct immersion solid-phase microextraction (SPME) for the trace-level analysis of acrylamide in brewed coffee and coffee powder. The crosslinked PIL sorbent coating demonstrated superior sensitivity in the extraction of acrylamide compared to all commercially available SPME coatings. A spin coating method was developed to evenly distribute the PIL coating on the SPME support and reproducibly produce fibers with a large film thickness. Ninhydrin was employed as a quenching reagent during extraction to inhibit the production of interfering acrylamide. The PIL fiber produced a limit of quantitation for acrylamide of 10μgL(-1) and achieved comparable results to the ISO method in the analysis of six coffee powder samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Catalá-Icardo, Mónica; Gómez-Benito, Carmen; Simó-Alfonso, Ernesto Francisco; Herrero-Martínez, José Manuel
2017-01-01
This paper describes a novel and sensitive method for extraction, preconcentration, and determination of two important widely used fungicides, azoxystrobin, and chlorothalonil. The developed methodology is based on solid-phase extraction (SPE) using a polymeric material functionalized with gold nanoparticles (AuNPs) as sorbent followed by high-performance liquid chromatography (HPLC) with diode array detector (DAD). Several experimental variables that affect the extraction efficiency such as the eluent volume, sample flow rate, and salt addition were optimized. Under the optimal conditions, the sorbent provided satisfactory enrichment efficiency for both fungicides, high selectivity and excellent reusability (>120 re-uses). The proposed method allowed the detection of 0.05 μg L -1 of the fungicides and gave satisfactory recoveries (75-95 %) when it was applied to drinking and environmental water samples (river, well, tap, irrigation, spring, and sea waters).
Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control
Li, Liyu [Richland, WA; King, David L [Richland, WA
2011-03-15
Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.
Method And Apparatus For Production Of Bi-213 From The Activity Ac-225 Source
Egorov, Oleg B.; O'Hara, Matthew J.
2005-12-06
A method and apparatus for isolating and purifying a .sup.213 Bi radioactive isotope from an .sup.225 Ac source using a primary column and a primary sorbent which preferentially retains .sup.225 Ac over .sup.213 Bi when exposed to a compatible solvent in combination with a secondary column having a secondary sorbent which retains .sup.213 Bi when exposed to a mixture of the compatible solvent and .sup.213 Bi. A "compatible solvent" is a solvent which will preferentially remove .sup.213 Bi radioactive isotopes from a primary sorbent without removing .sup.225 Ac radioactive isotopes, and then allow .sup.213 Bi radioactive isotopes removed from the primary sorbent to be retained on a secondary sorbent, without having to dilute or otherwise chemically or physically modify the compatible solvent in between exposure to the primary and secondary sorbents.
Desulfurization sorbent regeneration
Jalan, V.M.; Frost, D.G.
1982-07-07
A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.
Screening of zinc-based sorbents for hot-gas desulfurization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joong B. Lee; Chong K. Ryu; Chang K. Yi
2008-03-15
Highly reactive and attrition-resistant ZnO-based sorbents that are suitable for bubbling fluidized-bed reactors can be produced using the spray-drying method. Most of the ZnO-based sorbents prepared here (ZAC-X, X = 18N-25N) satisfy the physical and chemical criteria for bubbling fluidized-bed application (spherical shape, average particle size, 90-110 {mu}m; size distribution, 40-230 {mu}m; bulk density, 0.9-1.0 g/mL; attrition index (AI), 40-80%; sulfur sorption capacity, 14-17 wt %; sorbent use, 70-80%). The performance test of the ZAC-C sorbent at Korea Institute of Energy Research (KIER) with a bubbling fluidized-bed for 70 h also demonstrated that it had good sulfidation and regeneration performancemore » (11 wt % sorption capacity and 52% sorbent use) as well as reasonable attrition resistance (1.1% attrition loss for 70 h). 14 refs., 7 figs., 6 tabs.« less
Nanostructured Metal Oxide Sorbents for the Collection and Recovery of Uranium from Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouyyok, Wilaiwan; Warner, Cynthia L.; Mackie, Katherine E.
2016-02-07
The ability to collect uranium from seawater offers the potential for a long-term green fuel supply for nuclear energy. However, extraction of uranium, and other trace minerals, is challenging due to the high ionic strength and low mineral concentrations in seawater. Herein we evaluate the use of nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Chemical affinity, chemical adsorption capacity and kinetics of preferred sorbent materials were evaluated. High surface area manganese and iron oxide nanomaterials showed excellent performance for uranium collection from seawater. Inexpensive nontoxic carbonate solutions were demonstrated to be an effective andmore » environmental benign method of stripping the uranium from the metal oxide sorbents. Various formats for the utilization of the nanostructured metals oxide sorbent materials are discussed including traditional and nontraditional methods such as magnetic separation. Keywords: Uranium, nano, manganese, iron, sorbent, seawater, magnetic, separations, nuclear energy« less
Jadhav, Raja A [Naperville, IL
2009-07-07
A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.
NASA Astrophysics Data System (ADS)
Faustova, Zhanna; Matveeva, Tatiana; Slizhov, Yuriy
2017-11-01
Sorbents based on Chromaton N-AW with layers of mesoporous silica gel modified with acetylacetonate nickel (II) and copper (II) were obtained. The porous structure of sorbents based on synthesized silica gel and industrial samples of Chromaton N, Silipore 075, Silochrom C-120 was studied. All studied samples are mesoporous. For sorbents based on commercially available Chromaton N, Silipore 075, and Silochrome 120, the mesopore dimensions vary in a wide range from 10 to 50 nm. For synthesized silica gel and chelate-containing sorbents, a narrower pore distribution is observed in the range of 5-15 nm, which indicates the uniformity of its surface. A comparative analysis of the effect of carrier properties on the acid-base properties of the surface of chelate-containing sorbents is carried out. The acid-base nature of the modifier is more pronounced in the case of synthesized silica gel by the sol-gel method.
Investigation of transport process involved in FGD. Final repot, September 1, 1993--August 31, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadambi, J.R.; Tien, J.S.; Yurteri, C.
1995-02-01
The objectives of this five year plan of study are to experimentally obtain a basic understanding of (1) turbulent flow structure of the mixing zone and it influence on particle dispersion, (2) the effect of particle loading on turbulent properties and mixing, (3) the effect of jet entrainment, (4) water spray-sorbent interaction, sorbent wetting and mixing, (5) investigate the flow field where certain ratios of jet velocity to flu gas velocity result in regions of negative flow and define onset o negative flow, and (6) sorbent reactivity in immediate mixing zone. In the first two years of the project amore » sorbent injection facility which can simulate the conditions encountered in COOLSIDE set up was designed and built. Non-intrusive laser based diagnostic tools PDA/LDA were used for flow characterization of particle laden jet in cocurrent flows. In the third year a new technique called TTLDV which combines particle transit time in measurement volume of LDV and LDV velocity measurements to simultaneously obtain non-spherical lime particle size and velocity was developed. Better sorbent injection schemes were investigated spray occurrent flow tests were conducted. During the fourth year the spray cocurrent flow interaction data was analyzed. A criterion was developed for predicting the flow reversal which results in deposition of water droplets on the duct wall (Table 3). The flow reversal occurs when the spray has entrained all the cocurrent flowing stream. The criterion is based upon the mass flow rate of the two phases. The criterion successfully predicted the flow reversals encountered in the experiments and will be a very useful practical tool. Lime laden jet occurrent flow interactions tests were completed. Tests on the swirling nozzle have been conducted. The single phase data have been analyzed while the two phase glass particle laden jet data is being analyzed.« less
NASA Technical Reports Server (NTRS)
Bower, Chad; Padilla, Sebastian; Iacomini, Christie; Paul, Heather L.
2009-01-01
This paper describes modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly: the sorbent bed, a sublimation (cooling) heat exchanger (SHX), and a condensing icing (warming) heat exchanger (CIHX). The primary function of the MTSA, removing carbon dioxide from a ventilation loop, is performed via the sorbent bed. The CIHX is used to heat the sorbent bed for desorption and to remove moisture from the ventilation loop while the SHX is alternately employed to cool the sorbent bed via sublimation of a spray of water at low pressure to prepare the reconditioned bed for the next cycle. This paper describes a system level model of the MTSA as developed in Thermal Desktop and SINDA/FLUINT including assumptions on geometry and physical phenomena, modeling methodology and relevant pa ra mete rizatio ns. Several areas of particular modeling interest are discussed. In the sorbent bed, capture of the translating CO2 saturation front and associated local energy and mass balance in both adsorbing and desorbing modes is covered. The CIHX poses particular challenges for modeling in SINDA/FLUINT as accounting for solids states in fluid submodels are not a native capability. Methods for capturing phase change and latent heat of ice as well as the transport properties across a layer of low density accreted frost are developed. This extended modeling capacity is applicable to temperatures greater than 258 K. To extend applicability to the minimum device temperature of 235 K, a method for a mapped transformation of temperatures from below the limit temperatures to some value above is given along with descriptions for associated material property transformations and the resulting impacts to total heat and mass transfer. Similar considerations are shown for the SHX along with assumptions for flow mechanics and resulting model methods for sublimation in a flow.
Waste-Heat-Driven Cooling Using Complex Compound Sorbents
NASA Technical Reports Server (NTRS)
Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh
2004-01-01
Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.
Sorbent Nanotechnologies for Water Cleaning
NASA Astrophysics Data System (ADS)
Ahmed, Snober
Despite decades of regulatory efforts to mitigate water pollution, many chemicals, particularly heavy metals, still present risks to human health. In addition to direct exposure, certain metals such as mercury threaten public health due to its persistence, bioaccumulation and bioamplification throughout the food chain. A number of U.S. Federal and State regulations have been established to reduce the levels of mercury in water. Activated carbon (AC) has been widely explored for the removal of mercury. However, AC suffers from many limitations inherent to its chemical properties, and it becomes increasingly challenging to meet current and future regulations by simply modifying AC to enhance its performance. Recently, the performance of nanosorbents have been studied in order to removal pollutants. Nanosorbents utilize the ultra-high reactive surface of nanoparticles for rapid, effective and even permanent sequestration of heavy metals from water and air, thus showed promising results as compared to AC. The goal of this thesis research is to develop nanomaterial-based sorbents for the removal of mercury from water. It describes the development of a new solid-support assisted growth of selenium nanoparticles, their use for water remediation, and the development of a new nanoselenium-based sorbent sponge for fast and efficient mercury removal. The nanoselenium sorbent not only shows irreversible interaction with mercury but also exhibits remarkable properties by overcoming the limitations of AC. The nanoselenium sponge was shown to remove mercury to undetectable levels within one minute. This new sponge technology would have an impact on inspiring new stringent regulations and lowering costs to help industries meet regulatory requirements, which will ultimately help improve air and water quality, aquatic life and public health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manovic, V.; Anthony, E.J.; Loncarevic, D.
CaO-based looping cycles are promising processes for CO{sub 2} Capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO{sub 3} in a dual fluidized-bed reactor to produce a pure CO{sub 2} stream suitable for sequestration. Use of spent sorbent from CO{sub 2} looping cycles for SO{sub 2} capture is investigated. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbentmore » samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercury porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However, final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The results showed that spent sorbent samples from CO{sub 2} looping cycles can be used as sorbents for SO{sub 2} retention in cases where significant porosity loss does not occur during CO{sub 2} reaction cycles. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO{sub 4} product.« less
Method of CO.sub.2 removal from a gasesous stream at reduced temperature
Fisher, James C; Siriwardane, Ranjani V; Berry, David A; Richards, George A
2014-11-18
A method for the removal of H.sub.2O and CO.sub.2 from a gaseous stream comprising H.sub.2O and CO.sub.2, such as a flue gas. The method initially utilizes an H.sub.2O removal sorbent to remove some portion of the H.sub.2O, producing a dry gaseous stream and a wet H.sub.2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO.sub.2 removal sorbent to remove some portion of the CO.sub.2, generating a dry CO.sub.2 reduced stream and a loaded CO.sub.2 removal sorbent. The loaded CO.sub.2 removal sorbent is subsequently heated to produce a heated CO.sub.2 stream. The wet H.sub.2O removal sorbent and the dry CO.sub.2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H.sub.2O removal sorbent, and the partially regenerated H.sub.2O removal sorbent and the heated CO.sub.2 stream are subsequently contacted in a second regeneration stage. The first and second stage regeneration typically act to retain an initial monolayer of moisture on the various removal sorbents and only remove moisture layers bound to the initial monolayer, allowing for relatively low temperature and pressure operation. Generally the applicable H.sub.2O sorption/desorption processes may be conducted at temperatures less than about 70.degree. C. and pressures less than 1.5 atmospheres, with certain operations conducted at temperatures less than about 50.degree. C.
Habibi-Khorasani, Monireh; Mohammadpour, Amir Hooshang; Mohajeri, Seyed Ahmad
2017-02-01
In this work, performance of a molecularly imprinted polymer (MIP) as a selective solid-phase microextraction sorbent for the extraction and enrichment of tramadol in aqueous solution and rabbit brain tissue, is described. Binding properties of MIPs were studied in comparison with their nonimprinted polymer (NIP). Ten milligrams of the optimized MIP was then evaluated as a sorbent, for preconcentration, in molecularly imprinted solid-phase microextraction (MISPME) of tramadol from aqueous solution and rabbit brain tissue. The analytical method was calibrated in the range of 0.004 ppm (4 ng mL -1 ) and 10 ppm (10 μg mL -1 ) in aqueous media and in the ranges of 0.01 and 10 ppm in rabbit brain tissue, respectively. The results indicated significantly higher binding affinity of MIPs to tramadol, in comparison with NIP. The MISPME procedure was developed and optimized with a recovery of 81.12-107.54% in aqueous solution and 76.16-91.20% in rabbit brain tissue. The inter- and intra-day variation values were <8.24 and 5.06%, respectively. Finally the calibrated method was applied for determination of tramadol in real rabbit brain tissue samples after administration of a lethal dose. Our data demonstrated the potential of MISPME for rapid, sensitive and cost-effective sample analysis. Copyright © 2016 John Wiley & Sons, Ltd.
High specific surface area aerogel cryoadsorber for vacuum pumping applications
Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.
2000-01-01
A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olstad, J.L.; Phillips, S.D.
2009-01-01
The process of gasifi cation converts biomass into synthesis gas (syngas), which can be used to produce biofuels. Solid-phase sorbents were investigated for the removal of CO2 from a N2/CO2 gas stream using a CO2 concentration similar to that found in a biomass gasifi cation process. During the gasifying process, large amounts of carbon dioxide (CO2) are created along with the syngas. The produced CO2 must be removed before the syngas can be used for fuel synthesis and to avoid the possible formation of unwanted byproducts. A thermogravimetric analyzer was used to test the CO2 absorption rates of sorbents composedmore » of lithium zirconate (Li2ZrO3), as well as mixtures of Li2ZrO3 with potassium carbonate (K2CO3) and sodium carbonate (Na2CO3). The experimental results show that Li2ZrO3 has a low absorption rate, but sorbents containing combinations of Li2ZrO3 and the K2CO3 and Na2CO3 additives have high uptake rates. Using different proportions of K2CO3 and Na2CO3 produces varying uptake rates, so an optimization experiment was performed to obtain an improved sorbent. The CO2 absorption and regeneration stability of the solid-phase sorbents were also examined. A sorbent composed of Li2ZrO3 and 12.1 weight % Na2CO3 was shown to be stable, based on the consistent CO2 uptake rates. Sorbents prepared with Li2ZrO3, 17.6 weight % K2CO3 and 18.1 weight % Na2CO3 showed instability during regeneration cycles in air at 800 °C. Sorbent stability improved during regeneration cycles at 700 °C. Further testing of the Li2ZrO3 sorbent under actual syngas conditions, including higher pressure and composition, should be done. Once the optimum sorbent has been found, a suitable support will be needed to use the sorbent in an actual reactor.« less
Heavy metals removal from aqueous solutions and wastewaters by using various byproducts.
Shaheen, Sabry M; Eissa, Fawzy I; Ghanem, Khaled M; Gamal El-Din, Hala M; Al Anany, Fathia S
2013-10-15
Water contamination with heavy metals (HM) represents a potential threat to humans, animals and plants, and thus removal of these metals from contaminated waters has received increasing attention. The present study aimed to assess the efficiency of some low cost sorbents i.e., chitosan (CH), egg shell (ES), humate potassium (HK), and sugar beet factory lime (SBFL) for removal of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) from wastewaters. For this purpose batch equilibrium experiments were conducted with aqueous solutions containing various concentrations of the metals and sorbents in a mono-metal and competitive sorption system. Sorption isotherms were developed, and sorption parameters were determined. The potential applicability of the tested sorbents in the removal of Cd, Cu, and Zn from contaminated wastewaters was also investigated by equilibrating different sorbents and water ratios. Chitosan expressed the highest affinity for the metals followed by SBFL, ES, and HK. Nearly 100% of the metals were removed from aqueous solutions with the lowest initial metal concentrations by the sorbents especially CH and SBFL. However, the sorption efficiency decreased as the initial metal concentrations increased. Competition among the four metals changed significantly their distribution coefficient (Kd) values with the sorbents. The selectivity sequence of the metals was: Pb > Cu > Zn > Cd. The metal removal from the wastewaters varied from 72, 69, and 60 to nearly 100% for Cd, Cu and Zn, respectively. The efficiency of the studied byproducts in removing metals from the wastewaters differed based on the source of contamination and metal concentrations. Cadmium removal percentages by HK and CH were higher than SBFL and ES. The HK and CH exhibited the highest removal percentage of Cu from water with high concentrations. The SBFL and ES revealed the highest removal percentage of Zn from water with high concentrations. The results, demonstrate a high potential of CH, SBFL, HK, and ES for the remediation of HM contaminated wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. R. Mann; T. A. Todd; K. N. Brewer
1999-04-01
Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less
Maksimov, Nikolay; Trofimchuk, Anatoly; Zaporogets, Olga
2017-01-01
Silica gel, sequentially modified with polyhexamethylene guanidine and pyrocatechin-3,5-disulfonic acid (Tiron), was suggested for sorption separation and determination of Fe(III) and Fe(II). It was found that quantitative extraction of Fe(III) and its separation from Fe(II) were attained at pH 2.5–4.0, while quantitative extraction of Fe(II) was observed at pH 6.0–7.5. An intensive signal with g = 4.27, which is characteristic for Fe(III), appeared in EPR spectra of the sorbents after Fe(II) and Fe(III) sorption. During interaction between Fe(II) and Tiron, fixed on the sorbent surface, its oxidation up to Fe(III) occurred. Red-lilac complexes of the composition FeL3 were formed on the sorbent surface during sorption regardless of initial oxidation level of iron. Diffuse reflectance spectrum of surface complexes exhibited wide band with slightly expressed maxima at 480 and 510 nm. Procedures for separation and photometric determination of Fe(III) and Fe(II) at the joint presence and total Fe content determination as Fe(II) in waste and natural waters was developed. The limit of detection for iron was 0.05 μg per 0.100 g of the sorbent. The calibration graph was linear up to 20.0 μg of Fe per 0.100 g of the sorbent. The RSD in the determination of more than 0.2 μg of Fe was less than 0.06. PMID:29214095
NASA Astrophysics Data System (ADS)
Voronina, A. V.; Noskova, A. Y.; Gritskevich, E. Y.; Mashkovtsev, M. A.; Semenishchev, V. S.
2017-09-01
The possibility of use of sorbents based on hydrated titanium and zirconium oxides (T-3A, T-35, NPF-HTD) for concentration and immobilization of 137Cs from liquid radioactive waste of various chemical composition (fresh water, seawater, solutions containing NaNO3, ammonium acetate, EDTA) was evaluated. It was shown that the NPF-HTD and T-35 sorbents separate 137Cs from fresh water and seawater with distribution coefficients as high as 6.2.104 and 6.1.104, 4.0.105 and 1.6.105 L kg-1 respectively; in 1 M ammonium acetate these values were 2.0.103 and 1.0.103 L kg-1. The NPF-HTD sorbent showed the highest selectivity for cesium in NaNO3 solution: cesium distribution coefficients in 1M NaNO3 was 1.4.106 L kg-1. All studied sorbents are suitable for deactivation of solutions containing EDTA. Cesium distribution coefficients were around 102-103 L kg-1 depending on EDTA concentration. Chemical stability of the sorbents was also studied. It was shown that 137Cs leaching rate from all sorbents meet the requirements for matrix materials.
Alptekin, Gokhan
2016-03-29
Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.
Wang, Shengping; Fan, Shasha; Fan, Lijing; Zhao, Yujun; Ma, Xinbin
2015-04-21
A series of CaO-based sorbents were synthesized through a sol-gel method and doped with different amounts of CeO2. The sorbent with a Ca/Ce molar ratio of 15:1 showed an excellent absorption capacity (0.59 gCO2/g sorbent) and a remarkable cycle durability (up to 18 cycles). The admirable capture performance of CaCe-15 was ascribed to its special morphology formed by the doping of CeO2 and the well-distributed CeO2 particles. The sorbents doped with CeO2 possessed a loose shell-connected cross-linking structure, which was beneficial for the contact between CaO and CO2. CaO and CeO2 were dispersed homogeneously, and the existence of CeO2 also decreased the grain size of CaO. The well-dispersed CeO2, which could act as a barrier, effectively prevented the CaO crystallite from growing and sintering, thus the sorbent exhibited outstanding stability. The doping of CeO2 also improved the carbonation rate of the sorbent, resulting in a high capacity in a short period of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Robert
NREL and the National Biodiesel Board (NBB) will work cooperatively to assess the effects of biodiesel blends on the performance of modern diesel engines and emissions control systems meeting increasingly strict emissions standards. This work will include research to understand the impact of biodiesel blends on the operation and durability of particle filters and NOx control sorbents/catalysts, to quantify the effect on emission control systems performance, and to understand effects on engine component durability. Work to assess the impact of biodiesel blends on real world fleet operations will be performed. Also, research to develop appropriate ASTM standards for biodiesel qualitymore » and stability will be conducted. The cooperative project will involve engine testing and fleet evaluation studies at NREL using biodiesel from a variety of sources. In addition, NREL will work with NBB to set up an Industrial Steering Committee to design the scope for the various projects and to provide technical oversight to these projects. NREL and NBB will cooperatively communicate the study results to as broad an audience as possible.« less
Hydrogen Purification and Recycling for an Integrated Oxygen Recovery System Architecture
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Greenwood, Zachary; Wall, Terry; Miller, Lee; Wheeler, Ray
2016-01-01
The United States Atmosphere Revitalization life support system on the International Space Station (ISS) performs several services for the crew including oxygen generation, trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The water product is purified in the Water Purification Assembly and recycled to the Oxygen Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a theoretical maximum oxygen recovery from CO2 of approximately 54% due to the loss of reactant hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma Methane Pyrolysis technology (PPA), developed by Umpqua Research Company, provides the capability to further close the Atmosphere Revitalization oxygen loop by recovering hydrogen from Sabatier-produced methane. A key aspect of this technology approach is to purify the hydrogen from the PPA product stream which includes acetylene, unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale hydrogen separation systems were delivered to NASA for evaluation. These included two electrolysis single-cell hydrogen purification cell stacks developed by Sustainable Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc. Here we report the results of these evaluations, discuss potential architecture options, and propose future work.
Hydrogen Purification and Recycling for an Integrated Oxygen Recovery System Architecture
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Greenwood, Zachary; Wall, Terry; Nur, Mononita; Wheeler, Richard R., Jr.; Preston, Joshua; Molter, Trent
2016-01-01
The United States Atmosphere Revitalization life support system on the International Space Station (ISS) performs several services for the crew including oxygen generation, trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The water product is purified in the Water Purification Assembly and recycled to the Oxygen Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a theoretical maximum oxygen recovery from CO2 of approx.54% due to the loss of reactant hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma Pyrolysis Assembly (PPA) technology, developed by Umpqua Research Company, provides the capability to further close the Atmosphere Revitalization oxygen loop by recovering hydrogen from Sabatier-produced methane. A key aspect of this technology approach is the need to purify the hydrogen from the PPA product stream which includes acetylene, unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale hydrogen separation systems were delivered to NASA for evaluation. These included two electrolysis single-cell hydrogen purification cell stacks developed by Sustainable Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc. Here we report the results of these evaluations to-date, discuss potential architecture options, and propose future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currentlymore » fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.« less
Single-Walled Carbon Nanotubes (SWCNTs), as a Novel Sorbent for Determination of Mercury in Air
Golbabaei, Farideh; Ebrahimi, Ali; Shirkhanloo, Hamid; Koohpaei, Alireza; Faghihi-Zarandi, Ali
2016-01-01
Background: Based on the noticeable toxicity and numerous application of mercury in industries, removal of mercury vapor through sorbent is an important environmental challenge. Purpose of the Study: Due to their highly porous and hollow structure, large specific surface area, light mass density and strong interaction, Single-Walled Carbon Nanotubes (SWCNTs) sorbent were selected for this investigation. Methods: In this study, instrumental conditions, method procedure and different effective parameters such as adsorption efficiency, desorption capacity, time, temperature and repeatability as well as retention time of adsorbed mercury were studied and optimized. Also, mercury vapor was determined by cold vapor atomic absorption spectrometry (CV-AAS). Obtained data were analyzed by Independent T- test, Multivariate linear regression and one way–ANOVA finally. Results: For 80 mg nanotubes, working range of SWCNT were achieved 0.02-0.7 μg with linear range (R2=0.994). Our data revealed that maximum absorption capacity was 0.5 μg g-1 as well as limit of detection (LOD) for studied sorbent was 0.006 μg. Also, optimum time and temperature were reported, 10 min and 250 °C respectively. Retention time of mercury on CNTs for three weeks was over 90%. Results of repeated trials indicated that the CNTs had long life, so that after 30 cycles of experiments, efficiency was determined without performance loss. Conclusion: Results showed that carbon nanotubes have high potential for efficient extraction of mercury from air and can be used for occupational and environmental purposes. The study of adsorption properties of CNTs is recommended. PMID:26925918
Moyakao, Khwankaew; Santaladchaiyakit, Yanawath; Srijaranai, Supalax; Vichapong, Jitlada
2018-04-11
In this work, we investigated montmorillonite for adsorption of neonicotinoid insecticides in vortex-assisted dispersive micro-solid phase extraction (VA-d-μ-SPE). High-performance liquid chromatography with photodiode array detection was used for quantification and determination of neonicotinoid insecticide residues, including thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid. In this method, the solid sorbent was dispersed into the aqueous sample solution and vortex agitation was performed to accelerate the extraction process. Finally, the solution was filtered from the solid sorbent with a membrane filter. The parameters affecting the extraction efficiency of the proposed method were optimized, such as amount of sorbent, sample volume, salt addition, type and volume of extraction solvent, and vortex time. The adsorbing results show that montmorillonite could be reused at least 4 times and be used as an effective adsorbent for rapid extraction/preconcentration of neonicotinoid insecticide residues. Under optimum conditions, linear dynamic ranges were achieved between 0.5 and 1000 ng mL -1 with a correlation of determination ( R² ) greater than 0.99. Limit of detection (LOD) ranged from 0.005 to 0.065 ng mL -1 , while limit of quantification (LOQ) ranged from 0.008 to 0.263 ng mL -1 . The enrichment factor (EF) ranged from 8 to 176-fold. The results demonstrated that the proposed method not only provided a more simple and sensitive method, but also can be used as a powerful alternative method for the simultaneous determination of insecticide residues in natural surface water and fruit juice samples.
REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION
The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...
A FLUID SORBENT RECYCLING DEVICE FOR INDUSTRIAL FLUID USERS
A roller compression Extractor® that extracts fluids from reusable sorbent pads was evaluated as a method of waste reduction. The extraction device, evaluated for industrial fluid users in New Jersey, was found to be effective in recycling unpleated sorbent pads, especially ...
MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS
The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...
Kinetics of the sorption of triterpene saponin by hypercrosslinked polystyrene
NASA Astrophysics Data System (ADS)
Mironenko, N. V.; Brezhneva, T. A.; Selemenev, V. F.
2013-03-01
The kinetics of sorption of triterpene saponin by the polymer sorbent NM-200 is considered. The influence of the surface activity of glycoside on the rate of formation and structure of the adsorption layer on the sorbent's surface is established. The rate-determining step of sorption is found to be diffusion into the sorbent grain. The value of the activation energy demonstrates the determining role of dispersion forces in the interaction between triterpene saponin and the polymer sorbent MN-200.
High temperature regenerable hydrogen sulfide removal agents
Copeland, Robert J.
1993-01-01
A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.
Development of cryosorption panels for cryopumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perinic, D.; Haas, H.; Mack, A.
1994-12-31
Liquid-helium cooled cryosorption panels have been developed in Karlsruhe for plasma exhaust pumping in tokamaks. A variety of material combinations (sorbent/bonding/substrate) and various coating techniques have been compared in an extensive testing programme. A technology suitable for machine coating of large surfaces has been developed applying injector nozzles for spraying of bonding and sorbent materials. Inorganic cements have been selected for bonding activated carbon or molecular sieve particles, 10 {mu}m to 2 mm grain size, to metal substrates. The cryosorption panels prepared in this way are capable of pumping simulated tokamak exhaust gas mixtures including deuterium, helium and impurities atmore » pumping speeds of up to 8 L/(s cm{sup 2}) and pumping pressures < 10{sup {minus}2} mbar. In this paper the development of the coating technology and some results of panel testing are described.« less
Regenerable sorbent technique for capturing CO.sub.2 using immobilized amine sorbents
Pennline, Henry W; Hoffman, James S; Gray, McMahan L; Fauth, Daniel J; Resnik, Kevin P
2013-08-06
The disclosure provides a CO.sub.2 absorption method using an amine-based solid sorbent for the removal of carbon dioxide from a gas stream. The method disclosed mitigates the impact of water loading on regeneration by utilizing a conditioner following the steam regeneration process, providing for a water loading on the amine-based solid sorbent following CO.sub.2 absorption substantially equivalent to the moisture loading of the regeneration process. This assists in optimizing the CO.sub.2 removal capacity of the amine-based solid sorbent for a given absorption and regeneration reactor size. Management of the water loading in this manner allows regeneration reactor operation with significant mitigation of energy losses incurred by the necessary desorption of adsorbed water.
Different CO2 absorbents-modified SBA-15 sorbent for highly selective CO2 capture
NASA Astrophysics Data System (ADS)
Liu, Xiuwu; Zhai, Xinru; Liu, Dongyang; Sun, Yan
2017-05-01
Different CO2 absorbents-modified SBA-15 materials are used as CO2 sorbent to improve the selectivity of CH4/CO2 separation. The SBA-15 sorbents modified by physical CO2 absorbents are very limited to increasing CO2 adsorption and present poor selectivity. However, the SBA-15 sorbents modified by chemical CO2 absorbents increase CO2 adsorption capacity obviously. The separation coefficients of CO2/CH4 increase in this case. The adsorption and regeneration properties of the SBA-15 sorbents modified by TEA, MDEA and DIPA have been compared. The SBA-15 modified by triethanolamine (TEA) presents better CO2/CH4 separation performance than the materials modified by other CO2 absorbents.
Rotary moving bed for CO.sub.2 separation and use of same
Elliott, Jeannine Elizabeth; Copeland, Robert James; McCall, Patrick P.
2017-01-10
A rotary moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The rotary moving bed can have a rotational assembly rotating on a vertical axis, and a plurality of sorbent cells positioned horizontally to the axis of rotation that fills a vertical space in the moving bed, where the sorbent cells adsorb the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement with steam. The gas flows in the system flow in a direction horizontal to the axis of rotation and in a direction opposite the rotational movement of the sorbent cells.
Ghassemi Nooreini, Mahsa; Ahmad Panahi, Homayon
2016-10-15
This study presents a novel method for synthesis and characterization of a metal-organic framework and application in drug delivery. The first step was synthesis of amino functionalized magnetite that was then modified by a metal-organic framework of Zn(2+). This newly developed nano-sorbent was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, thermogravimetric analysis, vibrating sample magnetometer and x-ray diffraction. Doxycycline was loaded to the nano-sorbent and effects of the variable parameters, kinetics of adsorption, release and capacity of adsorption were investigated. Test results specified maximum sorption of 21.5mgg(-1) for doxycycline in conditions of nano-sorbent at pH 7 and optimum time of 10min. Equilibrium adsorption data were analyzed by the Langmuir, Freundlich and Temkin models. Results showed that about 40% of doxycycline was released in simulated gastric fluid for the 30min and more than 70% was released in simulated intestinal fluid during 12h. These results were satisfactory and demonstrate that this new nano-sorbent modified with metal-organic framework had a good level of efficiency for drug delivery of doxycycline. Copyright © 2016 Elsevier B.V. All rights reserved.
Izanloo, Maryam; Esrafili, Ali; Behbahani, Mohammad; Ghambarian, Mahnaz; Reza Sobhi, Hamid
2018-02-01
Herein, a new dispersive solid-phase extraction method using a nano magnetic titanium dioxide graphene-based sorbent in conjunction with high-performance liquid chromatography and ultraviolet detection was successfully developed. The method was proved to be simple, sensitive, and highly efficient for the trace quantification of sulfacetamide, sulfathiazole, sulfamethoxazole, and sulfadiazine in relatively large volume of aqueous media. Initially, the nano magnetic titanium dioxide graphene-based sorbent was successfully synthesized and subsequently characterized by scanning electron microscopy and X-ray diffraction. Then, the sorbent was used for the sorption and extraction of the selected sulfonamides mainly through π-π stacking hydrophobic interactions. Under the established conditions, the calibration curves were linear over the concentration range of 1-200 μg/L. The limit of quantification (precision of 20%, and accuracy of 80-120%) for the detection of each sulfonamide by the proposed method was 1.0 μg/L. To test the extraction efficiency, the method was applied to various fortified real water samples. The average relative recoveries obtained from the fortified samples varied between 90 and 108% with the relative standard deviations of 5.3-10.7%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of blend ratio of PP/kapok blend nonwoven fabrics on oil sorption capacity.
Lee, Young-Hee; Kim, Ji-Soo; Kim, Do-Hyung; Shin, Min-Seung; Jung, Young-Jin; Lee, Dong-Jin; Kim, Han-Do
2013-01-01
More research and development on novel oil sorbent materials is needed to protect the environmental pollution. New nonwoven fabrics (pads) of polypropylene (PP)/kapok blends (blend ratio: 100/0, 75/25, 50/50, 25/75 and 10/90) were prepared by needle punching process at a fixed (optimized) condition (punch density: 50 punches/cm2 and depth: 4mm). This study focused on the effect of blend ratio of PP/kapok nonwoven fabrics on oil sorption capacities to find the best blend ratio having the highest synergy effect. The PP/kapok blend (50/50) sample has the lowest bulk density and showed the best oil absorption capacity. The oil sorption capacity of PP/kapok blend (50/50) nonwoven fabric for kerosene/soybean oil [21.09/27.01 (g oil/g sorbent)] was 1.5-2 times higher than those of commercial PP pad oil sorbents. The highest synergy effect of PP/kapok blend (50/50) was ascribed to the lowest bulk density of PP/kapok blend (50/50), which might be due to the highest morphologically incompatibility between PP fibre and kapok. These results suggest that the PP/kapok blend (50/50) having the highest synergy effect has a high potential as a new high-performance oil sorbent material.
Silva, Catarina; Cavaco, Carina; Perestrelo, Rosa; Pereira, Jorge; Câmara, José S.
2014-01-01
For a long time, sample preparation was unrecognized as a critical issue in the analytical methodology, thus limiting the performance that could be achieved. However, the improvement of microextraction techniques, particularly microextraction by packed sorbent (MEPS) and solid-phase microextraction (SPME), completely modified this scenario by introducing unprecedented control over this process. Urine is a biological fluid that is very interesting for metabolomics studies, allowing human health and disease characterization in a minimally invasive form. In this manuscript, we will critically review the most relevant and promising works in this field, highlighting how the metabolomic profiling of urine can be an extremely valuable tool for the early diagnosis of highly prevalent diseases, such as cardiovascular, oncologic and neurodegenerative ones. PMID:24958388
Simultaneous capture of metal, sulfur and chlorine by sorbents during fluidized bed incineration.
Ho, T C; Chuang, T C; Chelluri, S; Lee, Y; Hopper, J R
2001-01-01
Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental investigation, the effect of sulfur and chlorine on the metal capture process was also theoretically investigated through performing equilibrium calculations based on the minimization of system free energy. The observed results have indicated that, in general, the existence of sulfur and chlorine enhances the efficiency of metal capture especially at low to medium combustion temperatures. The capture mechanisms appear to include particulate scrubbing and chemisorption depending on the type of sorbents. Among the three sorbents tested, calcined limestone is capable of capturing all the three air pollutants simultaneously. The results also indicate that a mixture of the three sorbents, in general, captures more metals than a single sorbent during the process. In addition, the existence of sulfur and chlorine apparently enhances the metal capture process.
Ladshaw, Austin P.; Ivanov, Alexander S.; Das, Sadananda; ...
2018-03-27
Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material’s relatively poor selectivity of uranium over its main competitormore » vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Furthermore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.« less
Investigating Liquid CO2 as a Coolant for a MTSA Heat Exchanger Design
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Padilla, Sebastian; Powers, Aaron; Iacomini, Christie
2009-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO 2) control for a future Portable Life Support System (PLSS), as well as water recycling. CO 2 removal and rejection is accomplished by driving a sorbent through a temperature swing of approximately 210 K to 280 K . The sorbent is cooled to these sub-freezing temperatures by a Sublimating Heat Exchanger (SHX) with liquid coolant expanded to sublimation temperatures. Water is the baseline coolant available on the moon, and if used, provides a competitive solution to the current baseline PLSS schematic. Liquid CO2 (LCO2) is another non-cryogenic coolant readily available from Martian resources which can be produced and stored using relatively low power and minimal infrastructure. LCO 2 expands from high pressure liquid (5800 kPa) to Mars ambient (0.8 kPa) to produce a gas / solid mixture at temperatures as low as 156 K. Analysis and experimental work are presented to investigate factors that drive the design of a heat exchanger to effectively use this sink. Emphasis is given to enabling efficient use of the CO 2 cooling potential and mitigation of heat exchanger clogging due to solid formation. Minimizing mass and size as well as coolant delivery are also considered. The analysis and experimental work is specifically performed in an MTSA-like application to enable higher fidelity modeling for future optimization of a SHX design. In doing so, the work also demonstrates principles and concepts so that the design can be further optimized later in integrated applications (including Lunar application where water might be a choice of coolant).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin P.; Ivanov, Alexander S.; Das, Sadananda
Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material’s relatively poor selectivity of uranium over its main competitormore » vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Furthermore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.« less
Ladshaw, Austin P; Ivanov, Alexander S; Das, Sadananda; Bryantsev, Vyacheslav S; Tsouris, Costas; Yiacoumi, Sotira
2018-04-18
Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material's relatively poor selectivity of uranium over its main competitor vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Therefore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.
Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang
2014-05-21
In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).
IODIDE AEROSOL SORBENTS FOR MERCURY CAPTURE IN COMBUSTION EXHAUSTS
Several sorbent processes are being studied for their feasibility for mercury capture. Mercury is different from the other heavy metals as it is not as chemically reactive (due to a filled outer electronic shell), thus making it difficult for sorbents to chemically trap it (a). ...
COMPARISON OF MERCURY CAPTURE EFFICIENCIES OF THREE DIFFERENT IN SITU GENERATED SORBENTS
Three different sorbent materials (Ti, Si and Ca based) were compared for their mercury capture efficiencies in an entrained flow reactor. Agglomerated particles with a high specific surface area were generated in situ by injecting gas phase sorbent precursors into a high tempera...
SORBENT/UREA SLURRY INJECTION FOR SIMULTANEOUS SO2/NOX REMOVAL
The combination of sorbent injection and selective noncatalytic reduction (SNCR) technologies has been investigated for simulataneous SO2/NOx removal. A slurry composed of a urea-based solution and various Ca-based sorbents was injected at a range of tempera...
Development of Novel Carbon Sorbents for CO{sub 2} Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Gopala; Hornbostel, Marc; Bao, Jianer
2013-11-30
An innovative, low-cost, and low-energy-consuming carbon dioxide (CO{sub 2}) capture technology was developed, based on CO{sub 2}adsorption on a high-capacity and durable carbon sorbent. This report describes the (1) performance of the concept on a bench-scale system; (2) results of parametric tests to determine the optimum operating conditions; (3) results of the testing with a flue gas from coal-fired boilers; and (4) evaluation of the technical and economic viability of the technology. The process uses a falling bed of carbon sorbent microbeads to separate the flue gas into two streams: a CO{sub 2} -lean flue gas stream from which >more » 90% of the CP{sub 2} is removed and a pure stream of CO{sub 2} that is ready for compression and sequestration. The carbo sorbent microbeads have several unique properties such as high CO{sub 2} capacity, low heat of adsorption and desorption (25 to 28 kJ/mole), mechanically robust, and rapid adsorption and desorption rates. The capture of CO{sub 2} from the flue gas is performed at near ambient temperatures in whic the sorbent microbeads flow down by gravity counter-current with the up-flow of the flue gas. The adsorbed CO{sub 2} is stripped by heating the CO{sub 2}-loaded sorbent to - 100°C, in contact with low-pressure (- 5 psig) steam in a section at the bottom of the adsorber. The regenerated sorben is dehydrated of adsorbed moisture, cooled, and lifted back to the adsorber. The CO{sub 2} from the desorber is essentially pure and can be dehydrated, compressed, and transported to a sequestration site. Bench-scale tests using a simulated flue gas showed that the integrated system can be operated to provide > 90% CO{sub 2} capture from a 15% CO{sub 2} stream in the adsorber and produce > 98% CO{sub 2} at the outlet of the stripper. Long-term tests ( 1,000 cycles) showed that the system can be operated reliably without sorbent agglomeration or attrition. The bench-scale reactor was also operated using a flue gas stream from a coal-fired boil at the University of Toledo campus for about 135 h, comprising 7,000 cycles of adsorption and desorption using the desulfurized flue gas that contained only 4.5% v/v CO{sub 2}. A capture efficiency of 85 to 95% CO{sub 2} was achieved under steady-state conditi ons. The CO{sub 2} adsorption capacity did not change significantly during the field test, as determined from the CO{sub 2} adsorptio isotherms of fresh and used sorbents. The process is also being tested using the flue gas from a PC-fired power plant at the National Carbon Capture Center (NCCC), Wilsonville, AL. The cost of electricity was calculated for CO{sub 2} capture using the carbon sorbent and compared with the no-CO{sub 2} capture and CO{sub 2} capture with an amine-based system. The increase i the levelized cost of electricity (L-COE) is about 37% for CO{sub 2} capture using the carbon sorbent in comparison to 80% for an amine-based system, demonstrating the economic advantage of C capture using the carbon sorbent. The 37% increase in the L-COE corresponds to a cost of capture of $30/ton of CO{sub 2}, including compression costs, capital cost for the capture system, and increased plant operating and capital costs to make up for reduced plant efficiency. Preliminary sensitivity analyses showed capital costs, pressure drops in the adsorber, and steam requirement for the regenerator are the major variables in determining the cost of CO{sub 2} capture. The results indicate that further long-term testing with a flue gas from a pulverized coal fired boiler should be performed to obtain additional data relating to the effects of flue gas contaminants, the ability to reduce pressure drop by using alternate structural packing , and the use of low-cost construction materials.« less
Cai, Ying; Yan, Zhihong; Wang, Lijia; NguyenVan, Manh; Cai, Qingyun
2016-01-15
A magnetic solid phase extraction (MSPE) protocol combining a static headspace gas chromatography coupled to mass spectrometry (HS-GC-MS) method has been developed for extraction, and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in drinking water samples. Magnetic nanoparticles (MNPs) were coated with 3-aminopropyltriethoxysilane and modified by cholesterol chloroformate. Transmission electron microscope, vibrating sample magnetometer, Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy were used to characterize the cholesterol-functionalized sorbents, and the main parameters affecting the extraction as well as HS sampling, such as sorbent amount, extraction time, oven temperature and equilibration time have been investigated and established. Combination with HS sampling, the MSPE procedure was simple, fast and environmentally friendly, without need of any organic solvent. Method validation proved the feasibility of the developed sorbents for the quantitation of the investigated analytes at trace levels obtaining the limit of detection (S/N=3) ranging from 0.20 to 7.8 ng/L. Good values for intra and inter-day precision were obtained (RSDs ≤ 9.9%). The proposed method was successfully applied to drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Our previous investigations demonstrated that entrained flow or in-flight adsorption can be a more effective and flexible approach to trace gas adsorption than fixed sorbent beds. The present investigation establishes the turbulent mixing that accompanies sorbent injection is an ...
ENHANCEMENT OF REACTIVITY IN SURFACTANT-MODIFIED SORBENTS FOR SULFUR DIOXIDE CONTROL
Injection of calcium-based sorbents into the postflame zone of utility boilers is capable of achieving sulfur dioxide (SO2) captures of 50-60% at a stoichiometry of 2. Calcium hydroxide [Ca(OH)2] appears to be the most effective commercially available sorbent. Recent attempts to ...
Trace contaminant adsorption and sorbent regeneration in closed ecological systems
NASA Technical Reports Server (NTRS)
Arnold, C. R.; Kersels, G. J.; Merrill, R. P.; Robell, A. J.; Wheeler, A.
1972-01-01
Correlation was obtained for determining sorptive capacity of carbon for pure and mixed contaminants under dry and humid conditions at various temperatures. Vacuum desorption rates were investigated for single particles and for sorbent beds. For sorbent beds, rate-determining step is Knudsen diffusion through interparticle voids.
Functionalized sorbent for chemical separations and sequential forming process
Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA
2012-03-20
A highly functionalized sorbent and sequential process for making are disclosed. The sorbent includes organic short-length amino silanes and organic oligomeric polyfunctional amino silanes that are dispersed within pores of a porous support that form a 3-dimensional structure containing highly functionalized active binding sites for sorption of analytes.
The paper gives results of an investigation, using an 82-kW-rated laboratory-scale refractory-lined combustor, of the characteristics of particulate matter emitted from residual oil combustion and the reduction of ultrafine nuclei by postflame sorbent injection. Without sorbent a...
40 CFR Table 6 to Subpart Jjjjjj... - Establishing Operating Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
... Dry sorbent or activated carbon injection rate operating parameters Establish a site-specific minimum sorbent or activated carbon injection rate operating limit according to § 63.11211(b) Data from the sorbent or activated carbon injection rate monitors and the mercury performance stack tests (a) You must...
40 CFR Table 6 to Subpart Jjjjjj... - Establishing Operating Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
... Dry sorbent or activated carbon injection rate operating parameters Establish a site-specific minimum sorbent or activated carbon injection rate operating limit according to § 63.11211(b) Data from the sorbent or activated carbon injection rate monitors and the mercury performance stack tests (a) You must...
21 CFR 876.5870 - Sorbent hemoperfusion system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... system. (a) Identification. A sorbent hemoperfusion system is a device that consists of an extracorporeal blood system similar to that identified in the hemodialysis system and accessories (§ 876.5820) and a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbent hemoperfusion system. 876.5870 Section 876...
Fluidized bed and method and system for gas component capture
Krutka, Holly; Wilson, Cody; Starns, Travis
2016-05-31
The present disclosure is directed to a process that allows dry sorbents to remove a target constituent, such as carbon dioxide (CO.sub.2), from a gas stream. A staged fluidized bed separator enables gas and sorbent to move in opposite directions. The sorbent is loaded with target constituent in the separator. It is then transferred to a regenerator where the target constituent is stripped. The temperature of the separator and regenerator are controlled. After it is removed from the regenerator, the sorbent is then transferred back to the separator.
Novel Liquid Sorbent C02 Removal System for Microgravity Applications
NASA Technical Reports Server (NTRS)
Rogers, Tanya; Westover, Shayne; Graf, John
2017-01-01
Removing Carbon Dioxide (CO2) from a spacecraft environment for deep space exploration requires a robust system that is low in weight, power, and volume. Current state-of-the-art microgravity compatible CO2 removal systems, such as the carbon dioxide removal assembly (CDRA), utilize solid sorbents that demand high power usage due to high desorption temperatures and a large volume to accommodate for their comparatively low capacity for CO2. Additionally, solid sorbent systems contain several mechanical components that significantly reduce reliability and contribute to a large overall mass. A liquid sorbent based system has been evaluated as an alternative is proposed to consume 65% less power, weight, and volume than solid based CO2 scrubbers. This paper presents the design of a liquid sorbent CO2 removal system for microgravity applications.
Gus'kov, Vladimir Yu; Gainullina, Yulia Yu; Ivanov, Sergey P; Kudasheva, Florida Kh
2014-08-22
The thermodynamic features of organic molecule adsorption from the gaseous phase of sorbents modified with 5-hydroxy-6-methyluracil (HMU) were studied. Molar internal energy and entropy of adsorption variation analyses showed that with every type surface, except for silica gel, layers of supramolecular structure have cavities equal in size with the ones revealed in HMU crystals by X-ray diffraction. Adsorption thermodynamics on HMU-modified sorbents depended on the amount of impregnated HMU and on the polarity, but not the porosity, of the initial sorbent. Polarity of the modified surface increased as a function of HMU quantity and initial sorbent mean pore size, but become appreciably lower if the initial surface is capable of hydrogen bonding. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotarev, Yu.A.; Penkina, V.I.; Dostavalov, I.N.
Tritium-labeled optically active amino acids are obtained by resolving racemates of the corresponding amino acids by chromatography on a chiral polyacrylamide sorbent, filled with copper ions. The chiral sorbent is obtained by the action of formaldehyde and L-phenylalanine on a Biogel P-4 polyacrylamide gel in an alkaline medium. Data are given on the ligand exchange chromatography of amino acids on this sorbent, depending on the degree of filling of the sorbent by copper ions and the concentration of the eluent. Conditions were selected for the quantitative resolution of racemates of amino acids and examples are given of a preparative obtainingmore » of tritium labeled optical isomers of amino acids.« less
Process for preparing zinc oxide-based sorbents
Gangwal, Santosh Kumar [Cary, NC; Turk, Brian Scott [Durham, NC; Gupta, Raghubir Prasad [Durham, NC
2011-06-07
The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
NASA Astrophysics Data System (ADS)
Grekova, A. D.; Gordeeva, L. G.
2018-04-01
Adsorption heat transformation is an energy and environment saving technology for cooling/heating driven by renewable energy sources. Each specific cycle of adsorption heat transformer (AHT) makes particular requirements to the properties of the sorption material, depending on the climatic zone in which the AHT is used, the type of application (cooling, heating and heat storage), and energy source used for regenerating the sorbent. Therefore, the effective operation of AHT can be realized only if the working pair "adsorbent-adsorbate" is intelligently selected in accordance with the requirements of a particular working cycle. One of the most important factors influencing the choice of a working pair is the climatic conditions in which the AHT will operate. In this paper, the climatic conditions of various regions of Russian Federation (RF) were analyzed. For each considered zone, the boundary potentials of Polanyi corresponding to different AHT cycles are calculated. The sorption equilibrium data of various sorbents with water and methanol presented in the literature are summarized, and characteristic sorption curves are plotted in coordinates "sorption - the Polanyi potential". The characteristic adsorption curves found are approximated by analytic expressions, which allow the analysis of working pairs applicability for different AHT cycles. The recommendations of using the discussed sorption pairs under conditions of determined climatic zones are given for the AHT applications.
Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas
Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang
2012-11-06
Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.
Reactivity improvement of Ca(OH)2 sorbent using diatomaceous earth (DE) from Aceh Province
NASA Astrophysics Data System (ADS)
Mariana, M.; Mahidin, M.; Mulana, F.; Agam, T.; Hafdiansyah, F.
2018-04-01
In this study, the diatomaceous earth (DE) from Aceh Province was used to increase the reactivity of Ca(OH)2sorbent. The high silica (SiO2) content of about 97% in the diatomaceous earth allows the increasing reactivity of Ca(OH)2sorbent by forming calcium silicate hydrate (CSH). The CSH improved the porosity characteristic of the sorbent. The improvement process was performed by mixing Ca(OH)2sorbent, diatomaceous earth and water in a beaker glass at the Ca(OH)2/DE weight ratio of 1:10 for 2 hand then dried at 120 °C for 24 h. The dried sorbent was calcined at 500 °C and 800 °C for 2 h. The activated sorbent was characterized using Scanning Electron Microscopy (SEM) for the morphological properties; X- Ray Diffraction (XRD) for the materials characteristics. The adsorption capacity of thesorbent was tested by methylene blue adsorption. The results showed that the Ca(OH)2/DEsorbent had a higher porosity than the Ca(OH)2 adsorbent.The results also showed that Ca(OH)2/DE which was calcined at higher temperature of 800 °C had a higher adsorption capacity compared to Ca(OH)2/DE which was calcined at lower temperature of 500 °C.
Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C
2014-02-28
Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
CO₂ sorption kinetics of scaled-up polyethylenimine-functionalized mesoporous silica sorbent.
Al-Marri, M J; Khader, M M; Tawfik, M; Qi, G; Giannelis, E P
2015-03-31
Two CO2 solid sorbents based on polyethylenimine, PEI (M(n) ∼ 423 and 10K), impregnated into mesoporous silica (MPS) foam prepared in kilogram quantities via a scale-up process were synthesized and systematically characterized by a range of analytical and surface techniques. The mesoporous silica sorbent impregnated with lower molecular weight PEI, PEI-423/MPS, showed higher capacity toward CO2 sorption than the sorbent functionalized with the higher molecular weight PEI (PEI-10K/MPS). On the other hand, PEI-10K/MPS exhibited higher thermal stability than PEI-423/MPS. The kinetics of CO2 adsorption on both PEI/MPS fitted well with a double-exponential model. According to this model CO2 adsorption can be divided into two steps: the first is fast and is attributed to CO2 adsorption on the sorbent surface; the second is slower and can be related to the diffusion of CO2 within and between the mesoporous particles. In contrast, the desorption process obeyed first-order kinetics with activation energies of 64.3 and 140.7 kJ mol(-1) for PEI-423/MPS and PEI-10K/MPS, respectively. These studies suggest that the selection of amine is critical as it affects not only sorbent capacity and stability but also the energy penalty associated with sorbent regeneration.
Novel Process for Removal and Recovery of Vapor Phase Mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwell, Collin; Roberts, Daryl L; Albiston, Jason
We demonstrated in the Phase I program all key attributes of a new technology for removing mercury from flue gases, namely, a) removal of greater than 95% of both elemental and oxidized forms of mercury, both in the laboratory and in the field b) regenerability of the sorbent c) ability to scale up, and d) favorable economics. The Phase I program consisted of four tasks other than project reporting: Task I-1 Screen Sorbent Configurations in the Laboratory Task I-2 Design and Fabricate Bench-Scale Equipment Task I-3 Test Bench-Scale Equipment on Pilot Combustor Task I-4 Evaluate Economics Based on Bench-Scale Resultsmore » In Task I-1, we demonstrated that the sorbents are thermally durable and are regenerable through at least 55 cycles of mercury uptake and desorption. We also demonstrated two low-pressure- drop configurations of the sorbent, namely, a particulate form and a monolithic form. We showed that the particulate form of the sorbent would take up 100% of the mercury so long as the residence time in a bed of the sorbent exceeded 0.1 seconds. In principle, the particulate form of the sorbent could be imbedded in the back side of a higher temperature bag filter in a full-scale application. With typical bag face velocities of four feet per minute, the thickness of the particulate layer would need to be about 2000 microns to accomplish the uptake of the mercury. For heat transfer efficiency, however, we believed the monolithic form of the sorbent would be the more practical in a full scale application. Therefore, we purchased commercially-available metallic monoliths and applied the sorbent to the inside of the flow channels of the monoliths. At face velocities we tested (up to 1.5 ft/sec), these monoliths had less than 0.05 inches of water pressure drop. We tested the monolithic form of the sorbent through 21 cycles of mercury sorption and desorption in the laboratory and included a test of simultaneous uptake of both mercury and mercuric chloride. Overall, in Task I-1, we found that the particulate and monolith forms of the sorbent were thermally stable and durable and would repeatedly sorb and desorb 100% of the mercury, including mercuric chloride, with low pressure drop and short residence times at realistic flue gas conditions.« less
Li, Zhenhua; Chang, Xijun; Zou, Xiaojun; Zhu, Xiangbing; Nie, Rong; Hu, Zheng; Li, Ruijun
2009-01-26
A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n=8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.
Multi-Column Xe/Kr Separation with AgZ-PAN and HZ-PAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil
Previous multi-column xenon/krypton separation tests have demonstrated the capability of separating xenon from krypton in a mixed gas feed stream. The results of this initial testing with AgZ-PAN and HZ-PAN indicated that an excellent separation of xenon from krypton could be achieved. Building upon these initial results, a series of additional multi-column testing were performed in FY-16. The purpose of this testing was to scale up the sorbent beds, test a different composition of feed gas and attempt to improve the accuracy of the analysis of the individual capture columns’ compositions. Two Stirling coolers were installed in series to performmore » this testing. The use of the coolers instead of the cryostat provided two desired improvements, 1) removal of the large dilution due to the internal volume of the cryostat adsorption chamber, and 2) ability to increase the sorbent bed size for scale-up. The AgZ-PAN sorbent, due to its xenon selectivity, was loaded in the first column to capture the xenon while allowing the krypton to flow through and be routed to a second column containing the HZ-PAN for capture and analysis. The gases captured on both columns were sampled with evacuated sample bombs and subsequently analyzed via GC-MS for both krypton and xenon. The results of these tests can be used to develop the scope of future testing and analysis using this test bed for demonstrating the capture and separation of xenon and krypton using sorbents, for demonstrating desorption and regeneration of the sorbents, and for determining compositions of the desorbed gases. They indicate a need for future desorption studies in order to better quantify co-adsorbed species and final krypton purity.« less
Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review.
Herrero-Latorre, C; Barciela-García, J; García-Martín, S; Peña-Crecente, R M; Otárola-Jiménez, J
2015-09-10
Magnetic solid-phase extraction (M-SPE) is a procedure based on the use of magnetic sorbents for the separation and preconcentration of different organic and inorganic analytes from large sample volumes. The magnetic sorbent is added to the sample solution and the target analyte is adsorbed onto the surface of the magnetic sorbent particles (M-SPs). Analyte-M-SPs are separated from the sample solution by applying an external magnetic field and, after elution with the appropriate solvent, the recovered analyte is analyzed. This approach has several advantages over traditional solid phase extraction as it avoids time-consuming and tedious on-column SPE procedures and it provides a rapid and simple analyte separation that avoids the need for centrifugation or filtration steps. As a consequence, in the past few years a great deal of research has been focused on M-SPE, including the development of new sorbents and novel automation strategies. In recent years, the use of magnetic carbon nanotubes (M-CNTs) as a sorption substrate in M-SPE has become an active area of research. These materials have exceptional mechanical, electrical, optical and magnetic properties and they also have an extremely large surface area and varied possibilities for functionalization. This review covers the synthesis of M-CNTs and the different approaches for the use of these compounds in M-SPE. The performance, general characteristics and applications of M-SPE based on magnetic carbon nanotubes for organic and inorganic analysis have been evaluated on the basis of more than 110 references. Finally, some important challenges with respect the use of magnetic carbon nanotubes in M-SPE are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Phase 1 Methyl Iodide Deep-Bed Adsorption Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Nick; Watson, Tony
2014-08-22
Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing hasmore » progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that are soluble in NaOH scrubbing solution for iodine analysis. But when NOx and H2O are not present, then the majority of the uncaptured iodine exiting iodine-laden sorbent is in the form of methyl iodide. Methyl iodide adsorption efficiencies have been high enough so that initial DFs exceed 1,000 to 10,000. The methyl iodide mass transfer zone depths are estimated at 4-8 inches, possibly deeper than mass transfer zone depths estimated for I2 adsorption on AgZ. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less
Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Miller, Lee A.; Barton, Katherine
2012-01-01
State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials
Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Miller, Lee A.; Barton, Katherine
2011-01-01
State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials.
ENHANCEMENT OF REACTIVITY IN SURFACTANT-MODIFIED SORBENTS FOR SULFUR DIOXIDE CONTROL
The paper discusses the enhancement of reactivity in surfactant-modified sorbents for S02 control. Injecting calcium-based sorbents into the post-flame zone of utility boilers can achieve S02 captures of 50-60% at a stoichiometry of 2. Calcium hydroxide-- Ca(OH)2--appears to be t...
Sorbent and solvent characteristics influencing sorption of pentachlorophenol (PCP) were investigated. Analysis of aqueous sorption data for several sorbents over a broad pH range suggested hydrophobic sorption of neutral PCP predominates at pH 7. At pH > 7, sorption of the penta...
The capture of elemental mercury (Hgo) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sorbents was examined in this bench-scale study under conditions prevalent in coal fired utilities. Ca-based sorbent performances were compared to that of an activated carbon...
THE EFFECT OF STORAGE CONDITIONS ON HANDLING AND SO2 REACTIVITY OF CA(OH)2-BASED SORBENTS
The article gives results of an investigation of the effect of relative humidity (RH), time, and aeration during calcium hydroxide -- Ca(OH)2--storage for its effect on sorbent handling and reactivity with sulfur dioxide (SO2). nvestigated was the effect of sorbent storage condit...
Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams
Siriwardane, Ranjani
2004-06-01
A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.
Ecologically pure sorbents for power system of Myanmar
NASA Astrophysics Data System (ADS)
Nikitina, I. S.; Moryganova, Y. A.; Maung, Ko Ko; Arefeva, E. A.
2017-11-01
Currently, one of the most important problems of the thermal power plant, and many industrial enterprises in different countries is a wastewater treatment for oil products. When choosing the good sorbents is necessary to consider not only the properties and efficiency of the recommended materials, but also the cost, the possibility of environmentally friendly disposal of used sorbents and the possibility of using secondary resources. The purpose of this paper is to study the possibility of using agricultural waste in Myanmar as the sorbents in wastewater treatment containing oil products. The results of experiments have confirmed that rice hulls, and coconut fiber can be effectively used as the sorbents in wastewater treatment containing oil products at concentrations up to 10 mg/l. According to comparative analysis with the conventional sorbent-activated birch carbon (BAC-A) in the Russian power industry has shown that coconut fiber has very good sorption capacity and it is available to use as the raw materials for industries, which does not require to regenerate after using it and can be directly recycled in the factory.
NASA Astrophysics Data System (ADS)
Pyatanova, P. A.; Adeeva, L. N.
2017-08-01
It was elaborated the ability of the sorbent produced by thermic treatment of cedar nut shell to destruct model and real first kind (direct) emulsions in static and dynamic conditions. In static conditions optimal ratio sorbent-emulsion with the original concentration of oil products 800 mg/l was in the range of 2.0 g per 100 ml of emulsion which corresponds to the level of treatment 94.9%. The time of emulsion destruction was 40 minutes. This sorbent is highly active in dynamic processes of oil-contaminated water treatment, the level of treatment 96.0% is being achieved. Full dynamic sorptive capacity of the sorbent is 0.85 g/g. Sorbent based on the thermic treated cedar nut shell can be elaborated as sorptive filter element of local treatment facilities of oil refining and petrochemical processes. After the treatment with this sorbent of drainage waters of oil refinery in dynamic conditions the concentration of oil products became less than mpc on oil products for waste waters coming to biological treatment.
Hossain, G S M; McLaughlan, R G
2012-09-01
Wood and coal, as low-cost sorbents, have been evaluated as an alternative to commercial granular activated carbon (GAC) for chlorophenol removal. Kinetic experiments indicated that filter coal had a significantly lower rate of uptake (approximately 10% of final uptake was achieved after three hours) than the other sorbents, owing to intra-particle diffusion limitations. The data fitted a pseudo-second-order model. Sorption capacity data showed that GAC had a high sorption capacity (294-467 mg g(-1)) compared with other sorbents (3.2-7.5 mg(g-1)). However, wood and coal had a greater sorption capacity per unit surface area than GAC. Sorption equilibrium data was best predicted using a Freundlich adsorption model. The sorption capacity for all sorbents was 2-chlorophenol < 4-chlorophenol < 2, 4-dichlorophenol, which correlates well with solute hydrophobicity, although the relative differences were much less for coal than the other sorbents. The results showed that pine, hardwood and filter coal can be used as sorbent materials for the removal of chlorophenol from water; however, kinetic considerations may limit the application of filter coal.
Zhang, Y; Liu, B S; Zhang, F M; Zhang, Z F
2013-03-15
Several MCM-41 materials were synthesized at different conditions by hydrothermal procedure using cheap and easily available industrial water glass as silica source. Fe doped manganese-based oxide/MCM-41 sorbents were prepared by a sol-gel method. The effects of loadings of metal oxide, Fe/Mn molar ratios over MCM-41 and reaction temperature on the performance of sorbent for hot coal gas desulfurization were investigated. Various techniques such as BET, XRD, XPS, LRS and HRTEM were used to characterize the sorbents. The result indicated Fe(3+) ions could occupy a position of Mn(3+) in cubic lattice of Mn2O3 and the (FexMn2-x)O3 solid solution is mainly active phase of sorbent. Moreover, the result of nine successive sulfurization-regeneration cycles of sorbent showed high sulfur adsorption capacity and endurable stability of FeMn4Ox/MCM-41 for H2S removal. Copyright © 2013 Elsevier B.V. All rights reserved.
Ali, Norizan; El-Harbawi, Mohanad; Jabal, Ayman Abo; Yin, Chun-Yang
2012-01-01
The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents.
Progress on first-principles-based materials design for hydrogen storage.
Park, Noejung; Choi, Keunsu; Hwang, Jeongwoon; Kim, Dong Wook; Kim, Dong Ok; Ihm, Jisoon
2012-12-04
This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well.
Progress on first-principles-based materials design for hydrogen storage
Park, Noejung; Choi, Keunsu; Hwang, Jeongwoon; Kim, Dong Wook; Kim, Dong Ok; Ihm, Jisoon
2012-01-01
This article briefly summarizes the research activities in the field of hydrogen storage in sorbent materials and reports our recent works and future directions for the design of such materials. Distinct features of sorption-based hydrogen storage methods are described compared with metal hydrides and complex chemical hydrides. We classify the studies of hydrogen sorbent materials in terms of two key technical issues: (i) constructing stable framework structures with high porosity, and (ii) increasing the binding affinity of hydrogen molecules to surfaces beyond the usual van der Waals interaction. The recent development of reticular chemistry is summarized as a means for addressing the first issue. Theoretical studies focus mainly on the second issue and can be grouped into three classes according to the underlying interaction mechanism: electrostatic interactions based on alkaline cations, Kubas interactions with open transition metals, and orbital interactions involving Ca and other nontransitional metals. Hierarchical computational methods to enable the theoretical predictions are explained, from ab initio studies to molecular dynamics simulations using force field parameters. We also discuss the actual delivery amount of stored hydrogen, which depends on the charging and discharging conditions. The usefulness and practical significance of the hydrogen spillover mechanism in increasing the storage capacity are presented as well. PMID:23161910
Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, M.J.; Abbasian, J.; Akin, C.
1992-05-01
This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less
Wu, Bin; Cheng, Guanglei; Jiao, Kai; Shi, Wenjin; Wang, Can; Xu, Heng
2016-08-15
To develop an eco-friendly and efficient route to remediate soil highly polluted with heavy metals, the idea of mycoextraction combined with metal immobilization by carbonaceous sorbents (biochar and activated carbon) was investigated in this study. Results showed that the application of carbonaceous amendments decreased acid soluble Cd and Cu by 5.13-14.06% and 26.86-49.58%, respectively, whereas the reducible and oxidizable fractions increased significantly as the amount of carbonaceous amendments added increased. The biological activities (microbial biomass, soil enzyme activities) for treatments with carbonaceous sorbents were higher than those of samples without carbonaceous amendments. Clitocybe maxima (C. maxima) simultaneously increased soil enzyme activities and the total number of microbes. Biochar and activated carbon both showed a positive effect on C. maxima growth and metal accumulation. The mycoextraction efficiency of Cd and Cu in treatments with carbonaceous amendments enhanced by 25.64-153.85% and 15.18-107.22%, respectively, in response to that in non-treated soil, which showed positive correlation to the augment of biochar and activated carbon in soil. Therefore, this work suggested the effectiveness of mycoextraction by C. maxima combined the application of biochar and activated carbon in immobilising heavy metal in contaminated soil. Copyright © 2016. Published by Elsevier B.V.
Four Bed Molecular Sieve - Exploration (4BMS-X) Virtual Heater Design and Optimization
NASA Technical Reports Server (NTRS)
Schunk, R. Gregory; Peters, Warren T.; Thomas, John T., Jr.
2017-01-01
A 4BMS-X (Four Bed Molecular Sieve - Exploration) design and heater optimization study for CO2 sorbent beds in proposed exploration system architectures is presented. The primary objectives of the study are to reduce heater power and thermal gradients within the CO2 sorbent beds while minimizing channeling effects. Some of the notable changes from the ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) to the proposed exploration system architecture include cylindrical beds, alternate sorbents and an improved heater core. Results from both 2D and 3D sorbent bed thermal models with integrated heaters are presented. The 2D sorbent bed models are used to optimize heater power and fin geometry while the 3D models address end effects in the beds for more realistic thermal gradient and heater power predictions.
Zinc oxide-based sorbents and processes for preparing and using same
Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasad
2005-10-04
Zinc oxide-based sorbents, and processes for preparing and using them are provided, wherein the sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents contain an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2 O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, containing a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
Zinc-oxide-based sorbents and processes for preparing and using same
Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael
2010-03-23
Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
HIGH EFFICIENCY SYNGAS GENERATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker
2005-02-01
This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO andmore » hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the sorbent and observed that it has both a good oxygen capacity and operates as a highly effective reforming catalyst. We conducted a long duration tests of the sorbent (1,500 hours of continuous operation in the HOP cycle). Although the sorbent lost some oxygen capacity with cycling, the sorbent oxygen capacity stabilized after 1,000 hours and remained constant to the end of the test, 1,500 hour. The activity of the catalyst to reform methane to a hydrogen and carbon monoxide mixture was unchanged through the oxidation/reduction cycling. Our cost and performance analyses indicated a significant reduction in the cost of GTL production when using the HOP process integrated into a GTL plant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Yuhua; Luebke, David; Pennline, Henry
2012-01-01
It is generally accepted that current technologies for capturing CO{sub 2} are still too energy intensive. Hence, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculatedmore » thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. These CO{sub 2} sorbent candidates were further considered for experimental validations. In this presentation, we first introduce our screening methodology with validating by solid dataset of alkali and alkaline metal oxides, hydroxides and bicarbonates which thermodynamic properties are available. Then, by studying a series of lithium silicates, we found that by increasing the Li{sub 2}O/SiO{sub 2} ratio in the lithium silicates their corresponding turnover temperatures for CO{sub 2} capture reactions can be increased. Compared to anhydrous K{sub 2}CO{sub 3}, the dehydrated K{sub 2}CO{sub 3}1.5H{sub 2}O can only be applied for post-combustion CO{sub 2} capture technology at temperatures lower than its phase transition (to anhydrous phase) temperature, which depends on the CO{sub 2} pressure and the steam pressure with the best range being PH{sub 2}O≤1.0 bar. Above the phase-transition temperature, the sorbent will be regenerated into anhydrous K{sub 2}CO{sub 3}. Our theoretical investigations on Na-promoted MgO sorbents revealed that the sorption process takes place through formation of the Na{sub 2}Mg(CO{sub 3}){sub 2} double carbonate with better reaction kinetics over porous MgO, that of pure MgO sorbent. The experimental sorption tests also indicated that the Na-promoted MgO sorbent has high reactivity and capacity towards CO{sub 2} sorption and can be easily regenerated either through pressure or temperature swing processes.« less
Enhanced Adsorption of Trivalent Arsenic from Water by Functionalized Diatom Silica Shells
Zhang, Zhijian; Xu, Liping; Zhang, Chunlong
2015-01-01
The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater. PMID:25837498
SOx/NOx sorbent and process of use
Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.
1993-01-19
An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.
Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents
Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.
2017-03-21
A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.
SOX/NOX sorbent and process of use
Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.
1995-05-09
An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths. 3 figs.
SOX/NOX sorbent and process of use
Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw
1995-01-01
An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.
SOx/NOx sorbent and process of use
Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw
1993-01-19
An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.
Potential Use of Passive Sampling for Environmental Monitoring of Petroleum E&P Operations
Traditional environmental monitoring relies on water or soil samples being taken at various time increments and sent to offsite laboratories for analysis. Reliance on grab samples generally captures limited “snapshots” of environmental contaminant concentrations, is time intensive, costly, and generates residual waste from excess sample and/or reagents used in the analysis procedures. As an alternative, we are evaluating swellable organosilica sorbents to create passive sampling systems for monitoring applications. Previous work has focused on absorption and detection of fuels, chlorinated solvents, endocrine disruptors, explosives, pesticides, fluorinated chemicals, and metals including Ba, Sr, Hg, Pb, Fe, Cu, and Zn. The advantages of swellable organosilica are that the material cancapture target compounds for an extended periods of time, does not absorb natural organic matter, and resists biofilm formation since the sorbent possesses an animated surface morphology.
Castro, A R; Guimarães, M; Oliveira, J V; Pereira, M A
2017-12-15
This work demonstrates that cork used as oil-spill sorbents, contaminated with liquid hydrocarbons, herein demonstrated with hexadecane, can be biologically treated by Rhodococcus opacus B4 with concomitant lipids production. R. opacus B4 consumed up to 96% of hexadecane (C16) impregnated in natural and regranulated cork sorbents after 48h incubation, producing 0.59±0.06g of triacylglycerol (TAG) g -1 of C16 consumed with a TAG content of 0.60±0.06gg -1 of cellular dry weight (CDW) and 0.54±0.05g TAG g -1 of C16 consumed with a TAG content of 0.77±0.04gg -1 (CDW), respectively. TAG was mainly composed by fatty acids of 16 and 18 carbon chains demonstrating the feasibility of using it as raw material for biodiesel production. In addition, the obtained lipid-rich biomass (whole cells) can be used for biomethane production, at a yield of 0.4L CH 4 g -1 (CDW). The obtained results support a novel approach for management of oil-spill contaminated cork sorbents through its valorisation by producing bacterial lipids, which can be used as feedstocks for biofuels production. Copyright © 2017 Elsevier B.V. All rights reserved.
Beyki, Mostafa Hossein; Shemirani, Farzaneh; Khani, Rouhollah
2014-01-01
In this work, the nanoclay was intercalated with acyclovir (9-[(2-hydroxyethoxy) methyl] guanine), the toxicity of which to mammalian cells is very low. We used no organic solvents for preparation of modified clay and desorption of Cu ions from the sorbent. Batch and column methods were used, and sorption of Cu was quantitative (>98%) in the pH range of 7.5 to 10.0. Quantitative desorption occurred with 5.0 mL of 3.0 M HCl, and the amount of Cu(II) was measured by using flame atomic absorption spectrometry. In the initial solution the linear dynamic range and the LOD were 3.0-1000.0 and 0.58 μg/L, respectively. With 500.0 mL of sample, an enrichment factor of 100 was obtained. The RSD was 2.0% (n = 8, concentration = 0.5 mg/L), and the maximum capacity of the sorbent was 45.0 mg/g. The influence of experimental parameters including sample pH, ionic strength, type and volume of the eluent, and interference of some ions on the recoveries of Cu was investigated. The proposed method using a new and easier prepared solid sorbent was applied to the determination of Cu in different real samples with satisfactory results.
Poultry manure as raw material for mercury adsorbents in gas applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klasson, K.T.; Lima, I.M.; Boihem, L.L.
2009-09-30
The quantity of poultry manure generated each year is large, and technologies that take advantage of the material should be explored. At the same time, increased emphasis on the reduction of mercury emissions from coal-fired electric power plants has resulted in environmental regulations that may, in the future, require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream, where they could adsorb the mercury. The sorbents (now containing mercury) would be removed via filtration or other means from the flue gas. Our preliminary work has demonstrated that activated carbon made from poultrymore » manure can adsorb mercury from air with good efficiency. In laboratory experiments, an activated carbon made from turkey cake manure removed the majority of elemental mercury from a hot air stream. Other activated carbons made from chicken and turkey litter manure were also efficient. In general, unwashed activated carbons made from poultry manure were more efficient in removing mercury than their acid-washed counterparts. The results suggest that the adsorption of mercury was mainly due to chemisorption on the surface of the carbon. Other potential uses for the activated carbons are the removal of mercury from air and natural gas.« less
Saraji, Mohammad; Jafari, Mohammad Taghi; Amooshahi, Mohammad Mehdi
2018-01-01
In this work, the microextraction in packed syringe technique combined with corona discharge ion mobility spectrometry was used for determining diazinon in water samples. A new porous composite of nanoclay and polysiloxane was prepared using a sol-gel process. An amount of 2.0 mg of the sorbent was packed in a 250 μL syringe and used for extraction. A volume of 2 mL of the sample was passed through the sorbent bed, and the entrapped analyte was eluted by 25 μL of methanol. Important parameters influencing the extraction performance were investigated. Under optimum experimental conditions, the detection limit for diazinon was 0.07 ng/mL. The intra- and inter-day relative standard deviations were 5.0 and 12.3%, respectively. The calibration curve was linear in the concentration range from 0.2 to 20.0 ng/mL (r 2 = 0.999). The applicability of the method was demonstrated by analyzing spiked real water samples and the spiking recoveries were in the range of 95 to 106%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli
2016-04-06
Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution.
Lanthanide sorbent based on magnetite nanoparticles functionalized with organophosphorus extractants
Basualto, Carlos; Gaete, José; Molina, Lorena; Valenzuela, Fernando; Yañez, Claudia; Marco, Jose F
2015-01-01
In this work, an adsorbent was prepared based on the attachment of organophosphorus acid extractants, namely, D2EHPA, CYANEX 272, and CYANEX 301, to the surface of superparamagnetic magnetite (Fe3O4) nanoparticles. The synthesized nanoparticles were coated with oleic acid, first by a chemisorption mechanism and later by the respective extractant via physical adsorption. The obtained core–shell functionalized magnetite nanoparticle composites were characterized by dynamic light scattering, scanning electron microscopy, transmission electron microscopy, thermogravimetry, infrared absorption and vibrating sample magnetometry. All the prepared nanoparticles exhibited a high saturation magnetization capacity that varied between 72 and 46 emu g−1 and decreased as the magnetite nanoparticle was coated with oleic acid and functionalized. The scope of this study also included adsorption tests for lanthanum, cerium, praseodymium, and neodymium and the corresponding analysis of their results. Sorption tests indicated that the functionalized nanoparticles were able to extract the four studied lanthanide metal ions, although the best extraction performance was observed when the sorbent was functionalized with CYANEX 272, which resulted in a loading capacity of approximately 12–14 mgLa/gMNP. The magnetization of the synthesized nanoparticles was verified during the separation of the lanthanide-loaded sorbent from the raffinate by using a conventional magnet. PMID:27877811
Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Kim, Hyun Sik; Hur, Jin
2016-07-01
Noting the source-dependent properties of dissolved organic matter (DOM), this study explored the recoverable compounds by solid phase extraction (SPE) of two common sorbents (C18 and PPL) eluted with methanol solvent for contrasting DOM sources via fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Fresh algae and leaf litter extracts DOM, one riverine DOM, and one upstream lacustrine DOM were selected for the comparison. C18 sorbent was generally found to extract more diverse molecular formula, relatively higher molecular weight, and more heteroatomic DOM compounds within the studied mass range than PPL sorbent except for the leaf litter extract. Even with the same sorbent, the main molecular features of the two end member DOM were distributed on different sides of the axes of a multivariate ordination, indicating the source-dependent characteristics of the recoverable compounds by the sorbents. In addition, further examination of the molecular formula uniquely present in the two end members and the upstream lake DOM suggested that proteinaceous, tannin-like, and heteroatomic DOM constituents might be potential compound groups which are labile and easily degraded during their mobilization into downstream watershed. This study provides new insights into the sorbent selectivity of DOM from diverse sources and potential lability of various compound groups.
CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.
Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R
2017-11-17
Calcium looping (i.e., CO 2 capture by CaO) is a promising second-generation CO 2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO 3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO 2 sorbents with a high CO 2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al 2 O 3 or Y 2 O 3 ) or bimetal oxide (Al 2 O 3 -Y 2 O 3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO 2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al 2 O 3 and Y 2 O 3 , exhibits a CO 2 uptake capacity of 8.7 mmol CO 2 g -1 sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Activation and characterization of waste coffee grounds as bio-sorbent
NASA Astrophysics Data System (ADS)
Mariana; Marwan; Mulana, F.; Yunardi; Ismail, T. A.; Hafdiansyah, M. F.
2018-03-01
As the city well known for its culture of coffee drinkers, modern and traditional coffee shops are found everywhere in Banda Aceh, Indonesia. High number of coffee shops in the city generates large quantities of spent coffee grounds as waste without any effort to convert them as other valuable products. In an attempt to reduce environmental problems caused by used coffee grounds, this research was conducted to utilize waste coffee grounds as an activated carbon bio-sorbent. The specific purpose of this research is to improve the performance of coffee grounds bio-sorbent through chemical and physical activation, and to characterize the produced bio-sorbent. Following physical activation by carbonization, a chemical activation was achieved by soaking the carbonized waste coffee grounds in HCl solvent and carbonization process. The activated bio-sorbent was characterized for its morphological properties using Scanning Electron Microscopy (SEM), its functional groups by Fourier Transform Infra-Red Spectrophotometer (FTIR), and its material characteristics using X-Ray Diffraction (XRD). Characterization of the activated carbon prepared from waste coffee grounds shows that it meets standard quality requirement in accordance with Indonesian National Standard, SNI 06-3730-1995. Activation process has modified the functional groups of the waste coffee grounds. Comparing to natural waste coffee grounds, the resulted bio-sorbent demonstrated a more porous surface morphology following activation process. Consequently, such bio-sorbent is a potential source to be used as an adsorbent for various applications.
Ran, Fanpeng; Liu, Hongmei; Wang, Xiaoqi; Guo, Yong
2017-07-21
A novel material consisting of molybdenum disulfide (MoS 2 ) nanosheet that self-assemble into flower-like microspheres which aggregate to form a monolithic matrix with a micro or nano-scaled mesopore structure was successfully synthesized and used as an efficient sorbent for solid-phase extraction (SPE) due to its large specific adsorption area and good stability. The extraction properties of the as-prepared sorbent were evaluated by high-performance liquid chromatography with variable wavelength detection (HPLC-VWD) by analyzing four flavonoids (apigenin, quercetin, luteolin, and kaempferol). Under optimal conditions, the LODs and LOQs were found to be in the ranges of 0.1-0.25 and 0.4-0.5μgL -1 , respectively, and wide linear ranges were obtained with correlation coefficients (R) ranging from 0.9991 to 0.9996. Compared with commercial C18 and Alumina-N sorbents, the as-prepared sorbent showed high extraction efficiency at different concentrations of flavonoids. After 100 uses, the extraction ability of the self-assembled MoS 2 nanosheet monolithic sorbent had no evident decline, denoting a long service life. Finally, the SPE-HPLC-VWD method using the as-prepared sorbent was applied to flavonoid analysis in beverage samples with satisfactory results. Copyright © 2017 Elsevier B.V. All rights reserved.
Qin, Yuhong; Zhang, Jingru; Zhang, Yuan; Li, Fangbing; Han, Yongtao; Zou, Nan; Xu, Haowei; Qian, Meiyuan; Pan, Canping
2016-09-02
An automated multi-plug filtration cleanup (m-PFC) method on modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts was developed. The automatic device was aimed to reduce labor-consuming manual operation workload in the cleanup steps. It could control the volume and the speed of pulling and pushing cycles accurately. In this work, m-PFC was based on multi-walled carbon nanotubes (MWCNTs) mixed with other sorbents and anhydrous magnesium sulfate (MgSO4) in a packed tip for analysis of pesticide multi-residues in crop commodities followed by liquid chromatography with tandem mass spectrometric (LC-MS/MS) detection. It was validated by analyzing 25 pesticides in six representative matrices spiked at two concentration levels of 10 and 100μg/kg. Salts, sorbents, m-PFC procedure, automated pulling and pushing volume, automated pulling speed, and pushing speed for each matrix were optimized. After optimization, two general automated m-PFC methods were introduced to relatively simple (apple, citrus fruit, peanut) and relatively complex (spinach, leek, green tea) matrices. Spike recoveries were within 83 and 108% and 1-14% RSD for most analytes in the tested matrices. Matrix-matched calibrations were performed with the coefficients of determination >0.997 between concentration levels of 10 and 1000μg/kg. The developed method was successfully applied to the determination of pesticide residues in market samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Martins, Nuno; Carreiro, Elisabete P; Locati, Abel; Ramalho, João P Prates; Cabrita, Maria João; Burke, Anthony J; Garcia, Raquel
2015-08-28
This work firstly addresses the design and development of molecularly imprinted systems selective for deltamethrin aiming to provide a suitable sorbent for solid phase (SPE) extraction that will be further used for the implementation of an analytical methodology for the trace analysis of the target pesticide in spiked olive oil samples. To achieve this goal, a preliminary evaluation of the molecular recognition and selectivity of the molecularly imprinted polymers has been performed. In order to investigate the complexity of the mechanistic basis for template selective recognition in these polymeric matrices, the use of a quantum chemical approach has been attempted providing new insights about the mechanisms underlying template recognition, and in particular the crucial role of the crosslinker agent and the solvent used. Thus, DFT calculations corroborate the results obtained by experimental molecular recognition assays enabling one to select the most suitable imprinting system for MISPE extraction technique which encompasses acrylamide as functional monomer and ethylene glycol dimethacrylate as crosslinker. Furthermore, an analytical methodology comprising a sample preparation step based on solid phase extraction has been implemented using this "tailor made" imprinting system as sorbent, for the selective isolation/pre-concentration of deltamethrin from olive oil samples. Molecularly imprinted solid phase extraction (MISPE) methodology was successfully applied for the clean-up of spiked olive oil samples, with recovery rates up to 94%. Copyright © 2015 Elsevier B.V. All rights reserved.
Hybrid Heat Pumps Using Selective Water Sorbents (SWS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, M. R.
2006-11-30
The development of the ground-coupled and air-coupled Heating Ventilation and Air-Conditioning (HVAC) system is essential in meeting the goals of Zero Energy Houses (ZEH), a viable concept vigorously pursued under DOE sponsorship. ORNL has a large Habitat for Humanity complex in Lenoir City where modem buildings technology is incorporated on a continual basis. This house of the future is planned for lower and middle income families in the 21st century. The work undertaken in this CRADA is an integral part of meeting DOE's objectives in the Building America program. SWS technology is a prime candidate for reducing the footprint, costmore » and improve the performance of ground-coupled heat pumps. The efficacy of this technique to exchange energy with the ground is a topic of immense interest to DOE, builders and HVAC equipment manufacturers. If successful, the SWS concept will become part of a packaged ZEH kit for affordable and high-end houses. Lennox Industries entered into a CRADA with Oak Ridge National Laboratory in November 2004. Lennox, Inc. agreed to explore ways of using Selective Water Sorbent materials to boost the efficiency of air-coupled heat pumps whereas ORNL concentrated on ground-coupled applications. Lennox supplied ORNL with heat exchangers and heat pump equipment for use at ORNL's Habitat for Humanity site in Lenoir City, Tennessee. Lennox is focused upon air-coupled applications of SWS materials at the Product Development and Research Center in Carrollton, TX.« less
Jin, Jing; Li, Yun; Zhang, Zhiping; Su, Fan; Qi, Peipei; Lu, Xianbo; Chen, Jiping
2011-12-23
A new method for the selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene (BaP) was developed in this study. This method was based on solid-phase extraction (SPE) using magnesium oxide microspheres as sorbents, and it eliminated interferences from various impurities, such as lipids, sulphur, pigments, halobenzenes, polychlorodibenzo-p-dioxins and polychlorodibenzofurans. Several parameters, including the volume of rinsing and eluting solvents, the type of loading solvents and SPE sorbents, were optimized systematically. The capability for impurity removal was verified by gel permeation chromatography, gas chromatography, and liquid chromatography. Compared to commercial sorbents (silica gel, florisil and alumina), MgO microspheres exhibited excellent performance in the selective isolation of BaP and removal of impurities. The proposed method was applied to detect BaP in complex samples (sediments, soils, fish, and porcine liver). The limit of quantification (LOQ) was 1.04 ngL(-1), and the resulting regression coefficient (r(2)) was greater than 0.999 over a broad concentration range (9.5-7600 ngL(-1)). In contrast to traditional methods, the proposed method can give rise to higher recovery (85.1-100.8%) and better selectivity with simpler operation and less consumption of organic solvents (20-40 mL). Copyright © 2011 Elsevier B.V. All rights reserved.
Botoman, Lester; Shukla, Elvis; Johan, Erni; Mitsunobu, Satoshi; Matsue, Naoto
2018-02-01
Although many kinds of materials for water purification are known, easy-to-use methods that ensure the safety of drinking water for rural populations are not sufficiently available. Sorbent-embedded sheets provide methods for the easy removal of contaminants from drinking water in the home. As an example of such a sorbent-embedded sheet, we prepared a Linde type A (LTA) zeolite-embedded sheet (ZES) and examined its Pb(II) removal behaviour. Different amounts of LTA were added either as powder or as ZES to 0.3 mM Pb(NO 3 ) 2 solutions containing 2.5 mM Ca(NO 3 ) 2 , in which the ratio of the negative charges in LTA to the positive charges in Pb(II) (LTA/Pb ratio) ranged from 1 to 20. After shaking, the mixtures were centrifuged to remove the powder, while the ZES was simply removed from the mixture by hand. The LTA powder removed more than 99% of the Pb(II) from the solution at all LTA/Pb ratios within 1 h, while the ZES removed >99% of the Pb(II) at LTA/Pb ratios of 2 and higher; at the highest LTA/Pb ratio of 20, the ZES removed >99% of the Pb(II) in 30 s. Therefore, the use of appropriate sorbent-embedded sheets enable the facile removal of contaminants from water.
Hypercrosslinked polymeric restricted access materials for analysis of biological fluids.
Popov, Alekxander; Blinnikova, Zinaida K; Tsyurupa, Maria P; Davankov, Vadim A
2018-06-21
New restricted access materials based on microporous hypercrosslinked polystyrene have been developed. The materials are aimed at the use as packings for solid-phase extraction cartridges to isolate low-molecular-weight analytes from biological fluids (for instance, blood plasma or serum). Two features distinguish these polymers from all known restricted access materials. The first one consists in that the microporous hypercrosslinked polystyrene not only exclude proteins from the sorbent phase but also do not adsorb them on the bead outer surface and so they do not cause coagulation of blood protein components. Therefore, these materials do not require any chemical modification. The second distinguishing feature is the ability of hypercrosslinked sorbents to take up a wide variety of polar and non-polar organic compounds. The sorbents were obtained in the form of beads of 60-70 μm in diameter by crosslinking styrene copolymers with 1, 2 and 3% divinylbenzene with monochlorodimethyl ether to 100, 150 and 200%. The sorbents exhibit all typical properties of hypercrosslinked networks. They do not take up albumin, the major blood protein, and Cytochrome C, representative of smaller protein molecules, but are capable of adsorbing drugs, vitamins and phenyl carboxylic acids (markers of sepsis) from model aqueous solutions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Samanidou, Victoria; Filippou, Olga; Marinou, Eirini; Kabir, Abuzar; Furton, Kenneth G
2017-06-01
Fabric-phase sorptive extraction has already been recognized as a simple and green alternative to the conventional sorbent-based sorptive microextraction techniques, using hybrid organic-inorganic sorbent coatings chemically bonded to a flexible fabric surface. Herein, we have investigated the synergistic combination of the advanced material properties offered by sol-gel graphene sorbent and the simplicity of Fabric phase sorptive extraction approach in selectively extracting bisphenol A and residual monomers including bisphenol A glycerolatedimethacrylate, urethane dimethacrylate, and triethylene glycol dimethacrylate derived dental restorative materials from cow and human breast milk samples. Different coatings were evaluated. Final method development employed sol-gel graphene coated media. The main experimental parameters influencing extraction of the compounds, such as sorbent chemistry used, sample loading conditions, elution solvent, sorption stirring time, elution time, impact of protein precipitation, amount of sample, and matrix effect, were investigated and optimized. Absolute recovery values from standard solutions were 50% for bisphenol A, 78% for T triethylene glycol dimethacrylate, 110% for urethane dimethacrylate, and 103% for bisphenol A glycerolatedimethacrylate, while respective absolute recovery values from milk were 30, 52, 104, and 42%. Method validation was performed according to European Decision 657/2002/EC in terms of selectivity, sensitivity, linearity, accuracy, and precision. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
Danofloxacin (DANO) residue in bovine muscle was screened at 200 ng/g by terbium-sensitized luminescence (TSL) directly measured on 10x6 mm C18 sorbent strips. The analyte was first adsorbed on sorbent surface by immersion in defatted homogenates. After reagent application and desiccation, TSL was d...
The report describes a mini-pilot test program to investigate potential new sorbents and processes for dry SO2 removal. Initial tests showed that the 85 cu m/h pilot plant could be used successfully to evaluate both spray dryer and dry injection processes using traditional calciu...
40 CFR Table 8 to Subpart Ddddd of... - Demonstrating Continuous Compliance
Code of Federal Regulations, 2012 CFR
2012-07-01
...(c). 5. Dry Scrubber Sorbent or Carbon Injection Rate a. Collecting the sorbent or carbon injection... the data to 3-hour block averages; and c. Maintaining the 3-hour average sorbent or carbon injection... established during the performance test according to §§ 63.7530(c). 7. Fuel Pollutant Content a. Only burning...
40 CFR Table 8 to Subpart Ddddd of... - Demonstrating Continuous Compliance
Code of Federal Regulations, 2010 CFR
2010-07-01
...(c). 5. Dry Scrubber Sorbent or Carbon Injection Rate a. Collecting the sorbent or carbon injection... the data to 3-hour block averages; and c. Maintaining the 3-hour average sorbent or carbon injection... established during the performance test according to §§ 63.7530(c). 7. Fuel Pollutant Content a. Only burning...
40 CFR Table 7 to Subpart Jjjjjj... - Demonstrating Continuous Compliance
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 63.1140. 4. Dry scrubber sorbent or carbon injection rate a. Collecting the sorbent or carbon injection rate monitoring system data for the dry scrubber according to §§ 63.11224 and 63.11220; and b... injection rate at or above the minimum sorbent or carbon injection rate as defined in § 63.11237. 5...
40 CFR Table 3 to Subpart Jjjjjj... - Operating Limits for Boilers With Emission Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
... as defined in § 63.11237. 4. Dry sorbent or activated carbon injection control Maintain the 30-day rolling average sorbent or activated carbon injection rate at or above the minimum sorbent injection rate or minimum activated carbon injection rate as defined in § 63.11237. When your boiler operates at...
40 CFR Table 8 to Subpart Ddddd of... - Demonstrating Continuous Compliance
Code of Federal Regulations, 2011 CFR
2011-07-01
...(c). 5. Dry Scrubber Sorbent or Carbon Injection Rate a. Collecting the sorbent or carbon injection... the data to 3-hour block averages; and c. Maintaining the 3-hour average sorbent or carbon injection... established during the performance test according to §§ 63.7530(c). 7. Fuel Pollutant Content a. Only burning...
40 CFR Table 7 to Subpart Jjjjjj... - Demonstrating Continuous Compliance
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 63.1140. 4. Dry scrubber sorbent or carbon injection rate a. Collecting the sorbent or carbon injection rate monitoring system data for the dry scrubber according to §§ 63.11224 and 63.11220; and b... injection rate at or above the minimum sorbent or carbon injection rate as defined in § 63.11237. 5...
Computational Modeling of Mixed Solids for CO2 CaptureSorbents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Yuhua
2015-01-01
Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of differentmore » classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.« less
Bianchin, Joyce Nunes; Martendal, Edmar; Mior, Renata; Alves, Vanessa Nunes; Araújo, Cleide Sandra Tavares; Coelho, Nívia Maria Melo; Carasek, Eduardo
2009-04-30
In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L(-1), a sample flow rate of 4.5 mL min(-1) and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 microg L(-1) and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 microg L(-1), with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 microg L(-1), n=7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, Gokhan; Jayaraman, Ambalavanan; Dietz, Steven
In this project TDA Research, Inc (TDA) has developed a new post combustion carbon capture technology based on a vacuum swing adsorption system that uses a steam purge and demonstrated its technical feasibility and economic viability in laboratory-scale tests and tests in actual coal derived flue gas. TDA uses an advanced physical adsorbent to selectively remove CO 2 from the flue gas. The sorbent exhibits a much higher affinity for CO 2 than N 2, H 2O or O 2, enabling effective CO 2 separation from the flue gas. We also carried out a detailed process design and analysis ofmore » the new system as part of both sub-critical and super-critical pulverized coal fired power plants. The new technology uses a low cost, high capacity adsorbent that selectively removes CO 2 in the presence of moisture at the flue gas temperature without a need for significant cooling of the flue gas or moisture removal. The sorbent is based on a TDA proprietary mesoporous carbon that consists of surface functionalized groups that remove CO 2 via physical adsorption. The high surface area and favorable porosity of the sorbent also provides a unique platform to introduce additional functionality, such as active groups to remove trace metals (e.g., Hg, As). In collaboration with the Advanced Power and Energy Program of the University of California, Irvine (UCI), TDA developed system simulation models using Aspen PlusTM simulation software to assess the economic viability of TDA’s VSA-based post-combustion carbon capture technology. The levelized cost of electricity including the TS&M costs for CO 2 is calculated as $116.71/MWh and $113.76/MWh for TDA system integrated with sub-critical and super-critical pulverized coal fired power plants; much lower than the $153.03/MWhand $147.44/MWh calculated for the corresponding amine based systems. The cost of CO 2 captured for TDA’s VSA based system is $38.90 and $39.71 per tonne compared to $65.46 and $66.56 per tonne for amine based system on 2011 $ basis, providing 40% lower cost of CO 2 captured. In this analysis we have used a sorbent life of 4 years. If a longer sorbent life can be maintained (which is not unreasonable for fixed bed commercial PSA systems), this would lower the cost of CO 2 captured by $0.05 per tonne (e.g., to $38.85 and $39.66 per tonne at 5 years sorbent replacement). These system analysis results suggest that TDA’s VSA-based post-combustion capture technology can substantially improve the power plant’s thermal performance while achieving near zero emissions, including greater than 90% carbon capture. The higher net plant efficiency and lower capital and operating costs results in a substantial reduction in the cost of carbon capture and cost of electricity for the power plant equipped with TDA’s technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlish, John; Thompson, Jeffrey; Dunham, Grant
2014-09-30
Owners of fossil fuel-fired power plants face the challenge of measuring stack emissions of trace metals and acid gases at much lower levels than in the past as a result of increasingly stringent regulations. In the United States, the current reference methods for trace metals and halogens are wet-chemistry methods, U.S. Environmental Protection Agency (EPA) Methods 29 and 26 or 26A, respectively. As a possible alternative to the EPA methods, the Energy & Environmental Research Center (EERC) has developed a novel multielement sorbent trap (MEST) method to be used to sample for trace elements and/or halogens. Sorbent traps offer amore » potentially advantageous alternative to the existing sampling methods, as they are simpler to use and do not require expensive, breakable glassware or handling and shipping of hazardous reagents. Field tests comparing two sorbent trap applications (MEST-H for hydrochloric acid and MEST-M for trace metals) with the reference methods were conducted at two power plant units fueled by Illinois Basin bituminous coal. For hydrochloric acid, MEST measured concentrations comparable to EPA Method 26A at two power plant units, one with and one without a wet flue gas desulfurization scrubber. MEST-H provided lower detection limits for hydrochloric acid than the reference method. Results from a dry stack unit had better comparability between methods than results from a wet stack unit. This result was attributed to the very low emissions in the latter unit, as well as the difficulty of sampling in a saturated flue gas. Based on these results, the MEST-H sorbent traps appear to be a good candidate to serve as an alternative to Method 26A (or 26). For metals, the MEST trap gave lower detection limits compared to EPA Method 29 and produced comparable data for antimony, arsenic, beryllium, cobalt, manganese, selenium, and mercury for most test runs. However, the sorbent material produced elevated blanks for cadmium, nickel, lead, and chromium at levels that would interfere with accurate measurement at U.S. hazardous air pollutant emission limits for existing coal-fired power plant units. Longer sampling times employed during this test program did appear to improve comparative results for these metals. Although the sorbent contribution to the sample was reduced through improved trap design, additional research is still needed to explore lower-background materials before the MEST-M application can be considered as a potential alternative method for all of the trace metals. This subtask was funded through the EERC–U.S. Department of Energy Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Electric Power Research Institute, the Illinois Clean Coal Institute, Southern Illinois Power Company, and the Center for Air Toxic Metals Affiliates Program.« less
Regenerable cement sorbent for recycle fluidized-bed combustion systems. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, H.J.; Steinberg, M.
1985-04-01
Agglomerated cement sorbent pellets (ACS) were investigated as a regenerable sorbent for the purpose of removing SO/sub 2/ in a circulating fluidized-bed combustion (CFBC) system. The systems concept is to use an intermediate size sorbent pellet so that fine flyash can be separated from the sorbent at the top end of the CFBC and the coarse gangue can be separated from the sorbent remaining in the bottom end. In this study, basic experimental data were obtained on the sulfur capture capacity and regenerability of the ACS pellets as a function of the concentration of flyash mixed with the pellets andmore » as a function of temperature. Thermogravimetric Analysis (TGA) was used for this purpose. A 40 mm bench-scale fluidized-bed unit operated with a simulated combustion gas mixture was used to determine the attrition resistance of the pellets. The results indicate that 30-100 mesh ACS pellets at 958/sup 0/C (1756/sup 0/F) maintain a 55-60% sulfation capacity mixed with coal flyash concentration up to 75% by weight. The sorbent pellets were 100% regenerable and did not lose reactivity in repeated cyclical sulfation and regeneration tests. At higher temperatures up to 1158/sup 0/C (2116/sup 0/F) reactivity towards SO/sub 2/ declines due to sintering of the flyash on the surface of the ACS pellets. Tests showed good attrition resistance with only 1% loss per cycle in cyclical operation. These initial basic results indicate that ACS pellets are potentially useful as a recoverable and regenerable high capacity SO/sub 2/ sorbent in a circulating fluidized-bed combustion system. 5 refs., 7 figs., 8 tabs.« less
In situ studies of materials for high temperature CO2 capture and storage.
Dunstan, Matthew T; Maugeri, Serena A; Liu, Wen; Tucker, Matthew G; Taiwo, Oluwadamilola O; Gonzalez, Belen; Allan, Phoebe K; Gaultois, Michael W; Shearing, Paul R; Keen, David A; Phillips, Anthony E; Dove, Martin T; Scott, Stuart A; Dennis, John S; Grey, Clare P
2016-10-20
Carbon capture and storage (CCS) offers a possible solution to curb the CO 2 emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty. The use of alternative sorbents for CO 2 capture, such as the CaO-CaCO 3 system, has been investigated extensively in recent years. However there are significant problems associated with the use of CaO based sorbents, the most challenging one being the deactivation of the sorbent material. When sorbents such as natural limestone are used, the capture capacity of the solid sorbent can fall by as much as 90 mol% after the first 20 carbonation-regeneration cycles. In this study a variety of techniques were employed to understand better the cause of this deterioration from both a structural and morphological standpoint. X-ray and neutron PDF studies were employed to understand better the local surface and interfacial structures formed upon reaction, finding that after carbonation the surface roughness is decreased for CaO. In situ synchrotron X-ray diffraction studies showed that carbonation with added steam leads to a faster and more complete conversion of CaO than under conditions without steam, as evidenced by the phases seen at different depths within the sample. Finally, in situ X-ray tomography experiments were employed to track the morphological changes in the sorbents during carbonation, observing directly the reduction in porosity and increase in tortuosity of the pore network over multiple calcination reactions.
Srikanth, Chakravartula S; Chuang, Steven S C
2012-01-01
Oxidative degradation characteristics of silica-supported amine sorbents with varying amounts of tetraethylenepentamine (TEPA) and polyethylene glycol (PEG; P200 or P600 represents PEG with molecular weights of 200 or 600) have been studied by IR and NMR spectroscopy. Thermal treatment of the sorbents and liquid TEPA at 100 °C for 12 h changed their color from white to yellow. The CO2 capture capacity of the TEPA/SiO2 sorbents (i.e., SiO2-supported TEPA with a TEPA/SiO2 ratio of 25:75) decreased by more than 60 %. IR and NMR spectroscopy studies showed that the yellow color of the degraded sorbents resulted from the formation of imide species. The imide species, consisting of NH associated with two C—O functional groups, were produced from the oxidation of methylene groups in TEPA. Imide species on the degraded sorbent are not capable of binding CO2 due to its weak basicity. The addition of P200 and P600 to the supported amine sorbents improved both their CO2 capture capacities and oxidative degradation resistance. IR spectroscopy results also showed that TEPA was immobilized on the SiO2 surface through hydrogen bonding between amine groups and the silanol groups of SiO2. The OH groups of PEG interact with NH2/NH of TEPA through hydrogen bonding. Hydrogen bonds disperse TEPA on SiO2 and block O2 from accessing TEPA for oxidation. Oxidative degradation resistance and CO2 capture capacity of the supported amine sorbents can be optimized through adjusting the ratio of hydroxyl to amine groups in the TEPA/PEG mixture. PMID:22744858
Metal sulfide initiators for metal oxide sorbent regeneration
Turk, Brian S.; Gupta, Raghubir P.
2001-01-01
A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.
Metal sulfide initiators for metal oxide sorbent regeneration
Turk, Brian S.; Gupta, Raghubir P.
1999-01-01
A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, T.; Sjostrom, S.; Smith, J.
1996-11-06
The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine themore » mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.« less
Metal sulfide initiators for metal oxide sorbent regeneration
Turk, B.S.; Gupta, R.P.
1999-06-22
A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.
Strongly hydrogen-bond acidic polymer and methods of making and using
Grate, Jay W.; Kaganove, Steven N.
2000-01-01
The present invention is a sorbent polymer with the (AB)n sequence where the fluorinated interactive A segment is fluoroalkyl-substituted bisphenol and the oligosiloxane B segment is an oligodimethylsiloxane. More specifically, the fluoroalkyl-substituted bisphenol contains two allyl groups and the oligodimethylsiloxane has terminal Si--H groups. The sorbent polymer may be used as thin films on a variety of chemical sensors, or as a component of a thin film on a chemical sensor. Crosslinked sorbent polymers are processable into stable thin films on sensor devices. Sorbent polymers are also useful in sensor arrays, in surface acoustic wave sensors, and in cladding of optical fibers. Sensor arrays provide better selectivity than single sensors and permit identification and quantification of more than one species in a mixture. The sorbent polymer is synthesized by hydrosilylation polymerization which is achieved by catalyzed heating.
Riaz, Muhammad Adil; McKay, Gordon; Saleem, Junaid
2017-12-01
Oil spills over seawater and dye pollutants in water cause economic and environmental damage every year. Among various methods to deal oil spill problems, the use of porous materials has been proven as an effective strategy. In recent years, graphene-based porous sorbents have been synthesized to address the shortcomings associated with conventional sorbents such as their low uptake capacity, slow sorption rate, and non-recyclability. This article reviews the research undertaken to control oil spillage using three-dimensional (3D) graphene-based materials. The use of these materials for removal of dyes and miscellaneous environmental pollutants from water is explored and the application of various multifunctional 3D oil sorbents synthesized by surface modification technique is presented. The future prospects and limitations of these materials as sorbents are also discussed.
Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese (E33/Mn) and silver (E33/AgI and E33/AgII) nanoparticles. Adso...
Olson, Edwin S; Pavlish, John H
2015-04-21
The present invention relates to carbon nanocomposite sorbents. The present invention provides carbon nanocomposite sorbents, methods for making the same, and methods for separation of a pollutant from a gas that includes that pollutant. Various embodiments provide a method for reducing the mercury content of a mercury-containing gas.
Olson, Edwin S.; Pavlish, John Henry
2017-05-30
The present invention relates to carbon nanocomposite sorbents. The present invention provides carbon nanocomposite sorbents, methods for making the same, and methods for separation of a pollutant from a gas that includes that pollutant. Various embodiments provide a method for reducing the mercury content of a mercury-containing gas.
Method for high temperature mercury capture from gas streams
Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA
2006-04-25
A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.
Sox/Nox Sorbent And Process Of Use
Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw
1995-06-27
An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.
Sox/Nox Sorbent And Process Of Use
Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw
1996-12-17
An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.
Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016
NASA Technical Reports Server (NTRS)
Knox, James C.; Watson, David W.; Wingard, Charles D.; West, Phillip W.; Cmarik, Gregory E.; Miller, Lee A.
2016-01-01
Advanced Exploration Systems are integral to crewed missions beyond low earth orbit and beyond the moon. The long-term goal is to reach Mars and return to Earth, but current air revitalization systems are not capable of extended operation within the mass, power, and volume requirements of such a mission. Two primary points are the mechanical stability of sorbent pellets and recovery of sorbent productivity after moisture exposure in the event of a leak. In this paper, we discuss the present efforts towards screening and characterizing commercially-available sorbents for extended operation in desiccant and CO2 removal beds.
NASA Astrophysics Data System (ADS)
Onuchak, L. A.; Kapralova, T. S.; Kuraeva, Yu. G.; Belousova, Z. P.; Stepanova, R. F.
2015-12-01
Mesomorphic, sorption, and selective properties of a three-component sorbent based on a mixture of nematic ( N) liquid crystals of 4-methoxy-4'-ethoxyazoxybenzene (MEAB) and 4,4'-diethoxyazoxybenzene (azoxyphenetol, AOP) of an eutectic composition and heptakis-(2,3,6-tri- O-benzoyl)-β-cyclodextrin (Bz-β-CD) are studied. For 30 organic compounds of different classes with linear and cyclic molecular structures, including optical isomers of limonene, pinene, camphene, and butanediol-2,3, thermodynamic functions are determined for their gas-phase sorption using a three-component MEAB-AOP-Bz-β- CD sorbent (62: 28: 10 wt %). It is found that the investigated sorbent possesses high structural selectivity (αp/m = 1.128-1.059, 100-130°C, N) and moderate enantioselectivity (1.07-1.02) within a broad temperature range (95-170°C) including both mesomorphic and isotropic phases of the sorbent. It is shown that the enantioselectivity of the sorbent is apparent under conditions of both increasing retention when a chiral Bz-β-CD additive is introduced into the MEAB-AOP system (limonenes, pinenes, camphenes) and decreasing retention (butanediols-2,3).
Stability of lanthanum oxide-based H 2S sorbents in realistic fuel processor/fuel cell operation
NASA Astrophysics Data System (ADS)
Valsamakis, Ioannis; Si, Rui; Flytzani-Stephanopoulos, Maria
We report that lanthana-based sulfur sorbents are an excellent choice as once-through chemical filters for the removal of trace amounts of H 2S and COS from any fuel gas at temperatures matching those of solid oxide fuel cells. We have examined sorbents based on lanthana and Pr-doped lanthana with up to 30 at.% praseodymium, having high desulfurization efficiency, as measured by their ability to remove H 2S from simulated reformate gas streams to below 50 ppbv with corresponding sulfur capacity exceeding 50 mg S g sorbent -1 at 800 °C. Intermittent sorbent operation with air-rich boiler exhaust-type gas mixtures and with frequent shutdowns and restarts is possible without formation of lanthanide oxycarbonate phases. Upon restart, desulfurization continues from where it left at the end of the previous cycle. These findings are important for practical applications of these sorbents as sulfur polishing units of fuel gases in the presence of small or large amounts of water vapor, and with the regular shutdown/start-up operation practiced in fuel processors/fuel cell systems, both stationary and mobile, and of any size/scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuanwen Zhao; Xiaoping Chen; Changsui Zhao
The CO{sub 2} capture characteristics of dry potassium-based sorbents were investigated with thermogravimetric analysis (TGA) and a bubbling fluidized-bed reactor. Potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as coconut activated charcoal (AC1), coal active carbon (AC2), silica gel (SG), and activated alumina (Al{sub 2}O{sub 3}). Sorbents such as K{sub 2}CO{sub 3}/AC1, K{sub 2}CO{sub 3}/AC2, and K{sub 2}CO{sub 3}/Al{sub 2}O{sub 3} showed excellent carbonation capacity; The total conversion rates of those sorbents were 97.2, 95.9, and 95.2%, respectively in the TG test, and 89.2, 87.9, and 87.6%, respectively, in the fluidized-bed test. However, K{sub 2}CO{sub 3}/SGmore » showed poor carbonation capacity, the total conversion rates were only 34.5 and 18.8%, respectively, in TG and fluidized-bed tests. The differences in carbonation capacity of those sorbents were analyzed by studying the microscopic structure and crystal structure of the supports and the sorbents with X-ray diffraction, scanning electron microscopy, and N{sub 2} adsorption tests. 23 refs., 10 figs.« less
Pre-Clinical Tests of an Integrated CMOS Biomolecular Sensor for Cardiac Diseases Diagnosis.
Lee, Jen-Kuang; Wang, I-Shun; Huang, Chi-Hsien; Chen, Yih-Fan; Huang, Nien-Tsu; Lin, Chih-Ting
2017-11-26
Coronary artery disease and its related complications pose great threats to human health. In this work, we aim to clinically evaluate a CMOS field-effect biomolecular sensor for cardiac biomarkers, cardiac-specific troponin-I (cTnI), N -terminal prohormone brain natriuretic peptide (NT-proBNP), and interleukin-6 (IL-6). The CMOS biosensor is implemented via a standard commercialized 0.35 μm CMOS process. To validate the sensing characteristics, in buffer conditions, the developed CMOS biosensor has identified the detection limits of IL-6, cTnI, and NT-proBNP as being 45 pM, 32 pM, and 32 pM, respectively. In clinical serum conditions, furthermore, the developed CMOS biosensor performs a good correlation with an enzyme-linked immuno-sorbent assay (ELISA) obtained from a hospital central laboratory. Based on this work, the CMOS field-effect biosensor poses good potential for accomplishing the needs of a point-of-care testing (POCT) system for heart disease diagnosis.
Development of a prototype regenerable carbon dioxide absorber
NASA Technical Reports Server (NTRS)
Onischak, M.
1976-01-01
Design information was obtained for a new, regenerable carbon dioxide control system for extravehicular activity life support systems. Solid potassium carbonate was supported in a thin porous sheet form and fabricated into carbon dioxide absorber units. Carbon dioxide and water in the life support system atmosphere react with the potassium carbonate and form potassium bicarbonate. The bicarbonate easily reverts to the carbonate by heating to 150 deg C. The methods of effectively packing the sorbent material into EVA-sized units and the effects of inlet concentrations, flowrate, and temperature upon performance were investigated. The cycle life of the sorbent upon the repeated thermal regenerations was demonstrated through 90 cycles.
NASA Technical Reports Server (NTRS)
Knox, James C.
2004-01-01
Following failure of the carbon dioxide removal assembly (CDRA) on the ISS, a CDRA teardown, test, and evaluation (TT&E) effort found that the sorbent material was not retained as intended by the packed beds and that presence of the sorbent in the check valve and selector valve was the cause of the failure of these components. This paper documents the development of design data for an in-line filter element. The purpose of the in-line filter is to provide temporary protection for on-orbit CDRA hardware until the bed retainment system can be redesigned and replaced.
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
2018-06-06
A general and efficient method for shaping MOFs into fluidized forms has been developed via direct conversion of metal oxides supported on fluidized mesoporous silica. The resulting fluidized MOF hybrid materials containing diamines coordinated at the open metal sites have been studied as CO2 solid sorbents from post-combustion flue gas showing similar performance than their bulk counterparts. These novel fluidized MOF hybrid materials can be used for other applications involving fluidized bed reactor configurations, in which MOFs have never been considered. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pilot-scale testing of a new sorbent for combined SO{sub 2}/NO{sub x} removal. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, S. Jr.
1994-06-01
A new regenerable sorbent concept for SO{sub 2} and NOx removal was pilot-tested at Ohio Edison`s Edgewater generating station at a 1.5 to 2-MW(e) level. A radial panel-bed filter of a new dry, granular sorbent was exposed to flue gas and regenerated in an experimental proof-of-concept program. The project was successful in demonstrating the new sorbent`s ability to achieve 90% SO{sub 2} removal, 30% NOx removal, and over 80% removal of residual particulates with realistic approach temperatures and low pressure drops. Based on the results of this project, the retrofit cost of this technology is expected to be on the order ofmore » $$400 per ton of SO{sub 2} and $$900 per ton of NOx removed. This assumes that gas distribution is even and methane regeneration is used for a 30% average utilization. For a 2.5%-sulfur Ohio coal, this translates to a cost of approximately $17 per ton of coal. Two by-product streams were generated in the process that was tested: a solid, spent-sorbent stream and a highly-concentrated SO{sub 2} or elemental-sulfur stream. While not within the scope of the project, it was found possible to process these streams into useful products. The spent sorbent materials were shown to be excellent substrates for soil amendments; the elemental sulfur produced is innocuous and eminently marketable.« less
Removal of sulfuric acid mist from lead-acid battery plants by coal fly ash-based sorbents.
Shu, Yuehong; Wei, Xiangyu; Fang, Yu; Lan, Bingyan; Chen, Hongyu
2015-04-09
Sorbents from coal fly ash (CFA) activated by NaOH, CaO and H2O were prepared for H2SO4 mist removal from lead-acid battery plants. The effects of parameters including temperature, time, the ratios of CFA/activator and water/solid during sorbent preparation were investigated. It is found that the synthesized sorbents exhibit much higher removal capacity for H2SO4 mist when compared with that of raw coal fly ash and CaO except for H2O activated sorbent and this sorbent was hence excluded from the study because of its low capacity. The H2SO4 mist removal efficiency increases with the increasing of preparation time length and temperature. In addition, the ratios of CFA/activator and water/solid also impact the removal efficiency, and the optimum preparation conditions are identified as: a water/solid ratio of 10:1 at 120 °C for 10h, a CFA:CaO weight ratio of 10:1, and a NaOH solution concentration of 3 mol/L. The formation of rough surface structure and an increased surface area after NaOH/CaO activation favor the sorption of H2SO4 mist and possible sorption mechanisms might be electrostatic attractions and chemical precipitation between the surface of sorbents and H2SO4 mist. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Feng; Du, Ping; Chen, Wei; Zhang, Shusheng
2007-03-07
A new porous sorbent for wastewater treatment of metal ions was synthesized by covalent grafting of molecularly imprinted organic-inorganic hybrid on silica gel. With sucrose and polyethylene glycol 4000 (PEG 4000) being synergic imprinting molecules, covalent surface coating on silica gel was achieved by using polysaccharide-incorporated sol-gel process starting from the functional biopolymer, chitosan and an inorganic epoxy-precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS) at room temperature. The prepared porous sorbent was characterized by using simultaneous thermogravimetry and differential scanning calorimeter (TG/DSC), scanning electron microscopy (SEM), nitrogen adsorption porosimetry measurement and X-ray diffraction (XRD). Copper ion, Cu(2+), was chosen as the model metal ion to evaluate the effectiveness of the new biosorbent in wastewater treatment. The influence of epoxy-siloxane dose, buffer pH and co-existed ions on Cu(2+) adsorption was assessed through batch experiments. The imprinted composite sorbent offered a fast kinetics for the adsorption of Cu(2+). The uptake capacity of the sorbent imprinted by two pore-building components was higher than those imprinted with only a single component. The dynamic adsorption in column underwent a good elimination of Cu(2+) in treating electric plating wastewater. The prepared composite sorbent exhibited high reusability. Easy preparation of the described porous composite sorbent, absence of organic solvents, cost-effectiveness and high stability make this approach attractive in biosorption.
Alhendal, Abdullah; Mengis, Stephanie; Matthews, Jacob; Malik, Abdul
2016-10-14
Nonhydrolytic sol-gel (NHSG) route was used for the creation of novel zirconia-polypropylene oxide (ZrO 2 -PPO) sol-gel hybrid sorbents in the form of surface coatings for the extraction and preconcentration of catecholamine neurotransmitters and molecules structurally related to their deaminated metabolites. In comparison to other sorbents made of inorganic transition metal oxides, the presented hybrid organic-inorganic sorbents facilitated reversible sorption properties that allowed for efficient desorption of the extracted analytes by LC-MS compatible mobile phases. The presented sol-gel hybrid sorbents effectively overcame the major drawbacks of traditional silica- or polymer-based sorbents by providing superior pH stability (pH range: 0-14), and a variety of intermolecular interactions. Nonaqueous sol-gel treatment of PPO with ZrCl 4 was employed for the derivatization of the terminal hydroxyl groups on PPO, providing zirconium trichloride-containing end groups characterized by enhanced sol-gel reactivity. NHSG ZrO 2 -PPO sorbent provided excellent microextraction performance for catecholamines, low detection limits (5.6-9.6pM), high run-to-run reproducibility (RSD 0.6-5.1%), high desorption efficiency (95.0-99.5%) and high enrichment factors (∼1480-2650) for dopamine and epinephrine, respectively, extracted from synthetic urine samples. The presented sol-gel sorbents provided effective alternative to conventional extraction media providing unique physicochemical characteristics and excellent extraction capability. Copyright © 2016 Elsevier B.V. All rights reserved.