Redox imbalance stress in diabetes mellitus: Role of the polyol pathway.
Yan, Liang-Jun
2018-03-01
In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase (AR) and sorbitol dehydrogenase, respectively. AR reduces glucose to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sorbitol to fructose at the expense of NAD + , leading to NADH production. Consumption of NADPH, accumulation of sorbitol, and generation of fructose and NADH have all been implicated in the pathogenesis of diabetes and its complications. In this review, the roles of this pathway in NADH/NAD + redox imbalance stress and oxidative stress in diabetes are highlighted. A potential intervention using nicotinamide riboside to restore redox balance as an approach to fighting diabetes is also discussed.
Koivistoinen, Outi M; Richard, Peter; Penttilä, Merja; Ruohonen, Laura; Mojzita, Dominik
2012-02-17
In filamentous fungi D-galactose can be catabolised through the oxido-reductive and/or the Leloir pathway. In the oxido-reductive pathway D-galactose is converted to d-fructose in a series of steps where the last step is the oxidation of d-sorbitol by an NAD-dependent dehydrogenase. We identified a sorbitol dehydrogenase gene, sdhA (JGI53356), in Aspergillus niger encoding a medium chain dehydrogenase which is involved in D-galactose and D-sorbitol catabolism. The gene is upregulated in the presence of D-galactose, galactitol and D-sorbitol. An sdhA deletion strain showed reduced growth on galactitol and growth on D-sorbitol was completely abolished. The purified enzyme converted D-sorbitol to D-fructose with K(m) of 50±5 mM and v(max) of 80±10 U/mg. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Giridharan, Nappan Veettil
2012-01-01
Purpose Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%–20% of these rats develop cataracts spontaneously as they reach 12–15 months of age. Methods We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Results Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Conclusions Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these findings. PMID:22393276
Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Reddy, Geereddy Bhanuprakash
2012-01-01
Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%-20% of these rats develop cataracts spontaneously as they reach 12-15 months of age. We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these findings.
Hagopian, Kevork; Ramsey, Jon J.; Weindruch, Richard
2009-01-01
The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactae/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing. PMID:18953666
Mongkhon, John-Max; Thach, Maryane; Shi, Qin; Fernandes, Julio C; Fahmi, Hassan; Benderdour, Mohamed
2014-08-01
Our study was designed to elucidate the precise molecular mechanisms by which sorbitol-modified hyaluronic acid (HA/sorbitol) exerts beneficial effects in osteoarthritis (OA). Human OA chondrocytes were treated with increasing doses of HA/sorbitol ± anti-CD44 antibody or with sorbitol alone and thereafter with or without interleukin-1beta (IL-1β) or hydrogen peroxide (H2O2). Signal transduction pathways and parameters related to oxidative stress, apoptosis, inflammation, and catabolism were investigated. HA/sorbitol prevented IL-1β-induced oxidative stress, as measured by reactive oxygen species, p47-NADPH oxidase phosphorylation, 4-hydroxynonenal (HNE) production and HNE-metabolizing glutathione-S-transferase A4-4 expression. Moreover, HA/sorbitol stifled IL-1β-induced metalloproteinase-13, nitric oxide (NO) and prostaglandin E2 release as well as inducible NO synthase expression. Study of the apoptosis process revealed that this gel significantly attenuated cell death, caspase-3 activation and DNA fragmentation elicited by exposure to a cytotoxic H2O2 dose. Examination of signaling pathway components disclosed that HA/sorbitol prevented IL-1β-induced p38 mitogen-activated protein kinase and nuclear factor-kappa B activation, but not that of extracellular signal-regulated kinases 1 and 2. Interestingly, the antioxidant as well as the anti-inflammatory and anti-catabolic effects of HA/sorbitol were attributed to sorbitol and HA, respectively. Altogether, our findings support a beneficial effect of HA/sorbitol in OA through the restoration of redox status and reduction of apoptosis, inflammation and catabolism involved in cartilage damage.
Electron impact ionization of the gas-phase sorbitol
NASA Astrophysics Data System (ADS)
Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto
2015-03-01
Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.
Cao, Wenlei; Aghajanian, Haig K.; Haig-Ladewig, Lisa A.; Gerton, George L.
2008-01-01
Energy sources that can be metabolized to yield ATP are essential for normal sperm functions such as motility. Two major monosaccharides, sorbitol and fructose, are present in semen. Furthermore, sorbitol dehydrogenase (SORD) can convert sorbitol to fructose, which can then be metabolized via the glycolytic pathway in sperm to make ATP. Here we characterize Sord mRNA and SORD expression during mouse spermatogenesis and examine the ability of sorbitol to support epididymal sperm motility and tyrosine phosphorylation. Sord mRNA levels increased during the course of spermatogenic differentiation. SORD protein, however, was first detected at the condensing spermatid stage. By indirect immunofluorescence, SORD was present along the length of the flagella of caudal epididymal sperm. Furthermore, immunoelectron microscopy showed that SORD was associated with mitochondria and the plasma membranes of sperm. Sperm incubated with sorbitol maintained motility, indicating that sorbitol was utilized as an energy source. Sorbitol, as well as glucose and fructose, were not essential to induce hyperactive motility. Protein tyrosine phosphorylation increased in a similar manner when sorbitol was substituted for glucose in the incubation medium used for sperm capacitation. These results indicate that sorbitol can serve as an alternative energy source for sperm motility and protein tyrosine phosphorylation. PMID:18799757
Advanced glycation end products and sorbitol in blood from differently compensated diabetic dogs.
Comazzi, S; Bertazzolo, W; Bonfanti, U; Spagnolo, V; Sartorelli, P
2008-06-01
Canine diabetes mellitus (DM) is a common metabolic disorder with long term complications, most of which are caused by glycosylation of structural proteins, decreases in antioxidant concentrations, altered osmotic balance and hypoxia due to impaired oxygen transport. Previous studies have demonstrated that under hyperglycemic conditions canine erythrocytes undergo swelling, probably due to activation of the polyol pathway. The present work aimed to assess the plasma concentration of advanced glycation end (AGE) products, stable Amadori-products generated by non-enzymatic glycosylation of proteins and the intracellular concentration of sorbitol, produced by the activation of polyol pathway in 34 blood samples from diabetic dogs and in 14 controls. AGE products were significantly higher (p<0.01) in plasma from diabetic dogs compared with control animals. The sorbitol concentration in erythrocytes was also significantly higher in diabetic dogs and, in particular, in poorly compensated animals and in dogs with ketonuria. In five cases that were analysed before and after clinical improvement, sorbitol concentration was found to correlate with improvement. These results suggest that non-specific glycosylation is increased and that the polyol pathway is activated in diabetic dogs in a manner that is proportionate to the severity of disease. Moreover, the concentration of AGE products and sorbitol may be useful for monitoring the onset of diabetic complications and assessing the most appropriate therapeutic approaches for management of canine DM.
Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid.
Pappenberger, Günter; Hohmann, Hans-Peter
2014-01-01
L-ascorbic acid (vitamin C) was first isolated in 1928 and subsequently identified as the long-sought antiscorbutic factor. Industrially produced L-ascorbic acid is widely used in the feed, food, and pharmaceutical sector as nutritional supplement and preservative, making use of its antioxidative properties. Until recently, the Reichstein-Grüssner process, designed in 1933, was the main industrial route. Here, D-sorbitol is converted to L-ascorbic acid via 2-keto-L-gulonic acid (2KGA) as key intermediate, using a bio-oxidation with Gluconobacter oxydans and several chemical steps. Today, industrial production processes use additional bio-oxidation steps with Ketogulonicigenium vulgare as biocatalyst to convert D-sorbitol to the intermediate 2KGA without chemical steps. The enzymes involved are characterized by a broad substrate range, but remarkable regiospecificity. This puzzling specificity pattern can be understood from the preferences of these enyzmes for certain of the many isomeric structures which the carbohydrate substrates adopt in aqueous solution. Recently, novel enzymes were identified that generate L-ascorbic acid directly via oxidation of L-sorbosone, an intermediate of the bio-oxidation of D-sorbitol to 2KGA. This opens the possibility for a direct route from D-sorbitol to L-ascorbic acid, obviating the need for chemical rearrangement of 2KGA. Similar concepts for industrial processes apply for the production of D-isoascorbic acid, the C5 epimer of L-ascorbic acid. D-isoascorbic acid has the same conformation at C5 as D-glucose and can be derived more directly than L-ascorbic acid from this common carbohydrate feed stock.
Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality
Teo, Gianni; Suzuki, Yasuo; Uratsu, Sandie L.; Lampinen, Bruce; Ormonde, Nichole; Hu, William K.; DeJong, Ted M.; Dandekar, Abhaya M.
2006-01-01
Sorbitol and sucrose are major products of photosynthesis distributed in apple trees (Malus domestica Borkh. cv. “Greensleeves”) that affect quality in fruit. Transgenic apple plants were silenced or up-regulated for sorbitol-6-phosphate dehydrogenase by using the CaMV35S promoter to define the role of sorbitol distribution in fruit development. Transgenic plants with suppressed sorbitol-6-phosphate dehydrogenase compensated by accumulating sucrose and starch in leaves, and morning and midday net carbon assimilation rates were significantly lower. The sorbitol to sucrose ratio in leaves was reduced by ≈90% and in phloem exudates by ≈75%. The fruit accumulated more glucose and less fructose, starch, and malic acid, with no overall differences in weight and firmness. Sorbitol dehydrogenase activity was reduced in silenced fruit, but activities of neutral invertase, vacuolar invertase, cell wall-bound invertase, fructose kinase, and hexokinase were unaffected. Analyses of transcript levels and activity of enzymes involved in carbohydrate metabolism throughout fruit development revealed significant differences in pathways related to sorbitol transport and breakdown. Together, these results suggest that sorbitol distribution plays a key role in fruit carbon metabolism and affects quality attributes such as sugar–acid balance and starch accumulation. PMID:17132742
Zhang, Wen; Lunn, John E.; Feil, Regina; Wang, Yufei; Zhao, Jingjing; Tao, Hongxia; Zhao, Zhengyang
2017-01-01
ABSTRACT Trehalose-6-phosphate (Tre6P) is a precursor of trehalose, which is widespread in nature and greatly influences plant growth and development. Tre6P acts as a signal of carbon availability in many plants, but little is known about the function of Tre6P in rosaceous plants, which have specific sorbitol biosynthesis and transportation pathways. In the present study, Tre6P levels and Sorbitol:Tre6P ratios were analyzed in apple (Malus domestica, Borkh. cv. Gala). Tre6P levels were positively correlated with sorbitol content but negatively correlated with sucrose, glucose, and fructose content in developing fruit. However, under sorbitol-limited conditions, Tre6P levels were positively correlated with both sorbitol and sucrose. In the presence of different exogenous sugar supply, Tre6P levels increased corresponding with sorbitol, but this was not the case with sucrose. In addition, Tre6P content and sorbitol:Tre6P ratios were more highly correlated with ADP-glucose levels under sorbitol-limited conditions and fruit development stages, respectively. These results suggest that Tre6P is more closely related to sorbitol than other soluble sugars and has an important role in influencing carbon metabolism in apple. PMID:28069587
Zhang, Wen; Lunn, John E; Feil, Regina; Wang, Yufei; Zhao, Jingjing; Tao, Hongxia; Guo, Yanping; Zhao, Zhengyang
2017-02-15
Trehalose-6-phosphate (Tre6P) is a precursor of trehalose, which is widespread in nature and greatly influences plant growth and development. Tre6P acts as a signal of carbon availability in many plants, but little is known about the function of Tre6P in rosaceous plants, which have specific sorbitol biosynthesis and transportation pathways. In the present study, Tre6P levels and Sorbitol:Tre6P ratios were analyzed in apple ( Malus domestica , Borkh. cv. Gala). Tre6P levels were positively correlated with sorbitol content but negatively correlated with sucrose, glucose, and fructose content in developing fruit. However, under sorbitol-limited conditions, Tre6P levels were positively correlated with both sorbitol and sucrose. In the presence of different exogenous sugar supply, Tre6P levels increased corresponding with sorbitol, but this was not the case with sucrose. In addition, Tre6P content and sorbitol:Tre6P ratios were more highly correlated with ADP-glucose levels under sorbitol-limited conditions and fruit development stages, respectively. These results suggest that Tre6P is more closely related to sorbitol than other soluble sugars and has an important role in influencing carbon metabolism in apple. © 2017. Published by The Company of Biologists Ltd.
Mitochondrial control of cell death induced by hyperosmotic stress.
Criollo, Alfredo; Galluzzi, Lorenzo; Maiuri, M Chiara; Tasdemir, Ezgi; Lavandero, Sergio; Kroemer, Guido
2007-01-01
HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-X(L) sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control.
Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production
2012-01-01
Background Recombinant proteins are routinely overexpressed in metabolic engineering. It is well known that some over-expressed heterologous recombinant enzymes are insoluble with little or no enzymatic activity. This study examined the solubility of over-expressed homologous enzymes of the deoxyxylulose phosphate pathway (DXP) and the impact of inclusion body formation on metabolic engineering of microbes. Results Four enzymes of this pathway (DXS, ISPG, ISPH and ISPA), but not all, were highly insoluble, regardless of the expression systems used. Insoluble dxs (the committed enzyme of DXP pathway) was found to be inactive. Expressions of fusion tags did not significantly improve the solubility of dxs. However, hypertonic media containing sorbitol, an osmolyte, successfully doubled the solubility of dxs, with the concomitant improvement in microbial production of the metabolite, DXP. Similarly, sorbitol significantly improved the production of soluble and functional ERG12, the committed enzyme in the mevalonate pathway. Conclusion This study demonstrated the unanticipated findings that some over-expressed homologous enzymes of the DXP pathway were highly insoluble, forming inclusion bodies, which affected metabolite formation. Sorbitol was found to increase both the solubility and function of some of these over-expressed enzymes, a strategy to increase the production of secondary metabolites. PMID:23148661
Modeling of Dolichol Mass Spectra Isotopic Envelopes as a Tool to Monitor Isoprenoid Biosynthesis.
Jozwiak, Adam; Lipko, Agata; Kania, Magdalena; Danikiewicz, Witold; Surmacz, Liliana; Witek, Agnieszka; Wojcik, Jacek; Zdanowski, Konrad; Pączkowski, Cezary; Chojnacki, Tadeusz; Poznanski, Jaroslaw; Swiezewska, Ewa
2017-06-01
The cooperation of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways, operating in parallel in plants to generate isoprenoid precursors, has been studied extensively. Elucidation of the isoprenoid metabolic pathways is indispensable for the rational design of plant and microbial systems for the production of industrially valuable terpenoids. Here, we describe a new method, based on numerical modeling of mass spectra of metabolically labeled dolichols (Dols), designed to quantitatively follow the cooperation of MVA and MEP reprogrammed upon osmotic stress (sorbitol treatment) in Arabidopsis ( Arabidopsis thaliana ). The contribution of the MEP pathway increased significantly (reaching 100%) exclusively for the dominating Dols, while for long-chain Dols, the relative input of the MEP and MVA pathways remained unchanged, suggesting divergent sites of synthesis for dominating and long-chain Dols. The analysis of numerically modeled Dol mass spectra is a novel method to follow modulation of the concomitant activity of isoprenoid-generating pathways in plant cells; additionally, it suggests an exchange of isoprenoid intermediates between plastids and peroxisomes. © 2017 American Society of Plant Biologists. All Rights Reserved.
Kania, Magdalena; Witek, Agnieszka; Wojcik, Jacek; Zdanowski, Konrad; Pączkowski, Cezary; Chojnacki, Tadeusz; Poznanski, Jaroslaw
2017-01-01
The cooperation of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways, operating in parallel in plants to generate isoprenoid precursors, has been studied extensively. Elucidation of the isoprenoid metabolic pathways is indispensable for the rational design of plant and microbial systems for the production of industrially valuable terpenoids. Here, we describe a new method, based on numerical modeling of mass spectra of metabolically labeled dolichols (Dols), designed to quantitatively follow the cooperation of MVA and MEP reprogrammed upon osmotic stress (sorbitol treatment) in Arabidopsis (Arabidopsis thaliana). The contribution of the MEP pathway increased significantly (reaching 100%) exclusively for the dominating Dols, while for long-chain Dols, the relative input of the MEP and MVA pathways remained unchanged, suggesting divergent sites of synthesis for dominating and long-chain Dols. The analysis of numerically modeled Dol mass spectra is a novel method to follow modulation of the concomitant activity of isoprenoid-generating pathways in plant cells; additionally, it suggests an exchange of isoprenoid intermediates between plastids and peroxisomes. PMID:28385729
de Godoy, M R C; Knapp, B K; Bauer, L L; Swanson, K S; Fahey, G C
2013-08-01
The objective of these experiments was to measure in vitro hydrolytic digestion and glycemic and insulinemic responses of select carbohydrate blends, all containing the novel carbohydrate soluble corn fiber (SCF). Two SCF that varied in their method of production were used to formulate the carbohydrate blends. One set of blends contained a SCF that was spray dried (SCFsd) and then blended with different amounts of either pullulan, sorbitol, or fructose. The other set of blends contained a SCF produced using longer evaporation time (SCF) and then blended with different ratios of pullulan, sorbitol, and fructose. Free sugar concentrations found in the individual SCFsd and SCF substrates were low but varied. Spray-dried soluble corn fiber had a reduced free sugar concentration compared with SCF (2.8 vs. 14.2%). Glucose was the main free sugar found in both SCFsd and SCF but at different concentrations (2.7 vs. 12.7%, respectively). The majority of the SCFsd blends were completely hydrolyzed to their monosaccharide components. Glucose accounted for most of the hydrolyzed monosaccharides for SCFsd and all the SCFsd blends. Hydrolyzed monosaccharide concentrations for the SCF:pullulan:sorbitol:fructose blends followed similar trends to the SCFsd blends where greater percentages of fructose and sorbitol resulted in decreased (P < 0.05) hydrolyzed monosaccharide concentrations. The SCFsd blends had intermediate to high amounts of monosaccharides released as a result of in vitro hydrolytic digestion. The SCFsd:pullulan blends were more digestible in vitro (approximately 91%; P < 0.05) than SCFsd:fructose or SCFsd:sorbitol. Total released monosaccharides were high in SCFsd blends containing either 50% fructose or sorbitol, but the combination resulted in reduced concentrations of glucose released (P < 0.05). The SCF:pullulan:sorbitol:fructose blends also had intermediate to high released monosaccharides as a result of in vitro hydrolytic digestion. All SCF blends resulted in decreased glycemic and insulinemic responses compared with the maltodextrin control (P < 0.05) using a canine model. The addition of pullulan reduced the glycemic response compared with maltodextrin at all concentrations, but only 50:50 SCFsd:pullulan resulted in a reduction of the glycemic response compared with SCFsd alone (P < 0.05). The addition of fructose and sorbitol in the blends had the greatest impact on glycemic and insulinemic responses, even at concentrations as low as 5% of the blends. Overall, SCF and their blends may prove beneficial as components of low glycemic foodstuffs.
Effect of mammalian kidney osmolytes on the folding pathway of sheep serum albumin.
Dar, Mohammad Aasif; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan
2017-04-01
Recently, we had published that urea-induced denaturation curves of optical properties of sheep serum albumin (SSA) are biphasic with a stable intermediate that has characteristics of molten globule (MG) state. In this study, we have extended the work by carrying out urea- and guanidinium chloride (GdmCl)-induced denaturations of SSA in the presence of naturally occurring mammalian kidney osmolytes, namely, sorbitol, myo-inositol and glycine betaine. We have observed that all these osmolytes (i) transform this biphasic transition into a co-operative, two-state transition and (ii) increase the stability of the protein in terms of midpoint of denaturation (C m ) and Gibbs free energy change in the absence of both denaturants (ΔG D 0 ). The relative effectiveness of different osmolytes on the stability of SSA follows the order: glycine betaine>myo-inositol>sorbitol. In this paper, we also report that kidney osmolytes destabilize MG state by shifting the equilibrium, native state↔MG state toward the left. This study will be helpful in understanding the existence of osmolytes in kidney and their role in folding of kidney proteins soaked with urea. Copyright © 2017 Elsevier B.V. All rights reserved.
Fission Yeast Model Study for Dissection of TSC Pathway
2010-04-01
prepared as follows. A total of 1010 cells were incubated at 37! for 1 hr in spheroplasts buffer [50 mm citrate–phosphate (pH 5.6) and 1.2 m sorbitol ...potassium acetate, and 0.1 m sorbitol ] containing 0.4 mm phenylmethyl- sulfonyl fluoride and 13 protease inhibitor cocktail (Nacalai Tesque) and downed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Changjun; Sun, Junming; Brown, Heather M.
Aqueous-phase hydrodeoxygenation of sugar and sugar-derived molecules can be used to produce a range of alkanes and oxygenates. In this paper, we have identified the reaction intermediates and reaction chemistry for the aqueous-phase hydrodeoxygenation of sorbitol over a bifunctional catalyst (Pt/SiO2–Al2O3) that contains both metal (Pt) and acid (SiO2–Al2O3) sites. A wide variety of reactions occur in this process including Csingle bondC bond cleavage, Csingle bondO bond cleavage, and hydrogenation reactions. The key Csingle bondC bond cleavage reactions include: retro-aldol condensation and decarbonylation, which both occur on metal catalytic sites. Dehydration is the key Csingle bondO bond cleavage reaction andmore » occurs on acid catalytic sites. Sorbitol initially undergoes dehydration and ring closure to produce cyclic C6 molecules or retro-aldol condensation reactions to produce primarily C3 polyols. Isosorbide is the major final product from sorbitol dehydration. Isosorbide then undergoes ring opening hydrogenation reactions and a dehydration/hydrogenation step to form 1,2,6-hexanetriol. The hexanetriol is then converted into hexanol and hexane by dehydration/hydrogenation. Smaller oxygenates are produced by Csingle bondC bond cleavage. These smaller oxygenates undergo dehydration/hydrogenation reactions to produce alkanes from C1–C5. The results from this paper suggest that hydrodeoxygenation chemistry can be tuned to make a wide variety of products from biomass-derived oxygenates.« less
Olivera Santa-Catalina, Marta; Caballero Bermejo, Montaña; Argent, Ricardo; Alonso, Juan C; Centeno, Francisco; Lorenzo, María J
2017-12-15
Growing evidence suggests that Diabetes Mellitus increases the risk of developing Alzheimer's disease. It is well known that hyperglycemia, a key feature of Diabetes Mellitus, may induce plasma osmolarity disturbances. Both hyperglycemia and hyperosmolarity promote the altered post-translational regulation of microtubule-associated protein Tau. Interestingly, abnormal hyperphosphorylation and cleavage of Tau have been proven to lead to the genesis of filamentous structures referred to as neurofibrillary tangles, the main pathological hallmark of Alzheimer's disease. We have previously described that hyperosmotic stress induced by sorbitol promotes Tau proteolysis and apoptosis in SH-SY5Y cells via caspase-3 activation. In order to gain insights into the regulatory mechanisms of such processes, in this work we explored the intracellular signaling pathways that regulate these events. We found that sorbitol treatment significantly enhanced the activation of conventional families of MAPK in SH-SY5Y cells. Tau proteolysis was completely prevented by JNK inhibition but not affected by either ERK1/2 or p38 MAPK blockade. Moreover, inhibition of JNK, but not ERK1/2 or p38 MAPK, efficiently prevented sorbitol-induced apoptosis and caspase-3 activation. In summary, we provide evidence that JNK signaling pathway is an upstream regulator of hyperosmotic stress-induced Tau cleavage and apoptosis in SH-SY5Y through the control of caspase-3 activation. Copyright © 2017 Elsevier Inc. All rights reserved.
Monetti, Emanuela; Kadono, Takashi; Tran, Daniel; Azzarello, Elisa; Arbelet-Bonnin, Delphine; Biligui, Bernadette; Briand, Joël; Kawano, Tomonori; Mancuso, Stefano; Bouteau, François
2014-03-01
Hyperosmotic stresses represent one of the major constraints that adversely affect plants growth, development, and productivity. In this study, the focus was on early responses to hyperosmotic stress- (NaCl and sorbitol) induced reactive oxygen species (ROS) generation, cytosolic Ca(2+) concentration ([Ca(2+)]cyt) increase, ion fluxes, and mitochondrial potential variations, and on their links in pathways leading to programmed cell death (PCD). By using BY-2 tobacco cells, it was shown that both NaCl- and sorbitol-induced PCD seemed to be dependent on superoxide anion (O2·(-)) generation by NADPH-oxidase. In the case of NaCl, an early influx of sodium through non-selective cation channels participates in the development of PCD through mitochondrial dysfunction and NADPH-oxidase-dependent O2·(-) generation. This supports the hypothesis of different pathways in NaCl- and sorbitol-induced cell death. Surprisingly, other shared early responses, such as [Ca(2+)]cyt increase and singlet oxygen production, do not seem to be involved in PCD.
Metabolic engineering of Escherichia coli to enhance shikimic acid production from sorbitol.
Liu, Xianglei; Lin, Jun; Hu, Haifeng; Zhou, Bin; Zhu, Baoquan
2014-09-01
Shikimic acid (SA) is the key synthetic material of Oseltamivir, which is an effective drug for the prevention and treatment of influenza. In this study, to block the downstream metabolic pathway of SA, the shikimate kinase isoenzyme genes aroK and aroL were deleted by Red recombination. Moreover, the key enzyme genes aroG, aroB, tktA and aroE of SA pathway were co-expressed by constructing the recombinant vector pETDuet-GBAE. As a result, SA production of E. coli BW25113 (∆aroL/aroK, DE3)/pETDuet-GBAE reached 1,077.6 mg/l when low amounts of sorbitol (5 g/l) were fed in shake flasks. The yield was 3.7 times that when glucose was used (P < 0.05). The results showed that sorbitol was an optimized carbon source for the high efficient accumulation of SA for the first time, which was applicable to use in the industry for high yields and low consumption.
Ladero, Victor; Ramos, Ana; Wiersma, Anne; Goffin, Philippe; Schanck, André; Kleerebezem, Michiel; Hugenholtz, Jeroen; Smid, Eddy J.; Hols, Pascal
2007-01-01
Sorbitol is a low-calorie sugar alcohol that is largely used as an ingredient in the food industry, based on its sweetness and its high solubility. Here, we investigated the capacity of Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals, to produce sorbitol from fructose-6-phosphate by reverting the sorbitol catabolic pathway in a mutant strain deficient for both l- and d-lactate dehydrogenase activities. The two sorbitol-6-phosphate dehydrogenase (Stl6PDH) genes (srlD1 and srlD2) identified in the genome sequence were constitutively expressed at a high level in this mutant strain. Both Stl6PDH enzymes were shown to be active, and high specific activity could be detected in the overexpressing strains. Using resting cells under pH control with glucose as a substrate, both Stl6PDHs were capable of rerouting the glycolytic flux from fructose-6-phosphate toward sorbitol production with a remarkably high efficiency (61 to 65% glucose conversion), which is close to the maximal theoretical value of 67%. Mannitol production was also detected, albeit at a lower level than the control strain (9 to 13% glucose conversion), indicating competition for fructose-6-phosphate rerouting by natively expressed mannitol-1-phosphate dehydrogenase. By analogy, low levels of this enzyme were detected in both the wild-type and the lactate dehydrogenase-deficient strain backgrounds. After optimization, 25% of sugar conversion into sorbitol was achieved with cells grown under pH control. The role of intracellular NADH pools in the determination of the maximal sorbitol production is discussed. PMID:17261519
Monetti, Emanuela; Kadono, Takashi; Bouteau, François
2014-01-01
Hyperosmotic stresses represent one of the major constraints that adversely affect plants growth, development, and productivity. In this study, the focus was on early responses to hyperosmotic stress- (NaCl and sorbitol) induced reactive oxygen species (ROS) generation, cytosolic Ca2+ concentration ([Ca2+]cyt) increase, ion fluxes, and mitochondrial potential variations, and on their links in pathways leading to programmed cell death (PCD). By using BY-2 tobacco cells, it was shown that both NaCl- and sorbitol-induced PCD seemed to be dependent on superoxide anion (O2·–) generation by NADPH-oxidase. In the case of NaCl, an early influx of sodium through non-selective cation channels participates in the development of PCD through mitochondrial dysfunction and NADPH-oxidase-dependent O2·– generation. This supports the hypothesis of different pathways in NaCl- and sorbitol-induced cell death. Surprisingly, other shared early responses, such as [Ca2+]cyt increase and singlet oxygen production, do not seem to be involved in PCD. PMID:24420571
Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women.
Hwang, Janice J; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S; Sherwin, Robert S
2015-01-01
Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000 th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose → sorbitol → fructose) contributes to brain exposure to fructose. In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. As expected, CSF glucose was ~ 60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~ 9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~ 7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.
Latha, M; Pari, L
2004-04-01
The effects of an aqueous extract of the plant Scoparia dulcis (200 mg/kg) on the polyol pathway and lipid peroxidation were examined in the liver of streptozotocin adult diabetic male albino Wistar rats. The diabetic control rats (N = 6) presented a significant increase in blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS) and hydroperoxides, and a significant decrease in plasma insulin and antioxidant enzymes such as glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) compared to normal rats (N = 6). Scoparia dulcis plant extract (SPEt, 200 mg kg-1 day-1) and glibenclamide (600 microg kg-1 day-1), a reference drug, were administered by gavage for 6 weeks to diabetic rats (N = 6 for each group) and significantly reduced blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin, TBARS, and hydroperoxides, and significantly increased plasma insulin, GPx, GST and GSH activities in liver. The effect of the SPEt was compared with that of glibenclamide. The effect of the extract may have been due to the decreased influx of glucose into the polyol pathway leading to increased activities of antioxidant enzymes and plasma insulin and decreased activity of sorbitol dehydrogenase. These results indicate that the SPEt was effective in attenuating hyperglycemia in rats and their susceptibility to oxygen free radicals.
[Coenzyme-induced slow transitions of NADP-sorbitol dehydrogenase from Gluconobacter oxydans].
Liber, E E; Dorozhko, A I; Pomortseva, N V
1978-06-01
The kinetic properties of NADP-dependent sorbitol dehydrogenase from G. oxydans cell extract were studied at pH 8.8 and 9.3 in the direction of D-sorbitol oxydation. It was shown that the shape of the kinetic curves of NADPH accumulation in time is characterised by initial burst whose magnitude depends on the concentration of the enzyme extract used. Preincubation of the enzyme with NADP or D-sorbitol eliminated the initial burst on these curves and transformed them into straight lines coming from the start of co-ordinates. The dependence of the stationary reaction rate on the enzyme extract concentration is not a linear one. The kinetic dependences of stationary rate of the reaction catalysed by the enzyme on the concentration of D-sorbitol and NADP at pH 8.8 and 9.3 were examined under all conditions studied; the shape of these kinetic curves altered to considerable extent with the alteration of the enzyme extract concentration in the reaction mixture and pH. At pH 9.3 several intermiediate plateaux were found on the curves of the D-sorbitol concentration dependent stationary rate of the reaction. The preincubation of the enzyme extract with NADP during 1.5 h removed the intermediate plateau on these curves and made them hyperbolic. Disk-electrophoresis of the enzyme extract in PAAG concentration gradient showed that at pH 8.8 the enzyme exists in one active form, while at pH 9.3 it exists in three major and three minor active forms of the enzyme differing in their molecular weights are found. It is assumed that the enzyme from G. oxydans cell extract can exist in a great number of molecular equilibrium forms, the rate of quilibrium being comparable or significantly less than that of the enzymatic reaction. NADP significantly influences on the equilibrium of the molecular forms of the enzyme.
Fructose Levels Are Markedly Elevated in Cerebrospinal Fluid Compared to Plasma in Pregnant Women
Hwang, Janice J.; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S.; Sherwin, Robert S.
2015-01-01
Background Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose→sorbitol→fructose) contributes to brain exposure to fructose. Methods In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. Results As expected, CSF glucose was ~60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. Conclusions These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption. PMID:26035307
Mavrogonatou, Eleni; Kletsas, Dimitris
2012-03-01
Nucleus pulposus intervertebral disc cells are routinely confronted with high osmolality in their microenvironment and respond to this stress in vitro by regulating cell cycle progression and by activating a DNA repair machinery in order to counteract its genotoxic effect. In the present study, we attempted to identify the origin of this osmo-regulatory response, by using an ionic NaCl/KCl solution, the compatible osmolyte sorbitol, and the readily permeant urea. High salt and sorbitol were found to activate similar molecular pathways, including the p38 MAPK and the p53-p21(WAF1)-pRb axis, that were not stimulated by high urea. On the other hand, only high urea led to the phosphorylation of ERKs and JNKs. Furthermore, salt- and sorbitol-treated cells were able to phosphorylate histone H2A.X on Ser139, in contrast to cells exposed to urea, indicating a common mechanism for DNA repair, which was achieved by a p53-dependent activation of the G1 checkpoint by both solutes. DNA repair, as directly measured by a host cell reactivation assay, occurred under conditions of hyperosmolar salt and sorbitol, although to a lesser extent in sorbitol-treated cells than in cells exposed to high salinity. Taken as a whole, our findings suggest that the hyperosmolality-provoked DNA damage and the responses of nucleus pulposus cells induced by this genotoxic stress most probably originate from cell volume alterations mediated by hypertonicity and not from increased intracellular ionic concentration. Copyright © 2011 Wiley Periodicals, Inc.
Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Lee, Yun Mi; Jo, Kyuhyung; Kim, Jin Sook
2015-01-01
Aldose reductase (AR) is the first and rate-limiting enzyme of the polyol pathway. AR-dependent synthesis of excess polyols leads to lens opacification in diabetic cataract. The purpose of this study is to investigate the protective effect of Litsea japonica extract (LJE) on diabetes-induced lens opacification and its protective mechanism in db/db mice. Seven-week-old male db/db mice were treated with LJE (100 and 250 mg/kg body weight) once a day orally for 12 weeks. LJE dose dependently inhibited rat lens aldose reductase activity in vitro (IC50 = 13.53 ± 0.74 µg/mL). In db/db mice, lens was slightly opacified, and lens fiber cells were swollen and ruptured. In addition, lenticular sorbitol accumulation was increased in db/db mice. However, the administration of LJE inhibited these lenticular sorbitol accumulation and lens architectural changes in db/db mice. Our results suggest that LJE might be beneficial for the treatment of diabetes-induced lens opacification. The ability of LJE to suppress lenticular sorbitol accumulation may be mediated by the inhibition of AR activity.
Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Lee, Yun Mi; Jo, Kyuhyung; Kim, Jin Sook
2015-01-01
Aldose reductase (AR) is the first and rate-limiting enzyme of the polyol pathway. AR-dependent synthesis of excess polyols leads to lens opacification in diabetic cataract. The purpose of this study is to investigate the protective effect of Litsea japonica extract (LJE) on diabetes-induced lens opacification and its protective mechanism in db/db mice. Seven-week-old male db/db mice were treated with LJE (100 and 250 mg/kg body weight) once a day orally for 12 weeks. LJE dose dependently inhibited rat lens aldose reductase activity in vitro (IC50 = 13.53 ± 0.74 µg/mL). In db/db mice, lens was slightly opacified, and lens fiber cells were swollen and ruptured. In addition, lenticular sorbitol accumulation was increased in db/db mice. However, the administration of LJE inhibited these lenticular sorbitol accumulation and lens architectural changes in db/db mice. Our results suggest that LJE might be beneficial for the treatment of diabetes-induced lens opacification. The ability of LJE to suppress lenticular sorbitol accumulation may be mediated by the inhibition of AR activity. PMID:25802544
Chi, Meng-Chun; Wu, Tai-Jung; Chen, Hsing-Ling; Lo, Huei-Fen; Lin, Long-Liu
2012-12-01
Enzymes are highly complex systems with a substantial degree of structural variability in their folded state. In the presence of cosolvents, fluctuations among vast numbers of folded and unfolded conformations occur via many different pathways; alternatively, certain conformations can be stabilized or destabilized. To understand the contribution of osmolytes to the stabilization of structural changes and enzymatic activity of a truncated Bacillus sp. TS-23 α-amylase (BACΔNC), we monitored amylolytic activity, circular dichroism, and fluorescence as a function of osmolytes. In the presence of trimethylamine N-oxide (TMAO) and sorbitol, BACΔNC activity was retained significantly at elevated temperatures. As compared to the control, the secondary structures of this enzyme were essentially conserved upon the addition of these two kinds of osmolytes. Fluorescence results revealed that the temperature-induced conformational change of BACΔNC was prevented by TMAO and sorbitol. However, glycerol did not provide profound protection against thermal denaturation of the enzyme. Sorbitol was further found to counteract guanidine hydrochloride- and SDS-induced denaturation of BACΔNC. Thus, some well-known naturally occurring osmolytes make a dominant contribution to the stabilization of BACΔNC.
Wu, Guo Quan; Lv, Chun Rong; Jiang, Yan Ting; Wang, Si Yu; Shao, Qing Yong; Hong, Qiong Hua; Quan, Guo Bo
2016-10-01
In this study, the protective effects of monosaccharides (glucose and fructose) and sugar alcohols (mannitol, sorbitol, and xylitol) on frozen ram spermatozoa were evaluated and compared. The motility, moving velocity, and hypoosmotic swelling capability of spermatozoa frozen with monosaccharide or sugar alcohol were measured using a computer-assisted spermatozoa analyzer system. The acrosome status, membrane integrity, distribution of phosphatidylserine (PS), and mitochondrial membrane potential (MMP) were analyzed using fluorescence staining and flow cytometry. The results indicated that similar to glucose or fructose, the presence of sugar alcohol in the freezing extender cannot significantly improve the motility and moving velocity of ram spermatozoa equilibrated at 5°C. In terms of motility, pathway velocity, curve velocity, hypoosmotic swelling capability, acrosome and membrane integrity, and MMP, the inclusion of mannitol or sorbitol in the extender can significantly improve the quality of frozen-thawed ram spermatozoa compared to glucose or fructose. However, the effects of mannitol or sorbitol on linear velocity and PS distribution of frozen-thawed spermatozoa were similar to those of the monosaccharides (p > 0.05). In addition, the ability of xylitol to protect acrosome and maintain MMP in frozen-thawed spermatozoa was significantly higher compared with glucose or fructose (p < 0.05), although it could not improve the other evaluated parameters. Finally, there is no significant difference existing between mannitol and sorbitol with respect to the above evaluated parameters. In conclusion, the replacement of glucose or fructose by mannitol or sorbitol in a freezing extender can improve the postthaw quality of ram spermatozoa under specific freezing conditions. Moreover, the protective effects of mannitol and sorbitol on frozen-thawed ram spermatozoa are superior to that of xylitol. However, in the presence of sugar alcohols, the cryoinjury on spermatozoa membrane is still serious. In the future, the question of protecting the membrane of frozen-thawed spermatozoa needs further research.
USDA-ARS?s Scientific Manuscript database
The fetal fluids and uterine flushings of pigs contain higher concentrations of fructose than glucose, but fructose is not detected in maternal blood. Fructose can be synthesized from glucose via enzymes of the polyol pathway, aldose reductase (AKR1B1) and sorbitol dehydrogenase (SORD), transported ...
Exploitation of Nontraditional Corp, Yacon, in Breast Cancer Prevention Using Preclinical Rat Model
2011-07-01
liver glucose disposal evident along sorbitol, PPP, and hexosamine pathways. • Gut microbiome : A significant impact of diet on levels of...biochemicals reflecting metabolism of the gut microbiome was evident in plasma and liver and observed for several classes of metabolites. Biochemicals...acid metabolites reflecting activity of the gut microbiome contribute to host metabolic pathways and/or must be metabolized further by the liver
Chiong, M; Parra, V; Eisner, V; Ibarra, C; Maldonado, C; Criollo, A; Bravo, R; Quiroga, C; Contreras, A; Vicencio, J M; Cea, P; Bucarey, J L; Molgó, J; Jaimovich, E; Hidalgo, C; Kroemer, G; Lavandero, S
2010-08-01
Hyperosmotic stress promotes rapid and pronounced apoptosis in cultured cardiomyocytes. Here, we investigated if Ca(2+) signals contribute to this response. Exposure of cardiomyocytes to sorbitol [600 mosmol (kg water)(-1)] elicited large and oscillatory intracellular Ca(2+) concentration increases. These Ca(2+) signals were inhibited by nifedipine, Cd(2+), U73122, xestospongin C and ryanodine, suggesting contributions from both Ca(2+) influx through voltage dependent L-type Ca(2+) channels plus Ca(2+) release from intracellular stores mediated by IP(3) receptors and ryanodine receptors. Hyperosmotic stress also increased mitochondrial Ca(2+) levels, promoted mitochondrial depolarization, reduced intracellular ATP content, and activated the transcriptional factor cyclic AMP responsive element binding protein (CREB), determined by increased CREB phosphorylation and electrophoretic mobility shift assays. Incubation with 1 mM EGTA to decrease extracellular [Ca(2+)] prevented cardiomyocyte apoptosis induced by hyperosmotic stress, while overexpression of an adenoviral dominant negative form of CREB abolished the cardioprotection provided by 1 mM EGTA. These results suggest that hyperosmotic stress induced by sorbitol, by increasing Ca(2+) influx and raising intracellular Ca(2+) concentration, activates Ca(2+) release from stores and causes cell death through mitochondrial function collapse. In addition, the present results suggest that the Ca(2+) increase induced by hyperosmotic stress promotes cell survival by recruiting CREB-mediated signaling. Thus, the fate of cardiomyocytes under hyperosmotic stress will depend on the balance between Ca(2+)-induced survival and death pathways.
Meissen, John K; Hirahatake, Kristin M; Adams, Sean H; Fiehn, Oliver
2015-06-01
High fructose consumption has been implicated with deleterious effects on human health, including hyperlipidemia elicited through de novo lipogenesis. However, more global effects of fructose on cellular metabolism have not been elucidated. In order to explore the metabolic impact of fructose-containing nutrients, we applied both GC-TOF and HILIC-QTOF mass spectrometry metabolomic strategies using extracts from cultured HepG2 cells exposed to fructose, glucose, or fructose + glucose. Cellular responses were analyzed in a time-dependent manner, incubated in media containing 5.5 mM glucose + 5.0 mM fructose in comparison to controls incubated in media containing either 5.5 mM glucose or 10.5 mM glucose. Mass spectrometry identified 156 unique known metabolites and a large number of unknown compounds, which revealed metabolite changes due to both utilization of fructose and high-carbohydrate loads independent of hexose structure. Fructose was shown to be partially converted to sorbitol, and generated higher levels of fructose-1-phosphate as a precursor for glycolytic intermediates. Differentially regulated ratios of 3-phosphoglycerate to serine pathway intermediates in high fructose media indicated a diversion of carbon backbones away from energy metabolism. Additionally, high fructose conditions changed levels of complex lipids toward phosphatidylethanolamines. Patterns of acylcarnitines in response to high hexose exposure (10.5 mM glucose or glucose/fructose combination) suggested a reduction in mitochondrial beta-oxidation.
Temperature-Dependent Fermentation of d-Sorbitol in Escherichia coli O157:H7
Bouvet, O. M. M.; Pernoud, S.; Grimont, P. A. D.
1999-01-01
The influence of growth temperature on the ability to ferment d-sorbitol was investigated in Escherichia coli O157:H7. It was found that O157:H7 strains have a temperature-sensitive sorbitol phenotype. d-Sorbitol transport and sorbitol-6-phosphate dehydrogenase activities were expressed in sorbitol-fermenting cells grown at 30°C but only at a low level at 40°C. Sorbitol-positive variants able to transport d-sorbitol were easily selected at 30°C from culture of Sor− E. coli O157:H7 strains. PMID:10473445
Gao, Min-Jie; Zhan, Xiao-Bei; Gao, Peng; Zhang, Xu; Dong, Shi-Juan; Li, Zhen; Shi, Zhong-Ping; Lin, Chi-Chung
2015-05-01
Various induction strategies were investigated for effective porcine interferon-α (pIFN-α) production by Pichia pastoris in a 10 L fermenter. We found that pIFN-α concentration could be significantly improved with the strategies of low-temperature induction or methanol/sorbitol co-feeding. On this basis, a combinational strategy of induction at lower temperature (20 °C) with methanol/sorbitol co-feeding has been proposed for improvement of pIFN-α production. The results reveal that maximal pIFN-α concentration and antiviral activity reach the highest level of 2.7 g/L and 1.8 × 10(7) IU/mg with the proposed induction strategy, about 1.3-2.1 folds higher than those obtained with other sub-optimal induction strategies. Metabolic analysis and online multi-variable measurement results indicate that energy metabolic enrichment is responsible for the performance enhancement of pIFN-α production, as a large amount of ATP could be simultaneously produced from both formaldehyde oxidation pathway in methanol metabolism and tricarboxylic acid (TCA) cycle in sorbitol metabolism. In addition, the proposed combinational induction strategy enables P. pastoris to be resistant to high methanol concentration (42 g/L), which conceivably occur associating with the error-prone methanol over-feeding. As a result, the proposed combinational induction strategy simultaneously increased the targeted protein concentration and operational stability leading to significant improvement of pIFN-α production.
Bahrami, Homayoon; Zahedi, Mansour; Moosavi-Movahedi, Ali Akbar; Azizian, Homa; Amanlou, Massoud
2011-03-01
The nature of protein-sorbitol-water interaction in solution at the molecular level, has been investigated using molecular dynamics simulations. In order to do this task, two molecular dynamics simulations of the protein ADH in solution at room temperature have been carried out, one in the presence (about 0.9 M) and another in the absence of sorbitol. The results show that the sorbitol molecules cluster and move toward the protein, and form hydrogen bonds with protein. Also, coating by sorbitol reduces the conformational fluctuations of the protein compared to the sorbitol-free system. Thus, it is concluded that at moderate concentration of sorbitol solution, sorbitol molecules interact with ADH via many H-bonds that prevent the protein folding. In fact, at more concentrated sorbitol solution, water and sorbitol molecules accumulate around the protein surface and form a continuous space-filling network to reduce the protein flexibility. Namely, in such solution, sorbitol molecules can stabilize a misfolded state of ADH, and prevent the protein from folding to its native structure.
Comparison of Intermolecular Forces in Anhydrous Sorbitol and Solvent Cocrystals.
Dierks, Teresa M; Korter, Timothy M
2017-08-03
The hygroscopicity of solid sorbitol is important for its utilization as a sweetener in the pharmaceutical and food industries. The molecular foundations of sorbitol hydration characteristics are explored here using two solvated cocrystals, sorbitol-water and sorbitol-pyridine. In this work, solid-state density functional theory and terahertz time-domain spectroscopy were used to evaluate the relative stabilities of these cocrystals as compared to anhydrous sorbitol in terms of conformational and cohesive energies. The modification of the hydrogen-bonding network in crystalline sorbitol by solvent molecules gives new insight into the origins of the notable stability of sorbitol-water as compared to similar solids such as mannitol-water. In particular, the energy analysis reveals that the relative instability of the mannitol hydrate is based primarily in the lack of water-water interactions which provide considerable stabilization in the sorbitol-water crystal.
21 CFR 862.1670 - Sorbitol dehydrogenase test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...
Storage Stability and Improvement of Intermediate Moisture Foods, Phase 3
NASA Technical Reports Server (NTRS)
Labuza, T. P.
1975-01-01
Methods were determined for the improvement of shelf-life stability of intermediate moisture foods (IMF). Microbial challenge studies showed that protection against molds and Staphylococcus aureus could be achieved by a combination of antimicrobial agents, humectants and food acids. Potassium sorbate and propylene glycol gave the best results. It was also confirmed that the maximum in heat resistance shown by vegetative pathogens at intermediate water activities also occurred in a solid food. Glycols and sorbitol both achieve browning inhibition because of their action as a medium for reaction and effect on viscosity of the adsorbed phase. Chemical availability results showed rapid lysine loss before visual discoloration occurred. This is being confirmed with a biological test using Tetrahymena pyriformis W. Accelerated temperature tests show that effectiveness of food antioxidants against rancidity development can be predicted; however, the protection factor changes with temperature. BHA was found to be the best antioxidant for iron catalyzed oxidation.
Lipase-Catalyzed Production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic Acid Esters.
Kim, Jung-Ho; Bhatia, Shashi Kant; Yoo, Dongwon; Seo, Hyung Min; Yi, Da-Hye; Kim, Hyun Joong; Lee, Ju Hee; Choi, Kwon-Young; Kim, Kwang Jin; Lee, Yoo Kyung; Yang, Yung-Hun
2015-05-01
To overcome the poor properties of solubility and stability of cinnamic acid, cinnamate derivatives with sugar alcohols were produced using the immobilized Candida antarctica lipase with vinyl cinnamate and D-sorbitol as substrate at 45 °C. Immobilized C. antarctica lipase was found to synthesize 6-O-cinnamoyl-sorbitol and confirmed by HPLC and (1)H-NMR and had a preference for vinyl cinnamate over other esters such as allyl-, ethyl-, and isobutyl cinnamate as co-substrate with D-sorbitol. Contrary to D-sorbitol, vinyl cinnamate, and cinnamic acid, the final product 6-O-cinnamoyl-sorbitol was found to have radical scavenging activity. This would be the first report on the biosynthesis of 6-O-cinnamoyl-sorbitol with immobilized enzyme from C. antarctica.
Ayoub, Isabelle; Oh, Man S; Gupta, Raavi; McFarlane, Michael; Babinska, Anna; Salifu, Moro O
2015-01-01
Based on a single rat study by Lillemoe et al, the consensus has been formed to implicate sorbitol rather than sodium polystyrene sulfonate (SPS) as the culprit for colon necrosis in humans treated with SPS and sorbitol. We tested the hypothesis that colon necrosis by sorbitol in the experiment was due to the high osmolality and volume of sorbitol rather than its chemical nature. 26 rats underwent 5/6 nephrectomy. They were divided into 6 groups and given enema solutions under anesthesia (normal saline, 33% sorbitol, 33% mannitol, SPS in 33% sorbitol, SPS in normal saline, and SPS in distilled water). They were sacrificed after 48 hours of enema administration or earlier if they were very sick. The gross appearance of the colon was visually inspected, and then sliced colon tissues were examined under light microscopy. 1 rat from the sorbitol and 1 from the mannitol group had foci of ischemic colonic changes. The rats receiving SPS enema, in sorbitol, normal saline, distilled water, had crystal deposition with colonic necrosis and mucosal erosion. All the rats not given SPS survived until sacrificed at 48 h whereas 11 of 13 rats that received SPS in sorbitol, normal saline or distilled water died or were clearly dying and sacrificed sooner. There was no difference between sorbitol and mannitol when given without SPS. In a surgical uremic rat model, SPS enema given alone or with sorbitol or mannitol seemed to cause colon necrosis and high mortality rate, whereas 33% sorbitol without SPS did not.
Ayoub, Isabelle; Oh, Man S.; Gupta, Raavi; McFarlane, Michael; Babinska, Anna; Salifu, Moro O.
2015-01-01
Introduction Based on a single rat study by Lillemoe et al, the consensus has been formed to implicate sorbitol rather than sodium polystyrene sulfonate (SPS) as the culprit for colon necrosis in humans treated with SPS and sorbitol. We tested the hypothesis that colon necrosis by sorbitol in the experiment was due to the high osmolality and volume of sorbitol rather than its chemical nature. Methods 26 rats underwent 5/6 nephrectomy. They were divided into 6 groups and given enema solutions under anesthesia (normal saline, 33% sorbitol, 33% mannitol, SPS in 33% sorbitol, SPS in normal saline, and SPS in distilled water). They were sacrificed after 48 hours of enema administration or earlier if they were very sick. The gross appearance of the colon was visually inspected, and then sliced colon tissues were examined under light microscopy. Results 1 rat from the sorbitol and 1 from the mannitol group had foci of ischemic colonic changes. The rats receiving SPS enema, in sorbitol, normal saline, distilled water, had crystal deposition with colonic necrosis and mucosal erosion. All the rats not given SPS survived until sacrificed at 48 h whereas 11 of 13 rats that received SPS in sorbitol, normal saline or distilled water died or were clearly dying and sacrificed sooner. There was no difference between sorbitol and mannitol when given without SPS. Conclusions In a surgical uremic rat model, SPS enema given alone or with sorbitol or mannitol seemed to cause colon necrosis and high mortality rate, whereas 33% sorbitol without SPS did not. PMID:26413782
Sánchez, O. A.; Walseth, T. F.; Snow, L. M.; Serfass, R. C.; Thompson, L. V.
2009-01-01
Sorbitol accumulation is postulated to play a role in skeletal muscle dysfunction associated with diabetes. The purpose of this study was to determine the effects of insulin and of endurance exercise on skeletal muscle sorbitol levels in streptozotocin-induced diabetic rats. Rats were assigned to one experimental group (control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary no-insulin). Diabetic rats received daily subcutaneous insulin. The exercise-trained rats ran on a treadmill (1 hour, 5X/wk, for 12 weeks). Skeletal muscle sorbitol levels were the highest in the diabetic sedentary no-insulin group. Diabetic sedentary rats receiving insulin had similar sorbitol levels to control sedentary rats. Endurance exercise did not significantly affect sorbitol levels. These results indicate that insulin treatment lowers sorbitol in skeletal muscle; therefore sorbitol accumulation is probably not related to muscle dysfunction in insulin-treated diabetic individuals. Endurance exercise did not influence intramuscular sorbitol values as strongly as insulin. PMID:20016800
Stavniichuk, Roman; Shevalye, Hanna; Hirooka, Hiroko; Nadler, Jerry L.; Obrosova, Irina G.
2012-01-01
The interactions among multiple pathogenetic mechanisms of diabetic peripheral neuropathy largely remain unexplored. Increased activity of aldose reductase, the first enzyme of the sorbitol pathway, leads to accumulation of cytosolic Ca++, essentially required for 12/15-lipoxygenase activation. The latter, in turn, causes oxidative-nitrosative stress, an important trigger of MAPK phosphorylation. This study therefore evaluated the interplay of aldose reductase, 12/15-lipoxygenase, and MAPKs in diabetic peripheral neuropathy. In experiment 1, male control and streptozotocin-diabetic mice were maintained with or without the aldose reductase inhibitor fidarestat, 16 mg kg−1 d−1, for 12 weeks. In experiment 2, male control and streptozotocin-diabetic wild-type (C57Bl6/J) and 12/15-lipoxygenase-deficient mice were used. Fidarestat treatment did not affect diabetes-induced increase in glucose concentrations, but normalized sorbitol and fructose concentrations (enzymatic spectrofluorometric assays) as well as 12(S) hydroxyeicosatetraenoic concentration (ELISA), a measure of 12/15-lipoxygenase activity, in the sciatic nerve and spinal cord. 12/15-lipoxygenase expression in these two tissues (Western blot analysis) as well as dorsal root ganglia (immunohistochemistry) was similarly elevated in untreated and fidarestat-treated diabetic mice. 12/15-lipoxygenase gene deficiency prevented diabetesassociated p38 MAPK and ERK, but not SAPK/JNK, activation in the sciatic nerve (Western blot analysis) and all three MAPK activation in the dorsal root ganglia (immunohistochemistry). In contrast, spinal cord p38 MAPK, ERK, and SAPK/JNK were similarly activated in diabetic wild-type and 12/15-lipoxygenase−/− mice. These findings identify the nature and tissue specificity of interactions among three major mechanisms of diabetic peripheral neuropathy, and suggest that combination treatments, rather than monotherapies, can sometimes be an optimal choice for its management. PMID:22285226
Ferreira, Fábio Netto; Crispim, Daisy; Canani, Luís Henrique; Gross, Jorge Luiz; dos Santos, Kátia Gonçalves
2013-10-01
Diabetic retinopathy (DR) is a common chronic complication of diabetes and remains the leading cause of blindness in working-aged people. Hyperglycemia increases glucose flux through the polyol pathway, in which aldose reductase converts glucose into intracellular sorbitol, which is subsequently converted to fructose by sorbitol dehydrogenase (SDH). The accelerated polyol pathway triggers a cascade of events leading to retinal vascular endothelial dysfunction and the eventual development of DR. Polymorphisms in the gene encoding aldose reductase have been consistently associated with DR. However, only two studies have analyzed the relationship between polymorphisms in the gene encoding SDH (SORD) and DR. In this case-control study, we investigated whether the -888G > C polymorphism (rs3759890) in the SORD gene is associated with the presence or severity of DR in 446 Caucasian-Brazilians with type 2 diabetes (241 subjects with and 205 subjects without DR). The -888G > C polymorphism was also examined in 105 healthy Caucasian blood donors, and the genotyping of this polymorphism was carried out by real-time PCR. The genotype and allele frequencies of the -888G > C polymorphism in patients with type 2 diabetes were similar to those of blood donors (G allele frequency = 0.16 in both groups of subjects). Similarly, the genotype and allele frequencies in patients with DR or the proliferative form of DR were similar to those of patients without this complication (P > 0.05 for all comparisons). Thus, our findings suggest that the -888G > C polymorphism in the SORD gene is not involved in the pathogenesis of DR in type 2 diabetes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ruggiero, Bruno; Koiwa, Hisashi; Manabe, Yuzuki; Quist, Tanya M.; Inan, Gunsu; Saccardo, Franco; Joly, Robert J.; Hasegawa, Paul M.; Bressan, Ray A.; Maggio, Albino
2004-01-01
We have identified a T-DNA insertion mutation of Arabidopsis (ecotype C24), named sto1 (salt tolerant), that results in enhanced germination on both ionic (NaCl) and nonionic (sorbitol) hyperosmotic media. sto1 plants were more tolerant in vitro than wild type to Na+ and K+ both for germination and subsequent growth but were hypersensitive to Li+. Postgermination growth of the sto1 plants on sorbitol was not improved. Analysis of the amino acid sequence revealed that STO1 encodes a 9-cis-epoxicarotenoid dioxygenase (similar to 9-cis-epoxicarotenoid dioxygenase GB:AAF26356 [Phaseolus vulgaris] and to NCED3 GB:AB020817 [Arabidopsis]), a key enzyme in the abscisic acid (ABA) biosynthetic pathway. STO1 transcript abundance was substantially reduced in mutant plants. Mutant sto1 plants were unable to accumulate ABA following a hyperosmotic stress, although their basal ABA level was only moderately altered. Either complementation of the sto1 with the native gene from the wild-type genome or supplementation of ABA to the growth medium restored the wild-type phenotype. Improved growth of sto1 mutant plants on NaCl, but not sorbitol, medium was associated with a reduction in both NaCl-induced expression of the ICK1 gene and ethylene accumulation. Osmotic adjustment of sto1 plants was substantially reduced compared to wild-type plants under conditions where sto1 plants grew faster. The sto1 mutation has revealed that reduced ABA can lead to more rapid growth during hyperionic stress by a signal pathway that apparently is at least partially independent of signals that mediate nonionic osmotic responses. PMID:15466233
NASA Astrophysics Data System (ADS)
Ghodselahi, T.; Hoornam, S.; Vesaghi, M. A.; Ranjbar, B.; Azizi, A.; Mobasheri, H.
2014-09-01
Co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target were used to prepare sensor chip of gold nanoparticles (Au NPs). Deposition conditions were optimized to reach a Localized Surface Plasmon Resonance (LSPR) sensor chip of Au NPs with particle size less than 10 nm. The RF power was set at 180 W and the initial gas pressure was set at 0.035 mbar. Transmission Electron Microscopy (TEM) images and Atomic Force Microscopy (AFM) data were used to investigate particles size and surface morphology of LSPR sensor chip. The Au and C content of the LSPR sensor chip of Au NPs was obtained from X-ray photoelectron spectroscopy (XPS). The hydrogenated amorphous carbon (a-C:H) thin film was used as intermediate material to immobilize Au NPs on the SiO2 substrate. The interaction between two types of osmolytes, i.e. sorbitol and trehalose, with Pseudomonas cepacia lipase (PCL) were detected by the prepared LSPR biosensor chip. The detection mechanism is based on LSPR spectroscopy in which the wavelength of absorption peak is sensitive to the refractive index of the environment of the Au NPs. This mechanism eliminates the use of a probe or immobilization of PCL on the Au NPs of LSPR sensor chip. The interaction between PCL and osmolytes can change refractive index of the mixture or solution. We found that unlike to trehalose, sorbitol interacts with the PCL. This interaction increases refractive index of the PCL and sorbitol mixture. Refractive index of PCL in the presence of different concentration of sorbitol was obtained by Mie theory modeling of LSPR peaks. This modeling stated that the present LSPR sensor chip has sensitivity as high as wavelength shift of 175 nm per refractive index. Moreover, the detection of such weakly interaction between bio-molecules cannot be achieved by other analysis.
Cardoso, Felipe S; Araujo-Lima, Carlos F; Aiub, Claudia A F; Felzenszwalb, Israel
2016-10-17
Sorbitol is a polyol used by the food industry as a sweetener. Women are consuming diet and light products containing sorbitol during pregnancy and in the postnatal period to prevent themselves from excessive weight gain and maintain a slim body. Although there is no evidence for the genotoxicity of sorbitol in the perinatal period, this study focused on evaluating the effects of the maternal intake of sorbitol on the biochemical and toxicological parameters of lactating Wistar rat offspring after 14days of mother-to-offspring exposure. A dose-dependent reduction of offspring length was observed. An increase in sorbitol levels determined in the milk was also observed. However, we detected an inverse relationship between the exposition dose in milk fructose and triacylglycerols concentrations. There was an increase in the plasmatic levels of ALT, AST and LDLc and a decrease in proteins, cholesterol and glucose levels in the offspring. Sorbitol exposure caused hepatocyte genotoxicity, including micronuclei induction. Maternal sorbitol intake induced myelotoxicity and myelosuppression in their offspring. The Comet assay of the blood cells detected a dose-dependent genotoxic response within the sorbitol-exposed offspring. According to our results, sorbitol is able to induce important metabolic alterations and genotoxic responses in the exposed offspring. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Suzuki, K; Yen-Chung, H; Toyota, T; Goto, Y; Hirata, Y; Okada, K
1990-05-01
This study was carried out to clarify the relationship between the slowing of motor nerve conduction velocity and nerve levels of sorbitol, fructose, glucose and myoinositol in spontaneously diabetic GK (Goto-Kakizaki) rats. The motor nerve conduction velocity in GK rats was constantly lower than in normal controls at three and nine months of age. This constant decrease in motor nerve conduction velocity in GK rats was closely related to glucose intolerance in GK rats soon after birth. Nerve levels of sorbitol, glucose and fructose in GK rats were significantly increased as compared to normal controls at nine months old, but not (except glucose) at three months old. The increase in nerve concentrations of sugars in GK rats was progressive with age. However, levels of glucose, sorbitol and fructose in normal Wistar rats remain unchanged with age. Although nerve myo-inositol levels in GK rats were lower at three and nine months than those of normal controls, a significant difference in myo-inositol levels was observed only at nine months. On the contrary, nerve myo-inositol level in normal Wistar rats did not show age-related change. These findings suggested that both enhanced polyol pathway activity and myo-inositol depletion play important roles in the reduction of motor nerve conduction velocity.
Moon, Jeongmi; Chun, Byeongjo; Song, Kyounghwan
2015-02-01
The effects of activated charcoal (AC) mixed with cathartics for gastric decontamination in the management of organophosphate (OP) poisoning remain unknown due to limited clinical evidence. This exploratory study assessed the effectiveness of premixed AC-sorbitol as a treatment for OP poisoning. This retrospective observational case study included patients who either did not receive AC-sorbitol or received a single dose of AC-sorbitol within 24 h after OP ingestion. The patients were divided into three groups: no AC-sorbitol treatment, patients who received AC-sorbitol within 1 h of OP ingestion, and patients who received AC-sorbitol more than 1 h after OP ingestion. Mortality, the development of respiratory failure, and the duration of mechanical ventilation were used as outcome measurements for effectiveness, whereas aspiration pneumonia and electrolyte imbalance were employed as safety measurements. Among 262 patients with OP poisoning, 198 were included. Of these, 133 patients did not receive AC-sorbitol, whereas 14 and 51 patients received AC-sorbitol within 1 h or more than 1 h after ingestion, respectively. The time from ingestion to hospital arrival and time from ingestion to administration of atropine and pralidoxime differed among the groups, whereas other characteristics, including age, amount ingested, and type of ingested OP, were similar among the groups. Univariate and multivariate analysis demonstrated that the administration of AC-sorbitol was not associated with outcome measures for effectiveness and did not significantly increase either aspiration pneumonia or electrolyte imbalances during hospitalization. The administration of AC-sorbitol exerted neither beneficial nor harmful effects on the outcomes of OP-poisoned patients regardless of the time from OP ingestion to administration, compared with those of patients who did not receive AC-sorbitol. However, this study enrolled a small number of patients who received AC-sorbitol; further qualified trials with a sufficient number of patients are therefore needed.
Pazhang, Mohammad; Mehrnejad, Faramarz; Pazhang, Yaghub; Falahati, Hanieh; Chaparzadeh, Nader
2016-01-01
The effect of glycerol and sorbitol on the stability of porcine pancreas trypsin was investigated in this work. Molecular dynamics simulation and thermostability results showed that trypsin has two flexible regions, and polyols (sorbitol and glycerol) stabilize the enzyme by decreasing the flexibility of these regions. Radial distribution function results exhibited that sorbitol and glycerol were excluded from the first water layer of the enzyme, therefore decrease the flexibility of the regions by preferential exclusion. Also, results showed that the stabilization effect of sorbitol is more than glycerol. This observation could be because of the larger decrease in the fluctuations of trypsin in the presence of sorbitol. We also examined the role of solvent's hydrophobicity in enzyme stabilization by sorbitol and glycerol. To do so, the thermostability of trypsin was evaluated in the presence of solvents with different hydrophobicity (methanol, ethanol, isopropanol and n-propanol) in addition to the polyols. Our results depicted that glycerol is a better stabilizer than sorbitol in the presence of hydrophobic solvents (n-propanol), whereas sorbitol is a better stabilizer than glycerol in the presence of hydrophilic solvents (methanol). © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Jain, M; Tiwary, S; Gadre, R
2018-01-01
Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.
21 CFR 862.1670 - Sorbitol dehydrogenase test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum... cirrhosis or acute hepatitis. (b) Classification. Class I (general controls). The device is exempt from the...
75 FR 39277 - Sorbitol From France; Determination
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-44 (Third Review)] Sorbitol From France... U.S.C. 1675d(c)) (the Act), that revocation of the antidumping duty order on sorbitol from France... views of the Commission are contained in USITC Publication 4164 (June 2010), entitled Sorbitol from...
Effects of sorbitol on porcine oocyte maturation and embryo development in vitro.
Lin, Tao; Zhang, Jin Yu; Diao, Yun Fei; Kang, Jung Won; Jin, Dong-Il
2015-04-01
In the present study, a porcine system was supplemented with sorbitol during in vitro maturation (IVM) or in vitro culture (IVC), and the effects of sorbitol on oocyte maturation and embryonic development following parthenogenetic activation were assessed. Porcine immature oocytes were treated with different concentrations of sorbitol during IVM, and the resultant metaphase II stage oocytes were activated and cultured in porcine zygote medium-3 (PZM-3) for 7 days. No significant difference was observed in cumulus expansion and the nuclear maturation between the control and sorbitol-treated groups, with the exception of the 100 mM group, which showed significantly decreased nuclear maturation and cumulus expansion. There was no significant difference in the intracellular reactive oxygen species (ROS) levels between oocytes matured with 10 or 20 mM sorbitol and control groups, but 50 and 100 mM groups had significantly higher ROS levels than other groups. The 20 mM group showed significant increases in intracellular glutathione and subsequent blastocyst formation rates following parthenogenetic activation compared with the other groups. During IVC, supplementation with sorbitol significantly reduced blastocyst formation and increased the apoptotic index compared with the control. The apoptotic index of blastocysts from the sorbitol-treated group for entire culture period was significantly higher than those of the partially sorbitol-exposed groups. Based on these findings, it can be concluded that the addition of a low concentration of sorbitol (20 mM) during IVM of porcine oocytes benefits subsequent blastocyst development and improves embryo quality, whereas sorbitol supplement during IVC has a negative effect on blastocyst formation.
75 FR 42380 - Revocation of Antidumping Duty Order on Sorbitol From France
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-21
... Duty Order on Sorbitol From France AGENCY: Import Administration, International Trade Administration... sunset review of the antidumping duty order on sorbitol from France. See Initiation of Five-year... the existing antidumping duty order on sorbitol from France would not be likely to lead to...
Sorbitol counteracts high hydrostatic pressure-induced denaturation of inulin fructotransferase.
Li, Yungao; Miao, Ming; Liu, Miao; Jiang, Bo; Zhang, Tao; Chen, Xiangyin
2014-09-01
Inulin fructotransferase (IFTase), a novel hydrolase for inulin, was exposed to high hydrostatic pressure (HHP) at 400 and 600 MPa for 15 min in the presence or absence of sorbitol. Sorbitol protected the enzyme against HHP-induced activity loss. The relative residual activity increased nearly 3.1- and 3.8-fold in the presence of 3 mol/L sorbitol under 400 MPa and 600 MPa for 15 min, respectively. Circular dichroism results indicated that the original chaotic unfolding conformation of the enzyme under HHP shifted toward more ordered and impact with 3 mol/L sorbitol. Fluorescence and UV spectra results suggested that sorbitol prevented partially the unfolding of the enzyme and stabilized the conformation under high pressure. These results might be attributed to the binding of sorbitol on the surface of IFTase to rearrange and strengthen intra- and intermolecular hydrogen bonds. Copyright © 2014 Elsevier B.V. All rights reserved.
Gessei, Tomoko; Arakawa, Takahiro; Kudo, Hiroyuki; Mitsubayashi, Kohji
2015-09-21
Accumulation of sorbitol in the tissue is known to cause microvascular diabetic complications. In this paper, a fiber-optic biosensor for sorbitol which is used as a biomarker of diabetic complications was developed and tested. The biosensor used a sorbitol dehydrogenase from microorganisms of the genus Flavimonas with high substrate specificity and detected the fluorescence of reduced nicotinamide adenine dinucleotide (NADH) by the enzymatic reaction. An ultraviolet light emitting diode (UV-LED) was used as the excitation light source of NADH. The fluorescence of NADH was detected using a spectrometer or a photomultiplier tube (PMT). The UV-LED and the photodetector were coupled using a Y-shaped optical fiber. In the experiment, an optical fiber probe with a sorbitol dehydrogenase immobilized membrane was placed in a cuvette filled with a phosphate buffer containing the oxidized form of nicotinamide adenine dinucleotide (NAD(+)). The changes in NADH fluorescence intensity were measured after adding a standard sorbitol solution. According to the experimental assessment, the calibration range of the sorbitol biosensor systems using a spectrometer and a PMT was 5.0-1000 μmol L(-1) and 1.0-1000 μmol L(-1), respectively. The sorbitol biosensor system using the sorbitol dehydrogenase from microorganisms of the genus Flavimonas has high selectivity and sensitivity compared with that from sheep liver. The sorbitol biosensor allows for point-of-care testing applications or daily health care tests for diabetes patients.
40 CFR 180.1262 - Sorbitol octanoate; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sorbitol octanoate; exemption from the... Exemptions From Tolerances § 180.1262 Sorbitol octanoate; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of sorbitol octanoate in or on all...
Sarmiento-Rubiano, Luz Adriana; Zúñiga, Manuel; Pérez-Martínez, Gaspar; Yebra, María Jesús
2007-01-01
A potential prebiotic action has been ascribed to sorbitol, but in vivo evidence of this remains scarce. In the present work, the effect of sorbitol was compared to that of fructo-oligosaccharides (FOS) in a rat model. Microbiota changes, particularly in lactobacilli, were analyzed on fecal, colonic and cecal samples. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons using universal primers showed that FOS and sorbitol diets exerted a strong influence upon gut microbiota patterns. When Lactobacillus group-specific primers were used, DGGE profiles revealed five DNA bands that belonged to Lactobacillus johnsonii, Lactobacillus sp. AD102, Lactobacillus intestinalis, Lactobacillus murinus and Lactobacillus reuteri. Although these species are present in all dietary groups, quantification by real-time PCR showed that sorbitol and FOS intake increased L. reuteri cell numbers, and sorbitol also contributed to maintaining the levels of Lactobacillus sp. AD102. Analysis of organic acid concentrations showed that sorbitol intake significantly increased colonic and cecal butyrate levels. Hence, sorbitol, which is widely used as a low-calorie sweetener, has the capacity, in our animal model, to modify gut microbiota activity in such a way as to possibly contribute to healthy colonic mucosa.
Chukwuma, Chika Ifeanyi; Islam, Md Shahidul
2017-04-01
Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.
Sorbitol crystallization-induced aggregation in frozen mAb formulations.
Piedmonte, Deirdre Murphy; Hair, Alison; Baker, Priti; Brych, Lejla; Nagapudi, Karthik; Lin, Hong; Cao, Wenjin; Hershenson, Susan; Ratnaswamy, Gayathri
2015-02-01
Sorbitol crystallization-induced aggregation of mAbs in the frozen state was evaluated. The effect of protein aggregation resulting from sorbitol crystallization was measured as a function of formulation variables such as protein concentration and pH. Long-term studies were performed on both IgG1 and IgG2 mAbs over the protein concentration range of 0.1-120 mg/mL. Protein aggregation was measured by size-exclusion HPLC (SE-HPLC) and further characterized by capillary-electrophoresis SDS. Sorbitol crystallization was monitored and characterized by subambient differential scanning calorimetry and X-ray diffraction. Aggregation due to sorbitol crystallization is inversely proportional to both protein concentration and formulation pH. At high protein concentrations, sorbitol crystallization was suppressed, and minimal aggregation by SE-HPLC resulted, presumably because of self-stabilization of the mAbs. The glass transition temperature (Tg ') and fragility index measurements were made to assess the influence of molecular mobility on the crystallization of sorbitol. Tg ' increased with increasing protein concentration for both mAbs. The fragility index decreased with increasing protein concentration, suggesting that it is increasingly difficult for sorbitol to crystallize at high protein concentrations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Direct catalytic production of sorbitol from waste cellulosic materials.
Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro
2017-05-01
Cotton wool, cotton textile, tissue paper and printing paper, all potential waste cellulosic materials, were directly converted to sorbitol using a Ru/CNT catalyst in the presence of H 2 and using only water as solvent, without any acids. Conversions up to 38% were attained for the raw substrates, with sorbitol yields below 10%. Ball-milling of the materials disrupted their crystallinity, allowing reaching 100% conversion of cotton wool, cotton textile and tissue paper after 4h, with sorbitol yields around 50%. Mix-milling these materials with the catalyst greatly enhanced their conversion rate, and the materials were efficiently converted to sorbitol with a yield around 50% in 2h. However, ball- and mix-milled printing paper presented a conversion of only 50% after 5h, with sorbitol yields of 7%. Amounts of sorbitol of 0.525, 0.511 and 0.559g could be obtained from 1g of cotton wool, cotton textile and tissue paper, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-04-01
... microbial oxidation of sorbitol. It also occurs naturally in other plants. Sorbose can be synthesized by the catalytic hydrogenation of glucose to D-sorbitol. The resulting sorbitol can be oxidized by Acetobacter...
Jose, Joachim; von Schwichow, Steffen
2004-04-02
Whole cell biocatalysts are attractive technological tools for the regio- and enantioselective synthesis of products, especially from substrates with several identical reactive groups. In the present study, a whole cell biocatalyst for the synthesis of rare sugars from polyalcohols was constructed. For this purpose, sorbitol dehydrogenase (SDH) from Rhodobacter sphaeroides, a member of the short-chain dehydrogenase/reductase (SDR) family, was expressed on the surface of Escherichia coli using Autodisplay. Autodisplay is an efficient surface display system for Gram-negative bacteria and is based on the autotransporter secretion pathway. Transport of SDH to the outer membrane was monitored by SDS-PAGE and Western blotting of different cell fractions. The surface exposure of the enzyme could be verified by immunofluorescence microscopy and fluorescence activated cell sorting (FACS). The activity of whole cells displaying SDH at the surface was determined in an optical test. Specific activities were found to be 12 mU per 3.3 x 10(8) cells for the conversion of D-glucitol (sorbitol) to D-fructose, 7 mU for the conversion D-galactitol to D-tagatose, and 17 mU for the conversion of L-arabitol to L-ribulose. The whole cell biocatalyst obtained by surface display of SDH could also produce D-glucitol from D-fructose (29 mU per 3.3 x 10(8) cells).
Pérez-Ramos, Adrian; Werning, Maria L.; Prieto, Alicia; Russo, Pasquale; Spano, Giuseppe; Mohedano, Mari L.; López, Paloma
2017-01-01
Pediococcus parvulus 2.6 secretes a 2-substituted (1,3)-β-D-glucan with prebiotic and immunomodulatory properties. It is synthesized by the GTF glycosyltransferase using UDP-glucose as substrate. Analysis of the P. parvulus 2.6 draft genome revealed the existence of a sorbitol utilization cluster of six genes (gutFRMCBA), whose products should be involved in sorbitol utilization and could generate substrates for UDP-glucose synthesis. Southern blot hybridization analysis showed that the cluster is located in a plasmid. Analysis of metabolic fluxes and production of the exopolysaccharide revealed that: (i) P. parvulus 2.6 is able to metabolize sorbitol, (ii) sorbitol utilization is repressed in the presence of glucose and (iii) sorbitol supports the synthesis of 2-substituted (1,3)-β-D-glucan. The sorbitol cluster encodes two putative regulators, GutR and GutM, in addition to a phosphoenolpyruvate-dependent phosphotransferase transport system and sorbitol-6-phosphate dehydrogenase. Therefore, we investigated the involvement of GutR and GutM in the expression of gutFRMCBA. The promoter-probe vector pRCR based on the mrfp gene, which encodes the fluorescence protein mCherry, was used to test the potential promoter of the cluster (Pgut) and the genes encoding the regulators. This was performed by transferring by electrotransformation the recombinant plasmids into two hosts, which metabolize sorbitol: Lactobacillus plantarum and Lactobacillus casei. Upon growth in the presence of sorbitol, but not of glucose, only the presence of Pgut was required to support expression of mrfp in L. plantarum. In L. casei the presence of sorbitol in the growth medium and the pediococcal gutR or gutR plus gutM in the genome was required for Pgut functionality. This demonstrates that: (i) Pgut is required for expression of the gut cluster, (ii) Pgut is subjected to catabolic repression in lactobacilli, (iii) GutR is an activator, and (iv) in the presence of sorbitol, trans-complementation for activation of Pgut exists in L. plantarum but not in L. casei. PMID:29259592
Gao, Zhifang; Maurousset, Laurence; Lemoine, Remi; Yoo, Sang-Dong; van Nocker, Steven; Loescher, Wayne
2003-01-01
The acyclic polyol sorbitol is a primary photosynthetic product and the principal photosynthetic transport substance in many economically important members of the family Rosaceace (e.g. almond [Prunus dulcis (P. Mill.) D.A. Webber], apple [Malus pumila P. Mill.], cherry [Prunus spp.], peach [Prunus persica L. Batsch], and pear [Pyrus communis]). To understand key steps in long-distance transport and particularly partitioning and accumulation of sorbitol in sink tissues, we have cloned two sorbitol transporter genes (PcSOT1 and PcSOT2) from sour cherry (Prunus cerasus) fruit tissues that accumulate large quantities of sorbitol. Sorbitol uptake activities and other characteristics were measured by heterologous expression of PcSOT1 and PcSOT2 in yeast (Saccharomyces cerevisiae). Both genes encode proton-dependent, sorbitol-specific transporters with similar affinities (Km sorbitol of 0.81 mm for PcSOT1 and 0.64 mm for PcSOT2). Analyses of gene expression of these transporters, however, suggest different roles during leaf and fruit development. PcSOT1 is expressed throughout fruit development, but especially when growth and sorbitol accumulation rates are highest. In leaves, PcSOT1 expression is highest in young, expanding tissues, but substantially less in mature leaves. In contrast, PcSOT2 is mainly expressed only early in fruit development and not in leaves. Compositional analyses suggest that transport mediated by PcSOT1 and PcSOT2 plays a major role in sorbitol and dry matter accumulation in sour cherry fruits. Presence of these transporters and the high fruit sorbitol concentrations suggest that there is an apoplastic step during phloem unloading and accumulation in these sink tissues. Expression of PcSOT1 in young leaves before completion of the transition from sink to source is further evidence for a role in determining sink activity. PMID:12692316
Kim, Bum-Soo; Chang, Ji-Youn; Kim, Yoon-Young; Kho, Hong-Seop
2015-07-01
To investigate whether xylitol and sorbitol affect enzymatic and candidacidal activities of lysozyme, the peroxidase system, and the glucose oxidase-mediated peroxidase system. Xylitol and sorbitol were added to hen egg-white lysozyme, bovine lactoperoxidase, glucose oxidase-mediated peroxidase, and whole saliva in solution and on hydroxyapatite surfaces. The enzymatic activities of lysozyme, peroxidase, and glucose oxidase-mediated peroxidase were determined by the turbidimetric method, the NbsSCN assay, and production of oxidized o-dianisidine, respectively. Candidacidal activities were determined by comparing colony forming units using Candida albicans ATCC strains 10231, 11006, and 18804. While xylitol and sorbitol did not affect the enzymatic activity of hen egg-white lysozyme both in solution and on hydroxyapatite surfaces, they did inhibit the enzymatic activity of salivary lysozyme significantly in solution, but not on the surfaces. Xylitol and sorbitol enhanced the enzymatic activities of both bovine lactoperoxidase and salivary peroxidase significantly in a dose-dependent manner in solution, but not on the surfaces. Sorbitol, but not xylitol, inhibited the enzymatic activity of glucose oxidase-mediated peroxidase significantly. Both xylitol and sorbitol did not affect candidacidal activities of hen egg-white lysozyme, the bovine lactoperoxidase system, or the glucose oxidase-mediated bovine lactoperoxidase system. Xylitol and sorbitol inhibited salivary lysozyme activity, but enhanced both bovine lactoperoxidase and salivary peroxidase activities significantly in solution. Xylitol and sorbitol did not augment lysozyme- and peroxidase-related candidacidal activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Janez, A; Worrall, D S; Imamura, T; Sharma, P M; Olefsky, J M
2000-09-01
Osmotic shock treatment of 3T3-L1 adipocytes causes an increase in glucose transport activity and translocation of GLUT4 protein similar to that elicited by insulin treatment. Insulin stimulation of GLUT4 translocation and glucose transport activity was completely inhibited by wortmannin, however, activation by osmotic shock was only partially blocked. Additionally, we have found that the newly identified insulin receptor substrate Gab-1 (Grb2-associated binder-1) is tyrosine-phosphorylated following sorbitol stimulation. Treatment of cells with the tyrosine kinase inhibitor genistein inhibited osmotic shock-stimulated Gab-1 phosphorylation as well as shock-induced glucose transport. Furthermore, pretreatment with the selective Src family kinase inhibitor PP2 completely inhibited the ability of sorbitol treatment to cause tyrosine phosphorylation of Gab-1. We have also shown that microinjection of anti-Gab-1 antibody inhibits osmotic shock-induced GLUT4 translocation. Furthermore, phosphorylated Gab-1 binds and activates phosphatidylinositol 3-kinase (PI3K) in response to osmotic shock. The PI3K activity associated with Gab-1 was 82% of that associated with anti-phosphotyrosine antibodies, indicating that Gab-1 is the major site for PI3K recruitment following osmotic shock stimulation. Although wortmannin only causes a partial block of osmotic shock-stimulated glucose uptake, wortmannin completely abolishes Gab-1 associated PI3K activity. This suggests that other tyrosine kinase-dependent pathways, in addition to the Gab-1-PI3K pathway, contribute to osmotic shock-mediated glucose transport. To date, Gab-1 is the first protein identified as a member of the osmotic shock signal transduction pathway.
Tiwari, Ashok K.; Kumar, D. Anand; Sweeya, Pisupati S.; Chauhan, H. Anusha; Lavanya, V.; Sireesha, K.; Pavithra, K.; Zehra, Amtul
2014-01-01
Objective: Hyperglycemia induced generation of free radicals and consequent development of oxidative stress by polyol pathway is one of the crucial mechanisms stirring up development of diabetic complications. We evaluated influence of ten vegetables’ juice on polyol pathway along with their antioxidant and antioxidative stress potentials. Materials and Methods: Aldose reductase activity was determined utilising goat lens and human erythrocytes. In goat lens, utilization of nicotinamine adenine dinucleotide phosphate (NADPH) and aldose reductase inhibition was assayed. In human erythrocytes, sorbitol formation was measured as an index of aldose reductase activity under normoglycemic and hyperglycemic conditions. Ability of juices in inhibiting oxidative damage to deoxyribose sugar and calf thymus DNA and inhibitory activity against hydrogen peroxide induced hemolysis of erythrocytes was also analysed. Phytochemical contents like total polyphenol, total flavonoid and total protein were measured to find their influence on biological activities. Results: Vegetables’ juice displayed varying degrees of inhibitory potentials in mitigating NADPH dependent catalytic activity of aldose reductase in goat lens, accumulation of sorbitol in human erythrocytes under different glucose concentrations; Fenton-reaction induced oxidative damage to deoxyribose sugar, and calf thymus DNA. Substantial variations in vegetables phytochemicals content were also noticed in this study. Conclusions: Vegetables’ juice possesses potent activities in influencing polyol pathway by various mechanisms in favour of reducing development of oxidative stress independent of their inherent antioxidative properties. Juice of ivy gourd followed by green cucumber and ridge gourd were among the most potent for they displayed strong activities on various parameters analysed in this study. These vegetables’ juice may become part of mechanism-based complementary antioxidant therapy to prevent development of diabetic complications. PMID:24991118
Tian, Huafeng; Liu, Di; Yao, Yuanyuan; Ma, Songbai; Zhang, Xing; Xiang, Aimin
2017-12-01
Poly (vinyl alcohol) (PVA) possesses wide applications as food packaging materials, but is difficult to melt process for its strong inter/intra hydrogen bonding. In this work, flexible PVA films with different content of sorbitol plasticizers were prepared by melt processing with the assistance of water. And the influence of sorbitol plasticizer content on the crystallinity, optical transparency, water-retaining capability, mechanical properties, thermal stability and oxygen and water permeability were investigated. The results indicated that sorbitol dramatically improved the melt processing ability of PVA. Sorbitol could interact with PVA to form strong hydrogen bonding interactions, which would decrease the original hydrogen bonding of the matrix, resulting in the decrease of crystallinity degrees. The glass transition, melting and crystallization peak temperatures decreased with the increase of sorbitol. All the films exhibited fine optical transparency. The water retaining capability were improved with the increase of sorbitol. Especially, an increase in elongation at break and decrease in Young's modulus and tensile strength were observed indicating good plasticizing effect of sorbitol on PVA films. In addition, the PVA films prepared in this work exhibited fine barrier properties against oxygen and water, suggesting wide application potential as packaging materials. © 2017 Institute of Food Technologists®.
Non-climacteric ripening and sorbitol homeostasis in plum fruits.
Kim, Ho-Youn; Farcuh, Macarena; Cohen, Yuval; Crisosto, Carlos; Sadka, Avi; Blumwald, Eduardo
2015-02-01
During ripening fruits undergo several physiological and biochemical modifications that influence quality-related properties, such as texture, color, aroma and taste. We studied the differences in ethylene and sugar metabolism between two genetically related Japanese plum cultivars with contrasting ripening behaviors. 'Santa Rosa' (SR) behaved as a typical climacteric fruit, while the bud sport mutant 'Sweet Miriam' (SM) displayed a non-climacteric ripening pattern. SM fruit displayed a delayed ripening that lasted 120 days longer than that of the climacteric fruit. At the full-ripe stage, both cultivars reached similar final size and weight but the non-climacteric fruits were firmer than the climacteric fruits. Fully ripe non-climacteric plum fruits, showed an accumulation of sorbitol that was 2.5 times higher than that of climacteric fruits, and the increase in sorbitol were also paralleled to an increase in sucrose catabolism. These changes were highly correlated with decreased activity and expression of NAD(+)-dependent sorbitol dehydrogenase and sorbitol oxidase and increased sorbitol-6-phosphate dehydrogenase activity, suggesting an enhanced sorbitol synthesis in non-climacteric fruits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
2009-01-01
Background The nontoxigenic V. cholerae El Tor strains ferment sorbitol faster than the toxigenic strains, hence fast-fermenting and slow-fermenting strains are defined by sorbitol fermentation test. This test has been used for more than 40 years in cholera surveillance and strain analysis in China. Understanding of the mechanisms of sorbitol metabolism of the toxigenic and nontoxigenic strains may help to explore the genome and metabolism divergence in these strains. Here we used comparative proteomic analysis to find the proteins which may be involved in such metabolic difference. Results We found the production of formate and lactic acid in the sorbitol fermentation medium of the nontoxigenic strain was earlier than of the toxigenic strain. We compared the protein expression profiles of the toxigenic strain N16961 and nontoxigenic strain JS32 cultured in sorbitol fermentation medium, by using fructose fermentation medium as the control. Seventy-three differential protein spots were found and further identified by MALDI-MS. The difference of product of fructose-specific IIA/FPR component gene and mannitol-1-P dehydrogenase, may be involved in the difference of sorbitol transportation and dehydrogenation in the sorbitol fast- and slow-fermenting strains. The difference of the relative transcription levels of pyruvate formate-lyase to pyruvate dehydrogenase between the toxigenic and nontoxigenic strains may be also responsible for the time and ability difference of formate production between these strains. Conclusion Multiple factors involved in different metabolism steps may affect the sorbitol fermentation in the toxigenic and nontoxigenic strains of V. cholerae El Tor. PMID:19589152
Wang, Zhijie; Etienne, Mathieu; Urbanova, Veronika; Kohring, Gert-Wieland; Walcarius, Alain
2013-04-01
A reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in a sol-gel carbon nanotubes-poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD(+) cofactor with DSDH in a sol-gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of D-sorbitol at 0.2 V with a sensitivity of 8.7 μA mmol(-1) L cm(-2) and a detection limit of 0.11 mmol L(-1). Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.
Yao, C K; Tan, H-L; van Langenberg, D R; Barrett, J S; Rose, R; Liels, K; Gibson, P R; Muir, J G
2014-04-01
Sorbitol and mannitol are naturally-occurring polyol isomers. Although poor absorption and induction of gastrointestinal symptoms by sorbitol are known, the properties of mannitol are poorly described. We aimed to expand data on food composition of these polyols, and to compare their absorptive capacities and symptom induction in patients with irritable bowel syndrome (IBS) and healthy individuals. Food samples were analysed for sorbitol and mannitol content. The degree of absorption measured by breath hydrogen production and gastrointestinal symptoms (visual analogue scales) was evaluated in a randomised, double-blinded, placebo-controlled study in 21 healthy and 20 IBS subjects after challenges with 10 g of sorbitol, mannitol or glucose. Certain fruits and sugar-free gum contained sorbitol, whereas mannitol content was higher in certain vegetables. Similar proportions of patients with IBS (40%) and healthy subjects (33%) completely absorbed sorbitol, although more so with IBS absorbed mannitol (80% versus 43%; P = 0.02). Breath hydrogen production was similar in both groups after lactulose but was reduced in patients with IBS after both polyols. No difference in mean (SEM) hydrogen production was found in healthy controls after sorbitol [area-under-the-curve: 2766 (591) ppm 4 h(-1) ] or mannitol [2062 (468) ppm 4 h(-1) ] but, in patients with IBS, this was greater after sorbitol [1136 (204) ppm 4 h(-1) ] than mannitol [404 (154) ppm 4 h(-1) ; P = 0.002]. Overall gastrointestinal symptoms increased significantly after both polyols in patients with IBS only, although they were independent of malabsorption of either of the polyols. Increased and discordant absorption of mannitol and sorbitol occurs in patients with IBS compared to that in healthy controls. Polyols induced gastrointestinal symptoms in patients with IBS independently of their absorptive patterns, suggesting that the dietary restriction of polyols may be efficacious. © 2013 The British Dietetic Association Ltd.
NASA Astrophysics Data System (ADS)
Khasim, Syed; Pasha, Apsar; Roy, Aashish S.; Parveen, Ameena; Badi, Nacer
2017-07-01
Poly(3,4-ethylene dioxythiophene):poly(styrenesulphonate) (PEDOT-PSS) in the recent past has emerged as one of the most fascinating conducting polymers for many device applications. The unique feature of PEDOT-PSS is its transparency in the entire visible spectrum with excellent thermal stability. The PEDOT-PSS as prepared as an aqueous dispersion has very low conductivity, and it hinders the performance of a device. In this work we report the conductivity enhancement of PEDOT-PSS thin films through secondary doping using a polar organic solvent such as sorbitol. The mechanism of conductivity enhancement was studied through various physical and chemical characterizations. The effect of sorbitol concentration on structure and transport properties of PEDOT-PSS thin films was investigated in detail. The structural and morphological modifications in PEDOT-PSS due to the addition of sorbitol was studied through Fourier transform spectroscopy, Ultra Violet-visible spectroscopy, theromogravimetric analysis, scanning electron microscopy and atomic force microscopy. The interactions resulting from conformational changes of PEDOT chains that changes from coiled to linear structure due to the sorbitol treatment significantly improves the conductivity of PEDOT-PSS films. The secondary doping of sorbitol reduces the energy barrier that facilitates the charge carrier hopping leading to enhanced conductivity. We have observed that the conductivity of PEDOT-PSS thin films was increased by two fold due to sorbitol treatment when compared to conductivity of pure PEDOT-PSS. We have carried out detailed analysis of dielectric parameters of sorbitol-treated PEDOT-PSS films and found that sorbitol treatment has a significant effect on various dielectric attributes of PEDOT-PSS films. Hence, secondary doping using sorbitol could be a useful way to effectively tailor the conductivity and dielectric properties of PEDOT-PSS thin films that can be used as flexible electrodes in optoelectronic devices.
Differentiation between Trichophyton mentagrophytes and T. rubrum by sorbitol assimilation.
Rezusta, A; Rubio, M C; Alejandre, M C
1991-01-01
Trichophyton rubrum was easily differentiated from T. mentagrophytes by its ability to assimilate sorbitol with an API 20C AUX strip. One hundred percent of 36 T. rubrum strains and none of 147 T. mentagrophytes strains assimilated sorbitol. PMID:1993760
Improved cryopreservability of stallion sperm using a sorbitol-based freezing extender.
Pojprasath, T; Lohachit, C; Techakumphu, M; Stout, T; Tharasanit, T
2011-06-01
Cryopreservation of stallion semen is often associated with poor post-thaw sperm quality. Sugars are among the important components of a freezing extender and act as non-permeating cryoprotectants. This study aimed to compare the quality of stallion sperm frozen with glucose, fructose or sorbitol-containing freezing extenders. Semen was collected from six stallions of proven fertility and cryopreserved using a freezing extender containing different types of monosaccharide sugars (glucose, fructose or sorbitol). After thawing, the semen was examined for sperm motility, viability, acrosome integrity, plasma membrane functionality and sperm longevity. The fertility of semen frozen in the presence of sorbitol was also tested by artificial insemination. Sperm quality was significantly decreased following freezing and thawing (P < 0.05). Fructose was inferior for protecting sperm during cryopreservation when compared to sorbitol and glucose (P < 0.05). Although the viability, motility and acrosome integrity of sperm cryopreserved with a glucose-containing extender did not significantly differ from sperm frozen in the sorbitol-based extender when examined at 2 and 4 h post-thaw, all of these parameters plus plasma membrane functionality were improved for sperm frozen in the sorbitol extender than in the glucose extender when examined 10 min post-thaw. Two of four mares (50%) inseminated with semen frozen with a sorbitol-containing freezing extender became pregnant. It is concluded that different sugars have different abilities to protect against cryoinjury during freezing and thawing of stallion sperm. This study demonstrated that an extender containing sorbitol as primary sugar can be used to successfully cryopreserve equine sperm; moreover, the quality of frozen-thawed sperm appeared to be better than when glucose or fructose was the principle sugar in the freezing extender. Copyright © 2011 Elsevier Inc. All rights reserved.
Riccardo Lo Bianco; Mark Rieger; Shi-Jean S. Sung
1999-01-01
Terminal portions of 'Flordaguard' peach roots (Prunus persica ((L.) Batsch) were divided into six segments and the activities of NAD+-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX), sucrose synthase (SS), soluble acid invertase (AI),...
Effect of Guar Gum with Sorbitol Coating on the Properties and Oil Absorption of French Fries.
Jia, Bo; Fan, Daming; Li, Jinwei; Duan, Zhenhua; Fan, Liuping
2017-12-13
This paper investigated the effects of guar gum with sorbitol coating on the oil absorption of French fries by combined dye oil methods, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results showed that pretreatment of blanching with calcium ions and coating with guar gum and sorbitol could significantly reduce the structural oil (STO) and penetrated surface oil (PSO) of French fries and have no negative effects on its texture and also effectively control the final moisture content ( p < 0.05). Compared with control or samples coated with guar gum (blanching with or without calcium ions), the total oil (TO) of French fries with guar gum and sorbitol reduced by 50.8%, 33.1% and 30.6%, respectively. CLSM photographs confirmed that STO significantly reduced after coating with guar gum and sorbitol, followed by PSO. In the process of frying, the coatings of guar gum or guar gum with sorbitol could effectively prevent oil from infiltrating the potato tissue, which can be seen in the SEM photographs. The barrier properties of French fries were enhanced by coating guar gum, and sorbitol was added to avoid pores and cracks. Blanching with calcium ion can significantly reduce the final moisture content of coating French fries.
Effect of Guar Gum with Sorbitol Coating on the Properties and Oil Absorption of French Fries
Jia, Bo; Fan, Daming; Li, Jinwei; Duan, Zhenhua; Fan, Liuping
2017-01-01
This paper investigated the effects of guar gum with sorbitol coating on the oil absorption of French fries by combined dye oil methods, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results showed that pretreatment of blanching with calcium ions and coating with guar gum and sorbitol could significantly reduce the structural oil (STO) and penetrated surface oil (PSO) of French fries and have no negative effects on its texture and also effectively control the final moisture content (p < 0.05). Compared with control or samples coated with guar gum (blanching with or without calcium ions), the total oil (TO) of French fries with guar gum and sorbitol reduced by 50.8%, 33.1% and 30.6%, respectively. CLSM photographs confirmed that STO significantly reduced after coating with guar gum and sorbitol, followed by PSO. In the process of frying, the coatings of guar gum or guar gum with sorbitol could effectively prevent oil from infiltrating the potato tissue, which can be seen in the SEM photographs. The barrier properties of French fries were enhanced by coating guar gum, and sorbitol was added to avoid pores and cracks. Blanching with calcium ion can significantly reduce the final moisture content of coating French fries. PMID:29236044
Ito, Akiko; Sugiura, Toshihiko; Sakamoto, Daisuke; Moriguchi, Takaya
2013-04-01
In order to elucidate which physiological event(s) are involved in the seasonal changes of carbohydrate dynamics during winter, we examined the effects of different low temperatures on the carbohydrate concentrations of Japanese pear (Pyrus pyrifolia (Burm.) Nakai). For four winter seasons, large increases in the sorbitol concentration of shoot xylem sap occurred during mid- to late December, possibly due to the endodormancy completion and low-temperature responses. When trees were kept at 15 °C from 3 November to 3 December in order to postpone the initiation and completion of chilling accumulation that would break endodormancy, sorbitol accumulation in xylem sap was always higher from trees with sufficient chilling accumulation than from trees that received insufficient chilling. However, an additional increase in xylem sap sorbitol occurred around late December in trees regardless of whether their chilling accumulation naturally progressed or was postponed. To examine different temperature effects more closely, we compared the carbohydrate concentrations of trees subjected to either 6 or 0 °C treatment. The sorbitol concentration in xylem sap tremendously increased at 0 °C treatment compared with 6 °C treatment. However, an additional increase in xylem sap sorbitol occurred at both the temperatures when sufficient chilling accumulated with a peak coinciding with the peak expression in shoots of the sorbitol transporter gene (PpSOT2). Interestingly, the total carbohydrate concentration of shoots tremendously increased with exposure to 0 °C compared with exposure to 6 °C, but was not affected by the amount of accumulated chilling. Instead, as chilling accumulated the ratio of sorbitol to total soluble sugars in shoots increased. We presumed that carbohydrates in the shoot tissues may be converted to sorbitol and loaded into the xylem sap so that the sorbitol accumulation patterns were synchronized with the progression of dormancy, whereas the total carbohydrate transported into shoots from other storage organs may be related to freezing tolerance acquisition independent of dormancy progression. We thus propose that there are different effects of dormancy progression and low-temperature responses on carbohydrate dynamics in Japanese pear.
Low Volume Resuscitation with Cell Impermeants
2013-10-01
LVR solution produced the best individual protection. Mixtures of trehalose, raffinose, gluconate, and sorbitol at a specific ratio was optimal. This... Sorbitol Gluconate Trehalose Raffinose These agents have been extensively used in organ preservation solutions so their safety and...10% 5% Sorbitol Na-Gluconate Trehalose Na-Lactobionate Raffinose PEG-8K 122 98
Muizzuddin, Neelam; Ingrassia, Michael; Marenus, Kenneth D; Maes, Daniel H; Mammone, Thomas
2013-01-01
Human skin maintains an optimal permeability barrier function in a terrestrial environment that varies considerably in humidity. Cells cultured under hyperosmotic stress accumulate osmolytes including sorbitol. Epidermal keratinocytes experience similar high osmolality under dry environmental conditions because of increased transepidermal water loss (TEWL) and concomitant drying of the skin. This study was designed to determine if epidermal keratinocytes, in vitro, could be protected from high osmotic stress, with the exogenous addition of sorbitol. In addition, we evaluated the effect of a formulation containing topical sorbitol on skin barrier and moisturization of subjects living in arid and humid regions in summer as well as in winter. Results from in vitro experiments showed that 50 mM sorbitol protected epidermal keratinocytes from osmotic toxicity induced by sodium chloride. Clinical studies indicated that skin chronically exposed to hot, dry environment appeared to exhibit stronger skin barrier and a lower baseline TEWL. In addition, skin barrier was stronger in summer than in winter. Sorbitol exhibited significant improvement in both barrier repair and moisturization, especially in individuals subjected to arid environmental conditions.
Chanapiwat, Panida; Kaeoket, Kampon; Tummaruk, Padet
2012-03-01
The present study determined the effect of different types of sugars (lactose, fructose, glucose and sorbitol) used in egg yolk-based extender on the post-thawed boar semen quality. Twenty-two ejaculates from 6 fertility-proven Yorkshire boars were cryopreserved by liquid nitrogen vapor method. Sperm motility, viability, acrosome integrity and intact functional plasma membrane were determined at 0, 2 and 4 hr after thawing. It was found that the lactose-based extender resulted in a higher percentage of post-thawed sperm motility, viability, intact acrosome and functional plasma membrane than sorbitol-based extender (P<0.05) and fructose-based extender yielded a higher post-thawed sperm motility and viability than sorbitol-based extender (P<0.05). It could be concluded that sorbitol was not an effective sugar for the cryopreservation in boar semen.
Pommerrenig, Benjamin; Papini-Terzi, Flavia Stal; Sauer, Norbert
2007-01-01
Several plant families generate polyols, the reduced form of monosaccharides, as one of their primary photosynthetic products. Together with sucrose (Suc) or raffinose, these polyols are used for long-distance allocation of photosynthetically fixed carbon in the phloem. Many species from these families accumulate these polyols under salt or drought stress, and the underlying regulation of polyol biosynthetic or oxidizing enzymes has been studied in detail. Here, we present results on the differential regulation of genes that encode transport proteins involved in phloem loading with sorbitol and Suc under salt stress. In the Suc- and sorbitol-translocating species Plantago major, the mRNA levels of the vascular sorbitol transporters PmPLT1 and PmPLT2 are rapidly up-regulated in response to salt treatment. In contrast, mRNA levels for the phloem Suc transporter PmSUC2 stay constant during the initial phase of salt treatment and are down-regulated after 24 h of salt stress. This adaptation in phloem loading is paralleled by a down-regulation of mRNA levels for a predicted sorbitol dehydrogenase (PmSDH1) in the entire leaf and of mRNA levels for a predicted Suc phosphate synthase (PmSPS1) in the vasculature. Analyses of Suc and sorbitol concentrations in leaves, in enriched vascular tissue, and in phloem exudates of detached leaves revealed an accumulation of sorbitol and, to a lesser extent, of Suc within the leaves of salt-stressed plants, a reduced rate of phloem sap exudation after NaCl treatment, and an increased sorbitol-to-Suc ratio within the phloem sap. Thus, the up-regulation of PmPLT1 and PmPLT2 expression upon salt stress results in a preferred loading of sorbitol into the phloem of P. major. PMID:17434995
The effect of glicerol and sorbitol plasticizers toward disintegration time of phyto-capsules
NASA Astrophysics Data System (ADS)
Pudjiastuti, Pratiwi; Hendradi, Esti; Wafiroh, Siti; Harsini, Muji; Darmokoesoemo, Handoko
2016-03-01
The aim of research is determining the effect of glycerol and sorbitol toward the disintegration time of phyto-capsules, originated capsules from plant polysaccharides. Phyto-capsules were made from polysaccharides and 0.5% (v/v) of glycerol and sorbitol of each. The seven capsules of each were determined the disintegration time using Erweka disintegrator. The mean of disintegration time of phyto-capsules without plasticizers, with glycerol and sorbitol were 25'30"; 45'15" and 35'30" respectively. The color and colorless gelatin capsules showed the mean of disintegration time 7'30" and 2'35" respectively.
Ileocolic perforation secondary to sodium polystyrene sulfonate in sorbitol use: A case report
Trottier, Vincent; Drolet, Sébastien; Morcos, Mohib W
2009-01-01
Hyperkalemia is a common condition encountered in medical and surgical patients. It can lead to various complications including cardiac arrhythmias. Sodium polystyrene sulfonate (SPS) in sorbitol is an ion-exchange resin that can be used to treat hyperkalemia. It can be used in enema or in oral form. The present article describes the case of an intensive care unit patient who experienced severe, diffuse, intestinal perforation induced by the use of SPS-sorbitol, requiring multiple laparotomies, followed by a brief review of the relevant literature and recommendations regarding the use of SPS-sorbitol. PMID:19826644
Kim, Tae-Su; Patel, Sanjay K. S.; Selvaraj, Chandrabose; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul
2016-01-01
A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s−1 toward L-sorbitol, respectively. The enzyme exhibited high preference for NADP+ (vs. only 2.5% relative activity with NAD+). GoSLDH sequencing, structure analyses, and biochemical studies, suggested that it belongs to the NADP+-dependent polyol-specific long-chain sorbitol dehydrogenase family. GoSLDH is the first fully characterized SLDH to date, and it is distinguished from other L-sorbose-producing enzymes by its high activity and substrate specificity. Isothermal titration calorimetry showed that the protein binds more strongly to D-sorbitol than other L-sorbose-producing enzymes, and substrate docking analysis confirmed a higher turnover rate. The high oxidation potential of GoSLDH for D-sorbitol was confirmed by cyclovoltametric analysis. Further, stability of GoSLDH significantly improved (up to 13.6-fold) after cross-linking of immobilized enzyme on silica nanoparticles and retained 62.8% residual activity after 10 cycles of reuse. Therefore, immobilized GoSLDH may be useful for L-sorbose production from D-sorbitol. PMID:27633501
NASA Astrophysics Data System (ADS)
Shaikh, Shoyebmohamad F.; Mane, Rajaram S.; Min, Byoung Koun; Hwang, Yun Jeong; Joo, Oh-Shim
2016-02-01
Using a simple hydrothermal synthesis, the crystal structure of TiO2 nanoparticles was controlled from rutile to anatase using a sugar alcohol, D-sorbitol. Adding small amounts of D-sorbitol to an aqueous TiCl4 solution resulted in changes in the crystal phase, particle size, and surface area by affecting the hydrolysis rate of TiCl4. These changes led to improvements of the solar-to-electrical power conversion efficiency (η) of dye-sensitized solar cells (DSSC) fabricated using these nanoparticles. A postulated reaction mechanism concerning the role of D-sorbitol in the formation of rutile and anatase was proposed. Fourier-transform infrared spectroscopy, 13C NMR spectroscopy, and dynamic light scattering analyses were used to better understand the interaction between the Ti precursor and D-sorbitol. The crystal phase and size of the synthesized TiO2 nanocrystallites as well as photovoltaic performance of the DSSC were examined using X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, and photocurrent density-applied voltage spectroscopy measurement techniques. The DSSC fabricated using the anatase TiO2 nanoparticles synthesized in the presence of D-sorbitol, exhibited an enhanced η (6%, 1.5-fold improvement) compared with the device fabricated using the rutile TiO2 synthesized without D-sorbitol.
Kim, Tae-Su; Patel, Sanjay K S; Selvaraj, Chandrabose; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul
2016-09-16
A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s(-1) toward L-sorbitol, respectively. The enzyme exhibited high preference for NADP(+) (vs. only 2.5% relative activity with NAD(+)). GoSLDH sequencing, structure analyses, and biochemical studies, suggested that it belongs to the NADP(+)-dependent polyol-specific long-chain sorbitol dehydrogenase family. GoSLDH is the first fully characterized SLDH to date, and it is distinguished from other L-sorbose-producing enzymes by its high activity and substrate specificity. Isothermal titration calorimetry showed that the protein binds more strongly to D-sorbitol than other L-sorbose-producing enzymes, and substrate docking analysis confirmed a higher turnover rate. The high oxidation potential of GoSLDH for D-sorbitol was confirmed by cyclovoltametric analysis. Further, stability of GoSLDH significantly improved (up to 13.6-fold) after cross-linking of immobilized enzyme on silica nanoparticles and retained 62.8% residual activity after 10 cycles of reuse. Therefore, immobilized GoSLDH may be useful for L-sorbose production from D-sorbitol.
Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J.
2008-01-01
Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTSGut). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIBGat domain) and a mannitol/fructose-specific EIIA-like domain (EIIAMtl domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBCGut negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710
Physicochemical, mechanical and thermal properties of chitosan films with and without sorbitol.
Liu, Mei; Zhou, Yibin; Zhang, Yang; Yu, Chen; Cao, Shengnan
2014-09-01
The effect of sorbitol on the physicochemical, mechanical and thermal properties of chitosan films with different degrees of deacetylation (DD; i.e., DD85% and DD95%) was investigated. The thickness, moisture content (MC), water solubility (WS) and water-vapor permeability (WVP) of the films were evaluated. Sorbitol addition reduced MC, increased WS and significantly (p<0.01) reduced WVP of both film types. DD95% films had lower MC and WVP, and higher WS than DD85% films. Static (thermomechanical analysis) and dynamic (dynamic mechanical analysis) tests indicated that sorbitol increased the strain and decreased stress for both DD films, but DD95% could sustain higher strain and DD85% could sustain higher stress. Thermogravimetrics analysis and differential scanning calorimetry showed that sorbitol elicited a lower degradation temperature for both films, and that DD95% films exhibited higher thermal stability than DD85% films. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach
Riccardo Lo Bianco; Mark Rieger; Shi-Jean S. Sung
2000-01-01
In peach (Prunus persica [L.] Batsch.), sorbitol and sucrose are the two main forms of photosynthetic and translocated carbon and may have different functions depending on the organ of utilization and its developmental stage. The role and interaction of sorbitol and sucrose metabolism was studied in mature leaves (source) and shoot tips (sinks) of...
USDA-ARS?s Scientific Manuscript database
L-aspartic acid was thermally polymerized in the presence of D-sorbitol with the goal of synthesizing new, higher molecular weight water soluble and absorbent copolymers. No reaction occurred when aspartic acid alone was heated at 170 or 200 degrees C. In contrast, heating sorbitol and aspartic ac...
Cerrud-Rodriguez, Roberto Christian; Alcaraz-Alvarez, Diego; Chiong, Brian Bobby; Ahmed, Abdurhman
2017-11-09
We present the case report of an 80-year-old woman with chronic kidney disease stage G5 admitted to the hospital with fluid overload and hyperkalaemia. Sodium polystyrene sulfonate (SPS, Kayexalate) in sorbitol suspension was given orally to treat her hyperkalaemia, which precipitated an episode of SPS in sorbitol-induced ischaemic colitis with the subsequent complication of vancomycin-resistant Enterococcus (VRE) bacteraemia. SPS (Kayexalate) in sorbitol suspension has been implicated in the development of intestinal necrosis. Sorbitol, which is added as a cathartic agent to decrease the chance of faecal impaction, may be primarily responsible through several proposed mechanisms. The gold standard of diagnosis is the presence of SPS crystals in the colon biopsy. On a MEDLINE search, no previous reports of a VRE bacteraemia as a complication of biopsy-confirmed SPS in sorbitol ischaemic colitis were found. To the best of our knowledge, ours would be the first such case ever reported. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
The Interaction of Sorbitol with Caffeine in Aqueous Solution
Tavagnacco, Letizia; Brady, John W.; Cesàro, Attilio
2013-01-01
Molecular dynamics simulations were carried out on a system of caffeine interacting with the sugar alcohol sorbitol. The system examined had a caffeine concentration 0.083 m and a sugar concentration 1.08 m. The trajectories of all molecules in the system were collected over a period of 80 ns and analyzed to determine whether there is any tendency for sorbitol to bind to caffeine, and if so, by what mechanism. The results show that the sorbitol molecules have an affinity for the caffeine molecules and that the binding occurred by the interaction of the aliphatic hydrophobic protons of the sugar with the caffeine face. This intermolecular association via face-to-face stacking, as suggested by simulation studies, is similar to that found for sucrose and for D-glucose, which overwhelmingly exists in the pyranose ring chair form in aqueous solution, as well as for caffeine-caffeine association. The sorbitol molecules, however, exist as relatively extended chains and are, therefore, topologically quite different from the sugars sucrose and glucose. The comparison of the average conformation of sorbitol molecules bound to caffeine with that of molecules in the free state shows a substantial similarity. PMID:24000279
The Interaction of Sorbitol with Caffeine in Aqueous Solution.
Tavagnacco, Letizia; Brady, John W; Cesàro, Attilio
2013-09-01
Molecular dynamics simulations were carried out on a system of caffeine interacting with the sugar alcohol sorbitol. The system examined had a caffeine concentration 0.083 m and a sugar concentration 1.08 m. The trajectories of all molecules in the system were collected over a period of 80 ns and analyzed to determine whether there is any tendency for sorbitol to bind to caffeine, and if so, by what mechanism. The results show that the sorbitol molecules have an affinity for the caffeine molecules and that the binding occurred by the interaction of the aliphatic hydrophobic protons of the sugar with the caffeine face. This intermolecular association via face-to-face stacking, as suggested by simulation studies, is similar to that found for sucrose and for D-glucose, which overwhelmingly exists in the pyranose ring chair form in aqueous solution, as well as for caffeine-caffeine association. The sorbitol molecules, however, exist as relatively extended chains and are, therefore, topologically quite different from the sugars sucrose and glucose. The comparison of the average conformation of sorbitol molecules bound to caffeine with that of molecules in the free state shows a substantial similarity.
Sola-Carvajal, Agustín; García-García, María Inmaculada; Sánchez-Carrón, Guiomar; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro
2012-11-01
Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with over 60,000 non-redundant sequences in the database, many of which need a correct functional assignment. Among them, the gene AAC16202.1 (NCBI) from Rhodobacter capsulatus SB1003 has been assigned in Uniprot both as a sorbitol dehydrogenase (#D5AUY1) and, as an N-acetyl-d-mannosamine dehydrogenase (#O66112), both enzymes being of biotechnological interest. When the gene was overexpressed in Escherichia coli Rosetta (DE3)pLys, the purified enzyme was not active toward N-acetyl-d-mannosamine, whereas it was active toward d-sorbitol and d-fructose. However, the relative activities toward xylitol and l-iditol (0.45 and 6.9%, respectively) were low compared with that toward d-sorbitol. Thus, the enzyme could be considered sorbitol dehydrogenase (SDH) with very low activity toward xylitol, which could increase its biotechnological interest for determining sorbitol without the unspecific cross-determination of added xylitol in food and pharma compositions. The tetrameric enzyme (120 kDa) showed similar catalytic efficiency (2.2 × 10(3) M(-1) s(-1)) to other sorbitol dehydrogenases for d-sorbitol, with an optimum pH of 9.0 and an optimum temperature of 37 °C. The enzyme was also more thermostable than other reported SDH, ammonium sulfate being the best stabilizer in this respect, increasing the melting temperature (T(m)) up to 52.9 °C. The enzyme can also be considered as a new member of the Zn(2+) independent SDH family since no effect on activity was detected in the presence of divalent cations or chelating agents. Finally, its in silico analysis enabled the specific conserved sequence blocks that are the fingerprints of bacterial sorbitol dehydrogenases and mainly located at C-terminal of the protein, to be determined for the first time. This knowledge will facilitate future data curation of present databases and a better functional assignment of newly described sequences. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
An, Kehong; Hu, Fengxian; Bao, Jie
2013-12-01
A new bioprocess for production of sorbitol and gluconic acid from two low-cost feedstocks, inulin and cassava starch, using a commercially available enzyme was proposed in this study. The commercial glucoamylase GA-L NEW from Genencor was found to demonstrate a high inulinase activity for hydrolysis of inulin into fructose and glucose. The glucoamylase was used to replace the expensive and not commercially available inulinase enzyme for simultaneous saccharification of inulin and starch into high titer glucose and fructose hydrolysate. The glucose and fructose in the hydrolysate were converted into sorbitol and gluconic acid using immobilized whole cells of the recombinant Zymomonas mobilis strain. The high gluconic acid concentration of 193 g/L and sorbitol concentration of 180 g/L with the overall yield of 97.3 % were obtained in the batch operations. The present study provided a practical production method of sorbitol and gluconic acid from low cost feedstocks and enzymes.
Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro
2017-11-01
Sorbitol and xylitol yields can be improved by converting cellulose and xylan simultaneously, due to a synergetic effect between both substrates. Furthermore, both yields can be greatly enhanced by simply adjusting the reaction conditions regarding the optimum for the production of each product, since xylitol (from xylan) and sorbitol (from cellulose) yields are maximized when the reaction is carried out at 170 and 205°C, respectively. Therefore, the combination of a simultaneous conversion of cellulose and xylan with a two-step temperature approach, which consists in the variation of the reaction temperature from 170 to 205°C after 2h, showed to be a good strategy for maximizing the production of sorbitol and xylitol directly from mixture of cellulose and xylan. Using this new and environmentally friendly approach, yields of sorbitol and xylitol of 75 and 77%, respectively, were obtained after 6h of reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.
2011-05-01
inhibitor staurospor- ine and increased hyperosmolar stress ( sorbitol ). MTS assays assess cell viability over a relatively short term and thus are not...doses of etoposide, MS-275, oxamflatin, doxorubicin, MG132, UV, temozolomide, 5-FU, staurosporine or sorbitol as indicated followed by MTT assay to...Meeting, PA), 5-Fluorouracil (5-FU), Doxorubicin Hydro- chloride, Etoposide, Oxamflatin, Temozolomide, Sorbitol , MS- 275, and Staurosporine (Sigma, St
Physicochemical properties of sugar palm starch film: Effect of concentration and plasticizer type
NASA Astrophysics Data System (ADS)
Prasetyo, D. J.; Apriyana, W.; Jatmiko, T. H.; Hernawan; Hayati, S. N.; Rosyida, V. T.; Pranoto, Y.; Poeloengasih, C. D.
2017-07-01
In order to find the best formula for capsule shell production, this present work dealt with exploring physicochemical properties of sugar palm (Arenga pinnata) starch film as a function of different kinds and various concentrations of plasticizers. The films were prepared by casting method at different formula: starch 9-11%, glycerol or sorbitol 35-45% and polyethylene-glycol 400 (PEG 400) 5-9%. Appearance, thickness, retraction ratio, moisture content, swelling behavior and solubility of the film in water were analyzed. Both glycerol and sorbitol are compatible with starch matrix. On the contrary, PEG 400 did not form a film with suitable characteristics. The result reveals that glycerol- and sorbitol-plasticized films appeared translucent, homogenous, smooth and slightly brown in all formulas. Different type and concentration of plasticizers altered the physicochemical of film in different ways. The sorbitol-plasticized film had lower moisture content (≤ 10%) than that of glycerol-plasticized film (≥ 18%). In contrast, film plasticized with sorbitol showed higher solubility in water (28-35%) than glycerol-plasticized film (22-28%). As the concentration of both plasticizers increased, there was an increasing tendency on thickness and solubility in water. Conversely, retraction ratio and swelling degree decreased when both plasticizers concentration increased. In conclusion, the sorbitol-plasticized film showed a potency to be developed as hard capsule material.
Water in a Soft Confinement: Structure of Water in Amorphous Sorbitol.
Shalaev, Evgenyi; Soper, Alan K
2016-07-28
The structure of water in 70 wt % sorbitol-30 wt % water mixture is investigated by wide-angle neutron scattering (WANS) as a function of temperature. WANS data are analyzed using empirical potential structure refinement to obtain the site-site radial distribution functions (RDFs). Orientational structure of water is represented using OW-OW-OW triangles distributions and a tetrahedrality parameter, q, while water-water correlation function is used to estimate size of water clusters. Water structure in the sorbitol matrix is compared with that of water confined in nanopores of MCM41. The results indicate the existence of voids in the sorbitol matrix with the length scale of approximately 5 Å, which are filled by water. At 298 K, positional water structure in these voids is similar to that of water in MCM41, whereas there is a difference in the tetrahedral (orientational) arrangement. Cooling to 213 K strengthens tetrahedrality, with the orientational order of water in sorbitol becoming similar to that of confined water in MCM41 at 210 K, whereas further cooling to 100 K does not introduce any additional changes in the tetrahedrality. The results obtained allow us to propose, for the first time, that such confinement of water in a sorbitol matrix is the main reason for the lack of ice formation in this system.
Wu, Ting; Wang, Yi; Zheng, Yi; Fei, Zhangjun; Dandekar, Abhaya M; Xu, Kenong; Han, Zhenhai; Cheng, Lailiang
2015-09-01
Sorbitol is a major product of photosynthesis in apple (Malus domestica) that is involved in carbohydrate metabolism and stress tolerance. However, little is known about how the global transcript levels in apple leaves respond to decreased sorbitol synthesis. In this study we used RNA sequencing (RNA-seq) profiling to characterize the transcriptome of leaves from transgenic lines of the apple cultivar 'Greensleeves' exhibiting suppressed expression of aldose-6-phosphate reductase (A6PR) to gain insights into sorbitol function and the consequences of decreased sorbitol synthesis on gene expression. We observed that, although the leaves of the low sorbitol transgenic lines accumulate higher levels of various primary metabolites, only very limited changes were found in the levels of transcripts associated with primary metabolism. We suggest that this is indicative of post-transcriptional and/or post-translational regulation of primary metabolite accumulation and central carbon metabolism. However, we identified significantly enriched gene ontology terms belonging to the 'stress related process' category in the antisense lines (P-value < 0.05). These include genes involved in the synthesis/degradation of abscisic acid, salicylic acid and jasmonic acid, nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance genes and ATP-binding cassette (ABC) transporter genes. This suggests that sorbitol plays a role in the responses of apple trees to abiotic and biotic stresses. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Chromatin-associated regulation of sorbitol synthesis in flower buds of peach.
Lloret, Alba; Martínez-Fuentes, Amparo; Agustí, Manuel; Badenes, María Luisa; Ríos, Gabino
2017-11-01
PpeS6PDH gene is postulated to mediate sorbitol synthesis in flower buds of peach concomitantly with specific chromatin modifications. Perennial plants have evolved an adaptive mechanism involving protection of meristems within specialized structures named buds in order to survive low temperatures and water deprivation during winter. A seasonal period of dormancy further improves tolerance of buds to environmental stresses through specific mechanisms poorly known at the molecular level. We have shown that peach PpeS6PDH gene is down-regulated in flower buds after dormancy release, concomitantly with changes in the methylation level at specific lysine residues of histone H3 (H3K27 and H3K4) in the chromatin around the translation start site of the gene. PpeS6PDH encodes a NADPH-dependent sorbitol-6-phosphate dehydrogenase, the key enzyme for biosynthesis of sorbitol. Consistently, sorbitol accumulates in dormant buds showing higher PpeS6PDH expression. Moreover, PpeS6PDH gene expression is affected by cold and water deficit stress. Particularly, its expression is up-regulated by low temperature in buds and leaves, whereas desiccation treatment induces PpeS6PDH in buds and represses the gene in leaves. These data reveal the concurrent participation of chromatin modification mechanisms, transcriptional regulation of PpeS6PDH and sorbitol accumulation in flower buds of peach. In addition to its role as a major translocatable photosynthate in Rosaceae species, sorbitol is a widespread compatible solute and cryoprotectant, which suggests its participation in tolerance to environmental stresses in flower buds of peach.
Luo, Jiaquan; Huang, Lu; Chen, Zhuo; Zeng, Zhaoxun; Miyamoto, Takeshi; Wu, Hao; Zhang, Zhongzu; Pan, Zhimin; Fujita, Nobuyuki; Hikata, Tomohiro; Iwanami, Akio; Tsuji, Takashi; Ishii, Ken; Nakamura, Masaya; Matsumoto, Morio; Watanabe, Kota; Cao, Kai
2017-05-01
The pathomechanism of the ligamentum flavum (LF) hypertrophy in diabetic patients with lumbar spinal canal stenosis (LSCS) remains unclear. A cross-sectional study was undertaken to investigate the mechanism of LF hypertrophy in these patients. Twenty-four diabetic and 20 normoglycemic patients with LSCS were enrolled in the study. The structure of the LF in the study subjects was evaluated using histological and immunohistochemical methods, and the levels of sorbitol, pro-inflammatory cytokines, and the fibrogenic factor, TGF-β1, in the LF were analyzed. In vitro experiments were performed using NIH3T3 fibroblasts to evaluate the effect of high-glucose conditions and an aldose reductase inhibitor on the cellular production of sorbitol, pro-inflammatory factors, and TGF-β1. We found that the LF of diabetic patients exhibited significantly higher levels of sorbitol and pro-inflammatory cytokines, TGF-β1 and of CD68-positive staining than that of the normoglycemic subjects. The diabetic LF was significantly thicker than that of the controls, and showed evidence of degeneration. The high glucose-cultured fibroblasts exhibited significantly higher levels of sorbitol, pro-inflammatory factors, and TGF-β1 compared to the low glucose-cultured cells, and these levels were dose-dependently reduced by treatment with the aldose reductase inhibitor. Taken together, our data suggests that increased sorbitol levels in the LF of diabetic patients results in increased production of pro-inflammatory and fibrogenic factor, which contribute to LF hypertrophy, and could increase the susceptibility of diabetic patients to LSCS. Furthermore, aldose reductase inhibition effectively reduced the levels of sorbitol and sorbitol-induced pro-inflammatory factor expression in high glucose-cultured fibroblasts. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1058-1066, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Molecular basis for competitive solvation of the Burkholderia cepacia lipase by sorbitol and urea.
Oliveira, Ivan P; Martínez, Leandro
2016-08-21
Increasing the stability of proteins is important for their application in industrial processes. In the intracellular environment many small molecules, called osmolytes, contribute to protein stabilization under physical or chemical stress. Understanding the nature of the interactions of these osmolytes with proteins can help the design of solvents and mutations to increase protein stability in extracellular media. One of the most common stabilizing osmolyes is sorbitol and one of the most common chemical denaturants is urea. In this work, we use molecular dynamics simulations to obtain a detailed picture of the solvation of the Burkholderia cepacia lipase (BCL) in the presence of the protecting osmolyte sorbitol and of the urea denaturant. We show that both sorbitol and urea compete with water for interactions with the protein surface. Overall, sorbitol promotes the organization of water in the first solvation shell and displaces water from the second solvation shell, while urea causes opposite effects. These effects are, however, highly heterogeneous among residue types. For instance, the depletion of water from the first protein solvation shell by urea can be traced down essentially to the side chain of negatively charged residues. The organization of water in the first solvation shell promoted by sorbitol occurs at polar (but not charged) residues, where the urea effect is minor. By contrast, sorbitol depletes water from the second solvation shell of polar residues, while urea promotes water organization at the same distances. The interactions of urea with negatively charged residues are insensitive to the presence of sorbitol. This osmolyte removes water and urea particularly from the second solvation shell of polar and non-polar residues. In summary, we provide a comprehensive description of the diversity of protein-solvent interactions, which can guide further investigations on the stability of proteins in non-conventional media, and assist solvent and protein design.
Polyamines and plant stress - Activation of putrescine biosynthesis by osmotic shock
NASA Technical Reports Server (NTRS)
Flores, H. E.; Galston, A. W.
1982-01-01
The putrescine content of oat leaf cells and protoplasts increases up to 60-fold within 6 hours of exposure to osmotic stress (0.4 to 0.6 molar sorbitol). Barley, corn, wheat, and wild oat leaves show a similar response. Increased arginine decarboxylase activity parallels the rise in putrescine, whereas ornithine decarboxylase remains unchanged. DL-alpha-Difluoromethylarginine, a specific irreversible inhibitor of arginine decarboxylase, prevents the stress-induced rise in increase in arginine decarboxylase activity and putrescine synthesis, indicating the preferential activation of this pathway.
Low Water Activity Packaged White Bread.
1985-12-31
this method is different in quality from the normal white pan bread. It has been well recognized that water activity is a key factor in controlling ...important in controlling microbial growth. The purpose of this project was to develop a shelf-stable white pan bread in a flexible pouch by utilizing...coded and randomized in order of presentation. Each judge was presented five samples: control , 5% sorbitol, 20% sorbitol, 8% glycerol, and 10% sorbitol-5
Comparison of 3% sorbitol vs psyllium fibre as oral contrast agents in MR enterography.
Saini, Sidharth; Colak, Errol; Anthwal, Shalini; Vlachou, Paraskevi A; Raikhlin, Antony; Kirpalani, Anish
2014-10-01
To compare the degree of small bowel distension achieved by 3% sorbitol, a high osmolarity solution, and a psyllium-based bulk fibre as oral contrast agents (OCAs) in MR enterography (MRE). This retrospective study was approved by our institutional review board. A total of 45 consecutive normal MRE examinations (sorbitol, n = 20; psyllium, n = 25) were reviewed. The patients received either 1.5 l of 3% sorbitol or 2 l of 1.6 g kg(-1) psyllium prior to imaging. Quantitative small bowel distension measurements were taken in five segments: proximal jejunum, distal jejunum, proximal ileum, distal ileum and terminal ileum by two independent radiologists. Distension in these five segments was also qualitatively graded from 0 (very poor) to 4 (excellent) by two additional independent radiologists. Statistical analysis comparing the groups and assessing agreement included intraclass coefficients, Student's t-test and Mann-Whitney U-test. Small bowel distension was not significantly different in any of the five small bowel segments between the use of sorbitol and psyllium as OCAs in both the qualitative (p = 0.338-0.908) and quantitative assessments (p = 0.083-0.856). The mean bowel distension achieved was 20.1 ± 2.2 mm for sorbitol and 19.8 ± 2.5 mm for psyllium (p = 0.722). Visualization of the ileum was good or excellent in 65% of the examinations in both groups. Sorbitol and psyllium are not significantly different at distending the small bowel and both may be used as OCAs for MRE studies. This is the first study to directly compare the degree of distension in MRE between these two common, readily available and inexpensive OCAs.
Gao, Shan; Zheng, Zhenbing; Gu, Wenhui; Xie, Xiujun; Huan, Li; Pan, Guanghua; Wang, Guangce
2014-10-01
The photosynthetic performance of the desiccation-tolerant, intertidal macro-algae Ulva prolifera was significantly affected by sorbitol-induced osmotic stress. Our results showed that photosynthetic activity decreased significantly with increases in sorbitol concentration. Although the partial activity of both photosystem I (PS I) and photosystem II (PS II) was able to recover after 30 min of rehydration, the activity of PS II decreased more rapidly than PS I. At 4 M sorbitol concentration, the activity of PS II was almost 0 while that of PS I was still at about one third of normal levels. Following prolonged treatment with 1 and 2 M sorbitol, the activity of PS I and PS II decreased slowly, suggesting that the effects of moderate concentrations of sorbitol on PS I and PS II were gradual. Interestingly, an increase in non-photochemical quenching occurred under these conditions in response to moderate osmotic stress, whereas it declined significantly under severe osmotic stress. These results suggest that photoprotection in U. prolifera could also be induced by moderate osmotic stress. In addition, the oxidation of PS I was significantly affected by osmotic stress. P700(+) in the thalli treated with high concentrations of sorbitol could still be reduced, as PS II was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), but it could not be fully oxidized. This observation may be caused by the higher quantum yield of non-photochemical energy dissipation in PS I due to acceptor-side limitation (Y(NA)) during rehydration in seawater containing DCMU. © 2014 Scandinavian Plant Physiology Society.
NASA Astrophysics Data System (ADS)
Lubis, M.; Harahap, M. B.; Manullang, A.; Alfarodo; Ginting, M. H. S.; Sartika, M.
2017-01-01
Starch is a natural polymer that can be used for the production of bioplastics because its source is abundant, renewable and easily degraded. Jackfruit seeds can be used as raw material for bioplastics because its contains starch. The aim of this study to determine the characteristics of jackfruit seeds and determine the effect of chitosan and sorbitol on the physicochemical properties of bioplastics from jackfruit seeds. Starch is extracted from jackfruit seeds were then characterized to determine its chemical composition. In the manufacture of bioplastics starch composition jackfruit seeds - chitosan used was 7: 3, 8: 2 and 9: 1 (g/g), while the concentration of sorbitol used was 20%, 25%, 30%, 35%, and 40% by weight dry ingredients. From the analysis of jackfruit seed starch obtained water content of 6.04%, ash content of 1.08%, the starch content of 70.22%, 16.39% amylose content, amylopectin content of 53.83%, 4.68% protein content, fat content 0.54%. The best conditions of starch bioplastics jackfruit seeds obtained at a ratio of starch: chitosan (w/w) = 8: 2 and the concentration of plasticizer sorbitol 25% with tensile strength 13.524 MPa. From the results of FT-IR analysis indicated an increase for the OH group and the group NH on bioplastics due to the addition of chitosan and sorbitol. The results of mechanical tests is further supported by analysis of scanning electron microscopy (SEM) showing jackfruit seed starch has a small granule size with the size of 7.6 μm and in bioplastics with chitosan filler and plasticizer sorbitol their fracture surface is smooth and slightly hollow compared bioplastics without fillers chitosan and plasticizer sorbitol.
Aguayo, María Francisca; Ampuero, Diego; Mandujano, Patricio; Parada, Roberto; Muñoz, Rodrigo; Gallart, Marta; Altabella, Teresa; Cabrera, Ricardo; Stange, Claudia; Handford, Michael
2013-05-01
Sorbitol is converted to fructose in Rosaceae species by SORBITOL DEHYDROGENASE (SDH, EC 1.1.1.14), especially in sink organs. SDH has also been found in non-Rosaceae species and here we show that the protein encoded by At5g51970 in Arabidopsis thaliana (L.) Heynh. possesses the molecular characteristics of an SDH. Using a green fluorescent protein-tagged version and anti-SDH antisera, we determined that SDH is cytosolically localized, consistent with bioinformatic predictions. We also show that SDH is widely expressed, and that SDH protein accumulates in both source and sink organs. In the presence of NAD+, recombinant SDH exhibited greatest oxidative activity with sorbitol, ribitol and xylitol as substrates; other sugar alcohols were oxidized to a lesser extent. Under standard growth conditions, three independent sdh- mutants developed as wild-type. Nevertheless, all three exhibited reduced dry weight and primary root length compared to wild-type when grown in the presence of sorbitol. Additionally, under short-day conditions, the mutants were more resistant to dehydration stress, as shown by a reduced loss of leaf water content when watering was withheld, and a greater survival rate on re-watering. This evidence suggests that limitations in the metabolism of sugar alcohols alter the growth of Arabidopsis and its response to drought. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
... Some other medicines or foods containing lactulose or sorbitol, may cause bloating. More serious disorders that may ... from foods with high levels of fructose or sorbitol. Avoid foods that can produce gas, such as ...
Effect of plasticizer on moisture sorption isotherm of sugar palm (Arenga Pinnata) starch film
NASA Astrophysics Data System (ADS)
Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Rosyida, Vita Taufika
2016-02-01
The effect of plasticizer type (glycerol, sorbitol) and plasticizer concentrations (30, 35, 40, 45% w/w polymer) on the moisture sorption isotherm characteristics of sugar palm (Arenga pinnata) starch films were investigated. Moisture affinity of sugar palm starch films was influenced by the plasticizer type and plasticizer concentration. The affinity of the glycerol plasticized film is stronger than that of sorbitol plasticized film. Sugar palm starch film with a higher concentration of glycerol absorbs more moisture with higher initial absorption rate than that of with sorbitol. Films with higher plasticizer concentration of glycerol and sorbitol show higher equilibrium moisture contents at the given relative humidity. The moisture sorption isotherm characteristic of sugar palm starch films can be described very well with the semi empirical 4 parameter Peleg's model.
Go, Mei-Lin; Liu, Mei; Wilairat, Prapon; Rosenthal, Philip J; Saliba, Kevin J; Kirk, Kiaran
2004-09-01
A series of alkoxylated and hydroxylated chalcones previously reported to have antiplasmodial activities in vitro were investigated for their effects on the new permeation pathways induced by the malaria parasite in the host erythrocyte membrane. Of 21 compounds with good antiplasmodial activities (50% inhibitory concentrations [IC(50)s], < or = 20 microM), 8 members were found to inhibit sorbitol-induced lysis of parasitized erythrocytes to a significant extent (< or = 40% of control values) at a concentration (10 microM) that was close to their antiplasmodial IC(50)s. Qualitative structure-activity analysis suggested that activity was governed to a greater extent by a substitution on ring B than on ring A of the chalcone template. Most of the active compounds had methoxy or dimethoxy groups on ring B. Considerable variety was permitted on ring A in terms of the electron-donating or -withdrawing property. Lipophilicity did not appear to be an important determinant for activity. Although they are not exceptionally potent as inhibitors (lowest IC(50), 1.9 microM), the chalcones compare favorably with other more potent inhibitors in terms of their selective toxicities against plasmodia and their neutral character.
Beer, Barbara; Pick, André; Döring, Manuel; Lommes, Petra; Sieber, Volker
2018-07-01
Rare sugars and sugar derivatives that can be obtained from abundant sugars are of great interest to biochemical and pharmaceutical research. Here, we describe the substrate scope of a short-chain dehydrogenase/reductase from Sphingomonas species A1 (SpsADH) in the oxidation of aldonates and polyols. The resulting products are rare uronic acids and rare sugars respectively. We provide insight into the substrate recognition of SpsADH using kinetic analyses, which show that the configuration of the hydroxyl groups adjacent to the oxidized carbon is crucial for substrate recognition. Furthermore, the specificity is demonstrated by the oxidation of d-sorbitol leading to l-gulose as sole product instead of a mixture of d-glucose and l-gulose. Finally, we applied the enzyme to the synthesis of l-gulose from d-sorbitol in an in vitro system using a NADH oxidase for cofactor recycling. This study shows the usefulness of exploring the substrate scope of enzymes to find new enzymatic reaction pathways from renewable resources to value-added compounds. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
... likely to cause loose stools. Sweeteners such as sorbitol or high-fructose corn syrup can act as ... to treat Toddler’s Diarrhea 1) Avoid drinks with sorbitol or fructose. Your child should not receive more ...
Acquisition of a Circular Dichroism Spectrometer to Study Biological Molecules at Interfaces
2016-02-10
H133C double mutant) was immobilized by itself and co-immobilized with poly- sorbitol methacrylate on maleimide SAM surfaces. The purpose of this...work is to see whether the hydromimetic poly- sorbitol methacrylate can protect protein secondary structure when the co-immobilized protein-polymer...partially lost its secondary structure after the sample was exposed to air for 1 day. The co-immobilized NsfB-H360C-H133C double mutant and poly- sorbitol
Ando, Akira; Tanaka, Fumiko; Murata, Yoshinori; Takagi, Hiroshi; Shima, Jun
2006-03-01
Yeasts used in bread making are exposed to high concentrations of sucrose during sweet dough fermentation. Despite its importance, tolerance to high-sucrose stress is poorly understood at the gene level. To clarify the genes required for tolerance to high-sucrose stress, genome-wide screening was undertaken using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 273 deletions that yielded high sucrose sensitivity, approximately 20 of which were previously uncharacterized. These 273 deleted genes were classified based on their cellular function and localization of their gene products. Cross-sensitivity of the high-sucrose-sensitive mutants to high concentrations of NaCl and sorbitol was studied. Among the 273 sucrose-sensitive deletion mutants, 269 showed cross-sensitivities to sorbitol or NaCl, and four (i.e. ade5,7, ade6, ade8, and pde2) were specifically sensitive to high sucrose. The general stress response pathways via high-osmolarity glycerol and stress response element pathways and the function of the invertase in the ade mutants were similar to those in the wild-type strain. In the presence of high-sucrose stress, intracellular contents of ATP in ade mutants were at least twofold lower than that of the wild-type cells, suggesting that depletion of ATP is a factor in sensitivity to high-sucrose stress. The genes identified in this study might be important for tolerance to high-sucrose stress, and therefore should be target genes in future research into molecular modification for breeding of yeast tolerant to high-sucrose stress.
Cellulose hydrogenolysis with the use of the catalysts supported on hypercrosslinked polystyrene
NASA Astrophysics Data System (ADS)
Sulman, E. M.; Matveeva, V. G.; Manaenkov, O. V.; Filatova, A. E.; Kislitza, O. V.; Doluda, V. Yu.; Rebrov, E. V.; Sidorov, A. I.; Shimanskaya, E. I.
2016-11-01
The study presents the results of cellulose hydrolytic hydrogenation process in subcritical water in the presence of Ru-containing catalysts based on hypercrosslinked polystyrene (HPS) MN-270 and its functionalized analogues: NH2-HPS (MN-100) and SO3H-HPS (MN-500). It was shown that the replacement of the traditional support (carbon) by HPS increases the yield of the main cellulose conversion products - polyols - important intermediates for the chemical industry. The catalysts were characterized using transmission electron microscopy (TEM), high resolution TEM, and porosity measurements. Catalytic studies demonstrated that the catalyst containing 1.0% Ru and based on MN-270 is the most active. The total yield of sorbitol and mannitol was 50% on the average at 85% cellulose conversion.
21 CFR 172.842 - Sorbitan monostearate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... mixture of partial stearic and palmitic acid esters of sorbitol anhydrides, may be safely used in or on... reacting stearic acid (usually containing associated fatty acids, chiefly palmitic) with sorbitol to yield...
21 CFR 172.841 - Polydextrose.
Code of Federal Regulations, 2014 CFR
2014-04-01
...-glucose, 10 percent sorbitol, and 1 percent citric acid or of approximately 90 percent D-glucose, 10 percent sorbitol, and 0.1 percent phosphoric acid, on a weight basis. (2) Polydextrose may be partially...
Niculescu, L; Veiga-da-Cunha, M; Van Schaftingen, E
1997-01-01
In isolated hepatocytes in suspension, the effect of sorbitol but not that of fructose to increase the concentration of fructose 1-phosphate and to stimulate glucokinase was abolished by 2-hydroxymethyl-4-(4-N,N-dimethylamino-1-piperazino)-pyrimidine (SDI 158), an inhibitor of sorbitol dehydrogenase. In hepatocytes in primary culture, fructose was metabolized at approximately one-quarter of the rate of sorbitol, and was therefore much less potent than the polyol in increasing the concentration of fructose 1-phosphate and the translocation of glucokinase. In cultures, sorbitol, commercial mannitol, fructose, D-glyceraldehyde or high concentrations of glucose caused fructose 1-phosphate formation and glucokinase translocation in parallel. Commercial mannitol was contaminated by approx. 1% sorbitol, which accounted for its effects. The effects of sorbitol, fructose and elevated concentrations of glucose were partly inhibited by ethanol, glycerol and glucosamine. Mannoheptulose increased translocation without affecting fructose 1-phosphate concentration. Kinetic studies performed with recombinant human beta-cell glucokinase indicated that this sugar, in contrast with N-acetylglucosamine, binds to glucokinase competitively with the regulatory protein. All these observations indicate that translocation is promoted by agents that favour the dissociation of the glucokinase-regulatory-protein complex either by binding to the regulatory protein (fructose I-phosphate) or to glucokinase (glucose, mannoheptulose). They support the hypothesis that the regulatory protein of glucokinase acts as an anchor for this enzyme that slows down its release from digitonin-permeabilized cells. PMID:9003425
Niculescu, L; Veiga-da-Cunha, M; Van Schaftingen, E
1997-01-01
In isolated hepatocytes in suspension, the effect of sorbitol but not that of fructose to increase the concentration of fructose 1-phosphate and to stimulate glucokinase was abolished by 2-hydroxymethyl-4-(4-N,N-dimethylamino-1-piperazino)-pyrimidine (SDI 158), an inhibitor of sorbitol dehydrogenase. In hepatocytes in primary culture, fructose was metabolized at approximately one-quarter of the rate of sorbitol, and was therefore much less potent than the polyol in increasing the concentration of fructose 1-phosphate and the translocation of glucokinase. In cultures, sorbitol, commercial mannitol, fructose, D-glyceraldehyde or high concentrations of glucose caused fructose 1-phosphate formation and glucokinase translocation in parallel. Commercial mannitol was contaminated by approx. 1% sorbitol, which accounted for its effects. The effects of sorbitol, fructose and elevated concentrations of glucose were partly inhibited by ethanol, glycerol and glucosamine. Mannoheptulose increased translocation without affecting fructose 1-phosphate concentration. Kinetic studies performed with recombinant human beta-cell glucokinase indicated that this sugar, in contrast with N-acetylglucosamine, binds to glucokinase competitively with the regulatory protein. All these observations indicate that translocation is promoted by agents that favour the dissociation of the glucokinase-regulatory-protein complex either by binding to the regulatory protein (fructose I-phosphate) or to glucokinase (glucose, mannoheptulose). They support the hypothesis that the regulatory protein of glucokinase acts as an anchor for this enzyme that slows down its release from digitonin-permeabilized cells.
McDonald, Jeffrey G.; Cummins, Carolyn L.; Barkley, Robert M.; Thompson, Bonne M.; Lincoln, Holly A.
2009-01-01
Reported here is the mass spectral identification of sorbitol-based nuclear clarifying agents (NCAs) and the quantitative description of their extractability from common laboratory and household plasticware made of polypropylene. NCAs are frequently added to polypropylene to improve optical clarity, increase performance properties, and aid in the manufacturing process of this plastic. NCA addition makes polypropylene plasticware more aesthetically pleasing to the user and makes the product competitive with other plastic formulations. We show here that several NCAs are readily extracted with either ethanol or water from plastic labware during typical laboratory procedures. Observed levels ranged from a nanogram to micrograms of NCA. NCAs were also detected in extracts from plastic food storage containers; levels ranged from 1to 10 μg in two of the three brands tested. The electron ionization mass spectra for three sorbitol-based nuclear clarifying agents (1,3:2,4-bis-O-(benzylidene)sorbitol, 1,3:2,4-bis-O-(p-methylbenzylidene)sorbitol, 1,3:2,4-bis-O-(3,4-dimethylbenzylidene)sorbitol) are presented for the native and trimethylsilylderivatized compounds together with the collision-induced dissociation mass spectra; gas and liquid chromatographic data are also reported. These NCAs now join other well-known plasticizers such as phthalate esters and bisphenol A as common laboratory contaminants. While the potential toxicity of NCAs in mammalian systems is unknown, the current data provide scientists and consumers the opportunity to make more informed decisions regarding the use of polypropylene plastics. PMID:18533681
Lorenzen, Elke; Lee, Geoffrey
2013-12-01
A single-droplet acoustic levitator was used to determine the drying rate and the kinetics of inactivation of glutamate dehydrogenase in the presence of added trehalose or sorbitol. The solution was also spray dried under the same process condition of drying gas temperature on a bench-top machine. Both trehalose and sorbitol delay the point of onset of enzyme inactivation which lies after the critical point of drying. Both carbohydrates also reduce the apparent rate constant of inactivation calculated during the subsequent inactivation phase. The carbohydrates stabilise, therefore, the enzyme during droplet drying and particle formation mainly during the falling rate drying period. There is no difference between the stabilising effects of the two carbohydrates when examined as levitated single droplets. This suggests the importance of water replacement as a stabilising mechanism in the levitated droplets/particles. On spray drying, the trehalose stabilises the enzyme better than does the sorbitol at a drying gas (outlet) temperature of 60°C. This suggests glass formation with the trehalose but not the sorbitol during the very rapid drying process of small-atomised droplets in the spray dryer. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Gustini, Liliana; Lavilla, Cristina; Janssen, William W T J; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián; Koning, Cor E
2016-08-23
Renewable polyesters derived from a sugar alcohol (i.e., sorbitol) were synthesized by solvent-free polycondensation. The aim was to prepare linear polyesters with pendant hydroxyl groups along the polymer backbone. The performance of the sustainable biocatalyst SPRIN liposorb CALB [an immobilized form of Candida antarctica lipase B (CALB); SPRIN technologies] and the organo-base catalyst 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) were compared with two metal-based catalysts: dibutyl tin oxide (DBTO) and scandium trifluoromethanesulfonate [also known as scandium triflate, Sc(OTf)3 ]. For the four catalytic systems, the efficiency and selectivity for the incorporation of sorbitol were studied, mainly using (13) C and (31) P NMR spectroscopies, whereas side reactions, such as ether formation and dehydration of sorbitol, were evaluated using MALDI-TOF-MS. Especially the biocatalyst SPRIN liposorb CALB succeeded in incorporating sorbitol in a selective way without side reactions, leading to close-to-linear polyesters. By using a renewable hydroxyl-reactive curing agent based on l-lysine, transparent and glossy poly(ester urethane) networks were successfully synthesized offering a tangible example of bio-based coatings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boyd, David A.; Thevenot, Tracy; Gumbmann, Markus; Honeyman, Allen L.; Hamilton, Ian R.
2000-01-01
Transposon mutagenesis and marker rescue were used to isolate and identify an 8.5-kb contiguous region containing six open reading frames constituting the operon for the sorbitol P-enolpyruvate phosphotransferase transport system (PTS) of Streptococcus mutans LT11. The first gene, srlD, codes for sorbitol-6-phosphate dehydrogenase, followed downstream by srlR, coding for a transcriptional regulator; srlM, coding for a putative activator; and the srlA, srlE, and srlB genes, coding for the EIIC, EIIBC, and EIIA components of the sorbitol PTS, respectively. Among all sorbitol PTS operons characterized to date, the srlD gene is found after the genes coding for the EII components; thus, the location of the gene in S. mutans is unique. The SrlR protein is similar to several transcriptional regulators found in Bacillus spp. that contain PTS regulator domains (J. Stülke, M. Arnaud, G. Rapoport, and I. Martin-Verstraete, Mol. Microbiol. 28:865–874, 1998), and its gene overlaps the srlM gene by 1 bp. The arrangement of these two regulatory genes is unique, having not been reported for other bacteria. PMID:10639465
Roncal-Jimenez, Carlos A.; Lanaspa-Garcia, Miguel A.; Oppelt, Sarah A.; Kuwabara, Masanari; Jensen, Thomas; Milagres, Tamara; Andres-Hernando, Ana; Ishimoto, Takuji; Garcia, Gabriela E.; Johnson, Ginger; MacLean, Paul S.; Sanchez-Lozada, Laura-Gabriela; Tolan, Dean R.; Johnson, Richard J.
2016-01-01
Fructose stimulates vasopressin in humans and can be generated endogenously by activation of the polyol pathway with hyperosmolarity. We hypothesized that fructose metabolism in the hypothalamus might partly control vasopressin responses after acute dehydration. Wild-type and fructokinase-knockout mice were deprived of water for 24 h. The supraoptic nucleus was evaluated for vasopressin and markers of the aldose reductase-fructokinase pathway. The posterior pituitary vasopressin and serum copeptin levels were examined. Hypothalamic explants were evaluated for vasopressin secretion in response to exogenous fructose. Water restriction increased serum and urine osmolality and serum copeptin in both groups of mice, although the increase in copeptin in wild-type mice was larger than that in fructokinase-knockout mice. Water-restricted, wild-type mice showed an increase in vasopressin and aldose reductase mRNA, sorbitol, fructose and uric acid in the supraoptic nucleus. In contrast, fructokinase-knockout mice showed no change in vasopressin or aldose reductase mRNA, and no changes in sorbitol or uric acid, although fructose levels increased. With water restriction, vasopressin in the pituitary of wild-type mice was significantly less than that of fructokinase-knockout mice, indicating that fructokinase-driven vasopressin secretion overrode synthesis. Fructose increased vasopressin release in hypothalamic explants that was not observed in fructokinase-knockout mice. In situ hybridization documented fructokinase mRNA in the supraoptic nucleus, paraventricular nucleus and suprachiasmatic nucleus. Acute dehydration activates the aldose reductase-fructokinase pathway in the hypothalamus and partly drives the vasopressin response. Exogenous fructose increases vasopressin release in hypothalamic explants dependent on fructokinase. Nevertheless, circulating vasopressin is maintained and urinary concentrating is not impaired. NEW & NOTEWORTHY This study increases our understanding of the mechanisms leading to vasopressin release under conditions of water restriction (acute dehydration). Specifically, these studies suggest that the aldose reductase-fructokinase pathways may be involved in vasopressin synthesis in the hypothalamus and secretion by the pituitary in response to acute dehydration. Nevertheless, mice undergoing water restriction remain capable of maintaining sufficient vasopressin (copeptin) levels to allow normal urinary concentration. Further studies of the aldose reductase-fructokinase system in vasopressin regulation appear indicated. PMID:27852737
Song 宋志林, Zhilin; Roncal-Jimenez, Carlos A; Lanaspa-Garcia, Miguel A; Oppelt, Sarah A; Kuwabara, Masanari; Jensen, Thomas; Milagres, Tamara; Andres-Hernando, Ana; Ishimoto, Takuji; Garcia, Gabriela E; Johnson, Ginger; MacLean, Paul S; Sanchez-Lozada, Laura-Gabriela; Tolan, Dean R; Johnson, Richard J
2017-02-01
Fructose stimulates vasopressin in humans and can be generated endogenously by activation of the polyol pathway with hyperosmolarity. We hypothesized that fructose metabolism in the hypothalamus might partly control vasopressin responses after acute dehydration. Wild-type and fructokinase-knockout mice were deprived of water for 24 h. The supraoptic nucleus was evaluated for vasopressin and markers of the aldose reductase-fructokinase pathway. The posterior pituitary vasopressin and serum copeptin levels were examined. Hypothalamic explants were evaluated for vasopressin secretion in response to exogenous fructose. Water restriction increased serum and urine osmolality and serum copeptin in both groups of mice, although the increase in copeptin in wild-type mice was larger than that in fructokinase-knockout mice. Water-restricted, wild-type mice showed an increase in vasopressin and aldose reductase mRNA, sorbitol, fructose and uric acid in the supraoptic nucleus. In contrast, fructokinase-knockout mice showed no change in vasopressin or aldose reductase mRNA, and no changes in sorbitol or uric acid, although fructose levels increased. With water restriction, vasopressin in the pituitary of wild-type mice was significantly less than that of fructokinase-knockout mice, indicating that fructokinase-driven vasopressin secretion overrode synthesis. Fructose increased vasopressin release in hypothalamic explants that was not observed in fructokinase-knockout mice. In situ hybridization documented fructokinase mRNA in the supraoptic nucleus, paraventricular nucleus and suprachiasmatic nucleus. Acute dehydration activates the aldose reductase-fructokinase pathway in the hypothalamus and partly drives the vasopressin response. Exogenous fructose increases vasopressin release in hypothalamic explants dependent on fructokinase. Nevertheless, circulating vasopressin is maintained and urinary concentrating is not impaired. This study increases our understanding of the mechanisms leading to vasopressin release under conditions of water restriction (acute dehydration). Specifically, these studies suggest that the aldose reductase-fructokinase pathways may be involved in vasopressin synthesis in the hypothalamus and secretion by the pituitary in response to acute dehydration. Nevertheless, mice undergoing water restriction remain capable of maintaining sufficient vasopressin (copeptin) levels to allow normal urinary concentration. Further studies of the aldose reductase-fructokinase system in vasopressin regulation appear indicated. Copyright © 2017 the American Physiological Society.
21 CFR 172.841 - Polydextrose.
Code of Federal Regulations, 2013 CFR
2013-04-01
... consists either of approximately 89 percent D-glucose, 10 percent sorbitol, and 1 percent citric acid or of approximately 90 percent D-glucose, 10 percent sorbitol, and 0.1 percent phosphoric acid, on a weight basis. (2...
21 CFR 172.841 - Polydextrose.
Code of Federal Regulations, 2011 CFR
2011-04-01
... consists either of approximately 89 percent D-glucose, 10 percent sorbitol, and 1 percent citric acid or of approximately 90 percent D-glucose, 10 percent sorbitol, and 0.1 percent phosphoric acid, on a weight basis. (2...
21 CFR 172.841 - Polydextrose.
Code of Federal Regulations, 2012 CFR
2012-04-01
... consists either of approximately 89 percent D-glucose, 10 percent sorbitol, and 1 percent citric acid or of approximately 90 percent D-glucose, 10 percent sorbitol, and 0.1 percent phosphoric acid, on a weight basis. (2...
21 CFR 172.841 - Polydextrose.
Code of Federal Regulations, 2010 CFR
2010-04-01
... consists either of approximately 89 percent D-glucose, 10 percent sorbitol, and 1 percent citric acid or of approximately 90 percent D-glucose, 10 percent sorbitol, and 0.1 percent phosphoric acid, on a weight basis. (2...
Comparison of 3% sorbitol vs psyllium fibre as oral contrast agents in MR enterography
Saini, S; Colak, E; Anthwal, S; Vlachou, P A; Raikhlin, A
2014-01-01
Objective: To compare the degree of small bowel distension achieved by 3% sorbitol, a high osmolarity solution, and a psyllium-based bulk fibre as oral contrast agents (OCAs) in MR enterography (MRE). Methods: This retrospective study was approved by our institutional review board. A total of 45 consecutive normal MRE examinations (sorbitol, n = 20; psyllium, n = 25) were reviewed. The patients received either 1.5 l of 3% sorbitol or 2 l of 1.6 g kg−1 psyllium prior to imaging. Quantitative small bowel distension measurements were taken in five segments: proximal jejunum, distal jejunum, proximal ileum, distal ileum and terminal ileum by two independent radiologists. Distension in these five segments was also qualitatively graded from 0 (very poor) to 4 (excellent) by two additional independent radiologists. Statistical analysis comparing the groups and assessing agreement included intraclass coefficients, Student's t-test and Mann–Whitney U-test. Results: Small bowel distension was not significantly different in any of the five small bowel segments between the use of sorbitol and psyllium as OCAs in both the qualitative (p = 0.338–0.908) and quantitative assessments (p = 0.083–0.856). The mean bowel distension achieved was 20.1 ± 2.2 mm for sorbitol and 19.8 ± 2.5 mm for psyllium (p = 0.722). Visualization of the ileum was good or excellent in 65% of the examinations in both groups. Conclusion: Sorbitol and psyllium are not significantly different at distending the small bowel and both may be used as OCAs for MRE studies. Advances in knowledge: This is the first study to directly compare the degree of distension in MRE between these two common, readily available and inexpensive OCAs. PMID:25062448
Proteomic Analysis of Prostate Cancer Field Effect
2011-02-01
Homo sapiens] profilin 1 [Homo sapiens] enolase 1 [Homo sapiens] sorbitol dehydrogenase [Homo sapiens] calmodulin 1 [Homo sapiens] apolipoprotein... sorbitol dehydrogenase [Homo sapiens] solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 4 [Homo sapiens] DJ-1
21 CFR 177.1632 - Poly (phenyl-enetereph-thala-mide) resins.
Code of Federal Regulations, 2010 CFR
2010-04-01
...). Poly(oxyethylene) sorbitol monolaurate tetraoleate (CAS Reg. No. 71243-28-2). Poly(oxyethylene) sorbitol hexaoleate (CAS Reg. No. 57171-56-9). 4,4′-Butylidenebis (6-tert-butyl-m-cresol) (CAS Reg. No. 85...
Isohexide and Sorbitol-Derived, Enzymatically Synthesized Renewable Polyesters with Enhanced Tg.
Gustini, Liliana; Lavilla, Cristina; de Ilarduya, Antxon Martínez; Muñoz-Guerra, Sebastián; Koning, Cor E
2016-10-10
Sugar-based polyesters derived from sorbitol and isohexides were obtained via solvent-free enzymatic catalysis. Pendant hydroxyl groups, coming from the sorbitol units, were present along the polyester backbone, whereas the two isohexides, namely, isomannide and isoidide dimethyl ester monomers, were selected to introduce rigidity into the polyester chains. The feasibility of incorporating isomannide as a diol compared to the isoidide dimethyl ester as acyl-donor via lipase-catalyzed polycondensation was investigated. The presence of bicyclic units resulted in enhanced T g with respect to the parent sorbitol-containing polyester lacking isohexides. The different capability of the two isohexides to boost the thermal properties confirmed the more flexible character provided by the isoidide diester derivative. Solvent-borne coatings were prepared by cross-linking the sugar-based polyester polyols with polyisocyanates. The increased rigidity of the obtained sugar-based polyester polyols led to an enhancement in hardness of the resulting coatings.
Development of a promoter shutoff system in Aspergillus oryzae using a sorbitol-sensitive promoter.
Oda, Ken; Terado, Shiho; Toyoura, Rieko; Fukuda, Hisashi; Kawauchi, Moriyuki; Iwashita, Kazuhiro
2016-09-01
Promoter shutoff is a general method for analyzing essential genes, but in the fungus Aspergillus oryzae, no tightly repressed promoters have been reported. To overcome the current limitations of conditional promoters, we examined sorbitol- and galactose-responsive genes using microarrays to identify regulatable genes with only minor physiological and genetic effects. We identified two sorbitol-induced genes (designated as sorA and sorB), cloned their promoters, and built a regulated egfp and brlA expression system. Growth medium-dependent enhanced green fluorescence protein (EGFP) fluorescence and conidiation were confirmed for egfp and brlA under the control of their respective promoters. We also used this shutoff system to regulate the essential rhoA, which demonstrated the expected growth inhibition under repressed growth conditions. Our new sorbitol promoter shutoff system developed can serve as a valuable new tool for essential gene analyses of filamentous fungi.
Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Balakrishna, Nagalla; Validandi, Vakdevi; Pullakhandam, Raghu; Reddy, Geereddy Bhanuprakash
2013-05-01
Epidemiological studies have reported an association between obesity and increased incidence of ocular complications including cataract, yet the underlying biochemical and molecular mechanisms remained unclear. Previously we had demonstrated accumulation of sorbitol in the lens of obese rats (WNIN/Ob) and more so in a related strain with impaired glucose tolerance (WNIN/GR-Ob). However, only a few (15-20%) WNIN/Ob and WNIN/GR-Ob rats develop cataracts spontaneously with age. To gain further insights, we investigated the susceptibility of eye lens proteins of these obese rat strains to heat- and UV-induced aggregation in vitro, lens opacification upon glucose-mediated sorbitol accumulation ex vivo, and onset and progression of cataract was followed by galactose feeding and streptozotocin (STZ) injection. The results indicated increased susceptibility toward heat- or UV-induced aggregation of lens proteins in obese animals compared to their littermate lean controls. Further, in organ culture studies glucose-induced sorbitol accumulation was found to be higher and thus the lens opacification was faster in obese animals compared to their lean littermates. Also, the onset and progression of galactose- or STZ-induced cataractogenesis was faster in obese animals compared to lean control. These results together with our previous observations suggest that obesity status could lead to hyperaccumulation of sorbitol in eye lens, predisposing them to cataract, primarily by increasing their susceptibility to environmental and/or physiological factors. Further, intralenticular sorbitol accumulation beyond a threshold level could lead to cataract in WNIN/Ob and WNIN/GR-Ob rats. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.
75 FR 16839 - Sorbitol From France
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-44 (Third Review)] Sorbitol From France AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject review. DATES: Effective Date: Date of Commission approval. FOR FURTHER INFORMATION CONTACT: Dana Lofgren (202...
NASA Astrophysics Data System (ADS)
Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.
2014-05-01
In the oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline media, substrate inhibition was observed with both substrates, i.e., a decrease in the rate of the reaction was observed with an increase in the concentration of substrate. The substrate inhibition was attributed to the formation of stable complex between the substrate and periodate. The reactions were found to be first order in case of periodate and a positive fractional order with hydroxide ions. Arrhenius parameters were calculated for the oxidation of sorbitol and mannitol by potassium periodate in alkali media.
Structure-property relation in HPMC polymer films plasticized with Sorbitol
NASA Astrophysics Data System (ADS)
Prakash, Y.; Somashekarappa, H.; Mahadevaiah, Somashekar, R.
2013-06-01
A correlation study on physical and mechanical properties of Hydroxy propyl-methylcellulose (HPMC) polymer films plasticized with different weight ratio of Sorbitol, prepared using solution casting method, was carried out using wide angle X-ray technique and universal testing machine. It is found that the crystallanity decreases as the concentration of Sorbitol increases up to a certain concentration and there afterwards increases. Measured Physical Properties like tensile strength decreases and elongation (%) increases indicating increase in the flexibility of the films. These observations confirm the correlation between microstructal parameters and mechanical properties of films. These films are suitable for packaging food products.
Highly Extensible Programmed Biosensing Circuits with Fast Memory
2011-12-16
single-cell imaging in microfluidic environment. Yeast strain YTS2ab_1 has constitutive Hog1-eGFP production and thus upon a step function of sorbitol ...expect a sorbitol pulse to cause Hog1-NeGFP to localize to the nucleus, and the resulting Hog1-Hot1 interaction to drive nuclear fluorescence...YTS2ab_3 – W303-A background, hot1D::loxP, hog1D::loxP, HO::Hog1:Hog1-NeGFP_Hot1:Hot1-CeGFP Time = 5 min prior to Sorbitol Pulse (A) Brightfield, 63X Oil
Stereospecificity of mushroom tyrosinase immobilized on a chiral and a nonchiral support.
Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Canovas, Francisco; García-Ruiz, Pedro Antonio
2007-05-30
Mushroom tyrosinase was immobilized from an extract onto glass beads covered with the cross-linked totally cinnamoylated derivates of d-sorbitol (sorbitol cinnamate) and glycerine (glycerine cinnamate). The enzyme was immobilized onto the support by direct adsorption, and the quantity of immobilized tyrosinase was higher for sorbitol cinnamate, the support with the higher number of esterified hydroxyls per unit of monosacharide, than for glycerine cinnamate. The results obtained from the stereospecificity study of the monophenolase and diphenolase activity of immobilized mushroom tyrosinase are reported. The enantiomers L-tyrosine, DL-tyrosine, D-tyrosine, L-dopa, DL-dopa, D-dopa, L-alpha-methyldopa, DL-alpha-methyldopa, L-isoprenaline, DL-isoprenaline, L-adrenaline, DL-adrenaline, L-noradrenaline, and D-noradrenaline were assayed with tyrosinase immobilized on a chiral support (sorbitol cinnamate), whereas L-tyrosine, DL-tyrosine, D-tyrosine, L-dopa, DL-dopa, D-dopa, L-alpha-methyldopa, and DL-alpha-methyldopa were assayed with tyrosinase immobilized on a nonchiral support (glycerine cinnamate). The same Vmax(app) values for each series of enantiomers were obtained. However, the Km(app) values were different, the l isomers showing lower values than the dl isomers, whereas the highest Km(app) value was obtained with d isomers. No difference was observed in the stereospecificity of tyrosinase immobilized on a chiral (sorbitol cinnamate) or nonchiral (glycerine cinnamate) support.
NASA Astrophysics Data System (ADS)
Maulida; Siagian, M.; Tarigan, P.
2016-04-01
The production of starch based bioplastics from cassava peel reeinforced with microcrystalline cellulose using sorbitol as plasticizer were investigated. Physical properties of bioplastics were determined by density, water uptake, tensile strength and Fourier Transform Infrared Spectroscopy. Bioplastics were prepared from cassava peel starch plasticized using sorbitol with variation of 20; 25; 30% (wt/v of sorbitol to starch) reinforced with microcrystalline celllulose (MCC) Avicel PH101 fillers with range of 0 to 6% (wt/wt of MCC to starch). The results showed improvement in tensile strength with higher MCC content up to 9, 12 mpa compared to non-reinforced bioplastics. This could be mainly attributed to the strong hydrogen bonds between MCC and starch. On the contrary, the addition of MCC decreased the elongation at break, density and water uptake. Fourier Transform Infrared Spectroscopy showed the functional groups of bioplastics, which the majority of O-H groups were found at the bioplastics with reinforcing filler MCC that represented substantial hydrogen bonds. The highest tensile strength value was obtained for bioplastic with MCC content 6% and sorbitol content 20%. With good adhesion between MCC and starch the production of bioplastics could be widely used as a substitute for conventional plastics with more benefits to the environment.
Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini
2015-01-01
A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme.
Betts, S. D.; King, J.
1998-01-01
Off-pathway intermolecular interactions between partially folded polypeptide chains often compete with correct intramolecular interactions, resulting in self-association of folding intermediates into the inclusion body state. Intermediates for both productive folding and off-pathway aggregation of the parallel beta-coil tailspike trimer of phage P22 have been identified in vivo and in vitro using native gel electrophoresis in the cold. Aggregation of folding intermediates was suppressed when refolding was initiated and allowed to proceed for a short period at 0 degrees C prior to warming to 20 degrees C. Yields of refolded tailspike trimers exceeding 80% were obtained using this temperature-shift procedure, first described by Xie and Wetlaufer (1996, Protein Sci 5:517-523). We interpret this as due to stabilization of the thermolabile monomeric intermediate at the junction between productive folding and off-pathway aggregation. Partially folded monomers, a newly identified dimer, and the protrimer folding intermediates were populated in the cold. These species were electrophoretically distinguished from the multimeric intermediates populated on the aggregation pathway. The productive protrimer intermediate is disulfide bonded (Robinson AS, King J, 1997, Nat Struct Biol 4:450-455), while the multimeric aggregation intermediates are not disulfide bonded. The partially folded dimer appears to be a precursor to the disulfide-bonded protrimer. The results support a model in which the junctional partially folded monomeric intermediate acquires resistance to aggregation in the cold by folding further to a conformation that is activated for correct recognition and subunit assembly. PMID:9684883
Milk Sweetened with Xylitol: A Proof-of-Principle Caries Prevention Randomized Clinical Trial.
Chi, Donald L; Zegarra, Graciela; Vasquez Huerta, Elsa C; Castillo, Jorge L; Milgrom, Peter; Roberts, Marilyn C; Cabrera-Matta, Ailin R; Merino, Ana P
2016-09-15
To evaluate the efficacy of xylitol-sweetened milk as a caries-preventive strategy. In this nine-month prospective proof-of-principle trial, Peruvian schoolchildren were randomized to one of five different milk groups: (1) eight g of xylitol per 200 mL milk once per day; (2) four g of xylitol per 100 mL milk twice per day; (3) eight g of sorbitol per 200 mL milk once per day; (4) four g of sorbitol per 100 mL milk twice per day; or (5) eight g of sucrose per 200 mL milk once per day. The primary outcome was plaque mutans streptococci (MS) at nine months. A secondary outcome was caries incidence. We hypothesized that children in the xylitol groups would have a greater MS decline and lower caries incidence. One hundred fifty-three children were randomized in the intent-to-treat analyses. Children receiving xylitol had a greater decline in MS than children receiving sucrose (P=0.02) but were not different from children receiving sorbitol (P=0.07). Dental caries incidence for xylitol once per day or twice per day was 5.3±3.4 and 4.3±4.0 surfaces, respectively, compared to sorbitol once per day, sorbitol twice per day, or sucrose (4.1±2.8, 3.7±4.2, and 3.2±3.4 surfaces, respectively). There were no differences in caries incidence between xylitol and sucrose (rate ratio [RR] = 1.51; 95 percent confidence interval [CI] = 0.88, 2.59; P=0.13) or between xylitol and sorbitol (RR = 1.28; 95 percent CI = 0.90, 1.83; P=0.16). Xylitol-sweetened milk significantly reduced mutans streptococci levels compared to sucrose-sweetened milk, but differences in caries incidence were not detected.
Milk sweetened with xylitol: a proof-of-principle caries prevention randomized clinical trial
Chi, Donald L.; Zegarra, Graciela; Vasquez Huerta, Elsa C.; Castillo, Jorge L.; Milgrom, Peter; Roberts, Marilyn C.; Cabrera Matta, Ailin R.; Mancl, Lloyd; Merino, Ana P.
2016-01-01
Purpose To evaluate the efficacy of xylitol-sweetened milk as a caries preventive strategy. Methods In this nine-month prospective proof-of-principle trial, 153 Peruvian school children Peru were randomized to a milk group: 8g xylitol/200mL milk once/day, 4g xylitol/100mL milk twice/day, 8g sorbitol/200mL milk once/day, 4g sorbitol/100mL milk twice/day, or 8g sucrose/200mL milk once/day. The primary outcome was plaque mutans streptococci (MS) at nine-months. A secondary outcome was tooth decay incidence. We hypothesized children in the xylitol groups would have a greater MS decline and lower tooth decay incidence. Results One-hundred-thirty-five children were included in the intent-to-treat analyses. Children receiving xylitol had a greater reduction in MS than sucrose (P=0.02) but were not different from sorbitol (P=0.07). Tooth decay incidence for xylitol once/day or twice/day was 5.3±3.4 and 4.3±4.0 surfaces, respectively, compared to sorbitol once/day, sorbitol twice/day, or sucrose (4.1±2.8,3.7±4.2, and 3.2±3.4 surfaces, respectively). There were no differences in tooth decay incidence between xylitol and sucrose (Rate Ratio [RR]=1.51;95% confidence interval [CI]=0.88,2.59;P=0.13) or between xylitol and sorbitol (RR=1.28;95% CI=0.90,1.83;P=0.16). Conclusion Xylitol-sweetened milk significantly reduced MS levels compared to sucrose-sweetened milk, but we were unable to detect differences in caries incidence. ISRCTN34705772. PMID:28327266
Enko, Dietmar; Pollheimer, Verena; Németh, Stefan; Pühringer, Helene; Stolba, Robert; Halwachs-Baumann, Gabriele; Kriegshäuser, Gernot
2016-01-01
Genetic testing is a standard technique for the diagnosis of primary adult-type hypolactasia, also referred to as lactase non-persistence. The aim of this study was to compare the lactase gene (LCT) C/T-13910 polymorphism genotyping results of two commercially available real-time (RT)-PCR assays in patients referred to our outpatient clinic for primary lactose malabsorption testing. Furthermore, concomitant conditions of fructose/sorbitol malabsorption were assessed. Samples obtained from 100 patients were tested in parallel using the LCT T-13910C ToolSet for Light Cycler (Roche, Rotkreuz, Switzerland) and the LCT-13910C>T RealFast Assay (ViennaLab Diagnostics GmbH, Vienna, Austria). Additionally, patients were also screened for the presence of fructose/sorbitol malabsorption by functional hydrogen (H2)/methane (CH4) breath testing (HMBT). Cohen's Kappa (κ) was used to calculate the agreement between the two genotyping methods. The exact Chi-Square test was performed to compare fructose/sorbitol HMBT with LCT genotyping results. Twenty-one (21.0%) patients had a LCT C/C-13910 genotype suggestive of lactase non-persistence, and 79 (79.0%) patients were identified with either a LCT T/C-13910 or T/T-13910 genotype (i.e., lactase persistence). In all genotype groups, concordance between the two RT-PCR assays was 100%. Cohen's κ demonstrated perfect observed agreement (p < 0.001, κ = 1). Fructose and sorbitol malabsorption was observed in 13/100 (13.0%) and 25/100 (25.0%) individuals, respectively. Both RT-PCR assays are robust and reliable LCT genotyping tools in a routine clinical setting. Concomitant fructose and/or sorbitol malabsorption should be considered in individuals with suspected lactase-non-persistence. However, standardization of clinical interpretation of laboratory HMBT results is required.
Tveito, Kari; Hetta, Anne Kristine; Askedal, Mia; Brunborg, Cathrine; Sandvik, Leiv; Løberg, Else Marit; Skar, Viggo
2011-07-01
We recently developed a (13)C-sorbitol breath test ((13)C-SBT) as an alternative to the H(2)-sorbitol breath test (H(2)-SBT) for coeliac disease. In this study we compared the diagnostic properties of the H(2)-SBT and the (13)C-SBT in follow-up of coeliac disease. Twenty-seven coeliac patients on a gluten-free diet (GFD) performed the breath tests. All had been tested before treatment in the initial study of the (13)C-SBT, in which 39 untreated coeliac patients, 40 patient controls, and 26 healthy volunteers participated. Five gram sorbitol and 100 mg (13)C-sorbitol were dissolved in 250 ml tap water and given orally. H(2), CH(4) and (13)CO(2) were measured in end-expiratory breath samples every 30 min for 4 h. Increased H(2) concentration ≥20 ppm from basal values was used as cut-off for the H(2)-SBT. Sixty minutes values were used as diagnostic index in the (13)C-SBT. (13)CO(2) levels at 60 min increased in 20/26 treated coeliac patients (77%) after GFD, but were significantly lower than in control groups. Out of 20 patients who had a positive H(2)-SBT before GFD, 12 had a negative H(2)-SBT after GFD. Peak H(2) concentrations were not correlated with (13)C-SBT results. The study confirms the sensitivity of a one-hour (13)C-SBT for small intestinal malabsorption. The (13)C-SBT has superior diagnostic properties compared with the H(2)-SBT in follow-up of coeliac disease.
Migliardo, F; Angell, C A; Magazù, S
2017-01-01
Glycerol and sorbitol are glass-forming hydrogen-bonded systems characterized by intriguing properties which make these systems very interesting also from the applications point of view. The goal of this work is to relate the hydrogen-bonded features, relaxation dynamics, glass transition properties and fragility of these systems, in particular to seek insight into their very different liquid fragilities. The comparison between glycerol and sorbitol is carried out by collecting the elastic incoherent neutron scattering (EINS) intensity as a function of temperature and of the instrumental energy resolution. Intensity data vs temperature and resolution are analyzed in terms of thermal restraint and Resolution Elastic Neutron Scattering (RENS) approaches. The number of OH groups, which are related to the connecting sites, is a significant parameter both in the glass transition and in the dynamical transition. On the other hand, the disordered nature of sorbitol is confirmed by the existence of different relaxation processes. From the applications point of view, glycerol and sorbitol have remarkable bioprotectant properties which make these systems useful in different technological and industrial fields. Furthermore, polyols are rich in glassforming liquid phenomenology and highly deserving of study in their own right. The comparison of EINS and calorimetric data on glycerol and sorbitol helps provide a connection between structural relaxation, dynamical transition, glass transition, and fragility. The evaluation of the inflection point in the elastic intensity behavior as a function of temperature and instrumental energy resolution provides a confirmation of the validity of the RENS approach. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016. Published by Elsevier B.V.
Incoherence in the South African Labour Market for Intermediate Skills
ERIC Educational Resources Information Center
Kraak, Andre
2008-01-01
This article is concerned with the production and employment of technically skilled labour at the intermediate level in South Africa. Three differing labour market pathways to intermediate skilling are identified. These are: the traditional apprenticeship route, the new "Learnerships" pathway (similar to the "modern…
Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin
2013-01-01
Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway. PMID:24089713
NASA Astrophysics Data System (ADS)
Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin
2013-09-01
Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway.
Foley, Joseph; Hill, Shannon E; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin
2013-09-28
Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway.
Csiszár, Emilia; Nagy, Sebestyén
2017-10-15
Cellulose nanocrystals (CNCs) were released from bleached cotton and flax by a sulphuric acid hydrolysis with about 40 and 34% yield, respectively. The rod-like cotton-CNC particles were slightly longer and wider and had a less pronounced aggregation ability in aqueous suspension than the flax-CNC ones. Films were cast from the CNC suspensions with sorbitol and glycerol plasticisers. The concept behind this research was to explore how the plasticisers - with similar structure but different molecular weight - and their concentrations affect the perceptible and measured properties of CNC films. Results revealed that the type of plasticiser determined the morphology and the optical and tensile properties of films. The best quality CNC film with an averaged thickness of 50μm was obtained with 20% sorbitol from cotton-CNC. It was proved that behaviour of sorbitol and glycerol plasticisers in CNC films was very similar to that reported previously for starch films. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prakash Maran, J; Sivakumar, V; Thirugnanasambandham, K; Kandasamy, S
2013-11-01
The present study investigates the influence of composition (content of maize starch (1-3 g), sorbitol (0.5-1.0 ml), agar (0.5-1.0 g) and tween-80 (0.1-0.5 ml)) on the mechanical properties (tensile strength, elongation, Young's modulus, puncture force and puncture deformation) of the maize starch based edible films using four factors with three level Box-Behnken design. The edible films were obtained by casting method. The results showed that, tween-80 increases the permeation of sorbitol in to the polymer matrix. Increasing concentration of sorbitol (hydrophilic nature and plasticizing effect of sorbitol) decreases the tensile strength, Young's modulus and puncture force of the films. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were obtained for all responses with high R(2) values (R(2)>0.95). 3D response surface plots were constructed to study the relationship between process variables and the responses. Copyright © 2013 Elsevier B.V. All rights reserved.
Glassy dynamics of sorbitol solutions at terahertz frequencies.
Sibik, Juraj; Shalaev, Evgenyi Y; Zeitler, J Axel
2013-07-28
The absorption spectra of D-sorbitol and a range of its concentrated aqueous solutions were studied by terahertz spectroscopy over the temperature interval of 80 K < T < 310 K. It is shown that the slow-down of molecules at around the glass transition temperature, Tg, dramatically influences the thermal dependence of the absorption at terahertz frequencies. Furthermore, two different absorption regimes are revealed below Tg: at temperatures well below Tg, the absorption resembles the coupling of terahertz radiation to the vibrational density of states (VDOS); above these temperatures, between 160 K and Tg, in the sample of pure sorbitol and the sample of a solution of 70 wt% sorbitol in water, another type of absorption is observed at terahertz frequencies. Several possibilities of the physical origin of this absorption are discussed and based on the experimental data this process is tentatively assigned to the Johari-Goldstein β-relaxation processes shifting to lower frequencies at temperatures below Tg leaving behind a spectrum largely dominated by losses into the VDOS.
The influence of sorbitol on the production of cellulases and xylanases in an airlift bioreactor.
Ritter, Carla Eliana Todero; Fontana, Roselei Claudete; Camassola, Marli; da Silveira, Maurício Moura; Dillon, Aldo José Pinheiro
2013-11-01
The production of cellulases and xylanases by Penicillium echinulatum in an airlift bioreactor was evaluated. In batch production, we tested media with isolated or associated cellulose and sorbitol. In fed-batch production, we tested cellulose addition at two different times, 30 h and 48 h. Higher liquid circulation velocities in the downcomer were observed in sorbitol 10 g L(-1) medium. In batch production, higher FPA (filter paper activity) and endoglucanase activities were obtained with cellulose (7.5 g L(-1)) and sorbitol (2.5 g L(-1)), 1.0 U mL(-1) (120 h) and 6.4 U m L(-1) (100 h), respectively. For xylanases, the best production condition was cellulose 10 g L(-1), which achieved 5.5 U mL(-1) in 64 h. The fed-batch process was favorable for obtaining xylanases, but not for FPA and endoglucanases, suggesting that in the case of cellulases, the inducer must be added early in the process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Physical and mechanical properties of modified bacterial cellulose composite films
NASA Astrophysics Data System (ADS)
Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri
2016-02-01
To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sorbitol. 582.5835 Section 582.5835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sorbitol. 582.5835 Section 582.5835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sorbitol. 582.5835 Section 582.5835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sorbitol. 582.5835 Section 582.5835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sorbitol. 582.5835 Section 582.5835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...
Kaplan, Franziska; Lewis, Louise A; Herburger, Klaus; Holzinger, Andreas
2013-01-01
The osmotic potential and effects of plasmolysis on photosynthetic oxygen evolution and chlorophyll fluorescence were studied in two Arctic Zygnema sp. (strain B, strain G) and two Antarctic Zygnema sp. (strain E, strain D). Antarctic strain D was newly characterized by rbcL sequence analysis in the present study. The two Antarctic strains, D and E, are most closely related and may represent different isolates of the same species, in contrast, strain B and G are separate lineages. Incipient plasmolysis in the cells was determined by light microscopy after incubating cells in sorbitol solutions ranging between 200 mM and 1000 mM sorbitol for 3, 6 and 24h. In Zygnema strain B and G incipient plasmolysis occurred at ~600 mM sorbitol solution (720 mOsmol kg(-1), ψ=-1.67 MPa) and in strains D and E at ~300 mM (318 mOsmol kg(-1), ψ=-0.8 MPa) sorbitol solution. Hechtian strands were visualized in all plasmolysed cells, which is particularly interesting, as these cells lack pores or plasmodesmata. Ultrastructural changes upon osmotic stress were a retraction of the condensed cytoplasm from the cell walls, damages to chloroplast and mitochondrial membranes, increasing numbers of plastoglobules in the chloroplasts and membrane enclosed particles in the extraplasmatic space. Maximum photosynthetic rates (P(max)) in light saturated range were between 145.5 μmol O(2) h(-1)mg(-1)Chl a in Zygnema G and 752.9 μmol O(2) h(-1)mg(-1)Chl a in Zygnema E. After incubation in 800 mM sorbitol for 3h P(max) decreased to the following percentage of the initial values: B: 16.3%, D: 16.8%, E: 26.1% and G: 35.0%. Osmotic stress (800 mM sorbitol) decreased maximum photochemical quantum yield of photosystem II (F(v)/F(m)) when compared to controls. Maximum values of relative electron transport rates of photosystem II (rETR(max)) decreased after incubation in 400 mM sorbitol in Zygnema D and E, while they decreased in Zygnema B and G only after incubation in 800 mM sorbitol. The kinetics of the rETR curves were similar for the Arctic strains Zygnema B and G, but distinct from the Antarctic strains Zygnema D and E, which were similar when compared with each other. This suggests that the investigated Arctic Zygnema sp. strains might be better adapted to tolerate osmotic water stress than the investigated strains from the Antarctic. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ordered Mesoporous NiCeAl Containing Catalysts for Hydrogenolysis of Sorbitol to Glycols
NASA Astrophysics Data System (ADS)
Zhou, Zhiwei; Zhang, Jiaqi; Qin, Juan; Li, Dong; Wu, Wenliang
2018-03-01
Cellulose-derived sorbitol is emerging as a feasible and renewable feedstock for the production of value-added chemicals. Highly active and stable catalyst is essential for sorbitol hydrogenolysis. Ordered mesoporous M- xNi yCeAl catalysts with different loadings of nickel and cerium species were successfully synthesized via one-pot evaporation-induced self-assembly strategy (EISA) and their catalytic performance were tested in the hydrogenolysis of sorbitol. The physical chemical properties for the catalysts were characterized by XRD, N2 physisorption, H2-TPR, H2 impulse chemisorption, ICP and TEM techniques. The results showed that the ordered mesopores with uniform pore sizes can be obtained and the Ni nanoparticles around 6 nm in size were homogeneously dispersed in the mesopore channels. A little amount of cerium species introduced would be beneficial to their textural properties resulting in higher Ni dispersion, metal area and smaller size of Ni nanoparticles. The M-10Ni2CeAl catalyst with Ni and Ce loading of 10.9 and 6.3 wt % shows better catalytic performance than other catalysts, and the yield of 1,2-PG and EG can reach 56.9% at 493 K and 6 MPa pressure for 8 h after repeating reactions for 12 times without obvious deterioration of physical and chemical properties. Ordered mesoporous M-NiCeAl catalysts are active and stable in sorbitol hydrogenolysis.
Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini
2015-01-01
A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme. PMID:25756051
NASA Astrophysics Data System (ADS)
Ginting, M. H. S.; Lubis, M.; Sidabutar, T.; Sirait, T. P.
2018-03-01
The aims of this research to determine the profile of starch gelatinization, bioplastic and the effect of increasing chitosan and sorbitol to the properties of tensile strength and elongation of break bioplastic. Preparation of bioplastics was used by casting method, that is 30% w/v solution of starch mixed with chitosan solution (0.5 w/v; 1 w/v; 1.5 w/v; 2 w/v; and 2.5 w/v) and plasticizer sorbitol (10 % w/w; 20 % w/w; 30 % w/w; 40 % w/w and 50 % w/w) were heated using a hotplate magnetic stirrer at 750C. The results of Rapid Visco Analyzer (RVA) obtained by starch and bioplastic gelatinization temperature of 72.94°C 77.72°C with peak viscosity 6632 cP and 3476 cP. Analysis of Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM) obtained the change a functional group of bioplastic OH at wave number 3765 cm-1 and uneven chitosan distribution, and there is still an empty fraction. The addition of chitosan and sorbitol had an effect on tensile strength and elongation at break, tensile strength and elongation at break the highest of 8.36 MPa and 22.06% in starch composition 30%, 2.5 w/v chitosan and sorbitol 30% w/w.
Avalos, José L.; Fink, Gerald R.; Stephanopoulos, Gregory
2013-01-01
Efforts to improve the production of a compound of interest in Saccharomyces cerevisiae have mainly involved engineering or overexpression of cytoplasmic enzymes. We show that targeted expression of metabolic pathways to mitochondria can increase production levels compared with expression of the same pathways in the cytoplasm. Compartmentalisation of the Ehrlich pathway into mitochondria increased isobutanol production by 260%, whereas overexpression of the same pathway in the cytoplasm only improved yields by 10%, compared with a strain overexpressing only the first three steps of the biosynthetic pathway. Subcellular fractionation of engineered strains reveals that targeting the enzymes of the Ehrlich pathway to the mitochondria achieves higher local enzyme concentrations. Other benefits of compartmentalization may include increased availability of intermediates, removing the need to transport intermediates out of the mitochondrion, and reducing the loss of intermediates to competing pathways. PMID:23417095
Riccardo Lo Bianco; Mark Rieger; Shi-Jean S. Sung
1999-01-01
Activities of NAD+-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX), sucrose synthase (SS), acid invertase (AI), and neutral invertase (NI) in ?Encore? peach (Prunus persica L.) fruits and developing shoot tips were assayed during the growing season to determine whether carbohydrate metabolizing enzymes could...
Sorbitol as an efficient reducing agent for laser-induced copper deposition
NASA Astrophysics Data System (ADS)
Kochemirovsky, V. A.; Logunov, L. S.; Safonov, S. V.; Tumkin, I. I.; Tver'yanovich, Yu. S.; Menchikov, L. G.
2012-10-01
We have pioneered in revealing the fact that sorbitol may be used as an efficient reducing agent in the process of laser-induced copper deposition from solutions; in this case, it is possible to obtain copper lines much higher quality than by using conventional formalin.
Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action
Huo, Lu; Davis, Ian; Liu, Fange; ...
2015-01-07
Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can often make them quite unstable. There are several aldehydic intermediates in the metabolic pathway for tryptophan degradation that can decay into neuroactive compounds that have been associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacylmore » intermediate and an NAD +-bound complex from an active site mutant. These covalent intermediates are characterized by single-crystal and solution-state electronic absorption spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at the enzyme active site before an sp 3-to-sp 2 transition during enzyme-mediated oxidation.« less
[The cariogenicity of xylitol in the animal experiment].
Karle, E J
1977-01-01
After programmed feeding of rats in a six and eight-week long conventional experiment with increasing concentrations of xylitol, compared to sorbitol, fructose and saccharose, the non-cariogenic nature of xylitol was confirmed. The increasing amounts of xylitol after sorbitol in chocolate diets (up to 30 g/day/rat) led to serious dilatation of the cecum and to changes in the mucosa of cecum and colon when sorbitol was given. Examination of plaques of the germ-free rats monoassociated with S. mutans showed that xylitol had no bacteriostatic effect on this type of germ. Since xylitol is not broken down by these germs with acid being formed, careis did not continue to extend.
NASA Astrophysics Data System (ADS)
Poeloengasih, Crescentiana D.; Pranoto, Yudi; Hayati, Septi Nur; Hernawan, Rosyida, Vita T.; Prasetyo, Dwi J.; Jatmiko, Tri H.; Apriyana, Wuri; Suwanto, Andri
2016-02-01
The present work explores the physicochemical characteristics of sugar palm starch film for a potential hard capsule purpose. Sugar palm (Arenga pinnata) starch films were plasticized with glycerol or sorbitol in various concentrations (30% up to 50% w/w starch). Their effects on physicochemical properties of the films were investigated. The results showed that sugar palm starch was successfully developed as the main material of film using casting method. Incorporation of both glycerol or sorbitol affected the properties of films in different ways. It was found that thickness and solubility increased as plasticizer concentration increased, whereas retraction ratio, swelling degree and swelling thickness decreased with the increased plasticizer concentration.
75 FR 51015 - Sorbitol From France: Notice of Rescission of Antidumping Duty Administrative Review
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... Products International (CP), domestic producers of sorbitol, we are now rescinding this administrative... received a request from CP that the Department conduct an administrative review covering Syral. On April 30... its antidumping duty questionnaire to Syral. On June 25, 2010, CP withdrew its request for review of...
2014-05-01
Shock Protein, Annexin A3, Sorbitol Dehydrogenase, Fibrinogen Beta Chain Precursor, Creatine Kinase B-Type, Annexin A1, Cystatin B, and AZI. We have...Shock Protein, Annexin A3, Sorbitol Dehydrogenase, Fibrinogen Beta Chain Precursor, and Creatine Kinase B-Type. After testing these candidates with
Bhattacharya, Sisir; Bhardwaj, Sunny P; Suryanarayanan, Raj
2014-10-01
To determine the effect of annealing on the two secondary relaxations in amorphous sucrose and in sucrose solid dispersions. Sucrose was co-lyophilized with either PVP or sorbitol, annealed for different time periods and analyzed by dielectric spectroscopy. In an earlier investigation, we had documented the effect of PVP and sorbitol on the primary and the two secondary relaxations in amorphous sucrose solid dispersions (1). Here we investigated the effect of annealing on local motions, both in amorphous sucrose and in the dispersions. The average relaxation time of the local motion (irrespective of origin) in sucrose, decreased upon annealing. However, the heterogeneity in relaxation time distribution as well as the dielectric strength decreased only for β1- (the slower relaxation) but not for β2-relaxations. The effect of annealing on β2-relaxation times was neutralized by sorbitol while PVP negated the effect of annealing on both β1- and β2-relaxations. An increase in local mobility of sucrose brought about by annealing could be negated with an additive.
2009-01-01
Background L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are involved in the degradation of L-arabinose and D-xylose, which are among the most abundant monosaccharides on earth. Previous data demonstrated that LAD and XDH not only differ in the activity on their biological substrate, but also that only XDH has significant activity on D-sorbitol and may therefore be more closely related to D-sorbitol dehydrogenases (SDH). In this study we aimed to identify residues involved in the difference in substrate specificity. Results Phylogenetic analysis demonstrated that LAD, XDH and SDH form 3 distinct groups of the family of dehydrogenases containing an Alcohol dehydrogenase GroES-like domain (pfam08240) and likely have evolved from a common ancestor. Modelling of LadA and XdhA of the saprobic fungus Aspergillus niger on human SDH identified two residues in LadA (M70 and Y318), that may explain the absence of activity on D-sorbitol. While introduction of the mutation M70F in LadA of A. niger resulted in a nearly complete enzyme inactivation, the Y318F resulted in increased activity for L-arabitol and xylitol. Moreover, the affinity for D-sorbitol was increased in this mutant. Conclusion These data demonstrates that Y318 of LadA contributes significantly to the substrate specificity difference between LAD and XDH/SDH. PMID:19674460
King, L A; Loukiadis, E; Mariani-Kurkdjian, P; Haeghebaert, S; Weill, F-X; Baliere, C; Ganet, S; Gouali, M; Vaillant, V; Pihier, N; Callon, H; Novo, R; Gaillot, O; Thevenot-Sergentet, D; Bingen, E; Chaud, P; de Valk, H
2014-12-01
Sorbitol-fermenting Escherichia coli O157:[H7] is a particularly virulent clone of E. coli O157:H7 associated with a higher incidence of haemolytic uraemic syndrome and a higher case fatality rate. Many fundamental aspects of its epidemiology remain to be elucidated, including its reservoir and transmission routes and vehicles. We describe an outbreak of sorbitol-fermenting E. coli O157:[H7] that occurred in France in 2011. Eighteen cases of paediatric haemolytic uraemic syndrome with symptom onset between 6 June and 15 July 2011 were identified among children aged 6 months to 10 years residing in northern France. A strain of sorbitol-fermenting E. coli O157:[H7] stx2a eae was isolated from ten cases. Epidemiological, microbiological and trace-back investigations identified multiply-contaminated frozen ground beef products bought in a supermarket chain as the outbreak vehicle. Strains with three distinct pulsotypes that were isolated from patients, ground beef preparations recovered from patients' freezers and from stored production samples taken at the production plant were indistinguishable upon molecular comparison. This investigation documents microbiologically confirmed foodborne transmission of sorbitol-fermenting of E. coli O157 via beef and could additionally provide evidence of a reservoir in cattle for this pathogen. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
19F and 13C NMR studies of polyol metabolism in freeze-tolerant pupae of Hyalophora cecropia.
Podlasek, C A; Serianni, A S
1994-01-28
Sorbitol biosynthesis and regulation in freeze tolerant pupae of Hyalophora cecropia have been investigated as a function of temperature by 19F and 13C nuclear magnetic resonance (NMR) spectroscopy using several 13C-labeled and/or fluorine-substituted carbohydrates. 3-Deoxy-3-fluoro-D-glucose (3DFG) was metabolized to 3-deoxy-3-fluoro-D-sorbitol (3DFS), 3-deoxy-3-fluoro-D-fructose (3DFF), and 3-deoxy-3-fluoro-D-gluconic acid (3DFGA), indicating that the enzymes required for sorbitol biosynthesis and metabolism are active in H. cecropia at warm (22 degrees C) and cold (4 and -10 degrees C) temperatures. Two additional metabolites were produced when pupae were injected with either 3DFG, 3DFS, 3DFF, or 3-deoxy-3-fluoro-D-mannose (3DFM). One of these was identified as 3-deoxy-3-fluoro-D-mannitol (3DFML) by 13C NMR using [1-13C]3DFM and [1-13C]3DFG as metabolic probes. H. cecropia pupae injected with D-glucose labeled with 13C at C-1, C-2, or C-3 and subsequently analyzed by 13C NMR clearly demonstrated the ability to generate sorbitol and fructose. In contrast, gas chromatography/mass spectrometric analysis of hemolymph failed to detect sorbitol in pupae reared under natural conditions (i.e. in the absence of injected enriched sugars). Thus, although H. cecropia pupae have the enzymic machinery to biosynthesize sorbitol, they do not appear to accumulate high steady-state concentrations of this polyol over the temperature range studied. The specificity of the enzymes involved in alditol biosynthesis in H. cecropia was examined by 13C NMR with a wide range of aldoses enriched with 13C at C-1. Pupae were capable of converting these sugars to their corresponding [1-13C]alditols, indicating that nonspecific dehydrogenase(s), in addition to aldose reductase, is(are) involved in polyol biosynthesis in H. cecropia pupae.
Humectancies of d-tagatose and d-sorbitol.
Lu, Y
2001-06-01
Most toothpastes contain either d-sorbitol or glycerin, or both, as humectants. Both compounds are about half as sweet as sucrose. This level of sweetness is not as intense as desired by most people when brushing teeth. Therefore, many brands of toothpaste add saccharin, a high-intensity sweetener, to increase product sweetness to acceptable levels. While this combination provides the required bulk, humectancy and sweetness, the last characteristic suffers from the widely perceived metallic, or bitter, aftertaste of saccharin. d-tagatose, a full-bulk, low-calorie, sucrose-like sweetener with about twice the sweetness of d-sorbitol, and which does not promote tooth decay, holds promise as a sole sweetener for toothpastes. The only untested aspect of this use of d-tagatose was its humectancy, the characteristic that retains the required level of moisture in toothpaste. The current study was made to investigate this important property, to make a direct comparison of the humectancies of d-tagatose and d-sorbitol as pure substances, and to determine whether the humectancy of d-tagatose is sufficient to counter the crystallizing potentiation of the abrasives used in toothpastes. The humectancies of d-tagatose and d-sorbitol were tested through measuring their water activity (a(w)) vs. water content. By comparing their desorption curves, d-tagatose was seen to have a humectancy equal to that of d-sorbitol when a(w) in the d-tagatose solution was above 0.62. d-Tagatose was then tested in toothpastes containing typical abrasives to determine whether the abrasives would induce crystallization of the sweetener. The addition of 20-25% wt/wt of d-tagatose to the Tom of Maine's toothpastes imparted a satisfactory sweetness. It was found that, within that range of concentration, d-tagatose retained its humectancy, and did not crystallize in the popular brands of commercial toothpastes tested. Thus, d-tagatose could be used as a humectant sweetener in toothpastes, although further work on a final toothpaste formula will be necessary to check stability and flavour factors.
Khajehzadeh, Mehrnoosh; Mehrnejad, Faramarz; Pazhang, Mohammad; Doustdar, Farahnoosh
2016-12-01
Mycobacterium tuberculosis pyrazinamidase (PZase) is known an enzyme that is involved in degradation of pyrazinamide to ammonia and pyrazinoic acid. Pyrazinamide is an important first-line drug used in the short-course treatment of tuberculosis. Previous investigations have indicated that the pyrazinamide (PZA)-resistant M. tuberculosis strains are caused by point mutations in the PZase enzyme which is the activator of the prodrug PZA. Although the general fold of PZase was determined, the structural and functional properties of the enzyme in solution were not understood very well. In this study, the PZase enzyme was overexpressed and purified. In addition, two polyols, namely sorbitol and glycerol, were chosen to study their effects on the structure, dynamics, and stability of the enzyme. To gain a deeper insight, molecular dynamics simulation and spectroscopic methods, such as fluorescence spectroscopy and circular dichroism (CD), were used. The genes were cloned in Escherichia coli BL21 (DE3), harboring the recombinant pET-28a (+) plasmid, overexpressed and purified by Ni-NTA Sepharose. The far UV-visible CD spectra were measured by a Jasco-810 spectropolarimeter. The intrinsic fluorescence spectra were measured on a Cary Varian Eclipse spectrofluorometer. For molecular dynamics (MD) simulations, we have applied GROMACS4.6.5. The results showed that glycerol and sorbitol increased the enzyme activity up to 130% and 110%, respectively, at 37°C. The stability of PZase was decreased and the half-life was 20 min. Glycerol and sorbitol increased the PZase half-life to 99 min and 23 min, respectively. The far UV CD measurements of PZase indicated that the CD spectra in glycerol and sorbitol give rise to an increase in the content of α-helix and β-sheets elements. The average enzyme root mean square deviation (RMSD) in sorbitol solution was about 0.416nm, a value that is higher than the enzyme RMSD in the pure water (0.316). In dictionary of protein secondary structure (DSSP) results, we observed that the secondary structures of the protein are partially increased as compared to the native state in water. The experimental and simulation data clearly indicated that the polyols increased the PZase stabilization in the order: glycerol>sorbitol. It can be concluded that the native conformation of the enzyme was stabilized in the sorbitol and glycerol and tend to exclude from the PZase surface, forcing the enzyme to keep it in the compactly folded conformation. The glycerol molecules stabilized PZase by decreasing the loops flexibility and then compacting the enzyme structure. It appears that more stability of PZase in glycerol solution correlates with its amphiphilic orientation, which decreases the unfavorable interactions of hydrophobic regions. Copyright © 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Lawrence B.; Klippenstein, Stephen J.
2015-10-28
We discuss the recent report of a roaming type mechanism for the decomposition of the Criegee intermediate. We show that the predicted barrier height for this new pathway is too low by ∼30 kcal/mol owing to an inconsistent use of spin-restricted and spin-unrestricted calculations. As a result, this new pathway is not expected to compete significantly with the well-known dioxirane pathways for the decomposition of the Criegee intermediate.
2015-01-01
Recently, a feedback inhibition of the chloroplastic 1-deoxy-d-xylulose 5-phosphate (DXP)/2-C-methyl-d-erythritol 4-phosphate (MEP) pathway of isoprenoid synthesis by end products dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) was postulated, but the extent to which DMADP and IDP can build up is not known. We used bisphosphonate inhibitors, alendronate and zoledronate, that inhibit the consumption of DMADP and IDP by prenyltransferases to gain insight into the extent of end product accumulation and possible feedback inhibition in isoprene-emitting hybrid aspen (Populus tremula × Populus tremuloides). A kinetic method based on dark release of isoprene emission at the expense of substrate pools accumulated in light was used to estimate the in vivo pool sizes of DMADP and upstream metabolites. Feeding with fosmidomycin, an inhibitor of DXP reductoisomerase, alone or in combination with bisphosphonates was used to inhibit carbon input into DXP/MEP pathway or both input and output. We observed a major increase in pathway intermediates, 3- to 4-fold, upstream of DMADP in bisphosphonate-inhibited leaves, but the DMADP pool was enhanced much less, 1.3- to 1.5-fold. In combined fosmidomycin/bisphosphonate treatment, pathway intermediates accumulated, reflecting cytosolic flux of intermediates that can be important under strong metabolic pull in physiological conditions. The data suggested that metabolites accumulated upstream of DMADP consist of phosphorylated intermediates and IDP. Slow conversion of the huge pools of intermediates to DMADP was limited by reductive energy supply. These data indicate that the DXP/MEP pathway is extremely elastic, and the presence of a significant pool of phosphorylated intermediates provides an important valve for fine tuning the pathway flux. PMID:25926480
Engineering dynamic pathway regulation using stress-response promoters.
Dahl, Robert H; Zhang, Fuzhong; Alonso-Gutierrez, Jorge; Baidoo, Edward; Batth, Tanveer S; Redding-Johanson, Alyssa M; Petzold, Christopher J; Mukhopadhyay, Aindrila; Lee, Taek Soon; Adams, Paul D; Keasling, Jay D
2013-11-01
Heterologous pathways used in metabolic engineering may produce intermediates toxic to the cell. Dynamic control of pathway enzymes could prevent the accumulation of these metabolites, but such a strategy requires sensors, which are largely unknown, that can detect and respond to the metabolite. Here we applied whole-genome transcript arrays to identify promoters that respond to the accumulation of toxic intermediates, and then used these promoters to control accumulation of the intermediate and improve the final titers of a desired product. We apply this approach to regulate farnesyl pyrophosphate (FPP) production in the isoprenoid biosynthetic pathway in Escherichia coli. This strategy improved production of amorphadiene, the final product, by twofold over that from inducible or constitutive promoters, eliminated the need for expensive inducers, reduced acetate accumulation and improved growth. We extended this approach to another toxic intermediate to demonstrate the broad utility of identifying novel sensor-regulator systems for dynamic regulation.
High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose
Amit Saxena; Thomas J. Elder; Jeffrey Kenvin; Arthur J. Ragauskas
2010-01-01
The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan, sorbitol and nanocrystalline cellulose. The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more...
Modelling of moisture adsorption for sugar palm (Arenga pinnata) starch film
NASA Astrophysics Data System (ADS)
Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Hernawan
2017-03-01
Sorption characteristic of food products is important for design, optimization, storage and modelling. Sugar palm starch film with two different plasticizers (sorbitol and glycerol) with varied concentration studied for its adsorption isotherm characteristic. The data of adsorption isotherm fitted with GAB, Oswin, Smith and Peleg models. All models describe the experiment data well, but Peleg model is better than the other models on both sugar palm starch film plasticized with sorbitol and glycerol. Moisture sorption of sugar palm starch increased linearly with plasticizer concentration. A new model by taking account of plasticizer concentration describes the experiment data well with an average of coefficients of determination (R2) 0.9913 and 0.9939 for film plasticized with glycerol and sorbitol respectively.
Han, Wei; Schulten, Klaus
2013-01-01
In this study, we apply a hybrid-resolution model, namely PACE, to characterize the free energy surfaces (FESs) of trp-cage and a WW domain variant along with the respective folding mechanisms. Unbiased, independent simulations with PACE are found to achieve together multiple folding and unfolding events for both proteins, allowing us to perform network analysis of the FESs to identify folding pathways. PACE reproduces for both proteins expected complexity hidden in the folding FESs, in particular, meta-stable non-native intermediates. Pathway analysis shows that some of these intermediates are, actually, on-pathway folding intermediates and that intermediates kinetically closest to the native states can be either critical on-pathway or off-pathway intermediates, depending on the protein. Apart from general insights into folding, specific folding mechanisms of the proteins are resolved. We find that trp-cage folds via a dominant pathway in which hydrophobic collapse occurs before the N-terminal helix forms; full incorporation of Trp6 into the hydrophobic core takes place as the last step of folding, which, however, may not be the rate-limiting step. For the WW domain variant studied we observe two main folding pathways with opposite orders of formation of the two hairpins involved in the structure; for either pathway, formation of hairpin 1 is more likely to be the rate-limiting step. Altogether, our results suggest that PACE combined with network analysis is a computationally efficient and valuable tool for the study of protein folding. PMID:23915394
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric; Snowden-Swan, Lesley J.; Talmadge, Michael
This paper presents a comparative techno-economic analysis of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates (derived either via thermochemical or biochemical conversion steps). The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates, followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. We show that the emerging pathways via oxygenated intermediatesmore » have the potential to be cost competitive with the conventional Fischer-Tropsch process. The evaluated pathways and the benchmark process generally exhibit similar fuel yields and carbon conversion efficiencies. The resulting minimum fuel selling prices are comparable to the benchmark at approximately $3.60 per gallon-gasoline equivalent, with potential for two new pathways to be more economically competitive. Additionally, the coproduct values can play an important role in the economics of the processes with oxygenated intermediates derived via syngas fermentation. Major cost drivers for the integrated processes are tied to achievable fuel yields and conversion efficiency of the intermediate steps, i.e., the production of oxygenates/alcohols from syngas and the conversion of oxygenates/alcohols to hydrocarbon fuels.« less
Role of Intermediate Filaments in Vesicular Traffic.
Margiotta, Azzurra; Bucci, Cecilia
2016-04-25
Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.
Shen, Bo; Hohmann, Stefan; Jensen, Richard G.; Bohnert, and Hans J.
1999-01-01
For many organisms there is a correlation between increases of metabolites and osmotic stress tolerance, but the mechanisms that cause this protection are not clear. To understand the role of polyols, genes for bacterial mannitol-1-P dehydrogenase and apple sorbitol-6-P dehydrogenase were introduced into a Saccharomyces cerevisiae mutant deficient in glycerol synthesis. Sorbitol and mannitol provided some protection, but less than that generated by a similar concentration of glycerol generated by glycerol-3-P dehydrogenase (GPD1). Reduced protection by polyols suggested that glycerol had specific functions for which mannitol and sorbitol could not substitute, and that the absolute amount of the accumulating osmoticum might not be crucial. The retention of glycerol and mannitol/sorbitol, respectively, was a major difference. During salt stress, cells retained more of the six-carbon polyols than glycerol. We suggest that the loss of >98% of the glycerol synthesized could provide a safety valve that dissipates reducing power, while a similar high intracellular concentration of retained polyols would be less protective. To understand the role of glycerol in salt tolerance, salt-tolerant suppressor mutants were isolated from the glycerol-deficient strain. One mutant, sr13, partially suppressed the salt-sensitive phenotype of the glycerol-deficient line, probably due to a doubling of [K+] accumulating during stress. We compare these results to the “osmotic adjustment” concept typically applied to accumulating metabolites in plants. The accumulation of polyols may have dual functions: facilitating osmotic adjustment and supporting redox control. PMID:10482659
Bioprocess and downstream optimization of recombinant human growth hormone in Pichia pastoris
Azadi, Saeed; Sadjady, Seyed Kazem; Mortazavi, Seyed Alireza; Naghdi, Nasser; Mahboubi, Arash; Solaimanian, Roya
2018-01-01
The methylotrophic yeast Pichia pastoris is a well-established expression host, which is often used in the production of protein pharmaceuticals. This work aimed to evaluate the effect of various concentrations of ascorbic acid in mixed feeding strategy with sorbitol/methanol on productivity of recombinant human growth hormone (r-hGH). The relevant concentration of ascorbic acid (5, 10, or 20 mmol) and 50 g/L sorbitol were added in batch-wise mode to the medium at the beginning of induction phase. The rate of methanol addition was increased stepwise during the first 12 h of production and then kept constant. Total protein and r-hGH concentrations were analyzed and the results compared with sorbitol/methanol feeding using one-way analysis of variance. Moreover, an effective clarification process using activated carbon was developed to remove process contaminants like pigments and endotoxins. Finally, a three-step chromatographic process was applied to purify the product. According to the obtained results, addition of 10 mmol ascorbic acid to sorbitol/methanol co-feeding could significantly increase cell biomass (1.7 fold), total protein (1.14 fold), and r-hGH concentration (1.43 fold). One percent activated carbon could significantly decrease pigments and endotoxins without any significant changes in r-hGH assay. The result of the study concluded that ascorbic acid in combination with sorbitol could effectively enhance the productivity of r-hGH. This study also demonstrated that activated carbon clarification is a simple method for efficient removal of endotoxin and pigment in production of recombinant protein in the yeast expression system. PMID:29853932
Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona
2016-03-01
Sugar alcohols, such as sorbitol, are commonly used as a replacement for sucrose in the food industry, applied as starting material for vitamin C synthesis, and involved as one of the causative factors in diabetic complications. Therefore, their detection and quantification in aqueous solution are necessary. The reversible covalent interactions between boronic acids and diols are the basis of efficient methods for the detection of saccharides. Herein, we report a new internal charge transfer (ICT) fluorene-based fluorescent boronic acid sensor (1) 2-[(9,9-dimethyl-9H-fluoren-2-yl-amino)methyl] phenyl boronic acid that shows significant fluorescence changes upon addition of saccharides. The boronic acid has high affinity (K a = 1107.9 M(-1)) and selectivity for sorbitol at pH = 8.31. It showed a linear response toward sorbitol in the concentration range from 1.0 × 10(-5) to 6.0 × 10(-4) mol L(-1) with the detection limit of 7.04 × 10(-6) mol L(-1). Sensor 1 was used to detect sorbitol in real samples with good recovery.
Nawab, Anjum; Alam, Feroz; Hasnain, Abid
2017-10-01
Mango kernel starch (MKS) coatings containing different plasticizers were used to extend the shelf life of tomato. The coating slurry was prepared by gelatinizing 4% mango kernel starch, plasticized with glycerol, sorbitol and their 1:1 mixture (50% of starch weight; db). The samples were kept at room temperature (20°C) and analyzed for shelf life. Significant difference in coated and control fruits were observed and all the coated fruits delayed ripening process that was characterized by reduction in weight loss and restricted changes in soluble solids concentration, titratable acidity, ascorbic acid content, firmness and decay percentage compared to uncoated sample. The formulations containing sorbitol were found to be the most effective followed by combined plasticizers (glycerol: sorbitol) and glycerol. Sensory evaluation conducted to monitor the change in color, texture and aroma also proved the efficacy of MKS coating containing sorbitol by retaining the overall postharvest quality of tomato during the storage period. The results showed that MKS could be a promising coating material for tomatoes that delayed the ripening process up to 20days during storage at 20°C with no adverse effect on postharvest quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds.
Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia
2017-03-21
Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene.
Effect of Xylitol on Growth of Streptococcus pneumoniae in the Presence of Fructose and Sorbitol
Tapiainen, Terhi; Kontiokari, Tero; Sammalkivi, Laura; Ikäheimo, Irma; Koskela, Markku; Uhari, Matti
2001-01-01
Xylitol is effective in preventing acute otitis media by inhibiting the growth of Streptococcus pneumoniae. To clarify this inhibition we used fructose, which is known to block similar growth inhibition observed in Streptococcus mutans. In addition, we evaluated the efficacy of sorbitol in inhibiting the growth of pneumococci, as sorbitol is widely used for indications similar to those for which xylitol is used. The addition of 5% xylitol to the growth medium resulted in marked growth inhibition, an effect which was totally eliminated in the presence of 1, 2.5, or 5% fructose but not in the presence of 1 or 5% glucose, 1% galactose, or 1% sucrose. This finding implies that xylitol-induced inhibition of pneumococcal growth is mediated via the fructose phosphotransferase system in a way similar to that in which mutans group streptococcal growth is inhibited. The addition of sorbitol at concentrations of 1, 2.5, or 5% to the growth medium did not affect the growth of pneumococci and neither inhibited nor enhanced the xylitol-induced growth impairment. Thus, it seems that xylitol is the only commercially used sugar substitute proven to have an antimicrobial effect on pneumococci. PMID:11120960
Nawab, Anjum; Alam, Feroz; Haq, Mohammad Abdul; Haider, Mohammad Samee; Lutfi, Zubala; Kamaluddin, Sheikh; Hasnain, Abid
2018-07-15
In this study mango kernel starch (MKS) based heat sealable pouches were developed for packing of red chili powder. The films were prepared by casting technique using glycerol, sorbitol and 1:1 mixture of glycerol and sorbitol and were sealed. All films showed better heat sealing capacity but glycerol films plasticized exhibited higher seal strength than their counterparts. The red chili powder was packed in the MKS film pouches while commercially available polyethylene (PE) film was used as control. The pungency and color of red chili powder was monitored during six months storage at 40°C. The capsaicinoid content was extracted from the red chili with acetonitrile and evaluated quantitatively using spectrophotometric method. The extractable color was measured by ASTA method using acetone. The results showed significant differences in color and pungency of chili packed in MKS and PE pouches. The highest reduction in capsaicinoid content (pungency) of chili powder was observed in PE pouch (25.9%) while lowest was observed in MKS pouch containing sorbitol (15.7%). Similarly color loss was also highest in chili packed in PE pouch while lowest in MKS-sorbitol pouch. Copyright © 2018 Elsevier B.V. All rights reserved.
Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds
NASA Astrophysics Data System (ADS)
Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia
2017-03-01
Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene.
Molecular dynamics studies of the conformation of sorbitol
Lerbret, A.; Mason, P.E.; Venable, R.M.; Cesàro, A.; Saboungi, M.-L.; Pastor, R.W.; Brady, J.W.
2009-01-01
Molecular dynamics simulations of a 3 m aqueous solution of D-sorbitol (also called D-glucitol) have been performed at 300 K, as well as at two elevated temperatures to promote conformational transitions. In principle, sorbitol is more flexible than glucose since it does not contain a constraining ring. However, a conformational analysis revealed that the sorbitol chain remains extended in solution, in contrast to the bent conformation found experimentally in the crystalline form. While there are 243 staggered conformations of the backbone possible for this open-chain polyol, only a very limited number were found to be stable in the simulations. Although many conformers were briefly sampled, only eight were significantly populated in the simulation. The carbon backbones of all but two of these eight conformers were completely extended, unlike the bent crystal conformation. These extended conformers were stabilized by a quite persistent intramolecular hydrogen bond between the hydroxyl groups of carbon C-2 and C-4. The conformational populations were found to be in good agreement with the limited available NMR data except for the C-2–C-3 torsion (spanned by the O-2–O-4 hydrogen bond), where the NMR data supports a more bent structure. PMID:19744646
A Genetic and Pharmacological Analysis of Isoprenoid Pathway by LC-MS/MS in Fission Yeast
Takami, Tomonori; Fang, Yue; Zhou, Xin; Jaiseng, Wurentuya; Ma, Yan; Kuno, Takayoshi
2012-01-01
Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), ergosterol (a final sterol product), and squalene (an intermediate pathway product), were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level. PMID:23145048
Influence of formulation properties on chemical stability of captopril in aqueous preparations.
Kristensen, S; Lao, Y E; Brustugun, J; Braenden, J U
2008-12-01
The influence of various formulation properties on the chemical stability of captopril in aqueous media at pH 3 was investigated, in order to reformulate and increase the shelf-life of an oral mixture of the drug. At this pH, chemical stability is improved by an increase in drug concentration (1-5 mg/ml) and a decrease in temperature (5-36 degrees C), the latter demonstrated by a linear Arrhenius-plot. The activation energy is low (Ea = 10.2 kcal/mol), thus the Q10 value is only 1.8 in pure aqueous solutions. The degradation at the lowest concentration investigated in pure aqueous solution apparently follows zero order kinetics. The reaction order is changed at higher concentrations. We are presenting a hypothesis of intramolecular proton transfer from the thiol to the ionized carboxylic group as the initial step in the oxidative degradation pathways of captopril. Long-term stability of 1 mg/ml captopril in aqueous solutions at pH 3, stored at 36 degrees C for one year, shows that the sugar alcohol sorbitol accelerates degradation of the drug while Na-EDTA at a concentration as low as 0.01% is sufficient to stabilize these samples. Purging with N2-gas prior to storage is not essential for drug stability, as long as Na-EDTA is present. Only at a low level of Na-EDTA (0.01%) combined with a high level of sorbitol (35%), purging with N2-gas appears to have a small effect. The destabilizing effect of sugar alcohols is confirmed by accelerated degradation also in the presence of glycerol. The efficient stabilization in the presence of Na-EDTA at a low concentration indicates that the metal-ion-catalyzed oxidation pathway dominates the chemical degradation process at low pH, although several mechanisms seem to be involved depending on excipients present.
Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.
Agius, L
1994-02-15
In rat hepatocytes cultured in 5 mM glucose, glucokinase activity is present predominantly in a bound state, and during permeabilization of the cells with digitonin in the presence of Mg2+ less than 20% of glucokinase activity is released. However, incubation of hepatocytes with a higher [glucose] [concn. giving half-maximal activation (A50) 15 mM] or with fructose (A50 50 microM) causes translocation of glucokinase from its Mg(2+)-dependent binding site to an alternative site [Agius and Peak (1993) Biochem. J. 296, 785-796]. A comparison of various substrates showed that sorbitol (A50 8 microM) was 6-fold more potent than fructose at causing glucokinase translocation, whereas tagatose was as potent and mannitol was > 10-fold less potent (A50 550 microM). These substrates also stimulate glucose conversion into glycogen with a similar relative potency, suggesting that conversion of glucose into glycogen is dependent on the binding and/or location of glucokinase within the hepatocyte. Ethanol and glycerol inhibited the effects of fructose, sorbitol and glucose on glucokinase translocation, whereas dihydroxy-acetone had a small additive effect at sub-maximal substrate stimulation. The converse effects of glycerol and dihydroxy-acetone suggest a role for the cytosolic NADH/NAD+ redox state in controlling glucokinase translocation. Titrations with three competitive inhibitors of glucokinase did not provide evidence for involvement of glucokinase flux in glucose-induced glucokinase translocation: N-acetylglucosamine inhibited glucose conversion into glycogen, but not glucose-induced glucokinase translocation; glucosamine partially suppressed glucose-induced and fructose-induced glucokinase translocation, at concentrations that caused total inhibition of glucose conversion into glycogen; D-mannoheptulose increased glucokinase release and had an additive effect with glucose. 3,3'-Tetramethylene-glutaric acid (5 mM), an inhibitor of aldose reductase, inhibited glucokinase translocation induced by glucose, but not that by sorbitol or fructose, suggesting that glucose may induce glucokinase translocation by conversion into sorbitol. Sorbitol generated from glucose intrahepatically or extrahepatically in hyperglycaemic conditions may be a physiological regulator of hepatic glucokinase translocation.
Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.
Agius, L
1994-01-01
In rat hepatocytes cultured in 5 mM glucose, glucokinase activity is present predominantly in a bound state, and during permeabilization of the cells with digitonin in the presence of Mg2+ less than 20% of glucokinase activity is released. However, incubation of hepatocytes with a higher [glucose] [concn. giving half-maximal activation (A50) 15 mM] or with fructose (A50 50 microM) causes translocation of glucokinase from its Mg(2+)-dependent binding site to an alternative site [Agius and Peak (1993) Biochem. J. 296, 785-796]. A comparison of various substrates showed that sorbitol (A50 8 microM) was 6-fold more potent than fructose at causing glucokinase translocation, whereas tagatose was as potent and mannitol was > 10-fold less potent (A50 550 microM). These substrates also stimulate glucose conversion into glycogen with a similar relative potency, suggesting that conversion of glucose into glycogen is dependent on the binding and/or location of glucokinase within the hepatocyte. Ethanol and glycerol inhibited the effects of fructose, sorbitol and glucose on glucokinase translocation, whereas dihydroxy-acetone had a small additive effect at sub-maximal substrate stimulation. The converse effects of glycerol and dihydroxy-acetone suggest a role for the cytosolic NADH/NAD+ redox state in controlling glucokinase translocation. Titrations with three competitive inhibitors of glucokinase did not provide evidence for involvement of glucokinase flux in glucose-induced glucokinase translocation: N-acetylglucosamine inhibited glucose conversion into glycogen, but not glucose-induced glucokinase translocation; glucosamine partially suppressed glucose-induced and fructose-induced glucokinase translocation, at concentrations that caused total inhibition of glucose conversion into glycogen; D-mannoheptulose increased glucokinase release and had an additive effect with glucose. 3,3'-Tetramethylene-glutaric acid (5 mM), an inhibitor of aldose reductase, inhibited glucokinase translocation induced by glucose, but not that by sorbitol or fructose, suggesting that glucose may induce glucokinase translocation by conversion into sorbitol. Sorbitol generated from glucose intrahepatically or extrahepatically in hyperglycaemic conditions may be a physiological regulator of hepatic glucokinase translocation. PMID:8129726
Chou, Shin G; Soper, Alan K; Khodadadi, Sheila; Curtis, Joseph E; Krueger, Susan; Cicerone, Marcus T; Fitch, Andrew N; Shalaev, Evgenyi Y
2012-04-19
In this study, the structure of concentrated d-sorbitol-water mixtures is studied by wide- and small-angle neutron scattering (WANS and SANS) as a function of temperature. The mixtures are prepared using both deuterated and regular sorbitol and water at a molar fraction of sorbitol of 0.19 (equivalent to 70% by weight of regular sorbitol in water). Retention of an amorphous structure (i.e., absence of crystallinity) is confirmed for this system over the entire temperature range, 100-298 K. The glass transition temperature, Tg, is found from differential scanning calorimetry to be approximately 200 K. WANS data are analyzed using empirical potential structure refinement, to obtain the site-site radial distribution functions (RDFs) and coordination numbers. This analysis reveals the presence of nanoscaled water clusters surrounded by (and interacting with) sorbitol molecules. The water clusters appear more structured compared to bulk water and, especially at the lowest temperatures, resemble the structure of low-density amorphous ice (LDA). Upon cooling to 100 K the peaks in the water RDFs become markedly sharper, with increased coordination number, indicating enhanced local (nanometer-scale) ordering, with changes taking place both above and well below the Tg. On the mesoscopic (submicrometer) scale, although there are no changes between 298 and 213 K, cooling the sample to 100 K results in a significant increase in the SANS signal, which is indicative of pronounced inhomogeneities. This increase in the scattering is partly reversed during heating, although some hysteresis is observed. Furthermore, a power law analysis of the SANS data indicates the existence of domains with well-defined interfaces on the submicrometer length scale, probably as a result of the appearance and growth of microscopic voids in the glassy matrix. Because of the unusual combination of small and wide scattering data used here, the present results provide new physical insight into the structure of aqueous glasses over a broad temperature and length scale, leading to an improved understanding of the mechanisms of temperature- and water-induced (de)stabilization of various systems, including proteins, pharmaceuticals, and biological objects.
Rofe, A M; James, H M; Bais, R; Edwards, J B; Conyers, R A
1980-04-01
Oxalate (14C) was produced during the metabolism of (U-14C) carbohydrates in hepatocytes isolated from normal rats. At 10 mM, the order of oxalate production was fructose > glycerol > xylitol > sorbitol greater than or equal to glucose in the ratio 10 : 4 : 3 : 1 : 1. This difference between oxalate production from fructose and glucose was reflected in their rates of utilisation, glucose being poorly metabolised in hepatocytes from fasted rats. Fructose was rapidly metabolised, producing glucose, lactate and pyruvate as the major metabolites. Glycerol, xylitol and sorbitol were metabolised at half the rate of fructose, the major metabolites being glucose, lactate and glycerophosphate. The marked similarity in the pattern of intermediary metabolites produced by these polyols was not, however, reflected in the rates of oxalate production. Hepatic polyol metabolism resulted in high levels of cytosolic NADH, as indicated by elevated lactate : pyruvate and glycerophosphate : dihydroxyacetone phosphate ratios. The artificial electron acceptor, phenazine methosulphate (PMS) stimulated oxalate production from the polyols, particularly xylitol. In the presence of PMS, the order of oxalate production was fructose greater than or equal to xylitol > glycerol > sorbitol in the ratio 10 : 10 : 6 : 2. The production of glucose, lactate and pyruvate from the polyols was also stimulated by PMS, whereas the general metabolism of fructose, including oxalate production, was little affected. Oxalate (14C) was produced from (1-14C), (2-14C) and (6-14C) but not (3,4-14C) glucose in hepatocytes isolated from non-fasted, pyridoxine-deficient rats. Whilst this labelling pattern is consistent with oxalate being produced by a number of pathways, it is suggested that metabolism via hydroxypyruvate is a major route for oxalate production from various carbohydrates, with perhaps the exception of xylitol, which appears to have an alternative mechanism for oxalate production. The observation that carbohydrates, particularly fructose, contribute to endogenous oxalate production lends support to the hypothesis that a high sucrose consumption contributes to the formation of renal oxalate stones in man.
Polyol pathway, 2,3-diphosphoglycerate in erythrocytes and diabetic neuropathy in rats.
Nakamura, J; Koh, N; Sakakibara, F; Hamada, Y; Wakao, T; Hara, T; Mori, K; Nakashima, E; Naruse, K; Hotta, N
1995-12-27
The relationship between the 2,3-diphosphoglycerate concentration in red blood cells as a biological indicator of tissue hypoxia and diabetic neuropathy, and the effect of a potent aldose reductase inhibitor, (2S,4S)-6-fluoro-2'5'-dioxospiro [chroman-4,4'-imidazolidine]-2-carboxamide (SNK-860), on both were investigated in streptozotocin-induced diabetic rats. Diabetic rats demonstrated significantly delayed motor nerve conduction velocity and reduced sciatic nerve blood flow. Altered biochemical features in the sciatic nerves, including a marked accumulation of sorbitol and fructose, myo-inositol depletion and decreased Na+/K(+)-ATPase activity were also detected in diabetic rats. These defects were accompanied by a decrease in the red blood cell 2,3-diphosphoglycerate concentration. Treatment with SNK-860 partially or completely ameliorated these abnormalities. These observations suggest that a decrease in the red blood cell 2,3-diphosphoglycerate concentration is one of the factors contributing to tissue hypoxia, which results in diabetic neuropathy, and that this decrease is mediated through an aldose reductase inhibitor-sensitive pathway.
Osmotic stress response in the wine yeast Dekkera bruxellensis.
Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta
2013-12-01
Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mazzio, Elizabeth; Soliman, Karam F A
2003-01-01
1-Methyl-4-phenylpyridinium (MPP+) is a mitochondrial Complex I inhibitor and is frequently used to investigate the pathological degeneration of neurons associated with Parkinson's disease (PD). In vitro, extracellular concentration of glucose is one of the most critical factors in establishing the vulnerability of neurons to MPP+ toxicity. While glucose is the primary energy fuel for the brain, central nervous system (CNS) neurons can also take up and utilize other metabolic intermediates for energy. In this study, we compared various monosaccharides, disaccharides, nutritive/non-nutritive sugar alcohols, glycolytic and gluconeogenic metabolic intermediates for their cytoprotection against MPP+ in murine brain neuroblastoma cells. Several monosaccharides were effective against MMP+ (500 microM) including glucose, fructose and mannose, which restored cell viability to 109 +/- 5%, 70 +/- 5%, 99 +/- 3% of live controls, respectively. Slight protective effects were observed in the presence of 3-phosphoglyceric acid and glucose-6-phosphate; however, no protective effects were exhibited by galactose, sucrose, sorbitol, mannitol, glycerol or various gluconeogenic and ketogenic amino acids. On the other hand, fructose 1,6 bisphosphate and gluconeogenic energy intermediates [pyruvic acid, malic acid and phospho(enol)pyruvate (PEP)] were neuroprotective against MPP+. The gluconeogenic intermediates elevated intracellular levels of ATP and reduced propidium iodide (PI) nucleic acid staining to live controls, but did not alter the MPP(+)-induced loss of mitochondrial O2 consumption. These data indicate that malic acid, pyruvic acid and PEP contribute to anaerobic substrate level phosphorylation. The use of hydrazine sulfate to impede gluconeogenesis through PEP carboxykinase (PEPCK) inhibition heightened the protective effects of energy substrates possibly due to attenuated ATP demands from pyruvate carboxylase (PC) activity and pyruvate mitochondrial transport. It was concluded from these studies that several metabolic intermediates are effective in fueling anaerobic glycolysis during mitochondrial inhibition by MPP+.
Effect of xylitol versus sorbitol: a quantitative systematic review of clinical trials.
Mickenautsch, Steffen; Yengopal, Veerasamy
2012-08-01
This study aimed to appraise, within the context of tooth caries, the current clinical evidence and its risk for bias regarding the effects of xylitol in comparison with sorbitol. Databases were searched for clinical trials to 19 March 2011. Inclusion criteria required studies to: test a caries-related primary outcome; compare the effects of xylitol with those of sorbitol; describe a clinical trial with two or more arms, and utilise a prospective study design. Articles were excluded if they did not report computable data or did not follow up test and control groups in the same way. Individual dichotomous and continuous datasets were extracted from accepted articles. Selection and performance/detection bias were assessed. Sensitivity analysis was used to investigate attrition bias. Egger's regression and funnel plotting were used to investigate risk for publication bias. Nine articles were identified. Of these, eight were accepted and one was excluded. Ten continuous and eight dichotomous datasets were extracted. Because of high clinical heterogeneity, no meta-analysis was performed. Most of the datasets favoured xylitol, but this was not consistent. The accepted trials may be limited by selection bias. Results of the sensitivity analysis indicate a high risk for attrition bias. The funnel plot and Egger's regression results suggest a low publication bias risk. External fluoride exposure and stimulated saliva flow may have confounded the measured anticariogenic effect of xylitol. The evidence identified in support of xylitol over sorbitol is contradictory, is at high risk for selection and attrition bias and may be limited by confounder effects. Future high-quality randomised controlled trials are needed to show whether xylitol has a greater anticariogenic effect than sorbitol. © 2012 FDI World Dental Federation.
Song, Jie; Almasalmeh, Abdulnasser; Krenc, Dawid; Beitz, Eric
2012-05-01
The aquaglyceroporins of Escherichia coli, EcGlpF, and of Plasmodium falciparum, PfAQP, are probably the best characterized members of the solute-conducting aquaporin (AQP) subfamily. Their crystal structures have been elucidated and numerous experimental and theoretical analyses have been conducted. However, opposing reports on their rates of water permeability require clarification. Hence, we expressed EcGlpF and PfAQP in yeast, prepared protoplasts, and compared water and glycerol permeability of both aquaglyceroporins in the presence of different osmolytes, i.e. sucrose, sorbitol, PEG300, and glycerol. We found that water permeability of PfAQP strongly depends on the external osmolyte, with full inhibition by sorbitol, and increasing water permeability when glycerol, PEG300, and sucrose were used. EcGlpF expression did not enhance water permeability over that of non-expressing control protoplasts regardless of the osmolyte. Glycerol permeability of PfAQP was also inhibited by sorbitol, but to a smaller extent, whereas EcGlpF conducted glycerol independently of the osmolyte. Mixtures of glycerol and urea passed PfAQP equally well under isosmotic conditions, whereas under hypertonic conditions in a countercurrent with water, glycerol was clearly preferred over urea. We conclude that PfAQP has high and EcGlpF low water permeability, and explain the inhibiting effect of sorbitol on PfAQP by its binding to the extracellular vestibule. The preference for glycerol under hypertonic conditions implies that in a physiological setting, PfAQP mainly acts as a water/glycerol channel rather than a urea facilitator. Copyright © 2012 Elsevier B.V. All rights reserved.
Runnel, Riina; Mäkinen, Kauko K; Honkala, Sisko; Olak, Jana; Mäkinen, Pirkko-Liisa; Nõmmela, Rita; Vahlberg, Tero; Honkala, Eino; Saag, Mare
2013-12-01
The objective of the present paper is to report results from oral biologic studies carried out in connection with a caries study. Samples of whole-mouth saliva and dental plaque were collected from initially 7- to 8-year-old subjects who participated in a 3-year school-based programme investigating the effect of the consumption of polyol-containing candies on caries rates. The subjects were randomized in three cohorts, consumed erythritol, xylitol, or sorbitol candies. The daily polyol consumption from the candies was approximately 7.5 g. A significant reduction in dental plaque weight from baseline (p<0.05) occurred in the erythritol group during almost all intervention years while no changes were found in xylitol and sorbitol groups. Usage of polyol candies had no significant or consistent effect on the levels of plaque protein, glucose, glycerol, or calcium, determined yearly in connection with caries examinations. After three years, the plaque of erythritol-receiving subjects contained significantly (p<0.05) lower levels of acetic acid and propionic acid than that of subjects receiving xylitol or sorbitol. Lactic acid levels partly followed the same pattern. The consumption of erythritol was generally associated with significantly (p<0.05) lower counts of salivary and plaque mutans streptococci compared with the other groups. There was no change in salivary Lactobacillus levels. Three-year consumption of erythritol-containing candies by initially 7- to 8-year old children was associated with reduced plaque growth, lower levels of plaque acetic acid and propionic acid, and reduced oral counts of mutans streptococci compared with the consumption of xylitol or sorbitol candies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pathways and intermediates in forced unfolding of spectrin repeats.
Altmann, Stephan M; Grünberg, Raik G; Lenne, Pierre-François; Ylänne, Jari; Raae, Arnt; Herbert, Kristina; Saraste, Matti; Nilges, Michael; Hörber, J K Heinrich
2002-08-01
Spectrin repeats are triple-helical coiled-coil domains found in many proteins that are regularly subjected to mechanical stress. We used atomic force microscopy technique and steered molecular dynamics simulations to study the behavior of a wild-type spectrin repeat and two mutants. The experiments indicate that spectrin repeats can form stable unfolding intermediates when subjected to external forces. In the simulations the unfolding proceeded via a variety of pathways. Stable intermediates were associated to kinking of the central helix close to a proline residue. A mutant stabilizing the central helix showed no intermediates in experiments, in agreement with simulation. Spectrin repeats may thus function as elastic elements, extendable to intermediate states at various lengths.
Kaur, Ramanpreet; Vikas
2015-02-21
2-Aminopropionitrile (APN), a probable candidate as a chiral astrophysical molecule, is a precursor to amino-acid alanine. Stereochemical pathways in 2-APN are explored using Global Reaction Route Mapping (GRRM) method employing high-level quantum-mechanical computations. Besides predicting the conventional mechanism for chiral inversion that proceeds through an achiral intermediate, a counterintuitive flipping mechanism is revealed for 2-APN through chiral intermediates explored using the GRRM. The feasibility of the proposed stereochemical pathways, in terms of the Gibbs free-energy change, is analyzed at the temperature conditions akin to the interstellar medium. Notably, the stereoinversion in 2-APN is observed to be more feasible than the dissociation of 2-APN and intermediates involved along the stereochemical pathways, and the flipping barrier is observed to be as low as 3.68 kJ/mol along one of the pathways. The pathways proposed for the inversion of chirality in 2-APN may provide significant insight into the extraterrestrial origin of life.
Peifer, Susanne; Schneider, Konstantin; Nürenberg, Gudrun; Volmer, Dietrich A; Heinzle, Elmar
2012-11-01
Intermediates of the purine biosynthesis pathway play key roles in cellular metabolism including nucleic acid synthesis and signal mediation. In addition, they are also of major interest to the biotechnological industry as several intermediates either possess flavor-enhancing characteristics or are applied in medical therapy. In this study, we have developed an analytical method for quantitation of 12 intermediates from the purine biosynthesis pathway including important nucleotides and their corresponding nucleosides and nucleobases. The approach comprised a single-step acidic extraction/quenching procedure, followed by quantitative electrospray LC-MS/MS analysis. The assay was validated in terms of accuracy, precision, reproducibility, and applicability for complex biological matrices. The method was subsequently applied for determination of free intracellular pool sizes of purine biosynthetic pathway intermediates in the two Gram-positive bacteria Corynebacterium glutamicum and Corynebacterium ammoniagenes. Importantly, no ion pair reagents were applied in this approach as usually required for liquid chromatography analysis of large classes of diverse metabolites.
Rapid conversion of sorbitol to isosorbide in hydrophobic ionic liquids under microwave irradiation.
Kamimura, Akio; Murata, Kengo; Tanaka, Yoshiki; Okagawa, Tomoki; Matsumoto, Hiroshi; Kaiso, Kouji; Yoshimoto, Makoto
2014-12-01
Sorbitol was effectively converted to isosorbide by treatment with [TMPA][NTf2 ] in the presence of catalytic amounts of TsOH under microwave heating at 180 °C. The reaction completed within 10 min and isosorbide was isolated to about 60%. Ionic liquids were readily recovered by an extraction treatment and reused several times. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules.
Bacher, C; Olsen, P M; Bertelsen, P; Sonnergaard, J M
2008-02-12
The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10 size fractions between 0 and 2000 microm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate. The heterogeneous distribution of calcium carbonate was related to the decrease in compactibility of roller compacted granules in comparison to the ungranulated materials. This phenomenon was explained by a mechanism where fracturing of the ribbon during granulation occurred at the weakest interparticulate bonds (the calcium carbonate: calcium carbonate bonds) and consequently exposed the weakest areas of bond formation on the surface of the granules. Accordingly, the non-uniform allocation of the interparticulate attractive forces in a tablet would cause a lowering of the compactibility. Furthermore, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential.
Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds
Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia
2017-01-01
Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene. PMID:28322320
Hurychová, Hana; Lebedová, Václava; Šklubalová, Zdenka; Dzámová, Pavlína; Svěrák, Tomáš; Stoniš, Jan
Flowability of powder excipients is directly influenced by their size and shape although the granulometric influence of the flow and shear behaviour of particulate matter is not studied frequently. In this work, the influence of particle size on the mass flow rate through the orifice of a conical hopper, and the cohesion and flow function was studied for four free-flowable size fractions of sorbitol for direct compression in the range of 0.080-0.400 mm. The particles were granulometricaly characterized using an optical microscopy; a boundary fractal dimension of 1.066 was estimated for regular sorbitol particles. In the particle size range studied, a non-linear relationship between the mean particle size and the mass flow rate Q10 (g/s) was detected having amaximum at the 0.245mm fraction. The best flow properties of this fraction were verified with aJenike shear tester due to the highest value of flow function and the lowest value of the cohesion. The results of this work show the importance of the right choice of the excipient particle size to achieve the best flow behaviour of particulate material.Key words: flowability size fraction sorbitol for direct compaction Jenike shear tester fractal dimension.
Modulating β-lactoglobulin nanofibril self-assembly at pH 2 using glycerol and sorbitol.
Dave, Anant C; Loveday, Simon M; Anema, Skelte G; Jameson, Geoffrey B; Singh, Harjinder
2014-01-13
β-Lactoglobulin (β-lg) forms fibrils when heated at 80 °C, pH 2, and low ionic strength (<0.015 mM). When formed at protein concentrations <3%, these fibrils are made up of peptides produced from the acid hydrolysis of the β-lg monomer. The present study investigated the effects of the polyhydroxy alcohols (polyols) glycerol and sorbitol (0-50% w/v) on β-lg self-assembly at pH 2. Glycerol and sorbitol stabilize native protein structure and modulate protein functionality by preferential exclusion. In our study, both polyols decreased the rate of β-lg self-assembly but had no effect on the morphology of fibrils. The mechanism of these effects was studied using circular dichroism spectroscopy and SDS-PAGE. Sorbitol inhibited self-assembly by stabilizing β-lg against unfolding and hydrolysis, resulting in fewer fibrillogenic species, whereas glycerol inhibited nucleation without inhibiting hydrolysis. Both polyols increased the viscosity of the solutions, but viscosity appeared to have little effect on fibril assembly, and we believe that self-assembly was not diffusion-limited under these conditions. This is in agreement with previous reports for other proteins assembling under different conditions. The phenomenon of peptide self-assembly can be decoupled from protein hydrolysis using glycerol.
Wang, Ding; Niu, Wenqi; Tan, Minghui; Wu, Mingbo; Zheng, Xuejun; Li, Yanpeng; Tsubaki, Noritatsu
2014-05-01
Pt nanocatalysts loaded on reduced graphene oxide (Pt/RGO) were prepared by means of a convenient microwave-assisted reduction approach with ethylene glycol as reductant. The conversion of cellulose or cellobiose into sorbitol was used as an application reaction to investigate their catalytic performance. Various metal nanocatalysts loaded on RGO were compared and RGO-supported Pt exhibited the highest catalytic activity with 91.5 % of sorbitol yield from cellobiose. The catalytic performances of Pt nanocatalysts supported on different carbon materials or on silica support were also compared. The results showed that RGO was the best catalyst support, and the yield of sorbitol was as high as 91.5 % from cellobiose and 58.9 % from cellulose, respectively. The improvement of catalytic activity was attributed to the appropriate Pt particle size and hydrogen spillover effect of Pt/RGO catalyst. Interestingly, the size and dispersion of supported Pt particles could be easily regulated by convenient adjustment of the microwave heating temperature. The catalytic performance was found to initially increase and then decrease with increasing particle size. The optimum Pt particle size was 3.6 nm. These findings may offer useful guidelines for designing novel catalysts with beneficial catalytic performance for biomass conversion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yennawar, Hemant; Møller, Magda; University of Copenhagen, DK-2100 Copenhagen
The X-ray crystal structure and a small-angle X-ray scattering solution structure of sheep liver sorbitol dehydrogenase have been determined. The details of the interactions that enable the tetramer scaffold to be the functional biological unit have been analyzed. The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer that superposes well with that seen in hSDH (despite belonging to a different space group) and obeying the 222 crystalmore » symmetry is seen in slSDH. An acetate molecule is bound in the active site, coordinating to the active-site zinc through a water molecule. Glycerol, a substrate of slSDH, also occupies the substrate-binding pocket together with the acetate designed by nature to fit large polyol substrates. The substrate-binding pocket is seen to be in close proximity to the tetramer interface, which explains the need for the structural integrity of the tetramer for enzyme activity. Small-angle X-ray scattering was also used to identify the quaternary structure of the tetramer of slSDH in solution.« less
USDA-ARS?s Scientific Manuscript database
Fumonisins are polyketide mycotoxins produced by the maize pathogen Fusarium verticillioides and are associated with multiple human and animal diseases. A fumonisin biosynthetic pathway has been proposed, but structures of early pathway intermediates have not been demonstrated. The F. verticillioide...
Fructokinase activity mediates dehydration-induced renal injury.
Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J
2014-08-01
The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.
Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D
2017-09-15
Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater increase in lumbar sympathetic nerve activity (SNA), adrenal SNA and ABP than equi-osmotic sorbitol (2.0 osmol l -1 ). Second, OVLT microinjection (20 nl) of 1.0 m NaCl significantly raised lumbar SNA, adrenal SNA and ABP. Equi-osmotic sorbitol did not alter any variable. Third, in vitro whole-cell recordings demonstrate that 50% (18/36) of OVLT neurons display an increased discharge to both hypertonic NaCl (+7.5 mm) and mannitol (+15 mm). Of these neurons, 56% (10/18) displayed a greater discharge response to hypertonic NaCl vs mannitol. Fourth, in vivo single-unit recordings revealed that intracarotid injection of hypertonic NaCl produced a concentration-dependent increase in OVLT cell discharge, lumbar SNA and ABP. The responses to equi-osmotic infusions of hypertonic sorbitol were significantly smaller. Lastly, icv infusion of 0.5 m NaCl produced significantly greater increases in OVLT discharge and ABP than icv infusion of equi-osmotic sorbitol. Collectively, these findings indicate NaCl and osmotic stimuli produce different responses across OVLT neurons and may represent distinct cellular processes to regulate thirst, vasopressin secretion and autonomic function. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Sang-aroon, Wichien; Amornkitbamrung, Vittaya; Ruangpornvisuti, Vithaya
2013-12-01
In this work, peptide bond cleavages at carboxy- and amino-sides of the aspartic residue in a peptide model via direct (concerted and step-wise) and cyclic intermediate hydrolysis reaction pathways were explored computationally. The energetics, thermodynamic properties, rate constants, and equilibrium constants of all hydrolysis reactions, as well as their energy profiles were computed at the B3LYP/6-311++G(d,p) level of theory. The result indicated that peptide bond cleavage of the Asp residue occurred most preferentially via the cyclic intermediate hydrolysis pathway. In all reaction pathways, cleavage of the peptide bond at the amino-side occurred less preferentially than at the carboxy-side. The overall reaction rate constants of peptide bond cleavage of the Asp residue at the carboxy-side for the assisted system were, in increasing order: concerted < step-wise < cyclic intermediate.
Selective electrocatalytic oxidation of sorbitol to fructose and sorbose.
Kwon, Youngkook; de Jong, Ed; van der Waal, Jan Kees; Koper, Marc T M
2015-03-01
A new electrocatalytic method for the selective electrochemical oxidation of sorbitol to fructose and sorbose is demonstrated by using a platinum electrode promoted by p-block metal atoms. By the studying a range of C4, C5 and C6 polyols, it is found that the promoter interferes with the stereochemistry of the polyol and thereby modifies its reactivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Psurek, T.; Maslanka, S.; Paluch, M.; Nozaki, R.; Ngai, K. L.
2004-07-01
Dielectric spectroscopy was employed to study the effects of water on the primary α -relaxation and the secondary β -relaxation of xylitol. The measurements were made on anhydrous xylitol and mixtures of xylitol with water with three different water concentrations over a temperature range from 173K to 293K . The α -relaxation speeds up with increasing concentration of water in xylitol, whereas the rate of the β -relaxation is essentially unchanged. Some systematic differences in the behavior of α -relaxation for anhydrous xylitol and the mixtures were observed. Our findings confirm all the observations of Nozaki [R. Nozaki, H. Zenitani, A. Minoguchi, and K. Kitai, J. Non-Cryst. Solids 307, 349 (2002)] in sorbitol/water mixtures. Effects of water on both the α - and β -relaxation dynamics in xylitol and sorbitol are explained by using the coupling model.
Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts
Guo, Xingcui; Guan, Jing; Li, Bin; Wang, Xicheng; Mu, Xindong; Liu, Huizhou
2015-01-01
Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered metal-support interactions and electronic state of ruthenium. Ru located outside of the tubes showed excellent catalytic performance than those encapsulated inside the nanotubes. Additionally, the introduction of WOx into Ru/CNTs significantly improved the hydrogenolysis activities, and a complete conversion of sorbitol with up to 60.2% 1,2-PD and EG yields was obtained on RuWOx/CNTs catalyst upon addition of Ca(OH)2. Stability study showed that this catalyst was highly stable against leaching and poisoning and could be recycled several times. PMID:26578426
Preparation of Modified Films with Protein from Grouper Fish
Tecante, A.; Granados-Navarrete, S.; Martínez-García, C.
2016-01-01
A protein concentrate (PC) was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts), and glucono-δ-lactone (GDL) with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v) protein and 75% sorbitol and 4% (w/v) protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials. PMID:27597950
NASA Astrophysics Data System (ADS)
Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.
2011-05-01
Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.
Gas phase synthesis of core-shell Fe@FeO x magnetic nanoparticles into fluids
NASA Astrophysics Data System (ADS)
Aktas, Sitki; Thornton, Stuart C.; Binns, Chris; Denby, Phil
2016-12-01
Sorbitol, short chain molecules, have been used to stabilise of Fe@FeO x nanoparticles produced in the gas phase under the ultra-high vacuum (UHV) conditions. The sorbitol coated Fe@FeO x nanoparticles produced by our method have a narrow size distribution with a hydrodynamic diameter of 35 nm after NaOH is added to the solution. Magnetisation measurement shows that the magnetic nanoparticles are superparamagnetic at 100 K and demonstrate hysteresis at 5 K with an anisotropy constant of 5.31 × 104 J/m3 (similar to bulk iron). Also, it is shown that sorbitol is only suitable for stabilising the Fe@FeO x suspensions, and it does not prevent further oxidation of the metallic Fe core. According to MRI measurement, the nanoparticles have a high transverse relaxation rate of 425 mM-1 s-1.
Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts
NASA Astrophysics Data System (ADS)
Guo, Xingcui; Guan, Jing; Li, Bin; Wang, Xicheng; Mu, Xindong; Liu, Huizhou
2015-11-01
Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered metal-support interactions and electronic state of ruthenium. Ru located outside of the tubes showed excellent catalytic performance than those encapsulated inside the nanotubes. Additionally, the introduction of WOx into Ru/CNTs significantly improved the hydrogenolysis activities, and a complete conversion of sorbitol with up to 60.2% 1,2-PD and EG yields was obtained on RuWOx/CNTs catalyst upon addition of Ca(OH)2. Stability study showed that this catalyst was highly stable against leaching and poisoning and could be recycled several times.
Effect of Plasticizers on Physicochemical and Mechanical Properties of Chitosan-Gelatin Films
NASA Astrophysics Data System (ADS)
Manshor, N. Mohammed; Rezali, M. I.; Jai, J.; Yahya, A.
2018-05-01
Composite chitosan-gelatin films were produced to investigate the effect of plasticizer and composition of chitosan and gelatin on physicochemical and mechanical properties of the films. The films were prepared according to ratio of chitosan: gelatin of 1:1, 1:2 and 2:1. For each film, glycerol, sorbitol and sucrose were added as plasticizer. The film forming solution was poured on a glass plate and dried for 12 hours in an oven at 60°C. The highest tensile strength was 4.04 MPa for films of ratio 2:1 plasticized with glycerol compared to sorbitol and sucrose which were 3.94 MPa and 3.84 MPa, respectively. However, films plasticized with sorbitol at ratio of 1:2 had the highest percent elongation which was 68.20%, followed by glycerol and sucrose which were 26.51% and 24.08%, respectively.
Nobigrot, T; Chasalow, F I; Lifshitz, F
1997-04-01
To test the hypotheses that: the efficiency of carbohydrate absorption in childhood increases with age, and decreased carbohydrate absorption occurs more frequently with juices containing more fructose than glucose and/or sorbitol than with juices which contain equal amounts of fructose and glucose and are sorbitol-free. One hundred and four healthy children were recruited from the Ambulatory Center at Maimonides Children's Center. They were assigned to one of three age groups: approximately 1, 3 and 5 years of age. Each child received one age-specific dose (by randomization) of one of four juices: a) pear juice which contains fructose in excess to glucose and a large amount of sorbitol; b) apple juice which is similar to pear juice in its fructose to glucose ratio but contains four times less sorbitol than pear juice; c) white grape juice or d) purple grape juice both of which contain equal amounts of fructose and glucose and are sorbitol-free. Breath hydrogen excretion (BH2) was utilized as the index of carbohydrate absorption. It was measured in fasting children and at 30-minute intervals for 3 hours after drinking the single serving of juice. Multiple breath hydrogen related parameters were quantified and results were expressed as: BH2 peak, area under the curve, and degree of carbohydrate malabsorption. After the test, parents completed a questionnaire and recorded signs and symptoms of intestinal malabsorption for 24 hours. Pear juice related BH2 levels were significantly higher among children 1 and 3 years of age as compared to the levels achieved after the other juices. Apple juice related BH2 levels were significantly higher only among the youngest age group of children. There was no significant difference in carbohydrate absorption among the 5 year old children regardless of the juice consumed. Incomplete carbohydrate absorption (BH2 peak above 20 ppm) occurred more frequently after pear juice consumption (84%) than after apple juice (41%) or grape juice (white 20%, purple 24%) [p < 0.05]. Further outcome measures of BH2 excretion did not elicit differences beyond those detected by the above-mentioned parameters. Parents reported diarrhea in six children after pear juice, two after apple juice and two after purple grape juice and these children had the highest BH2 levels in their respective groups. No other symptoms were reported. The data show that the efficiency of carbohydrate absorption of one age-specific serving of juice increases with advancing age of children. Decreased carbohydrate absorption occurs more often after ingestion of juices that contain more sorbitol, a nonabsorbable sugar and higher concentrations of fructose over glucose than after ingestion of juices which lack sorbitol and contain equal amounts of fructose and glucose.
Ushimaru, Richiro; Lin, Chia-I; Sasaki, Eita; Liu, Hung-Wen
2016-09-02
Lincosamides such as lincomycin A, celesticetin, and Bu-2545, constitute an important group of antibiotics. These natural products are characterized by a thiooctose linked to a l-proline residue, but they differ with regards to modifications of the thioacetal moiety, the pyrrolidine ring, and the octose core. Here we report that the pyridoxal 5'-phosphate-dependent enzyme CcbF (celesticetin biosynthetic pathway) is a decarboxylating deaminase that converts a cysteine S-conjugated intermediate into an aldehyde. In contrast, the homologous enzyme LmbF (lincomycin biosynthetic pathway) catalyzes C-S bond cleavage of the same intermediate to afford a thioglycoside. We show that Ccb4 and LmbG (downstream methyltransferases) convert the aldehyde and thiol intermediates into a variety of methylated lincosamide compounds including Bu-2545. The substrates used in these studies are the β-anomers of the natural substrates. The findings not only provide insight into how the biosynthetic pathway of lincosamide antibiotics can bifurcate to generate different lincosamides, but also reveal the promiscuity of the enzymes involved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A directed-overflow and damage-control N -glycosidase in riboflavin biosynthesis
Frelin, Océane; Huang, Lili; Hasnain, Ghulam; ...
2015-02-15
Plants and bacteria synthesize the essential human micronutrient riboflavin (vitamin B2) via the same multistep pathway. The early intermediates of this pathway are notoriously reactive, and may be overproduced in vivo because riboflavin biosynthesis enzymes lack feedback controls. Here we demonstrate disposal of riboflavin intermediates by COG3236 (DUF1768), a protein of previously unknown function that is fused to two different riboflavin pathway enzymes in plants and bacteria (RIBR and RibA, respectively). We present cheminformatic, biochemical, genetic, and genomic evidence to show that: (i) plant and bacterial COG3236 proteins cleave the N-glycosidic bond of the first two intermediates of riboflavin biosynthesis,more » yielding relatively innocuous products; (ii) certain COG3236 proteins are in a multienzyme riboflavin biosynthesis complex that gives them privileged access to riboflavin intermediates; and (iii) COG3236 action in Arabidopsis thaliana and Escherichia coli helps maintain flavin levels. We find COG3236 proteins thus illustrate two emerging principles in chemical biology: directed overflow metabolism, in which excess flux is diverted out of a pathway, and the pre-emption of damage from reactive metabolites.« less
Metabolomic analysis of pancreatic β-cell insulin release in response to glucose.
Huang, Mei; Joseph, Jamie W
2012-01-01
Defining the key metabolic pathways that are important for fuel-regulated insulin secretion is critical to providing a complete picture of how nutrients regulate insulin secretion. We have performed a detailed metabolomics study of the clonal β-cell line 832/13 using a gas chromatography-mass spectrometer (GC-MS) to investigate potential coupling factors that link metabolic pathways to insulin secretion. Mid-polar and polar metabolites, extracted from the 832/13 β-cells, were derivatized and then run on a GC/MS to identify and quantify metabolite concentrations. Three hundred fifty-five out of 527 chromatographic peaks could be identified as metabolites by our metabolomic platform. These identified metabolites allowed us to perform a systematic analysis of key pathways involved in glucose-stimulated insulin secretion (GSIS). Of these metabolites, 41 were consistently identified as biomarker for GSIS by orthogonal partial least-squares (OPLS). Most of the identified metabolites are from common metabolic pathways including glycolytic, sorbitol-aldose reductase pathway, pentose phosphate pathway, and the TCA cycle suggesting these pathways play an important role in GSIS. Lipids and related products were also shown to contribute to the clustering of high glucose sample groups. Amino acids lysine, tyrosine, alanine and serine were upregulated by glucose whereas aspartic acid was downregulated by glucose suggesting these amino acids might play a key role in GSIS. In summary, a coordinated signaling cascade elicited by glucose metabolism in pancreatic β-cells is revealed by our metabolomics platform providing a new conceptual framework for future research and/or drug discovery.
Sapra, K. Tanuj; Balasubramanian, G. Prakash; Labudde, Dirk; Bowie, James U.; Muller, Daniel J.
2009-01-01
Using single-molecule force spectroscopy, we investigated the effect of single point mutations on the energy landscape and unfolding pathways of the transmembrane protein bacteriorhodopsin. We show that the unfolding energy barriers in the energy landscape of the membrane protein followed a simple two-state behavior and represent a manifestation of many converging unfolding pathways. Although the unfolding pathways of wild-type and mutant bacteriorhodopsin did not change, indicating the presence of same ensemble of structural unfolding intermediates, the free energies of the rate-limiting transition states of the bacteriorhodopsin mutants decreased as the distance of those transition states to the folded intermediate states decreased. Thus, all mutants exhibited Hammond behavior and a change in the free energies of the intermediates along the unfolding reaction coordinate and, consequently, their relative occupancies. This is the first experimental proof showing that point mutations can reshape the free energy landscape of a membrane protein and force single proteins to populate certain unfolding pathways over others. PMID:18191146
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Ramanpreet; Vikas, E-mail: qlabspu@pu.ac.in, E-mail: qlabspu@yahoo.com
2015-02-21
2-Aminopropionitrile (APN), a probable candidate as a chiral astrophysical molecule, is a precursor to amino-acid alanine. Stereochemical pathways in 2-APN are explored using Global Reaction Route Mapping (GRRM) method employing high-level quantum-mechanical computations. Besides predicting the conventional mechanism for chiral inversion that proceeds through an achiral intermediate, a counterintuitive flipping mechanism is revealed for 2-APN through chiral intermediates explored using the GRRM. The feasibility of the proposed stereochemical pathways, in terms of the Gibbs free-energy change, is analyzed at the temperature conditions akin to the interstellar medium. Notably, the stereoinversion in 2-APN is observed to be more feasible than themore » dissociation of 2-APN and intermediates involved along the stereochemical pathways, and the flipping barrier is observed to be as low as 3.68 kJ/mol along one of the pathways. The pathways proposed for the inversion of chirality in 2-APN may provide significant insight into the extraterrestrial origin of life.« less
Li, Qingyan; Fan, Feiyu; Gao, Xiang; Yang, Chen; Bi, Changhao; Tang, Jinlei; Liu, Tao; Zhang, Xueli
2017-11-01
The MEP pathway genes were modulated to investigate whether there were new rate-limiting steps and toxic intermediates in this pathway. Activating IspG led to significant decrease of cell growth and β-carotene production. It was found that ispG overexpression led to accumulation of intermediate HMBPP, which seriously interfered with synthesis machinery of nucleotide and protein in Escherichia coli. Activation of the downstream enzyme IspH could solve HMBPP accumulation problem and eliminate the negative effects of ispG overexpression. In addition, intermediate MECPP accumulated in the starting strain, while balanced activation of IspG and IspH could push the carbon flux away from MECPP and led to 73% and 77% increase of β-carotene and lycopene titer respectively. Our work for the first time identified HMBPP to be a cytotoxic intermediate in MEP pathway and demonstrated that balanced activation of IspG and IspH could eliminate accumulation of HMBPP and MECPP and improve isoprenoids production. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Synthetic Routes to Methylerythritol Phosphate Pathway Intermediates and Downstream Isoprenoids
Jarchow-Choy, Sarah K; Koppisch, Andrew T; Fox, David T
2014-01-01
Isoprenoids constitute the largest class of natural products with greater than 55,000 identified members. They play essential roles in maintaining proper cellular function leading to maintenance of human health, plant defense mechanisms against predators, and are often exploited for their beneficial properties in the pharmaceutical and nutraceutical industries. Most impressively, all known isoprenoids are derived from one of two C5-precursors, isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). In order to study the enzyme transformations leading to the extensive structural diversity found within this class of compounds there must be access to the substrates. Sometimes, intermediates within a biological pathway can be isolated and used directly to study enzyme/pathway function. However, the primary route to most of the isoprenoid intermediates is through chemical catalysis. As such, this review provides the first exhaustive examination of synthetic routes to isoprenoid and isoprenoid precursors with particular emphasis on the syntheses of intermediates found as part of the 2C-methylerythritol 4-phosphate (MEP) pathway. In addition, representative syntheses are presented for the monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), triterpenes (C30) and tetraterpenes (C40). Finally, in some instances, the synthetic routes to substrate analogs found both within the MEP pathway and downstream isoprenoids are examined. PMID:25009443
Plasticized methylcellulose coating for reducing oil uptake in potato chips.
Tavera-Quiroz, María José; Urriza, Marina; Pinotti, Adriana; Bertola, Nora
2012-05-01
As a result of consumers' health concerns and the trend towards healthier and low-fat food products, research has been undertaken to reduce the amount of fat absorbed in fried foods. This work focused on studying the efficacy of sorbitol and glycerol as plasticizers of methylcellulose coatings used to reduce oil uptake during the frying process of potato chips Changes in color, mechanical properties, water activity and lipid oxidation during storage were monitored. Also, an explanation regarding the different performances between both methylcellulose coatings with and without plasticizer was attained and techniques from the field of packaging films such as dynamic mechanical analyzer (DMA) and Fourier transform infrared spectroscopy were applied to analyze the behavior of coatings submitted to the frying operation. The application of a methylcellulose coating was an adequate choice to reduce oil absorption in fried potato chips. The most effective formulation was 10 g L(-1) methylcellulose with the addition of 7.5 g L(-1) sorbitol. With the incorporation of this formulation, oil absorption was reduced by 30%. Neither the sorbitol concentration nor the presence of the MC coating affected the puncture maximum force and color parameters L and a*. The results of the sensory analysis indicated that the panelists could not distinguish between the coated and uncoated potato chips. Methylcellulose-based coating plasticized with sorbitol could be an alternative for obtaining healthier potato chips. Copyright © 2011 Society of Chemical Industry.
Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains.
Almståhl, Annica; Lingström, Peter; Eliasson, Lars; Carlén, Anette
2013-07-01
The objective was to analyse the ability of Lactobacillus strains isolated from supragingival plaque of subjects with hyposalivation and from healthy controls to ferment sugars and sugar alcohols. Fifty strains isolated from interproximal plaque from subjects with radiation-induced hyposalivation (25 strains), subjects with primary Sjögren's syndrome (16 strains) and from subjects with normal salivary secretion rate (9 strains) were tested. Growth and pH were determined after 24 and 48 h of anaerobic incubation in vials containing basal media with 1 % of glucose, fructose, sucrose, mannitol, sorbitol or xylitol. No differences between strains isolated from hyposalivated subjects and controls were detected. All strains lowered the pH to <5.0 from fructose and the majority of the strains from glucose and sucrose. A pH of <5.5 was seen for 52 % of the strains using mannitol, 50 % using sorbitol and 36 % using xylitol. The ability to produce acids from sugars and sugar alcohols was highest among strains of Lactobacillus rhamnosus, Lactobacillus casei and Lactobacillus paracasei and lowest among Lactobacillus fermentum strains. A large number of Lactobacillus strains are able to ferment not only sugars but also the sugar substitutes mannitol, sorbitol and xylitol to pH levels critical for enamel demineralisation. Our findings suggest that products containing mannitol, sorbitol and/or xylitol may contribute to the acidogenic potential of the dental plaque and especially in hyposalivated subjects with high numbers of lactobacilli.
Rathnasekara, Renuka; El Rassi, Ziad
2017-07-28
Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.
Herrera, María; Tattini, Virgilio; Pitombo, Ronaldo N M; Gutiérrez, José María; Borgognoni, Camila; Vega-Baudrit, José; Solera, Federico; Cerdas, Maykel; Segura, Alvaro; Villalta, Mauren; Vargas, Mariángela; León, Guillermo
2014-11-01
Freeze-drying is used to improve the long term stability of pharmaceutical proteins. Sugars and polyols have been successfully used in the stabilization of proteins. However, their use in the development of freeze-dried antivenoms has not been documented. In this work, whole IgG snake antivenom, purified from equine plasma, was formulated with different concentrations of sorbitol, sucrose or mannitol. The glass transition temperatures of frozen formulations, determined by Differential Scanning Calorimetry (DSC), ranged between -13.5 °C and -41 °C. In order to evaluate the effectiveness of the different stabilizers, the freeze-dried samples were subjected to an accelerated stability test at 40 ± 2 °C and 75 ± 5% relative humidity. After six months of storage at 40 °C, all the formulations presented the same residual humidity, but significant differences were observed in turbidity, reconstitution time and electrophoretic pattern. Moreover, all formulations, except antivenoms freeze-dried with mannitol, exhibited the same potency for the neutralization of lethal effect of Bothrops asper venom. The 5% (w:v) sucrose formulation exhibited the best stability among the samples tested, while mannitol and sorbitol formulations turned brown. These results suggest that sucrose is a better stabilizer than mannitol and sorbitol in the formulation of freeze-dried antivenoms under the studied conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Asria, Merry; Elizarni, Samah, dan Selfa Dewati
2015-12-01
Plastics have been generally used for food packaging, but plastics using causing environmental problem for as non biodegradable. Resolving the problem need another alternative packaging that environmental friendly such as the edible film as biodegradable packing material. This research intend to determination the effects of sorbitol and glycerol (concentration of 1%, 2%, 3%, and 4%) as addition to the edible film characteristics from the belitung taro starch (Xanthosoma sagitifolium). Lime leaves (Citrus aurantifolia) extract used as an antimicrobial film (2%, 4%, 6%, 8%, and 10% respectively). From the research obtained that using sorbitol has given more rigid and hard film texture, while glycerol provides more elastic and flexible texture. Sorbitol give best performance at 2% where thickness 0.17 mm; tensile strength 41.60 MPa; yield strength 34.28 MPa; modulus of elasticity 7983.71 MPa; and maximum strain 29,8%. While, glycerol (2%) provides thickness 0.18 mm; tensile strength 35.72 MPa; yield strength 30.78 MPa; modulus of elasticity 9065.90 MPa; and maximum strain 14.4% for best performance. SEM and FTIR analysis applied to determine film surface morphology's characterization and determine the functional groups of the film materials. The addition of lime leaves extract as antimicrobial gives the growth inhibition activity against the Staphylococcus aureus bacteria.
Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed.
Wang, Xiu-Ling; Hu, Zi-Ying; You, Chun-Xiang; Kong, Xiu-Zhen; Shi, Xiao-Pu
2013-09-01
Sorbitol is the primary photosynthate and translocated carbohydrate in fruit trees of the Rosaceae family. NAD(+)-dependent sorbitol dehydrogenase (NAD-SDH, EC 1.1.1.14), which mainly catalyzes the oxidation of sorbitol to fructose, plays a key role in regulating sink strength in apple. In this study, we found that apple NAD-SDH was ubiquitously distributed in epidermis, parenchyma, and vascular bundle in developing cotyledon. NAD-SDH was localized in the cytosol, the membranes of endoplasmic reticulum and vesicles, and the vacuolar lumen in the cotyledon at the middle stage of seed development. In contrast, NAD-SDH was mainly distributed in the protein storage vacuoles in cotyledon at the late stage of seed development. Sequence analysis revealed there is a putative signal peptide (SP), also being predicated to be a transmembrane domain, in the middle of proteins of apple NAD-SDH isoforms. To investigate whether the putative internal SP functions in the vacuolar targeting of NAD-SDH, we analyzed the localization of the SP-deletion mutants of MdSDH5 and MdSDH6 (two NAD-SDH isoforms in apple) by the transient expression system in Arabidopsis protoplasts. MdSDH5 and MdSDH6 were not localized in the vacuoles after their SPs were deleted, suggesting the internal SP functions in the vacuolar targeting of apple NAD-SDH. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Xu, Sha; Wang, Xiaobei; Du, Guocheng; Zhou, Jingwen; Chen, Jian
2014-10-18
Production of L-sorbose from D-sorbitol by Gluconobacter oxydans is the first step to produce L-ascorbic acid on industrial scale. The sldhAB gene, which encodes the sorbitol dehydrogenase (SLDH), was overexpressed in an industrial strain G. oxydans WSH-003 with a strong promoter, P tufB . To enhance the mRNA abundance, a series of artificial poly(A/T) tails were added to the 3'-terminal of sldhAB gene. Besides, their role in sldhAB overexpression and their subsequent effects on L-sorbose production were investigated. The mRNA abundance of the sldhAB gene could be enhanced in G. oxydans by suitable poly(A/T) tails. By self-overexpressing the sldhAB gene in G. oxydans WSH-003 with an optimal poly(A/T) tail under the constitutive promoter P tufB , the titer and the productivity of L-sorbose were enhanced by 36.3% and 25.0%, respectively, in a 1-L fermenter. Immobilization of G. oxydans-sldhAB6 cells further improved the L-sorbose titer by 33.7% after 20 days of semi-continuous fed-batch fermentation. The artificial poly(A/T) tails could significantly enhance the mRNA abundance of the sldhAB. Immobilized G. oxydans-sldhAB6 cells could further enlarge the positive effect caused by enhanced mRNA abundance of the sldhAB.
Building polyhedra by self-assembly: theory and experiment.
Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind
2014-01-01
We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.
Substrate specificity of sheep liver sorbitol dehydrogenase.
Lindstad, R I; Köll, P; McKinley-McKee, J S
1998-01-01
The substrate specificity of sheep liver sorbitol dehydrogenase has been studied by steady-state kinetics over the range pH 7-10. Sorbitol dehydrogenase stereo-selectively catalyses the reversible NAD-linked oxidation of various polyols and other secondary alcohols into their corresponding ketones. The kinetic constants are given for various novel polyol substrates, including L-glucitol, L-mannitol, L-altritol, D-altritol, D-iditol and eight heptitols, as well as for many aliphatic and aromatic alcohols. The maximum velocities (kcat) and the substrate specificity-constants (kcat/Km) are positively correlated with increasing pH. The enzyme-catalysed reactions occur by a compulsory ordered kinetic mechanism with the coenzyme as the first, or leading, substrate. With many substrates, the rate-limiting step for the overall reaction is the enzyme-NADH product dissociation. However, with several substrates there is a transition to a mechanism with partial rate-limitation at the ternary complex level, especially at low pH. The kinetic data enable the elucidation of new empirical rules for the substrate specificity of sorbitol dehydrogenase. The specificity-constants for polyol oxidation vary as a function of substrate configuration with D-xylo> D-ribo > L-xylo > D-lyxo approximately L-arabino > D-arabino > L-lyxo. Catalytic activity with a polyol or an aromatic substrate and various 1-deoxy derivatives thereof varies with -CH2OH > -CH2NH2 > -CH2OCH3 approximately -CH3. The presence of a hydroxyl group at each of the remaining chiral centres of a polyol, apart from the reactive C2, is also nonessential for productive ternary complex formation and catalysis. A predominantly nonpolar enzymic epitope appears to constitute an important structural determinant for the substrate specificity of sorbitol dehydrogenase. The existence of two distinct substrate binding regions in the enzyme active site, along with that of the catalytic zinc, is suggested to account for the lack of stereospecificity at C2 in some polyols. PMID:9461546
Near-infrared imaging of water in human hair.
Egawa, Mariko; Hagihara, Motofumi; Yanai, Motohiro
2013-02-01
The water content of hair can be evaluated by weighing, the Karl Fischer method, and from electrical properties. However, these methods cannot be used to study the distribution of water in the hair. Imaging techniques are required for this purpose. In this study, a highly sensitive near-infrared (NIR) imaging system was developed for evaluating water in human hair. The results obtained from NIR imaging and conventional methods were compared. An extended indium-gallium-arsenide NIR camera (detection range: 1100-2200 nm) and diffuse illumination unit developed in our laboratory were used to obtain a NIR image of hair. A water image was obtained using a 1950-nm interference filter and polarization filter. Changes in the hair water content with relative humidity (20-95% RH) and after immersion in a 7% (w/w) sorbitol solution were measured using the NIR camera and an insulation resistance tester. The changes in the water content after treatment with two types of commercially available shampoo were also measured using the NIR camera. As the water content increased with changes in the relative humidity, the brightness of the water image decreased and the insulation resistance decreased. The brightness in the NIR image of hair treated with sorbitol solution was lower than that in the image of hair treated with water. This shows the sorbitol-treated hair contains more water than water-treated hair. The sorbitol-treated hair had a lower resistance after treatment than before, which also shows that sorbitol treatment increases the water content. With this system, we could detect a difference in the moisturizing effect between two commercially available shampoos. The highly sensitive imaging system could be used to study water in human hair. Changes in the water content of hair depended on the relative humidity and treatment with moisturizer. The results obtained using the NIR imaging system were similar to those obtained using a conventional method. Our system could detect differences in the moisturizing effects of two commercially available shampoos. © 2012 John Wiley & Sons A/S.
Competing Pathways and Multiple Folding Nuclei in a Large Multidomain Protein, Luciferase.
Scholl, Zackary N; Yang, Weitao; Marszalek, Piotr E
2017-05-09
Proteins obtain their final functional configuration through incremental folding with many intermediate steps in the folding pathway. If known, these intermediate steps could be valuable new targets for designing therapeutics and the sequence of events could elucidate the mechanism of refolding. However, determining these intermediate steps is hardly an easy feat, and has been elusive for most proteins, especially large, multidomain proteins. Here, we effectively map part of the folding pathway for the model large multidomain protein, Luciferase, by combining single-molecule force-spectroscopy experiments and coarse-grained simulation. Single-molecule refolding experiments reveal the initial nucleation of folding while simulations corroborate these stable core structures of Luciferase, and indicate the relative propensities for each to propagate to the final folded native state. Both experimental refolding and Monte Carlo simulations of Markov state models generated from simulation reveal that Luciferase most often folds along a pathway originating from the nucleation of the N-terminal domain, and that this pathway is the least likely to form nonnative structures. We then engineer truncated variants of Luciferase whose sequences corresponded to the putative structure from simulation and we use atomic force spectroscopy to determine their unfolding and stability. These experimental results corroborate the structures predicted from the folding simulation and strongly suggest that they are intermediates along the folding pathway. Taken together, our results suggest that initial Luciferase refolding occurs along a vectorial pathway and also suggest a mechanism that chaperones may exploit to prevent misfolding. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Lee, Jin; Lee, Hae-In; Seo, Kown-Il; Cho, Hyun Wook; Kim, Myung-Joo; Park, Eun-Mi; Lee, Mi-Kyung
2014-07-01
Ursolic acid (UA) is a pentacyclic triterpenoid compound that naturally occurs in fruits, leaves and flowers of medicinal herbs. This study investigated the dose-response efficacy of UA (0.01 and 0.05%) on glucose metabolism, the polyol pathway and dyslipidemia in streptozotocin/nicotinamide-induced diabetic mice. Supplement with both UA doses reduced fasting blood glucose and plasma triglyceride levels in non-obese type 2 diabetic mice. High-dose UA significantly lowered plasma free fatty acid, total cholesterol and VLDL-cholesterol levels compared with the diabetic control mice, while LDL-cholesterol levels were reduced with both doses. UA supplement effectively decreased hepatic glucose-6-phosphatase activity and increased glucokinase activity, the glucokinase/glucose-6-phosphatase ratio, GLUT2 mRNA levels and glycogen content compared with the diabetic control mice. UA supplement attenuated hyperglycemia-induced renal hypertrophy and histological changes. Renal aldose reductase activity was higher, whereas sorbitol dehydrogenase activity was lower in the diabetic control group than in the non-diabetic group. However, UA supplement reversed the biochemical changes in polyol pathway to normal values. These results demonstrated that low-dose UA had preventive potency for diabetic renal complications, which could be mediated by changes in hepatic glucose metabolism and the renal polyol pathway. High-dose UA was more effective anti-dyslipidemia therapy in non-obese type 2 diabetic mice.
L-arabinose metabolism in Herbaspirillum seropedicae.
Mathias, A L; Rigo, L U; Funayama, S; Pedrosa, F O
1989-01-01
The pathway for L-arabinose metabolism in Herbaspirillum seropedicae was shown to involve nonphosphorylated intermediates and to produce alpha-ketoglutarate. The activities of the enzymes and the natures of several intermediates were determined. The pathway was inducible by L-arabinose, and two key enzymes, L-arabinose dehydrogenase and 2-keto-glutarate semialdehyde dehydrogenase, were present in all strains of H. seropedicae tested. PMID:2768202
ERIC Educational Resources Information Center
Hood-DeGrenier, Jennifer K.
2008-01-01
The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in…
Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications.
Saraswat, Megha; Muthenna, P; Suryanarayana, P; Petrash, J Mark; Reddy, G Bhanuprakash
2008-01-01
Activation of polyol pathway due to increased aldose reductase activity is one of the several mechanisms that have been implicated in the development of various secondary complications of diabetes. Though numerous synthetic aldose reductase inhibitors have been tested, these have not been very successful clinically. Therefore, a number of common plant/ natural products used in Indian culinary have been evaluated for their aldose reductase inhibitory potential in the present study. The aqueous extracts of 22 plant-derived materials were prepared and evaluated for the inhibitory property against rat lens and human recombinant aldose reductase. Specificity of these extracts towards aldose reductase was established by testing their ability to inhibit a closely related enzyme viz, aldehyde reductase. The ex vivo incubation of erythrocytes in high glucose containing medium was used to underscore the significance in terms of prevention of intracellular sorbitol accumulation. Among the 22 dietary sources tested, 10 showed considerable inhibitory potential against both rat lens and human recombinant aldose reductase. Prominent inhibitory property was found in spinach, cumin, fennel, lemon, basil and black pepper with an approximate IC50 of 0.2 mg/mL with an excellent selectivity towards aldose reductase. As against this, 10 to 20 times higher concentrations were required for 50% inhibition of aldehyde reductase. Reduction in the accumulation of intracellular sorbitol by the dietary extracts further substantiated their in vivo efficacy. The findings reported here indicate the scope of adapting life-style modifications in the form of inclusion of certain common sources in the diet for the management of diabetic complications.
Kamlage, B; Gruhl, B; Blaut, M
1997-05-01
Two gram-positive, strictly anoxic, coccoid- to rod-shaped strains of bacteria, Clostridium coccoides 1410 and C. coccoides 3110, were isolated from human feces on the typical homoacetogenic substrates formate plus H2 plus CO2 (strain 1410) and vanillate plus H2 plus CO2 (strain 3110) in the presence of 2-bromoethanesulfonate to inhibit methanogenesis. On the basis of 16S rRNA sequencing, DNA-DNA hybridization, and physiological and morphological parameters, both isolates are closely related to C. coccoides DSM 935T. The G+C contents of the DNA were 46.1 and 46.2 mol% for C. coccoides 1410 and C. coccoides 3110, respectively. Cytochromes could not be detected. Formate was degraded exclusively to acetate, whereas vanillate was O-demethylated, resulting in acetate and 3,4-dihydroxybenzoate, the latter being further decarboxylated to catechol. In the presence of organic substrates, H2 was cometabolized to acetate, but both strains failed to grow autotrophically. Lactose, lactulose, sorbitol, glucose, and various other carbohydrates supported growth as well. Untypical of homoacetogens, glucose and sorbitol were fermented not exclusively to acetate; instead, considerable amounts of succinate and D-lactate were produced. H2 was evolved from carbohydrates only in negligible traces. Acetogenesis from formate plus H2 plus CO2 or vanillate plus H2 plus CO2 was constitutive, whereas utilization of carbohydrates was inducible. Hydrogenase, CO dehydrogenase, formate dehydrogenase, and all of the tetrahydrofolic acid-dependent, C1 compound-converting enzymes of the acetyl-coenzyme A pathway of homoacetogenesis were present in cell extracts.
NASA Astrophysics Data System (ADS)
Kuwabara, M.; Zhang, Z.-Y.; Inanami, O.; Yoshii, G.
Studies concerning the radicals produced in glycerol by reactions with OH radicals have been carried out by investigating deuterated glycerol (glycerol-d 8) by spin-trapping with 2-methyl-2-nitrosopropane. Free radicals produced in linear carbohydrates such as xylitol, dulcitol, D-sorbitol and D-mannitol by reactions with OH radicals as well as by direct γ-radiolysis have been also investigated by spin-trapping. The ESR spectra of the spin-trapped radicals were analysed on the basis of the results from ESR and spin-trapping experiments on glycerol and deuterated glycerol, and the formation of three radical species, CHO-CH-, CH 2-CO- and HO-CH-, due to both OH reactions and direct γ-radiolysis was confirmed for all compounds. The presence of a radical, -CO-CH-, was detected for xylitol, D-sorbitol and D-mannitol. General reactions processes induced by OH reactions or γ-radiolysis in the solid state are discussed.
Förster, H; Steuer, A; Albrecht, H; Quadbeck, R; Dudziak, R
1978-08-01
Serum insulin concentration was measured during infusion of glucose, fructose or sorbitol for several days in polytraumatized patients. The patients are divided in two groups, one group with normal glucose tolerance and a second group, where an extreme disturbance of the glucose utilization was found. In patients with normal glucose tolerance the glucose substitutes had the same metabolic effects as in metabolically healthy volunteers. In patients with disturbed glucose tolerance the glucose substitutes (fructose as well as sorbitol) effected an increase in blood glucose concentration and in serum insulin concentration. It is concluded that the increase in blood glucose concentration causes the increase in serum insulin concentration. Obviously, in a certain group of polytraumatized patients a "metabolic insulin resistence" exists. Therefore, glucose utilization is decreased despite an increase in serum insulin. In most cases the metabolic disturbance in these patients is mastered, if glucose substitutes are used instead of glucose as energy source. However, in many cases glucose can be administered only if insulin is given additionally.
Gao, Chengcheng; Pollet, Eric; Avérous, Luc
2017-02-10
Plasticized alginate films with different biobased polyols (glycerol and sorbitol) and their mixtures were successfully prepared by thermo-mechanical mixing instead of the usual casting-evaporation procedure. The microstructure and properties of the different plasticized alginate formulations were investigated by SEM, FTIR, XRD, DMTA and uniaxial tensile tests. SEM and XRD results showed that native alginate particles were largely destructured with the plasticizers (polyols and water), under a thermo-mechanical input. With increasing amount of plasticizers, the samples showed enhanced homogeneity while their thermal and mechanical properties decreased. Compared to sorbitol, glycerol resulted in alginate films with a higher flexibility due to its better plasticization efficiency resulting from its smaller size and higher hydrophilic character. Glycerol and sorbitol mixtures seemed to be an optimum to obtain the best properties. This work showed that thermo-mechanical mixing is a promising method to produce, at large scale, plasticized alginate-based films with improved properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jordan, Paulina; Choe, Jun-Yong; Boles, Eckhard; Oreb, Mislav
2016-01-01
The genome of S. cerevisae encodes at least twenty hexose transporter-like proteins. Despite extensive research, the functions of Hxt8-Hxt17 have remained poorly defined. Here, we show that Hxt13, Hxt15, Hxt16 and Hxt17 transport two major hexitols in nature, mannitol and sorbitol, with moderate affinities, by a facilitative mechanism. Moreover, Hxt11 and Hxt15 are capable of transporting xylitol, a five-carbon polyol derived from xylose, the most abundant pentose in lignocellulosic biomass. Hxt11, Hxt13, Hxt15, Hxt16 and Hxt17 are phylogenetically and functionally distinct from known polyol transporters. Based on docking of polyols to homology models of transporters, we propose the architecture of their active site. In addition, we determined the kinetic parameters of mannitol and sorbitol dehydrogenases encoded in the yeast genome, showing that they discriminate between mannitol and sorbitol to a much higher degree than the transporters. PMID:26996892
Berrios, Julio; Flores, María-Olga; Díaz-Barrera, Alvaro; Altamirano, Claudia; Martínez, Irene; Cabrera, Zaida
2017-03-01
The production of recombinant proteins by Pichia pastoris under AOX1 promoter is usually performed using methanol together with either glycerol or sorbitol as co-substrate. Although both co-substrates have been widely used, comparative studies are scarce. In addition, these comparisons have been performed at different specific growth rate (µ) that it is well known that has an important effect on productivity. Thus, the effect of using these co-substrates on the production of Rhyzopus oryzae lipase (ROL) by P. pastoris was compared in continuous cultures growing at the same µ at either 22 or 30 °C. Results show that using glycerol as co-substrate led to higher volumetric productivities, and lower specific and volumetric methanol consumption rates. Scale-up simulation with 10-10,000 L bioreactor sizes indicated that glycerol produced the highest volumetric productivity of ROL with lower aeration requirements. Therefore, glycerol rises as a better option than sorbitol in ROL production.
Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi
2015-01-01
Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. PMID:25998127
The effects of specified chemical meals on food intake.
Koopmans, H S; Maggio, C A
1978-10-01
Rats received intragastric infusions of various specified chemical meals and were subsequently tested for a reduction in food intake. A second experiment, using a novel technique, tested for conditioned aversion to the meal infusions. The nonnutritive substances, kaolin clay and emulsified fluorocarbon, had no significant effect on food intake. Infusions of 1 M glucose and 1 M sorbitol reduced feeding behavior, but the 1 M sorbitol infusion also produced a conditioned aversion to flavored pellets paired with the sorbitol infusion, showing that the reduced feeding could have been caused by discomfort. Infusion of a high-fat meal consisting of emulsified triolein mixed with small amounts of sugar and protein or the rat's normal liquid diet, Nutrament, also reduced food intake, and both infusions failed to produce a conditioned aversion. The use of specified meals to understand the chemical basis of satiety requires a sensitive behavioral test to establish that the meal does not cause discomfort or other nonspecific effects.
Hyperosmotic stress stimulates autophagy via polycystin-2.
Peña-Oyarzun, Daniel; Troncoso, Rodrigo; Kretschmar, Catalina; Hernando, Cecilia; Budini, Mauricio; Morselli, Eugenia; Lavandero, Sergio; Criollo, Alfredo
2017-08-22
Various intracellular mechanisms are activated in response to stress, leading to adaptation or death. Autophagy, an intracellular process that promotes lysosomal degradation of proteins, is an adaptive response to several types of stress. Osmotic stress occurs under both physiological and pathological conditions, provoking mechanical stress and activating various osmoadaptive mechanisms. Polycystin-2 (PC2), a membrane protein of the polycystin family, is a mechanical sensor capable of activating the cell signaling pathways required for cell adaptation and survival. Here we show that hyperosmotic stress provoked by treatment with hyperosmolar concentrations of sorbitol or mannitol induces autophagy in HeLa and HCT116 cell lines. In addition, we show that mTOR and AMPK, two stress sensor proteins involved modulating autophagy, are downregulated and upregulated, respectively, when cells are subjected to hyperosmotic stress. Finally, our findings show that PC2 is required to promote hyperosmotic stress-induced autophagy. Downregulation of PC2 prevents inhibition of hyperosmotic stress-induced mTOR pathway activation. In conclusion, our data provide new insight into the role of PC2 as a mechanosensor that modulates autophagy under hyperosmotic stress conditions.
Hyperosmotic stress stimulates autophagy via polycystin-2
Kretschmar, Catalina; Hernando, Cecilia; Budini, Mauricio; Morselli, Eugenia; Lavandero, Sergio; Criollo, Alfredo
2017-01-01
Various intracellular mechanisms are activated in response to stress, leading to adaptation or death. Autophagy, an intracellular process that promotes lysosomal degradation of proteins, is an adaptive response to several types of stress. Osmotic stress occurs under both physiological and pathological conditions, provoking mechanical stress and activating various osmoadaptive mechanisms. Polycystin-2 (PC2), a membrane protein of the polycystin family, is a mechanical sensor capable of activating the cell signaling pathways required for cell adaptation and survival. Here we show that hyperosmotic stress provoked by treatment with hyperosmolar concentrations of sorbitol or mannitol induces autophagy in HeLa and HCT116 cell lines. In addition, we show that mTOR and AMPK, two stress sensor proteins involved modulating autophagy, are downregulated and upregulated, respectively, when cells are subjected to hyperosmotic stress. Finally, our findings show that PC2 is required to promote hyperosmotic stress-induced autophagy. Downregulation of PC2 prevents inhibition of hyperosmotic stress-induced mTOR pathway activation. In conclusion, our data provide new insight into the role of PC2 as a mechanosensor that modulates autophagy under hyperosmotic stress conditions. PMID:28915568
Shao, Qiang; Shi, Jiye; Zhu, Weiliang
2012-09-28
The ability of molecular dynamics simulation to capturing the transient states within the folding pathway of protein is important to the understanding of protein folding mechanism. In the present study, the integrated-tempering-sampling molecular dynamics (ITS-MD) simulation was performed to investigate the transient states including intermediate and unfolded ones in the folding pathway of a miniprotein, Trp-cage. Three force fields (FF03, FF99SB, and FF96) were tested, and both intermediate and unfolded states with their characteristics in good agreement with experiments were observed during the simulations, which supports the hypothesis that observable intermediates might present in the folding pathway of small polypeptides. In addition, it was demonstrated that FF03 force field as combined with ITS-MD is in overall a more proper force field than the others in reproducing experimentally recorded properties in UVRS, ECD, and NMR, Photo-CIDNP NMR, and IR T-jump experiments, and the folding∕unfolding thermodynamics parameters, such as ΔG(U), ΔC(p), and ΔH(U) (T(m)). In summary, the present study showed that using suitable force field and energy sampling method, molecular dynamics simulation could capture the transient states within the folding pathway of protein which are consistent with the experimental measurements, and thus provide information of protein folding mechanism and thermodynamics.
Binding mechanism and dynamic conformational change of C subunit of PKA with different pathways
Chu, Wen-Ting; Chu, Xiakun; Wang, Jin
2017-01-01
The catalytic subunit of PKA (PKAc) exhibits three major conformational states (open, intermediate, and closed) during the biocatalysis process. Both ATP and substrate/inhibitor can effectively induce the conformational changes of PKAc from open to closed states. Aiming to explore the mechanism of this allosteric regulation, we developed a coarse-grained model and analyzed the dynamics of conformational changes of PKAc during binding by performing molecular dynamics simulations for apo PKAc, binary PKAc (PKAc with ATP, PKAc with PKI), and ternary PKAc (PKAc with ATP and PKI). Our results suggest a mixed binding mechanism of induced fit and conformational selection, with the induced fit dominant. The ligands can drive the movements of Gly-rich loop as well as some regions distal to the active site in PKAc and stabilize them at complex state. In addition, there are two parallel pathways (pathway with PKAc-ATP as an intermediate and pathway PKAc-PKI as an intermediate) during the transition from open to closed states. By molecular dynamics simulations and rate constant analyses, we find that the pathway through PKAc-ATP intermediate is the main binding route from open to closed state because of the fact that the bound PKI will hamper ATP from successful binding and significantly increase the barrier for the second binding subprocess. These findings will provide fundamental insights of the mechanisms of PKAc conformational change upon binding. PMID:28855336
Binding mechanism and dynamic conformational change of C subunit of PKA with different pathways.
Chu, Wen-Ting; Chu, Xiakun; Wang, Jin
2017-09-19
The catalytic subunit of PKA (PKAc) exhibits three major conformational states (open, intermediate, and closed) during the biocatalysis process. Both ATP and substrate/inhibitor can effectively induce the conformational changes of PKAc from open to closed states. Aiming to explore the mechanism of this allosteric regulation, we developed a coarse-grained model and analyzed the dynamics of conformational changes of PKAc during binding by performing molecular dynamics simulations for apo PKAc, binary PKAc (PKAc with ATP, PKAc with PKI), and ternary PKAc (PKAc with ATP and PKI). Our results suggest a mixed binding mechanism of induced fit and conformational selection, with the induced fit dominant. The ligands can drive the movements of Gly-rich loop as well as some regions distal to the active site in PKAc and stabilize them at complex state. In addition, there are two parallel pathways (pathway with PKAc-ATP as an intermediate and pathway PKAc-PKI as an intermediate) during the transition from open to closed states. By molecular dynamics simulations and rate constant analyses, we find that the pathway through PKAc-ATP intermediate is the main binding route from open to closed state because of the fact that the bound PKI will hamper ATP from successful binding and significantly increase the barrier for the second binding subprocess. These findings will provide fundamental insights of the mechanisms of PKAc conformational change upon binding.
NASA Astrophysics Data System (ADS)
Maity, Hiranmay; Reddy, Govardhan
2018-04-01
Small single-domain globular proteins, which are believed to be dominantly two-state folders, played an important role in elucidating various aspects of the protein folding mechanism. However, recent single molecule fluorescence resonance energy transfer experiments [H. Y. Aviram et al. J. Chem. Phys. 148, 123303 (2018)] on a single-domain two-state folding protein L showed evidence for the population of an intermediate state and it was suggested that in this state, a β-hairpin present near the C-terminal of the native protein state is unfolded. We performed molecular dynamics simulations using a coarse-grained self-organized-polymer model with side chains to study the folding pathways of protein L. In agreement with the experiments, an intermediate is populated in the simulation folding pathways where the C-terminal β-hairpin detaches from the rest of the protein structure. The lifetime of this intermediate structure increased with the decrease in temperature. In low temperature conditions, we also observed a second intermediate state, which is globular with a significant fraction of the native-like tertiary contacts satisfying the features of a dry molten globule.
NASA Astrophysics Data System (ADS)
Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong
2016-04-01
Thrombin-binding aptamer (TBA) with the sequence 5‧GGTTGGTGTGGTTGG3‧ could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.
Ambros, S; Hofer, F; Kulozik, U
2018-05-31
Microwave freeze drying in comparison to conventional freeze drying allows for intensification of the preservation process of lactic acid bacteria without imposing additional processing stress. Viability as a function of storage time of microwave freeze-dried Lactobacillus paracasei ssp. paracasei F19 was investigated in comparison to conventionally lyophilized bacteria of the same strain. Further, the impact of the protectants, sorbitol, trehalose and maltodextrin, on shelf life was analyzed. The highest inactivation rates of 0.035 and 0.045 d -1 , respectively, were found for cultures without protectants. Thus, all additives were found to exhibit a protective effect during storage with inactivation rates between 0.015 and 0.040 d -1 . Although trehalose and maltodextrin samples were in the glassy state during storage, in contrast to samples containing sorbitol as protectant, the best protective effect could be found for sorbitol with the lowest inactivation rate of 0.015 d -1 . Due to its low molecular weight, it might protect cells owing to better adsorption to the cytoplasma membrane. Sorbitol additionally shows antioxidative properties. Storage behavior of microwave freeze-dried cultures follows the typical behavior of a product dried by conventional lyophilization. No significant influence of the drying technique on storage behavior was detected. General findings concerning storage behavior in freeze drying are likely to be applicable in microwave freeze drying with only slight adjustments. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L
2015-05-01
Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence.
Wei, Jun-Rong; Richie, Daryl L.; Mostafavi, Mina; Metzger, Louis E.; Rath, Christopher M.; Sawyer, William S.; Takeoka, Kenneth T.
2017-01-01
ABSTRACT Acinetobacter baumannii ATCC 19606 can grow without lipid A, the major component of lipooligosaccharide. However, we previously reported that depletion of LpxH (the fourth enzyme in the lipid A biosynthetic pathway) prevented growth of this strain due to toxic accumulation of lipid A pathway intermediates. Here, we explored whether a similar phenomenon occurred with depletion of LpxK, a kinase that phosphorylates disaccharide 1-monophosphate (DSMP) at the 4′ position to yield lipid IVA. An A. baumannii ATCC 19606 derivative with LpxK expression under the control of an isopropyl β-d-1-thiogalactopyranoside (IPTG)-regulated expression system failed to grow without induction, indicating that LpxK is essential for growth. Light and electron microscopy of LpxK-depleted cells revealed morphological changes relating to the cell envelope, consistent with toxic accumulation of lipid A pathway intermediates disrupting cell membranes. Using liquid chromatography-mass spectrometry (LCMS), cellular accumulation of the detergent-like pathway intermediates DSMP and lipid X was shown. Toxic accumulation was further supported by restoration of growth upon chemical inhibition of LpxC (upstream of LpxK and the first committed step of lipid A biosynthesis) using CHIR-090. Inhibitors of fatty acid synthesis also abrogated the requirement for LpxK expression. Growth rescue with these inhibitors was possible on Mueller-Hinton agar but not on MacConkey agar. The latter contains outer membrane-impermeable bile salts, suggesting that despite growth restoration, the cell membrane permeability barrier was not restored. Therefore, LpxK is essential for growth of A. baumannii, since loss of LpxK causes accumulation of detergent-like pathway intermediates that inhibit cell growth. IMPORTANCE Acinetobacter baumannii is a Gram-negative pathogen for which new therapies are needed. The lipid A biosynthetic pathway has several potential enzyme targets for the development of anti-Gram-negative agents (e.g., LpxC). However, A. baumannii ATCC 19606 can grow in the absence of LpxC and, correspondingly, of lipid A. In contrast, we show that cellular depletion of LpxK, a kinase occurring later in the pathway, inhibits growth. Growth inhibition results from toxic accumulation of lipid A pathway intermediates, since chemical inhibition of LpxC or fatty acid biosynthesis rescues cell growth upon loss of LpxK. Overall, this suggests that targets such as LpxK can be essential for growth even in those Gram-negative bacteria that do not require lipid A biosynthesis per se. This strain provides an elegant tool to derive a better understanding of the steps in a pathway that is the focus of intense interest for the development of novel antibacterials. PMID:28815210
Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N; Oshima, Yoshiteru
2015-09-01
The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.
NASA Astrophysics Data System (ADS)
Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N.; Oshima, Yoshiteru
2015-09-01
The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.
Hydroxyacetone production from C 3 Criegee intermediates
Taatjes, Craig A.; Liu, Fang; Rotavera, Brandon; ...
2016-12-21
Hydroxyacetone (CH 3C(O)CH 2OH) is observed as a stable end product from reactions of the (CH 3) 2COO Criegee intermediate, acetone oxide, in a flow tube coupled with multiplexed photoionization mass spectrometer detection. In the experiment, the isomers at m/z = 74 are distinguished by their different photoionization spectra and reaction times. Hydroxyacetone is observed as a persistent signal at longer reaction times at a higher photoionization threshold of ca. 9.7 eV than Criegee intermediate and definitively identified by comparison with the known photoionization spectrum. Complementary electronic structure calculations reveal multiple possible reaction pathways for hydroxyacetone formation, including unimolecular isomerizationmore » via hydrogen atom transfer and –OH group migration as well as self-reaction of Criegee intermediates. Varying the concentration of Criegee intermediates suggests contributions from both unimolecular and self-reaction pathways to hydroxyacetone. As a result, the hydroxyacetone end product can provide an effective, stable marker for the production of transient Criegee intermediates in future studies of alkene ozonolysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael
This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1)more » mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less
A Board Game to Assist Pharmacy Students in Learning Metabolic Pathways
2011-01-01
Objectives. To develop and evaluate a board game designed to increase students’ enjoyment of learning metabolic pathways; their familiarity with pathway reactions, intermediates, and regulation; and, their understanding of how pathways relate to one another and to selected biological conditions. Design. The board game, entitled Race to Glucose, was created as a team activity for first-year pharmacy students in the biochemistry curriculum. Assessment. A majority of respondents agreed that the game was helpful for learning regulation, intermediates, and interpathway relationships but not for learning reactions, formation of energetic molecules, or relationships, to biological conditions. There was a significant increase in students’ scores on game-related examination questions (68.8% pretest vs. 81.3% posttest), but the improvement was no greater than that for examination questions not related to the game (12.5% vs. 10.9%). Conclusion. First-year pharmacy students considered Race to Glucose to be an enjoyable and helpful tool for learning intermediates, regulation, and interpathway relationships. PMID:22171111
Molecular Mechanisms Underlying γ-Aminobutyric Acid (GABA) Accumulation in Giant Embryo Rice Seeds.
Zhao, Guo-Chao; Xie, Mi-Xue; Wang, Ying-Cun; Li, Jian-Yue
2017-06-21
To uncover the molecular mechanisms underlying GABA accumulation in giant embryo rice seeds, we analyzed the expression levels of GABA metabolism genes and contents of GABA and GABA metabolic intermediates in developing grains and germinated brown rice of giant embryo rice 'Shangshida No. 5' and normal embryo rice 'Chao2-10' respectively. In developing grains, the higher GABA contents in 'Shangshida No. 5' were accompanied with upregulation of gene transcripts and intermediate contents in the polyamine pathway and downregulation of GABA catabolic gene transcripts, as compared with those in 'Chao2-10'. In germinated brown rice, the higher GABA contents in 'Shangshida No. 5' were parallel with upregulation of OsGAD and polyamine pathway gene transcripts and Glu and polyamine pathway intermediate contents and downregulation of GABA catabolic gene transcripts. These results are the first to indicate that polyamine pathway and GABA catabolic genes play a crucial role in GABA accumulation in giant embryo rice seeds.
Church, D. L.; Emshey, D.; Semeniuk, H.; Lloyd, T.; Pitout, J. D.
2007-01-01
The performance of BBL CHROMagar O157 (CHROM) versus that of sorbitol-MacConkey (SMAC) media for detection of Escherichia coli O157 was determined for a 3-month period. Results for 27/3,116 (0.9%) stool cultures were positive. CHROM had a higher sensitivity (96.30%) and negative predictive value (100%) and a better diagnostic efficiency than SMAC. Labor and material costs decreased when CHROM was used. PMID:17634298
DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-Replication
2005-04-01
with 50’C SCE (1 M sorbitol, 0.1 M Na Antcdc6p becomes undetectable within 30 mi after galac- citrate , and 10 mM EDTA). Lyticase was added to a final...and then placed in SCEM + lyticase [1 M sorbitol, decrease in colony-forming units after 3 h in galactose. In 0.1 M Na citrate , 10 mM EDTA, 5% j3...nocodazole, exposed to 20 /g/ml of the DNA damag- sponse triggered by rereplication. The nearly complete con- ing agent phleomycin, and examined by
Negoi, Alina; Trotus, Ioan Teodor; Mamula Steiner, Olimpia; Tudorache, Madalina; Kuncser, Victor; Macovei, Dan; Parvulescu, Vasile I; Coman, Simona M
2013-11-01
A sweet catalyst: A catalyst formed of Ru/functionalized silica-coated magnetite nanoparticles is highly efficient in the one-pot production of sorbitol and glycerol, starting from cellulose and in the absence of an external hydrogen source. The ease of recoverability of the catalyst from the solid residues, and its reuse without loss of activity or selectivity for several runs, is an important green element of the process. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
From Strong to Fragile Glass Formers: Secondary Relaxation in Polyalcohols
NASA Astrophysics Data System (ADS)
Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.
2002-03-01
We have studied details of the molecular origin of slow secondary relaxation near Tg in a series of neat polyalcohols by means of dielectric spectroscopy and 2H NMR. From glycerol to threitol, xylitol, and sorbitol the appearance of the secondary relaxation changes gradually from a wing-type scenario to a pronounced β peak. It is found that in sorbitol the dynamics of the whole molecule contributes equally to the β process, while in glycerol the hydrogen bond forming OH groups remain rather rigid compared to the hydrogens bonded to the carbon skeleton.
Cluster kinetics model for mixtures of glassformers
NASA Astrophysics Data System (ADS)
Brenskelle, Lisa A.; McCoy, Benjamin J.
2007-10-01
For glassformers we propose a binary mixture relation for parameters in a cluster kinetics model previously shown to represent pure compound data for viscosity and dielectric relaxation as functions of either temperature or pressure. The model parameters are based on activation energies and activation volumes for cluster association-dissociation processes. With the mixture parameters, we calculated dielectric relaxation times and compared the results to experimental values for binary mixtures. Mixtures of sorbitol and glycerol (seven compositions), sorbitol and xylitol (three compositions), and polychloroepihydrin and polyvinylmethylether (three compositions) were studied.
2006-01-01
cough. Pain was assessed during incentive spirometry or coughing using a visual analogue scale (score from 1 to 10) with failure being a score...fracture multidisciplinary clinical pathway. SIMU Surgical Intermediate Care Unit; STICU Shock Trauma Intensive Care Unit; IS incentive spirometry ...monitored bed (Surgical Intermediate Care Unit or Shock Trauma Intensive Care Unit) where they received patient-controlled analgesia and incentive
Qiao, Hua; Feng, Hua-jun; Liu, Shao-ying; Wang, Chao-jun; Zhang, Yuan; Gao, Yan-ni; Li, Wen-bing; Yao, Jun; Wang, Mei-zhen; Shen, Dong-sheng
2011-01-01
To predict the final fate of 2,4,6-trinitrotoluene (TNT) and its intermediates in an anaerobic fermentative solution containing reduced sulfur species and to provide a basis for the adoption of remediation methods, we investigated the pathways of TNT (TNT(0) = 50 mg/L) reduction by Na(2)S at 30 ± 1 °C in an acetic acid-sodium bicarbonate buffer. Liquid chromatography/mass spectrometry (LC/MS) was used to identify TNT metabolites at different reaction times. The law of growth and decline of TNT and its metabolites was determined with time. The LC/MS result, combined with the physicochemical characteristics of related products and information from the literature, indicated possible TNT conversion pathways. Sulfide can initiate both nitroreduction and denitration of TNT simultaneously. Nitroreduction led to the accumulation of primary intermediates 4-hydroxylaminodinitrotoluene and 4-aminodinitrotoluene, whereas denitration resulted in the production of unidentified substances with molecular weight less than that of TNT. Also, polyreaction between the above intermediates formed many unidentified substances. Humification was concluded to be the best choice for remediation of TNT-contaminated soil and water due to the formation of intermediates with stable, intact aromatic systems. However, the denitration pathway of TNT offered the possibility of mineralization.
Averesch, Nils J. H.; Krömer, Jens O.
2018-01-01
The aromatic nature of shikimate pathway intermediates gives rise to a wealth of potential bio-replacements for commonly fossil fuel-derived aromatics, as well as naturally produced secondary metabolites. Through metabolic engineering, the abundance of certain intermediates may be increased, while draining flux from other branches off the pathway. Often targets for genetic engineering lie beyond the shikimate pathway, altering flux deep in central metabolism. This has been extensively used to develop microbial production systems for a variety of compounds valuable in chemical industry, including aromatic and non-aromatic acids like muconic acid, para-hydroxybenzoic acid, and para-coumaric acid, as well as aminobenzoic acids and aromatic α-amino acids. Further, many natural products and secondary metabolites that are valuable in food- and pharma-industry are formed outgoing from shikimate pathway intermediates. (Re)construction of such routes has been shown by de novo production of resveratrol, reticuline, opioids, and vanillin. In this review, strain construction strategies are compared across organisms and put into perspective with requirements by industry for commercial viability. Focus is put on enhancing flux to and through shikimate pathway, and engineering strategies are assessed in order to provide a guideline for future optimizations. PMID:29632862
2013-01-01
Background One of the main challenges for heterologous protein production by the methylotrophic yeast Pichia pastoris at large-scale is related to its high oxygen demand. A promising solution is a co-feeding strategy based on a methanol/sorbitol mixture during the induction phase. Nonetheless, a deep understanding of the cellular physiology and the regulation of the AOX1 promoter, used to govern heterologous protein production, during this co-feeding strategy is still scarce. Results Transient continuous cultures with a dilution rate of 0.023 h-1 at 25°C were performed to quantitatively assess the benefits of a methanol/sorbitol co-feeding process with a Mut+ strain in which the pAOX1-lacZ construct served as a reporter gene. Cell growth and metabolism, including O2 consumption together with CO2 and heat production were analyzed with regard to a linear change of methanol fraction in the mixed feeding media. In addition, the regulation of the promoter AOX1 was investigated by means of β-galactosidase measurements. Our results demonstrated that the cell-specific oxygen consumption (qO2) could be reduced by decreasing the methanol fraction in the feeding media. More interestingly, maximal β-galactosidase cell-specific activity (>7500 Miller unit) and thus, optimal pAOX1 induction, was achieved and maintained in the range of 0.45 ~ 0.75 C-mol/C-mol of methanol fraction. In addition, the qO2 was reduced by 30% at most in those conditions. Based on a simplified metabolic network, metabolic flux analysis (MFA) was performed to quantify intracellular metabolic flux distributions during the transient continuous cultures, which further shed light on the advantages of methanol/sorbitol co-feeding process. Finally, our observations were further validated in fed-batch cultures. Conclusion This study brings quantitative insight into the co-feeding process, which provides valuable data for the control of methanol/sorbitol co-feeding, aiming at enhancing biomass and heterologous protein productivities under given oxygen supply. According to our results, β-galactosidase productivity could be improved about 40% using the optimally mixed feed. PMID:23565774
Niu, Hongxing; Jost, Laurent; Pirlot, Nathalie; Sassi, Hosni; Daukandt, Marc; Rodriguez, Christian; Fickers, Patrick
2013-04-08
One of the main challenges for heterologous protein production by the methylotrophic yeast Pichia pastoris at large-scale is related to its high oxygen demand. A promising solution is a co-feeding strategy based on a methanol/sorbitol mixture during the induction phase. Nonetheless, a deep understanding of the cellular physiology and the regulation of the AOX1 promoter, used to govern heterologous protein production, during this co-feeding strategy is still scarce. Transient continuous cultures with a dilution rate of 0.023 h(-1) at 25°C were performed to quantitatively assess the benefits of a methanol/sorbitol co-feeding process with a Mut+ strain in which the pAOX1-lacZ construct served as a reporter gene. Cell growth and metabolism, including O2 consumption together with CO2 and heat production were analyzed with regard to a linear change of methanol fraction in the mixed feeding media. In addition, the regulation of the promoter AOX1 was investigated by means of β-galactosidase measurements. Our results demonstrated that the cell-specific oxygen consumption (qO2) could be reduced by decreasing the methanol fraction in the feeding media. More interestingly, maximal β-galactosidase cell-specific activity (>7500 Miller unit) and thus, optimal pAOX1 induction, was achieved and maintained in the range of 0.45 ~ 0.75 C-mol/C-mol of methanol fraction. In addition, the qO2 was reduced by 30% at most in those conditions. Based on a simplified metabolic network, metabolic flux analysis (MFA) was performed to quantify intracellular metabolic flux distributions during the transient continuous cultures, which further shed light on the advantages of methanol/sorbitol co-feeding process. Finally, our observations were further validated in fed-batch cultures. This study brings quantitative insight into the co-feeding process, which provides valuable data for the control of methanol/sorbitol co-feeding, aiming at enhancing biomass and heterologous protein productivities under given oxygen supply. According to our results, β-galactosidase productivity could be improved about 40% using the optimally mixed feed.
Discrete structure of an RNA folding intermediate revealed by cryo-electron microscopy.
Baird, Nathan J; Ludtke, Steven J; Khant, Htet; Chiu, Wah; Pan, Tao; Sosnick, Tobin R
2010-11-24
RNA folding occurs via a series of transitions between metastable intermediate states. It is unknown whether folding intermediates are discrete structures folding along defined pathways or heterogeneous ensembles folding along broad landscapes. We use cryo-electron microscopy and single-particle image reconstruction to determine the structure of the major folding intermediate of the specificity domain of a ribonuclease P ribozyme. Our results support the existence of a discrete conformation for this folding intermediate.
Pathways for virus assembly around nucleic acids
Perlmutter, Jason D; Perkett, Matthew R
2014-01-01
Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single molecule fluorescence correlation spectroscopy or bulk time resolved small angle x-ray scattering experiments. PMID:25036288
Specially designed sweeteners and food for diabetics--a real need?
Lenner, R A
1976-07-01
In the first part of this study, the effect of four isocaloric mixed breakfast meals on the blood glucose and urinary glucose losses was tested in nine adult diabetics and in three healthy subjects, ages 60 to 75. Three of the test meals consisted of a base diet supplemented with applesauce sweetened with sucrose, fructose, or sorbitol. In the fourth test meal, the starch was increased together with saccharine. In the second part of the study, analyses for free glucose and sucrose in several timed food preparations, ordinary as well as food preparations specially designed for diabetics, were performed. The amount of sucrose equivalents (S(eg)) in one ordinary serving of the various products was estimated. No significant differences among sucrose, fructose, and sorbitol-containing meals with respect to the effect on the blood glucose level or on glucosuria were found. The saccharine-containing meal gave a significantly greater blood glucose increase at 60 min only. The amount of sucrose in ordinary marinated foods, such as herring, cucumber, and common beet was negligible. Water-packed fruits supplied one half of the amount of S(eq) or less, compared with fruits packed in sorbitol-sweetened syrup. The amount of S(eq) in the latter products as well as in fruits packed in unsweetened juice equalled that of the fleshy substance of ordinary sucrose-sweetened products. It was concluded that fructose or sorbitol has no advantages over sucrose, as regards the effect on blood glucose in well-regulated adult diabetics, and that it seems unnecessary to have specially sweetened foods designed for diabetics.
Genetic variation and plasticity of Plantago coronopus under saline conditions
NASA Astrophysics Data System (ADS)
Smekens, Marret J.; van Tienderen, Peter H.
2001-08-01
Phenotypic plasticity may allow organisms to cope with variation in the environmental conditions they encounter in their natural habitats. Salt adaptation appears to be an excellent example of such a plastic response. Many plant species accumulate organic solutes in response to saline conditions. Comparative and molecular studies suggest that this is an adaptation to osmotic stress. However, evidence relating the physiological responses to fitness parameters is rare and requires assessing the potential costs and benefits of plasticity. We studied the response of thirty families derived from plants collected in three populations of Plantago coronopus in a greenhouse experiment under saline and non-saline conditions. We indeed found a positive selection gradient for the sorbitol percentage under saline conditions: plant families with a higher proportion of sorbitol produced more spikes. No effects of sorbitol on fitness parameters were found under non-saline conditions. Populations also differed genetically in leaf number, spike number, sorbitol concentration and percentages of different soluble sugars. Salt treatment led to a reduction of vegetative biomass and spike production but increased leaf dry matter percentage and leaf thickness. Both under saline and non-saline conditions there was a negative trade-off between vegetative growth and reproduction. Families with a high plasticity in leaf thickness had a lower total spike length under non-saline conditions. This would imply that natural selection under predominantly non-saline conditions would lead to a decrease in the ability to change leaf morphology in response to exposure to salt. All other tests revealed no indication for any costs of plasticity to saline conditions.
Ma, Chunmei; Sun, Zhen; Chen, Changbao; Zhang, Lili; Zhu, Shuhua
2014-02-15
A high-performance liquid chromatography (HPLC) method with evaporative light scattering detection (ELSD) was optimised for simultaneous determination of fructose, sorbitol, glucose and sucrose in fruits. The analysis was carried out on a Phenomenex Luna 5u NH₂ 100A column (250 mm × 4.60mm, 5 micron) with isocratic elution of acetonitrile:water (82.5:17.5, v/v). Drift tube temperature of the ELSD system was set to 82 °C and nitrogen flow rate was 2.0 L min⁻¹. The regression equation revealed good linear relationship (R = 0.9967-0.9989) within test ranges. The limits of detection (LOD) and quantification (LOQ) for four analytes (peach, apple, watermelon, and cherry fruits) were in the range of 0.07-0.27 and 0.22-0.91 mg L⁻¹, respectively. The proposed HPLC-ELSD method was validated for quantification of sugars in peach, apple, watermelon, and cherry fruits, and the results were satisfactory. The results showed that the contents of the four sugars varied among fruits. While fructose (5.79-104.01 mg g⁻¹) and glucose (9.25-99.62 mg g⁻¹) emerged as common sugars in the four fruits, sorbitol (8.70-19.13 mg g⁻¹) were only found in peach, apple and cherry fruits, and sucrose (15.82-106.39 mg g⁻¹) were in peach, apple and watermelon. There was not detectable sorbitol in watermelon and sucrose in cherry fruits, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Falony, Gwen; Honkala, Sisko; Runnel, Riina; Olak, Jana; Nõmmela, Rita; Russak, Silvia; Saag, Mare; Mäkinen, Pirkko-Liisa; Mäkinen, Kauko; Vahlberg, Tero; Honkala, Eino
2016-01-01
To assess the effect of daily consumption of erythritol, xylitol, and sorbitol candies on caries development in mixed dentition during a 3-year intervention and 3 years after the intervention. 485 Estonian first- and second-grade primary school children participated. Children were randomly allocated to an erythritol, xylitol, or sorbitol (control) group. Polyol-containing candies were administered on school days with a daily polyol consumption of 3 × 2.5 g. Yearly, caries development was assessed by calibrated dentists using the ICDAS criteria. Six years after initiation of the study and 3 years after cessation of daily polyol consumption, 420 participants were re-examined to identify potential long-term effects of polyol consumption. Survival curves were generated at the end of the intervention period and 3 years after intervention. The model included age of the subjects, schools, tooth surface ages and years of surface exposure to intervention. ICDAS scoring system-based events included enamel/dentin caries development, dentin caries development, increase in caries score, and dentist intervention. At the end of the intervention, time to enamel/dentin caries development, dentin caries development, increase in caries score, and dentist intervention were significantly longer in the erythritol group as compared to the sorbitol group. Except for increase in caries score, all effects persisted 3 years after cessation of daily polyol consumption. A caries-preventive effect of 3-year erythritol consumption as compared to sorbitol was established in children with mixed dentition. The effect persisted up to 3 years after the end of the intervention. © 2016 S. Karger AG, Basel.
Yavuz, Halenur; Kattan, Iman; Hernandez, Javier Matias; Hofnagel, Oliver; Witkowska, Agata; Raunser, Stefan; Walla, Peter Jomo; Jahn, Reinhard
2018-04-17
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion in the secretory pathway. They contain conserved regions, termed SNARE motifs, that assemble between opposing membranes directionally from their N-termini to their membrane-proximal C-termini in a highly exergonic reaction. However, how this energy is utilized to overcome the energy barriers along the fusion pathway is still under debate. Here we have used mutants of the SNARE synaptobrevin to arrest trans-SNARE zippering at defined stages. We have uncovered two distinct vesicle docking intermediates, where the membranes are loosely and tightly connected, respectively. The tightly connected state is irreversible and independent of maintaining assembled SNARE complexes. Together, our results shed new light on the intermediate stages along the pathway of membrane fusion. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Harnsoongnoen, Supakorn; Wanthong, Anuwat
2017-10-01
Magnetic sensing at microwave frequencies for real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations is reported. The sensing element was designed based on a coplanar waveguide (CPW) loaded with a split ring resonator (SRR), which was fabricated on a DiClad 880 substrate with a thickness of 1.6mm and relative permittivity (ε r ) of 2.2. The magnetic sensor was connected to a Vector Network Analyzer (VNA) and the electromagnetic interaction between the samples and sensor was analyzed. The magnitude of the transmission coefficient (S 21 ) was used as an indicator to detect the solution sample concentrations ranging from 0.04 to 0.20g/ml. The experimental results confirmed that the developed system using microwaves for the real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations gave unique results for each solution type and concentration. Moreover, the proposed sensor has a wide dynamic range, high linearity, fast operation and low-cost. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechri, Beligh; Tekaya, Meriem; Cheheb, Hechmi; Hammami, Mohamed
2015-01-01
This study reports a method for the analysis of mannitol, sorbitol and myo-inositol in olive tree roots and rhizospheric soil with gas chromatography. The analytical method consists of extraction with a mixture of dichloromethane:methanol (2:1, v/v) for soil samples and a mixture of ethanol:water (80:20) for root samples, silylation using pyridine, hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS). The recovery of mannitol sorbitol and myo-inositol (for extraction and analysis in dichloromethane:methanol and ethanol:water) was acceptable and ranged from 100.3 to 114.7%. The time of analysis was <24 min. Among identified polyols extracted from rhizosphere and roots of olive plants, mannitol was the major compound. A marked increase in mannitol content occurred in rhizosphere and roots of water-stressed plants, suggesting a much broader role of mannitol in stress response based on its ability to act as a compatible solute. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi
2015-07-10
Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Ding, Jian; Zhang, Chunling; Gao, Minjie; Hou, Guoli; Liang, Kexue; Li, Chunhua; Ni, Jianping; Li, Zhen; Shi, Zhongping
2014-05-10
Porcine circovirus Cap protein production by P. pastoris with strong AOX promoter suffered with the problems with traditional pure methanol induction: (1) inefficient methanol metabolism; (2) extensive oxygen supply load; (3) difficulty in stable DO control; (4) low protein titer. In this study, based on the difference of DO change patterns in response to methanol and sorbitol additions, a novel fuzzy control system was proposed to automatically regulate the co-feeding rates of methanol and sorbitol for efficient Cap protein induction. With aid of the proposed control system when setting DO control level at 10%, overall fermentation performance was significantly improved: (1) DO could be stably controlled under mild aeration condition; (2) methanol consumption rate could be restricted at moderate level and the major enzymes involved with methanol metabolism were largely activated; (3) Cap protein concentration reached a highest level of 198mg/L, which was about 64% increase over the best one using the pure methanol induction strategies. Copyright © 2014 Elsevier B.V. All rights reserved.
Gardiner, T A; Anderson, H R; Degenhardt, T; Thorpe, S R; Baynes, J W; Archer, D B; Stitt, A W
2003-09-01
To investigate the effect of treatment with the non-steroidal anti-inflammatory drug Sulindac on the early vascular pathology of diabetic retinopathy in the dog, and it's effect on recognised biochemical indices of hyperglycaemia-related pathophysiology. Experimental diabetes (streptozotocin/alloxan) was induced in 22 male beagle dogs and 12 of the animals were assigned at random to receive oral Sulindac (10 mg/kg daily). Age- and sex-matched control animals were maintained as non-diabetic controls. After 4 years, several morphological parameters were quantified in the retinal microvasculature of each animal group using an established stereological method. Also, the following diabetes-associated biochemical parameters were analysed: accumulation of advanced glycation end products (AGEs), red blood cell polyol levels and antioxidant status. Diabetes increased red blood cell sorbitol levels when compared to non-diabetic controls (p< or =0.05), however, there was no difference in sorbitol levels between the untreated and the treated diabetic animals. No significant differences were found in red blood cell myoinositol levels between the three groups of animals. Pentosidine and other AGEs were increased two- to three-fold in the diabetic animals (p< or =0.001) although treatment with Sulindac did not affect their accumulation in diabetic skin collagen or alter diabetes-induced rises in plasma malondialdehyde. Retinal capillary basement membrane volume was significantly increased in the untreated diabetic dogs compared to non-diabetic controls or Sulindac-treated diabetic animals (p< or =0.0001). This study has confirmed the beneficial effect of a non-steroidal anti-inflammatory drug on the early vascular pathology of diabetic retinopathy. However the treatment benefit was not dependent on inhibition of polyol pathway activity, advanced glycation, or oxidative stress.
Kamlage, B; Gruhl, B; Blaut, M
1997-01-01
Two gram-positive, strictly anoxic, coccoid- to rod-shaped strains of bacteria, Clostridium coccoides 1410 and C. coccoides 3110, were isolated from human feces on the typical homoacetogenic substrates formate plus H2 plus CO2 (strain 1410) and vanillate plus H2 plus CO2 (strain 3110) in the presence of 2-bromoethanesulfonate to inhibit methanogenesis. On the basis of 16S rRNA sequencing, DNA-DNA hybridization, and physiological and morphological parameters, both isolates are closely related to C. coccoides DSM 935T. The G+C contents of the DNA were 46.1 and 46.2 mol% for C. coccoides 1410 and C. coccoides 3110, respectively. Cytochromes could not be detected. Formate was degraded exclusively to acetate, whereas vanillate was O-demethylated, resulting in acetate and 3,4-dihydroxybenzoate, the latter being further decarboxylated to catechol. In the presence of organic substrates, H2 was cometabolized to acetate, but both strains failed to grow autotrophically. Lactose, lactulose, sorbitol, glucose, and various other carbohydrates supported growth as well. Untypical of homoacetogens, glucose and sorbitol were fermented not exclusively to acetate; instead, considerable amounts of succinate and D-lactate were produced. H2 was evolved from carbohydrates only in negligible traces. Acetogenesis from formate plus H2 plus CO2 or vanillate plus H2 plus CO2 was constitutive, whereas utilization of carbohydrates was inducible. Hydrogenase, CO dehydrogenase, formate dehydrogenase, and all of the tetrahydrofolic acid-dependent, C1 compound-converting enzymes of the acetyl-coenzyme A pathway of homoacetogenesis were present in cell extracts. PMID:9143110
2016-01-01
Through the combination of reaction kinetics (both stoichiometric and catalytic), solution- and solid-state characterization of arylpalladium(II) arylsilanolates, and computational analysis, the intermediacy of covalent adducts containing Si–O–Pd linkages in the cross-coupling reactions of arylsilanolates has been unambiguously established. Two mechanistically distinct pathways have been demonstrated: (1) transmetalation via a neutral 8-Si-4 intermediate that dominates in the absence of free silanolate (i.e., stoichiometric reactions of arylpalladium(II) arylsilanolate complexes), and (2) transmetalation via an anionic 10-Si-5 intermediate that dominates in the cross-coupling under catalytic conditions (i.e., in the presence of free silanolate). Arylpalladium(II) arylsilanolate complexes bearing various phosphine ligands have been isolated, fully characterized, and evaluated for their kinetic competence under thermal (stoichiometric) and anionic (catalytic) conditions. Comparison of the rates for thermal and anionic activation suggested, but did not prove, that intermediates containing the Si–O–Pd linkage were involved in the cross-coupling process. The isolation of a coordinatively unsaturated, T-shaped arylpalladium(II) arylsilanolate complex ligated with t-Bu3P allowed the unambiguous demonstration of the operation of both pathways involving 8-Si-4 and 10-Si-5 intermediates. Three kinetic regimes were identified: (1) with 0.5–1.0 equiv of added silanolate (with respect to arylpalladium bromide), thermal transmetalation via a neutral 8-Si-4 intermediate; (2) with 1.0–5.0 equiv of added silanolate, activated transmetalation via an anionic 10-Si-5 intermediate; and (3) with >5.0 equiv of added silanolate, concentration-independent (saturation) activated transmetalation via an anionic 10-Si-5 intermediate. Transition states for the intramolecular transmetalation of neutral (8-Si-4) and anionic (10-Si-5) intermediates have been located computationally, and the anionic pathway is favored by 1.8 kcal/mol. The energies of all intermediates and transition states are highly dependent on the configuration around the palladium atom. PMID:25945516
Discovery of new enzymes and metabolic pathways by using structure and genome context.
Zhao, Suwen; Kumar, Ritesh; Sakai, Ayano; Vetting, Matthew W; Wood, B McKay; Brown, Shoshana; Bonanno, Jeffery B; Hillerich, Brandan S; Seidel, Ronald D; Babbitt, Patricia C; Almo, Steven C; Sweedler, Jonathan V; Gerlt, John A; Cronan, John E; Jacobson, Matthew P
2013-10-31
Assigning valid functions to proteins identified in genome projects is challenging: overprediction and database annotation errors are the principal concerns. We and others are developing computation-guided strategies for functional discovery with 'metabolite docking' to experimentally derived or homology-based three-dimensional structures. Bacterial metabolic pathways often are encoded by 'genome neighbourhoods' (gene clusters and/or operons), which can provide important clues for functional assignment. We recently demonstrated the synergy of docking and pathway context by 'predicting' the intermediates in the glycolytic pathway in Escherichia coli. Metabolite docking to multiple binding proteins and enzymes in the same pathway increases the reliability of in silico predictions of substrate specificities because the pathway intermediates are structurally similar. Here we report that structure-guided approaches for predicting the substrate specificities of several enzymes encoded by a bacterial gene cluster allowed the correct prediction of the in vitro activity of a structurally characterized enzyme of unknown function (PDB 2PMQ), 2-epimerization of trans-4-hydroxy-L-proline betaine (tHyp-B) and cis-4-hydroxy-D-proline betaine (cHyp-B), and also the correct identification of the catabolic pathway in which Hyp-B 2-epimerase participates. The substrate-liganded pose predicted by virtual library screening (docking) was confirmed experimentally. The enzymatic activities in the predicted pathway were confirmed by in vitro assays and genetic analyses; the intermediates were identified by metabolomics; and repression of the genes encoding the pathway by high salt concentrations was established by transcriptomics, confirming the osmolyte role of tHyp-B. This study establishes the utility of structure-guided functional predictions to enable the discovery of new metabolic pathways.
Vygen-Bonnet, Sabine; Rosner, Bettina; Wilking, Hendrik; Fruth, Angelika; Prager, Rita; Kossow, Annelene; Lang, Christina; Simon, Sandra; Seidel, Juliane; Faber, Mirko; Schielke, Anika; Michaelis, Kai; Holzer, Alexandra; Kamphausen, Rolf; Kalhöfer, Daniela; Thole, Sebastian; Mellmann, Alexander; Flieger, Antje; Stark, Klaus
2017-05-25
We report an ongoing, protracted and geographically dispersed outbreak of haemolytic uraemic syndrome (HUS) and gastroenteritis in Germany, involving 30 cases since December 2016. The outbreak was caused by the sorbitol-fermenting immotile variant of Shiga toxin-producing (STEC) Escherichia coli O157. Molecular typing revealed close relatedness between isolates from 14 cases. One HUS patient died. Results of a case-control study suggest packaged minced meat as the most likely food vehicle. Food safety investigations are ongoing. This article is copyright of The Authors, 2017.
Radiation effects in x-irradiated hydroxy compounds
NASA Astrophysics Data System (ADS)
Budzinski, Edwin E.; Potter, William R.; Box, Harold C.
1980-01-01
Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 °K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap.
Ruthenium(III) catalyzed oxidation of sugar alcohols by dichloroisocyanuric acid—A kinetic study
NASA Astrophysics Data System (ADS)
Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.
2016-02-01
Kinetics of ruthenium(III) catalyzed oxidation of biologically important sugar alcohols (myo-inositol, D-sorbitol, and D-mannitol) by dichloroisocyanuric acid was carried out in aqueous acetic acid—perchloric medium. The reactions were found to be first order in case of oxidant and ruthenium(III). Zero order was observed with the concentrations of sorbitol and mannitol whereas, a positive fractional order was found in the case of inositol concentration. An inverse fractional order was observed with perchloric acid in oxidation of three substrates. Arrhenius parameters were calculated and a plausible mechanism was proposed.
Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose
NASA Astrophysics Data System (ADS)
Mukherjee, Kakali; Ghosh, Aniruddha; Saha, Rumpa; Sar, Pintu; Malik, Susanta; Saha, Bidyut
2014-03-01
Kinetic data for oxidation of D-sorbitol to glucose by hexavalent chromium in aqueous medium and aqueous surfactant medium (SDS, TX-100) have been reported. Effect of promoter such as PA, bipy and phenanthroline on the reaction has been investigated. The reaction is performed under pseudo first order condition with an excess of substrate over the oxidant. The reaction is first order with respect to substrate and oxidant. The micelles have a catalytic effect on the reaction. Combination of phen and TX-100 produces almost twelve times increase in rate of oxidation.
Douglas, Peter M; Summers, Daniel W
2009-01-01
The self-association of misfolded or damaged proteins into ordered amyloid-like aggregates characterizes numerous neurodegenerative disorders. Insoluble amyloid plaques are diagnostic of many disease states. Yet soluble, oligomeric intermediates in the aggregation pathway appear to represent the toxic culprit. Molecular chaperones regulate the fate of misfolded proteins and thereby influence their aggregation state. Chaperones conventionally antagonize aggregation of misfolded, disease proteins and assist in refolding or degradation pathways. Recent work suggests that chaperones may also suppress neurotoxicity by converting toxic, soluble oligomers into benign aggregates. Chaperones can therefore suppress or promote aggregation of disease proteins to ameliorate the proteotoxic accumulation of soluble, assembly intermediates. PMID:19421006
Metabolic engineering of the shikimate pathway
Juminaga, Darmawi; Keasling, Jay D.
2017-01-10
The present disclosure relates to engineered microorganisms that produce amino acids and amino acid intermediates. In particular, the disclosure relates to recombinant nucleic acids encoding operons that increase production of aromatic amino acids and the aromatic amino acid intermediate shikimate; microorganisms with increased production of aromatic amino acids and the aromatic amino acid intermediate shikimate; and methods related to the production of aromatic amino acids, the aromatic amino acid intermediate shikimate, and commodity chemicals derived therefrom.
Mahata, Arup; Rai, Rohit K; Choudhuri, Indrani; Singh, Sanjay K; Pathak, Biswarup
2014-12-21
Density functional theory (DFT) calculations are performed to understand and address the previous experimental results that showed the reduction of nitrobenzene to aniline prefers direct over indirect reaction pathways irrespective of the catalyst surface. Nitrobenzene to aniline conversion occurs via the hydroxyl amine intermediate (direct pathway) or via the azoxybenzene intermediate (indirect pathway). Through our computational study we calculated the spin polarized and dispersion corrected reaction energies and activation barriers corresponding to various reaction pathways for the reduction of nitrobenzene to aniline over a Ni catalyst surface. The adsorption behaviour of the substrate, nitrobenzene, on the catalyst surface was also considered and the energetically most preferable structural orientation was elucidated. Our study indicates that the parallel adsorption behaviour of the molecules over a catalyst surface is preferable over vertical adsorption behaviour. Based on the reaction energies and activation barrier of the various elementary steps involved in direct or indirect reaction pathways, we find that the direct reduction pathway of nitrobenzene over the Ni(111) catalyst surface is more favourable than the indirect reaction pathway.
Conflicting accounts occur on the reactivity of substituted chlorines and the ensuing dechlorination pathway of PCBs undergoing catalytic hydrodechlorination (HDCl). In order to understand these relationships, intermediates and dechlorination pathways of carefully selected 17 co...
Cheng, Lailiang
2012-01-01
Both sorbitol and sucrose are imported into apple fruit from leaves. The metabolism of sorbitol and sucrose fuels fruit growth and development, and accumulation of sugars in fruit is central to the edible quality of apple. However, our understanding of the mechanisms controlling sugar metabolism and accumulation in apple remains quite limited. We identified members of various gene families encoding key enzymes or transporters involved in sugar metabolism and accumulation in apple fruit using homology searches and comparison of their expression patterns in different tissues, and analyzed the relationship of their transcripts with enzyme activities and sugar accumulation during fruit development. At the early stage of fruit development, the transcript levels of sorbitol dehydrogenase, cell wall invertase, neutral invertase, sucrose synthase, fructokinase and hexokinase are high, and the resulting high enzyme activities are responsible for the rapid utilization of the imported sorbitol and sucrose for fruit growth, with low levels of sugar accumulation. As the fruit continues to grow due to cell expansion, the transcript levels and activities of these enzymes are down-regulated, with concomitant accumulation of fructose and elevated transcript levels of tonoplast monosaccharide transporters (TMTs), MdTMT1 and MdTMT2; the excess carbon is converted into starch. At the late stage of fruit development, sucrose accumulation is enhanced, consistent with the elevated expression of sucrose-phosphate synthase (SPS), MdSPS5 and MdSPS6, and an increase in its total activity. Our data indicate that sugar metabolism and accumulation in apple fruit is developmentally regulated. This represents a comprehensive analysis of the genes involved in sugar metabolism and accumulation in apple, which will serve as a platform for further studies on the functions of these genes and subsequent manipulation of sugar metabolism and fruit quality traits related to carbohydrates. PMID:22412983
de Castro, Eduardo da S G; Cassella, Ricardo J
2016-05-15
Reference methods for quality control of vaccines usually require treatment of the samples before analysis. These procedures are expensive, time-consuming, unhealthy and require careful manipulation of the sample, making them a potential source of analytical errors. This work proposes a novel method for the quality control of thermostabilizer samples of the yellow fever vaccine employing attenuated total reflectance Fourier transform infrared spectrometry (ATR-FTIR). The main advantage of the proposed method is the possibility of direct determination of the analytes (sodium glutamate and sorbitol) without any pretreatment of the samples. Operational parameters of the FTIR technique, such as the number of accumulated scans and nominal resolution, were evaluated. The best conditions for sodium glutamate were achieved when 64 scans were accumulated using a nominal resolution of 4 cm(-1). The measurements for sodium glutamate were performed at 1347 cm(-1) (baseline correction between 1322 and 1369 cm(-1)). In the case of sorbitol, the measurements were done at 890cm(-1) (baseline correction between 825 and 910 cm(-1)) using a nominal resolution of 2 cm(-1) with 32 accumulated scans. In both cases, the quantitative variable was the band height. Recovery tests were performed in order to evaluate the accuracy of the method and recovery percentages in the range 93-106% were obtained. Also, the methods were compared with reference methods and no statistical differences were observed. The limits of detection and quantification for sodium glutamate were 0.20 and 0.62% (m/v), respectively, whereas for sorbitol they were 1 and 3.3% (m/v), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Koenigshof, Amy M; Beal, Matthew W; Poppenga, Robert H; Jutkowitz, L Ari
2015-01-01
To compare the effectiveness of single dose activated charcoal, single dose activated charcoal with sorbitol, and multidose activated charcoal in reducing plasma carprofen concentrations following experimental overdose in dogs. Randomized, four period cross-over study. University research setting. Eight healthy Beagles. A 120 mg/kg of carprofen was administered orally to each dog followed by either (i) a single 2 g/kg activated charcoal administration 1 hour following carprofen ingestion (AC); (ii) 2 g/kg activated charcoal with 3.84 g/kg sorbitol 1 hour following carprofen ingestion (ACS); (iii) 2 g/kg activated charcoal 1 hour after carprofen ingestion and repeated every 6 hours for a total of 4 doses (MD); (iv) no treatment (control). Plasma carprofen concentrations were obtained over a 36-hour period following carprofen ingestion for each protocol. Pharmacokinetic modeling was performed and time versus concentration, area under the curve, maximum plasma concentration, time to maximum concentration, and elimination half-life were calculated and compared among the groups using ANOVA followed by Tukey's multiple comparisons test. Activated charcoal, activated charcoal with sorbitol (ACS), and multiple-dose activated charcoal (MD) significantly reduced the area under the curve compared to the control group. AC and MD significantly reduced the maximum concentration when compared to the control group. MD significantly reduced elimination half-life when compared to ACS and the control group. There were no other significant differences among the treatment groups. Activated charcoal and ACS are as effective as MD in reducing serum carprofen concentrations following experimental overdose in dogs. Prospective studies are warranted to evaluate the effectiveness of AC, ACS, and MD in the clinical setting. © Veterinary Emergency and Critical Care Society 2015.
Carly, F; Niu, H; Delvigne, F; Fickers, P
2016-04-01
High Pichia pastoris biomass density could be obtained using high co-feeding rate of methanol and sorbitol in a fed-batch or continuous culture, while further higher feeding rate finally leads to oxygen limitation in bioreactor. In the literature, there is lack of report about AOX1 promoter regulation with regard to dissolved oxygen level (DO). Therefore, in this work, chemostat cultures were performed to investigate the cell growth, metabolism and regulation of the AOX1 promoter (pAOX1) regarding co-feeding rate of optimized methanol/sorbitol mixture (methanol fraction 0.60 C-mol/C-mol) using a P. pastoris Mut+/pAOX1-lacZ strain. The oxygen transfer rates (OTR) in bioreactor were kept in the range of typical values of large bioreactor, i.e., 4-8 g/(L h) if DO equals 30 % saturation or 5-10 g/(L h) if DO nears zero. For DO >0, an increase of the carbon fed led to an increase of pAOX1 induction. By contrast, when dissolved oxygen was completely depleted, methanol accumulated, causing a 30 % decrease of pAOX1 induction. However, this decrease is more likely to be lined to methanol accumulation than to low level of dissolved oxygen (<4 % DO). Methanol/sorbitol co-feeding allowed cells to adapt to oxygen transient limitations that often occur at industrial scale with reduced effect on pAOX1 induction. The optimal feeding rate tested here was 6.6 mmol C (DCW h)(-1) at an OTR of 8.28 g O2(L h)(-1) with over fivefold pAOX1 induction (probably directly associated with target protein productivity) compared with previous work.
Learning cellular sorting pathways using protein interactions and sequence motifs.
Lin, Tien-Ho; Bar-Joseph, Ziv; Murphy, Robert F
2011-11-01
Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/.
Gaitanaki, Catherine; Kefaloyianni, Erene; Marmari, Athina; Beis, Isidoros
2004-05-01
The stimulation of p38-MAPK signal transduction pathway by various stressful stimuli was investigated in the marine bivalve M. galloprovincialis. Oxidative stress (5 microM H2O2) induced a biphasic pattern of p38-MAPK phosphorylation with maximal values attained at 15 min (8.1-fold) and 1 h (8.0-fold) of treatment respectively. Furthermore, 1 microM SB203580 abolished the p38-MAPK phosphorylation induced by oxidative stress. Aerial exposure also induced a biphasic pattern of p38-MAPK phosphorylation, with maximal values attained at 1 h (6.8-fold) and 8 h (4.9-fold) respectively. Re-oxygenation following a 15 min of aerial exposure resulted in the progressive dephosphorylation of the kinase. Treatment with 0.5 M sorbitol (in normal seawater) induced the rapid kinase phosphorylation (9.2-fold) and this effect was reversible. Seawater salinities varying between 100-60% had no effect, whereas a salinity of 50% induced a significant p38-MAPK phosphorylation. Furthermore, hypertonicity (120% seawater) resulted in a moderate kinase phosphorylation. All the above results demonstrate for the first time in a marine invertebrate imposed to environmental and other forms of stress as an intact, living organism, that the p38-MAPK pathway is specifically activated by various stressful stimuli which this animal can often face and sustain in vivo.
Sekhar, Ashok; Vallurupalli, Pramodh; Kay, Lewis E
2012-11-20
Friction plays a critical role in protein folding. Frictional forces originating from random solvent and protein fluctuations both retard motion along the folding pathway and activate protein molecules to cross free energy barriers. Studies of friction thus may provide insights into the driving forces underlying protein conformational dynamics. However, the molecular origin of friction in protein folding remains poorly understood because, with the exception of the native conformer, there generally is little detailed structural information on the other states participating in the folding process. Here, we study the folding of the four-helix bundle FF domain that proceeds via a transiently formed, sparsely populated compact on-pathway folding intermediate whose structure was elucidated previously. Because the intermediate is stabilized by both native and nonnative interactions, friction in the folding transition between intermediate and folded states is expected to arise from intrachain reorganization in the protein. However, the viscosity dependencies of rates of folding from or unfolding to the intermediate, as established by relaxation dispersion NMR spectroscopy, clearly indicate that contributions from internal friction are small relative to those from solvent, so solvent frictional forces drive the folding process. Our results emphasize the importance of solvent dynamics in mediating the interconversion between protein configurations, even those that are highly compact, and in equilibrium folding/unfolding fluctuations in general.
Evidence for Apoplasmic Phloem Unloading in Developing Apple Fruit1
Zhang, Ling-Yun; Peng, Yi-Ben; Pelleschi-Travier, Sandrine; Fan, Ying; Lu, Yan-Fen; Lu, Ying-Min; Gao, Xiu-Ping; Shen, Yuan-Yue; Delrot, Serge; Zhang, Da-Peng
2004-01-01
The phloem unloading pathway remains unclear in fleshy fruits accumulating a high level of soluble sugars. A structural investigation in apple fruit (Malus domestica Borkh. cv Golden Delicious) showed that the sieve element-companion cell complex of the sepal bundles feeding the fruit flesh is symplasmically isolated over fruit development. 14C-autoradiography indicated that the phloem of the sepal bundles was functional for unloading. Confocal laser scanning microscopy imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the sepal bundles from the basal to the apical region of the fruit. A 52-kD putative monosaccharide transporter was immunolocalized predominantly in the plasma membrane of both the sieve elements and parenchyma cells and its amount increased during fruit development. A 90-kD plasma membrane H+-ATPase was also localized in the plasma membrane of the sieve element-companion cell complex. Studies of [14C]sorbitol unloading suggested that an energy-driven monosaccharide transporter may be functional in phloem unloading. These data provide clear evidence for an apoplasmic phloem unloading pathway in apple fruit and give information on the structural and molecular features involved in this process. PMID:15122035
Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael; ...
2016-09-27
This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS 2 catalyst, (ii) mixed oxygenates (a mixture of C 2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael
This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS 2 catalyst, (ii) mixed oxygenates (a mixture of C 2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less
Protein folding and misfolding: mechanism and principles
Englander, S. Walter; Mayne, Leland; Krishna, Mallela M. G.
2012-01-01
Two fundamentally different views of how proteins fold are now being debated. Do proteins fold through multiple unpredictable routes directed only by the energetically downhill nature of the folding landscape or do they fold through specific intermediates in a defined pathway that systematically puts predetermined pieces of the target native protein into place? It has now become possible to determine the structure of protein folding intermediates, evaluate their equilibrium and kinetic parameters, and establish their pathway relationships. Results obtained for many proteins have serendipitously revealed a new dimension of protein structure. Cooperative structural units of the native protein, called foldons, unfold and refold repeatedly even under native conditions. Much evidence obtained by hydrogen exchange and other methods now indicates that cooperative foldon units and not individual amino acids account for the unit steps in protein folding pathways. The formation of foldons and their ordered pathway assembly systematically puts native-like foldon building blocks into place, guided by a sequential stabilization mechanism in which prior native-like structure templates the formation of incoming foldons with complementary structure. Thus the same propensities and interactions that specify the final native state, encoded in the amino-acid sequence of every protein, determine the pathway for getting there. Experimental observations that have been interpreted differently, in terms of multiple independent pathways, appear to be due to chance misfolding errors that cause different population fractions to block at different pathway points, populate different pathway intermediates, and fold at different rates. This paper summarizes the experimental basis for these three determining principles and their consequences. Cooperative native-like foldon units and the sequential stabilization process together generate predetermined stepwise pathways. Optional misfolding errors are responsible for 3-state and heterogeneous kinetic folding. PMID:18405419
NASA Astrophysics Data System (ADS)
Vázquez-Contreras, Edgar; Pérez Hernández, Gerardo; Sánchez-Rebollar, Brenda Guadalupe; Chánez-Cárdenas, María Elena
2005-04-01
The unfolding and refolding reactions of Trypanosoma cruzi triosephosphate isomerase (TcTIM) was studied under equilibrium conditions at increasing guanidinium hydrochloride concentrations. The changes in activity intrinsic fluorescence and far-ultraviolet circular dichroism as a function of denaturant were used as a quaternary, tertiary and secondary structural probes respectively. The change in extrinsic ANS fluorescence intensity was also investigated. The results show that the transition between the homodimeric native enzyme to the unfolded monomers (unfolding), and its inverse reaction (refolding) are described by similar pathways and two equilibrium intermediates were detected in both reactions. The mild denaturant concentrations intermediate is active and contains significant amount of secondary and tertiary structures. The medium denaturant concentrations intermediate is inactive and able to bind the fluorescent dye. This intermediates are maybe related with those observed in the denaturation pattern of TIMs from other species; the results are discussed in this context.
Schumacher, Jennifer A; Hashiguchi, Megumi; Nguyen, Vu H; Mullins, Mary C
2011-01-01
The specification of the neural crest progenitor cell (NCPC) population in the early vertebrate embryo requires an elaborate network of signaling pathways, one of which is the Bone Morphogenetic Protein (BMP) pathway. Based on alterations in neural crest gene expression in zebrafish BMP pathway component mutants, we previously proposed a model in which the gastrula BMP morphogen gradient establishes an intermediate level of BMP activity establishing the future NCPC domain. Here, we tested this model and show that an intermediate level of BMP signaling acts directly to specify the NCPC. We quantified the effects of reducing BMP signaling on the number of neural crest cells and show that neural crest cells are significantly increased when BMP signaling is reduced and that this increase is not due to an increase in cell proliferation. In contrast, when BMP signaling is eliminated, NCPC fail to be specified. We modulated BMP signaling levels in BMP pathway mutants with expanded or no NCPCs to demonstrate that an intermediate level of BMP signaling specifies the NCPC. We further investigated the ability of Smad5 to act in a graded fashion by injecting smad5 antisense morpholinos and show that increasing doses first expand the NCPCs and then cause a loss of NCPCs, consistent with Smad5 acting directly in neural crest progenitor specification. Using Western blot analysis, we show that P-Smad5 levels are dose-dependently reduced in smad5 morphants, consistent with an intermediate level of BMP signaling acting through Smad5 to specify the neural crest progenitors. Finally, we performed chimeric analysis to demonstrate for the first time that BMP signal reception is required directly by NCPCs for their specification. Together these results add substantial evidence to a model in which graded BMP signaling acts as a morphogen to pattern the ectoderm, with an intermediate level acting in neural crest specification.
Xin, Mei-Ling; Yang, Jia-Wen; Li, Yu
2017-07-11
The reaction pathways of PCB-77 in the atmosphere with ·OH, O 2 , NO x , and 1 O 2 were inferred based on density functional theory calculations with the 6-31G* basis set. The structures the reactants, transition states, intermediates, and products were optimized. The energy barriers and reaction heats were obtained to determine the energetically favorable reaction pathways. To study the solvation effect, the energy barriers and reaction rates for PCB-77 with different polar and nonpolar solvents (cyclohexane, benzene, carbon tetrachloride, chloroform, acetone, dichloromethane, ethanol, methanol, acetonitrile, dimethylsulfoxide, and water) were calculated. The results showed that ·OH preferentially added to the C5 atom of PCB-77, which has no Cl atom substituent, to generate the intermediate IM5. This intermediate subsequently reacted with O 2 via pathway A to generate IM5a, with an energy barrier of 7.27 kcal/mol and total reaction rate of 8.45 × 10 -8 cm 3 /molecule s. Pathway B involved direct dehydrogenation of IM5 to produce the OH-PCBs intermediate IM5b, with an energy barrier of 28.49 kcal/mol and total reaction rate of 1.15 × 10 -5 cm 3 /molecule s. The most likely degradation pathway of PCB-77 in the atmosphere is pathway A to produce IM5a. The solvation effect results showed that cyclohexane, carbon tetrachloride, and benzene could reduce the reaction energy barrier of pathway A. Among these solvents, the solvation effect of benzene was the largest, and could reduce the total reaction energy barrier by 25%. Cyclohexane, carbon tetrachloride, benzene, dichloromethane, acetone, and ethanol could increase the total reaction rate of pathway A. The increase in the reaction rate of pathway A with benzene was 8%. The effect of solvents on oxidative degradation of PCB-77 in the atmosphere is important. Graphical abstract The reaction pathways of PCB-77 in the atmosphere with •OH, O2, NOx, and 1O2 were inferred based on density functional theory calculations with the 6-31G* basis set. Different polar and nonpolar solvents: cyclohexane, benzene, carbon tetrachloride, chloroform, acetone, dichloromethane, ethanol, methanol, acetonitrile, dimethylsulfoxide, and water were selected to study the solvation effect on the favorable reaction pathways. The investigated results showed what kind of pathway was most likely to occur and the solvent effect on the reaction pathway.
Shevalye, Hanna; Lupachyk, Sergey; Watcho, Pierre; Stavniichuk, Roman; Khazim, Khaled; Abboud, Hanna E; Obrosova, Irina G
2012-03-01
This study evaluated early renal functional, structural, and biochemical changes in high-calorie/high-fat diet fed mice, a model of prediabetes and alimentary obesity. Male C57BL6/J mice were fed normal (11 kcal% fat) or high-fat (58 kcal% fat) diets for 16 wk. Renal changes were evaluated by histochemistry and immunohistochemistry, Western blot analysis, ELISA, enzymatic assays, and chemiluminometry. High-fat diet consumption led to increased body and kidney weights, impaired glucose tolerance, hyperinsulinemia, polyuria, a 2.7-fold increase in 24-h urinary albumin excretion, 20% increase in renal glomerular volume, 18% increase in renal collagen deposition, and 8% drop of glomerular podocytes. It also resulted in a 5.3-fold increase in urinary 8-isoprostane excretion and a 38% increase in renal cortex 4-hydroxynonenal adduct accumulation. 4-hydroxynonenal adduct level and immunoreactivity or Sirtuin 1 expression in renal medulla were not affected. Studies of potential mechanisms of the high-fat diet induced renal cortex oxidative injury revealed that whereas nicotinamide adenine dinucleotide phosphate reduced form oxidase activity only tended to increase, 12/15-lipoxygenase was significantly up-regulated, with approximately 12% increase in the enzyme protein expression and approximately 2-fold accumulation of 12(S)-hydroxyeicosatetraenoic acid, a marker of 12/15-lipoxygenase activity. Accumulation of periodic acid-Schiff -positive material, concentrations of TGF-β, sorbitol pathway intermediates, and expression of nephrin, CAAT/enhancer-binding protein homologous protein, phosphoeukaryotic initiation factor-α, and total eukaryotic initiation factor-α in the renal cortex were indistinguishable between experimental groups. Vascular endothelial growth factor concentrations were reduced in high-fat diet fed mice. In conclusion, systemic and renal cortex oxidative stress associated with 12/15-lipoxygenase overexpression and activation is an early phenomenon caused by high-calorie/high-fat diet consumption and a likely contributor to kidney disease associated with prediabetes and alimentary obesity.
Jindal, Garima; Sunoj, Raghavan B
2012-10-21
Santalene and bergamotene are the major olefinic sesquiterpenes responsible for the fragrance of sandalwood oil. Herein we report the details of density functional theory investigations on the biosynthetic pathway of this important class of terpenes. The mechanistic study has been found to be effective toward gaining significant new insight into different possibilities for the formation of the key intermediates involved in santalene and bergamotene biosynthesis. The stereoelectronic features of the transition states and intermediates for (i) ring closure of the initial bisabolyl cation, and (ii) skeletal rearrangements in the ensuing bicyclic carbocationic intermediates leading to (-)-epi-β-santalene, (-)-β-santalene, (-)-α-santalene, (+)-epi-β-santalene, exo-β-bergamotene, endo-β-bergamotene, exo-α-bergamotene, and endo-α-bergamotene are presented. Interesting structural features pertaining to certain new carbocationic intermediates (such as b) resulting from the ring closure of bisabolyl cation are discussed. Extensive conformational sampling of all key intermediates along the biosynthetic pathway offered new insight into the role of the isoprenyl side chain conformation in the formation of santalene and its analogues. Although the major bicyclic products in Santalum album appear to arise from the right or left handed helical form of farnesyl pyrophosphate (FPP), different alternatives for their formation are found to be energetically feasible. The interconversion of the exo and endo isomers of bisabolyl cation and a likely epimerization, both with interesting mechanistic implications, are presented. The exo to endo conversion is identified to be energetically more favorable than another pathway emanating from the left handed helical FPP. The role of pyrophosphate (OPP(-)) in the penultimate deprotonation step leading to olefinic sesquiterpenes is also examined.
Jin, Lu; Xue, Ying; Zhang, Hui; Kim, Chan Kyung; Xie, Dai Qian; Yan, Guo Sen
2008-05-15
The possible mechanisms of the aminolysis of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone (beta-hydroxy-alpha,beta-unsaturated ester) with dimethylamine are investigated at the hybrid density functional theory B3LYP/6-31G(d,p) level in the gas phase. Single-point computations at the B3LYP/6-311++G(d,p) and the Becke88-Becke95 1-parameter model BB1K/6-311++G(d,p) levels are performed for more precise energy predictions. Solvent effects are also assessed by single-point calculations at the integral equation formalism polarized continuum model IEFPCM-B3LYP/6-311++G(d,p) and IEFPCM-BB1K/6-311++G(d,p) levels on the gas-phase optimized geometries. Three possible pathways, the concerted pathway (path A), the stepwise pathway involving tetrahedral intermediates (path B), and the stepwise pathway via alpha-oxo ketene intermediate due to the participation of beta-hydroxy (path C), are taken into account for the title reaction. Moreover, path C includes two sequential processes. The first process is to generate alpha-oxo ketene intermediate via the decomposition of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone; the second process is the addition of dimethylamine to alpha-oxo ketene intermediate. Our results indicate that path C is more favorable than paths A and B both in the gas phase and in solvent (heptane). In path C, the first process is the rate-determining step, and the second process is revealed to be a [4+2] pseudopericyclic reaction without the energy barrier. Being independent of the concentration of amine, the first process obeys the first-order rate law.
Theoretical study on the reaction mechanism of CH 4 with CaO
NASA Astrophysics Data System (ADS)
Yang, Hua-Qing; Hu, Chang-Wei; Qin, Song
2006-11-01
The reaction pathways and energetics for the reaction of methane with CaO are discussed on the singlet spin state potential energy surface at the B3LYP/6-311+G(2df,2p) and QCISD/6-311++G(3df,3pd)//B3LYP/6-311+G(2df,2p) levels of theory. The reaction of methane with CaO is proposed to proceed in the following reaction pathways: CaO + CH 4 → CaOCH 4 → [TS] → CaOH + CH 3, CaO + CH 4 → OCaCH 4 → [TS] → HOCaCH 3 → CaOH + CH 3 or [TS] → CaCH 3OH → Ca + CH 3OH, and OCaCH 4 → [TS] → HCaOCH 3 → CaOCH 3 + H or [TS] → CaCH 3OH → Ca + CH 3OH. The gas-phase methane-methanol conversion by CaO is suggested to proceed via two kinds of important reaction intermediates, HOCaCH 3 and HCaOCH 3, and the reaction pathway via the hydroxy intermediate (HOCaCH 3) is energetically more favorable than the other one via the methoxy intermediate (HCaOCH 3). The hydroxy intermediate HOCaCH 3 is predicted to be the energetically most preferred configuration in the reaction of CaO + CH 4. Meanwhile, these three product channels (CaOH + CH 3, CaOCH 3 + H and Ca + CH 3OH) are expected to compete with each other, and the formation of methyl radical is the most preferable pathway energetically. On the other hand, the intermediates HCaOCH 3 and HOCaCH 3 are predicted to be the energetically preferred configuration in the reaction of Ca + CH 3OH, which is precisely the reverse reaction of methane hydroxylation.
Prasopdee, Sattrachai; Sotillo, Javier; Tesana, Smarn; Laha, Thewarach; Kulsantiwong, Jutharat; Nolan, Matthew J.
2014-01-01
Background Bithynia siamensis goniomphalos is the snail intermediate host of the liver fluke, Opisthorchis viverrini, the leading cause of cholangiocarcinoma (CCA) in the Greater Mekong sub-region of Thailand. Despite the severe public health impact of Opisthorchis-induced CCA, knowledge of the molecular interactions occurring between the parasite and its snail intermediate host is scant. The examination of differences in gene expression profiling between uninfected and O. viverrini-infected B. siamensis goniomphalos could provide clues on fundamental pathways involved in the regulation of snail-parasite interplay. Methodology/Principal Findings Using high-throughput (Illumina) sequencing and extensive bioinformatic analyses, we characterized the transcriptomes of uninfected and O. viverrini-infected B. siamensis goniomphalos. Comparative analyses of gene expression profiling allowed the identification of 7,655 differentially expressed genes (DEGs), associated to 43 distinct biological pathways, including pathways associated with immune defense mechanisms against parasites. Amongst the DEGs with immune functions, transcripts encoding distinct proteases displayed the highest down-regulation in Bithynia specimens infected by O. viverrini; conversely, transcription of genes encoding heat-shock proteins and actins was significantly up-regulated in parasite-infected snails when compared to the uninfected counterparts. Conclusions/Significance The present study lays the foundation for functional studies of genes and gene products potentially involved in immune-molecular mechanisms implicated in the ability of the parasite to successfully colonize its snail intermediate host. The annotated dataset provided herein represents a ready-to-use molecular resource for the discovery of molecular pathways underlying susceptibility and resistance mechanisms of B. siamensis goniomphalos to O. viverrini and for comparative analyses with pulmonate snail intermediate hosts of other platyhelminths including schistosomes. PMID:24676090
Dringen, R; Schmoll, D; Cesar, M; Hamprecht, B
1993-05-01
A pure population of astroglial cells was selected from heterogeneous astroglia-rich primary cultures in a medium containing sorbitol instead of glucose. It was shown that astroglial cells synthesize glycogen when they are returned to a glucose-containing medium, and that when [14C]lactate is also present the synthesized glycogen is radioactively labelled. Compared with the degree of incorporation of radioactivity in the presence of tritiated glucose, the incorporation of radioactivity from lactate was small but significant. After incubation of astroglial cells with radioactively labelled lactate, the glycogen was isolated and enzymatically hydrolysed to glucose, which was found to be radioactively labelled. Astrocytes are therefore able to convert lactate to glucosyl residues, a metabolic pathway known as gluconeogenesis. It is proposed that astrocytic gluconeogenesis may consume lactic acid formed in neighboring cells such as neurons, during anaerobic glycolysis at times of high energy demand.
Propiconazole Enhances Cell Proliferation by Dysregulation of Ras Farnesylation and theMAPK pathway
Previous studies of mice exposed to the hepatotumorigenic fungicide, propiconazole, revealed an increase in hepatic cell proliferation and over-expression of hepatic genes within the cholesterol biosynthesis pathway. Mevalonate, an intermediate in this pathway, has long been a ta...
Ghosh, Dhiman; Singh, Pradeep K.; Sahay, Shruti; Jha, Narendra Nath; Jacob, Reeba S.; Sen, Shamik; Kumar, Ashutosh; Riek, Roland; Maji, Samir K.
2015-01-01
Mechanistic understanding of nucleation dependent polymerization by α-synuclein (α-Syn) into toxic oligomers and amyloids is important for the drug development against Parkinson's disease. However the structural and morphological characterization during nucleation and subsequent fibrillation process of α-Syn is not clearly understood. Using a variety of complementary biophysical techniques monitoring entire pathway of nine different synucleins, we found that transition of unstructured conformation into β-sheet rich fibril formation involves helix-rich intermediates. These intermediates are common for all aggregating synucleins, contain high solvent-exposed hydrophobic surfaces, are cytotoxic to SHSY-5Y cells and accelerate α-Syn aggregation efficiently. A multidimensional NMR study characterizing the intermediate accompanied with site-specific fluorescence study suggests that the N-terminal and central portions mainly participate in the helix-rich intermediate formation while the C-terminus remained in an extended conformation. However, significant conformational transitions occur at the middle and at the C-terminus during helix to β-sheet transition as evident from Trp fluorescence study. Since partial helix-rich intermediates were also observed for other amyloidogenic proteins such as Aβ and IAPP, we hypothesize that this class of intermediates may be one of the important intermediates for amyloid formation pathway by many natively unstructured protein/peptides and represent a potential target for drug development against amyloid diseases. PMID:25784353
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanctis, Daniele de; Rêgo, Ana T.; Marçal, David
The sorbitol operon regulator from K. pneumoniae has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 3.2 Å. The sorbitol operon regulator (SorC) regulates the metabolism of l-sorbose in Klebsiella pneumonia. SorC was overexpressed in Escherichia coli and purified, and crystals were obtained of a tetrameric form. A single crystal showed X-ray diffraction to 3.20 Å. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 91.6, b = 113.3, c = 184.1 Å. Analysis of the molecular-replacement solution indicates the presence of four SorC molecules in the asymmetric unit.
Role of polyols (erythritol, xylitol and sorbitol) on the structural stabilization of collagen
NASA Astrophysics Data System (ADS)
Usha, R.; Raman, S. Sundar; Subramanian, V.; Ramasami, T.
2006-10-01
The effect of erythritol, xylitol and sorbitol on monomeric collagen solution was evaluated with melting temperature, fluorescence studies, conformational stability and binding energy. The emission intensity and the melting temperature increase as the chain length of polyols increases. Circular dichroism (CD) results indicate the possibility of aggregation of collagen in the presence of polyols. The interaction between collagen and polyols were calculated using binding energy, RMS deviation with collagen like models. Molecular mechanics calculations suggest that polyols bind well with collagen models, that have serine in the X position. The stability of collagen decreases as the number of carbon atoms present in the polyols increases.
Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose.
Mukherjee, Kakali; Ghosh, Aniruddha; Saha, Rumpa; Sar, Pintu; Malik, Susanta; Saha, Bidyut
2014-03-25
Kinetic data for oxidation of D-sorbitol to glucose by hexavalent chromium in aqueous medium and aqueous surfactant medium (SDS, TX-100) have been reported. Effect of promoter such as PA, bipy and phenanthroline on the reaction has been investigated. The reaction is performed under pseudo first order condition with an excess of substrate over the oxidant. The reaction is first order with respect to substrate and oxidant. The micelles have a catalytic effect on the reaction. Combination of phen and TX-100 produces almost twelve times increase in rate of oxidation. Copyright © 2013 Elsevier B.V. All rights reserved.
One-Pot Preparation of Dimethyl Isosorbide from d-Sorbitol via Dimethyl Carbonate Chemistry.
Aricò, F; Aldoshin, A S; Tundo, P
2017-01-10
Direct synthesis of dimethyl isosorbide (DMI) from d-sorbitol via dimethyl carbonate (DMC) chemistry is herein first reported. High yield of DMI was achieved using the nitrogen superbase 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as catalyst and performing the reaction in a stainless steel autoclave by increasing the temperature from 90 to 200 °C. In this procedure, DMC features its full capacity acting in the different steps of the process as carboxymethylating, leaving-group (cyclization), and methylating agent; DMC is also employed as the reaction media. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Edible Film from Polyblend of Ginger Starch, Chitosan, and Sorbitol as Plasticizer
NASA Astrophysics Data System (ADS)
Sariningsih, N.; Putra, Y. P.; Pamungkas, W. P.; Kusumaningsih, T.
2018-03-01
Polyblend ginger starch/chitosan based edible film has been succesfully prepared and characterized. The purpose of this research was to produce edible film from polyblend of ginger starch, chitosan, and sorbitol as plasticizer. The resulted edible film were characterized by using FTIR, TGA and UTM. Edible film of ginger starch had OH vibration (3430 cm-1). Besides, edible film had elongation up to 15.63%. The thermal degradation of this material reached 208°C indicating high termal stability. The water uptake of the edible film was 42.85%. It concluded that edible film produce in this research has potential as a packaging.
Do trehalose and dimethyl sulfoxide affect intermembrane forces?
Pincet, F; Perez, E; Wolfe, J
1994-12-01
The sugar trehalose is produced in some organisms that survive dehydration and desiccation, and it preserves the integrity of membranes in model systems exposed to dehydration and freezing. Dimethyl sulfoxide, a solute which permeates membranes, is added to cell suspensions in many protocols for cryopreservation. Using a surface forces apparatus, we measured the very large, short-range repulsion between phosphatidylcholine bilayers in water and in solutions of trehalose, sorbitol, and dimethyl-sulfoxide. To the resolution of the technique, the force-distance curves between bilayers are unchanged by the addition of trehalose or sorbitol in concentrations exceeding 1 kmol.m-3. A relatively small increase in adhesion in the presence of trehalose and sorbitol solutions may be explained by their osmotic effects. The partitioning of trehalose between aqueous solutions and lamellar phases of dioleylphosphatidylcholine was measured gravimetrically. The amount of trehalose that preferentially adsorbs near membrane surfaces is at most small. The presence of dimethyl sulfoxide in water (1:2 by volume) makes very little difference to the short-range interaction between deposited bilayers, but it sometimes perturbs them in ways that vary among experiments: free bilayers and/or fusion of the deposited bilayers were each observed in about one-third of the experiments.
Plant regeneration from cell suspension-derived protoplasts of Phalaenopsis.
Shrestha, B R; Tokuhara, K; Mii, M
2007-06-01
Protoplasts isolated from cell suspension culture of Phalaenopsis "Wataboushi" were cultured by (a) embedding in gellan gum-solidified hormone-free 1/2 New Dogashima medium (1/2 NDM) containing 0.44 M sorbitol, 0.06 M sucrose and 0.1 g/l L-glutamine (standard method) and (b) beads method using beads of gellan gum or sodium alginate as the gelling agents which were surrounded by liquid NDM. Although, the two beads methods gave less frequency of initial protoplast division than the standard method, the former finally resulted in higher frequency of microcolony formation than the latter. The highest frequency of microcolony formation (23%) was obtained when protoplasts were embedded in 1% Ca-alginate beads and subcultured every two weeks by replacing the surrounding liquid culture medium with a decrease in sorbitol concentration by 0.1 M. Colonies visible to the naked eyes were observed within 2 months of culture and the regenerated calluses were transferred onto hormone-free NDM supplemented with 10 g/l maltose and 0.3% (w/v) gellan gum, on which PLBs were formed and proliferated profusely. The PLBs were regenerated into plantlets after changing the carbon source to 10 g/l sorbitol and successfully acclimatized to greenhouse conditions.
Dey, S S; Dora, K C
2010-08-01
Effect of sodium lactate as cryostabilizer on physico-chemical attributes of croaker (Johnius gangeticus) fish muscle protein was studied during freezing and frozen (-20 ± 2°C) storage for 3 months. Minced meat was mixed with 4% sucrose, 4% sorbitol, and 0.3% sodium tri poly phosphate (STPP) (T1), minced meat was mixed with 6% (w/v) sodium lactate and 0.3% STPP (T2) and control (C) was without any additive. The decreasing rate of Ca(2+) ATPase activity, thaw drip, water holding capacity and relative viscosity in T1 and T2 samples from that of C was significantly lower, indicating higher protective effect of additives. In case of cryoprotectant treated samples, the degradation of myosin heavy chain was much lower than that of C which prevents the aggregation and subsequent insolubilization of myosin during frozen storage. The sodium lactate prevented Ca(2+)ATPase activity more than that of sucrose/sorbitol during isothermal storage at -20 ± 2°C for 3 months. This inferred that sodium lactate can effectively be used as an alternative cryostabilizer to sucrose/sorbitol for stabilization of croaker muscle protein native structure.
Modular Assembly of the Bacterial Large Ribosomal Subunit.
Davis, Joseph H; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S; Lyumkis, Dmitry; Williamson, James R
2016-12-01
The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ∼4-5 Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be "re-routed" through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. Copyright © 2016 Elsevier Inc. All rights reserved.
Modular Assembly of the Bacterial Large Ribosomal Subunit
Davis, Joseph H.; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S.; Lyumkis, Dmitry; Williamson, James R.
2016-01-01
SUMMARY The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ~4–5Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be ‘re-routed’ through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. PMID:27912064
Mehinto, Alvine C; Prucha, Melinda S; Colli-Dula, Reyna C; Kroll, Kevin J; Lavelle, Candice M; Barber, David S; Vulpe, Christopher D; Denslow, Nancy D
2014-07-01
Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.6μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction. Copyright © 2014 Elsevier B.V. All rights reserved.
He, Zhongqi; Spain, Jim C.
2000-01-01
In spite of the variety of initial reactions, the aerobic biodegradation of aromatic compounds generally yields dihydroxy intermediates for ring cleavage. Recent investigation of the degradation of nitroaromatic compounds revealed that some nitroaromatic compounds are initially converted to 2-aminophenol rather than dihydroxy intermediates by a number of microorganisms. The complete pathway for the metabolism of 2-aminophenol during the degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 has been elucidated previously. The pathway is parallel to the catechol extradiol ring cleavage pathway, except that 2-aminophenol is the ring cleavage substrate. Here we report the elucidation of the pathway of 2-amino-4-methylphenol (6-amino-m-cresol) metabolism during the degradation of 4-nitrotoluene by Mycobacterium strain HL 4-NT-1 and the comparison of the substrate specificities of the relevant enzymes in strains JS45 and HL 4-NT-1. The results indicate that the 2-aminophenol ring cleavage pathway in strain JS45 is not unique but is representative of the pathways of metabolism of other o-aminophenolic compounds. PMID:10877799
Lee, Chang-Wook; Pang, Quan; Ha, Seungbum; Cheng, Lei; Han, Sang-Don; Zavadil, Kevin R; Gallagher, Kevin G; Nazar, Linda F; Balasubramanian, Mahalingam
2017-06-28
The lithium-sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium-sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium-sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparingly solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium-sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. This discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation-dissolution chemistries, lithium-sulfur and beyond.
Wang, Jianbing; Zhi, Dan; Zhou, Hao; He, Xuwen; Zhang, Dayi
2018-06-15
Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti 4 O 7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti 4 O 7 as active constituent. The TC electrochemical oxidation on the Ti/Ti 4 O 7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti 4 O 7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.
Singh, Shefali; Pal, Shaifali; Shanker, Karuna; Chanotiya, Chandan Singh; Gupta, Madan Mohan; Dwivedi, Upendra Nath; Shasany, Ajit Kumar
2014-12-01
Withanolides biosynthesis in the plant Withania somnifera (L.) Dunal is hypothesized to be diverged from sterol pathway at the level of 24-methylene cholesterol. The conversion and translocation of intermediates for sterols and withanolides are yet to be characterized in this plant. To understand the influence of mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways on sterols and withanolides biosynthesis in planta, we overexpressed the WsHMGR2 and WsDXR2 in tobacco, analyzed the effect of transient suppression through RNAi, inhibited MVA and MEP pathways and fed the leaf tissue with different sterols. Overexpression of WsHMGR2 increased cycloartenol, sitosterol, stigmasterol and campesterol compared to WsDXR2 transgene lines. Increase in cholesterol was, however, marginally higher in WsDXR2 transgenic lines. This was further validated through transient suppression analysis, and pathway inhibition where cholesterol reduction was found higher due to WsDXR2 suppression and all other sterols were affected predominantly by WsHMGR2 suppression in leaf. The transcript abundance and enzyme analysis data also correlate with sterol accumulation. Cholesterol feeding did not increase the withanolide content compared to cycloartenol, sitosterol, stigmasterol and campesterol. Hence, a preferential translocation of carbon from MVA and MEP pathways was found differentiating the sterols types. Overall results suggested that MVA pathway was predominant in contributing intermediates for withanolides synthesis mainly through the campesterol/stigmasterol route in planta. © 2014 Scandinavian Plant Physiology Society.
Protein Kinases Involved in Mating and Osmotic Stress in the Yeast Kluyveromyces lactis▿
Kawasaki, Laura; Castañeda-Bueno, María; Sánchez-Paredes, Edith; Velázquez-Zavala, Nancy; Torres-Quiroz, Francisco; Ongay-Larios, Laura; Coria, Roberto
2008-01-01
Systematic disruption of genes encoding kinases and mitogen-activated protein kinases (MAPKs) was performed in Kluyveromyces lactis haploid cells. The mutated strains were assayed by their capacity to mate and to respond to hyperosmotic stress. The K. lactis Ste11p (KlSte11p) MAPK kinase kinase (MAPKKK) was found to act in both mating and osmoresponse pathways while the scaffold KlSte5p and the MAPK KlFus3p appeared to be specific for mating. The p21-activated kinase KlSte20p and the kinase KlSte50p participated in both pathways. Protein association experiments showed interaction of KlSte50p and KlSte20p with Gα and Gβ, respectively, the G protein subunits involved in the mating pathway. Both KlSte50p and KlSte20p also showed interaction with KlSte11p. Disruption mutants of the K. lactis PBS2 (KlPBS2) and KlHOG1 genes of the canonical osmotic response pathway resulted in mutations sensitive to high salt and high sorbitol but dispensable for mating. Mutations that eliminate the MAPKK KlSte7p activity had a strong effect on mating and also showed sensitivity to osmotic stress. Finally, we found evidence of physical interaction between KlSte7p and KlHog1p, in addition to diminished Hog1p phosphorylation after a hyperosmotic shock in cells lacking KlSte7p. This study reveals novel roles for components of transduction systems in yeast. PMID:18024598
Design and evaluation of a microfluidic system for inhibition studies of yeast cell signaling
NASA Astrophysics Data System (ADS)
Hamngren, Charlotte; Dinér, Peter; Grøtli, Morten; Goksör, Mattias; Adiels, Caroline B.
2012-10-01
In cell signaling, different perturbations lead to different responses and using traditional biological techniques that result in averaged data may obscure important cell-to-cell variations. The aim of this study was to develop and evaluate a four-inlet microfluidic system that enables single-cell analysis by investigating the effect on Hog1 localization post a selective Hog1 inhibitor treatment during osmotic stress. Optical tweezers was used to position yeast cells in an array of desired size and density inside the microfluidic system. By changing the flow rates through the inlet channels, controlled and rapid introduction of two different perturbations over the cell array was enabled. The placement of the cells was determined by diffusion rates flow simulations. The system was evaluated by monitoring the subcellular localization of a fluorescently tagged kinase of the yeast "High Osmolarity Glycerol" (HOG) pathway, Hog1-GFP. By sequential treatment of the yeast cells with a selective Hog1 kinase inhibitor and sorbitol, the subcellular localization of Hog1-GFP was analysed on a single-cell level. The results showed impaired Hog1-GFP nuclear localization, providing evidence of a congenial design. The setup made it possible to remove and add an agent within 2 seconds, which is valuable for investigating the dynamic signal transduction pathways and cannot be done using traditional methods. We are confident that the features of the four-inlet microfluidic system will be a valuable tool and hence contribute significantly to unravel the mechanisms of the HOG pathway and similar dynamic signal transduction pathways.
Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs
Lin, Tien-Ho; Bar-Joseph, Ziv
2011-01-01
Abstract Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/. PMID:21999284
NASA Astrophysics Data System (ADS)
Zhang, Guojie; Müller, Marcus
2017-08-01
Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.
Zhang, Guojie; Müller, Marcus
2017-08-14
Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale k B T.
Xie, Letian X.; Ozeir, Mohammad; Tang, Jeniffer Y.; Chen, Jia Y.; Jaquinod, Sylvie-Kieffer; Fontecave, Marc; Clarke, Catherine F.; Pierrel, Fabien
2012-01-01
Most of the Coq proteins involved in coenzyme Q (ubiquinone or Q) biosynthesis are interdependent within a multiprotein complex in the yeast Saccharomyces cerevisiae. Lack of only one Coq polypeptide, as in Δcoq strains, results in the degradation of several Coq proteins. Consequently, Δcoq strains accumulate the same early intermediate of the Q6 biosynthetic pathway; this intermediate is therefore not informative about the deficient biosynthetic step in a particular Δcoq strain. In this work, we report that the overexpression of the protein Coq8 in Δcoq strains restores steady state levels of the unstable Coq proteins. Coq8 has been proposed to be a kinase, and we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. This stabilization results in the accumulation of several novel Q6 biosynthetic intermediates. These Q intermediates identify chemical steps impaired in cells lacking Coq4 and Coq9 polypeptides, for which no function has been established to date. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoic acid is used as a ring precursor of Q6. Finally, we used synthetic analogues of 4-hydroxybenzoic acid to bypass deficient biosynthetic steps, and we show here that 2,4-dihydroxybenzoic acid is able to restore Q6 biosynthesis and respiratory growth in a Δcoq7 strain overexpressing Coq8. The overexpression of Coq8 and the use of 4-hydroxybenzoic acid analogues represent innovative tools to elucidate the Q biosynthetic pathway. PMID:22593570
Xie, Letian X; Ozeir, Mohammad; Tang, Jeniffer Y; Chen, Jia Y; Jaquinod, Sylvie-Kieffer; Fontecave, Marc; Clarke, Catherine F; Pierrel, Fabien
2012-07-06
Most of the Coq proteins involved in coenzyme Q (ubiquinone or Q) biosynthesis are interdependent within a multiprotein complex in the yeast Saccharomyces cerevisiae. Lack of only one Coq polypeptide, as in Δcoq strains, results in the degradation of several Coq proteins. Consequently, Δcoq strains accumulate the same early intermediate of the Q(6) biosynthetic pathway; this intermediate is therefore not informative about the deficient biosynthetic step in a particular Δcoq strain. In this work, we report that the overexpression of the protein Coq8 in Δcoq strains restores steady state levels of the unstable Coq proteins. Coq8 has been proposed to be a kinase, and we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. This stabilization results in the accumulation of several novel Q(6) biosynthetic intermediates. These Q intermediates identify chemical steps impaired in cells lacking Coq4 and Coq9 polypeptides, for which no function has been established to date. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoic acid is used as a ring precursor of Q(6). Finally, we used synthetic analogues of 4-hydroxybenzoic acid to bypass deficient biosynthetic steps, and we show here that 2,4-dihydroxybenzoic acid is able to restore Q(6) biosynthesis and respiratory growth in a Δcoq7 strain overexpressing Coq8. The overexpression of Coq8 and the use of 4-hydroxybenzoic acid analogues represent innovative tools to elucidate the Q biosynthetic pathway.
Lokesh, N; Seegerer, Andreas; Hioe, Johnny; Gschwind, Ruth M
2018-02-07
The low sensitivity of NMR and transient key intermediates below detection limit are the central problems studying reaction mechanisms by NMR. Sensitivity can be enhanced by hyperpolarization techniques such as dynamic nuclear polarization or the incorporation/interaction of special hyperpolarized molecules. However, all of these techniques require special equipment, are restricted to selective reactions, or undesirably influence the reaction pathways. Here, we apply the chemical exchange saturation transfer (CEST) technique for the first time to NMR detect and characterize previously unobserved transient reaction intermediates in organocatalysis. The higher sensitivity of CEST and chemical equilibria present in the reaction pathway are exploited to access population and kinetics information on low populated intermediates. The potential of the method is demonstrated on the proline-catalyzed enamine formation for unprecedented in situ detection of a DPU stabilized zwitterionic iminium species, the elusive key intermediate between enamine and oxazolidinones. The quantitative analysis of CEST data at 250 K revealed the population ratio of [Z-iminium]/[exo-oxazolidinone] 0.02, relative free energy +8.1 kJ/mol (calculated +7.3 kJ/mol), and free energy barrier of +45.9 kJ/mol (ΔG ⧧ calc. (268 K) = +42.2 kJ/mol) for Z-iminium → exo-oxazolidinone. The findings underpin the iminium ion participation in enamine formation pathway corroborating our earlier theoretical prediction and help in better understanding. The reliability of CEST is validated using 1D EXSY-build-up techniques at low temperature (213 K). The CEST method thus serves as a new tool for mechanistic investigations in organocatalysis to access key information, such as chemical shifts, populations, and reaction kinetics of intermediates below the standard NMR detection limit.
Metabolic plasticity for isoprenoid biosynthesis in bacteria.
Pérez-Gil, Jordi; Rodríguez-Concepción, Manuel
2013-05-15
Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.
Criegee intermediate-hydrogen sulfide chemistry at the air/water interface.
Kumar, Manoj; Zhong, Jie; Francisco, Joseph S; Zeng, Xiao C
2017-08-01
We carry out Born-Oppenheimer molecular dynamic simulations to show that the reaction between the smallest Criegee intermediate, CH 2 OO, and hydrogen sulfide (H 2 S) at the air/water interface can be observed within few picoseconds. The reaction follows both concerted and stepwise mechanisms with former being the dominant reaction pathway. The concerted reaction proceeds with or without the involvement of one or two nearby water molecules. An important implication of the simulation results is that the Criegee-H 2 S reaction can provide a novel non-photochemical pathway for the formation of a C-S linkage in clouds and could be a new oxidation pathway for H 2 S in terrestrial, geothermal and volcanic regions.
Larsen, Delmar S; van Stokkum, Ivo H M; Vengris, Mikas; van Der Horst, Michael A; de Weerd, Frank L; Hellingwerf, Klaas J; van Grondelle, Rienk
2004-09-01
Photoactive yellow protein is the protein responsible for initiating the "blue-light vision" of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This "incoherent" manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I(0) and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates.
Larsen, Delmar S.; van Stokkum, Ivo H. M.; Vengris, Mikas; van der Horst, Michael A.; de Weerd, Frank L.; Hellingwerf, Klaas J.; van Grondelle, Rienk
2004-01-01
Photoactive yellow protein is the protein responsible for initiating the “blue-light vision” of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This “incoherent” manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I0 and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates. PMID:15345564
2017-01-01
The lithium–sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium–sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium–sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparingly solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium–sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. This discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation–dissolution chemistries, lithium–sulfur and beyond. PMID:28691072
Medrano, María; Fuertes, Miguel Ángel; Valbuena, Alejandro; Carrillo, Pablo J P; Rodríguez-Huete, Alicia; Mateu, Mauricio G
2016-11-30
Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chang -Wook; Pang, Quan; Ha, Seungbum
The lithium–sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium–sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium–sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparinglymore » solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium–sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. Finally, this discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation–dissolution chemistries, lithium–sulfur and beyond.« less
Lee, Chang -Wook; Pang, Quan; Ha, Seungbum; ...
2017-05-25
The lithium–sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium–sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium–sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparinglymore » solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium–sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. Finally, this discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation–dissolution chemistries, lithium–sulfur and beyond.« less
Coelho, Aline Guadalupe; de Jesus, Dosil Pereira
2016-11-01
In this work, a novel and simple analytical method using capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C 4 D) is proposed for the determination of the polyols erythritol, maltitol, xylitol, and sorbitol in sugar-free chocolate. CE separation of the polyols was achieved in less than 6 min, and it was mediated by the interaction between the polyols and the borate ions in the background electrolyte, forming negatively charged borate esters. The extraction of the polyols from the samples was simply obtained using ultra-pure water and ultrasonic energy. Linearity was assessed by calibration curves that showed R 2 varying from 0.9920 to 0.9976. The LOQs were 12.4, 15.9, 9.0, and 9.0 μg/g for erythritol, maltitol, xylitol, and sorbitol, respectively. The accuracy of the method was evaluated by recovery tests, and the obtained recoveries varied from 70 to 116% with standard deviations ranging from 0.2 to 19%. The CE-C 4 D method was successfully applied for the determination of the studied polyols in commercial samples of sugar-free chocolate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Raptis, Dimitrios; Dracopoulos, Vassilios; Lianos, Panagiotis
2017-07-05
The present work has studied renewable hydrogen production by photoelectrocatalytic degradation of model organic substances representing biomass derived organic wastes. Its purpose was to show that renewable energy can be produced by consuming wastes. The study has been carried out by employing nanoparticulate WO 3 photoanodes in the presence of ethanol, glycerol or sorbitol, i.e. three substances which are among typical biomass products. In these substances, the molecular weight and the number of hydroxyl groups increases from ethanol to sorbitol. The photocurrent produced by the cell was the highest in the presence of ethanol, smaller in the case of glycerol and further decreased in the presence of sorbitol. The photocurrent was roughly the double of that produced in the absence of an organic additive thus demonstrating current doubling phenomena. Hydrogen was produced only under illumination and was monitored at two forward bias, 0.8 and 1.6V vs Ag/AgCl. Hydrogen production rates followed the same order as the photocurrent thus indicating that hydrogen production by reduction of protons mainly depends on the current flowing through the external circuit connecting photoanode with cathode. The maximum solar-to-hydrogen efficiency reached by the present system was 2.35%. Copyright © 2017 Elsevier B.V. All rights reserved.
Highly efficient red fluorescent organic light-emitting diodes by sorbitol-doped PEDOT:PSS
NASA Astrophysics Data System (ADS)
Zheng, Yan-Qiong; Yu, Jun-Le; Wang, Chao; Yang, Fang; Wei, Bin; Zhang, Jian-Hua; Zeng, Cheng-Hui; Yang, Yang
2018-06-01
This work shows a promising approach to improve device performance by optimizing the electron transport and hole injection layers for tetraphenyldibenzoperiflanthene (DBP):rubrene-based red fluorescent organic light-emitting diodes (OLEDs). We compared the effect of two electron transport layers (ETLs), and found that the rubrene/bathophenanthroline (Bphen) ETL-based OLED showed a much higher external quantum efficiency (EQE) (4.67%) than the Alq3 ETL-based OLED (EQE of 3.08%). The doping ratio of DBP in rubrene was tuned from 1.0 wt% to 4.5 wt%, and the 1.5 wt%-DBP:rubrene-based OLED demonstrated the highest EQE of 5.24% and lowest turn-on voltage of 2.2 V. Atomic force microscopy images indicated that 1.5 wt% DBP-doped rubrene film exhibited a regular strip shape, and this regular surface was favorable to the hole and electron recombination in the emitting layer. Finally, the sorbitol-doped poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was used to further improve the EQE; doping with 6 wt% sorbitol achieved the highest current efficiency of 7.03 cd A‑1 and an EQE of 7.50%. The significantly enhanced performance implies that the hole injection is a limiting factor for DBP:rubrene-based red fluorescent OLEDs.
Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol
NASA Astrophysics Data System (ADS)
Yardimci, Hasan; Leheny, Robert L.
2006-06-01
Employing frequency-dependent dielectric susceptibility we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibility of both liquids possesses a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench through the glass transition, the susceptibility slowly approaches the equilibrium behavior. For both liquids, the magnitude of the Johari-Goldstein relaxation displays a dependence on the time since the quench, or aging time, that is quantitatively very similar to the age dependence of the alpha peak frequency. The Johari-Goldstein relaxation time remains constant during aging for sorbitol while it decreases slightly with age for xylitol. Hence, one cannot sensibly assign a fictive temperature to the Johari-Goldstein relaxation. This behavior contrasts with that of liquids lacking distinct Johari-Goldstein peaks for which the excess wing of the alpha peak tracks the main part of the peak during aging, enabling the assignment of a single fictive temperature to the entire spectrum. The aging behavior of the Johari-Goldstein relaxation time further calls into question the possibility that the relaxation time possesses stronger temperature dependence in equilibrium than is observed in the out-of-equilibrium state below the glass transition.
Chen, He; Huang, Jie; Shi, Xiaoyu; Li, Yichao; Liu, Yu
2017-01-01
The efficacy of Lactobacillus delbrueckii subsp. bulgaricus as starter cultures for the dairy industry depends largely on the number of viable and active cells. Freeze-drying is the most convenient and successful method to preserve the bacterial cells. However, not all strains survived during freeze-drying. The effects of six substances including NaCl, sorbitol, mannitol, mannose, sodium glutamate, betaine added to the MRS medium on the growth and freeze-drying survival rate and viable counts of Lb. delbrueckii subsp. bulgaricus were studied through a single-factor test and Plackett-Burman design. Subsequently, the optimum freeze-drying conditions of Lb. delbrueckii subsp. bulgaricus were determined. Lb. delbrueckii subsp. bulgaricus survival rates were up to the maximum of 42.7%, 45.4%, 23.6%, while the concentrations of NaCl, sorbitol, sodium glutamate were 0.6%, 0.15%, 0.09%, respectively. In the optimum concentration, the viable counts in broth is 6.1, 6.9, 5.13 (×108 CFU/mL), respectively; the viable counts in freeze-drying power are 3.09, 5.2, 2.7 (×1010 CFU/g), respectively. Three antifreeze factors including NaCl, sorbitol, sodium glutamate have a positive effect on the growth and freeze-drying of Lb. delbrueckii subsp. bulgaricus. The results are beneficial for developing Lb. delbrueckii subsp. bulgaricus.
Structural characterization of the thermostable Bradyrhizobium japonicumD-sorbitol dehydrogenase.
Fredslund, Folmer; Otten, Harm; Gemperlein, Sabrina; Poulsen, Jens Christian N; Carius, Yvonne; Kohring, Gert Wieland; Lo Leggio, Leila
2016-11-01
Bradyrhizobium japonicum sorbitol dehydrogenase is NADH-dependent and is active at elevated temperatures. The best substrate is D-glucitol (a synonym for D-sorbitol), although L-glucitol is also accepted, giving it particular potential in industrial applications. Crystallization led to a hexagonal crystal form, with crystals diffracting to 2.9 Å resolution. In attempts to phase the data, a molecular-replacement solution based upon PDB entry 4nbu (33% identical in sequence to the target) was found. The solution contained one molecule in the asymmetric unit, but a tetramer similar to that found in other short-chain dehydrogenases, including the search model, could be reconstructed by applying crystallographic symmetry operations. The active site contains electron density consistent with D-glucitol and phosphate, but there was not clear evidence for the binding of NADH. In a search for the features that determine the thermostability of the enzyme, the T m for the orthologue from Rhodobacter sphaeroides, for which the structure was already known, was also determined, and this enzyme proved to be considerably less thermostable. A continuous β-sheet is formed between two monomers in the tetramer of the B. japonicum enzyme, a feature not generally shared by short-chain dehydrogenases, and which may contribute to thermostability, as may an increased Pro/Gly ratio.
NASA Astrophysics Data System (ADS)
Krueger, Susan; Khodadadi, Sheila; Clark, Nicholas; McAuley, Arnold; Cristiglio, Viviana; Theyencheri, Narayanan; Curtis, Joseph; Shalaev, Evgenyi
2015-03-01
For effective preservation, proteins are often stored as frozen solutions or in glassy states using a freeze-drying process. However, aggregation is often observed after freeze-thaw or reconstitution of freeze-dried powder and the stability of the protein is no longer assured. In this study, small-angle neutron and X-ray scattering (SANS and SAXS) have been used to investigate changes in protein-protein interaction distances of a model protein/cryoprotectant system of lysozyme/sorbitol/water, under representative pharmaceutical processing conditions. The results demonstrate the utility of SAXS and SANS methods to monitor protein crowding at different stages of freezing and drying. The SANS measurements of solution samples showed at least one protein interaction peak corresponding to an interaction distance of ~ 90 Å. In the frozen state, two protein interaction peaks were observed by SANS with corresponding interaction distances at 40 Å as well as 90 Å. On the other hand, both SAXS and SANS data for freeze-dried samples showed three peaks, suggesting interaction distances ranging from ~ 15 Å to 170 Å. Possible interpretations of these interaction peaks will be discussed, as well as the role of sorbitol as a cryoprotectant during the freezing and drying process.
Acoustic excitations in glassy sorbitol and their relation with the fragility and the boson peak
NASA Astrophysics Data System (ADS)
Ruta, B.; Baldi, G.; Scarponi, F.; Fioretto, D.; Giordano, V. M.; Monaco, G.
2012-12-01
We report a detailed analysis of the dynamic structure factor of glassy sorbitol by using inelastic X-ray scattering and previously measured light scattering data [B. Ruta, G. Monaco, F. Scarponi, and D. Fioretto, Philos. Mag. 88, 3939 (2008), 10.1080/14786430802317586]. The thus obtained knowledge on the density-density fluctuations at both the mesoscopic and macroscopic length scale has been used to address two debated topics concerning the vibrational properties of glasses. The relation between the acoustic modes and the universal boson peak (BP) appearing in the vibrational density of states of glasses has been investigated, also in relation with some recent theoretical models. Moreover, the connection between the elastic properties of glasses and the slowing down of the structural relaxation process in supercooled liquids has been scrutinized. For what concerns the first issue, it is here shown that the wave vector dependence of the acoustic excitations can be used, in sorbitol, to quantitatively reproduce the shape of the boson peak, supporting the relation between BP and acoustic modes. For what concerns the second issue, a proper study of elasticity over a wide spatial range is shown to be fundamental in order to investigate the relation between elastic properties and the slowing down of the dynamics in the corresponding supercooled liquid phase.
This study focuses on the identification of reaction intermediates formed during the photocatalytic degradation of the cyanotoxin microcystin-LR with immobilized TiO2 Tphotocatalysts at neutral pH. To differentiate between impurities already existing in the MC-LR stand...
Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J
2006-12-05
We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.
Tang, Qingli; Shen, Zhemin; Huang, Liang; He, Ting; Adidharma, Hertanto; Russell, Armistead G; Fan, Maohong
2017-07-19
Catalytic carbon dioxide (CO 2 ) hydrogenation to liquid fuels including methanol (CH 3 OH) has attracted great attention in recent years. In this work, density functional theory (DFT) calculations have been employed to study the reaction mechanisms of CO 2 hydrogenation to CH 3 OH on Ga 3 Ni 5 (221) surfaces. The results show that all intermediates except for the O atom prefer to adsorb on Ni sites, and dissociative adsorption of hydrogen (H 2 ) on the Ga 3 Ni 5 (221) surface is almost barrierless and highly exothermic, favoring CO 2 hydrogenation. Moreover, the presence of Ga indeed enhances the dissociative adsorption of H 2 , and this is verified by the projected density of states (PDOS) analysis. Importantly, three possible reaction pathways based on formate (HCOO) and hydrocarboxyl (COOH) formations and reverse water gas shift (rWGS) with carbon monoxide (CO) hydrogenation have been discussed. It is found that CO 2 reduction to CH 3 OH in these pathways prefers to occur entirely via the Langmuir-Hinshelwood (L-H) mechanism. COOH generation is the most favorable pathway because the HCOO and rWGS with CO hydrogenation pathways have high energy barriers and the resulting HCOOH intermediate in the HCOO pathway is unstable. In the COOH reaction pathway, CO 2 is firstly hydrogenated to trans-COOH, followed by the formation of COH via three isomers of COHOH, its hydrogenation to trans-HCOH, and then the production of CH 3 OH via a CH 2 OH intermediate.
Understanding curcumin-induced modulation of protein aggregation.
Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P
2017-07-01
Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.
Smc5/6-Mms21 Prevents and Eliminates Inappropriate Recombination Intermediates in Meiosis
Xaver, Martin; Huang, Lingzhi; Chen, Doris; Klein, Franz
2013-01-01
Repairing broken chromosomes via joint molecule (JM) intermediates is hazardous and therefore strictly controlled in most organisms. Also in budding yeast meiosis, where production of enough crossovers via JMs is imperative, only a subset of DNA breaks are repaired via JMs, closely regulated by the ZMM pathway. The other breaks are repaired to non-crossovers, avoiding JM formation, through pathways that require the BLM/Sgs1 helicase. “Rogue” JMs that escape the ZMM pathway and BLM/Sgs1 are eliminated before metaphase by resolvases like Mus81-Mms4 to prevent chromosome nondisjunction. Here, we report the requirement of Smc5/6-Mms21 for antagonizing rogue JMs via two mechanisms; destabilizing early intermediates and resolving JMs. Elimination of the Mms21 SUMO E3-ligase domain leads to transient JM accumulation, depending on Mus81-Mms4 for resolution. Absence of Smc6 leads to persistent rogue JMs accumulation, preventing chromatin separation. We propose that the Smc5/6-Mms21 complex antagonizes toxic JMs by coordinating helicases and resolvases at D-Loops and HJs, respectively. PMID:24385936
Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng
2017-10-01
To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Conde, Artur; Regalado, Ana; Rodrigues, Diana; Costa, J Miguel; Blumwald, Eduardo; Chaves, M Manuela; Gerós, Hernâni
2015-02-01
Polyols are important metabolites that often function as carbon and energy sources and/or osmoprotective solutes in some plants. In grapevine, and in the grape berry in particular, the molecular aspects of polyol transport and metabolism and their physiological relevance are virtually unknown to date. Here, the biochemical function of a grapevine fruit mesocarp polyol transporter (VvPLT1) was characterized after its heterologous expression in yeast. This H(+)-dependent plasma membrane carrier transports mannitol (K m=5.4mM) and sorbitol (K m=9.5mM) over a broad range of polyols and monosaccharides. Water-deficit stress triggered an increase in the expression of VvPLT1 at the fully mature stage, allowing increased polyol uptake into pulp cells. Plant polyol dehydrogenases are oxireductases that reversibly oxidize polyols into monosaccharides. Mannitol catabolism in grape cells (K m=30.1mM mannitol) and mature berry mesocarps (K m=79mM) was, like sorbitol dehydrogenase activity, strongly inhibited (50-75%) by water-deficit stress. Simultaneously, fructose reduction into polyols via mannitol and sorbitol dehydrogenases was stimulated, contributing to their higher intracellular concentrations in water-deficit stress. Accordingly, the concentrations of mannitol, sorbitol, galactinol, myo-inositol, and dulcitol were significantly higher in berry mesocarps from water-deficit-stressed Tempranillo grapevines. Metabolomic profiling of the berry pulp by GC-TOF-MS also revealed many other changes in its composition induced by water deficit. The impact of polyols on grape berry composition and plant response to water deficit stress, via modifications in polyol transport and metabolism, was analysed by integrating metabolomics with transcriptional analysis and biochemical approaches. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Murinda, S E; Nguyen, L T; Nam, H M; Almeida, R A; Headrick, S J; Oliver, S P
2004-01-01
Six visits were conducted to four dairy farms to collect swab, liquid, and solid dairy farm environmental samples (165 to 180/farm; 15 sample types). The objective of the study was to determine on-farm sources of Campylobacter jejuni, Salmonella spp., Listeria monocytogenes, and Shiga toxin-producing Escherichia coli (STEC), which might serve as reservoirs for transmission of pathogens. Samples were analyzed using mostly U.S. Food and Drug Administration's Bacteriological Analytical Manual protocols; however, Salmonella spp., L. monocytogenes and STEC were co-enriched in universal pre-enrichment broth. Campylobacter jejuni were enriched in Bolton broth containing Bolton broth supplement. Pathogens were isolated on agar media, typed biochemically, and confirmed using multiplex polymerase chain reaction protocols. Campylobacter jejuni, Salmonella spp., L. monocytogenes, Sorbitol-negative (SN)-STEC O157:H7, and sorbitol-positive (SP)-STEC, respectively, were isolated from 5.06%, 3.76%, 6.51%, 0.72%, and 17.3% of samples evaluated. Whereas other pathogens were isolated from all four farms, SN-STEC O157:H7 were isolated from only two farms. Diverse serotypes of SP-STEC including O157:H7, O26:H11, O111, and O103 were isolated. None of the five pathogen groups studied were isolated from bulk tank milk (BTM). Most pathogens (44.2%) were isolated directly from fecal samples. Bovine fecal samples, lagoon water, bedding, bird droppings, and rat intestinal contents constituted areas of major concern on dairy farms. Although in-line milk filters from two farms tested positive for Salmonella or L. monocytogenes, none of the pathogens were detected in the corresponding BTM samples. Good manure management practices, including control of feral animals, are critical in assuring dairy farm hygiene. Identification of on-farm pathogen reservoirs could aid with implementation of farm-specific pathogen reduction programs.
A mannitol/sorbitol receptor stimulates dietary intake in Tribolium castaneum.
Takada, Tomoyuki; Sato, Ryoichi; Kikuta, Shingo
2017-01-01
In insects, perception of chemical stimuli is involved in the acceptance or rejection of food. Gustatory receptors (Grs) that regulate external signals in chemosensory organs have been found in many insects. Tribolium castaneum, a major pest of stored products, possesses over 200 Gr genes. An expanded repertoire of Gr genes appears to be required for diet recognition in species that are generalist feeders; however, it remains unclear whether T. castaneum recognizes a suite of chemicals common to many products or whether its feeding is activated by specific chemicals, and whether its Grs are involved in feeding behavior. It is difficult to determine the food preferences of T. castaneum based on dietary intake due to a lack of appropriate methodology. This study established a novel dietary intake estimation method using gypsum, designated the TribUTE (Tribolium Urges To Eat) assay. For this assay, T. castaneum adults were fed a gypsum block without added organic compounds. Sweet preference was determined by adding sweeteners and measuring the amount of gypsum in the excreta. Mannitol was the strongest activator of T. castaneum dietary intake. In a Xenopus oocyte expression, TcGr20 was found to be responsible for mannitol and sorbitol responses, but not for responses to other tested non-volatile compounds. The EC50 values of TcGr20 for mannitol and sorbitol were 72.6 mM and 90.6 mM, respectively, suggesting that TcGr20 is a feasible receptor for the recognition of mannitol at lower concentrations. We used RNAi and the TribUTE assay to examine whether TcGr20 expression was involved in mannitol recognition. The amounts of excreta in TcGr20 dsRNA-injected adults decreased significantly, despite the presence of mannitol, compared to control adults. Taken together, our results indicate that T. castaneum adults recognized mannitol/sorbitol using the TcGr20 receptor, thereby facilitating the dietary intake of these compounds.
A mannitol/sorbitol receptor stimulates dietary intake in Tribolium castaneum
Takada, Tomoyuki; Sato, Ryoichi
2017-01-01
In insects, perception of chemical stimuli is involved in the acceptance or rejection of food. Gustatory receptors (Grs) that regulate external signals in chemosensory organs have been found in many insects. Tribolium castaneum, a major pest of stored products, possesses over 200 Gr genes. An expanded repertoire of Gr genes appears to be required for diet recognition in species that are generalist feeders; however, it remains unclear whether T. castaneum recognizes a suite of chemicals common to many products or whether its feeding is activated by specific chemicals, and whether its Grs are involved in feeding behavior. It is difficult to determine the food preferences of T. castaneum based on dietary intake due to a lack of appropriate methodology. This study established a novel dietary intake estimation method using gypsum, designated the TribUTE (Tribolium Urges To Eat) assay. For this assay, T. castaneum adults were fed a gypsum block without added organic compounds. Sweet preference was determined by adding sweeteners and measuring the amount of gypsum in the excreta. Mannitol was the strongest activator of T. castaneum dietary intake. In a Xenopus oocyte expression, TcGr20 was found to be responsible for mannitol and sorbitol responses, but not for responses to other tested non-volatile compounds. The EC50 values of TcGr20 for mannitol and sorbitol were 72.6 mM and 90.6 mM, respectively, suggesting that TcGr20 is a feasible receptor for the recognition of mannitol at lower concentrations. We used RNAi and the TribUTE assay to examine whether TcGr20 expression was involved in mannitol recognition. The amounts of excreta in TcGr20 dsRNA-injected adults decreased significantly, despite the presence of mannitol, compared to control adults. Taken together, our results indicate that T. castaneum adults recognized mannitol/sorbitol using the TcGr20 receptor, thereby facilitating the dietary intake of these compounds. PMID:29023543
Chen, Jinzhu; Wang, Shengpei; Huang, Jing; Chen, Limin; Ma, Longlong; Huang, Xing
2013-08-01
Cellulose and cellobiose were selectively converted into sorbitol over water-tolerant phosphotungstic acid (PTA)/metal- organic-framework-hybrid-supported ruthenium catalysts, Ru-PTA/MIL-100(Cr), under aqueous hydrogenation conditions. The goal was to investigate the relationship between the acid/metal balance of bifunctional catalysts Ru-PTA/MIL-100(Cr) and their performance in the catalytic conversion of cellulose and cellobiose into sugar alcohols. The control of the amount and strength of acid sites in the supported PTA/MIL-100(Cr) was achieved through the effective control of encapsulated-PTA loading in MIL-100(Cr). This design and preparation method led to an appropriately balanced Ru-PTA/MIL-100(Cr) in terms of Ru dispersion and hydrogenation capacity on the one hand, and acid site density of PTA/MIL-100(Cr) (responsible for acid-catalyzed hydrolysis) on the other hand. The ratio of acid site density to the number of Ru surface atoms (nA /nRu ) of Ru-PTA/MIL-100(Cr) was used to monitor the balance between hydrogenation and hydrolysis functions; the optimum balance between the two catalytic functions, that is, 8.84
Gu, Zhenyu; Rao, Maithreyi K.; Forsyth, William R.
2009-01-01
The structures of partially-folded states appearing during the folding of a (βα)8 TIM barrel protein, the indole-3-glycerol phosphate synthase from S. solfataricus (sIGPS), was assessed by hydrogen exchange mass spectrometry (HX-MS) and Gō-model simulations. HX-MS analysis of the peptic peptides derived from the pulse-labeled product of the sub-millisecond folding reaction from the urea-denatured state revealed strong protection in the (βα)4 region, modest protection in the neighboring (βα)1–3 and (βα)5β6 segments and no significant protection in the remaining N- and C-terminal segments. These results demonstrate that this species is not a collapsed form of the unfolded state under native-favoring conditions nor is it the native state formed via fast-track folding. However, the striking contrast of these results with the strong protection observed in the (βα)2–5β6 region after 5 s of folding demonstrates that these species represent kinetically-distinct folding intermediates that are not identical as previously thought. A re-examination of the kinetic folding mechanism by chevron analysis of fluorescence data confirmed distinct roles for these two species: the burst-phase intermediate is predicted to be a misfolded, off-pathway intermediate while the subsequent 5 s intermediate corresponds to an on-pathway equilibrium intermediate. Comparison with the predictions using a Cα Gō-model simulation of the kinetic folding reaction for sIGPS shows good agreement with the core of structure offering protection against exchange in the on-pathway intermediate(s). Because the native-centric Gō-model simulations do not explicitly include sequence-specific information, the simulation results support the hypothesis that the topology of TIM barrel proteins is a primary determinant of the folding free energy surface for the productive folding reaction. The early misfolding reaction must involve aspects of non-native structure not detected by the Gō-model simulation. PMID:17942114
Vemula, Harika; Ayon, Navid J; Burton, Alloch; Gutheil, William G
2017-06-01
Cytoplasmic peptidoglycan (PG) precursor levels were determined in methicillin-resistant Staphylococcus aureus (MRSA) after exposure to several cell wall-targeting antibiotics. Three experiments were performed: (i) exposure to 4× MIC levels (acute); (ii) exposure to sub-MIC levels (subacute); (iii) a time course experiment of the effect of vancomycin. In acute exposure experiments, fosfomycin increased UDP-GlcNAc, as expected, and resulted in substantially lower levels of total UDP-linked metabolite accumulation relative to other pathway inhibitors, indicating reduced entry into this pathway. Upstream inhibitors (fosfomycin, d-cycloserine, or d-boroalanine) reduced UDP-MurNAc-pentapeptide levels by more than fourfold. Alanine branch inhibitors (d-cycloserine and d-boroalanine) reduced d-Ala-d-Ala levels only modestly (up to 4-fold) but increased UDP-MurNAc-tripeptide levels up to 3,000-fold. Downstream pathway inhibitors (vancomycin, bacitracin, moenomycin, and oxacillin) increased UDP-MurNAc-pentapeptide levels up to 350-fold and UDP-MurNAc-l-Ala levels up to 80-fold, suggesting reduced MurD activity by downstream inhibitor action. Sub-MIC exposures demonstrated effects even at 1/8× MIC which strongly paralleled acute exposure changes. Time course data demonstrated that UDP-linked intermediate levels respond rapidly to vancomycin exposure, with several intermediates increasing three- to sixfold within minutes. UDP-linked intermediate level changes were also multiphasic, with some increasing, some decreasing, and some increasing and then decreasing. The total (summed) UDP-linked intermediate pool increased by 1,475 μM/min during the first 10 min after vancomycin exposure, providing a revised estimate of flux in this pathway during logarithmic growth. These observations outline the complexity of PG precursor response to antibiotic exposure in MRSA and indicate likely sites of regulation (entry and MurD). Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assary, Rajeev S.; Kim, Taijin; Low, John
Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of themore » fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2–OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2–OH position, which includes a C–C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future.« less
Assary, Rajeev S; Kim, Taejin; Low, John J; Greeley, Jeff; Curtiss, Larry A
2012-12-28
Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of the fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2-OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2-OH position, which includes a C-C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future.
Carrasco-Pozo, Catalina
2017-01-01
Abstract Temporal lobe epilepsy is a common form of adult epilepsy and shows high resistance to treatment. Increasing evidence has suggested that metabolic dysfunction contributes to the development of seizures, with previous studies indicating impairments in brain glucose metabolism. Here we aim to elucidate which pathways involved in glucose metabolism are impaired, by tracing the hippocampal metabolism of injected [U-13C]glucose (i.p.) during the chronic stage of the pilocarpine-status epilepticus mouse model of epilepsy. The enrichment of 13C in the intermediates of glycolysis and the TCA cycle were quantified in hippocampal extracts using liquid chromatography–tandem mass spectroscopy, along with the measurement of the activities of enzymes in each pathway. We show that there is reduced incorporation of 13C in the intermediates of glycolysis, with the percentage enrichment of all downstream intermediates being highly correlated with those of glucose 6-phosphate. Furthermore, the activities of all enzymes in this pathway including hexokinase and phosphofructokinase were unaltered, suggesting that glucose uptake is reduced in this model without further impairments in glycolysis itself. The key findings were 33% and 55% losses in the activities of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase, respectively, along with reduced 13C enrichment in TCA cycle intermediates. This lower 13C enrichment is best explained in part by the reduced enrichment in glycolytic intermediates, whereas the reduction of key TCA cycle enzyme activity indicates that TCA cycling is also impaired in the hippocampal formation. Together, these data suggest that multitarget approaches may be necessary to restore metabolism in the epileptic brain. PMID:28303258
Guzmán-Flores, Juan Manuel; Flores-Pérez, Elsa Cristina; Hernández-Ortiz, Magdalena; Vargas-Ortiz, Katya; Ramírez-Emiliano, Joel; Encarnación-Guevara, Sergio; Pérez-Vázquez, Victoriano
2018-06-01
Type 2 diabetes mellitus is characterized by insulin resistance in the liver. Insulin is not only involved in carbohydrate metabolism, it also regulates protein synthesis. This work describes the expression of proteins in the liver of a diabetic mouse and identifies the metabolic pathways involved. Twenty-week-old diabetic db/db mice were hepatectomized, after which proteins were separated by 2D-Polyacrylamide Gel Electrophoresis (2D-PAGE). Spots varying in intensity were analyzed using mass spectrometry, and biological function was assigned by the Database for Annotation, Visualization and Integrated Discovery (DAVID) software. A differential expression of 26 proteins was identified; among these were arginase-1, pyruvate carboxylase, peroxiredoxin-1, regucalcin, and sorbitol dehydrogenase. Bioinformatics analysis indicated that many of these proteins are mitochondrial and participate in metabolic pathways, such as the citrate cycle, the fructose and mannose metabolism, and glycolysis or gluconeogenesis. In addition, these proteins are related to oxidation⁻reduction reactions and molecular function of vitamin binding and amino acid metabolism. In conclusion, the proteomic profile of the liver of diabetic mouse db/db exhibited mainly alterations in the metabolism of carbohydrates and nitrogen. These differences illustrate the heterogeneity of diabetes in its different stages and under different conditions and highlights the need to improve treatments for this disease.
Artsatbanov, V Yu; Vostroknutova, G N; Shleeva, M O; Goncharenko, A V; Zinin, A I; Ostrovsky, D N; Kapreliants, A S
2012-04-01
Artificial generation of oxygen superoxide radicals in actively growing cultures of Mycobacterium tuberculosis, Myc. smegmatis, and Corynebacterium ammoniagenes is followed by accumulation in the bacterial cells of substantial amounts of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MEcDP) - an intermediate of the non-mevalonate pathway of isoprenoid biosynthesis (MEP) - most possibly due to the interaction of the oxygen radicals with the 4Fe-4S group in the active center and inhibition of the enzyme (E)-4-oxy-3-methylbut-2-enyl diphosphate synthase (IspG). Cadmium ions known to inhibit IspG enzyme in chloroplasts (Rivasseau, C., Seemann, M., Boisson, A. M., Streb, P., Gout, E., Douce, R., Rohmer, M., and Bligny, R. (2009) Plant Cell Environ., 32, 82-92), when added to culture of Myc. smegmatis, substantially increase accumulation of MEcDP induced by oxidative stress with no accumulation of other organic phosphate intermediates in the cell. Corynebacterium ammoniagenes'', well-known for its ability to synthesize large amounts of MEcDP, was also shown to accumulate this unique cyclodiphosphate in actively growing culture when NO at low concentration is artificially generated in the medium. A possible role of the MEP-pathway of isoprenoid biosynthesis and a role of its central intermediate MEcDP in bacterial response to nitrosative and oxidative stress is discussed.
Zhang, Junqiu; Yan, Juping; Wang, Yingte; Zhang, Yong
2018-07-01
A facile and economic approach to synthesis highly fluorescence carbon dots (CDs) via one-step hydrothermal treatment of D-sorbitol was presented. The as-synthesized CDs were characterized by good water solubility, well monodispersion, and excellent biocompatibility. Spherical CDs had a particle size about 5 nm and exhibited a quantum yield of 8.85% at excitation wavelength of 360 nm. In addition, the CDs can serve as fluorescent probe for sensitive and selective detection of Fe3+ ions with the detection limit of 1.16 μM. Moreover, the potential of the as-prepared carbon dots for biological application was confirmed by employing it for fluorescence imaging in MCF-7 cells.
Study on cryopreservation of Porphyra yezoensis conchocelis
NASA Astrophysics Data System (ADS)
Zhou, Wenjun; Li, Yun; Dai, Jixun
2007-07-01
Cryopreservation of Porphyra yezoensis conchocelis was conducted with cryoprotectants and a proposed pretreatment procedure and thawing methods explored. Six cryoprotectants combined by DMSO with ethylene glycol (EG), propylene glycol (PEG), sorbitol and sucrose were developed. The effect of prefreezing at -40°C or -20°C for different time durations was compared and the thawing methods were screened. It was shown that the cryoprotectant including 10% DMSO with 0.5 molL-1 sorbitol exhibited the optimal effect. The ideal pretreatment was that conchocelis segments were stayed for 20 min at -40°C before stored in liquid nitrogen, and 40°C water bath was proper for quick thawing. The highest recovery rate of cryopreserved P. yezoensis conchocelis reached 89.41%.
A transparent, solvent-free laminated top electrode for perovskite solar cells.
Makha, Mohammed; Fernandes, Silvia Letícia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, Jürg; Tisserant, Jean-Nicolas; Véron, Anna C; Hany, Roland
2016-01-01
A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of ~30 wt% per milliliter PEDOT:PSS dispersion, and using a pre-annealing temperature of 120°C for 10 min before lamination. Thereby, perovskite solar cells with stabilized power conversion efficiencies of (7.6 ± 1.0)% were obtained which corresponds to 80% of the reference devices with reflective opaque gold electrodes.
A transparent, solvent-free laminated top electrode for perovskite solar cells
NASA Astrophysics Data System (ADS)
Makha, Mohammed; Fernandes, Silvia Letícia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, Jürg; Tisserant, Jean-Nicolas; Véron, Anna C.; Hany, Roland
2016-01-01
A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of 30 wt% per milliliter PEDOT:PSS dispersion, and using a pre-annealing temperature of 120°C for 10 min before lamination. Thereby, perovskite solar cells with stabilized power conversion efficiencies of (7.6 ± 1.0)% were obtained which corresponds to 80% of the reference devices with reflective opaque gold electrodes.
Enzymes involved in a novel anaerobic cyclohexane carboxylic acid degradation pathway.
Kung, Johannes W; Meier, Anne-Katrin; Mergelsberg, Mario; Boll, Matthias
2014-10-01
The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Enzymes Involved in a Novel Anaerobic Cyclohexane Carboxylic Acid Degradation Pathway
Kung, Johannes W.; Meier, Anne-Katrin; Mergelsberg, Mario
2014-01-01
The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. PMID:25112478
Guo, Xiaoge; Jinks-Robertson, Sue
2013-12-01
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral introduction of UV damage can potentially compromise genetic interpretations. Copyright © 2013 Elsevier B.V. All rights reserved.
Guo, Xiaoge; Jinks-Robertson, Sue
2013-01-01
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the cillateral introduction of UV damage can potentially compromise genetic interpretations. PMID:24120148
Multidimensional free energy surface of unfolding of HP-36: Microscopic origin of ruggedness
NASA Astrophysics Data System (ADS)
Ghosh, Rikhia; Roy, Susmita; Bagchi, Biman
2014-10-01
The protein folding funnel paradigm suggests that folding and unfolding proceed as directed diffusion in a multidimensional free energy surface where a multitude of pathways can be traversed during the protein's sojourn from initial to final state. However, finding even a single pathway, with the detail chronicling of intermediates, is an arduous task. In this work we explore the free energy surface of unfolding pathway through umbrella sampling, for a small globular α-helical protein chicken-villin headpiece (HP-36) when the melting of secondary structures is induced by adding DMSO in aqueous solution. We find that the unfolding proceeds through the initial separation or melting of aggregated hydrophobic core that comprises of three phenylalanine residues (Phe7, Phe11, and Phe18). This separation is accompanied by simultaneous melting of the second helix. Unfolding is found to be a multistage process involving crossing of three consecutive minima and two barriers at the initial stage. At a molecular level, Phe18 is observed to reorient itself towards other hydrophobic grooves to stabilize the intermediate states. We identify the configuration of the intermediates and correlate the intermediates with those obtained in our previous works. We also give an estimate of the barriers for different transition states and observe the softening of the barriers with increasing DMSO concentration. We show that higher concentration of DMSO tunes the unfolding pathway by destabilizing the third minimum and stabilizing the second one, indicating the development of a solvent modified, less rugged pathway. The prime outcome of this work is the demonstration that mixed solvents can profoundly transform the nature of the energy landscape and induce unfolding via a modified route. A successful application of Kramer's rate equation correlating the free energy simulation results shows faster rate of unfolding with increasing DMSO concentration. This work perhaps presents the first systematic theoretical study of the effect of a chemical denaturant on the microscopic free energy surface and rates of unfolding of HP-36.
Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L.; Freund, Stefan M.; Menzel, Andreas; Fersht, Alan R.; Jemth, Per; van der Spoel, David; Davidsson, Jan
2015-01-01
The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution. PMID:25946337
Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L; Freund, Stefan M; Menzel, Andreas; Fersht, Alan R; Jemth, Per; van der Spoel, David; Davidsson, Jan
2015-01-01
The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.
Search for the Evolution of Steroid Biosynthesis in the Geological Record
NASA Astrophysics Data System (ADS)
Brocks, J. J.
2004-12-01
To study the evolution of the structure of organisms we can directly examine fossilized shells, skeletons and petrified cells. In contrast, for the tentative reconstruction of the phylogeny of biosynthetic pathways, such as steroid anabolism, we rely entirely on the comparative molecular biology of living organisms. Thus, without fossil evidence, the times in geological history when successive steps of a metabolic pathway evolved remain particularly elusive. Molecular clocks of genes coding for the enzymes involved in a biosynthetic pathway might provide a rough guess when a natural product first appeared in geological time, but they are intrinsically unreliable without calibration points in the distant past. However, it might be possible to trace the evolutionary history of some biosynthetic pathways directly in the geological record by searching for hydrocarbon biomarkers of anabolic intermediates. Biomarkers are molecular fossils of natural products. They often retain the diagnostic carbon skeleton of their biological precursor and remain stable over hundreds of millions of years enclosed in organic-rich sedimentary rocks. Sterane hydrocarbons are particularly abundant biomarkers and potentially suitable for the search of biosynthetic intermediates. Steranes are the fossil equivalents of functionalized steroids found in eukaryotes and certain bacteria. The biosynthesis of typical eukaryotic steroids such as cholesterol (C27), ergosterol (C28) and sitosterol (C29) from the acyclic precursor squalene (C30) involves more than 20 enzymatic steps. The most crucial steps include modification of the carbon skeleton by removal of several methyl groups from the ring system and addition of alkyl groups to the steroid side chain. The evolution of this complex pathway must have occurred over geologically significant periods of time and likely involved several preadaptive intermediates that represented structurally less derived but fully functional lipids. Thus, if a molecular corollary of `ontogeny recapitulates phylogeny' applies, it might be possible to detect a sequence of increasingly modified fossil steroids in the geological record and to create a time frame for the evolution of this fundamental biosynthetic pathway. Here we present first results of an extensive search for the fossil remains of evolutionary intermediate steroids in sedimentary successions of Precambrian age.
Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao
2016-02-01
The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dexter energy transfer pathways
Skourtis, Spiros S.; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M.; Beratan, David N.
2016-01-01
Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor–acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways. PMID:27382185
Dexter energy transfer pathways.
Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N
2016-07-19
Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.
Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates.
Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P
2015-03-27
Fe III -hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme Fe III -hypohalite intermediates of possible relevance to iron halogenases. We show that Fe III -OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the Fe III -OCl, and ultimately Fe IV =O, species and provide indirect evidence for a short-lived Fe II -OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases.
Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**
Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P
2015-01-01
FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379
Activation pathway of Src kinase reveals intermediate states as novel targets for drug design
Shukla, Diwakar; Meng, Yilin; Roux, Benoît; Pande, Vijay S.
2014-01-01
Unregulated activation of Src kinases leads to aberrant signaling, uncontrolled growth, and differentiation of cancerous cells. Reaching a complete mechanistic understanding of large scale conformational transformations underlying the activation of kinases could greatly help in the development of therapeutic drugs for the treatment of these pathologies. In principle, the nature of conformational transition could be modeled in silico via atomistic molecular dynamics simulations, although this is very challenging due to the long activation timescales. Here, we employ a computational paradigm that couples transition pathway techniques and Markov state model-based massively distributed simulations for mapping the conformational landscape of c-src tyrosine kinase. The computations provide the thermodynamics and kinetics of kinase activation for the first time, and help identify key structural intermediates. Furthermore, the presence of a novel allosteric site in an intermediate state of c-src that could be potentially utilized for drug design is predicted. PMID:24584478
A Springloaded Metal-Ligand Mesocate Allows Access to Trapped Intermediates of Self-Assembly.
Bogie, Paul M; Holloway, Lauren R; Lyon, Yana; Onishi, Nicole C; Beran, Gregory J O; Julian, Ryan R; Hooley, Richard J
2018-04-02
A strained, "springloaded" Fe 2 L 3 iminopyridine mesocate shows highly variable reactivity upon postassembly reaction with competitive diamines. The strained assembly is reactive toward transimination in minutes at ambient temperature and allows observation of kinetically trapped intermediates in the self-assembly pathway. When diamines are used that can only form less favored cage products upon full equilibration, trapped ML 3 fragments with pendant, "hanging" NH 2 groups are selectively formed instead. Slight variations in diamine structure have large effects on the product outcome: less rigid diamines convert the mesocate to more favored self-assembled cage complexes under mild conditions and allow observation of heterocomplex intermediates in the displacement pathway. The mesocate allows control of equilibrium processes and direction of product outcomes via small, iterative changes in added subcomponent structure and provides a method of accessing metal-ligand cage structures not normally observed in multicomponent Fe-iminopyridine self-assembly.
Interrogating viral capsid assembly with ion mobility-mass spectrometry
NASA Astrophysics Data System (ADS)
Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.
2011-02-01
Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.
Proteomics for Adverse Outcome Pathway Discovery using Human Kidney Cells?
An Adverse Outcome Pathway (AOP) is a conceptual framework that applies molecular-based data for use in risk assessment and regulatory decision support. AOP development is based on effects data of chemicals on biological processes (i.e., molecular initiating events, key intermedi...
Kulkarni, Guruprasad B; Sanjeevkumar, S; Kirankumar, B; Santoshkumar, M; Karegoudar, T B
2013-02-01
Fusarium delphinoides (Ascomycota; Nectriaceae) is an indole-3-acetic acid (IAA) producing plant pathogen and a causal agent of wilt in chickpea. The IAA biosynthetic pathway in F. delphinoides strain GPK (FDG) was examined by analyzing metabolic intermediates and by feeding experiments. Gas chromatograph (GC) analysis of FDG culture filtrates showed the presence of metabolic intermediates of indole-3-pyruvic acid (IPyA), indole-3-acetamide (IAM), and tryptamine (TRA) pathways. The different IAA biosynthetic pathways were further confirmed by identifying the presence of different enzymes of these pathways. Substrate specificity study of aromatic amino acid aminotransferase revealed that the enzyme is highly specific for tryptophan (Trp) and α-ketoglutarate (α-kg) as amino group donor and acceptor, respectively. Furthermore, the concentration-dependent effect of exogenous IAA on fungal growth was established. Low concentration of exogenous IAA increases the fungal growth and at high concentration it decreases the growth of FDG.
He, Yunqing; Xue, Ying
2010-09-02
The reaction mechanism of the cyanide-catalyzed benzoin condensation without protonic solvent assistance has been studied computationally for the first time employing the density functional theory (B3LYP) method in conjunction with 6-31+G(d,p) basis set. Four possible pathways have been investigated. A new proposed pathway on the basis of the Lapworth mechanism is determined to be the dominant pathway in aprotic solvent, in which the formation of the Lapworth's cyanohydrin intermediate is a sequence including three steps assisted by benzaldehyde, clearly manifesting that the reaction can take place in aprotic solvents such as DMSO. In this favorable pathway with six possible transition states located along the potential energy surface, the reaction of the cyanide/benzaldehyde complex with another benzaldehyde to afford an alpha-hydroxy ether is the rate-determining dynamically with the activation free energy barrier of 26.9 kcal/mol, and the step to form cyanohydrin intermediate from alpha-hydroxy ether is partially rate-determining for its relatively significant barrier 20.0 kcal/mol.
Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom
Pandey, Shivendra; Johnson, Daniel; Kaplan, Ryan; Klobusicky, Joseph; Menon, Govind; Gracias, David H.
2014-01-01
The spontaneous self-organization of conformational isomers from identical precursors is of fundamental importance in chemistry. Since the precursors are identical, it is the multi-unit interactions, characteristics of the intermediates, and assembly pathways that determine the final conformation. Here, we use geometric path sampling and a mesoscale experimental model to investigate the self-assembly of a model polyhedral system, an octahedron, that forms two isomers. We compute the set of all possible assembly pathways and analyze the degrees of freedom or rigidity of intermediates. Consequently, by manipulating the degrees of freedom of a precursor, we were able to experimentally enrich the formation of one isomer over the other. Our results suggest a new approach to direct pathways in both natural and synthetic self-assembly using simple geometric criteria. We also compare the process of folding and unfolding in this model with a geometric model for cyclohexane, a well-known molecule with chair and boat conformations. PMID:25299051
Rahaman, Hamidur; Alam Khan, Md. Khurshid; Hassan, Md. Imtaiyaz; Islam, Asimul; Moosavi-Movahedi, Ali Akbar; Ahmad, Faizan
2015-01-01
While many proteins are recognized to undergo folding via intermediate(s), the heterogeneity of equilibrium folding intermediate(s) along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD), ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS) were used to study the structural and thermodynamic characteristics of the native (N), denatured (D) and intermediate state (X) of goat cytochorme c (cyt-c) induced by weak salt denaturants (LiBr, LiCl and LiClO4) at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε 400) and CD ([θ]409), is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG) state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1) that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III) axial bond and Trp59-propionate interactions; (2) that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3) that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1), classical (X2) and disordered (X3), i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N. PMID:25849212
Rahaman, Hamidur; Alam Khan, Md Khurshid; Hassan, Md Imtaiyaz; Islam, Asimul; Moosavi-Movahedi, Ali Akbar; Ahmad, Faizan
2015-01-01
While many proteins are recognized to undergo folding via intermediate(s), the heterogeneity of equilibrium folding intermediate(s) along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD), ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS) were used to study the structural and thermodynamic characteristics of the native (N), denatured (D) and intermediate state (X) of goat cytochorme c (cyt-c) induced by weak salt denaturants (LiBr, LiCl and LiClO4) at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε400) and CD ([θ]409), is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG) state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1) that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III) axial bond and Trp59-propionate interactions; (2) that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3) that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1), classical (X2) and disordered (X3), i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N.
Inhibition of d-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography
Kovalevsky, Andrey; Hanson, B. Leif; Mason, Sax A.; Forsyth, V. Trevor; Fisher, Zoe; Mustyakimov, Marat; Blakeley, Matthew P.; Keen, David A.; Langan, Paul
2012-01-01
d-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni2+ cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg2+ ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni2+ ions occupying the catalytic metal site (M2) were found at two locations, while Mg2+ in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH. PMID:22948921
Zakharov, Boris; Fisyuk, Alexander; Fitch, Andy; Watier, Yves; Kostyuchenko, Anastasia; Varshney, Dushyant; Sztucki, Michael; Boldyreva, Elena; Shalaev, Evgenyi
2016-07-01
Ice formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions. Warming the sorbitol-water mixtures from 100 to 228 K resulted in partial ice melting, with simultaneous reduction in the microstrain and increase in crystallite size, that is, recrystallization. In contrast to sorbitol solutions, ice crystals in the BSA solutions preserved both the microstrain and smaller crystallite size on partial melting, demonstrating that BSA inhibits ice recrystallization. The results are consistent with BSA partitioning into quasi-liquid layer on ice crystals but not with a direct protein-ice interaction and protein sorption on ice surface. The study shows for the first time that a common (i.e., not-antifreeze) protein can have a major impact on ice recrystallization and also presents synchrotron X-ray diffraction as a unique tool for quantification of crystallinity and disorder in frozen aqueous systems. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Synthesis of a biofuel target through conventional organic chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, Jordan P.; Robinson, Joshua W.; Albrecht, Karl O.
In this work, the biofuel target compound 2-ethyl-5,5-dimethylcyclopenta-1,3-diene (1) and its exo isomers (9a and 9b), were successfully synthesized via two different pathways from the common intermediate 4,4-dimethylcyclopent-2-ene-1-one (2). The first pathway produced the endocyclic product as a pure isomer via a triflate intermediate obtained from the ketone 2 in 60% yield, followed by copper catalyzed coupling with ethyl magnesium bromide in 63% yield. The second pathway employed a Grignard reaction with ketone 2, which generated an alcohol that was immediately subjected to mild acid catalyzed elimination upon workup of the previous step to yield a primarily a mixture ofmore » exo diastereomers 9a and 9b in 77% yield. These targets had their fuel properties characterized in a separate study.« less
[The advance in synthetic biology: towards a microbe-derived paclitaxel intermediates].
Wang, Wei; Yang, Yan; Zheng, Xiao-Dong; Huang, Shu-Qiong; Guo, Lei; Kong, Jian-Qiang; Cheng, Ke-Di
2013-02-01
The synthetic biology matures to promote the heterologous biosynthesis of the well-known drug paclitaxel that is one of the most important and active chemotherapeutic agents for the first-line clinical treatment of cancer. This review focuses on the construction and regulation of the biosynthetic pathway of paclitaxel intermediates in both Escherichia coli and Saccharomyces cerevisiae. In particular, the review also features the early efforts to design and overproduce taxadiene and the bottleneck of scale fermentation for producing the intermediates.
Sugimoto, Hayuki; Nakaura, Miho; Nishimura, Shigenori; Karita, Shuichi; Miyake, Hideo; Tanaka, Akiyoshi
2009-08-01
Refolding of a thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase was investigated using differential scanning calorimetry, isothermal titration calorimetry, CD, and (1)H NMR. When the protein solution was rapidly cooled from a higher temperature, a kinetic intermediate was formed during refolding. The intermediate was unexpectedly stable compared with typical folding intermediates that have short half-lives. It was shown that this intermediate contained substantial secondary structure and tertiary packing and had the same binding ability with beta-cyclodextrin as the native state, suggesting that the intermediate is highly-ordered and native-like on the whole. These characteristics differ from those of partially folded intermediates such as molten globule states. Far-UV CD spectra showed that the secondary structure was once disrupted during the transition from the intermediate to the native state. These results suggest that the intermediate could be an off-pathway type, possibly a misfolded state, that has to undergo unfolding on its way to the native state.
Luo, Jun; Cui, Xiuji; Gao, Lu; Hu, Jianming
2017-06-21
The hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC to CCC DNA conversion, two 3' exonucleases Exo I and Exo III, in combination were used to degrade all DNA strands with a free 3' end, which would nevertheless preserve closed circular DNA, either single-stranded (SS) or double-stranded (DS). Indeed, a RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA or cM-RC DNA) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5' end of the plus strand in RC DNA, suggesting that minus strand closing can occur before plus strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA is the molecular basis of viral persistence, by serving as the viral transcriptional template. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved. Copyright © 2017 American Society for Microbiology.
Luo, Jun; Cui, Xiuji; Gao, Lu
2017-01-01
ABSTRACT Hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multistep and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC DNA to CCC DNA conversion, two 3′ exonucleases, exonuclease I (Exo I) and Exo III, were used in combination to degrade all DNA strands with a free 3′ end, which would nevertheless preserve closed circular DNA in either single-stranded (SS) or double-stranded (DS) form. Indeed, an RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA [cM-RC DNA]) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5′ end of the plus strand in RC DNA, suggesting that minus-strand closing can occur before plus-strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and the factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA, by serving as the viral transcriptional template, is the molecular basis of viral persistence. CCC DNA is converted, in a multistep and ill-understood process, from relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC DNA to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved. PMID:28637752
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guntaka, Naga Sandhya; Healy, Alan R.; Crawford, Jason M.
Colibactin is a genotoxic hybrid nonribosomal peptide/polyketide secondary metabolite produced by various pathogenic and probiotic bacteria residing in the human gut. The presence of colibactin metabolites has been correlated to colorectal cancer formation in several studies. The specific function of many gene products in the colibactin gene cluster can be predicted. However, the role of ClbQ, a type II editing thioesterase, has not been established. The importance of ClbQ has been demonstrated by genetic deletions that abolish colibactin cytotoxic activity, and recent studies suggest an atypical role in releasing pathway intermediates from the assembly line. Here we report the 2.0more » Å crystal structure and biochemical characterization of ClbQ. Our data reveal that ClbQ exhibits greater catalytic efficiency toward acyl-thioester substrates as compared to precolibactin intermediates and does not discriminate among carrier proteins. Cyclized pyridone-containing colibactins, which are off-pathway derivatives, are not viable substrates for ClbQ, while linear precursors are, supporting a role of ClbQ in facilitating the promiscuous off-loading of premature precolibactin metabolites and novel insights into colibactin biosynthesis.« less
Metabolic Mitigation of Staphylococcus aureus Vancomycin Intermediate-Level Susceptibility.
Gardner, Stewart G; Marshall, Darrell D; Daum, Robert S; Powers, Robert; Somerville, Greg A
2018-01-01
Staphylococcus aureus is a major human pathogen whose infections are increasingly difficult to treat due to increased antibiotic resistance, including resistance to vancomycin. Vancomycin-intermediate S. aureus (VISA) strains develop resistance to vancomycin through adaptive changes that are incompletely understood. Central to this adaptation are metabolic changes that permit growth in the presence of vancomycin. To define the metabolic changes associated with adaptive resistance to vancomycin in S. aureus , the metabolomes of a vancomycin-sensitive and VISA strain pair isolated from the same patient shortly after vancomycin therapy began and following vancomycin treatment failure were analyzed. The metabolic adaptations included increases in acetogenesis, carbon flow through the pentose phosphate pathway, wall teichoic acid and peptidoglycan precursor biosynthesis, purine biosynthesis, and decreased tricarboxylic acid (TCA) cycle activity. The significance of these metabolic pathways for vancomycin-intermediate susceptibility was determined by assessing the synergistic potential of human-use-approved inhibitors of these pathways in combination with vancomycin against VISA strains. Importantly, inhibitors of amino sugar and purine biosynthesis acted synergistically with vancomycin to kill a diverse set of VISA strains, suggesting that combinatorial therapy could augment the efficacy of vancomycin even in patients infected with VISA strains. Copyright © 2017 American Society for Microbiology.
Development of genetically engineered bacteria for production of selected aromatic compounds
Ward, Thomas E.; Watkins, Carolyn S.; Bulmer, Deborah K.; Johnson, Bruce F.; Amaratunga, Mohan
2001-01-01
The cloning and expression of genes in the common aromatic pathway of E. coli are described. A compound for which chorismate, the final product of the common aromatic pathway, is an anabolic intermediate can be produced by cloning and expressing selected genes of the common aromatic pathway and the genes coding for enzymes necessary to convert chorismate to the selected compound. Plasmids carrying selected genes of the common aromatic pathway are also described.
Reed, Jonathan C; Westergreen, Nick; Barajas, Brook C; Ressler, Dylan T B; Phuong, Daryl J; Swain, John V; Lingappa, Vishwanath R; Lingappa, Jaisri R
2018-05-01
During immature capsid assembly in cells, human immunodeficiency virus type 1 (HIV-1) Gag co-opts a host RNA granule, forming a pathway of intracellular assembly intermediates containing host components, including two cellular facilitators of assembly, ABCE1 and DDX6. A similar assembly pathway has been observed for other primate lentiviruses. Here we asked whether feline immunodeficiency virus (FIV), a nonprimate lentivirus, also forms RNA granule-derived capsid assembly intermediates. First, we showed that the released FIV immature capsid and a large FIV Gag-containing intracellular complex are unstable during analysis, unlike for HIV-1. We identified harvest conditions, including in situ cross-linking, that overcame this problem, revealing a series of FIV Gag-containing complexes corresponding in size to HIV-1 assembly intermediates. Previously, we showed that assembly-defective HIV-1 Gag mutants are arrested at specific assembly intermediates; here we identified four assembly-defective FIV Gag mutants, including three not previously studied, and demonstrated that they appear to be arrested at the same intermediate as the cognate HIV-1 mutants. Further evidence that these FIV Gag-containing complexes correspond to assembly intermediates came from coimmunoprecipitations demonstrating that endogenous ABCE1 and the RNA granule protein DDX6 are associated with FIV Gag, as shown previously for HIV-1 Gag, but are not associated with a ribosomal protein, at steady state. Additionally, we showed that FIV Gag associates with another RNA granule protein, DCP2. Finally, we validated the FIV Gag-ABCE1 and FIV Gag-DCP2 interactions with proximity ligation assays demonstrating colocalization in situ Together, these data support a model in which primate and nonprimate lentiviruses form intracellular capsid assembly intermediates derived from nontranslating host RNA granules. IMPORTANCE Like HIV-1 Gag, FIV Gag assembles into immature capsids; however, it is not known whether FIV Gag progresses through a pathway of immature capsid assembly intermediates derived from host RNA granules, as shown for HIV-1 Gag. Here we showed that FIV Gag forms complexes that resemble HIV-1 capsid assembly intermediates in size and in their association with ABCE1 and DDX6, two host facilitators of HIV-1 immature capsid assembly that are found in HIV-1 assembly intermediates. Our studies also showed that known and novel assembly-defective FIV Gag mutants fail to progress past putative intermediates in a pattern resembling that observed for HIV-1 Gag mutants. Finally, we used imaging to demonstrate colocalization of FIV Gag with ABCE1 and with the RNA granule protein DCP2. Thus, we conclude that formation of assembly intermediates derived from host RNA granules is likely conserved between primate and nonprimate lentiviruses and could provide targets for future antiviral strategies. Copyright © 2018 American Society for Microbiology.
Wang, Chongyang; Huang, Yong; Zhang, Zuotao; Wang, Hui
2018-04-25
With the close relationship between saline environments and industry, polycyclic aromatic hydrocarbons (PAHs) accumulate in saline/hypersaline environments. Therefore, PAHs degradation by halotolerant/halophilic bacteria has received increasing attention. In this study, the metabolic pathway of phenanthrene degradation by halophilic consortium CY-1 was first studied which showed a single upstream pathway initiated by dioxygenation at the C1 and C2 positions, and at several downstream pathways, including the catechol pathway, gentisic acid pathway and protocatechuic acid pathway. The effects of salinity on the community structure and expression of catabolic genes were further studied by a combination of high-throughput sequencing, catabolic gene clone library and real-time PCR. Pure cultures were also isolated from consortium CY-1 to investigate the contribution made by different microbes in the PAH-degrading process. Marinobacter is the dominant genus that contributed to the upstream degradation of phenanthrene especially in high salt content. Genus Halomonas made a great contribution in transforming intermediates in the subsequent degradation of catechol by using catechol 1,2-dioxygenase (C12O). Other microbes were predicted to be mediating bacteria that were able to utilize intermediates via different downstream pathways. Salinity was investigated to have negative effects on both microbial diversity and activity of consortium CY-1 and consortium CY-1 was found with a high degree of functional redundancy in saline environments.
Perdih, Andrej; Hodoscek, Milan; Solmajer, Tom
2009-02-15
MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthetic path yielding bacterial peptidoglycan. On the basis of structural studies of MurD complexes, a stepwise catalytic mechanism was proposed that commences with a formation of the acyl-phosphate intermediate, followed by a nucleophilic attack of D-glutamate that, through the formation of a tetrahedral reaction intermediate and subsequent phosphate dissociation, affords the final product, UDP-N-acetyl-muramoyl-L-alanine-D-glutamate (UMAG). A hybrid quantum mechanical/molecular mechanical (QM/MM) molecular modeling approach was utilized, combining the B3LYP QM level of theory with empirical force field simulations to evaluate three possible reaction pathways leading to tetrahedral intermediate formation. Geometries of the starting structures based on crystallographic experimental data and tetrahedral intermediates were carefully examined together with a role of crucial amino acids and water molecules. The replica path method was used to generate the reaction pathways between the starting structures and the corresponding tetrahedral reaction intermediates, offering direct comparisons with a sequential kinetic mechanism and the available structural data for this enzyme. The acquired knowledge represents new and valuable information to assist in the ongoing efforts leading toward novel inhibitors of MurD as potential antibacterial drugs. (c) 2008 Wiley-Liss, Inc.
Code of Federal Regulations, 2012 CFR
2012-04-01
... fructose. (2) The fermentation of sugars or sugar alcohols such as glucose, sucrose, fructose, or sorbitol using the yeast Zygosaccharomyces rouxii. (3) A pure culture fermentation of sugars such as fructose...
Code of Federal Regulations, 2010 CFR
2010-04-01
... fructose. (2) The fermentation of sugars or sugar alcohols such as glucose, sucrose, fructose, or sorbitol using the yeast Zygosaccharomyces rouxii. (3) A pure culture fermentation of sugars such as fructose...
Compressibility and compactibility of granules produced by wet and dry granulation.
Bacher, C; Olsen, P M; Bertelsen, P; Sonnergaard, J M
2008-06-24
The bulk properties, compactibility and compressibility of granules produced by wet and dry granulation were compared applying a rotary tablet press, three different morphological forms of calcium carbonate and two particle sizes of sorbitol. Granules from both granulation methods possessed acceptable flow properties; however, the ground (Mikhart) and cubic (Scoralite) calcium carbonate demonstrated better die-filling abilities in the tablet press than the scalenhedral calcium carbonate (Sturcal). The wet processed granules showed in general larger compression properties. This was explained as these granules were mechanical stronger and had a higher initial porosity. In some cases, a large particle surface area of calcium carbonate and sorbitol resulted in a small, insignificant improvement of the consolidation characteristics. A correlation between the compression and compaction characteristics was demonstrated.
Bertz, Steven H; Hardin, Richard A; Ogle, Craig A
2013-07-03
Typical aldehydes and ketones form π complexes with Me2CuLi at low temperatures in tetrahydrofuran. They range in stability from fleeting intermediates at -100 °C to entities that persist up to -20 °C. Three subsequent reaction pathways have been identified.
Li, Yi-Ming; Lv, Fan; Xu, Xin; Ji, Hong; Gao, Wen-Tao; Lei, Tuan-Jie; Ren, Gui-Bing; Bai, Zhi-Lan; Li, Qiang
2003-01-01
AIM: Our research attempted to evaluate the overall functional reserve of cirrhotic liver by combination of hepatic functional blood flow, liver volume, and Child-Pugh’s classification, and to discuss its value of clinical application. METHODS: Ninety two patients with portal hypertension due to hepatic cirrhosis were investigated. All had a history of haematemesis and hematochezia, esophageal and gastric fundus varices, splenomegaly and hypersplenia. A 2-year follow-up was routinely performed and no one was lost. Twenty two healthy volunteers were used as control group. Blood and urine samples were collected 4 times before and after intravenous D-sorbitol infusion. The hepatic clearance (CLH) of D-sorbitol was then calculated according to enzymatic spectrophotometric method while the total blood flow (QTOTAL) and intrahepatic shunt (RINS) were detected by multicolor Doppler ultrasound, and the liver volume was measured by spiral CT. Data were estimated by t-test, variance calculation and chi-squared test. The relationships between all these parameters and different groups were investigated according to Child-Pugh classification and postoperative complications respectively. RESULTS: Steady blood concentration was achieved 120 mins after D-sorbitol intravenous infusion, which was (0.358 ± 0.064) mmol·L-1 in cirrhotic group and (0.189 ± 0.05) mmol·L-1 in control group (P < 0.01). CLH = (812.7 ± 112.4) mL·min-1, QTOTAL = (1280.6 ± 131.4) mL·min-1, and RINS = (36.54 ± 10.65)% in cirrhotic group and CLH = (1248.3 ± 210.5) mL·min-1, QTOTAL = (1362.4 ± 126.9) mL·min-1, and RINS = (8.37 ± 3.32)% in control group (P < 0.01). The liver volume of cirrhotic group was 1057 ± 249 cm3, 851 ± 148 cm3 and 663 ± 77 cm3 in Child A, B and C group respectively with significant difference (P < 0.001). The average volume of cirrhotic liver in Child B, C group was significantly reduced in comparison with that in control group (P < 0.001). The patient, whose liver volume decreased by 40% with the CLH below 600 mL·min-1, would have a higher incidence of postoperative complications. There was no strict correspondent relationship between CLH, liver volume and Child-Pugh’s classification. CONCLUSION: The hepatic clearance of D-sorbitol, CT measured liver volume can be reliably used for the evaluation of hepatic functional blood flow and liver metabolic volume. Combined with the Child-Pugh’s classification, it could be very useful for further understanding the liver functional reserve, therefore help determine reasonable therapeutic plan, choose surgical procedures and operating time. PMID:12970913
21 CFR 176.210 - Defoaming agents used in the manufacture of paper and paperboard.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (soaps). Sorbitol (esters). Sulfuric acid (sulfated and sulfonated compounds). Triethanolamine (amides... sulfate. Sodium lignin sulfonate. Sodium 2-mercaptobenzothiazole. Sodium naphthalenesulfonic acid (3 mols...
21 CFR 176.210 - Defoaming agents used in the manufacture of paper and paperboard.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (soaps). Sorbitol (esters). Sulfuric acid (sulfated and sulfonated compounds). Triethanolamine (amides... sulfate. Sodium lignin sulfonate. Sodium 2-mercaptobenzothiazole. Sodium naphthalenesulfonic acid (3 mols...
Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions
Orem, William H.; Voytek, Mary A.; Jones, Elizabeth J.; Lerch, Harry E.; Bates, Anne L.; Corum, Margo D.; Warwick, Peter D.; Clark, Arthur C.
2010-01-01
Organic intermediates in coal fluids produced by anaerobic biodegradation of geopolymers in coal play a key role in the production of methane in natural gas reservoirs. Laboratory biodegradation experiments on sub-bituminous coal from Texas, USA, were conducted using bioreactors to examine the organic intermediates relevant to methane production. Production of methane in the bioreactors was linked to acetate accumulation in bioreactor fluid. Long chain fatty acids, alkanes (C19–C36) and various low molecular weight aromatics, including phenols, also accumulated in the bioreactor fluid and appear to be the primary intermediates in the biodegradation pathway from coal-derived geopolymers to acetate and methane.
Wolf, Stephan E.; Müller, Lars; Barrea, Raul; Kampf, Christopher J.; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten
2011-01-01
During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PMID:21218241
Borsani, Julia; Budde, Claudio O; Porrini, Lucía; Lauxmann, Martin A; Lombardo, Verónica A; Murray, Ricardo; Andreo, Carlos S; Drincovich, María F; Lara, María V
2009-01-01
Peach (Prunus persica L. Batsch) is a climacteric fruit that ripens after harvest, prior to human consumption. Organic acids and soluble sugars contribute to the overall organoleptic quality of fresh peach; thus, the integrated study of the metabolic pathways controlling the levels of these compounds is of great relevance. Therefore, in this work, several metabolites and enzymes involved in carbon metabolism were analysed during the post-harvest ripening of peach fruit cv 'Dixiland'. Depending on the enzyme studied, activity, protein level by western blot, or transcript level by quantitative real time-PCR were analysed. Even though sorbitol did not accumulate at a high level in relation to sucrose at harvest, it was rapidly consumed once the fruit was separated from the tree. During the ripening process, sucrose degradation was accompanied by an increase of glucose and fructose. Specific transcripts encoding neutral invertases (NIs) were up-regulated or down-regulated, indicating differential functions for each putative NI isoform. Phosphoenolpyruvate carboxylase was markedly induced, and may participate as a glycolytic shunt, since the malate level did not increase during post-harvest ripening. The fermentative pathway was highly induced, with increases in both the acetaldehyde level and the enzymes involved in this process. In addition, proteins differentially expressed during the post-harvest ripening process were also analysed. Overall, the present study identified enzymes and pathways operating during the post-harvest ripening of peach fruit, which may contribute to further identification of varieties with altered levels of enzymes/metabolites or in the evaluation of post-harvest treatments to produce fruit of better organoleptic attributes.
Nanoparticle bioconjugates as "bottom-up" assemblies of artifical multienzyme complexes
NASA Astrophysics Data System (ADS)
Keighron, Jacqueline D.
2010-11-01
The sequential enzymes of several metabolic pathways have been shown to exist in close proximity with each other in the living cell. Although not proven in all cases, colocalization may have several implications for the rate of metabolite formation. Proximity between the sequential enzymes of a metabolic pathway has been proposed to have several benefits for the overall rate of metabolite formation. These include reduced diffusion distance for intermediates, sequestering of intermediates from competing pathways and the cytoplasm. Restricted diffusion in the vicinity of an enzyme can also cause the pooling of metabolites, which can alter reaction equilibria to control the rate of reaction through inhibition. Associations of metabolic enzymes are difficult to isolate ex vivo due to the weak interactions believed to colocalize sequential enzymes within the cell. Therefore model systems in which the proximity and diffusion of intermediates within the experiment system are controlled are attractive alternatives to explore the effects of colocalization of sequential enzymes. To this end three model systems for multienzyme complexes have been constructed. Direct adsorption enzyme:gold nanoparticle bioconjugates functionalized with malate dehydrogenase (MDH) and citrate synthase (CS) allow for proximity between to the enzymes to be controlled from the nanometer to micron range. Results show that while the enzymes present in the colocalized and non-colocalized systems compared here behaved differently overall the sequential activity of the pathway was improved by (1) decreasing the diffusion distance between active sites, (2) decreasing the diffusion coefficient of the reaction intermediate to prevent escape into the bulk solution, and (3) decreasing the overall amount of bioconjugate in the solution to prevent the pathway from being inhibited by the buildup of metabolite over time. Layer-by-layer (LBL) assemblies of MDH and CS were used to examine the layering effect of sequential enzymes found in multienzyme complexes such as the pyruvate dehydrogenase complex (PDC). By controlling the orientation of enzymes in the complex (i.e. how deeply embedded each enzyme is) it was hypothesized that differences in sequential activity would determine an optimal orientation for a multienzyme complex. It was determined during the course of these experiments that the polyelectrolyte (PE) assembly itself served to slow diffusion of intermediates, leading to a buildup of oxaloacetate within the PE layers to form a pool of metabolite that equalized the rate of sequential reaction between the different orientations tested. Hexahistidine tag -- Ni(II) nitriliotriacetic acid (NTA) chemistry is an attractive method to control the proximity between sequential enzymes because each enzyme can be bound in a specific orientation, with minimal loss of activity, and the interaction is reversible. Modifying gold nanoparticles or large unilamellar vesicles with this functionality allows for another class of model to be constructed in which proximity between enzymes is dynamic. Some metabolic pathways (such as the de novo purine biosynthetic pathway), have demonstrated dynamic proximity of sequential enzymes in response to specific cellular stimuli. Results indicate that Ni(II)NTA scaffolds immobilize histidine-tagged enzymes non-destructively, with a near 100% reversibility. This model can be used to demonstrate the possible implications of dynamic proximity such as pathway regulation. Insight into the benefits and mechanisms of sequential enzyme colocalization can enhance the general understanding of cellular processes, as well as allow for the development of new and innovative ways to modulate pathway activity. This may provide new designs for treatments of metabolic diseases and cancer, where metabolic pathways are altered.
Spencer, Nick J; Walsh, Michelle; Smith, Terence K
2000-01-01
We present evidence that adenosine triphosphate (ATP) plays a major role in excitatory neuro-neuronal transmission in ascending and descending reflex pathways to the longitudinal (LM) and circular muscle (CM). A partitioned bath was used for the pharmacological isolation of a segment of guinea-pig ileum (∼6 cm in length), allowing drugs to be selectively applied to an intermediate region between the region where mucosal stimulation was applied and that where mechanical recordings were made. Brush stroking the mucosa (3 strokes) elicited a synchronous contraction of the LM and CM both above (ascending excitation) and below (descending excitation) the site of stimulation. All reflexes were abolished when tetrodotoxin (1 μm) was applied to the intermediate chamber. Hexamethonium (300 μm) added to the intermediate chamber abolished the ascending contraction in 15 % of oral preparations (from 26 preparations, 18 animals) and the descending contraction in 13 % of anal preparations studied (from 53 preparations, 48 animals). In the remaining 85 % of oral preparations, hexamethonium usually attenuated the oral contraction of the LM and CM. However, in the remaining 87 % of anal preparations, hexamethonium had no effect on the anal contraction of the LM and CM. Oral and anal reflexes that were hexamethonium resistant were either abolished or attenuated by the further addition of the P2 purinergic receptor antagonist pyridoxal phosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS, 10 μm) or α,β-methylene ATP (50–100 μm) to the intermediate chamber. 1,1-Dimethyl-4-phenyl-piperazinium iodide (DMPP, 20 μm) or α,β-methylene ATP (50–100 μm) stimulated both ascending and descending excitatory pathways, when applied to the intermediate chamber. In conclusion, ascending and descending neuro-neuronal transmission in excitatory nervous pathways to the LM and CM is complex and clearly involves neurotransmitter(s) other than acetylcholine (ACh). We suggest mucosal stimulation releases ACh and ATP in both ascending and descending excitatory reflex pathways that synapse with excitatory motoneurons to the LM and CM. PMID:10639107
Taghizadeh, Ata; Favis, Basil D
2013-02-15
Starch gelatinization in the presence of high molecular weight polyol plasticizers and water was studied under static and dynamic conditions and was compared to a glycerol reference. For static gelatinization, glycerol, sorbitol, diglycerol and polyglycerol were examined using polarized light microscopy and differential scanning calorimetry. A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The plasticizers show that the onset and conclusion temperatures for sorbitol and glycerol are in the same range and are lower than the other two plasticizers. On the other hand, polyglycerol shows a higher gelatinization temperature than diglycerol because of its higher molecular weight and viscosity. The results indicate that in the case of all plasticizers, increasing the water content tends to decrease the gelatinization temperature and, except for polyglycerol, increasing the plasticizer content increases the gelatinization temperature. In the case of polyglycerol, however, increasing the plasticizer content had the opposite effect and this was found to be related to the borderline solubility of polyglycerol in water. When the polyglycerol/water solubility was increased by increasing the temperature of the water/plasticizer/starch slurry, the gelatinization temperature dependence was found to be similar to the other polyols. A rheological technique was developed to study the dynamic gelatinization process by tracking the influence of shear on the complex viscosity in a couette flow system. Glycerol, diglycerol and sorbitol were subjected to different dynamic gelatinization treatments and the results were compared with static gelatinization. It is quantitatively shown that shear has a major effect on the gelatinization process. The conclusion temperature of gelatinization is significantly diminished (up to 21 °C) in the presence of shear whereas the onset temperature of gelatinization remains virtually unchanged as compared to static conditions. By comparing glycerol, diglycerol and sorbitol data, it is shown that the molecular weight or structure did not qualitatively affect the changes shear imposed on dynamic gelatinization. Shear had a relatively more pronounced effect on diglycerol as the plasticizer with less hydrogen bonding ability. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dang, Thu‐Thuy T.; Franke, Jakob; Tatsis, Evangelos
2017-01-01
Abstract Plants create tremendous chemical diversity from a single biosynthetic intermediate. In plant‐derived ajmalan alkaloid pathways, the biosynthetic intermediate vomilenine can be transformed into the anti‐arrhythmic compound ajmaline, or alternatively, can isomerize to form perakine, an alkaloid with a structurally distinct scaffold. Here we report the discovery and characterization of vinorine hydroxylase, a cytochrome P450 enzyme that hydroxylates vinorine to form vomilenine, which was found to exist as a mixture of rapidly interconverting epimers. Surprisingly, this cytochrome P450 also catalyzes the non‐oxidative isomerization of the ajmaline precursor vomilenine to perakine. This unusual dual catalytic activity of vinorine hydroxylase thereby provides a control mechanism for the bifurcation of these alkaloid pathway branches. This discovery highlights the unusual catalytic functionality that has evolved in plant pathways. PMID:28654178
Dang, Thu-Thuy T; Franke, Jakob; Tatsis, Evangelos; O'Connor, Sarah E
2017-08-01
Plants create tremendous chemical diversity from a single biosynthetic intermediate. In plant-derived ajmalan alkaloid pathways, the biosynthetic intermediate vomilenine can be transformed into the anti-arrhythmic compound ajmaline, or alternatively, can isomerize to form perakine, an alkaloid with a structurally distinct scaffold. Here we report the discovery and characterization of vinorine hydroxylase, a cytochrome P450 enzyme that hydroxylates vinorine to form vomilenine, which was found to exist as a mixture of rapidly interconverting epimers. Surprisingly, this cytochrome P450 also catalyzes the non-oxidative isomerization of the ajmaline precursor vomilenine to perakine. This unusual dual catalytic activity of vinorine hydroxylase thereby provides a control mechanism for the bifurcation of these alkaloid pathway branches. This discovery highlights the unusual catalytic functionality that has evolved in plant pathways. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Synthesis of a biofuel target through conventional organic chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, Jordan P.; Robinson, Joshua W.; Albrecht, Karl O.
Here in this work, the biofuel target compound 2-ethyl-5,5-dimethylcyclopenta-1,3-diene (1) and its exo isomers (9a and 9b), were successfully synthesized via two different pathways from the common intermediate 4,4-dimethylcyclopent-2-ene-1-one (2). The first pathway produced the endocyclic product as a pure isomer via a triflate intermediate obtained from ketone 2 in 60% yield, followed by copper-catalyzed coupling with ethyl magnesium bromide in 63% yield. The second pathway employed a Grignard reaction with ketone 2, which generated an alcohol that was immediately subjected to mild acid-catalyzed elimination to yield primarily a mixture of exo isomers 9a and 9b in 46% yield. Themore » preparation method developed by this work allowed for the production of a sufficient quantity of these targets to evaluate their fuel properties, which will be reported in a separate study.« less
Synthesis of a biofuel target through conventional organic chemistry
Page, Jordan P.; Robinson, Joshua W.; Albrecht, Karl O.; ...
2018-02-28
Here in this work, the biofuel target compound 2-ethyl-5,5-dimethylcyclopenta-1,3-diene (1) and its exo isomers (9a and 9b), were successfully synthesized via two different pathways from the common intermediate 4,4-dimethylcyclopent-2-ene-1-one (2). The first pathway produced the endocyclic product as a pure isomer via a triflate intermediate obtained from ketone 2 in 60% yield, followed by copper-catalyzed coupling with ethyl magnesium bromide in 63% yield. The second pathway employed a Grignard reaction with ketone 2, which generated an alcohol that was immediately subjected to mild acid-catalyzed elimination to yield primarily a mixture of exo isomers 9a and 9b in 46% yield. Themore » preparation method developed by this work allowed for the production of a sufficient quantity of these targets to evaluate their fuel properties, which will be reported in a separate study.« less
Monteagudo, J M; El-Taliawy, H; Durán, A; Caro, G; Bester, K
2018-06-20
Degradation of a diclofenac aqueous solution was performed using persulfate anions activated by ultrasound. The objective of this study was to analyze different parameters affecting the diclofenac (DCF) removal reaction by the ultrasonic persulfate (US/PS) process and to evaluate the role played by various intermediate oxidative species such as hydroxyl- and sulfate radicals, superoxide radical anion or singlet oxygen in the removal process as well as to determine a possible reaction pathway. The effects of pH, initial persulfate anion concentration, ultrasonic amplitude and temperature on DCF degradation were examined. Sulfate and hydroxyl radicals were involved in the main reaction pathway of diclofenac. Diclofenac amide and three hydroxy-diclofenac isomers (3´-hydroxy diclofenac, 4´-hydroxy diclofenac and 5-hydroxy diclofenac) were identified as reaction intermediates. Copyright © 2018 Elsevier B.V. All rights reserved.
Molecular Genetic Characterization of Terreic Acid Pathway in Aspergillus terreus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Chun-Jun; Sun, Wei-wen; Bruno, Kenneth S.
Terreic acid is a natural product derived from 6-methylsalicylic acid (6-MSA). A compact gene cluster for its biosynthesis was characterized. Isolation of the intermediates and shunt products from the mutant strains, in combined with bioinformatic analyses, allowed us to propose a biosynthetic pathway for terreic acid. Lastly, defining the pathway and the genes involved will facilitate the engineering of this molecule with interesting antimicrobial and antitumor bioactivities.
Molecular Genetic Characterization of Terreic Acid Pathway in Aspergillus terreus
Guo, Chun-Jun; Sun, Wei-wen; Bruno, Kenneth S.; ...
2014-09-29
Terreic acid is a natural product derived from 6-methylsalicylic acid (6-MSA). A compact gene cluster for its biosynthesis was characterized. Isolation of the intermediates and shunt products from the mutant strains, in combined with bioinformatic analyses, allowed us to propose a biosynthetic pathway for terreic acid. Lastly, defining the pathway and the genes involved will facilitate the engineering of this molecule with interesting antimicrobial and antitumor bioactivities.
NASA Astrophysics Data System (ADS)
Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert
2014-12-01
Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.
Impaired insulin signaling pathways affect ovarian steroidogenesis in cows with COD.
Gareis, N C; Huber, E; Hein, G J; Rodríguez, F M; Salvetti, N R; Angeli, E; Ortega, H H; Rey, F
2018-05-01
Cystic ovarian disease (COD) represents an important cause of infertility in dairy cattle and is associated with multiple physiological disorders. Steroidogenesis, which is necessary to ensure normal ovarian functions, involves multiple enzymatic pathways coordinated by insulin and other proteins. We have previously shown that cows with COD have an altered insulin response. Therefore, in the present study, we evaluated further alterations in intermediates downstream of the PI3K pathway and pathways mediated by ERK as critical signals for the expression of steroidogenic enzymes in the ovaries of control cows and cows with spontaneous COD. To this end, we evaluated the gene and protein expression of pan-AKT, mTOR, ERK1/2, and steroidogenic enzymes by real-time PCR and immunohistochemistry. Steroid hormone concentrations were assessed at systemic and intrafollicular level. Results showed altered expression of intermediate molecules of the insulin signaling pathway, whose action might modify the synthetic pathway of steroidogenic hormones. Similarly, the expression of steroidogenic enzymes and the concentration of progesterone in serum and follicular fluid were altered. These alterations support the hypothesis that systemic factors contribute to the development and/or maintenance of COD, and that metabolic hormones within follicles such as insulin exert determinant effects on ovarian functionality in cows with COD. Copyright © 2018 Elsevier B.V. All rights reserved.
Mevalonate Biosynthesis Intermediates Are Key Regulators of Innate Immunity in Bovine Endometritis
Collier, Christine; Griffin, Sholeem; Schuberth, Hans-Joachim; Sandra, Olivier; Smith, David G.; Mahan, Suman; Dieuzy-Labaye, Isabelle; Sheldon, I. Martin
2016-01-01
Metabolic changes can influence inflammatory responses to bacteria. To examine whether localized manipulation of the mevalonate pathway impacts innate immunity, we exploited a unique mucosal disease model, endometritis, where inflammation is a consequence of innate immunity. IL responses to pathogenic bacteria and LPS were modulated in bovine endometrial cell and organ cultures by small molecules that target the mevalonate pathway. Treatment with multiple statins, bisphosphonates, squalene synthase inhibitors, and small interfering RNA showed that inhibition of farnesyl-diphosphate farnesyl transferase (squalene synthase), but not 3-hydroxy-3-methylglutaryl-CoA reductase or farnesyl diphosphate synthase, reduced endometrial organ and cellular inflammatory responses to pathogenic bacteria and LPS. Although manipulation of the mevalonate pathway reduced cellular cholesterol, impacts on inflammation were independent of cholesterol concentration as cholesterol depletion using cyclodextrins did not alter inflammatory responses. Treatment with the isoprenoid mevalonate pathway-intermediates, farnesyl diphosphate and geranylgeranyl diphosphate, also reduced endometrial cellular inflammatory responses to LPS. These data imply that manipulating the mevalonate pathway regulates innate immunity within the endometrium, and that isoprenoids are regulatory molecules in this process, knowledge that could be exploited for novel therapeutic strategies. PMID:26673142
21 CFR 182.90 - Substances migrating to food from paper and paperboard products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... sorbate. Sodium tripolyphosphate. Sorbitol. Soy protein, isolated. Starch, acid modified. Starch, pregelatinized. Starch, unmodified. Talc. Vanillin. Zinc hydrosulfite. Zinc sulfate. [42 FR 14640, Mar. 15, 1977...
21 CFR 182.90 - Substances migrating to food from paper and paperboard products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... sorbate. Sodium tripolyphosphate. Sorbitol. Soy protein, isolated. Starch, acid modified. Starch, pregelatinized. Starch, unmodified. Talc. Vanillin. Zinc hydrosulfite. Zinc sulfate. [42 FR 14640, Mar. 15, 1977...
21 CFR 182.90 - Substances migrating to food from paper and paperboard products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... sorbate. Sodium tripolyphosphate. Sorbitol. Soy protein, isolated. Starch, acid modified. Starch, pregelatinized. Starch, unmodified. Talc. Vanillin. Zinc hydrosulfite. Zinc sulfate. [42 FR 14640, Mar. 15, 1977...
21 CFR 182.90 - Substances migrating to food from paper and paperboard products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... sorbate. Sodium tripolyphosphate. Sorbitol. Soy protein, isolated. Starch, acid modified. Starch, pregelatinized. Starch, unmodified. Talc. Vanillin. Zinc hydrosulfite. Zinc sulfate. [42 FR 14640, Mar. 15, 1977...
Folding thermodynamics of pseudoknotted chain conformations
Kopeikin, Zoia; Chen, Shi-Jie
2008-01-01
We develop a statistical mechanical framework for the folding thermodynamics of pseudoknotted structures. As applications of the theory, we investigate the folding stability and the free energy landscapes for both the thermal and the mechanical unfolding of pseudoknotted chains. For the mechanical unfolding process, we predict the force-extension curves, from which we can obtain the information about structural transitions in the unfolding process. In general, a pseudoknotted structure unfolds through multiple structural transitions. The interplay between the helix stems and the loops plays an important role in the folding stability of pseudoknots. For instance, variations in loop sizes can lead to the destabilization of some intermediate states and change the (equilibrium) folding pathways (e.g., two helix stems unfold either cooperatively or sequentially). In both thermal and mechanical unfolding, depending on the nucleotide sequence, misfolded intermediate states can emerge in the folding process. In addition, thermal and mechanical unfoldings often have different (equilibrium) pathways. For example, for certain sequences, the misfolded intermediates, which generally have longer tails, can fold, unfold, and refold again in the pulling process, which means that these intermediates can switch between two different average end-end extensions. PMID:16674261
Khan, Fazlurrahman; Pandey, Janmejay; Vikram, Surendra; Pal, Deepika; Cameotra, Swaranjit Singh
2013-06-15
An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO₂ substituent) and deamination (release of NH₂ substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC-MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway. Copyright © 2013 Elsevier B.V. All rights reserved.
Raman, Gurusamy; Mohan, KasiNadar; Manohar, Venkat; Sakthivel, Natarajan
2014-02-01
Tobacco wastes that contain nicotine alkaloids are harmful to human health and the environment. In the investigation, a novel nicotine-biodegrading bacterium TND35 was isolated and identified as Pseudomonas plecoglossicida on the basis of phenotypic, biochemical characteristics and 16S rRNA sequence homology. We have studied the nicotine biodegradation potential of strain TND35 by detecting the intermediate metabolites using an array of approaches such as HPLC, GC-MS, NMR and FT-IR. Biotransformation metabolites, N-methylmyosmine, 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) and other three new intermediate metabolites namely, 3,5-bis (1-methylpyrrolidin-2-yl) pyridine, 2,3-dihydro-1-methyl-5-(pyridin-3-yl)-1H-pyrrol-2-ol and 5-(pyridin-3-yl)-1H-pyrrol-2(3H)-one have been identified. Interestingly, these intermediate metabolites suggest that the strain TND35 employs a novel nicotine biodegradation pathway, which is different from the reported pathways of Aspergillus oryzae 112822, Arthrobacter nicotinovorans pAO1, Agrobacterium tumefaciens S33 and other species of Pseudomonas. The metabolite, HPB reported in this study can also be used as biochemical marker for tobacco related cancer studies.
Photosynthetic carbon metabolism in seagrasses C-labeling evidence for the c(3) pathway.
Andrews, T J; Abel, K M
1979-04-01
The delta(13)C values of several seagrasses were considerably less negative than those of terrestrial C(3) plants and tended toward those of terrestrial C(4) plants. However, for Thalassia hemprichii (Ehrenb.) Aschers and Halophila spinulosa (R. Br.) Aschers, phosphoglycerate and other C(3) cycle intermediates predominated among the early labeled products of photosynthesis in (14)C-labeled seawater (more than 90% at the earliest times) and the labeling pattern at longer times was brought about by the operation of the C(3) pathway. Malate and aspartate together accounted for only a minor fraction of the total fixed label at all times and the kinetic data of this labeling were not at all consistent with these compounds being early intermediates in seagrass photosynthesis. Pulse-chase (14)C-labeling studies further substantiated these conclusions. Significant labeling of photorespiratory intermediates was observed in all experiments. The kinetics of total fixation of label during some steady-state and pulse-chase experiments suggested that there may be an intermediate pool of inorganic carbon of variable size closely associated with the leaves, either externally or internally. Such a pool may be one cause for the C(4)-like carbon isotope ratios of seagrasses.
Kozlowski, Jessica A; Stieglmeier, Michaela; Schleper, Christa; Klotz, Martin G; Stein, Lisa Y
2016-01-01
Chemolithotrophic ammonia-oxidizing bacteria and Thaumarchaeota are central players in the global nitrogen cycle. Obligate ammonia chemolithotrophy has been characterized for bacteria; however, large gaps remain in the Thaumarchaeotal pathway. Using batch growth experiments and instantaneous microrespirometry measurements of resting biomass, we show that the terrestrial Thaumarchaeon Nitrososphaera viennensis EN76T exhibits tight control over production and consumption of nitric oxide (NO) during ammonia catabolism, unlike the ammonia-oxidizing bacterium Nitrosospira multiformis ATCC 25196T. In particular, pulses of hydroxylamine into a microelectrode chamber as the sole substrate for N. viennensis resulted in iterative production and consumption of NO followed by conversion of hydroxylamine to nitrite. In support of these observations, oxidation of ammonia in growing cultures of N. viennensis, but not of N. multiformis, was inhibited by the NO-scavenger PTIO. When based on the marginal nitrous oxide (N2O) levels detected in cell-free media controls, the higher levels produced by N. multiformis were explained by enzyme activity, whereas N2O in N. viennensis cultures was attributed to abiotic reactions of released N-oxide intermediates with media components. Our results are conceptualized in a pathway for ammonia-dependent chemolithotrophy in Thaumarchaea, which identifies NO as an essential intermediate in the pathway and implements known biochemistry to be executed by a proposed but still elusive copper enzyme. Taken together, this work identifies differences in ammonia-dependent chemolithotrophy between bacteria and the Thaumarchaeota, advances a central catabolic role of NO only in the Thaumarchaeotal pathway and reveals stark differences in how the two microbial cohorts contribute to N2O emissions. PMID:26882267
Spatial Extent of Charge Repulsion Regulates Assembly Pathways for Lysozyme Amyloid Fibrils
Hill, Shannon E.; Miti, Tatiana; Richmond, Tyson; Muschol, Martin
2011-01-01
Formation of large protein fibrils with a characteristic cross β-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates emerging along the monomeric vs. oligomeric assembly path. PMID:21483680
Aghera, Nilesh; Udgaonkar, Jayant B
2012-07-13
Determining whether or not a protein uses multiple pathways to fold is an important goal in protein folding studies. When multiple pathways are present, defined by transition states that differ in their compactness and structure but not significantly in energy, they may manifest themselves by causing the dependence on denaturant concentration of the logarithm of the observed rate constant of folding to have an upward curvature. In this study, the folding mechanism of heterodimeric monellin [double-chain monellin (dcMN)] has been studied over a range of protein and guanidine hydrochloride (GdnHCl) concentrations, using the intrinsic tryptophan fluorescence of the protein as the probe for the folding reaction. Refolding is shown to occur in multiple kinetic phases. In the first stage of refolding, which is silent to any change in intrinsic fluorescence, the two chains of monellin bind to one another to form an encounter complex. Interrupted folding experiments show that the initial encounter complex folds to native dcMN via two folding routes. A productive folding intermediate population is identified on one route but not on both of these routes. Two intermediate subpopulations appear to form in a fast kinetic phase, and native dcMN forms in a slow kinetic phase. The chevron arms for both the fast and slow phases of refolding are shown to have upward curvatures, suggesting that at least two pathways each defined by a different intermediate are operational during these kinetic phases of structure formation. Refolding switches from one pathway to the other as the GdnHCl concentration is increased. Copyright © 2012 Elsevier Ltd. All rights reserved.
Integration of C₁ and C₂ Metabolism in Trees.
Jardine, Kolby J; Fernandes de Souza, Vinicius; Oikawa, Patty; Higuchi, Niro; Bill, Markus; Porras, Rachel; Niinemets, Ülo; Chambers, Jeffrey Q
2017-09-23
C₁ metabolism in plants is known to be involved in photorespiration, nitrogen and amino acid metabolism, as well as methylation and biosynthesis of metabolites and biopolymers. Although the flux of carbon through the C₁ pathway is thought to be large, its intermediates are difficult to measure and relatively little is known about this potentially ubiquitous pathway. In this study, we evaluated the C₁ pathway and its integration with the central metabolism using aqueous solutions of 13 C-labeled C₁ and C₂ intermediates delivered to branches of the tropical species Inga edulis via the transpiration stream. Delivery of [ 13 C]methanol and [ 13 C]formaldehyde rapidly stimulated leaf emissions of [ 13 C]methanol, [ 13 C]formaldehyde, [ 13 C]formic acid, and 13 CO₂, confirming the existence of the C1 pathway and rapid interconversion between methanol and formaldehyde. However, while [ 13 C]formate solutions stimulated emissions of 13 CO₂, emissions of [ 13 C]methanol or [ 13 C]formaldehyde were not detected, suggesting that once oxidation to formate occurs it is rapidly oxidized to CO₂ within chloroplasts. 13 C-labeling of isoprene, a known photosynthetic product, was linearly related to 13 CO₂ across C₁ and C₂ ([ 13 C₂]acetate and [2- 13 C]glycine) substrates, consistent with reassimilation of C₁, respiratory, and photorespiratory CO₂. Moreover, [ 13 C]methanol and [ 13 C]formaldehyde induced a quantitative labeling of both carbon atoms of acetic acid emissions, possibly through the rapid turnover of the chloroplastic acetyl-CoA pool via glycolate oxidation. The results support a role of the C₁ pathway to provide an alternative carbon source for glycine methylation in photorespiration, enhance CO₂ concentrations within chloroplasts, and produce key C₂ intermediates (e.g., acetyl-CoA) central to anabolic and catabolic metabolism.
Artificial Sweeteners and Other Sugar Substitutes
... Lactitol Honey Sucralose (Splenda) Maltitol Maple syrup Mannitol Molasses Sorbitol Xylitol Advantame The topic of sugar substitutes ... for consumption are fruit juices and nectars, honey, molasses, and maple syrup. Natural sweeteners have a variety ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randy Cortright
2006-06-30
This project involved the investigation and development of catalysts and reactor systems that will be cost-effective to generate hydrogen from potential sorbitol streams. The intention was to identify the required catalysts and reactors systems as well as the design, construction, and operation of a 300 grams per hour hydrogen system. Virent was able to accomplish this objective with a system that generates 2.2 kgs an hour of gas containing both hydrogen and alkanes that relied directly on the work performed under this grant. This system, funded in part by the local Madison utility, Madison, Gas & Electric (MGE), is describedmore » further in the report. The design and development of this system should provide the necessary scale-up information for the generation of hydrogen from corn-derived sorbitol.« less
Two-stage dehydration of sugars
Holladay, Johnathan E [Kennewick, WA; Hu, Jianli [Kennewick, WA; Wang, Yong [Richland, WA; Werpy, Todd A [West Richland, WA
2009-11-10
The invention includes methods for producing dianhydrosugar alcohol by providing an acid catalyst within a reactor and passing a starting material through the reactor at a first temperature. At least a portion of the staring material is converted to a monoanhydrosugar isomer during the passing through the column. The monoanhydrosugar is subjected to a second temperature which is greater than the first to produce a dianhydrosugar. The invention includes a method of producing isosorbide. An initial feed stream containing sorbitol is fed into a continuous reactor containing an acid catalyst at a temperature of less than 120.degree. C. The residence time for the reactor is less than or equal to about 30 minutes. Sorbitol converted to 1,4-sorbitan in the continuous reactor is subsequently provided to a second reactor and is dehydrated at a temperature of at least 120.degree. C. to produce isosorbide.
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.
2013-04-01
Integral enthalpies of dissolution Δsol H m of L-alanine and L-serine are measured via the calorimetry of dissolution in aqueous solutions of xylitol, D-sorbitol, and D-mannitol. Standard enthalpies of dissolution (Δsol H ○) and the transfer (Δtr H ○) of amino acids from water to binary solvent are calculated from the experimental data. Using the McMillan-Mayer theory, enthalpy coefficients of pairwise interactions h xy of amino acids with molecules of polyols are calculated that are negative. The obtained results are discussed within the theory of the prevalence of different types of interactions in mixed solutions and the effect of the structural features of interacting biomolecules on the thermochemical parameters of dissolution of amino acids.
Loo, Rachel R Ogorzalek; Loo, Joseph A
2007-02-01
Three MALDI-MS sample/matrix preparation approaches were evaluated for their ability to enhance hydrophobic protein detection from complex mixtures: (1) formic acid-based formulations, (2) perfluorooctanoic acid (PFOA) surfactant addition, and (3) sorbitol addition. While MALDI-MS of Escherichia coli cells desorbed from a standard sinapinic acid matrix displayed 94 (M + H)+ ions, 119 were observed from a formic acid-based matrix with no more than 10 common to both. Formic acid matrix revealed many lipoproteins and an 8282 m/z ion proposed to be the abundant, water-insoluble ATPase proteolipid. Among the formic acid-based cocktails examined, the slowest rate of serine/threonine formylation was found for 50% H2O/33% 2-propanol/17% formic acid. Faster formylation was observed from cocktails containing more formic acid and from mixtures including CH3CN. Sinapinic, ferulic, DHB, 4-hydroxybenzylidene malononitrile, and 2-mercaptobenzothiazole matrixes performed well in formic acid formulations. Dramatic differences in mixture spectra were also observed from PFOA/sinapinic acid, at detergent concentrations exceeding the critical micelle concentration, although these matrix cocktails proved difficult to crystallize. E. coli ions observed from these matrix conditions are listed in Tables S-1 and S-3 (Supporting Information). Similar complementarity was observed for M. acetivorans whole-cell mixtures. Including sorbitol in the sinapinic acid matrix was found to promote homogeneous crystallization and to enhance medium and higher m/z ion detection from dilute E. coli cellular mixtures.
Meglumine exerts protective effects against features of metabolic syndrome and type II diabetes.
Bravo-Nuevo, Arturo; Marcy, Alice; Huang, Minzhou; Kappler, Frank; Mulgrew, Jennifer; Laury-Kleintop, Lisa; Reichman, Melvin; Tobia, Annette; Prendergast, George C
2014-01-01
Metabolic syndrome, diabetes and diabetes complications pose a growing medical challenge worldwide, accentuating the need of safe and effective strategies for their clinical management. Here we present preclinical evidence that the sorbitol derivative meglumine (N-methyl-D-glucamine) can safely protect against several features of metabolic syndrome and diabetes, as well as elicit enhancement in muscle stamina. Meglumine is a compound routinely used as an approved excipient to improve drug absorption that has not been ascribed any direct biological effects in vivo. Normal mice (SV129) administered 18 mM meglumine orally for six weeks did not display any gastrointestinal or other observable adverse effects, but had a marked effect on enhancing muscle stamina and at longer times in limiting weight gain. In the established KK.Cg-Ay/J model of non-insulin dependent diabetes, oral administration of meglumine significantly improved glycemic control and significantly lowered levels of plasma and liver triglycerides. Compared to untreated control animals, meglumine reduced apparent diabetic nephropathy. Sorbitol can improve blood glucose uptake by liver and muscle in a manner associated with upregulation of the AMPK-related enzyme SNARK, but with undesirable gastrointestinal side effects not seen with meglumine. In murine myoblasts, we found that meglumine increased steady-state SNARK levels in a dose-dependent manner more potently than sorbitol. Taken together, these findings provide support for the clinical evaluation of meglumine as a low-cost, safe supplement offering the potential to improve muscle function, limit metabolic syndrome and reduce diabetic complications.
Meglumine Exerts Protective Effects against Features of Metabolic Syndrome and Type II Diabetes
Bravo-Nuevo, Arturo; Marcy, Alice; Huang, Minzhou; Kappler, Frank; Mulgrew, Jennifer; Laury-Kleintop, Lisa; Reichman, Melvin; Tobia, Annette; Prendergast, George C.
2014-01-01
Metabolic syndrome, diabetes and diabetes complications pose a growing medical challenge worldwide, accentuating the need of safe and effective strategies for their clinical management. Here we present preclinical evidence that the sorbitol derivative meglumine (N-methyl-D-glucamine) can safely protect against several features of metabolic syndrome and diabetes, as well as elicit enhancement in muscle stamina. Meglumine is a compound routinely used as an approved excipient to improve drug absorption that has not been ascribed any direct biological effects in vivo. Normal mice (SV129) administered 18 mM meglumine orally for six weeks did not display any gastrointestinal or other observable adverse effects, but had a marked effect on enhancing muscle stamina and at longer times in limiting weight gain. In the established KK.Cg-Ay/J model of non-insulin dependent diabetes, oral administration of meglumine significantly improved glycemic control and significantly lowered levels of plasma and liver triglycerides. Compared to untreated control animals, meglumine reduced apparent diabetic nephropathy. Sorbitol can improve blood glucose uptake by liver and muscle in a manner associated with upregulation of the AMPK-related enzyme SNARK, but with undesirable gastrointestinal side effects not seen with meglumine. In murine myoblasts, we found that meglumine increased steady-state SNARK levels in a dose-dependent manner more potently than sorbitol. Taken together, these findings provide support for the clinical evaluation of meglumine as a low-cost, safe supplement offering the potential to improve muscle function, limit metabolic syndrome and reduce diabetic complications. PMID:24587200
Cluster-randomized xylitol toothpaste trial for early childhood caries prevention.
Chi, Donald L; Tut, Ohnmar; Milgrom, Peter
2014-01-01
The purpose of this study was to assess the efficacy of supervised tooth-brushing with xylitol toothpaste to prevent early childhood caries (ECC) and reduce mutans streptococci. In this cluster-randomized efficacy trial, 196 four- to five-year-old children in four Head Start classrooms in the Marshall Islands were randomly assigned to supervised toothbrushing with 1,400 ppm/31 percent fluoride xylitol or 1,450 ppm fluoride sorbitol toothpaste. We hypothesized that there would be no difference in efficacy between the two types of toothpaste. The primary outcome was the surface-level primary molar caries increment (d(2-3)mfs) after six months. A single examiner was blinded to classroom assignments. Two classrooms were assigned to the fluoride-xylitol group (85 children), and two classrooms were assigned to the fluoride-sorbitol group (83 children). The child-level analyses accounted for clustering. There was no difference between the two groups in baseline or end-of-trial mean d(2-3)mfs. The mean d(2-3)mfs increment was greater in the fluoride-xylitol group compared to the fluoride-sorbitol group (2.5 and 1.4 d(2-3)mfs, respectively), but the difference was not significant (95% confidence interval: -0.17, 2.37; P=.07). No adverse effects were reported. After six months, brushing with a low-strength xylitol/fluoride tooth-paste is no more efficacious in reducing ECC than a fluoride-only toothpaste in a high caries-risk child population.
Cluster-randomized xylitol toothpaste trial for early childhood caries prevention
Chi, Donald L.; Tut, Ohnmar K.; Milgrom, Peter
2013-01-01
Purpose We assessed the efficacy of supervised toothbrushing with xylitol toothpaste to prevent early childhood caries (ECC) and to reduce mutans streptococci (MS). Methods In this cluster-randomized efficacy trial, 4 Head Start classrooms in the Marshall Islands were randomly assigned to supervised toothbrushing with 1,400ppm/31% fluoride-xylitol (Epic Dental, Provo, UT) or 1,450ppm fluoride-sorbitol toothpaste (Colgate-Palmolive, New York, NY) (N=196 children, ages 4–5 yrs). We hypothesized no difference in efficacy between the two types of toothpaste. The primary outcome was primary molar d2-3mfs increment after 6 mos. A single examiner was blinded to classroom assignments. Two classrooms were assigned to the fluoride-xylitol group (85 children) and 2 classrooms to the fluoride-sorbitol group (83 children). The child-level analyses accounted for clustering. Results There was no difference between the two groups in baseline or end-of-trial mean d2-3mfs. The mean d2-3mfs increment was greater in the fluoride-xylitol group compared to the fluoride-sorbitol group (2.5 and 1.4 d2-3mfs, respectively), but the difference was not significant (95% CI:−0.17, 2.37;P=0.07). No adverse effects were reported. Conclusion After 6 mos, brushing with a low strength xylitol/fluoride toothpaste is no more efficacious in reducing ECC than a fluoride only toothpaste in a high caries risk child population. PMID:24709430
Gao, Lili; Hu, Yudong; Liu, Jie; Du, Guocheng; Zhou, Jingwen; Chen, Jian
2014-07-01
2-Keto-L-gulonic acid (2-KLG), the direct precursor of vitamin C, is currently produced by a two-step fermentation route from D-sorbitol. However, this route involves three bacteria, making the mix-culture system complicated and redundant. Thus, replacement of the conventional two-step fermentation process with a one-step process could be revolutionary in vitamin C industry. In this study, different combinations of five L-sorbose dehydrogenases (SDH) and two L-sorbosone dehydrogenases (SNDH) from Ketogulonicigenium vulgare WSH-001 were introduced into Gluconobacter oxydans WSH-003, an industrial strain used for the conversion of d-sorbitol to L-sorbose. The optimum combination produced 4.9g/L of 2-KLG. In addition, 10 different linker peptides were used for the fusion expression of SDH and SNDH in G. oxydans. The best recombinant strain (G. oxydans/pGUC-k0203-GS-k0095) produced 32.4g/L of 2-KLG after 168h. Furthermore, biosynthesis of pyrroloquinoline quinine (PQQ), a cofactor of those dehydrogenases, was enhanced to improve 2-KLG production. With the stepwise metabolic engineering of G. oxydans, the final 2-KLG production was improved to 39.2g/L, which was 8.0-fold higher than that obtained using independent expression of the dehydrogenases. These results bring us closer to the final one-step industrial-scale production of vitamin C. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Growth and microtubule orientation of Zea mays roots subjected to osmotic stress
NASA Technical Reports Server (NTRS)
Blancaflor, E. B.; Hasenstein, K. H.
1995-01-01
Previous work has shown that microtubule (MT) reorientation follows the onset of growth inhibition on the lower side of graviresponding roots, indicating that growth reduction can occur independently of MT reorientation. To test this observation further, we examined whether the reduction in growth in response to osmotic stress is correlated with MT reorientation. The distribution and rate of growth in maize roots exposed to 350 mOsm sorbitol and KCl or 5 mM Mes/Tris buffer were measured with a digitizer. After various times roots were processed for indirect immunofluorescence microscopy. Application of sorbitol or KCl had no effect on the organization of MTs in the apical 2 mm of the root but resulted in striking and different effects in the basal region of the root. Sorbitol treatment caused rapid appearance of oval to circular holes in the microtubular array that persisted for at least 9 h. Between 30 min and 4 h of submersion in KCl, MTs in cortical cells 4 mm and farther from the quiescent center began to reorient oblique to the longitudinal axis. After 9 h, the alignment of MTs had shifted to parallel to the root axis but MTs of the epidermal cells remained transverse. In KCl-treated roots MT reorientation appeared to follow a pattern of development similar to that in controls but without elongation. Our data provide additional evidence that MT reorientation is not the cause but a consequence of growth inhibition.
Das Gupta, M; Das, A; Islam, M Z; Biswas, P K
2016-09-01
A cross-sectional survey was carried out in Bangladesh with the sampling of 514 Black Bengal goats on smallholdings to determine the presence of sorbitol non-fermenting (SNF) Shiga toxin-producing E. coli (STEC). Swab samples collected from the recto-anal junction were plated onto cefixime and potassium tellurite added sorbitol MacConkey (CT-SMAC) agar, a selective medium for STEC O157 serogroup, where this serogroup and other SNF STEC produce colourless colonies. The SNF E. coli (SNF EC) isolates obtained from the survey were investigated by PCR for the presence of Shiga toxin-producing genes, stx1 and stx2, and two other virulence genes, eae and hlyA that code for adherence factor (intimin protein) and pore-forming cytolysin, respectively. The SNF EC isolates were also assessed for the presence of the rfbO157 gene to verify their identity to O157 serogroup. The results revealed that the proportions of goats carrying SNF EC isolates and stx1 and stx2 genes were 6·2% (32/514) [95% confidence interval (CI) 4·4-8·7)], 1·2% (95% CI 0·5-2·6) and 1·2% (95% CI 0·5-2·6), respectively. All the SNF STEC tested negative for rfbO157, hlyA and eae genes. The risk for transmission of STEC from Black Bengal goats to humans is low.
Li, Zhou; Jing, Wen; Peng, Yan; Zhang, Xin Quan; Ma, Xiao; Huang, Lin Kai; Yan, Yan-Hong
2015-01-01
The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. 'Ladino' and drought-resistant cv. 'Haifa') under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. 'Haifa', but had no effect on drought-susceptible cv. 'Ladino'. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. 'Ladino' than that in cv. 'Haifa'. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression.
Chen, Xu; Li, Min; Li, Li; Xu, Song; Huang, Dan; Ju, Mei; Huang, Ju; Chen, Kun; Gu, Heng
2016-01-01
Trehalose is a natural disaccharide that is found in a diverse range of organisms but not in mammals. Autophagy is a process which mediates the sequestration, lysosomal delivery and degradation of proteins and organelles. Studies have shown that trehalose exerts beneficial effects through inducing autophagy in mammalian cells. However, whether trehalose or other saccharides can activate autophagy in keratinocytes is unknown. Here, we found that trehalose treatment increased the LC3-I to LC3-II conversion, acridine orange-stained vacuoles and GFP-LC3B (LC3B protein tagged with green fluorescent protein) puncta in the HaCaT human keratinocyte cell line, indicating autophagy induction. Trehalose-induced autophagy was also observed in primary keratinocytes and the A431 epidermal cancer cell line. mTOR signalling was not affected by trehalose treatment, suggesting that trehalose induced autophagy through an mTOR-independent pathway. mTOR-independent autophagy induction was also observed in HaCaT and HeLa cells treated with sucrose or raffinose but not in glucose, maltose or sorbitol treated HaCaT cells, indicating that autophagy induction was not a general property of saccharides. Finally, although trehalose treatment had an inhibitory effect on cell proliferation, it had a cytoprotective effect on cells exposed to UVB radiation. Our study provides new insight into the saccharide-mediated regulation of autophagy in keratinocytes. PMID:27328819
Evidence for an intermediate in tau filament formation.
Chirita, Carmen N; Kuret, Jeff
2004-02-17
Alzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule-associated protein tau. In vitro, fibrillization of full-length, unphosphorylated recombinant tau can be induced under near-physiological conditions by treatment with various agents, including anionic surfactants. Here we examine the pathway through which anionic surfactants promote tau fibrillization using a combination of electron microscopy and fluorescence spectroscopy. Protein and surfactant first interacted in solution to form micelles, which then provided negatively charged surfaces that accumulated tau aggregates. Surface aggregation of tau protein was followed by the time-dependent appearance of a thioflavin S reactive intermediate that accumulated over a period of hours. The intermediate was unstable in the absence of anionic surfaces, suggesting it was not filamentous. Fibrillization proceeded after intermediate formation with classic nucleation-dependent kinetics, consisting of lag phase followed by the exponential increase in filament lengths, followed by an equilibrium phase reached in approximately 24 h. The pathway did not require protein insertion into the micelle hydrophobic core or conformational change arising from mixed micelle formation, because anionic microspheres constructed from impermeable polystyrene were capable of qualitatively reproducing all aspects of the fibrillization reaction. It is proposed that the progression from amorphous aggregation through intermediate formation and fibrillization may underlie the activity of other inducers such as hyperphosphorylation and may be operative in vivo.
OH-initiated transformation and hydrolysis of aspirin in AOPs system: DFT and experimental studies.
He, Lin; Sun, Xiaomin; Zhu, Fanping; Ren, Shaojie; Wang, Shuguang
2017-08-15
Advanced oxidation processes (AOPs) are widely used in wastewater treatment of pharmaceutical and personal care products (PPCPs). In this work, the OH-initiated transformation as well as the hydrolysis of a typical PPCPs, aspirin, was investigated using density functional theory (DFT) calculations and laboratory experiments. For DFT calculations, the frontier electron densities and bond dissociation energies were analyzed. Profiles of the potential energy surface were constructed, and all the possible pathways were discussed. Additionally, rate constants for each pathway were calculated with transition state theory (TST) method. UV/H 2 O 2 experiments of aspirin were performed and degradation intermediates were identified by UPLC-MS-MS analysis. Different findings from previous experimental works were reported that the H-abstraction pathways at methyl position were dominated and OH-addition pathways on benzene ring were also favored. Meantime, hydroxyl ASA was confirmed as the main stable intermediate. Moreover, it was the first time to use DFT method to investigate the hydrolysis mechanisms of organic ester compound. Copyright © 2017 Elsevier B.V. All rights reserved.
Rosado, Ivan V.; Niedzwiedz, Wojciech; Alpi, Arno F.; Patel, Ketan J.
2009-01-01
FANCM, the most highly conserved component of the Fanconi Anaemia (FA) pathway can resolve recombination intermediates and remodel synthetic replication forks. However, it is not known if these activities are relevant to how this conserved protein activates the FA pathway and promotes DNA crosslink repair. Here we use chicken DT40 cells to systematically dissect the function of the helicase and nuclease domains of FANCM. Our studies reveal that these domains contribute distinct roles in the tolerance of crosslinker, UV light and camptothecin-induced DNA damage. Although the complete helicase domain is critical for crosslink repair, a predicted inactivating mutation of the Walker B box domain has no impact on FA pathway associated functions. However, this mutation does result in elevated sister chromatid exchanges (SCE). Furthermore, our genetic dissection indicates that FANCM functions with the Blm helicase to suppress spontaneous SCE events. Overall our results lead us to reappraise the role of helicase domain associated activities of FANCM with respect to the activation of the FA pathway, crosslink repair and in the resolution of recombination intermediates. PMID:19465393
Protein Folding—How and Why: By Hydrogen Exchange, Fragment Separation, and Mass Spectrometry
Englander, S. Walter; Mayne, Leland; Kan, Zhong-Yuan; Hu, Wenbing
2017-01-01
Advanced hydrogen exchange (HX) methodology can now determine the structure of protein folding intermediates and their progression in folding pathways. Key developments over time include the HX pulse labeling method with nuclear magnetic resonance analysis, development of the fragment separation method, the addition to it of mass spectrometric (MS) analysis, and recent improvements in the HX MS technique and data analysis. Also, the discovery of protein foldons and their role supplies an essential interpretive link. Recent work using HX pulse labeling with HX MS analysis finds that a number of proteins fold by stepping through a reproducible sequence of native-like intermediates in an ordered pathway. The stepwise nature of the pathway is dictated by the cooperative foldon unit construction of the protein. The pathway order is determined by a sequential stabilization principle; prior native-like structure guides the formation of adjacent native-like structure. This view does not match the funneled energy landscape paradigm of a very large number of folding tracks, which was framed before foldons were known. PMID:27145881
Nanosystem self-assembly pathways discovered via all-atom multiscale analysis.
Pankavich, Stephen D; Ortoleva, Peter J
2012-07-26
We consider the self-assembly of composite structures from a group of nanocomponents, each consisting of particles within an N-atom system. Self-assembly pathways and rates for nanocomposites are derived via a multiscale analysis of the classical Liouville equation. From a reduced statistical framework, rigorous stochastic equations for population levels of beginning, intermediate, and final aggregates are also derived. It is shown that the definition of an assembly type is a self-consistency criterion that must strike a balance between precision and the need for population levels to be slowly varying relative to the time scale of atomic motion. The deductive multiscale approach is complemented by a qualitative notion of multicomponent association and the ensemble of exact atomic-level configurations consistent with them. In processes such as viral self-assembly from proteins and RNA or DNA, there are many possible intermediates, so that it is usually difficult to predict the most efficient assembly pathway. However, in the current study, rates of assembly of each possible intermediate can be predicted. This avoids the need, as in a phenomenological approach, for recalibration with each new application. The method accounts for the feedback across scales in space and time that is fundamental to nanosystem self-assembly. The theory has applications to bionanostructures, geomaterials, engineered composites, and nanocapsule therapeutic delivery systems.
Carstensen, Linn; Zoldák, Gabriel; Schmid, Franz-Xaver; Sterner, Reinhard
2012-04-24
HisF, the cyclase subunit of imidazole glycerol phosphate synthase (ImGPS) from Thermotoga maritima, is an extremely thermostable (βα)(8)-barrel protein. We elucidated the unfolding and refolding mechanism of HisF. Its unfolding transition is reversible and adequately described by the two-state model, but 6 weeks is necessary to reach equilibrium (at 25 °C). During refolding, initially a burst-phase off-pathway intermediate is formed. The subsequent productive folding occurs in two kinetic phases with time constants of ~3 and ~20 s. They reflect a sequential process via an on-pathway intermediate, as revealed by stopped-flow double-mixing experiments. The final step leads to native HisF, which associates with the glutaminase subunit HisH to form the functional ImGPS complex. The conversion of the on-pathway intermediate to the native protein results in a 10(6)-fold increase of the time constant for unfolding from 89 ms to 35 h (at 4.0 M GdmCl) and thus establishes a high energy barrier to denaturation. We conclude that the extra stability of HisF is used for kinetic protection against unfolding. In its refolding mechanism, HisF resembles other (βα)(8)-barrel proteins.
NASA Astrophysics Data System (ADS)
Orellana, Laura; Yoluk, Ozge; Carrillo, Oliver; Orozco, Modesto; Lindahl, Erik
2016-08-01
Protein conformational changes are at the heart of cell functions, from signalling to ion transport. However, the transient nature of the intermediates along transition pathways hampers their experimental detection, making the underlying mechanisms elusive. Here we retrieve dynamic information on the actual transition routes from principal component analysis (PCA) of structurally-rich ensembles and, in combination with coarse-grained simulations, explore the conformational landscapes of five well-studied proteins. Modelling them as elastic networks in a hybrid elastic-network Brownian dynamics simulation (eBDIMS), we generate trajectories connecting stable end-states that spontaneously sample the crystallographic motions, predicting the structures of known intermediates along the paths. We also show that the explored non-linear routes can delimit the lowest energy passages between end-states sampled by atomistic molecular dynamics. The integrative methodology presented here provides a powerful framework to extract and expand dynamic pathway information from the Protein Data Bank, as well as to validate sampling methods in general.
Santaeugènia, Sebastià J; García-Lázaro, Manuela; Alventosa, Ana María; Gutiérrez-Benito, Alícia; Monterde, Albert; Cunill, Joan
To evaluate the clinical effectiveness of an intermediate care model based on a system of care focused on integrated care pathways compared to the traditional model of geriatric care (usual care) in Catalonia. The design is a quasi-experimental pre-post non-randomised study with non-synchronous control group. The intervention consists of the development and implementation of integrated care pathways and the creation of specialised interdisciplinary teams in each of the processes. The two groups will be compared for demographic, clinical variables on admission and discharge, geriatric syndromes, and use of resources. This quasi-experimental study, aims to assess the clinical impact of the transformation of a traditional model of geriatric care to an intermediate care model in an integrated healthcare organisation. It is believed that the results of this study may be useful for future randomised controlled studies. Copyright © 2016 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.
L-tyrosine and L-DOPA as hormone-like regulators of melanocytes functions
Slominski, Andrzej; Zmijewski, Michal; Pawelek, John
2011-01-01
Summary Evidence reveals that L-tyrosine and L-DOPA, besides serving as substrates and intermediates of melanogenesis, are also bioregulatory agents acting not only as inducers and positive regulators of melanogenesis but also as regulators of other cellular functions. These can be mediated through action on specific receptors or through non-receptor mediated mechanisms. The substrate induced (L-tyrosine and/or L-DOPA) melanogenic pathway would autoregulate itself as well as it would regulate the melanocyte functions through activity of its structural or regulatory proteins and through intermediates of melanogenesis and melanin itself. Dissection of regulatory and autoregulatory elements of this process may elucidate how substrate induced autoregulatory pathways have evolved from prokaryotic or simple eukaryotic organisms to complex systems in vertebrates. This could substantiate older theory proposing that receptors for amino-acid derived hormones arose from the receptors for those amino acids, and that nuclear receptors evolved from primitive intracellular receptors binding nutritional factors or metabolic intermediates. PMID:21834848