Sample records for sorting signed permutations

  1. Sorting signed permutations by short operations.

    PubMed

    Galvão, Gustavo Rodrigues; Lee, Orlando; Dias, Zanoni

    2015-01-01

    During evolution, global mutations may alter the order and the orientation of the genes in a genome. Such mutations are referred to as rearrangement events, or simply operations. In unichromosomal genomes, the most common operations are reversals, which are responsible for reversing the order and orientation of a sequence of genes, and transpositions, which are responsible for switching the location of two contiguous portions of a genome. The problem of computing the minimum sequence of operations that transforms one genome into another - which is equivalent to the problem of sorting a permutation into the identity permutation - is a well-studied problem that finds application in comparative genomics. There are a number of works concerning this problem in the literature, but they generally do not take into account the length of the operations (i.e. the number of genes affected by the operations). Since it has been observed that short operations are prevalent in the evolution of some species, algorithms that efficiently solve this problem in the special case of short operations are of interest. In this paper, we investigate the problem of sorting a signed permutation by short operations. More precisely, we study four flavors of this problem: (i) the problem of sorting a signed permutation by reversals of length at most 2; (ii) the problem of sorting a signed permutation by reversals of length at most 3; (iii) the problem of sorting a signed permutation by reversals and transpositions of length at most 2; and (iv) the problem of sorting a signed permutation by reversals and transpositions of length at most 3. We present polynomial-time solutions for problems (i) and (iii), a 5-approximation for problem (ii), and a 3-approximation for problem (iv). Moreover, we show that the expected approximation ratio of the 5-approximation algorithm is not greater than 3 for random signed permutations with more than 12 elements. Finally, we present experimental results that show that the approximation ratios of the approximation algorithms cannot be smaller than 3. In particular, this means that the approximation ratio of the 3-approximation algorithm is tight.

  2. Sorting signed permutations by inversions in O(nlogn) time.

    PubMed

    Swenson, Krister M; Rajan, Vaibhav; Lin, Yu; Moret, Bernard M E

    2010-03-01

    The study of genomic inversions (or reversals) has been a mainstay of computational genomics for nearly 20 years. After the initial breakthrough of Hannenhalli and Pevzner, who gave the first polynomial-time algorithm for sorting signed permutations by inversions, improved algorithms have been designed, culminating with an optimal linear-time algorithm for computing the inversion distance and a subquadratic algorithm for providing a shortest sequence of inversions--also known as sorting by inversions. Remaining open was the question of whether sorting by inversions could be done in O(nlogn) time. In this article, we present a qualified answer to this question, by providing two new sorting algorithms, a simple and fast randomized algorithm and a deterministic refinement. The deterministic algorithm runs in time O(nlogn + kn), where k is a data-dependent parameter. We provide the results of extensive experiments showing that both the average and the standard deviation for k are small constants, independent of the size of the permutation. We conclude (but do not prove) that almost all signed permutations can be sorted by inversions in O(nlogn) time.

  3. Fast algorithms for transforming back and forth between a signed permutation and its equivalent simple permutation.

    PubMed

    Gog, Simon; Bader, Martin

    2008-10-01

    The problem of sorting signed permutations by reversals is a well-studied problem in computational biology. The first polynomial time algorithm was presented by Hannenhalli and Pevzner in 1995. The algorithm was improved several times, and nowadays the most efficient algorithm has a subquadratic running time. Simple permutations played an important role in the development of these algorithms. Although the latest result of Tannier et al. does not require simple permutations, the preliminary version of their algorithm as well as the first polynomial time algorithm of Hannenhalli and Pevzner use the structure of simple permutations. More precisely, the latter algorithms require a precomputation that transforms a permutation into an equivalent simple permutation. To the best of our knowledge, all published algorithms for this transformation have at least a quadratic running time. For further investigations on genome rearrangement problems, the existence of a fast algorithm for the transformation could be crucial. Another important task is the back transformation, i.e. if we have a sorting on the simple permutation, transform it into a sorting on the original permutation. Again, the naive approach results in an algorithm with quadratic running time. In this paper, we present a linear time algorithm for transforming a permutation into an equivalent simple permutation, and an O(n log n) algorithm for the back transformation of the sorting sequence.

  4. Sorting permutations by prefix and suffix rearrangements.

    PubMed

    Lintzmayer, Carla Negri; Fertin, Guillaume; Dias, Zanoni

    2017-02-01

    Some interesting combinatorial problems have been motivated by genome rearrangements, which are mutations that affect large portions of a genome. When we represent genomes as permutations, the goal is to transform a given permutation into the identity permutation with the minimum number of rearrangements. When they affect segments from the beginning (respectively end) of the permutation, they are called prefix (respectively suffix) rearrangements. This paper presents results for rearrangement problems that involve prefix and suffix versions of reversals and transpositions considering unsigned and signed permutations. We give 2-approximation and ([Formula: see text])-approximation algorithms for these problems, where [Formula: see text] is a constant divided by the number of breakpoints (pairs of consecutive elements that should not be consecutive in the identity permutation) in the input permutation. We also give bounds for the diameters concerning these problems and provide ways of improving the practical results of our algorithms.

  5. Sampling solution traces for the problem of sorting permutations by signed reversals

    PubMed Central

    2012-01-01

    Background Traditional algorithms to solve the problem of sorting by signed reversals output just one optimal solution while the space of all optimal solutions can be huge. A so-called trace represents a group of solutions which share the same set of reversals that must be applied to sort the original permutation following a partial ordering. By using traces, we therefore can represent the set of optimal solutions in a more compact way. Algorithms for enumerating the complete set of traces of solutions were developed. However, due to their exponential complexity, their practical use is limited to small permutations. A partial enumeration of traces is a sampling of the complete set of traces and can be an alternative for the study of distinct evolutionary scenarios of big permutations. Ideally, the sampling should be done uniformly from the space of all optimal solutions. This is however conjectured to be ♯P-complete. Results We propose and evaluate three algorithms for producing a sampling of the complete set of traces that instead can be shown in practice to preserve some of the characteristics of the space of all solutions. The first algorithm (RA) performs the construction of traces through a random selection of reversals on the list of optimal 1-sequences. The second algorithm (DFALT) consists in a slight modification of an algorithm that performs the complete enumeration of traces. Finally, the third algorithm (SWA) is based on a sliding window strategy to improve the enumeration of traces. All proposed algorithms were able to enumerate traces for permutations with up to 200 elements. Conclusions We analysed the distribution of the enumerated traces with respect to their height and average reversal length. Various works indicate that the reversal length can be an important aspect in genome rearrangements. The algorithms RA and SWA show a tendency to lose traces with high average reversal length. Such traces are however rare, and qualitatively our results show that, for testable-sized permutations, the algorithms DFALT and SWA produce distributions which approximate the reversal length distributions observed with a complete enumeration of the set of traces. PMID:22704580

  6. A 1.375-approximation algorithm for sorting by transpositions.

    PubMed

    Elias, Isaac; Hartman, Tzvika

    2006-01-01

    Sorting permutations by transpositions is an important problem in genome rearrangements. A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted in a different location. The complexity of this problem is still open and it has been a 10-year-old open problem to improve the best known 1.5-approximation algorithm. In this paper, we provide a 1.375-approximation algorithm for sorting by transpositions. The algorithm is based on a new upper bound on the diameter of 3-permutations. In addition, we present some new results regarding the transposition diameter: we improve the lower bound for the transposition diameter of the symmetric group and determine the exact transposition diameter of simple permutations.

  7. MCMC genome rearrangement.

    PubMed

    Miklós, István

    2003-10-01

    As more and more genomes have been sequenced, genomic data is rapidly accumulating. Genome-wide mutations are believed more neutral than local mutations such as substitutions, insertions and deletions, therefore phylogenetic investigations based on inversions, transpositions and inverted transpositions are less biased by the hypothesis on neutral evolution. Although efficient algorithms exist for obtaining the inversion distance of two signed permutations, there is no reliable algorithm when both inversions and transpositions are considered. Moreover, different type of mutations happen with different rates, and it is not clear how to weight them in a distance based approach. We introduce a Markov Chain Monte Carlo method to genome rearrangement based on a stochastic model of evolution, which can estimate the number of different evolutionary events needed to sort a signed permutation. The performance of the method was tested on simulated data, and the estimated numbers of different types of mutations were reliable. Human and Drosophila mitochondrial data were also analysed with the new method. The mixing time of the Markov Chain is short both in terms of CPU times and number of proposals. The source code in C is available on request from the author.

  8. Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals.

    PubMed

    Soncco-Álvarez, José Luis; Muñoz, Daniel M; Ayala-Rincón, Mauricio

    2018-02-21

    Sorting unsigned permutations by reversals is a difficult problem; indeed, it was proved to be NP-hard by Caprara (1997). Because of its high complexity, many approximation algorithms to compute the minimal reversal distance were proposed until reaching the nowadays best-known theoretical ratio of 1.375. In this article, two memetic algorithms to compute the reversal distance are proposed. The first one uses the technique of opposition-based learning leading to an opposition-based memetic algorithm; the second one improves the previous algorithm by applying the heuristic of two breakpoint elimination leading to a hybrid approach. Several experiments were performed with one-hundred randomly generated permutations, single benchmark permutations, and biological permutations. Results of the experiments showed that the proposed OBMA and Hybrid-OBMA algorithms achieve the best results for practical cases, that is, for permutations of length up to 120. Also, Hybrid-OBMA showed to improve the results of OBMA for permutations greater than or equal to 60. The applicability of our proposed algorithms was checked processing permutations based on biological data, in which case OBMA gave the best average results for all instances.

  9. An O([Formula: see text]) algorithm for sorting signed genomes by reversals, transpositions, transreversals and block-interchanges.

    PubMed

    Yu, Shuzhi; Hao, Fanchang; Leong, Hon Wai

    2016-02-01

    We consider the problem of sorting signed permutations by reversals, transpositions, transreversals, and block-interchanges. The problem arises in the study of species evolution via large-scale genome rearrangement operations. Recently, Hao et al. gave a 2-approximation scheme called genome sorting by bridges (GSB) for solving this problem. Their result extended and unified the results of (i) He and Chen - a 2-approximation algorithm allowing reversals, transpositions, and block-interchanges (by also allowing transversals) and (ii) Hartman and Sharan - a 1.5-approximation algorithm allowing reversals, transpositions, and transversals (by also allowing block-interchanges). The GSB result is based on introduction of three bridge structures in the breakpoint graph, the L-bridge, T-bridge, and X-bridge that models goodreversal, transposition/transreversal, and block-interchange, respectively. However, the paper by Hao et al. focused on proving the 2-approximation GSB scheme and only mention a straightforward [Formula: see text] algorithm. In this paper, we give an [Formula: see text] algorithm for implementing the GSB scheme. The key idea behind our faster GSB algorithm is to represent cycles in the breakpoint graph by their canonical sequences, which greatly simplifies the search for these bridge structures. We also give some comparison results (running time and computed distances) against the original GSB implementation.

  10. Hurdles and sorting by inversions: combinatorial, statistical, and experimental results.

    PubMed

    Swenson, Krister M; Lin, Yu; Rajan, Vaibhav; Moret, Bernard M E

    2009-10-01

    As data about genomic architecture accumulates, genomic rearrangements have attracted increasing attention. One of the main rearrangement mechanisms, inversions (also called reversals), was characterized by Hannenhalli and Pevzner and this characterization in turn extended by various authors. The characterization relies on the concepts of breakpoints, cycles, and obstructions colorfully named hurdles and fortresses. In this paper, we study the probability of generating a hurdle in the process of sorting a permutation if one does not take special precautions to avoid them (as in a randomized algorithm, for instance). To do this we revisit and extend the work of Caprara and of Bergeron by providing simple and exact characterizations of the probability of encountering a hurdle in a random permutation. Using similar methods we provide the first asymptotically tight analysis of the probability that a fortress exists in a random permutation. Finally, we study other aspects of hurdles, both analytically and through experiments: when are they created in a sequence of sorting inversions, how much later are they detected, and how much work may need to be undone to return to a sorting sequence.

  11. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  12. A faster 1.375-approximation algorithm for sorting by transpositions.

    PubMed

    Cunha, Luís Felipe I; Kowada, Luis Antonio B; Hausen, Rodrigo de A; de Figueiredo, Celina M H

    2015-11-01

    Sorting by Transpositions is an NP-hard problem for which several polynomial-time approximation algorithms have been developed. Hartman and Shamir (2006) developed a 1.5-approximation [Formula: see text] algorithm, whose running time was improved to O(nlogn) by Feng and Zhu (2007) with a data structure they defined, the permutation tree. Elias and Hartman (2006) developed a 1.375-approximation O(n(2)) algorithm, and Firoz et al. (2011) claimed an improvement to the running time, from O(n(2)) to O(nlogn), by using the permutation tree. We provide counter-examples to the correctness of Firoz et al.'s strategy, showing that it is not possible to reach a component by sufficient extensions using the method proposed by them. In addition, we propose a 1.375-approximation algorithm, modifying Elias and Hartman's approach with the use of permutation trees and achieving O(nlogn) time.

  13. Spin-the-bottle Sort and Annealing Sort: Oblivious Sorting via Round-robin Random Comparisons

    PubMed Central

    Goodrich, Michael T.

    2013-01-01

    We study sorting algorithms based on randomized round-robin comparisons. Specifically, we study Spin-the-bottle sort, where comparisons are unrestricted, and Annealing sort, where comparisons are restricted to a distance bounded by a temperature parameter. Both algorithms are simple, randomized, data-oblivious sorting algorithms, which are useful in privacy-preserving computations, but, as we show, Annealing sort is much more efficient. We show that there is an input permutation that causes Spin-the-bottle sort to require Ω(n2 log n) expected time in order to succeed, and that in O(n2 log n) time this algorithm succeeds with high probability for any input. We also show there is a specification of Annealing sort that runs in O(n log n) time and succeeds with very high probability. PMID:24550575

  14. Parallel approach on sorting of genes in search of optimal solution.

    PubMed

    Kumar, Pranav; Sahoo, G

    2018-05-01

    An important tool for comparing genome analysis is the rearrangement event that can transform one given genome into other. For finding minimum sequence of fission and fusion, we have proposed here an algorithm and have shown a transformation example for converting the source genome into the target genome. The proposed algorithm comprises of circular sequence i.e. "cycle graph" in place of mapping. The main concept of algorithm is based on optimal result of permutation. These sorting processes are performed in constant running time by showing permutation in the form of cycle. In biological instances it has been observed that transposition occurs half of the frequency as that of reversal. In this paper we are not dealing with reversal instead commencing with the rearrangement of fission, fusion as well as transposition. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Toward a general theory of conical intersections in systems of identical nuclei

    NASA Astrophysics Data System (ADS)

    Keating, Sean P.; Mead, C. Alden

    1987-02-01

    It has been shown previously that the Herzberg-Longuet-Higgins sign change produced in Born-Oppenheimer electronic wave functions when the nuclei traverse a closed path around a conical intersection has implications for the symmetry of wave functions under permutations of identical nuclei. For systems of three or four identical nuclei, there are special features present which have facilitated the detailed analysis. The present paper reports progress toward a general theory for systems of n nuclei. For n=3 or 4, the two key functions which locate conical intersections and define compensating phase factors can conveniently be defined so as to transform under permutations according to a two-dimensional irreducible representation of the permutation group. Since such representations do not exist for n>4, we have chosen to develop a formalism in terms of lab-fixed electronic basis functions, and we show how to define the two key functions in principle. The functions so defined both turn out to be totally symmetric under permutations. We show how they can be used to define compensating phase factors so that all modified electronic wave functions are either totally symmetric or totally antisymmetric under permutations. A detailed analysis is made to cyclic permutations in the neighborhood of Dnh symmetry, which can be extended by continuity arguments to more general configurations, and criteria are obtained for sign changes. There is a qualitative discussion of the treatment of more general permutations.

  16. A New Efficient Algorithm for the All Sorting Reversals Problem with No Bad Components.

    PubMed

    Wang, Biing-Feng

    2016-01-01

    The problem of finding all reversals that take a permutation one step closer to a target permutation is called the all sorting reversals problem (the ASR problem). For this problem, Siepel had an O(n (3))-time algorithm. Most complications of his algorithm stem from some peculiar structures called bad components. Since bad components are very rare in both real and simulated data, it is practical to study the ASR problem with no bad components. For the ASR problem with no bad components, Swenson et al. gave an O (n(2))-time algorithm. Very recently, Swenson found that their algorithm does not always work. In this paper, a new algorithm is presented for the ASR problem with no bad components. The time complexity is O(n(2)) in the worst case and is linear in the size of input and output in practice.

  17. A Weak Quantum Blind Signature with Entanglement Permutation

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoping; Chen, Zhigang; Guo, Ying

    2015-09-01

    Motivated by the permutation encryption algorithm, a weak quantum blind signature (QBS) scheme is proposed. It involves three participants, including the sender Alice, the signatory Bob and the trusted entity Charlie, in four phases, i.e., initializing phase, blinding phase, signing phase and verifying phase. In a small-scale quantum computation network, Alice blinds the message based on a quantum entanglement permutation encryption algorithm that embraces the chaotic position string. Bob signs the blinded message with private parameters shared beforehand while Charlie verifies the signature's validity and recovers the original message. Analysis shows that the proposed scheme achieves the secure blindness for the signer and traceability for the message owner with the aid of the authentic arbitrator who plays a crucial role when a dispute arises. In addition, the signature can neither be forged nor disavowed by the malicious attackers. It has a wide application to E-voting and E-payment system, etc.

  18. A Preserved Context Indexing System for Microcomputers: PERMDEX.

    ERIC Educational Resources Information Center

    Yerkey, A. Neil

    1983-01-01

    Following a discussion of derivative versus assignment indexing, use of roles, and concept behind Preserved Concept Indexing System, features of PERMDEX (microcomputer program to assist in creation of permuted printed index) are described including indexer input and prompts, the shunting algorithm, and sorting and printing routines. Fourteen…

  19. Engineering bacteria to solve the Burnt Pancake Problem

    PubMed Central

    Haynes, Karmella A; Broderick, Marian L; Brown, Adam D; Butner, Trevor L; Dickson, James O; Harden, W Lance; Heard, Lane H; Jessen, Eric L; Malloy, Kelly J; Ogden, Brad J; Rosemond, Sabriya; Simpson, Samantha; Zwack, Erin; Campbell, A Malcolm; Eckdahl, Todd T; Heyer, Laurie J; Poet, Jeffrey L

    2008-01-01

    Background We investigated the possibility of executing DNA-based computation in living cells by engineering Escherichia coli to address a classic mathematical puzzle called the Burnt Pancake Problem (BPP). The BPP is solved by sorting a stack of distinct objects (pancakes) into proper order and orientation using the minimum number of manipulations. Each manipulation reverses the order and orientation of one or more adjacent objects in the stack. We have designed a system that uses site-specific DNA recombination to mediate inversions of genetic elements that represent pancakes within plasmid DNA. Results Inversions (or "flips") of the DNA fragment pancakes are driven by the Salmonella typhimurium Hin/hix DNA recombinase system that we reconstituted as a collection of modular genetic elements for use in E. coli. Our system sorts DNA segments by inversions to produce different permutations of a promoter and a tetracycline resistance coding region; E. coli cells become antibiotic resistant when the segments are properly sorted. Hin recombinase can mediate all possible inversion operations on adjacent flippable DNA fragments. Mathematical modeling predicts that the system reaches equilibrium after very few flips, where equal numbers of permutations are randomly sorted and unsorted. Semiquantitative PCR analysis of in vivo flipping suggests that inversion products accumulate on a time scale of hours or days rather than minutes. Conclusion The Hin/hix system is a proof-of-concept demonstration of in vivo computation with the potential to be scaled up to accommodate larger and more challenging problems. Hin/hix may provide a flexible new tool for manipulating transgenic DNA in vivo. PMID:18492232

  20. A Spectral Algorithm for Envelope Reduction of Sparse Matrices

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.

    1993-01-01

    The problem of reordering a sparse symmetric matrix to reduce its envelope size is considered. A new spectral algorithm for computing an envelope-reducing reordering is obtained by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. This Laplacian eigenvector solves a continuous relaxation of a discrete problem related to envelope minimization called the minimum 2-sum problem. The permutation vector computed by the spectral algorithm is a closest permutation vector to the specified Laplacian eigenvector. Numerical results show that the new reordering algorithm usually computes smaller envelope sizes than those obtained from the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK reverse Cuthill-McKee (RCM), in some cases reducing the envelope by more than a factor of two.

  1. An Affine Invariant Bivariate Version of the Sign Test.

    DTIC Science & Technology

    1987-06-01

    words: affine invariance, bivariate quantile, bivariate symmetry, model,. generalized median, influence function , permutation test, normal efficiency...calculate a bivariate version of the influence function , and the resulting form is bounded, as is the case for the univartate sign test, and shows the...terms of a blvariate analogue of IHmpel’s (1974) influence function . The latter, though usually defined as a von-Mises derivative of certain

  2. A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.

    PubMed

    Li, Bin-Bin; Wang, Ling

    2007-06-01

    This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA.

  3. Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices.

    PubMed

    Tsafrir, D; Tsafrir, I; Ein-Dor, L; Zuk, O; Notterman, D A; Domany, E

    2005-05-15

    We introduce a novel unsupervised approach for the organization and visualization of multidimensional data. At the heart of the method is a presentation of the full pairwise distance matrix of the data points, viewed in pseudocolor. The ordering of points is iteratively permuted in search of a linear ordering, which can be used to study embedded shapes. Several examples indicate how the shapes of certain structures in the data (elongated, circular and compact) manifest themselves visually in our permuted distance matrix. It is important to identify the elongated objects since they are often associated with a set of hidden variables, underlying continuous variation in the data. The problem of determining an optimal linear ordering is shown to be NP-Complete, and therefore an iterative search algorithm with O(n3) step-complexity is suggested. By using sorting points into neighborhoods, i.e. SPIN to analyze colon cancer expression data we were able to address the serious problem of sample heterogeneity, which hinders identification of metastasis related genes in our data. Our methodology brings to light the continuous variation of heterogeneity--starting with homogeneous tumor samples and gradually increasing the amount of another tissue. Ordering the samples according to their degree of contamination by unrelated tissue allows the separation of genes associated with irrelevant contamination from those related to cancer progression. Software package will be available for academic users upon request.

  4. VLSI Design, Parallel Computation and Distributed Computing

    DTIC Science & Technology

    1991-09-30

    I U1 TA 3 Daniel Mleitman U. : C ..( -_. .. .s .. . . . . Tom Leighton David Shmoys . ........A ,~i ;.t , 77 Michael Sipser , Di.,t a-., Eva Tardos...Leighton and Plaxton on the construction of a sim- ple c log .- depth circuit (where c < 7.5) that sorts a random permutation with very high probability...puting iPOD( ). Aug-ust 1992. Vancouver. British Columbia (to appear). 20. B 1Xti~ c .. U(.ii. 1. Gopal. M. [Kaplan and S. Kutten, "Distributed Control for

  5. Matching nuts and bolts in O(n log n) time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komlos, J.; Ma, Yuan; Szemeredi, E.

    Given a set of n nuts of distinct widths and a set of n bolts such that each nut corresponds to a unique bolt of the same width, how should we match every nut with its corresponding bolt by comparing nuts with bolts (no comparison is allowed between two nuts or between two bolts)? The problem can be naturally viewed as a variant of the classic sorting problem as follows. Given two lists of n numbers each such that one list is a permutation of the other, how should we sort the lists by comparisons only between numbers in differentmore » lists? We give an O(n log n)-time deterministic algorithm for the problem. This is optimal up to a constant factor and answers an open question posed by Alon, Blum, Fiat, Kannan, Naor, and Ostrovsky. Moreover, when copies of nuts and bolts are allowed, our algorithm runs in optimal O(log n) time on n processors in Valiant`s parallel comparison tree model. Our algorithm is based on the AKS sorting algorithm with substantial modifications.« less

  6. Adinkra (in)equivalence from Coxeter group representations: A case study

    NASA Astrophysics Data System (ADS)

    Chappell, Isaac; Gates, S. James; Hübsch, T.

    2014-02-01

    Using a MathematicaTM code, we present a straightforward numerical analysis of the 384-dimensional solution space of signed permutation 4×4 matrices, which in sets of four, provide representations of the 𝒢ℛ(4, 4) algebra, closely related to the 𝒩 = 1 (simple) supersymmetry algebra in four-dimensional space-time. Following after ideas discussed in previous papers about automorphisms and classification of adinkras and corresponding supermultiplets, we make a new and alternative proposal to use equivalence classes of the (unsigned) permutation group S4 to define distinct representations of higher-dimensional spin bundles within the context of adinkras. For this purpose, the definition of a dual operator akin to the well-known Hodge star is found to partition the space of these 𝒢ℛ(4, 4) representations into three suggestive classes.

  7. Quantization of high dimensional Gaussian vector using permutation modulation with application to information reconciliation in continuous variable QKD

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina; Olia, Khashayar

    This paper is focused on the problem of Information Reconciliation (IR) for continuous variable Quantum Key Distribution (QKD). The main problem is quantization and assignment of labels to the samples of the Gaussian variables observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective Signal-to-Noise Ratio (SNR) exasperating the problem. Quantization over higher dimensions is advantageous since it allows for fractional bit per sample accuracy which may be needed at very low SNR conditions whereby the achievable secret key rate is significantly less than one bit per sample. In this paper, we propose to use Permutation Modulation (PM) for quantization of Gaussian vectors potentially containing thousands of samples. PM is applied to the magnitudes of the Gaussian samples and we explore the dependence of the sign error probability on the magnitude of the samples. At very low SNR, we may transmit the entire label of the PM code from Bob to Alice in Reverse Reconciliation (RR) over public channel. The side information extracted from this label can then be used by Alice to characterize the sign error probability of her individual samples. Forward Error Correction (FEC) coding can be used by Bob on each subset of samples with similar sign error probability to aid Alice in error correction. This can be done for different subsets of samples with similar sign error probabilities leading to an Unequal Error Protection (UEP) coding paradigm.

  8. Fecal Microbiota Characteristics of Patients with Colorectal Adenoma Detected by Screening: A Population-based Study

    PubMed Central

    Goedert, James J.; Gong, Yangming; Hua, Xing; Zhong, Huanzi; He, Yimin; Peng, Peng; Yu, Guoqin; Wang, Wenjing; Ravel, Jacques; Shi, Jianxin; Zheng, Ying

    2015-01-01

    Background Screening for colorectal cancer (CRC) and precancerous colorectal adenoma (CRA) can detect curable disease. However, participation in colonoscopy and sensitivity of fecal heme for CRA are low. Methods Microbiota metrics were determined by Illumina sequencing of 16S rRNA genes amplified from DNA extracted from feces self-collected in RNAlater. Among fecal immunochemical test-positive (FIT +) participants, colonoscopically-defined normal versus CRA patients were compared by regression, permutation, and random forest plus leave-one-out methods. Findings Of 95 FIT + participants, 61 had successful fecal microbiota profiling and colonoscopy, identifying 24 completely normal patients, 20 CRA patients, 2 CRC patients, and 15 with other conditions. Phylum-level fecal community composition differed significantly between CRA and normal patients (permutation P = 0.02). Rank phylum-level abundance distinguished CRA from normal patients (area under the curve = 0.767, permutation P = 0.006). CRA prevalence was 59% in phylum-level cluster B versus 20% in cluster A (exact P = 0.01). Most of the difference reflected 3-fold higher median relative abundance of Proteobacteria taxa (Wilcoxon signed-rank P = 0.03, positive predictive value = 67%). Antibiotic exposure and other potential confounders did not affect the associations. Interpretation If confirmed in larger, more diverse populations, fecal microbiota analysis might be employed to improve screening for CRA and ultimately to reduce mortality from CRC. PMID:26288821

  9. Level repulsion and band sorting in phononic crystals

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Srivastava, Ankit

    2018-02-01

    In this paper we consider the problem of avoided crossings (level repulsion) in phononic crystals and suggest a computationally efficient strategy to distinguish them from normal cross points. This process is essential for the correct sorting of the phononic bands and, subsequently, for the accurate determination of mode continuation, group velocities, and emergent properties which depend on them such as thermal conductivity. Through explicit phononic calculations using generalized Rayleigh quotient, we identify exact locations of exceptional points in the complex wavenumber domain which results in level repulsion in the real domain. We show that in the vicinity of the exceptional point the relevant phononic eigenvalue surfaces resemble the surfaces of a 2 by 2 parameter-dependent matrix. Along a closed loop encircling the exceptional point we show that the phononic eigenvalues are exchanged, just as they are for the 2 by 2 matrix case. However, the behavior of the associated eigenvectors is shown to be more complex in the phononic case. Along a closed loop around an exceptional point, we show that the eigenvectors can flip signs multiple times unlike a 2 by 2 matrix where the flip of sign occurs only once. Finally, we exploit these eigenvector sign flips around exceptional points to propose a simple and efficient method of distinguishing them from normal crosses and of correctly sorting the band-structure. Our proposed method is roughly an order-of-magnitude faster than the zoom-in method and correctly identifies > 96% of the cases considered. Both its speed and accuracy can be further improved and we suggest some ways of achieving this. Our method is general and, as such, would be directly applicable to other eigenvalue problems where the eigenspectrum needs to be correctly sorted.

  10. [INFLUENCE OF AZOSPIRILLUM BRASILENSE 10/1 ON ASSOCIATIVE NITROGEN FIXATION AND INTRAVARIETAL POLYMORPHISM OF SPRING TRITICALE].

    PubMed

    Patika, V P; Nadkernichna, O V; Shahovnina, O O

    2015-01-01

    It is shown, that the perspective Ukrainian sorts of spring triticale characterizes by considerable polymorphism by associative N2-fixing ability in root zone of plants. Application of active strain Azospirillum brasilense 10/1 promotes the decline of variability of this sign within the limits of sort, increase potential nitrogen activity is on the average in 3,2-4,7 times and also distributing normalizations in the selections of the inoculated plants.

  11. Examining biological continuity across the late holocene occupation of the Aleutian Islands using cranial morphometrics and quantitative genetic permutation.

    PubMed

    Maley, Blaine

    2016-05-01

    The number of distinct human migrations into the Aleutian Islands during the Holocene has been a recurrent debate in the anthropological literature. Stemming from Hrdlička's sorting of the prehistoric remains into two distinct populations based on archaeological context and cranial measurements, the human occupation of the Aleutian Islands has long been thought to be the consequence of two distinct human migrations, a Paleo-Aleut migration that provided the initial settlement of the islands, and a Neo-Aleut migration that replaced the original settlers around 1000 BP. This study examines the relationship of the Aleut cranial assemblages in the context of greater Alaskan population variability to assess the evidence for a substantial migration into the Aleutian Islands during the late Holocene. A battery of 29 cranial measurements that quantify global cranial shape were analyzed using Euclidean morphometric methods and quantitative genetic permutation methods to examine the plausibility for two distinct Aleut occupations ("Paleo-Aleut" and "Neo-Aleut"), the latter of which is held to share closer phenetic affinities to mainland Alaskan populations than the former. The Aleut skeletal assemblages were arranged according to temporal association, geographic location, and cranial typology, and analyzed within a comparative framework of mainland Alaskan samples using principal coordinates, biological distance and random skewers permutation methods. Regardless of how the Aleut assemblages are divided, they show greater similarity to each other than to any of the mainland Alaskan assemblages. These findings are consistent across the methodological approaches. The results obtained in this study provide no support for a cranial morphology-based subdivision of the Aleuts into two distinct samples, Hence, there is no evidence for a substantial population migration of so-called Neo-Aleuts, nor for a population replacement event of an extant Paleo-Aleut population by a mainland-affiliated Neo-Aleuts population at or after 1000 BP. © 2016 Wiley Periodicals, Inc.

  12. Time needed to board an airplane: a power law and the structure behind it.

    PubMed

    Frette, Vidar; Hemmer, Per C

    2012-01-01

    A simple model for the boarding of an airplane is studied. Passengers have reserved seats but enter the airplane in arbitrary order. Queues are formed along the aisle, as some passengers have to wait to reach the seats for which they have reservation. We label a passenger by the number of his or her reserved seat. In most cases the boarding process is much slower than for the optimal situation, where passenger and seat orders are identical. We study this dynamical system by calculating the average boarding time when all permutations of N passengers are given equal weight. To first order, the boarding time for a given permutation (ordering) of the passengers is given by the number s of sequences of monotonically increasing values in the permutation. We show that the distribution of s is symmetric on [1,N], which leads to an average boarding time (N+1)/2. We have found an exact expression for s and have shown that the full distribution of s approaches a normal distribution as N increases. However, there are significant corrections to the first-order results, due to certain correlations between passenger ordering and the substrate (seat ordering). This occurs for some cases in which the sequence of the seats is partially mirrored in the passenger ordering. These cases with correlations have a boarding time that is lower than predicted by the first-order results. The large number of cases with reduced boarding times have been classified. We also give some indicative results on the geometry of the correlations, with sorting into geometry groups. With increasing N, both the number of correlation types and the number of cases belonging to each type increase rapidly. Using enumeration we find that as a result of these correlations the average boarding time behaves like N(α), with α≃0.69, as compared with α=1.0 for the first-order approximation. © 2012 American Physical Society

  13. Novel permutation measures for image encryption algorithms

    NASA Astrophysics Data System (ADS)

    Abd-El-Hafiz, Salwa K.; AbdElHaleem, Sherif H.; Radwan, Ahmed G.

    2016-10-01

    This paper proposes two measures for the evaluation of permutation techniques used in image encryption. First, a general mathematical framework for describing the permutation phase used in image encryption is presented. Using this framework, six different permutation techniques, based on chaotic and non-chaotic generators, are described. The two new measures are, then, introduced to evaluate the effectiveness of permutation techniques. These measures are (1) Percentage of Adjacent Pixels Count (PAPC) and (2) Distance Between Adjacent Pixels (DBAP). The proposed measures are used to evaluate and compare the six permutation techniques in different scenarios. The permutation techniques are applied on several standard images and the resulting scrambled images are analyzed. Moreover, the new measures are used to compare the permutation algorithms on different matrix sizes irrespective of the actual parameters used in each algorithm. The analysis results show that the proposed measures are good indicators of the effectiveness of the permutation technique.

  14. Blocks in cycles and k-commuting permutations.

    PubMed

    Moreno, Rutilo; Rivera, Luis Manuel

    2016-01-01

    We introduce and study k -commuting permutations. One of our main results is a characterization of permutations that k -commute with a given permutation. Using this characterization, we obtain formulas for the number of permutations that k -commute with a permutation [Formula: see text], for some cycle types of [Formula: see text]. Our enumerative results are related with integer sequences in "The On-line Encyclopedia of Integer Sequences", and in some cases provide new interpretations for such sequences.

  15. A Random Variable Related to the Inversion Vector of a Partial Random Permutation

    ERIC Educational Resources Information Center

    Laghate, Kavita; Deshpande, M. N.

    2005-01-01

    In this article, we define the inversion vector of a permutation of the integers 1, 2,..., n. We set up a particular kind of permutation, called a partial random permutation. The sum of the elements of the inversion vector of such a permutation is a random variable of interest.

  16. A transposase strategy for creating libraries of circularly permuted proteins.

    PubMed

    Mehta, Manan M; Liu, Shirley; Silberg, Jonathan J

    2012-05-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions.

  17. A transposase strategy for creating libraries of circularly permuted proteins

    PubMed Central

    Mehta, Manan M.; Liu, Shirley; Silberg, Jonathan J.

    2012-01-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions. PMID:22319214

  18. An efficient algorithm for sorting by block-interchanges and its application to the evolution of vibrio species.

    PubMed

    Lin, Ying Chih; Lu, Chin Lung; Chang, Hwan-You; Tang, Chuan Yi

    2005-01-01

    In the study of genome rearrangement, the block-interchanges have been proposed recently as a new kind of global rearrangement events affecting a genome by swapping two nonintersecting segments of any length. The so-called block-interchange distance problem, which is equivalent to the sorting-by-block-interchange problem, is to find a minimum series of block-interchanges for transforming one chromosome into another. In this paper, we study this problem by considering the circular chromosomes and propose a Omicron(deltan) time algorithm for solving it by making use of permutation groups in algebra, where n is the length of the circular chromosome and delta is the minimum number of block-interchanges required for the transformation, which can be calculated in Omicron(n) time in advance. Moreover, we obtain analogous results by extending our algorithm to linear chromosomes. Finally, we have implemented our algorithm and applied it to the circular genomic sequences of three human vibrio pathogens for predicting their evolutionary relationships. Consequently, our experimental results coincide with the previous ones obtained by others using a different comparative genomics approach, which implies that the block-interchange events seem to play a significant role in the evolution of vibrio species.

  19. Encoding Sequential Information in Semantic Space Models: Comparing Holographic Reduced Representation and Random Permutation

    PubMed Central

    Recchia, Gabriel; Sahlgren, Magnus; Kanerva, Pentti; Jones, Michael N.

    2015-01-01

    Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, “noisy” permutations in which units are mapped to other units arbitrarily (no one-to-one mapping) perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics. PMID:25954306

  20. Finite state model and compatibility theory - New analysis tools for permutation networks

    NASA Technical Reports Server (NTRS)

    Huang, S.-T.; Tripathi, S. K.

    1986-01-01

    A simple model to describe the fundamental operation theory of shuffle-exchange-type permutation networks, the finite permutation machine (FPM), is described, and theorems which transform the control matrix result to a continuous compatible vector result are developed. It is found that only 2n-1 shuffle exchange passes are necessary, and that 3n-3 passes are sufficient, to realize all permutations, reducing the sufficient number of passes by two from previous results. The flexibility of the approach is demonstrated by the description of a stack permutation machine (SPM) which can realize all permutations, and by showing that the FPM corresponding to the Benes (1965) network belongs to the SPM. The FPM corresponding to the network with two cascaded reverse-exchange networks is found to realize all permutations, and a simple mechanism to verify several equivalence relationships of various permutation networks is discussed.

  1. Hereditary non-polyposis colorectal cancer/Lynch syndrome in three dimensions.

    PubMed

    Kravochuck, Sara E; Church, James M

    2017-12-01

    Hereditary non-polyposis colorectal cancer (HNPCC) is defined by family history, and Lynch syndrome (LS) is defined genetically. However, universal tumour testing is now increasingly used to screen for patients with defective mismatch repair. This mixing of the results of family history, tumour testing and germline testing produces multiple permutations and combinations that can foster confusion. We wanted to clarify hereditary colorectal cancer using the three dimensions of classification: family history, tumour testing and germline testing. Family history (Amsterdam I or II criteria versus not Amsterdam criteria) was used to define patients and families with HNPCC. Tumour testing and germline testing were then performed to sub-classify patients and families. The permutations of these classifications are applied to our registry. There were 234 HNPCC families: 129 had LS of which 55 were three-dimensional Lynch (family history, tumour testing and germline testing), 66 were two-dimensional Lynch and eight were one-dimensional Lynch. A total of 10 families had tumour Lynch (tumours with microsatellite instability or loss of expression of a mismatch repair protein but an Amsterdam-negative family and negative germline testing), five were Lynch like (Amsterdam-positive family, tumours with microsatellite instability or loss of expression of a mismatch repair protein on immunohistochemistry but negative germline testing), 26 were familial colorectal cancer type X and 95 were HNPCC. Hereditary colorectal cancer can be confusing. Sorting families in three dimensions can clarify the confusion and may direct further testing and, ultimately, surveillance. © 2016 Royal Australasian College of Surgeons.

  2. A Reversible Logical Circuit Synthesis Algorithm Based on Decomposition of Cycle Representations of Permutations

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Li, Zhiqiang; Zhang, Gaoman; Pan, Suhan; Zhang, Wei

    2018-05-01

    A reversible function is isomorphic to a permutation and an arbitrary permutation can be represented by a series of cycles. A new synthesis algorithm for 3-qubit reversible circuits was presented. It consists of two parts, the first part used the Number of reversible function's Different Bits (NDBs) to decide whether the NOT gate should be added to decrease the Hamming distance of the input and output vectors; the second part was based on the idea of exploring properties of the cycle representation of permutations, decomposed the cycles to make the permutation closer to the identity permutation and finally turn into the identity permutation, it was realized by using totally controlled Toffoli gates with positive and negative controls.

  3. Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags

    NASA Astrophysics Data System (ADS)

    ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu

    2017-05-01

    Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.

  4. Decryption of pure-position permutation algorithms.

    PubMed

    Zhao, Xiao-Yu; Chen, Gang; Zhang, Dan; Wang, Xiao-Hong; Dong, Guang-Chang

    2004-07-01

    Pure position permutation image encryption algorithms, commonly used as image encryption investigated in this work are unfortunately frail under known-text attack. In view of the weakness of pure position permutation algorithm, we put forward an effective decryption algorithm for all pure-position permutation algorithms. First, a summary of the pure position permutation image encryption algorithms is given by introducing the concept of ergodic matrices. Then, by using probability theory and algebraic principles, the decryption probability of pure-position permutation algorithms is verified theoretically; and then, by defining the operation system of fuzzy ergodic matrices, we improve a specific decryption algorithm. Finally, some simulation results are shown.

  5. Weight distributions for turbo codes using random and nonrandom permutations

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Divsalar, D.

    1995-01-01

    This article takes a preliminary look at the weight distributions achievable for turbo codes using random, nonrandom, and semirandom permutations. Due to the recursiveness of the encoders, it is important to distinguish between self-terminating and non-self-terminating input sequences. The non-self-terminating sequences have little effect on decoder performance, because they accumulate high encoded weight until they are artificially terminated at the end of the block. From probabilistic arguments based on selecting the permutations randomly, it is concluded that the self-terminating weight-2 data sequences are the most important consideration in the design of constituent codes; higher-weight self-terminating sequences have successively decreasing importance. Also, increasing the number of codes and, correspondingly, the number of permutations makes it more and more likely that the bad input sequences will be broken up by one or more of the permuters. It is possible to design nonrandom permutations that ensure that the minimum distance due to weight-2 input sequences grows roughly as the square root of (2N), where N is the block length. However, these nonrandom permutations amplify the bad effects of higher-weight inputs, and as a result they are inferior in performance to randomly selected permutations. But there are 'semirandom' permutations that perform nearly as well as the designed nonrandom permutations with respect to weight-2 input sequences and are not as susceptible to being foiled by higher-weight inputs.

  6. PERMutation Using Transposase Engineering (PERMUTE): A Simple Approach for Constructing Circularly Permuted Protein Libraries.

    PubMed

    Jones, Alicia M; Atkinson, Joshua T; Silberg, Jonathan J

    2017-01-01

    Rearrangements that alter the order of a protein's sequence are used in the lab to study protein folding, improve activity, and build molecular switches. One of the simplest ways to rearrange a protein sequence is through random circular permutation, where native protein termini are linked together and new termini are created elsewhere through random backbone fission. Transposase mutagenesis has emerged as a simple way to generate libraries encoding different circularly permuted variants of proteins. With this approach, a synthetic transposon (called a permuteposon) is randomly inserted throughout a circularized gene to generate vectors that express different permuted variants of a protein. In this chapter, we outline the protocol for constructing combinatorial libraries of circularly permuted proteins using transposase mutagenesis, and we describe the different permuteposons that have been developed to facilitate library construction.

  7. Visual recognition of permuted words

    NASA Astrophysics Data System (ADS)

    Rashid, Sheikh Faisal; Shafait, Faisal; Breuel, Thomas M.

    2010-02-01

    In current study we examine how letter permutation affects in visual recognition of words for two orthographically dissimilar languages, Urdu and German. We present the hypothesis that recognition or reading of permuted and non-permuted words are two distinct mental level processes, and that people use different strategies in handling permuted words as compared to normal words. A comparison between reading behavior of people in these languages is also presented. We present our study in context of dual route theories of reading and it is observed that the dual-route theory is consistent with explanation of our hypothesis of distinction in underlying cognitive behavior for reading permuted and non-permuted words. We conducted three experiments in lexical decision tasks to analyze how reading is degraded or affected by letter permutation. We performed analysis of variance (ANOVA), distribution free rank test, and t-test to determine the significance differences in response time latencies for two classes of data. Results showed that the recognition accuracy for permuted words is decreased 31% in case of Urdu and 11% in case of German language. We also found a considerable difference in reading behavior for cursive and alphabetic languages and it is observed that reading of Urdu is comparatively slower than reading of German due to characteristics of cursive script.

  8. Four applications of permutation methods to testing a single-mediator model.

    PubMed

    Taylor, Aaron B; MacKinnon, David P

    2012-09-01

    Four applications of permutation tests to the single-mediator model are described and evaluated in this study. Permutation tests work by rearranging data in many possible ways in order to estimate the sampling distribution for the test statistic. The four applications to mediation evaluated here are the permutation test of ab, the permutation joint significance test, and the noniterative and iterative permutation confidence intervals for ab. A Monte Carlo simulation study was used to compare these four tests with the four best available tests for mediation found in previous research: the joint significance test, the distribution of the product test, and the percentile and bias-corrected bootstrap tests. We compared the different methods on Type I error, power, and confidence interval coverage. The noniterative permutation confidence interval for ab was the best performer among the new methods. It successfully controlled Type I error, had power nearly as good as the most powerful existing methods, and had better coverage than any existing method. The iterative permutation confidence interval for ab had lower power than do some existing methods, but it performed better than any other method in terms of coverage. The permutation confidence interval methods are recommended when estimating a confidence interval is a primary concern. SPSS and SAS macros that estimate these confidence intervals are provided.

  9. Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, G.

    2003-10-01

    We apply statistical tests based on discriminant analysis to the wide range of photospheric magnetic parameters described in a companion paper by Leka & Barnes, with the goal of identifying those properties that are important for the production of energetic events such as solar flares. The photospheric vector magnetic field data from the University of Hawai'i Imaging Vector Magnetograph are well sampled both temporally and spatially, and we include here data covering 24 flare-event and flare-quiet epochs taken from seven active regions. The mean value and rate of change of each magnetic parameter are treated as separate variables, thus evaluating both the parameter's state and its evolution, to determine which properties are associated with flaring. Considering single variables first, Hotelling's T2-tests show small statistical differences between flare-producing and flare-quiet epochs. Even pairs of variables considered simultaneously, which do show a statistical difference for a number of properties, have high error rates, implying a large degree of overlap of the samples. To better distinguish between flare-producing and flare-quiet populations, larger numbers of variables are simultaneously considered; lower error rates result, but no unique combination of variables is clearly the best discriminator. The sample size is too small to directly compare the predictive power of large numbers of variables simultaneously. Instead, we rank all possible four-variable permutations based on Hotelling's T2-test and look for the most frequently appearing variables in the best permutations, with the interpretation that they are most likely to be associated with flaring. These variables include an increasing kurtosis of the twist parameter and a larger standard deviation of the twist parameter, but a smaller standard deviation of the distribution of the horizontal shear angle and a horizontal field that has a smaller standard deviation but a larger kurtosis. To support the ``sorting all permutations'' method of selecting the most frequently occurring variables, we show that the results of a single 10-variable discriminant analysis are consistent with the ranking. We demonstrate that individually, the variables considered here have little ability to differentiate between flaring and flare-quiet populations, but with multivariable combinations, the populations may be distinguished.

  10. Circular Permutation of a Chaperonin Protein: Biophysics and Application to Nanotechnology

    NASA Technical Reports Server (NTRS)

    Paavola, Chad; Chan, Suzanne; Li, Yi-Fen; McMillan, R. Andrew; Trent, Jonathan

    2004-01-01

    We have designed five circular permutants of a chaperonin protein derived from the hyperthermophilic organism Sulfolobus shibatae. These permuted proteins were expressed in E. coli and are well-folded. Furthermore, all the permutants assemble into 18-mer double rings of the same form as the wild-type protein. We characterized the thermodynamics of folding for each permutant by both guanidine denaturation and differential scanning calorimetry. We also examined the assembly of chaperonin rings into higher order structures that may be used as nanoscale templates. The results show that circular permutation can be used to tune the thermodynamic properties of a protein template as well as facilitating the fusion of peptides, binding proteins or enzymes onto nanostructured templates.

  11. The structure of a thermophilic kinase shapes fitness upon random circular permutation

    PubMed Central

    Jones, Alicia M.; Mehta, Manan M.; Thomas, Emily E.; Atkinson, Joshua T.; Segall-Shapiro, Thomas H.; Liu, Shirley; Silberg, Jonathan J.

    2016-01-01

    Proteins can be engineered for synthetic biology through circular permutation, a sequence rearrangement where native protein termini become linked and new termini are created elsewhere through backbone fission. However, it remains challenging to anticipate a protein’s functional tolerance to circular permutation. Here, we describe new transposons for creating libraries of randomly circularly permuted proteins that minimize peptide additions at their termini, and we use transposase mutagenesis to study the tolerance of a thermophilic adenylate kinase (AK) to circular permutation. We find that libraries expressing permuted AK with either short or long peptides amended to their N-terminus yield distinct sets of active variants and present evidence that this trend arises because permuted protein expression varies across libraries. Mapping all sites that tolerate backbone cleavage onto AK structure reveals that the largest contiguous regions of sequence that lack cleavage sites are proximal to the phosphotransfer site. A comparison of our results with a range of structure-derived parameters further showed that retention of function correlates to the strongest extent with the distance to the phosphotransfer site, amino acid variability in an AK family sequence alignment, and residue-level deviations in superimposed AK structures. Our work illustrates how permuted protein libraries can be created with minimal peptide additions using transposase mutagenesis, and they reveal a challenge of maintaining consistent expression across permuted variants in a library that minimizes peptide additions. Furthermore, these findings provide a basis for interpreting responses of thermophilic phosphotransferases to circular permutation by calibrating how different structure-derived parameters relate to retention of function in a cellular selection. PMID:26976658

  12. The Structure of a Thermophilic Kinase Shapes Fitness upon Random Circular Permutation.

    PubMed

    Jones, Alicia M; Mehta, Manan M; Thomas, Emily E; Atkinson, Joshua T; Segall-Shapiro, Thomas H; Liu, Shirley; Silberg, Jonathan J

    2016-05-20

    Proteins can be engineered for synthetic biology through circular permutation, a sequence rearrangement in which native protein termini become linked and new termini are created elsewhere through backbone fission. However, it remains challenging to anticipate a protein's functional tolerance to circular permutation. Here, we describe new transposons for creating libraries of randomly circularly permuted proteins that minimize peptide additions at their termini, and we use transposase mutagenesis to study the tolerance of a thermophilic adenylate kinase (AK) to circular permutation. We find that libraries expressing permuted AKs with either short or long peptides amended to their N-terminus yield distinct sets of active variants and present evidence that this trend arises because permuted protein expression varies across libraries. Mapping all sites that tolerate backbone cleavage onto AK structure reveals that the largest contiguous regions of sequence that lack cleavage sites are proximal to the phosphotransfer site. A comparison of our results with a range of structure-derived parameters further showed that retention of function correlates to the strongest extent with the distance to the phosphotransfer site, amino acid variability in an AK family sequence alignment, and residue-level deviations in superimposed AK structures. Our work illustrates how permuted protein libraries can be created with minimal peptide additions using transposase mutagenesis, and it reveals a challenge of maintaining consistent expression across permuted variants in a library that minimizes peptide additions. Furthermore, these findings provide a basis for interpreting responses of thermophilic phosphotransferases to circular permutation by calibrating how different structure-derived parameters relate to retention of function in a cellular selection.

  13. Teaching Tip: When a Matrix and Its Inverse Are Stochastic

    ERIC Educational Resources Information Center

    Ding, J.; Rhee, N. H.

    2013-01-01

    A stochastic matrix is a square matrix with nonnegative entries and row sums 1. The simplest example is a permutation matrix, whose rows permute the rows of an identity matrix. A permutation matrix and its inverse are both stochastic. We prove the converse, that is, if a matrix and its inverse are both stochastic, then it is a permutation matrix.

  14. Permutation-based inference for the AUC: A unified approach for continuous and discontinuous data.

    PubMed

    Pauly, Markus; Asendorf, Thomas; Konietschke, Frank

    2016-11-01

    We investigate rank-based studentized permutation methods for the nonparametric Behrens-Fisher problem, that is, inference methods for the area under the ROC curve. We hereby prove that the studentized permutation distribution of the Brunner-Munzel rank statistic is asymptotically standard normal, even under the alternative. Thus, incidentally providing the hitherto missing theoretical foundation for the Neubert and Brunner studentized permutation test. In particular, we do not only show its consistency, but also that confidence intervals for the underlying treatment effects can be computed by inverting this permutation test. In addition, we derive permutation-based range-preserving confidence intervals. Extensive simulation studies show that the permutation-based confidence intervals appear to maintain the preassigned coverage probability quite accurately (even for rather small sample sizes). For a convenient application of the proposed methods, a freely available software package for the statistical software R has been developed. A real data example illustrates the application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Efficient Blockwise Permutation Tests Preserving Exchangeability

    PubMed Central

    Zhou, Chunxiao; Zwilling, Chris E.; Calhoun, Vince D.; Wang, Michelle Y.

    2014-01-01

    In this paper, we present a new blockwise permutation test approach based on the moments of the test statistic. The method is of importance to neuroimaging studies. In order to preserve the exchangeability condition required in permutation tests, we divide the entire set of data into certain exchangeability blocks. In addition, computationally efficient moments-based permutation tests are performed by approximating the permutation distribution of the test statistic with the Pearson distribution series. This involves the calculation of the first four moments of the permutation distribution within each block and then over the entire set of data. The accuracy and efficiency of the proposed method are demonstrated through simulated experiment on the magnetic resonance imaging (MRI) brain data, specifically the multi-site voxel-based morphometry analysis from structural MRI (sMRI). PMID:25289113

  16. An AUC-based permutation variable importance measure for random forests

    PubMed Central

    2013-01-01

    Background The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. Results We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the new AUC-based permutation VIM outperforms the standard permutation VIM for unbalanced data settings while both permutation VIMs have equal performance for balanced data settings. Conclusions The standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html. PMID:23560875

  17. An AUC-based permutation variable importance measure for random forests.

    PubMed

    Janitza, Silke; Strobl, Carolin; Boulesteix, Anne-Laure

    2013-04-05

    The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the new AUC-based permutation VIM outperforms the standard permutation VIM for unbalanced data settings while both permutation VIMs have equal performance for balanced data settings. The standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html.

  18. Permutation modulation for quantization and information reconciliation in CV-QKD systems

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina; Olia, Khashayar

    2017-08-01

    This paper is focused on the problem of Information Reconciliation (IR) for continuous variable Quantum Key Distribution (QKD). The main problem is quantization and assignment of labels to the samples of the Gaussian variables observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective Signal to Noise Ratio (SNR) exasperating the problem. Here we propose to use Permutation Modulation (PM) as a means of quantization of Gaussian vectors at Alice and Bob over a d-dimensional space with d ≫ 1. The goal is to achieve the necessary coding efficiency to extend the achievable range of continuous variable QKD by quantizing over larger and larger dimensions. Fractional bit rate per sample is easily achieved using PM at very reasonable computational cost. Ordered statistics is used extensively throughout the development from generation of the seed vector in PM to analysis of error rates associated with the signs of the Gaussian samples at Alice and Bob as a function of the magnitude of the observed samples at Bob.

  19. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2008-06-24

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  20. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S; Cabantous, Stephanie

    2013-02-12

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  1. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2011-06-14

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  2. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2013-04-16

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  3. Unwrapping the Suburban "Package Deal": Race, Class, and School Access

    ERIC Educational Resources Information Center

    Rhodes, Anna; Warkentien, Siri

    2017-01-01

    Large disparities in educational quality exist between cities and surrounding suburban school districts and are increasing between suburban districts--a trend that emerged over the past several decades and shows signs of growing. Using in-depth interviews, this study examines how children are sorted into different school districts across a…

  4. Image encryption using a synchronous permutation-diffusion technique

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi; Altameem, Ayman; Lee, Malrey

    2017-03-01

    In the past decade, the interest on digital images security has been increased among scientists. A synchronous permutation and diffusion technique is designed in order to protect gray-level image content while sending it through internet. To implement the proposed method, two-dimensional plain-image is converted to one dimension. Afterward, in order to reduce the sending process time, permutation and diffusion steps for any pixel are performed in the same time. The permutation step uses chaotic map and deoxyribonucleic acid (DNA) to permute a pixel, while diffusion employs DNA sequence and DNA operator to encrypt the pixel. Experimental results and extensive security analyses have been conducted to demonstrate the feasibility and validity of this proposed image encryption method.

  5. CS_TOTR: A new vertex centrality method for directed signed networks based on status theory

    NASA Astrophysics Data System (ADS)

    Ma, Yue; Liu, Min; Zhang, Peng; Qi, Xingqin

    Measuring the importance (or centrality) of vertices in a network is a significant topic in complex network analysis, which has significant applications in diverse domains, for example, disease control, spread of rumors, viral marketing and so on. Existing studies mainly focus on social networks with only positive (or friendship) relations, while signed networks with also negative (or enemy) relations are seldom studied. Various signed networks commonly exist in real world, e.g. a network indicating friendship/enmity, love/hate or trust/mistrust relationships. In this paper, we propose a new centrality method named CS_TOTR to give a ranking of vertices in directed signed networks. To design this new method, we use the “status theory” for signed networks, and also adopt the vertex ranking algorithm for a tournament and the topological sorting algorithm for a general directed graph. We apply this new centrality method on the famous Sampson Monastery dataset and obtain a convincing result which shows its validity.

  6. Exploring syndrome differentiation using non-negative matrix factorization and cluster analysis in patients with atopic dermatitis.

    PubMed

    Yun, Younghee; Jung, Wonmo; Kim, Hyunho; Jang, Bo-Hyoung; Kim, Min-Hee; Noh, Jiseong; Ko, Seong-Gyu; Choi, Inhwa

    2017-08-01

    Syndrome differentiation (SD) results in a diagnostic conclusion based on a cluster of concurrent symptoms and signs, including pulse form and tongue color. In Korea, there is a strong interest in the standardization of Traditional Medicine (TM). In order to standardize TM treatment, standardization of SD should be given priority. The aim of this study was to explore the SD, or symptom clusters, of patients with atopic dermatitis (AD) using non-negative factorization methods and k-means clustering analysis. We screened 80 patients and enrolled 73 eligible patients. One TM dermatologist evaluated the symptoms/signs using an existing clinical dataset from patients with AD. This dataset was designed to collect 15 dermatologic and 18 systemic symptoms/signs associated with AD. Non-negative matrix factorization was used to decompose the original data into a matrix with three features and a weight matrix. The point of intersection of the three coordinates from each patient was placed in three-dimensional space. With five clusters, the silhouette score reached 0.484, and this was the best silhouette score obtained from two to nine clusters. Patients were clustered according to the varying severity of concurrent symptoms/signs. Through the distribution of the null hypothesis generated by 10,000 permutation tests, we found significant cluster-specific symptoms/signs from the confidence intervals in the upper and lower 2.5% of the distribution. Patients in each cluster showed differences in symptoms/signs and severity. In a clinical situation, SD and treatment are based on the practitioners' observations and clinical experience. SD, identified through informatics, can contribute to development of standardized, objective, and consistent SD for each disease. Copyright © 2017. Published by Elsevier Ltd.

  7. A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection

    PubMed Central

    Sabourin, Jeremy A; Valdar, William; Nobel, Andrew B

    2015-01-01

    Summary We describe a simple, computationally effcient, permutation-based procedure for selecting the penalty parameter in LASSO penalized regression. The procedure, permutation selection, is intended for applications where variable selection is the primary focus, and can be applied in a variety of structural settings, including that of generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO. In addition, we present a simulation study and an analysis of real biomedical data sets in which permutation selection is compared with selection based on the following: cross-validation (CV), the Bayesian information criterion (BIC), Scaled Sparse Linear Regression, and a selection method based on recently developed testing procedures for the LASSO. PMID:26243050

  8. The role of the posed smile in overall facial esthetics.

    PubMed

    Havens, David C; McNamara, James A; Sigler, Lauren M; Baccetti, Tiziano

    2010-03-01

    To evaluate the role of the posed smile in overall facial esthetics, as determined by laypersons and orthodontists. Twenty orthodontists and 20 lay evaluators were asked to perform six Q-sorts on different photographs of 48 white female subjects. The six Q-sorts consisted of three different photographs for each of two time points (pre- and posttreatment), as follows: (1) smile-only, (2) face without the smile, and (3) face with the smile. The evaluators determined a split-line for attractive and unattractive images at the end of each Q-sort. The proportions of attractive patients were compared across Q-sorts using a Wilcoxon signed-rank test for paired data. The evaluators also ranked nine facial/dental characteristics at the completion of the six Q-sorts. Evaluators found the pretreatment face without the smile to be significantly more attractive than the face with the smile or the smile-only photographs. Dissimilar results were seen posttreatment; there was not a significant difference between the three posttreatment photographs. The two panels agreed on the proportion of "attractive" subjects but differed on the attractiveness level of each individual subject. The presence of a malocclusion has a negative impact on facial attractiveness. Orthodontic correction of a malocclusion affects overall facial esthetics positively. Laypeople and orthodontists agree on what is attractive. Overall facial harmony is the most important characteristic used in deciding facial attractiveness.

  9. Childhood pneumonia diagnostics: community health workers' and national stakeholders' differing perspectives of new and existing aids.

    PubMed

    Spence, Hollie; Baker, Kevin; Wharton-Smith, Alexandra; Mucunguzi, Akasiima; Matata, Lena; Habte, Tedila; Nanyumba, Diana; Sebsibe, Anteneh; Thany, Thol; Källander, Karin

    2017-01-01

    Pneumonia heavily contributes to global under-five mortality. Many countries use community case management to detect and treat childhood pneumonia. Community health workers (CHWs) have limited tools to help them assess signs of pneumonia. New respiratory rate (RR) counting devices and pulse oximeters are being considered for this purpose. To explore perspectives of CHWs and national stakeholders regarding the potential usability and scalability of seven devices to aid community assessment of pneumonia signs. Pile sorting was conducted to rate the usability and scalability of 7 different RR counting aids and pulse oximeters amongst 16 groups of participants. Following each pile-sorting session, a focus group discussion (FGD) explored participants' sorting rationale. Purposive sampling was used to select CHWs and national stakeholders with experience in childhood pneumonia and integrated community case management (iCCM) in Cambodia, Ethiopia, Uganda and South Sudan. Pile-sorting data were aggregated for countries and participant groups. FGDs were audio recorded and transcribed verbatim. Translated FGDs transcripts were coded in NVivo 10 and analysed using thematic content analysis. Comparative analysis was performed between countries and groups to identify thematic patterns. CHWs and national stakeholders across the four countries perceived the acute respiratory infection (ARI) timer and fingertip pulse oximeter as highly scalable and easy for CHWs to use. National stakeholders were less receptive to new technologies. CHWs placed greater priority on device acceptability to caregivers and children. Both groups felt that heavy reliance on electricity reduced potential scalability and usability in rural areas. Device simplicity, affordability and sustainability were universally valued. CHWs and national stakeholders prioritise different device characteristics according to their specific focus of work. The views of all relevant stakeholders, including health workers, policy makers, children and parents, should be considered in future policy decisions, research and development regarding suitable pneumonia diagnostic aids for community use.

  10. Parallel-SymD: A Parallel Approach to Detect Internal Symmetry in Protein Domains.

    PubMed

    Jha, Ashwani; Flurchick, K M; Bikdash, Marwan; Kc, Dukka B

    2016-01-01

    Internally symmetric proteins are proteins that have a symmetrical structure in their monomeric single-chain form. Around 10-15% of the protein domains can be regarded as having some sort of internal symmetry. In this regard, we previously published SymD (symmetry detection), an algorithm that determines whether a given protein structure has internal symmetry by attempting to align the protein to its own copy after the copy is circularly permuted by all possible numbers of residues. SymD has proven to be a useful algorithm to detect symmetry. In this paper, we present a new parallelized algorithm called Parallel-SymD for detecting symmetry of proteins on clusters of computers. The achieved speedup of the new Parallel-SymD algorithm scales well with the number of computing processors. Scaling is better for proteins with a larger number of residues. For a protein of 509 residues, a speedup of 63 was achieved on a parallel system with 100 processors.

  11. Parallel-SymD: A Parallel Approach to Detect Internal Symmetry in Protein Domains

    PubMed Central

    Jha, Ashwani; Flurchick, K. M.; Bikdash, Marwan

    2016-01-01

    Internally symmetric proteins are proteins that have a symmetrical structure in their monomeric single-chain form. Around 10–15% of the protein domains can be regarded as having some sort of internal symmetry. In this regard, we previously published SymD (symmetry detection), an algorithm that determines whether a given protein structure has internal symmetry by attempting to align the protein to its own copy after the copy is circularly permuted by all possible numbers of residues. SymD has proven to be a useful algorithm to detect symmetry. In this paper, we present a new parallelized algorithm called Parallel-SymD for detecting symmetry of proteins on clusters of computers. The achieved speedup of the new Parallel-SymD algorithm scales well with the number of computing processors. Scaling is better for proteins with a larger number of residues. For a protein of 509 residues, a speedup of 63 was achieved on a parallel system with 100 processors. PMID:27747230

  12. Fourier-Mellin moment-based intertwining map for image encryption

    NASA Astrophysics Data System (ADS)

    Kaur, Manjit; Kumar, Vijay

    2018-03-01

    In this paper, a robust image encryption technique that utilizes Fourier-Mellin moments and intertwining logistic map is proposed. Fourier-Mellin moment-based intertwining logistic map has been designed to overcome the issue of low sensitivity of an input image. Multi-objective Non-Dominated Sorting Genetic Algorithm (NSGA-II) based on Reinforcement Learning (MNSGA-RL) has been used to optimize the required parameters of intertwining logistic map. Fourier-Mellin moments are used to make the secret keys more secure. Thereafter, permutation and diffusion operations are carried out on input image using secret keys. The performance of proposed image encryption technique has been evaluated on five well-known benchmark images and also compared with seven well-known existing encryption techniques. The experimental results reveal that the proposed technique outperforms others in terms of entropy, correlation analysis, a unified average changing intensity and the number of changing pixel rate. The simulation results reveal that the proposed technique provides high level of security and robustness against various types of attacks.

  13. Overlap Cycles for Permutations: Necessary and Sufficient Conditions

    DTIC Science & Technology

    2013-09-19

    for Weak Orders, To appear in SIAM Journal of Discrete Math . [9] G. Hurlbert and G. Isaak, Equivalence class universal cycles for permutations, Discrete ... Math . 149 (1996), pp. 123–129. [10] J. R. Johnson, Universal cycles for permutations, Discrete Math . 309 (2009), pp. 5264– 5270. [11] E. A. Ragland

  14. Multi-response permutation procedure as an alternative to the analysis of variance: an SPSS implementation.

    PubMed

    Cai, Li

    2006-02-01

    A permutation test typically requires fewer assumptions than does a comparable parametric counterpart. The multi-response permutation procedure (MRPP) is a class of multivariate permutation tests of group difference useful for the analysis of experimental data. However, psychologists seldom make use of the MRPP in data analysis, in part because the MRPP is not implemented in popular statistical packages that psychologists use. A set of SPSS macros implementing the MRPP test is provided in this article. The use of the macros is illustrated by analyzing example data sets.

  15. Using R to Simulate Permutation Distributions for Some Elementary Experimental Designs

    ERIC Educational Resources Information Center

    Eudey, T. Lynn; Kerr, Joshua D.; Trumbo, Bruce E.

    2010-01-01

    Null distributions of permutation tests for two-sample, paired, and block designs are simulated using the R statistical programming language. For each design and type of data, permutation tests are compared with standard normal-theory and nonparametric tests. These examples (often using real data) provide for classroom discussion use of metrics…

  16. Circular permutation of a WW domain: Folding still occurs after excising the turn of the folding-nucleating hairpin

    PubMed Central

    Kier, Brandon L.; Anderson, Jordan M.; Andersen, Niels H.

    2014-01-01

    A hyperstable Pin1 WW domain has been circularly permuted via excision of the fold-nucleating turn; it still folds to form the native three-strand sheet and hydrophobic core features. Multiprobe folding dynamics studies of the normal and circularly permuted sequences, as well as their constituent hairpin fragments and comparable-length β-strand-loop-β-strand models, indicate 2-state folding for all topologies. N-terminal hairpin formation is the fold nucleating event for the wild-type sequence; the slower folding circular permutant has a more distributed folding transition state. PMID:24350581

  17. Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity.

    PubMed

    Mefford, Melissa A; Zappulla, David C

    2016-01-15

    Telomerase is a specialized ribonucleoprotein complex that extends the 3' ends of chromosomes to counteract telomere shortening. However, increased telomerase activity is associated with ∼90% of human cancers. The telomerase enzyme minimally requires an RNA (hTR) and a specialized reverse transcriptase protein (TERT) for activity in vitro. Understanding the structure-function relationships within hTR has important implications for human disease. For the first time, we have tested the physical-connectivity requirements in the 451-nucleotide hTR RNA using circular permutations, which reposition the 5' and 3' ends. Our extensive in vitro analysis identified three classes of hTR circular permutants with altered function. First, circularly permuting 3' of the template causes specific defects in repeat-addition processivity, revealing that the template recognition element found in ciliates is conserved in human telomerase RNA. Second, seven circular permutations residing within the catalytically important core and CR4/5 domains completely abolish telomerase activity, unveiling mechanistically critical portions of these domains. Third, several circular permutations between the core and CR4/5 significantly increase telomerase activity. Our extensive circular permutation results provide insights into the architecture and coordination of human telomerase RNA and highlight where the RNA could be targeted for the development of antiaging and anticancer therapeutics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Cipher image damage and decisions in real time

    NASA Astrophysics Data System (ADS)

    Silva-García, Victor Manuel; Flores-Carapia, Rolando; Rentería-Márquez, Carlos; Luna-Benoso, Benjamín; Jiménez-Vázquez, Cesar Antonio; González-Ramírez, Marlon David

    2015-01-01

    This paper proposes a method for constructing permutations on m position arrangements. Our objective is to encrypt color images using advanced encryption standard (AES), using variable permutations means a different one for each 128-bit block in the first round after the x-or operation is applied. Furthermore, this research offers the possibility of knowing the original image when the encrypted figure suffered a failure from either an attack or not. This is achieved by permuting the original image pixel positions before being encrypted with AES variable permutations, which means building a pseudorandom permutation of 250,000 position arrays or more. To this end, an algorithm that defines a bijective function between the nonnegative integer and permutation sets is built. From this algorithm, the way to build permutations on the 0,1,…,m-1 array, knowing m-1 constants, is presented. The transcendental numbers are used to select these m-1 constants in a pseudorandom way. The quality of the proposed encryption according to the following criteria is evaluated: the correlation coefficient, the entropy, and the discrete Fourier transform. A goodness-of-fit test for each basic color image is proposed to measure the bits randomness degree of the encrypted figure. On the other hand, cipher images are obtained in a loss-less encryption way, i.e., no JPEG file formats are used.

  19. Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity

    PubMed Central

    Mefford, Melissa A.

    2015-01-01

    Telomerase is a specialized ribonucleoprotein complex that extends the 3′ ends of chromosomes to counteract telomere shortening. However, increased telomerase activity is associated with ∼90% of human cancers. The telomerase enzyme minimally requires an RNA (hTR) and a specialized reverse transcriptase protein (TERT) for activity in vitro. Understanding the structure-function relationships within hTR has important implications for human disease. For the first time, we have tested the physical-connectivity requirements in the 451-nucleotide hTR RNA using circular permutations, which reposition the 5′ and 3′ ends. Our extensive in vitro analysis identified three classes of hTR circular permutants with altered function. First, circularly permuting 3′ of the template causes specific defects in repeat-addition processivity, revealing that the template recognition element found in ciliates is conserved in human telomerase RNA. Second, seven circular permutations residing within the catalytically important core and CR4/5 domains completely abolish telomerase activity, unveiling mechanistically critical portions of these domains. Third, several circular permutations between the core and CR4/5 significantly increase telomerase activity. Our extensive circular permutation results provide insights into the architecture and coordination of human telomerase RNA and highlight where the RNA could be targeted for the development of antiaging and anticancer therapeutics. PMID:26503788

  20. Set-Based Discrete Particle Swarm Optimization Based on Decomposition for Permutation-Based Multiobjective Combinatorial Optimization Problems.

    PubMed

    Yu, Xue; Chen, Wei-Neng; Gu, Tianlong; Zhang, Huaxiang; Yuan, Huaqiang; Kwong, Sam; Zhang, Jun

    2018-07-01

    This paper studies a specific class of multiobjective combinatorial optimization problems (MOCOPs), namely the permutation-based MOCOPs. Many commonly seen MOCOPs, e.g., multiobjective traveling salesman problem (MOTSP), multiobjective project scheduling problem (MOPSP), belong to this problem class and they can be very different. However, as the permutation-based MOCOPs share the inherent similarity that the structure of their search space is usually in the shape of a permutation tree, this paper proposes a generic multiobjective set-based particle swarm optimization methodology based on decomposition, termed MS-PSO/D. In order to coordinate with the property of permutation-based MOCOPs, MS-PSO/D utilizes an element-based representation and a constructive approach. Through this, feasible solutions under constraints can be generated step by step following the permutation-tree-shaped structure. And problem-related heuristic information is introduced in the constructive approach for efficiency. In order to address the multiobjective optimization issues, the decomposition strategy is employed, in which the problem is converted into multiple single-objective subproblems according to a set of weight vectors. Besides, a flexible mechanism for diversity control is provided in MS-PSO/D. Extensive experiments have been conducted to study MS-PSO/D on two permutation-based MOCOPs, namely the MOTSP and the MOPSP. Experimental results validate that the proposed methodology is promising.

  1. Altering the orientation of a fused protein to the RNA-binding ribosomal protein L7Ae and its derivatives through circular permutation.

    PubMed

    Ohuchi, Shoji J; Sagawa, Fumihiko; Sakamoto, Taiichi; Inoue, Tan

    2015-10-23

    RNA-protein complexes (RNPs) are useful for constructing functional nano-objects because a variety of functional proteins can be displayed on a designed RNA scaffold. Here, we report circular permutations of an RNA-binding protein L7Ae based on the three-dimensional structure information to alter the orientation of the displayed proteins on the RNA scaffold. An electrophoretic mobility shift assay and atomic force microscopy (AFM) analysis revealed that most of the designed circular permutants formed an RNP nano-object. Moreover, the alteration of the enhanced green fluorescent protein (EGFP) orientation was confirmed with AFM by employing EGFP on the L7Ae permutant on the RNA. The results demonstrate that targeted fine-tuning of the stereo-specific fixation of a protein on a protein-binding RNA is feasible by using the circular permutation technique. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.; Everitt, B.S.; Howell, D.C.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  3. Altering the orientation of a fused protein to the RNA-binding ribosomal protein L7Ae and its derivatives through circular permutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohuchi, Shoji J.; Sagawa, Fumihiko; Sakamoto, Taiichi

    RNA-protein complexes (RNPs) are useful for constructing functional nano-objects because a variety of functional proteins can be displayed on a designed RNA scaffold. Here, we report circular permutations of an RNA-binding protein L7Ae based on the three-dimensional structure information to alter the orientation of the displayed proteins on the RNA scaffold. An electrophoretic mobility shift assay and atomic force microscopy (AFM) analysis revealed that most of the designed circular permutants formed an RNP nano-object. Moreover, the alteration of the enhanced green fluorescent protein (EGFP) orientation was confirmed with AFM by employing EGFP on the L7Ae permutant on the RNA. Themore » results demonstrate that targeted fine-tuning of the stereo-specific fixation of a protein on a protein-binding RNA is feasible by using the circular permutation technique.« less

  4. Permutation inference for the general linear model

    PubMed Central

    Winkler, Anderson M.; Ridgway, Gerard R.; Webster, Matthew A.; Smith, Stephen M.; Nichols, Thomas E.

    2014-01-01

    Permutation methods can provide exact control of false positives and allow the use of non-standard statistics, making only weak assumptions about the data. With the availability of fast and inexpensive computing, their main limitation would be some lack of flexibility to work with arbitrary experimental designs. In this paper we report on results on approximate permutation methods that are more flexible with respect to the experimental design and nuisance variables, and conduct detailed simulations to identify the best method for settings that are typical for imaging research scenarios. We present a generic framework for permutation inference for complex general linear models (glms) when the errors are exchangeable and/or have a symmetric distribution, and show that, even in the presence of nuisance effects, these permutation inferences are powerful while providing excellent control of false positives in a wide range of common and relevant imaging research scenarios. We also demonstrate how the inference on glm parameters, originally intended for independent data, can be used in certain special but useful cases in which independence is violated. Detailed examples of common neuroimaging applications are provided, as well as a complete algorithm – the “randomise” algorithm – for permutation inference with the glm. PMID:24530839

  5. Automatic event detection in low SNR microseismic signals based on multi-scale permutation entropy and a support vector machine

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming

    2017-07-01

    Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.

  6. Modulation of a protein free-energy landscape by circular permutation.

    PubMed

    Radou, Gaël; Enciso, Marta; Krivov, Sergei; Paci, Emanuele

    2013-11-07

    Circular permutations usually retain the native structure and function of a protein while inevitably perturbing its folding dynamics. By using simulations with a structure-based model and a rigorous methodology to determine free-energy surfaces from trajectories, we evaluate the effect of a circular permutation on the free-energy landscape of the protein T4 lysozyme. We observe changes which, although subtle, largely affect the cooperativity between the two subdomains. Such a change in cooperativity has been previously experimentally observed and recently also characterized using single molecule optical tweezers and the Crooks relation. The free-energy landscapes show that both the wild type and circular permutant have an on-pathway intermediate, previously experimentally characterized, in which one of the subdomains is completely formed. The landscapes, however, differ in the position of the rate-limiting step for folding, which occurs before the intermediate in the wild type and after in the circular permutant. This shift of transition state explains the observed change in the cooperativity. The underlying free-energy landscape thus provides a microscopic description of the folding dynamics and the connection between circular permutation and the loss of cooperativity experimentally observed.

  7. The Journey: A Handbook for Parents of Children Who are Gifted and Talented

    ERIC Educational Resources Information Center

    Online Submission, 2004

    2004-01-01

    The journey for children who are gifted and talented can be exciting and challenging. There are so many twists and turns, detours, and confusing signs that many parents feel they need some sort of road map to guide their children on this journey. Because each child is different, there is no one road map to follow. What this handbook can offer…

  8. Permutation parity machines for neural cryptography.

    PubMed

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-06-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  9. Inference for Distributions over the Permutation Group

    DTIC Science & Technology

    2008-05-01

    world problems, such as voting , ranking, and data association. Representing uncertainty over permutations is challenging, since there are n...problems, such as voting , ranking, and data association. Representing uncertainty over permutations is challenging, since there are n! possibilities...the Krone ker (or Tensor ) Produ t Representation.In general, the Krone ker produ t representation is redu ible, and so it ande omposed into a dire t

  10. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    ERIC Educational Resources Information Center

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  11. Permutation parity machines for neural cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyes, Oscar Mauricio; Escuela de Ingenieria Electrica, Electronica y Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga; Zimmermann, Karl-Heinz

    2010-06-15

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  12. Comments on “Anonymous reviews”

    NASA Astrophysics Data System (ADS)

    Okal, Emille A.

    I would like to add the triple perspective of a now-retired editor (GRL, 1993-19997), a reviewer and author to the ongoing debate in Eos about anonymous versus signed reviews.As an editor, I did not keep precise statistics, but my recollection would be that a little under (perhaps 40%) of the more than 3000 reviews I handled were signed. While some sort of "trend" expectedly existed between glowing reviews and signed ones, the correlation would probably not have passed a statistical test. By and large, my reviewers, whether or not they waived anonymity, were a professional and responsible pool, and the kind of personal and potentially unethical antagonisms described by Myrl Beck was the rare exception, rather than the rule, among anonymous reviews. The careful editor should be able to recognize this attitude in the tone and style of the review, and through comparison with other reviews of the same paper.

  13. Hand and mouth: Cortical correlates of lexical processing in British Sign Language and speechreading English

    PubMed Central

    Capek, Cheryl M.; Waters, Dafydd; Woll, Bencie; MacSweeney, Mairéad; Brammer, Michael J.; McGuire, Philip K.; David, Anthony S.; Campbell, Ruth

    2012-01-01

    Spoken languages use one set of articulators – the vocal tract, whereas signed languages use multiple articulators, including both manual and facial actions. How sensitive are the cortical circuits for language processing to the particular articulators that are observed? This question can only be addressed with participants who use both speech and a signed language. In this study, we used fMRI to compare the processing of speechreading and sign processing in deaf native signers of British Sign Language (BSL) who were also proficient speechreaders. The following questions were addressed: To what extent do these different language types rely on a common brain network? To what extent do the patterns of activation differ? How are these networks affected by the articulators that languages use? Common perisylvian regions were activated both for speechreading English words and for BSL signs. Distinctive activation was also observed reflecting the language form. Speechreading elicited greater activation in the left mid-superior temporal cortex than BSL, whereas BSL processing generated greater activation at the parieto-occipito-temporal junction in both hemispheres. We probed this distinction further within BSL, where manual signs can be accompanied by different sorts of mouth action. BSL signs with speech-like mouth actions showed greater superior temporal activation, while signs made with non-speech-like mouth actions showed more activation in posterior and inferior temporal regions. Distinct regions within the temporal cortex are not only differentially sensitive to perception of the distinctive articulators for speech and for sign, but also show sensitivity to the different articulators within the (signed) language. PMID:18284353

  14. Determining distinct circuit in complete graphs using permutation

    NASA Astrophysics Data System (ADS)

    Karim, Sharmila; Ibrahim, Haslinda; Darus, Maizon Mohd

    2017-11-01

    A Half Butterfly Method (HBM) is a method introduced to construct the distinct circuits in complete graphs where used the concept of isomorphism. The Half Butterfly Method was applied in the field of combinatorics such as in listing permutations of n elements. However the method of determining distinct circuit using HBM for n > 4 is become tedious. Thus, in this paper, we present the method of generating distinct circuit using permutation.

  15. A Versatile Platform for Nanotechnology Based on Circular Permutation of a Chaperonin Protein

    NASA Technical Reports Server (NTRS)

    Paavola, Chad; McMillan, Andrew; Trent, Jonathan; Chan, Suzanne; Mazzarella, Kellen; Li, Yi-Fen

    2004-01-01

    A number of protein complexes have been developed as nanoscale templates. These templates can be functionalized using the peptide sequences that bind inorganic materials. However, it is difficult to integrate peptides into a specific position within a protein template. Integrating intact proteins with desirable binding or catalytic activities is an even greater challenge. We present a general method for modifying protein templates using circular permutation so that additional peptide sequence can be added in a wide variety of specific locations. Circular permutation is a reordering of the polypeptide chain such that the original termini are joined and new termini are created elsewhere in the protein. New sequence can be joined to the protein termini without perturbing the protein structure and with minimal limitation on the size and conformation of the added sequence. We have used this approach to modify a chaperonin protein template, placing termini at five different locations distributed across the surface of the protein complex. These permutants are competent to form the double-ring structures typical of chaperonin proteins. The permuted double-rings also form the same assemblies as the unmodified protein. We fused a fluorescent protein to two representative permutants and demonstrated that it assumes its active structure and does not interfere with assembly of chaperonin double-rings.

  16. An empirical study using permutation-based resampling in meta-regression

    PubMed Central

    2012-01-01

    Background In meta-regression, as the number of trials in the analyses decreases, the risk of false positives or false negatives increases. This is partly due to the assumption of normality that may not hold in small samples. Creation of a distribution from the observed trials using permutation methods to calculate P values may allow for less spurious findings. Permutation has not been empirically tested in meta-regression. The objective of this study was to perform an empirical investigation to explore the differences in results for meta-analyses on a small number of trials using standard large sample approaches verses permutation-based methods for meta-regression. Methods We isolated a sample of randomized controlled clinical trials (RCTs) for interventions that have a small number of trials (herbal medicine trials). Trials were then grouped by herbal species and condition and assessed for methodological quality using the Jadad scale, and data were extracted for each outcome. Finally, we performed meta-analyses on the primary outcome of each group of trials and meta-regression for methodological quality subgroups within each meta-analysis. We used large sample methods and permutation methods in our meta-regression modeling. We then compared final models and final P values between methods. Results We collected 110 trials across 5 intervention/outcome pairings and 5 to 10 trials per covariate. When applying large sample methods and permutation-based methods in our backwards stepwise regression the covariates in the final models were identical in all cases. The P values for the covariates in the final model were larger in 78% (7/9) of the cases for permutation and identical for 22% (2/9) of the cases. Conclusions We present empirical evidence that permutation-based resampling may not change final models when using backwards stepwise regression, but may increase P values in meta-regression of multiple covariates for relatively small amount of trials. PMID:22587815

  17. Rank score and permutation testing alternatives for regression quantile estimates

    USGS Publications Warehouse

    Cade, B.S.; Richards, J.D.; Mielke, P.W.

    2006-01-01

    Performance of quantile rank score tests used for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1) were evaluated by simulation for models with p = 2 and 6 predictors, moderate collinearity among predictors, homogeneous and hetero-geneous errors, small to moderate samples (n = 20–300), and central to upper quantiles (0.50–0.99). Test statistics evaluated were the conventional quantile rank score T statistic distributed as χ2 random variable with q degrees of freedom (where q parameters are constrained by H 0:) and an F statistic with its sampling distribution approximated by permutation. The permutation F-test maintained better Type I errors than the T-test for homogeneous error models with smaller n and more extreme quantiles τ. An F distributional approximation of the F statistic provided some improvements in Type I errors over the T-test for models with > 2 parameters, smaller n, and more extreme quantiles but not as much improvement as the permutation approximation. Both rank score tests required weighting to maintain correct Type I errors when heterogeneity under the alternative model increased to 5 standard deviations across the domain of X. A double permutation procedure was developed to provide valid Type I errors for the permutation F-test when null models were forced through the origin. Power was similar for conditions where both T- and F-tests maintained correct Type I errors but the F-test provided some power at smaller n and extreme quantiles when the T-test had no power because of excessively conservative Type I errors. When the double permutation scheme was required for the permutation F-test to maintain valid Type I errors, power was less than for the T-test with decreasing sample size and increasing quantiles. Confidence intervals on parameters and tolerance intervals for future predictions were constructed based on test inversion for an example application relating trout densities to stream channel width:depth.

  18. Data Sorting and Orbit Determination of Tethered Satellite Systems

    DTIC Science & Technology

    2004-03-01

    9 March 04 Dr. Steven Tragesser (Cha irman) date //signed// 9 March 04 Dr. William...appreciation to my faculty advisor, Dr. Steven Tragesser , for his guidance and support throughout the course of this thesis effort. The insight and experience...applied to a TSS, under the right conditions it may appear as if one of the end masses is on a suborbital trajectory with the Earth ( Lovell et al., 2000:1

  19. An analog scrambler for speech based on sequential permutations in time and frequency

    NASA Astrophysics Data System (ADS)

    Cox, R. V.; Jayant, N. S.; McDermott, B. J.

    Permutation of speech segments is an operation that is frequently used in the design of scramblers for analog speech privacy. In this paper, a sequential procedure for segment permutation is considered. This procedure can be extended to two dimensional permutation of time segments and frequency bands. By subjective testing it is shown that this combination gives a residual intelligibility for spoken digits of 20 percent with a delay of 256 ms. (A lower bound for this test would be 10 percent). The complexity of implementing such a system is considered and the issues of synchronization and channel equalization are addressed. The computer simulation results for the system using both real and simulated channels are examined.

  20. Permutational distribution of the log-rank statistic under random censorship with applications to carcinogenicity assays.

    PubMed

    Heimann, G; Neuhaus, G

    1998-03-01

    In the random censorship model, the log-rank test is often used for comparing a control group with different dose groups. If the number of tumors is small, so-called exact methods are often applied for computing critical values from a permutational distribution. Two of these exact methods are discussed and shown to be incorrect. The correct permutational distribution is derived and studied with respect to its behavior under unequal censoring in the light of recent results proving that the permutational version and the unconditional version of the log-rank test are asymptotically equivalent even under unequal censoring. The log-rank test is studied by simulations of a realistic scenario from a bioassay with small numbers of tumors.

  1. An analysis of spectral envelope-reduction via quadratic assignment problems

    NASA Technical Reports Server (NTRS)

    George, Alan; Pothen, Alex

    1994-01-01

    A new spectral algorithm for reordering a sparse symmetric matrix to reduce its envelope size was described. The ordering is computed by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. In this paper, we provide an analysis of the spectral envelope reduction algorithm. We described related 1- and 2-sum problems; the former is related to the envelope size, while the latter is related to an upper bound on the work involved in an envelope Cholesky factorization scheme. We formulate the latter two problems as quadratic assignment problems, and then study the 2-sum problem in more detail. We obtain lower bounds on the 2-sum by considering a projected quadratic assignment problem, and then show that finding a permutation matrix closest to an orthogonal matrix attaining one of the lower bounds justifies the spectral envelope reduction algorithm. The lower bound on the 2-sum is seen to be tight for reasonably 'uniform' finite element meshes. We also obtain asymptotically tight lower bounds for the envelope size for certain classes of meshes.

  2. A Computationally Efficient Hypothesis Testing Method for Epistasis Analysis using Multifactor Dimensionality Reduction

    PubMed Central

    Pattin, Kristine A.; White, Bill C.; Barney, Nate; Gui, Jiang; Nelson, Heather H.; Kelsey, Karl R.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.

    2008-01-01

    Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-free data mining method for detecting, characterizing, and interpreting epistasis in the absence of significant main effects in genetic and epidemiologic studies of complex traits such as disease susceptibility. The goal of MDR is to change the representation of the data using a constructive induction algorithm to make nonadditive interactions easier to detect using any classification method such as naïve Bayes or logistic regression. Traditionally, MDR constructed variables have been evaluated with a naïve Bayes classifier that is combined with 10-fold cross validation to obtain an estimate of predictive accuracy or generalizability of epistasis models. Traditionally, we have used permutation testing to statistically evaluate the significance of models obtained through MDR. The advantage of permutation testing is that it controls for false-positives due to multiple testing. The disadvantage is that permutation testing is computationally expensive. This is in an important issue that arises in the context of detecting epistasis on a genome-wide scale. The goal of the present study was to develop and evaluate several alternatives to large-scale permutation testing for assessing the statistical significance of MDR models. Using data simulated from 70 different epistasis models, we compared the power and type I error rate of MDR using a 1000-fold permutation test with hypothesis testing using an extreme value distribution (EVD). We find that this new hypothesis testing method provides a reasonable alternative to the computationally expensive 1000-fold permutation test and is 50 times faster. We then demonstrate this new method by applying it to a genetic epidemiology study of bladder cancer susceptibility that was previously analyzed using MDR and assessed using a 1000-fold permutation test. PMID:18671250

  3. Estrogen pathway polymorphisms in relation to primary open angle glaucoma: An analysis accounting for gender from the United States

    PubMed Central

    Loomis, Stephanie J.; Weinreb, Robert N.; Kang, Jae H.; Yaspan, Brian L.; Bailey, Jessica Cooke; Gaasterland, Douglas; Gaasterland, Terry; Lee, Richard K.; Scott, William K.; Lichter, Paul R.; Budenz, Donald L.; Liu, Yutao; Realini, Tony; Friedman, David S.; McCarty, Catherine A.; Moroi, Sayoko E.; Olson, Lana; Schuman, Joel S.; Singh, Kuldev; Vollrath, Douglas; Wollstein, Gadi; Zack, Donald J.; Brilliant, Murray; Sit, Arthur J.; Christen, William G.; Fingert, John; Kraft, Peter; Zhang, Kang; Allingham, R. Rand; Pericak-Vance, Margaret A.; Richards, Julia E.; Hauser, Michael A.; Haines, Jonathan L.; Wiggs, Janey L.

    2013-01-01

    Purpose Circulating estrogen levels are relevant in glaucoma phenotypic traits. We assessed the association between an estrogen metabolism single nucleotide polymorphism (SNP) panel in relation to primary open angle glaucoma (POAG), accounting for gender. Methods We included 3,108 POAG cases and 3,430 controls of both genders from the Glaucoma Genes and Environment (GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium genotyped on the Illumina 660W-Quad platform. We assessed the relation between the SNP panels representative of estrogen metabolism and POAG using pathway- and gene-based approaches with the Pathway Analysis by Randomization Incorporating Structure (PARIS) software. PARIS executes a permutation algorithm to assess statistical significance relative to the pathways and genes of comparable genetic architecture. These analyses were performed using the meta-analyzed results from the GLAUGEN and NEIGHBOR data sets. We evaluated POAG overall as well as two subtypes of POAG defined as intraocular pressure (IOP) ≥22 mmHg (high-pressure glaucoma [HPG]) or IOP <22 mmHg (normal pressure glaucoma [NPG]) at diagnosis. We conducted these analyses for each gender separately and then jointly in men and women. Results Among women, the estrogen SNP pathway was associated with POAG overall (permuted p=0.006) and HPG (permuted p<0.001) but not NPG (permuted p=0.09). Interestingly, there was no relation between the estrogen SNP pathway and POAG when men were considered alone (permuted p>0.99). Among women, gene-based analyses revealed that the catechol-O-methyltransferase gene showed strong associations with HTG (permuted gene p≤0.001) and NPG (permuted gene p=0.01). Conclusions The estrogen SNP pathway was associated with POAG among women. PMID:23869166

  4. Error-free holographic frames encryption with CA pixel-permutation encoding algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Xiao, Dan; Wang, Qiong-Hua

    2018-01-01

    The security of video data is necessary in network security transmission hence cryptography is technique to make video data secure and unreadable to unauthorized users. In this paper, we propose a holographic frames encryption technique based on the cellular automata (CA) pixel-permutation encoding algorithm. The concise pixel-permutation algorithm is used to address the drawbacks of the traditional CA encoding methods. The effectiveness of the proposed video encoding method is demonstrated by simulation examples.

  5. A Flexible Computational Framework Using R and Map-Reduce for Permutation Tests of Massive Genetic Analysis of Complex Traits.

    PubMed

    Mahjani, Behrang; Toor, Salman; Nettelblad, Carl; Holmgren, Sverker

    2017-01-01

    In quantitative trait locus (QTL) mapping significance of putative QTL is often determined using permutation testing. The computational needs to calculate the significance level are immense, 10 4 up to 10 8 or even more permutations can be needed. We have previously introduced the PruneDIRECT algorithm for multiple QTL scan with epistatic interactions. This algorithm has specific strengths for permutation testing. Here, we present a flexible, parallel computing framework for identifying multiple interacting QTL using the PruneDIRECT algorithm which uses the map-reduce model as implemented in Hadoop. The framework is implemented in R, a widely used software tool among geneticists. This enables users to rearrange algorithmic steps to adapt genetic models, search algorithms, and parallelization steps to their needs in a flexible way. Our work underlines the maturity of accessing distributed parallel computing for computationally demanding bioinformatics applications through building workflows within existing scientific environments. We investigate the PruneDIRECT algorithm, comparing its performance to exhaustive search and DIRECT algorithm using our framework on a public cloud resource. We find that PruneDIRECT is vastly superior for permutation testing, and perform 2 ×10 5 permutations for a 2D QTL problem in 15 hours, using 100 cloud processes. We show that our framework scales out almost linearly for a 3D QTL search.

  6. Statistical physics in foreign exchange currency and stock markets

    NASA Astrophysics Data System (ADS)

    Ausloos, M.

    2000-09-01

    Problems in economy and finance have attracted the interest of statistical physicists all over the world. Fundamental problems pertain to the existence or not of long-, medium- or/and short-range power-law correlations in various economic systems, to the presence of financial cycles and on economic considerations, including economic policy. A method like the detrended fluctuation analysis is recalled emphasizing its value in sorting out correlation ranges, thereby leading to predictability at short horizon. The ( m, k)-Zipf method is presented for sorting out short-range correlations in the sign and amplitude of the fluctuations. A well-known financial analysis technique, the so-called moving average, is shown to raise questions to physicists about fractional Brownian motion properties. Among spectacular results, the possibility of crash predictions has been demonstrated through the log-periodicity of financial index oscillations.

  7. Photographs and Committees: Activities That Help Students Discover Permutations and Combinations.

    ERIC Educational Resources Information Center

    Szydlik, Jennifer Earles

    2000-01-01

    Presents problem situations that support students when discovering the multiplication principle, permutations, combinations, Pascal's triangle, and relationships among those objects in a concrete context. (ASK)

  8. A permutation characterization of Sturm global attractors of Hamiltonian type

    NASA Astrophysics Data System (ADS)

    Fiedler, Bernold; Rocha, Carlos; Wolfrum, Matthias

    We consider Neumann boundary value problems of the form u=u+f on the interval 0⩽x⩽π for dissipative nonlinearities f=f(u). A permutation characterization for the global attractors of the semiflows generated by these equations is well known, even in the much more general case f=f(x,u,u). We present a permutation characterization for the global attractors in the restrictive class of nonlinearities f=f(u). In this class the stationary solutions of the parabolic equation satisfy the second order ODE v+f(v)=0 and we obtain the permutation characterization from a characterization of the set of 2 π-periodic orbits of this planar Hamiltonian system. Our results are based on a diligent discussion of this mere pendulum equation.

  9. Algorithms for sorting unsigned linear genomes by the DCJ operations.

    PubMed

    Jiang, Haitao; Zhu, Binhai; Zhu, Daming

    2011-02-01

    The double cut and join operation (abbreviated as DCJ) has been extensively used for genomic rearrangement. Although the DCJ distance between signed genomes with both linear and circular (uni- and multi-) chromosomes is well studied, the only known result for the NP-complete unsigned DCJ distance problem is an approximation algorithm for unsigned linear unichromosomal genomes. In this article, we study the problem of computing the DCJ distance on two unsigned linear multichromosomal genomes (abbreviated as UDCJ). We devise a 1.5-approximation algorithm for UDCJ by exploiting the distance formula for signed genomes. In addition, we show that UDCJ admits a weak kernel of size 2k and hence an FPT algorithm running in O(2(2k)n) time.

  10. PBOOST: a GPU-based tool for parallel permutation tests in genome-wide association studies.

    PubMed

    Yang, Guangyuan; Jiang, Wei; Yang, Qiang; Yu, Weichuan

    2015-05-01

    The importance of testing associations allowing for interactions has been demonstrated by Marchini et al. (2005). A fast method detecting associations allowing for interactions has been proposed by Wan et al. (2010a). The method is based on likelihood ratio test with the assumption that the statistic follows the χ(2) distribution. Many single nucleotide polymorphism (SNP) pairs with significant associations allowing for interactions have been detected using their method. However, the assumption of χ(2) test requires the expected values in each cell of the contingency table to be at least five. This assumption is violated in some identified SNP pairs. In this case, likelihood ratio test may not be applicable any more. Permutation test is an ideal approach to checking the P-values calculated in likelihood ratio test because of its non-parametric nature. The P-values of SNP pairs having significant associations with disease are always extremely small. Thus, we need a huge number of permutations to achieve correspondingly high resolution for the P-values. In order to investigate whether the P-values from likelihood ratio tests are reliable, a fast permutation tool to accomplish large number of permutations is desirable. We developed a permutation tool named PBOOST. It is based on GPU with highly reliable P-value estimation. By using simulation data, we found that the P-values from likelihood ratio tests will have relative error of >100% when 50% cells in the contingency table have expected count less than five or when there is zero expected count in any of the contingency table cells. In terms of speed, PBOOST completed 10(7) permutations for a single SNP pair from the Wellcome Trust Case Control Consortium (WTCCC) genome data (Wellcome Trust Case Control Consortium, 2007) within 1 min on a single Nvidia Tesla M2090 device, while it took 60 min in a single CPU Intel Xeon E5-2650 to finish the same task. More importantly, when simultaneously testing 256 SNP pairs for 10(7) permutations, our tool took only 5 min, while the CPU program took 10 h. By permuting on a GPU cluster consisting of 40 nodes, we completed 10(12) permutations for all 280 SNP pairs reported with P-values smaller than 1.6 × 10⁻¹² in the WTCCC datasets in 1 week. The source code and sample data are available at http://bioinformatics.ust.hk/PBOOST.zip. gyang@ust.hk; eeyu@ust.hk Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Engineering calculations for solving the orbital allotment problem

    NASA Technical Reports Server (NTRS)

    Reilly, C.; Walton, E. K.; Mount-Campbell, C.; Caldecott, R.; Aebker, E.; Mata, F.

    1988-01-01

    Four approaches for calculating downlink interferences for shaped-beam antennas are described. An investigation of alternative mixed-integer programming models for satellite synthesis is summarized. Plans for coordinating the various programs developed under this grant are outlined. Two procedures for ordering satellites to initialize the k-permutation algorithm are proposed. Results are presented for the k-permutation algorithms. Feasible solutions are found for 5 of the 6 problems considered. Finally, it is demonstrated that the k-permutation algorithm can be used to solve arc allotment problems.

  12. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu

    2013-11-28

    A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resultingmore » in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.« less

  13. The coupling analysis between stock market indices based on permutation measures

    NASA Astrophysics Data System (ADS)

    Shi, Wenbin; Shang, Pengjian; Xia, Jianan; Yeh, Chien-Hung

    2016-04-01

    Many information-theoretic methods have been proposed for analyzing the coupling dependence between time series. And it is significant to quantify the correlation relationship between financial sequences since the financial market is a complex evolved dynamic system. Recently, we developed a new permutation-based entropy, called cross-permutation entropy (CPE), to detect the coupling structures between two synchronous time series. In this paper, we extend the CPE method to weighted cross-permutation entropy (WCPE), to address some of CPE's limitations, mainly its inability to differentiate between distinct patterns of a certain motif and the sensitivity of patterns close to the noise floor. It shows more stable and reliable results than CPE does when applied it to spiky data and AR(1) processes. Besides, we adapt the CPE method to infer the complexity of short-length time series by freely changing the time delay, and test it with Gaussian random series and random walks. The modified method shows the advantages in reducing deviations of entropy estimation compared with the conventional one. Finally, the weighted cross-permutation entropy of eight important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.

  14. Permutation entropy of fractional Brownian motion and fractional Gaussian noise

    NASA Astrophysics Data System (ADS)

    Zunino, L.; Pérez, D. G.; Martín, M. T.; Garavaglia, M.; Plastino, A.; Rosso, O. A.

    2008-06-01

    We have worked out theoretical curves for the permutation entropy of the fractional Brownian motion and fractional Gaussian noise by using the Bandt and Shiha [C. Bandt, F. Shiha, J. Time Ser. Anal. 28 (2007) 646] theoretical predictions for their corresponding relative frequencies. Comparisons with numerical simulations show an excellent agreement. Furthermore, the entropy-gap in the transition between these processes, observed previously via numerical results, has been here theoretically validated. Also, we have analyzed the behaviour of the permutation entropy of the fractional Gaussian noise for different time delays.

  15. An unusual kind of complex synchronizations and its applications in secure communications

    NASA Astrophysics Data System (ADS)

    Mahmoud, Emad E.

    2017-11-01

    In this paper, we talk about the meaning of complex anti-syncrhonization (CAS) of hyperchaotic nonlinear frameworks comprehensive complex variables and indeterminate parameters. This sort of synchronization can break down just for complex nonlinear frameworks. The CAS contains or fuses two sorts of synchronizations (complete synchronization and anti-synchronization). In the CAS the attractors of the master and slave frameworks are moving opposite or orthogonal to each other with a similar form; this phenomenon does not exist in the literature. Upon confirmation of the Lyapunov function and a versatile control strategy, a plan is made to play out the CAS of two indistinguishable hyperchaotic attractors of these frameworks. The adequacy of the obtained results is shown by a simulation case. Numerical issues are plotted to decide state variables, synchronization errors, modules errors, and phases errors of those hyperchaotic attractors after synchronization to determine that the CAS is accomplished. The above outcomes will present the possible establishment to the secure communication applications. The CAS of hyperchaotic complex frameworks in which a state variable of the master framework synchronizes with an alternate state variable of the slave framework is an encouraging kind of synchronization as it contributes fantastic security in secure communications. Amid this secure communications, the synchronization between transmitter and collector is shut and message signs are recouped. The encryption and reclamation of the signs are reproduced numerically.

  16. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring

    PubMed Central

    Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro

    2016-01-01

    Objective Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Methods Six MSPE algorithms—derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis—were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. Results CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. Conclusions MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales. PMID:27723803

  17. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring.

    PubMed

    Su, Cui; Liang, Zhenhu; Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro

    2016-01-01

    Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Six MSPE algorithms-derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis-were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales.

  18. Multiple comparisons permutation test for image based data mining in radiotherapy.

    PubMed

    Chen, Chun; Witte, Marnix; Heemsbergen, Wilma; van Herk, Marcel

    2013-12-23

    : Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy.

  19. Generalized permutation entropy analysis based on the two-index entropic form S q , δ

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Shang, Pengjian

    2015-05-01

    Permutation entropy (PE) is a novel measure to quantify the complexity of nonlinear time series. In this paper, we propose a generalized permutation entropy ( P E q , δ ) based on the recently postulated entropic form, S q , δ , which was proposed as an unification of the well-known Sq of nonextensive-statistical mechanics and S δ , a possibly appropriate candidate for the black-hole entropy. We find that P E q , δ with appropriate parameters can amplify minor changes and trends of complexities in comparison to PE. Experiments with this generalized permutation entropy method are performed with both synthetic and stock data showing its power. Results show that P E q , δ is an exponential function of q and the power ( k ( δ ) ) is a constant if δ is determined. Some discussions about k ( δ ) are provided. Besides, we also find some interesting results about power law.

  20. Permutational symmetries for coincidence rates in multimode multiphotonic interferometry

    NASA Astrophysics Data System (ADS)

    Khalid, Abdullah; Spivak, Dylan; Sanders, Barry C.; de Guise, Hubert

    2018-06-01

    We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann et al. [Phys. Rev. X 5, 041015 (2015), 10.1103/PhysRevX.5.041015] that coincidence rates can be elegantly expressed in terms of immanants. Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons in arbitrarily sized interferometers.

  1. Higher order explicit symmetric integrators for inseparable forms of coordinates and momenta

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wu, Xin; Huang, Guoqing; Liu, Fuyao

    2016-06-01

    Pihajoki proposed the extended phase-space second-order explicit symmetric leapfrog methods for inseparable Hamiltonian systems. On the basis of this work, we survey a critical problem on how to mix the variables in the extended phase space. Numerical tests show that sequent permutations of coordinates and momenta can make the leapfrog-like methods yield the most accurate results and the optimal long-term stabilized error behaviour. We also present a novel method to construct many fourth-order extended phase-space explicit symmetric integration schemes. Each scheme represents the symmetric production of six usual second-order leapfrogs without any permutations. This construction consists of four segments: the permuted coordinates, triple product of the usual second-order leapfrog without permutations, the permuted momenta and the triple product of the usual second-order leapfrog without permutations. Similarly, extended phase-space sixth, eighth and other higher order explicit symmetric algorithms are available. We used several inseparable Hamiltonian examples, such as the post-Newtonian approach of non-spinning compact binaries, to show that one of the proposed fourth-order methods is more efficient than the existing methods; examples include the fourth-order explicit symplectic integrators of Chin and the fourth-order explicit and implicit mixed symplectic integrators of Zhong et al. Given a moderate choice for the related mixing and projection maps, the extended phase-space explicit symplectic-like methods are well suited for various inseparable Hamiltonian problems. Samples of these problems involve the algorithmic regularization of gravitational systems with velocity-dependent perturbations in the Solar system and post-Newtonian Hamiltonian formulations of spinning compact objects.

  2. Non-parametric combination and related permutation tests for neuroimaging.

    PubMed

    Winkler, Anderson M; Webster, Matthew A; Brooks, Jonathan C; Tracey, Irene; Smith, Stephen M; Nichols, Thomas E

    2016-04-01

    In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well-known definition of union-intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume-based representations of the brain, including non-imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non-parametric combination (NPC) methodology, such that instead of a two-phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one-way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  3. Sylow p-groups of polynomial permutations on the integers mod pn☆

    PubMed Central

    Frisch, Sophie; Krenn, Daniel

    2013-01-01

    We enumerate and describe the Sylow p-groups of the groups of polynomial permutations of the integers mod pn for n⩾1 and of the pro-finite group which is the projective limit of these groups. PMID:26869732

  4. Storage and computationally efficient permutations of factorized covariance and square-root information arrays

    NASA Technical Reports Server (NTRS)

    Muellerschoen, R. J.

    1988-01-01

    A unified method to permute vector stored Upper triangular Diagonal factorized covariance and vector stored upper triangular Square Root Information arrays is presented. The method involves cyclic permutation of the rows and columns of the arrays and retriangularization with fast (slow) Givens rotations (reflections). Minimal computation is performed, and a one dimensional scratch array is required. To make the method efficient for large arrays on a virtual memory machine, computations are arranged so as to avoid expensive paging faults. This method is potentially important for processing large volumes of radio metric data in the Deep Space Network.

  5. Note on new KLT relations

    NASA Astrophysics Data System (ADS)

    Feng, Bo; He, Song; Huang, Rijun; Jia, Yin

    2010-10-01

    In this short note, we present two results about KLT relations discussed in recent several papers. Our first result is the re-derivation of Mason-Skinner MHV amplitude by applying the S n-3 permutation symmetric KLT relations directly to MHV amplitude. Our second result is the equivalence proof of the newly discovered S n-2 permutation symmetric KLT relations and the well-known S n-3 permutation symmetric KLT relations. Although both formulas have been shown to be correct by BCFW recursion relations, our result is the first direct check using the regularized definition of the new formula.

  6. Combating HER2-overexpressing breast cancer through induction of calreticulin exposure by Tras-Permut CrossMab

    PubMed Central

    Zhang, Fan; Zhang, Jie; Liu, Moyan; Zhao, Lichao; LingHu, RuiXia; Feng, Fan; Gao, Xudong; Jiao, Shunchang; Zhao, Lei; Hu, Yi; Yang, Junlan

    2015-01-01

    Although trastuzumab has succeeded in breast cancer treatment, acquired resistance is one of the prime obstacles for breast cancer therapies. There is an urgent need to develop novel HER2 antibodies against trastuzumab resistance. Here, we first rational designed avidity-imporved trastuzumab and pertuzumab variants, and explored the correlation between the binding avidity improvement and their antitumor activities. After characterization of a pertuzumab variant L56TY with potent antitumor activities, a bispecific immunoglobulin G-like CrossMab (Tras-Permut CrossMab) was generated from trastuzumab and binding avidity-improved pertuzumab variant L56TY. Although, the antitumor efficacy of trastuzumab was not enhanced by improving its binding avidity, binding avidity improvement could significantly increase the anti-proliferative and antibody-dependent cellular cytotoxicity (ADCC) activities of pertuzumab. Further studies showed that Tras-Permut CrossMab exhibited exceptional high efficiency to inhibit the progression of trastuzumab-resistant breast cancer. Notably, we found that calreticulin (CRT) exposure induced by Tras-Permut CrossMab was essential for induction of tumor-specific T cell immunity against tumor recurrence. These data indicated that simultaneous blockade of HER2 protein by Tras-Permut CrossMab could trigger CRT exposure and subsequently induce potent tumor-specific T cell immunity, suggesting it could be a promising therapeutic strategy against trastuzumab resistance. PMID:25949918

  7. Automatic NEPHIS Coding of Descriptive Titles for Permuted Index Generation.

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    1982-01-01

    Describes a system for the automatic coding of most descriptive titles which generates Nested Phrase Indexing System (NEPHIS) input strings of sufficient quality for permuted index production. A series of examples and an 11-item reference list accompany the text. (JL)

  8. Non‐parametric combination and related permutation tests for neuroimaging

    PubMed Central

    Webster, Matthew A.; Brooks, Jonathan C.; Tracey, Irene; Smith, Stephen M.; Nichols, Thomas E.

    2016-01-01

    Abstract In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well‐known definition of union‐intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume‐based representations of the brain, including non‐imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non‐parametric combination (NPC) methodology, such that instead of a two‐phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one‐way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. Hum Brain Mapp 37:1486‐1511, 2016. © 2016 Wiley Periodicals, Inc. PMID:26848101

  9. Taiwanese parents' experience of making a "do not resuscitate" decision for their child in pediatric intensive care unit.

    PubMed

    Liu, Shu-Mei; Lin, Hung-Ru; Lu, Frank L; Lee, Tzu-Ying

    2014-03-01

    The purpose of this project was to explore the parental experience of making a "do not resuscitate" (DNR) decision for their child who is or was cared for in a pediatric intensive care unit in Taiwan. A descriptive qualitative study was conducted following parental signing of a standard hospital DNR form on behalf of their critically ill child. Sixteen Taiwanese parents of 11 children aged 1 month to 18 years were interviewed. Interviews were recorded, transcribed, analyzed and sorted into themes by the sole interviewer plus other researchers. Three major themes were identified: (a) "convincing points to sign", (b) "feelings immediately after signing", and (c) "post-signing relief or regret". Feelings following signing the DNR form were mixed and included "frustration", "guilt", and "conflicting hope". Parents adjusted their attitudes to thoughts such as "I have done my best," and "the child's life is beyond my control." Some parents whose child had died before the time of the interview expressed among other things "regret not having enough time to be with and talk to my child". Open family visiting hours plus staff sensitivity and communication skills training are needed. To help parents with this difficult signing process, nurses and other professionals in the pediatric intensive care unit need education on initiating the conversation, guiding the parents in expressing their fears, and providing continuing support to parents and children throughout the child's end of life process. Copyright © 2013. Published by Elsevier B.V.

  10. Creation of a Ligand-Dependent Enzyme by Fusing Circularly Permuted Antibody Variable Region Domains.

    PubMed

    Iwai, Hiroto; Kojima-Misaizu, Miki; Dong, Jinhua; Ueda, Hiroshi

    2016-04-20

    Allosteric control of enzyme activity with exogenous substances has been hard to achieve, especially using antibody domains that potentially allow control by any antigens of choice. Here, in order to attain this goal, we developed a novel antibody variable region format introduced with circular permutations, called Clampbody. The two variable-region domains of the antibone Gla protein (BGP) antibody were each circularly permutated to have novel termini at the loops near their domain interface. Through their attachment to the N- and C-termini of a circularly permutated TEM-1 β-lactamase (cpBLA), we created a molecular switch that responds to the antigen peptide. The fusion protein specifically recognized the antigen, and in the presence of some detergent or denaturant, its catalytic activity was enhanced up to 4.7-fold in an antigen-dependent manner, due to increased resistance to these reagents. Hence, Clampbody will be a powerful tool for the allosteric regulation of enzyme and other protein activities and especially useful to design robust biosensors.

  11. Multiple comparisons permutation test for image based data mining in radiotherapy

    PubMed Central

    2013-01-01

    Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy. PMID:24365155

  12. Quantum one-way permutation over the finite field of two elements

    NASA Astrophysics Data System (ADS)

    de Castro, Alexandre

    2017-06-01

    In quantum cryptography, a one-way permutation is a bounded unitary operator U:{H} → {H} on a Hilbert space {H} that is easy to compute on every input, but hard to invert given the image of a random input. Levin (Probl Inf Transm 39(1):92-103, 2003) has conjectured that the unitary transformation g(a,x)=(a,f(x)+ax), where f is any length-preserving function and a,x \\in {GF}_{{2}^{\\Vert x\\Vert }}, is an information-theoretically secure operator within a polynomial factor. Here, we show that Levin's one-way permutation is provably secure because its output values are four maximally entangled two-qubit states, and whose probability of factoring them approaches zero faster than the multiplicative inverse of any positive polynomial poly( x) over the Boolean ring of all subsets of x. Our results demonstrate through well-known theorems that existence of classical one-way functions implies existence of a universal quantum one-way permutation that cannot be inverted in subexponential time in the worst case.

  13. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling

    PubMed Central

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220

  14. Discrete bat algorithm for optimal problem of permutation flow shop scheduling.

    PubMed

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.

  15. Levels of Conceptual Development in Melodic Permutation Concepts Based on Piaget's Theory

    ERIC Educational Resources Information Center

    Larn, Ronald L.

    1973-01-01

    Article considered different ways in which subjects at different age levels solved a musical task involving melodic permutation. The differences in responses to the musical task between age groups were judged to be compatible with Piaget's theory of cognitive development. (Author/RK)

  16. In Response to Rowland on "Realism and Debateability in Policy Advocacy."

    ERIC Educational Resources Information Center

    Herbeck, Dale A.; Katsulas, John P.

    1986-01-01

    Argues that Robert Rowland has overstated the case against the permutation process for assessing counterplan competitiveness. Claims that the permutation standard is a viable method for ascertaining counterplan competitiveness. Examines Rowland's alternative and argues that it is an unsatisfactory method for determining counterplan…

  17. EPEPT: A web service for enhanced P-value estimation in permutation tests

    PubMed Central

    2011-01-01

    Background In computational biology, permutation tests have become a widely used tool to assess the statistical significance of an event under investigation. However, the common way of computing the P-value, which expresses the statistical significance, requires a very large number of permutations when small (and thus interesting) P-values are to be accurately estimated. This is computationally expensive and often infeasible. Recently, we proposed an alternative estimator, which requires far fewer permutations compared to the standard empirical approach while still reliably estimating small P-values [1]. Results The proposed P-value estimator has been enriched with additional functionalities and is made available to the general community through a public website and web service, called EPEPT. This means that the EPEPT routines can be accessed not only via a website, but also programmatically using any programming language that can interact with the web. Examples of web service clients in multiple programming languages can be downloaded. Additionally, EPEPT accepts data of various common experiment types used in computational biology. For these experiment types EPEPT first computes the permutation values and then performs the P-value estimation. Finally, the source code of EPEPT can be downloaded. Conclusions Different types of users, such as biologists, bioinformaticians and software engineers, can use the method in an appropriate and simple way. Availability http://informatics.systemsbiology.net/EPEPT/ PMID:22024252

  18. Introduction to Permutation and Resampling-Based Hypothesis Tests

    ERIC Educational Resources Information Center

    LaFleur, Bonnie J.; Greevy, Robert A.

    2009-01-01

    A resampling-based method of inference--permutation tests--is often used when distributional assumptions are questionable or unmet. Not only are these methods useful for obvious departures from parametric assumptions (e.g., normality) and small sample sizes, but they are also more robust than their parametric counterparts in the presences of…

  19. Explorations in Statistics: Permutation Methods

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2012-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This eighth installment of "Explorations in Statistics" explores permutation methods, empiric procedures we can use to assess an experimental result--to test a null hypothesis--when we are reluctant to trust statistical…

  20. Electromyographic Permutation Entropy Quantifies Diaphragmatic Denervation and Reinnervation

    PubMed Central

    Kretschmer, Alexander; Lehmeyer, Veronika; Kellermann, Kristine; Schaller, Stephan J.; Blobner, Manfred; Kochs, Eberhard F.; Fink, Heidrun

    2014-01-01

    Spontaneous reinnervation after diaphragmatic paralysis due to trauma, surgery, tumors and spinal cord injuries is frequently observed. A possible explanation could be collateral reinnervation, since the diaphragm is commonly double-innervated by the (accessory) phrenic nerve. Permutation entropy (PeEn), a complexity measure for time series, may reflect a functional state of neuromuscular transmission by quantifying the complexity of interactions across neural and muscular networks. In an established rat model, electromyographic signals of the diaphragm after phrenicotomy were analyzed using PeEn quantifying denervation and reinnervation. Thirty-three anesthetized rats were unilaterally phrenicotomized. After 1, 3, 9, 27 and 81 days, diaphragmatic electromyographic PeEn was analyzed in vivo from sternal, mid-costal and crural areas of both hemidiaphragms. After euthanasia of the animals, both hemidiaphragms were dissected for fiber type evaluation. The electromyographic incidence of an accessory phrenic nerve was 76%. At day 1 after phrenicotomy, PeEn (normalized values) was significantly diminished in the sternal (median: 0.69; interquartile range: 0.66–0.75) and mid-costal area (0.68; 0.66–0.72) compared to the non-denervated side (0.84; 0.78–0.90) at threshold p<0.05. In the crural area, innervated by the accessory phrenic nerve, PeEn remained unchanged (0.79; 0.72–0.86). During reinnervation over 81 days, PeEn normalized in the mid-costal area (0.84; 0.77–0.86), whereas it remained reduced in the sternal area (0.77; 0.70–0.81). Fiber type grouping, a histological sign for reinnervation, was found in the mid-costal area in 20% after 27 days and in 80% after 81 days. Collateral reinnervation can restore diaphragm activity after phrenicotomy. Electromyographic PeEn represents a new, distinctive assessment characterizing intramuscular function following denervation and reinnervation. PMID:25532023

  1. Mammographic breast density and breast cancer: evidence of a shared genetic basis.

    PubMed

    Varghese, Jajini S; Thompson, Deborah J; Michailidou, Kyriaki; Lindström, Sara; Turnbull, Clare; Brown, Judith; Leyland, Jean; Warren, Ruth M L; Luben, Robert N; Loos, Ruth J; Wareham, Nicholas J; Rommens, Johanna; Paterson, Andrew D; Martin, Lisa J; Vachon, Celine M; Scott, Christopher G; Atkinson, Elizabeth J; Couch, Fergus J; Apicella, Carmel; Southey, Melissa C; Stone, Jennifer; Li, Jingmei; Eriksson, Louise; Czene, Kamila; Boyd, Norman F; Hall, Per; Hopper, John L; Tamimi, Rulla M; Rahman, Nazneen; Easton, Douglas F

    2012-03-15

    Percent mammographic breast density (PMD) is a strong heritable risk factor for breast cancer. However, the pathways through which this risk is mediated are still unclear. To explore whether PMD and breast cancer have a shared genetic basis, we identified genetic variants most strongly associated with PMD in a published meta-analysis of five genome-wide association studies (GWAS) and used these to construct risk scores for 3,628 breast cancer cases and 5,190 controls from the UK2 GWAS of breast cancer. The signed per-allele effect estimates of single-nucleotide polymorphisms (SNP) were multiplied with the respective allele counts in the individual and summed over all SNPs to derive the risk score for an individual. These scores were included as the exposure variable in a logistic regression model with breast cancer case-control status as the outcome. This analysis was repeated using 10 different cutoff points for the most significant density SNPs (1%-10% representing 5,222-50,899 SNPs). Permutation analysis was also conducted across all 10 cutoff points. The association between risk score and breast cancer was significant for all cutoff points from 3% to 10% of top density SNPs, being most significant for the 6% (2-sided P = 0.002) to 10% (P = 0.001) cutoff points (overall permutation P = 0.003). Women in the top 10% of the risk score distribution had a 31% increased risk of breast cancer [OR = 1.31; 95% confidence interval (CI), 1.08-1.59] compared with women in the bottom 10%. Together, our results show that PMD and breast cancer have a shared genetic basis that is mediated through a large number of common variants.

  2. Mammographic breast density and breast cancer: evidence of a shared genetic basis

    PubMed Central

    Varghese, Jajini S; Thompson, Deborah J; Michailidou, Kyriaki; Lindström, Sara; Turnbull, Clare; Brown, Judith; Leyland, Jean; Warren, Ruth ML; Luben, Robert N; Loos, Ruth J; Wareham, Nicholas J; Rommens, Johanna; Paterson, Andrew D; Martin, Lisa J; Vachon, Celine M; Scott, Christopher G; Atkinson, Elizabeth J; Couch, Fergus J; Apicella, Carmel; Southey, Melissa C; Stone, Jennifer; Li, Jingmei; Eriksson, Louise; Czene, Kamila; Boyd, Norman F; Hall, Per; Hopper, John L; Tamimi, Rulla M; Rahman, Nazneen; Easton, Douglas F

    2012-01-01

    Percent mammographic breast density (PMD) is a strong heritable risk factor for breast cancer. However, the pathways through which this risk is mediated are still unclear. To explore whether PMD and breast cancer have a shared genetic basis, we identified genetic variants most strongly associated with PMD in a published meta-analysis of five genome-wide association studies (GWAS) and used these to construct risk scores for 3628 breast cancer cases and 5190 controls from the UK2 GWAS of breast cancer. The signed per-allele effect estimates of SNPs were multiplied with the respective allele counts in the individual and summed over all SNPs to derive the risk score for an individual. These scores were included as the exposure variable in a logistic regression model with breast cancer case-control status as the outcome. This analysis was repeated using ten different cut-offs for the most significant density SNPs (1-10% representing 5,222-50,899 SNPs). Permutation analysis was also performed across all 10 cut-offs. The association between risk score and breast cancer was significant for all cut-offs from 3-10% of top density SNPs, being most significant for the 6% (2-sided P=0.002) to 10% (P=0.001) cut-offs (overall permutation P=0.003). Women in the top 10% of the risk score distribution had a 31% increased risk of breast cancer [OR= 1.31 (95%CI 1.08-1.59)] compared to women in the bottom 10%. Together, our results demonstrate that PMD and breast cancer have a shared genetic basis that is mediated through a large number of common variants. PMID:22266113

  3. NASA Thesaurus. Volume 2: Access vocabulary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The NASA Thesaurus -- Volume 2, Access Vocabulary -- contains an alphabetical listing of all Thesaurus terms (postable and nonpostable) and permutations of all multiword and pseudo-multiword terms. Also included are Other Words (non-Thesaurus terms) consisting of abbreviations, chemical symbols, etc. The permutations and Other Words provide 'access' to the appropriate postable entries in the Thesaurus.

  4. A Permutation Test for Correlated Errors in Adjacent Questionnaire Items

    ERIC Educational Resources Information Center

    Hildreth, Laura A.; Genschel, Ulrike; Lorenz, Frederick O.; Lesser, Virginia M.

    2013-01-01

    Response patterns are of importance to survey researchers because of the insight they provide into the thought processes respondents use to answer survey questions. In this article we propose the use of structural equation modeling to examine response patterns and develop a permutation test to quantify the likelihood of observing a specific…

  5. The Parity Theorem Shuffle

    ERIC Educational Resources Information Center

    Smith, Michael D.

    2016-01-01

    The Parity Theorem states that any permutation can be written as a product of transpositions, but no permutation can be written as a product of both an even number and an odd number of transpositions. Most proofs of the Parity Theorem take several pages of mathematical formalism to complete. This article presents an alternative but equivalent…

  6. Heuristic Implementation of Dynamic Programming for Matrix Permutation Problems in Combinatorial Data Analysis

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Kohn, Hans-Friedrich; Stahl, Stephanie

    2008-01-01

    Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30x30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation…

  7. Permutation Entropy and Signal Energy Increase the Accuracy of Neuropathic Change Detection in Needle EMG

    PubMed Central

    2018-01-01

    Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40 neuropathic individuals and 40 controls. The number of turns, amplitude between turns, signal energy, and “permutation entropy” were used as features for support vector machine classification. Results. The obtained results proved the superior classification performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features. The lowest accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of polyneuropathies examined by needle electromyography. PMID:29606959

  8. permGPU: Using graphics processing units in RNA microarray association studies.

    PubMed

    Shterev, Ivo D; Jung, Sin-Ho; George, Stephen L; Owzar, Kouros

    2010-06-16

    Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

  9. Testing for the Presence of Correlation Changes in a Multivariate Time Series: A Permutation Based Approach.

    PubMed

    Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Hunyadi, Borbála; Ceulemans, Eva

    2018-01-15

    Detecting abrupt correlation changes in multivariate time series is crucial in many application fields such as signal processing, functional neuroimaging, climate studies, and financial analysis. To detect such changes, several promising correlation change tests exist, but they may suffer from severe loss of power when there is actually more than one change point underlying the data. To deal with this drawback, we propose a permutation based significance test for Kernel Change Point (KCP) detection on the running correlations. Given a requested number of change points K, KCP divides the time series into K + 1 phases by minimizing the within-phase variance. The new permutation test looks at how the average within-phase variance decreases when K increases and compares this to the results for permuted data. The results of an extensive simulation study and applications to several real data sets show that, depending on the setting, the new test performs either at par or better than the state-of-the art significance tests for detecting the presence of correlation changes, implying that its use can be generally recommended.

  10. Multi-scale symbolic transfer entropy analysis of EEG

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-10-01

    From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.

  11. A new EEG synchronization strength analysis method: S-estimator based normalized weighted-permutation mutual information.

    PubMed

    Cui, Dong; Pu, Weiting; Liu, Jing; Bian, Zhijie; Li, Qiuli; Wang, Lei; Gu, Guanghua

    2016-10-01

    Synchronization is an important mechanism for understanding information processing in normal or abnormal brains. In this paper, we propose a new method called normalized weighted-permutation mutual information (NWPMI) for double variable signal synchronization analysis and combine NWPMI with S-estimator measure to generate a new method named S-estimator based normalized weighted-permutation mutual information (SNWPMI) for analyzing multi-channel electroencephalographic (EEG) synchronization strength. The performances including the effects of time delay, embedding dimension, coupling coefficients, signal to noise ratios (SNRs) and data length of the NWPMI are evaluated by using Coupled Henon mapping model. The results show that the NWPMI is superior in describing the synchronization compared with the normalized permutation mutual information (NPMI). Furthermore, the proposed SNWPMI method is applied to analyze scalp EEG data from 26 amnestic mild cognitive impairment (aMCI) subjects and 20 age-matched controls with normal cognitive function, who both suffer from type 2 diabetes mellitus (T2DM). The proposed methods NWPMI and SNWPMI are suggested to be an effective index to estimate the synchronization strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Revisiting the European sovereign bonds with a permutation-information-theory approach

    NASA Astrophysics Data System (ADS)

    Fernández Bariviera, Aurelio; Zunino, Luciano; Guercio, María Belén; Martinez, Lisana B.; Rosso, Osvaldo A.

    2013-12-01

    In this paper we study the evolution of the informational efficiency in its weak form for seventeen European sovereign bonds time series. We aim to assess the impact of two specific economic situations in the hypothetical random behavior of these time series: the establishment of a common currency and a wide and deep financial crisis. In order to evaluate the informational efficiency we use permutation quantifiers derived from information theory. Specifically, time series are ranked according to two metrics that measure the intrinsic structure of their correlations: permutation entropy and permutation statistical complexity. These measures provide the rectangular coordinates of the complexity-entropy causality plane; the planar location of the time series in this representation space reveals the degree of informational efficiency. According to our results, the currency union contributed to homogenize the stochastic characteristics of the time series and produced synchronization in the random behavior of them. Additionally, the 2008 financial crisis uncovered differences within the apparently homogeneous European sovereign markets and revealed country-specific characteristics that were partially hidden during the monetary union heyday.

  13. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review

    PubMed Central

    Radwan, Ahmed G.; AbdElHaleem, Sherif H.; Abd-El-Hafiz, Salwa K.

    2015-01-01

    This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold’s cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper. PMID:26966561

  14. Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masataka; Okumura, Hisashi

    2017-11-01

    We developed a two-dimensional replica-permutation molecular dynamics method in the isothermal-isobaric ensemble. The replica-permutation method is a better alternative to the replica-exchange method. It was originally developed in the canonical ensemble. This method employs the Suwa-Todo algorithm, instead of the Metropolis algorithm, to perform permutations of temperatures and pressures among more than two replicas so that the rejection ratio can be minimized. We showed that the isothermal-isobaric replica-permutation method performs better sampling efficiency than the isothermal-isobaric replica-exchange method and infinite swapping method. We applied this method to a β-hairpin mini protein, chignolin. In this simulation, we observed not only the folded state but also the misfolded state. We calculated the temperature and pressure dependence of the fractions on the folded, misfolded, and unfolded states. Differences in partial molar enthalpy, internal energy, entropy, partial molar volume, and heat capacity were also determined and agreed well with experimental data. We observed a new phenomenon that misfolded chignolin becomes more stable under high-pressure conditions. We also revealed this mechanism of the stability as follows: TYR2 and TRP9 side chains cover the hydrogen bonds that form a β-hairpin structure. The hydrogen bonds are protected from the water molecules that approach the protein as the pressure increases.

  15. EXPLICIT SYMPLECTIC-LIKE INTEGRATORS WITH MIDPOINT PERMUTATIONS FOR SPINNING COMPACT BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Junjie; Wu, Xin; Huang, Guoqing

    2017-01-01

    We refine the recently developed fourth-order extended phase space explicit symplectic-like methods for inseparable Hamiltonians using Yoshida’s triple product combined with a midpoint permuted map. The midpoint between the original variables and their corresponding extended variables at every integration step is readjusted as the initial values of the original variables and their corresponding extended ones at the next step integration. The triple-product construction is apparently superior to the composition of two triple products in computational efficiency. Above all, the new midpoint permutations are more effective in restraining the equality of the original variables and their corresponding extended ones at each integration step thanmore » the existing sequent permutations of momenta and coordinates. As a result, our new construction shares the benefit of implicit symplectic integrators in the conservation of the second post-Newtonian Hamiltonian of spinning compact binaries. Especially for the chaotic case, it can work well, but the existing sequent permuted algorithm cannot. When dissipative effects from the gravitational radiation reaction are included, the new symplectic-like method has a secular drift in the energy error of the dissipative system for the orbits that are regular in the absence of radiation, as an implicit symplectic integrator does. In spite of this, it is superior to the same-order implicit symplectic integrator in accuracy and efficiency. The new method is particularly useful in discussing the long-term evolution of inseparable Hamiltonian problems.« less

  16. A studentized permutation test for three-arm trials in the 'gold standard' design.

    PubMed

    Mütze, Tobias; Konietschke, Frank; Munk, Axel; Friede, Tim

    2017-03-15

    The 'gold standard' design for three-arm trials refers to trials with an active control and a placebo control in addition to the experimental treatment group. This trial design is recommended when being ethically justifiable and it allows the simultaneous comparison of experimental treatment, active control, and placebo. Parametric testing methods have been studied plentifully over the past years. However, these methods often tend to be liberal or conservative when distributional assumptions are not met particularly with small sample sizes. In this article, we introduce a studentized permutation test for testing non-inferiority and superiority of the experimental treatment compared with the active control in three-arm trials in the 'gold standard' design. The performance of the studentized permutation test for finite sample sizes is assessed in a Monte Carlo simulation study under various parameter constellations. Emphasis is put on whether the studentized permutation test meets the target significance level. For comparison purposes, commonly used Wald-type tests, which do not make any distributional assumptions, are included in the simulation study. The simulation study shows that the presented studentized permutation test for assessing non-inferiority in three-arm trials in the 'gold standard' design outperforms its competitors, for instance the test based on a quasi-Poisson model, for count data. The methods discussed in this paper are implemented in the R package ThreeArmedTrials which is available on the comprehensive R archive network (CRAN). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Quantum image encryption based on restricted geometric and color transformations

    NASA Astrophysics Data System (ADS)

    Song, Xian-Hua; Wang, Shen; Abd El-Latif, Ahmed A.; Niu, Xia-Mu

    2014-08-01

    A novel encryption scheme for quantum images based on restricted geometric and color transformations is proposed. The new strategy comprises efficient permutation and diffusion properties for quantum image encryption. The core idea of the permutation stage is to scramble the codes of the pixel positions through restricted geometric transformations. Then, a new quantum diffusion operation is implemented on the permutated quantum image based on restricted color transformations. The encryption keys of the two stages are generated by two sensitive chaotic maps, which can ensure the security of the scheme. The final step, measurement, is built by the probabilistic model. Experiments conducted on statistical analysis demonstrate that significant improvements in the results are in favor of the proposed approach.

  18. Statistical validation of normal tissue complication probability models.

    PubMed

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. NASA thesaurus. Volume 2: Access vocabulary

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Access Vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries, and pseudo-multiword terms that are permutations of words that contain words within words. The Access Vocabulary contains 40,738 entries that give increased access to the hierarchies in Volume 1 - Hierarchical Listing.

  20. NASA Thesaurus. Volume 2: Access vocabulary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Access Vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries, and pseudo-multiword terms that are permutations of words that contain words within words. The Access Vocabulary contains, 40,661 entries that give increased access to he hierarchies in Volume 1 - Hierarchical Listing.

  1. Instability of Hierarchical Cluster Analysis Due to Input Order of the Data: The PermuCLUSTER Solution

    ERIC Educational Resources Information Center

    van der Kloot, Willem A.; Spaans, Alexander M. J.; Heiser, Willem J.

    2005-01-01

    Hierarchical agglomerative cluster analysis (HACA) may yield different solutions under permutations of the input order of the data. This instability is caused by ties, either in the initial proximity matrix or arising during agglomeration. The authors recommend to repeat the analysis on a large number of random permutations of the rows and columns…

  2. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  3. Weighted multiscale Rényi permutation entropy of nonlinear time series

    NASA Astrophysics Data System (ADS)

    Chen, Shijian; Shang, Pengjian; Wu, Yue

    2018-04-01

    In this paper, based on Rényi permutation entropy (RPE), which has been recently suggested as a relative measure of complexity in nonlinear systems, we propose multiscale Rényi permutation entropy (MRPE) and weighted multiscale Rényi permutation entropy (WMRPE) to quantify the complexity of nonlinear time series over multiple time scales. First, we apply MPRE and WMPRE to the synthetic data and make a comparison of modified methods and RPE. Meanwhile, the influence of the change of parameters is discussed. Besides, we interpret the necessity of considering not only multiscale but also weight by taking the amplitude into account. Then MRPE and WMRPE methods are employed to the closing prices of financial stock markets from different areas. By observing the curves of WMRPE and analyzing the common statistics, stock markets are divided into 4 groups: (1) DJI, S&P500, and HSI, (2) NASDAQ and FTSE100, (3) DAX40 and CAC40, and (4) ShangZheng and ShenCheng. Results show that the standard deviations of weighted methods are smaller, showing WMRPE is able to ensure the results more robust. Besides, WMPRE can provide abundant dynamical properties of complex systems, and demonstrate the intrinsic mechanism.

  4. PsiQuaSP-A library for efficient computation of symmetric open quantum systems.

    PubMed

    Gegg, Michael; Richter, Marten

    2017-11-24

    In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.

  5. Confidence intervals and hypothesis testing for the Permutation Entropy with an application to epilepsy

    NASA Astrophysics Data System (ADS)

    Traversaro, Francisco; O. Redelico, Francisco

    2018-04-01

    In nonlinear dynamics, and to a lesser extent in other fields, a widely used measure of complexity is the Permutation Entropy. But there is still no known method to determine the accuracy of this measure. There has been little research on the statistical properties of this quantity that characterize time series. The literature describes some resampling methods of quantities used in nonlinear dynamics - as the largest Lyapunov exponent - but these seems to fail. In this contribution, we propose a parametric bootstrap methodology using a symbolic representation of the time series to obtain the distribution of the Permutation Entropy estimator. We perform several time series simulations given by well-known stochastic processes: the 1/fα noise family, and show in each case that the proposed accuracy measure is as efficient as the one obtained by the frequentist approach of repeating the experiment. The complexity of brain electrical activity, measured by the Permutation Entropy, has been extensively used in epilepsy research for detection in dynamical changes in electroencephalogram (EEG) signal with no consideration of the variability of this complexity measure. An application of the parametric bootstrap methodology is used to compare normal and pre-ictal EEG signals.

  6. The signed permutation group on Feynman graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purkart, Julian, E-mail: purkart@physik.hu-berlin.de

    2016-08-15

    The Feynman rules assign to every graph an integral which can be written as a function of a scaling parameter L. Assuming L for the process under consideration is very small, so that contributions to the renormalization group are small, we can expand the integral and only consider the lowest orders in the scaling. The aim of this article is to determine specific combinations of graphs in a scalar quantum field theory that lead to a remarkable simplification of the first non-trivial term in the perturbation series. It will be seen that the result is independent of the renormalization schememore » and the scattering angles. To achieve that goal we will utilize the parametric representation of scalar Feynman integrals as well as the Hopf algebraic structure of the Feynman graphs under consideration. Moreover, we will present a formula which reduces the effort of determining the first-order term in the perturbation series for the specific combination of graphs to a minimum.« less

  7. Controllability of symmetric spin networks

    NASA Astrophysics Data System (ADS)

    Albertini, Francesca; D'Alessandro, Domenico

    2018-05-01

    We consider a network of n spin 1/2 systems which are pairwise interacting via Ising interaction and are controlled by the same electro-magnetic control field. Such a system presents symmetries since the Hamiltonian is unchanged if we permute two spins. This prevents full (operator) controllability, in that not every unitary evolution can be obtained. We prove however that controllability is verified if we restrict ourselves to unitary evolutions which preserve the above permutation invariance. For low dimensional cases, n = 2 and n = 3, we provide an analysis of the Lie group of available evolutions and give explicit control laws to transfer between two arbitrary permutation invariant states. This class of states includes highly entangled states such as Greenberger-Horne-Zeilinger (GHZ) states and W states, which are of interest in quantum information.

  8. A permutation information theory tour through different interest rate maturities: the Libor case.

    PubMed

    Bariviera, Aurelio Fernández; Guercio, María Belén; Martinez, Lisana B; Rosso, Osvaldo A

    2015-12-13

    This paper analyses Libor interest rates for seven different maturities and referred to operations in British pounds, euros, Swiss francs and Japanese yen, during the period 2001-2015. The analysis is performed by means of two quantifiers derived from information theory: the permutation Shannon entropy and the permutation Fisher information measure. An anomalous behaviour in the Libor is detected in all currencies except euros during the years 2006-2012. The stochastic switch is more severe in one, two and three months maturities. Given the special mechanism of Libor setting, we conjecture that the behaviour could have been produced by the manipulation that was uncovered by financial authorities. We argue that our methodology is pertinent as a market overseeing instrument. © 2015 The Author(s).

  9. Storage and computationally efficient permutations of factorized covariance and square-root information matrices

    NASA Technical Reports Server (NTRS)

    Muellerschoen, R. J.

    1988-01-01

    A unified method to permute vector-stored upper-triangular diagonal factorized covariance (UD) and vector stored upper-triangular square-root information filter (SRIF) arrays is presented. The method involves cyclical permutation of the rows and columns of the arrays and retriangularization with appropriate square-root-free fast Givens rotations or elementary slow Givens reflections. A minimal amount of computation is performed and only one scratch vector of size N is required, where N is the column dimension of the arrays. To make the method efficient for large SRIF arrays on a virtual memory machine, three additional scratch vectors each of size N are used to avoid expensive paging faults. The method discussed is compared with the methods and routines of Bierman's Estimation Subroutine Library (ESL).

  10. Apparent transient effects of recent "ecstasy" use on cognitive performance and extrapyramidal signs in human subjects.

    PubMed

    Smith, Ryan M; Tivarus, Madalina; Campbell, Heather L; Hillier, Ashleigh; Beversdorf, David Q

    2006-09-01

    Our purpose is to investigate cognitive performance and extrapyramidal function early after ecstasy use. Ecstasy, containing 3,4 methylenedioxymethamphetamine, has shown evidence of causing cognitive deficits and parkinsonian signs. Previous research has examined cognitive performance after a period of prolonged abstinence, but research assessing the early effects of ecstasy after recent use is limited despite temporal neurochemical differences demonstrated in nonhuman models. This study compared task performance between 13 ecstasy users (10 to 15 h postdrug use) and a control group on a battery of neuropsychologic assessments while matching for education level, sleep deprivation, and premorbid IQ. The groups were also compared on measures relating to parkinsonian signs. The ecstasy subjects showed impairments on measures of executive function as evaluated by Raven's Standard Progressive Matrices (SPM) and the Wisconsin Card Sorting Task (WCST). Short-delay free recall memory was also impaired in ecstasy subjects on the California Verbal Learning Test (CVLT-II). No extrapyramidal motor impairments were detected. These deficits resemble deficits previously reported in chronic ecstasy use but also seem to reveal transient impairments in executive function. Future research is needed to better understand the neurologic and neuropsychologic implications of ecstasy use across time and extent of use.

  11. NASA thesaurus. Volume 2: Access vocabulary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The access vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries and pseudo-multiword terms that are permutations of words that contain words within words. The access vocabulary contains almost 42,000 entries that give increased access to the hierarchies in Volume 1 - Hierarchical Listing.

  12. Genomic Analysis of Complex Microbial Communities in Wounds

    DTIC Science & Technology

    2012-01-01

    thoroughly in the ecology literature. Permutation Multivariate Analysis of Variance ( PerMANOVA ). We used PerMANOVA to test the null-hypothesis of no...difference between the bacterial communities found within a single wound compared to those from different patients (α = 0.05). PerMANOVA is a...permutation-based version of the multivariate analysis of variance (MANOVA). PerMANOVA uses the distances between samples to partition variance and

  13. Circular permutation of the starch-binding domain: inversion of ligand selectivity with increased affinity.

    PubMed

    Stephen, Preyesh; Tseng, Kai-Li; Liu, Yu-Nan; Lyu, Ping-Chiang

    2012-03-07

    Proteins containing starch-binding domains (SBDs) are used in a variety of scientific and technological applications. A circularly permutated SBD (CP90) with improved affinity and selectivity toward longer-chain carbohydrates was synthesized, suggesting that a new starch-binding protein may be developed for specific scientific and industrial applications. This journal is © The Royal Society of Chemistry 2012

  14. The sacrifice of knowledge: vain debates in the social scientific study of religion.

    PubMed

    Kramp, Joseph M

    2013-03-01

    Since its inception, the social scientific study of religion has been a battleground for scholars advocating for the advantages of one sort of methodology over against the other. I argue that these debates have more to do with the personalities of the researchers rather than any kind of justifiable proof that one method is better than another. I argue that the process by which scholars quarrel over methods is a sign of stagnation or regression in the academy; I draw broad implications for the health of the discipline of religious studies.

  15. Permutation glass.

    PubMed

    Williams, Mobolaji

    2018-01-01

    The field of disordered systems in statistical physics provides many simple models in which the competing influences of thermal and nonthermal disorder lead to new phases and nontrivial thermal behavior of order parameters. In this paper, we add a model to the subject by considering a disordered system where the state space consists of various orderings of a list. As in spin glasses, the disorder of such "permutation glasses" arises from a parameter in the Hamiltonian being drawn from a distribution of possible values, thus allowing nominally "incorrect orderings" to have lower energies than "correct orderings" in the space of permutations. We analyze a Gaussian, uniform, and symmetric Bernoulli distribution of energy costs, and, by employing Jensen's inequality, derive a simple condition requiring the permutation glass to always transition to the correctly ordered state at a temperature lower than that of the nondisordered system, provided that this correctly ordered state is accessible. We in turn find that in order for the correctly ordered state to be accessible, the probability that an incorrectly ordered component is energetically favored must be less than the inverse of the number of components in the system. We show that all of these results are consistent with a replica symmetric ansatz of the system. We conclude by arguing that there is no distinct permutation glass phase for the simplest model considered here and by discussing how to extend the analysis to more complex Hamiltonians capable of novel phase behavior and replica symmetry breaking. Finally, we outline an apparent correspondence between the presented system and a discrete-energy-level fermion gas. In all, the investigation introduces a class of exactly soluble models into statistical mechanics and provides a fertile ground to investigate statistical models of disorder.

  16. Efficient computation of significance levels for multiple associations in large studies of correlated data, including genomewide association studies.

    PubMed

    Dudbridge, Frank; Koeleman, Bobby P C

    2004-09-01

    Large exploratory studies, including candidate-gene-association testing, genomewide linkage-disequilibrium scans, and array-expression experiments, are becoming increasingly common. A serious problem for such studies is that statistical power is compromised by the need to control the false-positive rate for a large family of tests. Because multiple true associations are anticipated, methods have been proposed that combine evidence from the most significant tests, as a more powerful alternative to individually adjusted tests. The practical application of these methods is currently limited by a reliance on permutation testing to account for the correlated nature of single-nucleotide polymorphism (SNP)-association data. On a genomewide scale, this is both very time-consuming and impractical for repeated explorations with standard marker panels. Here, we alleviate these problems by fitting analytic distributions to the empirical distribution of combined evidence. We fit extreme-value distributions for fixed lengths of combined evidence and a beta distribution for the most significant length. An initial phase of permutation sampling is required to fit these distributions, but it can be completed more quickly than a simple permutation test and need be done only once for each panel of tests, after which the fitted parameters give a reusable calibration of the panel. Our approach is also a more efficient alternative to a standard permutation test. We demonstrate the accuracy of our approach and compare its efficiency with that of permutation tests on genomewide SNP data released by the International HapMap Consortium. The estimation of analytic distributions for combined evidence will allow these powerful methods to be applied more widely in large exploratory studies.

  17. Statistical significance approximation in local trend analysis of high-throughput time-series data using the theory of Markov chains.

    PubMed

    Xia, Li C; Ai, Dongmei; Cram, Jacob A; Liang, Xiaoyi; Fuhrman, Jed A; Sun, Fengzhu

    2015-09-21

    Local trend (i.e. shape) analysis of time series data reveals co-changing patterns in dynamics of biological systems. However, slow permutation procedures to evaluate the statistical significance of local trend scores have limited its applications to high-throughput time series data analysis, e.g., data from the next generation sequencing technology based studies. By extending the theories for the tail probability of the range of sum of Markovian random variables, we propose formulae for approximating the statistical significance of local trend scores. Using simulations and real data, we show that the approximate p-value is close to that obtained using a large number of permutations (starting at time points >20 with no delay and >30 with delay of at most three time steps) in that the non-zero decimals of the p-values obtained by the approximation and the permutations are mostly the same when the approximate p-value is less than 0.05. In addition, the approximate p-value is slightly larger than that based on permutations making hypothesis testing based on the approximate p-value conservative. The approximation enables efficient calculation of p-values for pairwise local trend analysis, making large scale all-versus-all comparisons possible. We also propose a hybrid approach by integrating the approximation and permutations to obtain accurate p-values for significantly associated pairs. We further demonstrate its use with the analysis of the Polymouth Marine Laboratory (PML) microbial community time series from high-throughput sequencing data and found interesting organism co-occurrence dynamic patterns. The software tool is integrated into the eLSA software package that now provides accelerated local trend and similarity analysis pipelines for time series data. The package is freely available from the eLSA website: http://bitbucket.org/charade/elsa.

  18. AAVSO Target Tool: A Web-Based Service for Tracking Variable Star Observations (Abstract)

    NASA Astrophysics Data System (ADS)

    Burger, D.; Stassun, K. G.; Barnes, C.; Kafka, S.; Beck, S.; Li, K.

    2018-06-01

    (Abstract only) The AAVSO Target Tool is a web-based interface for bringing stars in need of observation to the attention of AAVSOís network of amateur and professional astronomers. The site currently tracks over 700 targets of interest, collecting data from them on a regular basis from AAVSOís servers and sorting them based on priority. While the target tool does not require a login, users can obtain visibility times for each target by signing up and entering a telescope location. Other key features of the site include filtering by AAVSO observing section, sorting by different variable types, formatting the data for printing, and exporting the data to a CSV file. The AAVSO Target Tool builds upon seven years of experience developing web applications for astronomical data analysis, most notably on Filtergraph (Burger, D., et al. 2013, Astronomical Data Analysis Software and Systems XXII, Astronomical Society of the Pacific, San Francisco, 399), and is built using the web2py web framework based on the python programming language. The target tool is available at http://filtergraph.com/aavso.

  19. Bubble Entropy: An Entropy Almost Free of Parameters.

    PubMed

    Manis, George; Aktaruzzaman, Md; Sassi, Roberto

    2017-11-01

    Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors. Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors.

  20. How to think about indiscernible particles

    NASA Astrophysics Data System (ADS)

    Giglio, Daniel Joseph

    Permutation symmetries which arise in quantum mechanics pose an intriguing problem. It is not clear that particles which exhibit permutation symmetries (i.e. particles which are indiscernible, meaning that they can be swapped with each other without this yielding a new physical state) qualify as "objects" in any reasonable sense of the term. One solution to this puzzle, which I attribute to W.V. Quine, would have us eliminate such particles from our ontology altogether in order to circumvent the metaphysical vexations caused by permutation symmetries. In this essay I argue that Quine's solution is too rash, and in its place I suggest a novel solution based on altering some of the language of quantum mechanics. Before launching into the technical details of indiscernible particles, however, I begin this essay with some remarks on the methodology -- instrumentalism -- which motivates my arguments.

  1. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kaixuan; Wang, Jun

    2017-02-01

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model.

  2. Fermion systems in discrete space-time

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  3. Dynamic Testing and Automatic Repair of Reconfigurable Wiring Harnesses

    DTIC Science & Technology

    2006-11-27

    Switch An M ×N grid of switches configured to provide a M -input, N -output routing network. Permutation Network A permutation network performs an...wiring reduces the effective advantage of their reduced switch count, particularly when considering that regular grids (crossbar switches being a...are connected to. The outline circuit shown in Fig. 20 shows how a suitable ‘discovery probe’ might be implemented. The circuit shows a UART

  4. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS

    PubMed Central

    Kuai, Moshen; Cheng, Gang; Li, Yong

    2018-01-01

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively. PMID:29510569

  5. Tolerance of a Knotted Near-Infrared Fluorescent Protein to Random Circular Permutation.

    PubMed

    Pandey, Naresh; Kuypers, Brianna E; Nassif, Barbara; Thomas, Emily E; Alnahhas, Razan N; Segatori, Laura; Silberg, Jonathan J

    2016-07-12

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFPs to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified 27 circularly permuted iRFPs that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants that initiated translation within the PAS and GAF domains were discovered. Circularly permuted iRFPs retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a quantum yield similar to that of iRFPs but exhibited increased resistance to chemical denaturation, suggesting that the observed increase in the magnitude of the signal arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step toward the creation of near-infrared biosensors with expanded chemical sensing functions for in vivo imaging.

  6. Tolerance of a knotted near infrared fluorescent protein to random circular permutation

    PubMed Central

    Pandey, Naresh; Kuypers, Brianna E.; Nassif, Barbara; Thomas, Emily E.; Alnahhas, Razan N.; Segatori, Laura; Silberg, Jonathan J.

    2016-01-01

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFP to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified twenty seven circularly permuted iRFP that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants were discovered that initiated translation within the PAS and GAF domains. Circularly permuted iRFP retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a similar quantum yield as iRFP, but exhibited increased resistance to chemical denaturation, suggesting that the observed signal increase arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step towards the creation of near-infrared biosensors with expanded chemical-sensing functions for in vivo imaging. PMID:27304983

  7. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS.

    PubMed

    Kuai, Moshen; Cheng, Gang; Pang, Yusong; Li, Yong

    2018-03-05

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively.

  8. Nurse practitioner-based sign-out system to facilitate patient communication on a neurosurgical service: a pilot study with recommendations.

    PubMed

    Rabinovitch, Deborah L; Hamill, Melinda; Zanchetta, Clauda; Bernstein, Mark

    2009-12-01

    Failure to communicate important patient information between physicians causes medical errors and adverse patient events. On-call neurosurgery physicians at the Toronto Western Hospital do not know the medical details of all the patients that they are covering at night because they do not care for the entire service of patients during the day. Because there is no formal handover system to transfer patient information to the on-call physician, a nurse practitioner-based sign-out system was recently introduced. Its effectiveness for communication was evaluated with preintervention-postintervention questionnaires and by recording daily logins. There was a statistically significant decrease in number of logins after 8 weeks of use (p = .05, Fisher's exact test), and the tool was abandoned after 16 weeks. Modifications identified to improve the system include the ability to sort by attending physician and to automatically populate the list with new patients. Effective communication is important for reducing medical errors, and perhaps these modifications will facilitate this important endeavor.

  9. Charm Penguin in B± → K±K+K-: Partonic and hadronic loops

    NASA Astrophysics Data System (ADS)

    Bediaga, I.; Frederico, T.; Magalhães, P. C.

    2018-05-01

    Charm penguin diagrams are known to be the main contribution to charmless B decay process with strangeness variation equal to minus one, which is the case of B± →K±K+K- decay. The large phase space available in this and other B three-body decays allows non trivial final state interactions with all sort of rescattering processes and also access high momentum transfers in the central region of the Dalitz plane. In this work we investigate the charm Penguin contribution to B± →K±K+K-, described by a hadronic triangle loop in nonperturbative regions of the phase space, and by a partonic loop at the quasi perturbative region. These nonresonant amplitudes should have a particular structure in the Dalitz plane and their contributions to the final decay amplitude can be confirmed by a data amplitude analysis in this channel. In particular, the hadronic amplitude has a changing sign in the phase at D D bar threshold which can result in a change of sign for the CP asymmetry.

  10. General Rotorcraft Aeromechanical Stability Program (GRASP) - Theory Manual

    DTIC Science & Technology

    1990-10-01

    the A basis. Two symbols frequently encountered in vector operations that use index notation are the Kronecker delta eij and the Levi - Civita epsilon...Blade root cutout fijk Levi - Civita epsilon permutation symbol 0 pretwist angle 0’ pretwist per unit length (d;) Oi Tait-Bryan angles K~i moment strains...the components of the identity tensor in a Cartesian coordinate system, while the Levi Civita epsilon consists of components of the permutation

  11. Using permutations to detect dependence between time series

    NASA Astrophysics Data System (ADS)

    Cánovas, Jose S.; Guillamón, Antonio; Ruíz, María del Carmen

    2011-07-01

    In this paper, we propose an independence test between two time series which is based on permutations. The proposed test can be carried out by means of different common statistics such as Pearson’s chi-square or the likelihood ratio. We also point out why an exact test is necessary. Simulated and real data (return exchange rates between several currencies) reveal the capacity of this test to detect linear and nonlinear dependences.

  12. Testing of Error-Correcting Sparse Permutation Channel Codes

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill, V.; Orlov, Sergei S.

    2008-01-01

    A computer program performs Monte Carlo direct numerical simulations for testing sparse permutation channel codes, which offer strong error-correction capabilities at high code rates and are considered especially suitable for storage of digital data in holographic and volume memories. A word in a code of this type is characterized by, among other things, a sparseness parameter (M) and a fixed number (K) of 1 or "on" bits in a channel block length of N.

  13. Scrambled Sobol Sequences via Permutation

    DTIC Science & Technology

    2009-01-01

    LCG LCG64 LFG MLFG PMLCG Sobol Scrambler PermutationScrambler LinearScrambler <<uses>> PermuationFactory StaticFactory DynamicFactory <<uses>> Figure 3...Phy., 19:252–256, 1979. [2] Emanouil I. Atanassov. A new efficient algorithm for generating the scrambled sobol ’ sequence. In NMA ’02: Revised Papers...Deidre W.Evan, and Micheal Mascagni. On the scrambled sobol sequence. In ICCS2005, pages 775–782, 2005. [7] Richard Durstenfeld. Algorithm 235: Random

  14. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis

    PubMed Central

    Yasir, Muhammad Naveed; Koh, Bong-Hwan

    2018-01-01

    This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods. PMID:29690526

  15. Optimization and experimental realization of the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, I.; Gedik, Z.

    2017-12-01

    The quantum permutation algorithm provides computational speed-up over classical algorithms for determining the parity of a given cyclic permutation. For its n -qubit implementations, the number of required quantum gates scales quadratically with n due to the quantum Fourier transforms included. We show here for the n -qubit case that the algorithm can be simplified so that it requires only O (n ) quantum gates, which theoretically reduces the complexity of the implementation. To test our results experimentally, we utilize IBM's 5-qubit quantum processor to realize the algorithm by using the original and simplified recipes for the 2-qubit case. It turns out that the latter results in a significantly higher success probability which allows us to verify the algorithm more precisely than the previous experimental realizations. We also verify the algorithm for the first time for the 3-qubit case with a considerable success probability by taking the advantage of our simplified scheme.

  16. Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.

    PubMed

    Yurovsky, Vladimir A

    2017-05-19

    Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.

  17. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis.

    PubMed

    Yasir, Muhammad Naveed; Koh, Bong-Hwan

    2018-04-21

    This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods.

  18. An extended continuous estimation of distribution algorithm for solving the permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Shao, Zhongshi; Pi, Dechang; Shao, Weishi

    2017-11-01

    This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.

  19. Inferring the Presence of Reverse Proxies Through Timing Analysis

    DTIC Science & Technology

    2015-06-01

    16 Figure 3.2 The three different instances of timing measurement configurations 17 Figure 3.3 Permutation of a web request iteration...Their data showed that they could detect at least 6 bits of entropy between unlike devices and that it was enough to determine that they are in fact...depending on the permutation being executed so that every iteration was conducted under the same distance 15 City   Lat   Long   City   Lat   Long

  20. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

    PubMed

    Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.

  1. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics.

    PubMed

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-21

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  2. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per, E-mail: jensen@uni-wuppertal.de

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thusmore » far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.« less

  3. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: Method and application to N{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Jason D.; Doraiswamy, Sriram; Candler, Graham V., E-mail: truhlar@umn.edu, E-mail: candler@aem.umn.edu

    2014-02-07

    Fitting potential energy surfaces to analytic forms is an important first step for efficient molecular dynamics simulations. Here, we present an improved version of the local interpolating moving least squares method (L-IMLS) for such fitting. Our method has three key improvements. First, pairwise interactions are modeled separately from many-body interactions. Second, permutational invariance is incorporated in the basis functions, using permutationally invariant polynomials in Morse variables, and in the weight functions. Third, computational cost is reduced by statistical localization, in which we statistically correlate the cutoff radius with data point density. We motivate our discussion in this paper with amore » review of global and local least-squares-based fitting methods in one dimension. Then, we develop our method in six dimensions, and we note that it allows the analytic evaluation of gradients, a feature that is important for molecular dynamics. The approach, which we call statistically localized, permutationally invariant, local interpolating moving least squares fitting of the many-body potential (SL-PI-L-IMLS-MP, or, more simply, L-IMLS-G2), is used to fit a potential energy surface to an electronic structure dataset for N{sub 4}. We discuss its performance on the dataset and give directions for further research, including applications to trajectory calculations.« less

  4. Coping with the diagnostic complexities of the compartment syndrome

    NASA Technical Reports Server (NTRS)

    Mubarak, S. J.; Hargens, A. R.; Karkal, S. S.

    1988-01-01

    This review recognizes that, given the various complexities associated with the condition, no pat answers can be given to fit every patient with the compartment syndrome. The authors first give a definition of the syndrome, together with a brief account of how this self-perpetuating pathologic cycle is triggered. Next, they delineate specific anatomical features of compartments that are likely to be involved, and follow this with an inventory of symptoms and signs to look for in suspected cases. After sorting out the entities that can mimic the compartment syndrome, the authors describe three essential techniques of measuring tissue pressure, which can prove invaluable in diagnosing the compartment syndrome.

  5. Brain Computation Is Organized via Power-of-Two-Based Permutation Logic.

    PubMed

    Xie, Kun; Fox, Grace E; Liu, Jun; Lyu, Cheng; Lee, Jason C; Kuang, Hui; Jacobs, Stephanie; Li, Meng; Liu, Tianming; Song, Sen; Tsien, Joe Z

    2016-01-01

    There is considerable scientific interest in understanding how cell assemblies-the long-presumed computational motif-are organized so that the brain can generate intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the origin of intelligence is rooted in a power-of-two-based permutation logic ( N = 2 i -1), producing specific-to-general cell-assembly architecture capable of generating specific perceptions and memories, as well as generalized knowledge and flexible actions. We show that this power-of-two-based permutation logic is widely used in cortical and subcortical circuits across animal species and is conserved for the processing of a variety of cognitive modalities including appetitive, emotional and social information. However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler logic despite their distinct subtypes. Interestingly, this specific-to-general permutation logic remained largely intact although NMDA receptors-the synaptic switch for learning and memory-were deleted throughout adulthood, suggesting that the logic is developmentally pre-configured. Moreover, this computational logic is implemented in the cortex via combining a random-connectivity strategy in superficial layers 2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers 2/3 cliques-which preferentially encode specific and low-combinatorial features and project inter-cortically-is ideal for maximizing cross-modality novel pattern-extraction, pattern-discrimination and pattern-categorization using sparse code, consequently explaining why it requires hippocampal offline-consolidation. In contrast, the nonrandomness in layers 5/6-which consists of few specific cliques but a higher portion of more general cliques projecting mostly to subcortical systems-is ideal for feedback-control of motivation, emotion, consciousness and behaviors. These observations suggest that the brain's basic computational algorithm is indeed organized by the power-of-two-based permutation logic. This simple mathematical logic can account for brain computation across the entire evolutionary spectrum, ranging from the simplest neural networks to the most complex.

  6. Brain Computation Is Organized via Power-of-Two-Based Permutation Logic

    PubMed Central

    Xie, Kun; Fox, Grace E.; Liu, Jun; Lyu, Cheng; Lee, Jason C.; Kuang, Hui; Jacobs, Stephanie; Li, Meng; Liu, Tianming; Song, Sen; Tsien, Joe Z.

    2016-01-01

    There is considerable scientific interest in understanding how cell assemblies—the long-presumed computational motif—are organized so that the brain can generate intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the origin of intelligence is rooted in a power-of-two-based permutation logic (N = 2i–1), producing specific-to-general cell-assembly architecture capable of generating specific perceptions and memories, as well as generalized knowledge and flexible actions. We show that this power-of-two-based permutation logic is widely used in cortical and subcortical circuits across animal species and is conserved for the processing of a variety of cognitive modalities including appetitive, emotional and social information. However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler logic despite their distinct subtypes. Interestingly, this specific-to-general permutation logic remained largely intact although NMDA receptors—the synaptic switch for learning and memory—were deleted throughout adulthood, suggesting that the logic is developmentally pre-configured. Moreover, this computational logic is implemented in the cortex via combining a random-connectivity strategy in superficial layers 2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers 2/3 cliques—which preferentially encode specific and low-combinatorial features and project inter-cortically—is ideal for maximizing cross-modality novel pattern-extraction, pattern-discrimination and pattern-categorization using sparse code, consequently explaining why it requires hippocampal offline-consolidation. In contrast, the nonrandomness in layers 5/6—which consists of few specific cliques but a higher portion of more general cliques projecting mostly to subcortical systems—is ideal for feedback-control of motivation, emotion, consciousness and behaviors. These observations suggest that the brain’s basic computational algorithm is indeed organized by the power-of-two-based permutation logic. This simple mathematical logic can account for brain computation across the entire evolutionary spectrum, ranging from the simplest neural networks to the most complex. PMID:27895562

  7. Successful attack on permutation-parity-machine-based neural cryptography.

    PubMed

    Seoane, Luís F; Ruttor, Andreas

    2012-02-01

    An algorithm is presented which implements a probabilistic attack on the key-exchange protocol based on permutation parity machines. Instead of imitating the synchronization of the communicating partners, the strategy consists of a Monte Carlo method to sample the space of possible weights during inner rounds and an analytic approach to convey the extracted information from one outer round to the next one. The results show that the protocol under attack fails to synchronize faster than an eavesdropper using this algorithm.

  8. Crossbar Switches For Optical Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.

  9. Security of the Five-Round KASUMI Type Permutation

    NASA Astrophysics Data System (ADS)

    Iwata, Tetsu; Yagi, Tohru; Kurosawa, Kaoru

    KASUMI is a blockcipher that forms the heart of the 3GPP confidentiality and integrity algorithms. In this paper, we study the security of the five-round KASUMI type permutations, and derive a highly non-trivial security bound against adversaries with adaptive chosen plaintext and chosen ciphertext attacks. To derive our security bound, we heavily use the tools from graph theory. However the result does not show its super-pseudorandomness, this gives us a strong evidence that the design of KASUMI is sound.

  10. Circular codes revisited: a statistical approach.

    PubMed

    Gonzalez, D L; Giannerini, S; Rosa, R

    2011-04-21

    In 1996 Arquès and Michel [1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45-58] discovered the existence of a common circular code in eukaryote and prokaryote genomes. Since then, circular code theory has provoked great interest and underwent a rapid development. In this paper we discuss some theoretical issues related to the synchronization properties of coding sequences and circular codes with particular emphasis on the problem of retrieval and maintenance of the reading frame. Motivated by the theoretical discussion, we adopt a rigorous statistical approach in order to try to answer different questions. First, we investigate the covering capability of the whole class of 216 self-complementary, C(3) maximal codes with respect to a large set of coding sequences. The results indicate that, on average, the code proposed by Arquès and Michel has the best covering capability but, still, there exists a great variability among sequences. Second, we focus on such code and explore the role played by the proportion of the bases by means of a hierarchy of permutation tests. The results show the existence of a sort of optimization mechanism such that coding sequences are tailored as to maximize or minimize the coverage of circular codes on specific reading frames. Such optimization clearly relates the function of circular codes with reading frame synchronization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. A community based approach to improve health care seeking for newborn danger signs in rural Wardha, India.

    PubMed

    Dongre, Amol R; Deshmukh, Pradeep R; Garg, Bishan S

    2009-01-01

    To find out the effect of community mobilization and health education effort on health care seeking behavior of families with sick newborns, and to explore the rationale behind the changed health care seeking behaviors of mothers in a rural Indian community. In the present community based participatory intervention, a triangulated research design of quantitative (survey) and qualitative (Focus group discussions, FGDs) method was undertaken for needs assessment in year 2004. In community mobilization, women's self help groups; Kishori Panchayat (KP, forum of adolescent girls), Kisan Vikas Manch (Farmers' club) and Village Coordination Committees (VCC) were formed in the study area. The trained social worker facilitated VCCs to develop village health plans to act upon their priority maternal and child health issues. The pregnant women and group members were given health education. The Lot Quality Assurance Sampling (LQAS) technique was used to monitor awareness regarding newborn danger signs among pregnant women. In year 2007, a triangulation of quantitative survey and a qualitative study (free list and pile sort exercise) was undertaken to find out changes in health care seeking behaviors of mothers. There was significant improvement in mothers' knowledge regarding newborn danger signs. About half of the mothers got information from CLICS doot (female community health worker). The monitoring over three years period showed encouraging trend in level of awareness among pregnant women. After three years, the proportion of mothers giving no treatment/home remedy for newborn danger signs declined significantly. However, there was significant improvement in mothers' health care seeking from private health care providers for sick newborns. The present approach improved mothers' knowledge regarding newborn danger signs and improved their health care seeking behavior for newborn danger signs at community level. Due to lack of faith in government health services, women preferred to seek care from private providers.

  12. A note on the estimation of the Pareto efficient set for multiobjective matrix permutation problems.

    PubMed

    Brusco, Michael J; Steinley, Douglas

    2012-02-01

    There are a number of important problems in quantitative psychology that require the identification of a permutation of the n rows and columns of an n × n proximity matrix. These problems encompass applications such as unidimensional scaling, paired-comparison ranking, and anti-Robinson forms. The importance of simultaneously incorporating multiple objective criteria in matrix permutation applications is well recognized in the literature; however, to date, there has been a reliance on weighted-sum approaches that transform the multiobjective problem into a single-objective optimization problem. Although exact solutions to these single-objective problems produce supported Pareto efficient solutions to the multiobjective problem, many interesting unsupported Pareto efficient solutions may be missed. We illustrate the limitation of the weighted-sum approach with an example from the psychological literature and devise an effective heuristic algorithm for estimating both the supported and unsupported solutions of the Pareto efficient set. © 2011 The British Psychological Society.

  13. Automated matching of corresponding seed images of three simulator radiographs to allow 3D triangulation of implanted seeds.

    PubMed

    Altschuler, M D; Kassaee, A

    1997-02-01

    To match corresponding seed images in different radiographs so that the 3D seed locations can be triangulated automatically and without ambiguity requires (at least) three radiographs taken from different perspectives, and an algorithm that finds the proper permutations of the seed-image indices. Matching corresponding images in only two radiographs introduces inherent ambiguities which can be resolved only with the use of non-positional information obtained with intensive human effort. Matching images in three or more radiographs is an 'NP (Non-determinant in Polynomial time)-complete' problem. Although the matching problem is fundamental, current methods for three-radiograph seed-image matching use 'local' (seed-by-seed) methods that may lead to incorrect matchings. We describe a permutation-sampling method which not only gives good 'global' (full permutation) matches for the NP-complete three-radiograph seed-matching problem, but also determines the reliability of the radiographic data themselves, namely, whether the patient moved in the interval between radiographic perspectives.

  14. Automated matching of corresponding seed images of three simulator radiographs to allow 3D triangulation of implanted seeds

    NASA Astrophysics Data System (ADS)

    Altschuler, Martin D.; Kassaee, Alireza

    1997-02-01

    To match corresponding seed images in different radiographs so that the 3D seed locations can be triangulated automatically and without ambiguity requires (at least) three radiographs taken from different perspectives, and an algorithm that finds the proper permutations of the seed-image indices. Matching corresponding images in only two radiographs introduces inherent ambiguities which can be resolved only with the use of non-positional information obtained with intensive human effort. Matching images in three or more radiographs is an `NP (Non-determinant in Polynomial time)-complete' problem. Although the matching problem is fundamental, current methods for three-radiograph seed-image matching use `local' (seed-by-seed) methods that may lead to incorrect matchings. We describe a permutation-sampling method which not only gives good `global' (full permutation) matches for the NP-complete three-radiograph seed-matching problem, but also determines the reliability of the radiographic data themselves, namely, whether the patient moved in the interval between radiographic perspectives.

  15. Classifying epileptic EEG signals with delay permutation entropy and Multi-Scale K-means.

    PubMed

    Zhu, Guohun; Li, Yan; Wen, Peng Paul; Wang, Shuaifang

    2015-01-01

    Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.

  16. Exploiting Lipid Permutation Symmetry to Compute Membrane Remodeling Free Energies.

    PubMed

    Bubnis, Greg; Risselada, Herre Jelger; Grubmüller, Helmut

    2016-10-28

    A complete physical description of membrane remodeling processes, such as fusion or fission, requires knowledge of the underlying free energy landscapes, particularly in barrier regions involving collective shape changes, topological transitions, and high curvature, where Canham-Helfrich (CH) continuum descriptions may fail. To calculate these free energies using atomistic simulations, one must address not only the sampling problem due to high free energy barriers, but also an orthogonal sampling problem of combinatorial complexity stemming from the permutation symmetry of identical lipids. Here, we solve the combinatorial problem with a permutation reduction scheme to map a structural ensemble into a compact, nondegenerate subregion of configuration space, thereby permitting straightforward free energy calculations via umbrella sampling. We applied this approach, using a coarse-grained lipid model, to test the CH description of bending and found sharp increases in the bending modulus for curvature radii below 10 nm. These deviations suggest that an anharmonic bending term may be required for CH models to give quantitative energetics of highly curved states.

  17. A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Jun-xin; Zhu, Zhi-liang; Fu, Chong; Yu, Hai; Zhang, Li-bo

    2015-03-01

    In recent years, a variety of chaos-based image cryptosystems have been investigated to meet the increasing demand for real-time secure image transmission. Most of them are based on permutation-diffusion architecture, in which permutation and diffusion are two independent procedures with fixed control parameters. This property results in two flaws. (1) At least two chaotic state variables are required for encrypting one plain pixel, in permutation and diffusion stages respectively. Chaotic state variables produced with high computation complexity are not sufficiently used. (2) The key stream solely depends on the secret key, and hence the cryptosystem is vulnerable against known/chosen-plaintext attacks. In this paper, a fast chaos-based image encryption scheme with a dynamic state variables selection mechanism is proposed to enhance the security and promote the efficiency of chaos-based image cryptosystems. Experimental simulations and extensive cryptanalysis have been carried out and the results prove the superior security and high efficiency of the scheme.

  18. Simultaneous and Sequential MS/MS Scan Combinations and Permutations in a Linear Quadrupole Ion Trap.

    PubMed

    Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham

    2017-10-17

    Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.

  19. Permutation coding technique for image recognition systems.

    PubMed

    Kussul, Ernst M; Baidyk, Tatiana N; Wunsch, Donald C; Makeyev, Oleksandr; Martín, Anabel

    2006-11-01

    A feature extractor and neural classifier for image recognition systems are proposed. The proposed feature extractor is based on the concept of random local descriptors (RLDs). It is followed by the encoder that is based on the permutation coding technique that allows to take into account not only detected features but also the position of each feature on the image and to make the recognition process invariant to small displacements. The combination of RLDs and permutation coding permits us to obtain a sufficiently general description of the image to be recognized. The code generated by the encoder is used as an input data for the neural classifier. Different types of images were used to test the proposed image recognition system. It was tested in the handwritten digit recognition problem, the face recognition problem, and the microobject shape recognition problem. The results of testing are very promising. The error rate for the Modified National Institute of Standards and Technology (MNIST) database is 0.44% and for the Olivetti Research Laboratory (ORL) database it is 0.1%.

  20. A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH{sub 4} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun, E-mail: jli15@cqu.edu.cn, E-mail: zhangdh@dicp.ac.cn; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131; Chen, Jun

    2015-05-28

    We report a permutationally invariant global potential energy surface (PES) for the H + CH{sub 4} system based on ∼63 000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (J{sub tot} = 0) including themore » abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].« less

  1. Rank-based permutation approaches for non-parametric factorial designs.

    PubMed

    Umlauft, Maria; Konietschke, Frank; Pauly, Markus

    2017-11-01

    Inference methods for null hypotheses formulated in terms of distribution functions in general non-parametric factorial designs are studied. The methods can be applied to continuous, ordinal or even ordered categorical data in a unified way, and are based only on ranks. In this set-up Wald-type statistics and ANOVA-type statistics are the current state of the art. The first method is asymptotically exact but a rather liberal statistical testing procedure for small to moderate sample size, while the latter is only an approximation which does not possess the correct asymptotic α level under the null. To bridge these gaps, a novel permutation approach is proposed which can be seen as a flexible generalization of the Kruskal-Wallis test to all kinds of factorial designs with independent observations. It is proven that the permutation principle is asymptotically correct while keeping its finite exactness property when data are exchangeable. The results of extensive simulation studies foster these theoretical findings. A real data set exemplifies its applicability. © 2017 The British Psychological Society.

  2. Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies*

    PubMed Central

    Kesavardhana, Sannula; Das, Raksha; Citron, Michael; Datta, Rohini; Ecto, Linda; Srilatha, Nonavinakere Seetharam; DiStefano, Daniel; Swoyer, Ryan; Joyce, Joseph G.; Dutta, Somnath; LaBranche, Celia C.; Montefiori, David C.; Flynn, Jessica A.; Varadarajan, Raghavan

    2017-01-01

    A major goal for HIV-1 vaccine development is an ability to elicit strong and durable broadly neutralizing antibody (bNAb) responses. The trimeric envelope glycoprotein (Env) spikes on HIV-1 are known to contain multiple epitopes that are susceptible to bNAbs isolated from infected individuals. Nonetheless, all trimeric and monomeric Env immunogens designed to date have failed to elicit such antibodies. We report the structure-guided design of HIV-1 cyclically permuted gp120 that forms homogeneous, stable trimers, and displays enhanced binding to multiple bNAbs, including VRC01, VRC03, VRC-PG04, PGT128, and the quaternary epitope-specific bNAbs PGT145 and PGDM1400. Constructs that were cyclically permuted in the V1 loop region and contained an N-terminal trimerization domain to stabilize V1V2-mediated quaternary interactions, showed the highest homogeneity and the best antigenic characteristics. In guinea pigs, a DNA prime-protein boost regimen with these new gp120 trimer immunogens elicited potent neutralizing antibody responses against highly sensitive Tier 1A isolates and weaker neutralizing antibody responses with an average titer of about 115 against a panel of heterologous Tier 2 isolates. A modest fraction of the Tier 2 virus neutralizing activity appeared to target the CD4 binding site on gp120. These results suggest that cyclically permuted HIV-1 gp120 trimers represent a viable platform in which further modifications may be made to eventually achieve protective bNAb responses. PMID:27879316

  3. Two-level optimization of composite wing structures based on panel genetic optimization

    NASA Astrophysics Data System (ADS)

    Liu, Boyang

    The design of complex composite structures used in aerospace or automotive vehicles presents a major challenge in terms of computational cost. Discrete choices for ply thicknesses and ply angles leads to a combinatorial optimization problem that is too expensive to solve with presently available computational resources. We developed the following methodology for handling this problem for wing structural design: we used a two-level optimization approach with response-surface approximations to optimize panel failure loads for the upper-level wing optimization. We tailored efficient permutation genetic algorithms to the panel stacking sequence design on the lower level. We also developed approach for improving continuity of ply stacking sequences among adjacent panels. The decomposition approach led to a lower-level optimization of stacking sequence with a given number of plies in each orientation. An efficient permutation genetic algorithm (GA) was developed for handling this problem. We demonstrated through examples that the permutation GAs are more efficient for stacking sequence optimization than a standard GA. Repair strategies for standard GA and the permutation GAs for dealing with constraints were also developed. The repair strategies can significantly reduce computation costs for both standard GA and permutation GA. A two-level optimization procedure for composite wing design subject to strength and buckling constraints is presented. At wing-level design, continuous optimization of ply thicknesses with orientations of 0°, 90°, and +/-45° is performed to minimize weight. At the panel level, the number of plies of each orientation (rounded to integers) and inplane loads are specified, and a permutation genetic algorithm is used to optimize the stacking sequence. The process begins with many panel genetic optimizations for a range of loads and numbers of plies of each orientation. Next, a cubic polynomial response surface is fitted to the optimum buckling load. The resulting response surface is used for wing-level optimization. In general, complex composite structures consist of several laminates. A common problem in the design of such structures is that some plies in the adjacent laminates terminate in the boundary between the laminates. These discontinuities may cause stress concentrations and may increase manufacturing difficulty and cost. We developed measures of continuity of two adjacent laminates. We studied tradeoffs between weight and continuity through a simple composite wing design. Finally, we compared the two-level optimization to a single-level optimization based on flexural lamination parameters. The single-level optimization is efficient and feasible for a wing consisting of unstiffened panels.

  4. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  5. Finding fixed satellite service orbital allotments with a k-permutation algorithm

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.

    1990-01-01

    A satellite system synthesis problem, the satellite location problem (SLP), is addressed. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the fixed satellite service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: the problem of ordering the satellites and the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, has been developed to find solutions to SLPs. Solutions to small sample problems are presented and analyzed on the basis of calculated interferences.

  6. Permutation approach, high frequency trading and variety of micro patterns in financial time series

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, Cina; Ebrahimian, Mehran; Tahmooresi, Hamed

    2014-11-01

    Permutation approach is suggested as a method to investigate financial time series in micro scales. The method is used to see how high frequency trading in recent years has affected the micro patterns which may be seen in financial time series. Tick to tick exchange rates are considered as examples. It is seen that variety of patterns evolve through time; and that the scale over which the target markets have no dominant patterns, have decreased steadily over time with the emergence of higher frequency trading.

  7. Magic informationally complete POVMs with permutations

    NASA Astrophysics Data System (ADS)

    Planat, Michel; Gedik, Zafer

    2017-09-01

    Eigenstates of permutation gates are either stabilizer states (for gates in the Pauli group) or magic states, thus allowing universal quantum computation (Planat, Rukhsan-Ul-Haq 2017 Adv. Math. Phys. 2017, 5287862 (doi:10.1155/2017/5287862)). We show in this paper that a subset of such magic states, when acting on the generalized Pauli group, define (asymmetric) informationally complete POVMs. Such informationally complete POVMs, investigated in dimensions 2-12, exhibit simple finite geometries in their projector products and, for dimensions 4 and 8 and 9, relate to two-qubit, three-qubit and two-qutrit contextuality.

  8. Permutation-invariant distance between atomic configurations

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel

    2015-09-01

    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.

  9. SCOPES: steganography with compression using permutation search

    NASA Astrophysics Data System (ADS)

    Boorboor, Sahar; Zolfaghari, Behrouz; Mozafari, Saadat Pour

    2011-10-01

    LSB (Least Significant Bit) is a widely used method for image steganography, which hides the secret message as a bit stream in LSBs of pixel bytes in the cover image. This paper proposes a variant of LSB named SCOPES that encodes and compresses the secret message while being hidden through storing addresses instead of message bytes. Reducing the length of the stored message improves the storage capacity and makes the stego image visually less suspicious to the third party. The main idea behind the SCOPES approach is dividing the message into 3-character segments, seeking each segment in the cover image and storing the address of the position containing the segment instead of the segment itself. In this approach, every permutation of the 3 bytes (if found) can be stored along with some extra bits indicating the permutation. In some rare cases the segment may not be found in the image and this can cause the message to be expanded by some overhead bits2 instead of being compressed. But experimental results show that SCOPES performs overlay better than traditional LSB even in the worst cases.

  10. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zheng, Jinde; Pan, Haiyang; Yang, Shubao; Cheng, Junsheng

    2018-01-01

    Multiscale permutation entropy (MPE) is a recently proposed nonlinear dynamic method for measuring the randomness and detecting the nonlinear dynamic change of time series and can be used effectively to extract the nonlinear dynamic fault feature from vibration signals of rolling bearing. To solve the drawback of coarse graining process in MPE, an improved MPE method called generalized composite multiscale permutation entropy (GCMPE) was proposed in this paper. Also the influence of parameters on GCMPE and its comparison with the MPE are studied by analyzing simulation data. GCMPE was applied to the fault feature extraction from vibration signal of rolling bearing and then based on the GCMPE, Laplacian score for feature selection and the Particle swarm optimization based support vector machine, a new fault diagnosis method for rolling bearing was put forward in this paper. Finally, the proposed method was applied to analyze the experimental data of rolling bearing. The analysis results show that the proposed method can effectively realize the fault diagnosis of rolling bearing and has a higher fault recognition rate than the existing methods.

  11. An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min

    2014-09-01

    In this article, an effective hybrid immune algorithm (HIA) is presented to solve the distributed permutation flow-shop scheduling problem (DPFSP). First, a decoding method is proposed to transfer a job permutation sequence to a feasible schedule considering both factory dispatching and job sequencing. Secondly, a local search with four search operators is presented based on the characteristics of the problem. Thirdly, a special crossover operator is designed for the DPFSP, and mutation and vaccination operators are also applied within the framework of the HIA to perform an immune search. The influence of parameter setting on the HIA is investigated based on the Taguchi method of design of experiment. Extensive numerical testing results based on 420 small-sized instances and 720 large-sized instances are provided. The effectiveness of the HIA is demonstrated by comparison with some existing heuristic algorithms and the variable neighbourhood descent methods. New best known solutions are obtained by the HIA for 17 out of 420 small-sized instances and 585 out of 720 large-sized instances.

  12. Cluster mass inference via random field theory.

    PubMed

    Zhang, Hui; Nichols, Thomas E; Johnson, Timothy D

    2009-01-01

    Cluster extent and voxel intensity are two widely used statistics in neuroimaging inference. Cluster extent is sensitive to spatially extended signals while voxel intensity is better for intense but focal signals. In order to leverage strength from both statistics, several nonparametric permutation methods have been proposed to combine the two methods. Simulation studies have shown that of the different cluster permutation methods, the cluster mass statistic is generally the best. However, to date, there is no parametric cluster mass inference available. In this paper, we propose a cluster mass inference method based on random field theory (RFT). We develop this method for Gaussian images, evaluate it on Gaussian and Gaussianized t-statistic images and investigate its statistical properties via simulation studies and real data. Simulation results show that the method is valid under the null hypothesis and demonstrate that it can be more powerful than the cluster extent inference method. Further, analyses with a single subject and a group fMRI dataset demonstrate better power than traditional cluster size inference, and good accuracy relative to a gold-standard permutation test.

  13. A k-permutation algorithm for Fixed Satellite Service orbital allotments

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.

    1988-01-01

    A satellite system synthesis problem, the satellite location problem (SLP), is addressed in this paper. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the Fixed Satellite Service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: (1) the problem of ordering the satellites and (2) the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, that has been developed to find solutions to SLPs formulated in the manner suggested is described. Solutions to small example problems are presented and analyzed.

  14. Convergence to equilibrium under a random Hamiltonian.

    PubMed

    Brandão, Fernando G S L; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K; Mozrzymas, Marek

    2012-09-01

    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.

  15. Convergence to equilibrium under a random Hamiltonian

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K.; Mozrzymas, Marek

    2012-09-01

    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.

  16. A new Nawaz-Enscore-Ham-based heuristic for permutation flow-shop problems with bicriteria of makespan and machine idle time

    NASA Astrophysics Data System (ADS)

    Liu, Weibo; Jin, Yan; Price, Mark

    2016-10-01

    A new heuristic based on the Nawaz-Enscore-Ham algorithm is proposed in this article for solving a permutation flow-shop scheduling problem. A new priority rule is proposed by accounting for the average, mean absolute deviation, skewness and kurtosis, in order to fully describe the distribution style of processing times. A new tie-breaking rule is also introduced for achieving effective job insertion with the objective of minimizing both makespan and machine idle time. Statistical tests illustrate better solution quality of the proposed algorithm compared to existing benchmark heuristics.

  17. Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Cruz-Chávez, Marco Antonio

    2015-11-01

    This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.

  18. Multifactor dimensionality reduction reveals a three-locus epistatic interaction associated with susceptibility to pulmonary tuberculosis.

    PubMed

    Collins, Ryan L; Hu, Ting; Wejse, Christian; Sirugo, Giorgio; Williams, Scott M; Moore, Jason H

    2013-02-18

    Identifying high-order genetics associations with non-additive (i.e. epistatic) effects in population-based studies of common human diseases is a computational challenge. Multifactor dimensionality reduction (MDR) is a machine learning method that was designed specifically for this problem. The goal of the present study was to apply MDR to mining high-order epistatic interactions in a population-based genetic study of tuberculosis (TB). The study used a previously published data set consisting of 19 candidate single-nucleotide polymorphisms (SNPs) in 321 pulmonary TB cases and 347 healthy controls from Guniea-Bissau in Africa. The ReliefF algorithm was applied first to generate a smaller set of the five most informative SNPs. MDR with 10-fold cross-validation was then applied to look at all possible combinations of two, three, four and five SNPs. The MDR model with the best testing accuracy (TA) consisted of SNPs rs2305619, rs187084, and rs11465421 (TA = 0.588) in PTX3, TLR9 and DC-Sign, respectively. A general 1000-fold permutation test of the null hypothesis of no association confirmed the statistical significance of the model (p = 0.008). An additional 1000-fold permutation test designed specifically to test the linear null hypothesis that the association effects are only additive confirmed the presence of non-additive (i.e. nonlinear) or epistatic effects (p = 0.013). An independent information-gain measure corroborated these results with a third-order epistatic interaction that was stronger than any lower-order associations. We have identified statistically significant evidence for a three-way epistatic interaction that is associated with susceptibility to TB. This interaction is stronger than any previously described one-way or two-way associations. This study highlights the importance of using machine learning methods that are designed to embrace, rather than ignore, the complexity of common diseases such as TB. We recommend future studies of the genetics of TB take into account the possibility that high-order epistatic interactions might play an important role in disease susceptibility.

  19. Comparing vector-based and Bayesian memory models using large-scale datasets: User-generated hashtag and tag prediction on Twitter and Stack Overflow.

    PubMed

    Stanley, Clayton; Byrne, Michael D

    2016-12-01

    The growth of social media and user-created content on online sites provides unique opportunities to study models of human declarative memory. By framing the task of choosing a hashtag for a tweet and tagging a post on Stack Overflow as a declarative memory retrieval problem, 2 cognitively plausible declarative memory models were applied to millions of posts and tweets and evaluated on how accurately they predict a user's chosen tags. An ACT-R based Bayesian model and a random permutation vector-based model were tested on the large data sets. The results show that past user behavior of tag use is a strong predictor of future behavior. Furthermore, past behavior was successfully incorporated into the random permutation model that previously used only context. Also, ACT-R's attentional weight term was linked to an entropy-weighting natural language processing method used to attenuate high-frequency words (e.g., articles and prepositions). Word order was not found to be a strong predictor of tag use, and the random permutation model performed comparably to the Bayesian model without including word order. This shows that the strength of the random permutation model is not in the ability to represent word order, but rather in the way in which context information is successfully compressed. The results of the large-scale exploration show how the architecture of the 2 memory models can be modified to significantly improve accuracy, and may suggest task-independent general modifications that can help improve model fit to human data in a much wider range of domains. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings

    PubMed Central

    Pellegrino, Giovanni; Machado, Alexis; von Ellenrieder, Nicolas; Watanabe, Satsuki; Hall, Jeffery A.; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe

    2016-01-01

    Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s. PMID:27047325

  1. Quantile-based permutation thresholds for quantitative trait loci hotspots.

    PubMed

    Neto, Elias Chaibub; Keller, Mark P; Broman, Andrew F; Attie, Alan D; Jansen, Ritsert C; Broman, Karl W; Yandell, Brian S

    2012-08-01

    Quantitative trait loci (QTL) hotspots (genomic locations affecting many traits) are a common feature in genetical genomics studies and are biologically interesting since they may harbor critical regulators. Therefore, statistical procedures to assess the significance of hotspots are of key importance. One approach, randomly allocating observed QTL across the genomic locations separately by trait, implicitly assumes all traits are uncorrelated. Recently, an empirical test for QTL hotspots was proposed on the basis of the number of traits that exceed a predetermined LOD value, such as the standard permutation LOD threshold. The permutation null distribution of the maximum number of traits across all genomic locations preserves the correlation structure among the phenotypes, avoiding the detection of spurious hotspots due to nongenetic correlation induced by uncontrolled environmental factors and unmeasured variables. However, by considering only the number of traits above a threshold, without accounting for the magnitude of the LOD scores, relevant information is lost. In particular, biologically interesting hotspots composed of a moderate to small number of traits with strong LOD scores may be neglected as nonsignificant. In this article we propose a quantile-based permutation approach that simultaneously accounts for the number and the LOD scores of traits within the hotspots. By considering a sliding scale of mapping thresholds, our method can assess the statistical significance of both small and large hotspots. Although the proposed approach can be applied to any type of heritable high-volume "omic" data set, we restrict our attention to expression (e)QTL analysis. We assess and compare the performances of these three methods in simulations and we illustrate how our approach can effectively assess the significance of moderate and small hotspots with strong LOD scores in a yeast expression data set.

  2. SiGN-SSM: open source parallel software for estimating gene networks with state space models.

    PubMed

    Tamada, Yoshinori; Yamaguchi, Rui; Imoto, Seiya; Hirose, Osamu; Yoshida, Ryo; Nagasaki, Masao; Miyano, Satoru

    2011-04-15

    SiGN-SSM is an open-source gene network estimation software able to run in parallel on PCs and massively parallel supercomputers. The software estimates a state space model (SSM), that is a statistical dynamic model suitable for analyzing short time and/or replicated time series gene expression profiles. SiGN-SSM implements a novel parameter constraint effective to stabilize the estimated models. Also, by using a supercomputer, it is able to determine the gene network structure by a statistical permutation test in a practical time. SiGN-SSM is applicable not only to analyzing temporal regulatory dependencies between genes, but also to extracting the differentially regulated genes from time series expression profiles. SiGN-SSM is distributed under GNU Affero General Public Licence (GNU AGPL) version 3 and can be downloaded at http://sign.hgc.jp/signssm/. The pre-compiled binaries for some architectures are available in addition to the source code. The pre-installed binaries are also available on the Human Genome Center supercomputer system. The online manual and the supplementary information of SiGN-SSM is available on our web site. tamada@ims.u-tokyo.ac.jp.

  3. Pitfalls of inferring annual mortality from inspection of published survival curves.

    PubMed

    Singer, R B

    1994-01-01

    In many FU articles currently published, results are given primarily in the form of graphs of survival curves, rather than in the form of life table data. Sometimes the authors may comment on the slope of the survival curve as though it were equal to the annual mortality rate (after reversal of the minus sign to a plus sign). Even if no comment of this sort is made, medical directors and underwriters may be tempted to think along similar lines in trying to interpret the significance of the survival curve in terms of mortality. However it is a very serious error of life table methodology to conceive of mortality rate as equal to the negative slope of the survival curve. The nature of the error is demonstrated in this article. An annual mortality rate derived from the survival curve actually depends on two variables: a quotient with the negative slope (sign reversed), delta P/ delta as the numerator, and the survival rate, P, itself as the denominator. The implications of this relationship are discussed. If there are two "parallel" survival curves with the same slope at a given time duration, the lower curve will have a higher mortality rate than the upper curve. A constant slope with increasing duration means that the annual mortality rate also increases with duration. Some characteristics of high initial mortality are also discussed and their relation to different units of FU time.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. A PSO-Based Hybrid Metaheuristic for Permutation Flowshop Scheduling Problems

    PubMed Central

    Zhang, Le; Wu, Jinnan

    2014-01-01

    This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature. PMID:24672389

  5. A PSO-based hybrid metaheuristic for permutation flowshop scheduling problems.

    PubMed

    Zhang, Le; Wu, Jinnan

    2014-01-01

    This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature.

  6. Palmprint verification using Lagrangian decomposition and invariant interest points

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Rattani, A.; Kisku, D. R.; Hwang, C. J.; Sing, J. K.

    2011-06-01

    This paper presents a palmprint based verification system using SIFT features and Lagrangian network graph technique. We employ SIFT for feature extraction from palmprint images whereas the region of interest (ROI) which has been extracted from wide palm texture at the preprocessing stage, is considered for invariant points extraction. Finally, identity is established by finding permutation matrix for a pair of reference and probe palm graphs drawn on extracted SIFT features. Permutation matrix is used to minimize the distance between two graphs. The propsed system has been tested on CASIA and IITK palmprint databases and experimental results reveal the effectiveness and robustness of the system.

  7. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, W.B.; Passiakos, M.

    This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index.

  8. Non-Weyl asymptotics for quantum graphs with general coupling conditions

    NASA Astrophysics Data System (ADS)

    Davies, E. Brian; Exner, Pavel; Lipovský, Jiří

    2010-11-01

    Inspired by a recent result of Davies and Pushnitski, we study resonance asymptotics of quantum graphs with general coupling conditions at the vertices. We derive a criterion for the asymptotics to be of a non-Weyl character. We show that for balanced vertices with permutation-invariant couplings the asymptotics is non-Weyl only in the case of Kirchhoff or anti-Kirchhoff conditions. While for graphs without permutation symmetry numerous examples of non-Weyl behaviour can be constructed. Furthermore, we present an insight into what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance point of view. Finally, we demonstrate a generalization to quantum graphs with unequal edge weights.

  9. [Local fractal analysis of noise-like time series by all permutations method for 1-115 min periods].

    PubMed

    Panchelyuga, V A; Panchelyuga, M S

    2015-01-01

    Results of local fractal analysis of 329-per-day time series of 239Pu alpha-decay rate fluctuations by means of all permutations method (APM) are presented. The APM-analysis reveals in the time series some steady frequency set. The coincidence of the frequency set with the Earth natural oscillations was demonstrated. A short review of works by different authors who analyzed the time series of fluctuations in processes of different nature is given. We have shown that the periods observed in those works correspond to the periods revealed in our study. It points to a common mechanism of the phenomenon observed.

  10. Estimation of absolute solvent and solvation shell entropies via permutation reduction

    NASA Astrophysics Data System (ADS)

    Reinhard, Friedemann; Grubmüller, Helmut

    2007-01-01

    Despite its prominent contribution to the free energy of solvated macromolecules such as proteins or DNA, and although principally contained within molecular dynamics simulations, the entropy of the solvation shell is inaccessible to straightforward application of established entropy estimation methods. The complication is twofold. First, the configurational space density of such systems is too complex for a sufficiently accurate fit. Second, and in contrast to the internal macromolecular dynamics, the configurational space volume explored by the diffusive motion of the solvent molecules is too large to be exhaustively sampled by current simulation techniques. Here, we develop a method to overcome the second problem and to significantly alleviate the first one. We propose to exploit the permutation symmetry of the solvent by transforming the trajectory in a way that renders established estimation methods applicable, such as the quasiharmonic approximation or principal component analysis. Our permutation-reduced approach involves a combinatorial problem, which is solved through its equivalence with the linear assignment problem, for which O(N3) methods exist. From test simulations of dense Lennard-Jones gases, enhanced convergence and improved entropy estimates are obtained. Moreover, our approach renders diffusive systems accessible to improved fit functions.

  11. Chaotic Image Encryption Algorithm Based on Bit Permutation and Dynamic DNA Encoding.

    PubMed

    Zhang, Xuncai; Han, Feng; Niu, Ying

    2017-01-01

    With the help of the fact that chaos is sensitive to initial conditions and pseudorandomness, combined with the spatial configurations in the DNA molecule's inherent and unique information processing ability, a novel image encryption algorithm based on bit permutation and dynamic DNA encoding is proposed here. The algorithm first uses Keccak to calculate the hash value for a given DNA sequence as the initial value of a chaotic map; second, it uses a chaotic sequence to scramble the image pixel locations, and the butterfly network is used to implement the bit permutation. Then, the image is coded into a DNA matrix dynamic, and an algebraic operation is performed with the DNA sequence to realize the substitution of the pixels, which further improves the security of the encryption. Finally, the confusion and diffusion properties of the algorithm are further enhanced by the operation of the DNA sequence and the ciphertext feedback. The results of the experiment and security analysis show that the algorithm not only has a large key space and strong sensitivity to the key but can also effectively resist attack operations such as statistical analysis and exhaustive analysis.

  12. Chaotic Image Encryption Algorithm Based on Bit Permutation and Dynamic DNA Encoding

    PubMed Central

    2017-01-01

    With the help of the fact that chaos is sensitive to initial conditions and pseudorandomness, combined with the spatial configurations in the DNA molecule's inherent and unique information processing ability, a novel image encryption algorithm based on bit permutation and dynamic DNA encoding is proposed here. The algorithm first uses Keccak to calculate the hash value for a given DNA sequence as the initial value of a chaotic map; second, it uses a chaotic sequence to scramble the image pixel locations, and the butterfly network is used to implement the bit permutation. Then, the image is coded into a DNA matrix dynamic, and an algebraic operation is performed with the DNA sequence to realize the substitution of the pixels, which further improves the security of the encryption. Finally, the confusion and diffusion properties of the algorithm are further enhanced by the operation of the DNA sequence and the ciphertext feedback. The results of the experiment and security analysis show that the algorithm not only has a large key space and strong sensitivity to the key but can also effectively resist attack operations such as statistical analysis and exhaustive analysis. PMID:28912802

  13. Analysis of crude oil markets with improved multiscale weighted permutation entropy

    NASA Astrophysics Data System (ADS)

    Niu, Hongli; Wang, Jun; Liu, Cheng

    2018-03-01

    Entropy measures are recently extensively used to study the complexity property in nonlinear systems. Weighted permutation entropy (WPE) can overcome the ignorance of the amplitude information of time series compared with PE and shows a distinctive ability to extract complexity information from data having abrupt changes in magnitude. Improved (or sometimes called composite) multi-scale (MS) method possesses the advantage of reducing errors and improving the accuracy when applied to evaluate multiscale entropy values of not enough long time series. In this paper, we combine the merits of WPE and improved MS to propose the improved multiscale weighted permutation entropy (IMWPE) method for complexity investigation of a time series. Then it is validated effective through artificial data: white noise and 1 / f noise, and real market data of Brent and Daqing crude oil. Meanwhile, the complexity properties of crude oil markets are explored respectively of return series, volatility series with multiple exponents and EEMD-produced intrinsic mode functions (IMFs) which represent different frequency components of return series. Moreover, the instantaneous amplitude and frequency of Brent and Daqing crude oil are analyzed by the Hilbert transform utilized to each IMF.

  14. Diversification of Protein Cage Structure Using Circularly Permuted Subunits.

    PubMed

    Azuma, Yusuke; Herger, Michael; Hilvert, Donald

    2018-01-17

    Self-assembling protein cages are useful as nanoscale molecular containers for diverse applications in biotechnology and medicine. To expand the utility of such systems, there is considerable interest in customizing the structures of natural cage-forming proteins and designing new ones. Here we report that a circularly permuted variant of lumazine synthase, a cage-forming enzyme from Aquifex aeolicus (AaLS) affords versatile building blocks for the construction of nanocompartments that can be easily produced, tailored, and diversified. The topologically altered protein, cpAaLS, self-assembles into spherical and tubular cage structures with morphologies that can be controlled by the length of the linker connecting the native termini. Moreover, cpAaLS proteins integrate into wild-type and other engineered AaLS assemblies by coproduction in Escherichia coli to form patchwork cages. This coassembly strategy enables encapsulation of guest proteins in the lumen, modification of the exterior through genetic fusion, and tuning of the size and electrostatics of the compartments. This addition to the family of AaLS cages broadens the scope of this system for further applications and highlights the utility of circular permutation as a potentially general strategy for tailoring the properties of cage-forming proteins.

  15. Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Zhen; Horton, John R.; Cheng, Xiadong

    2009-11-02

    Circular permutation of Candida antarctica lipase B yields several enzyme variants with substantially increased catalytic activity. To better understand the structural and functional consequences of protein termini reorganization, we have applied protein engineering and x-ray crystallography to cp283, one of the most active hydrolase variants. Our initial investigation has focused on the role of an extended surface loop, created by linking the native N- and C-termini, on protein integrity. Incremental truncation of the loop partially compensates for observed losses in secondary structure and the permutants temperature of unfolding. Unexpectedly, the improvements are accompanied by quaternary-structure changes from monomer to dimer.more » The crystal structures of one truncated variant (cp283{Delta}7) in the apo-form determined at 1.49 {angstrom} resolution and with a bound phosphonate inhibitor at 1.69 {angstrom} resolution confirmed the formation of a homodimer by swapping of the enzyme's 35-residue N-terminal region. Separately, the new protein termini at amino acid positions 282/283 convert the narrow access tunnel to the catalytic triad into a broad crevice for accelerated substrate entry and product exit while preserving the native active-site topology for optimal catalytic turnover.« less

  16. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  17. Conditional Bounds on Polarization Transfer

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Sorensen, O. W.

    The implications of constraints on unitary transformations of spin operators with respect to the accessible regions of Liouville space are analyzed. Specifically, the effects of spin-permutation symmetry on the unitary propagators are investigated. The influence of S2 and S3 propagator symmetry on two-dimensional bounds for F z = Σ Ni=1 I iz ↔ G z = Σ Mj=1 S jz polarization transfer in IS and I 2S spin- {1}/{2} systems is examined in detail. One result is that the maximum achievable F z ↔ G z polarization transfer is not reduced by permutation symmetry among the spins. For I 2S spin systems, S3 symmetry in the unitary propagator is shown to significantly reduce the accessible region in the 2D F z-S z Liouville subspace compared to the case restricted by unitarity alone. That result is compared with transformations under symmetric dipolar and scalar J coupling as well as shift and RF interactions. An important practical implication is that the refined spin thermodynamic theory of Levitt, Suter, and Ernst ( J. Chem. Phys.84, 4243, 1986) for cross polarization in solid-state NMR does not predict experimental outcomes incompatible with constraints of unitarity and spin-permutation symmetry.

  18. Permutation flow-shop scheduling problem to optimize a quadratic objective function

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu

    2017-09-01

    A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.

  19. SO(4) algebraic approach to the three-body bound state problem in two dimensions

    NASA Astrophysics Data System (ADS)

    Dmitrašinović, V.; Salom, Igor

    2014-08-01

    We use the permutation symmetric hyperspherical three-body variables to cast the non-relativistic three-body Schrödinger equation in two dimensions into a set of (possibly decoupled) differential equations that define an eigenvalue problem for the hyper-radial wave function depending on an SO(4) hyper-angular matrix element. We express this hyper-angular matrix element in terms of SO(3) group Clebsch-Gordan coefficients and use the latter's properties to derive selection rules for potentials with different dynamical/permutation symmetries. Three-body potentials acting on three identical particles may have different dynamical symmetries, in order of increasing symmetry, as follows: (1) S3 ⊗ OL(2), the permutation times rotational symmetry, that holds in sums of pairwise potentials, (2) O(2) ⊗ OL(2), the so-called "kinematic rotations" or "democracy symmetry" times rotational symmetry, that holds in area-dependent potentials, and (3) O(4) dynamical hyper-angular symmetry, that holds in hyper-radial three-body potentials. We show how the different residual dynamical symmetries of the non-relativistic three-body Hamiltonian lead to different degeneracies of certain states within O(4) multiplets.

  20. cit: hypothesis testing software for mediation analysis in genomic applications.

    PubMed

    Millstein, Joshua; Chen, Gary K; Breton, Carrie V

    2016-08-01

    The challenges of successfully applying causal inference methods include: (i) satisfying underlying assumptions, (ii) limitations in data/models accommodated by the software and (iii) low power of common multiple testing approaches. The causal inference test (CIT) is based on hypothesis testing rather than estimation, allowing the testable assumptions to be evaluated in the determination of statistical significance. A user-friendly software package provides P-values and optionally permutation-based FDR estimates (q-values) for potential mediators. It can handle single and multiple binary and continuous instrumental variables, binary or continuous outcome variables and adjustment covariates. Also, the permutation-based FDR option provides a non-parametric implementation. Simulation studies demonstrate the validity of the cit package and show a substantial advantage of permutation-based FDR over other common multiple testing strategies. The cit open-source R package is freely available from the CRAN website (https://cran.r-project.org/web/packages/cit/index.html) with embedded C ++ code that utilizes the GNU Scientific Library, also freely available (http://www.gnu.org/software/gsl/). joshua.millstein@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. A novel image encryption algorithm based on the chaotic system and DNA computing

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun

    A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.

  2. A novel chaos-based image encryption algorithm using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Chen, Yiran; Broyde, Lucie

    2017-01-01

    An image encryption algorithm based on chaotic system and deoxyribonucleic acid (DNA) sequence operations is proposed in this paper. First, the plain image is encoded into a DNA matrix, and then a new wave-based permutation scheme is performed on it. The chaotic sequences produced by 2D Logistic chaotic map are employed for row circular permutation (RCP) and column circular permutation (CCP). Initial values and parameters of the chaotic system are calculated by the SHA 256 hash of the plain image and the given values. Then, a row-by-row image diffusion method at DNA level is applied. A key matrix generated from the chaotic map is used to fuse the confused DNA matrix; also the initial values and system parameters of the chaotic system are renewed by the hamming distance of the plain image. Finally, after decoding the diffused DNA matrix, we obtain the cipher image. The DNA encoding/decoding rules of the plain image and the key matrix are determined by the plain image. Experimental results and security analyses both confirm that the proposed algorithm has not only an excellent encryption result but also resists various typical attacks.

  3. Searching for the fastest dynamo: laminar ABC flows.

    PubMed

    Alexakis, Alexandros

    2011-08-01

    The growth rate of the dynamo instability as a function of the magnetic Reynolds number R(M) is investigated by means of numerical simulations for the family of the Arnold-Beltrami-Childress (ABC) flows and for two different forcing scales. For the ABC flows that are driven at the largest available length scale, it is found that, as the magnetic Reynolds number is increased: (a) The flow that results first in a dynamo is the 2 1/2-dimensional flow for which A=B and C=0 (and all permutations). (b) The second type of flow that results in a dynamo is the one for which A=B≃2C/5 (and permutations). (c) The most symmetric flow, A=B=C, is the third type of flow that results in a dynamo. (d) As R(M) is increased, the A=B=C flow stops being a dynamo and transitions from a local maximum to a third-order saddle point. (e) At larger R(M), the A=B=C flow reestablishes itself as a dynamo but remains a saddle point. (f) At the largest examined R(M), the growth rate of the 2 1/2-dimensional flows starts to decay, the A=B=C flow comes close to a local maximum again, and the flow A=B≃2C/5 (and permutations) results in the fastest dynamo with growth rate γ≃0.12 at the largest examined R(M). For the ABC flows that are driven at the second largest available length scale, it is found that (a) the 2 1/2-dimensional flows A=B,C=0 (and permutations) are again the first flows that result in a dynamo with a decreased onset. (b) The most symmetric flow, A=B=C, is the second type of flow that results in a dynamo. It is, and it remains, a local maximum. (c) At larger R(M), the flow A=B≃2C/5 (and permutations) appears as the third type of flow that results in a dynamo. As R(M) is increased, it becomes the flow with the largest growth rate. The growth rates appear to have some correlation with the Lyapunov exponents, but constructive refolding of the field lines appears equally important in determining the fastest dynamo flow.

  4. Development of a novel cell sorting method that samples population diversity in flow cytometry.

    PubMed

    Osborne, Geoffrey W; Andersen, Stacey B; Battye, Francis L

    2015-11-01

    Flow cytometry based electrostatic cell sorting is an important tool in the separation of cell populations. Existing instruments can sort single cells into multi-well collection plates, and keep track of cell of origin and sorted well location. However currently single sorted cell results reflect the population distribution and fail to capture the population diversity. Software was designed that implements a novel sorting approach, "Slice and Dice Sorting," that links a graphical representation of a multi-well plate to logic that ensures that single cells are sampled and sorted from all areas defined by the sort region/s. Therefore the diversity of the total population is captured, and the more frequently occurring or rarer cell types are all sampled. The sorting approach was tested computationally, and using functional cell based assays. Computationally we demonstrate that conventional single cell sorting can sample as little as 50% of the population diversity dependant on the population distribution, and that Slice and Dice sorting samples much more of the variety present within a cell population. We then show by sorting single cells into wells using the Slice and Dice sorting method that there are cells sorted using this method that would be either rarely sorted, or not sorted at all using conventional single cell sorting approaches. The present study demonstrates a novel single cell sorting method that samples much more of the population diversity than current methods. It has implications in clonal selection, stem cell sorting, single cell sequencing and any areas where population heterogeneity is of importance. © 2015 International Society for Advancement of Cytometry.

  5. Small bowel obstruction: A practical step-by-step evidence-based approach to evaluation, decision making, and management.

    PubMed

    Azagury, Dan; Liu, Rockson C; Morgan, Ashley; Spain, David A

    2015-10-01

    The initial goal of evaluating a patient with SBO is to immediately identify strangulation and need for urgent operative intervention, concurrent with rapid resuscitation. This relies on a combination of traditional clinical signs and CT findings. In patients without signs of strangulation, a protocol for administration of Gastrografin immediately in the emergency department efficiently sorts patients into those who will resolve their obstructions and those who will fail nonoperative management.Furthermore, because of the unique ability of Gastrografin to draw water into the bowel lumen, it expedites resolution of partial obstructions, shortening time to removal of nasogastric tube liberalization of diet, and discharge from the hospital. Implementation of such a protocol is a complex, multidisciplinary, and time-consuming endeavor. As such, we cannot over emphasize the importance of clear, open communication with everyone involved.If surgical management is warranted, we encourage an initial laparoscopic approach with open access. Even if this results in immediate conversion to laparotomy after assessment of the intra-abdominal status, we encourage this approach with a goal of 30% conversion rate or higher. This will attest that patients will have been given the highest likelihood of a successful laparoscopic LOA.

  6. A task analysis of the shift from teacher instructions to self-instructions in performing an in-common task.

    PubMed

    Grote, I; Rosales, J; Baer, D M

    1996-11-01

    Three preschool children repeatedly did four kinds of sorts with a deck of stimulus cards: a difficult, untaught target sort and three other sorts considered analytic of self-instructing the target performance. The untaught target sort was to find in a deck of cards those matching what two sample cards had in common. Most preschool children must be taught to mediate this problem. The three other kinds of sorts taught skills involved in the target performance or its mediation. As correct self-instructive talk emerged in the target sorts, it was confirmed. The untaught target sorts were interspersed infrequently among the three alternating directly taught skill sorts, to see if accurate target sorts, and accurate self-instructive talk about the target sorts, would emerge as the three skill sorts were mastered. As all the sorts progressed, increasing accuracy was seen first in the skill sorts and then in the untaught target sorts. All three subjects showed subsequent generalization to new target sorts involving other stimulus sets. Correct spontaneous self-instructions about the target sorts increased from near zero at the beginning of the experiment to consistency at its end. Thus the three skill sorts appeared sufficient for the emergence of a self-instructed solution to the previously insoluble target performance.

  7. Parallel sort with a ranged, partitioned key-value store in a high perfomance computing environment

    DOEpatents

    Bent, John M.; Faibish, Sorin; Grider, Gary; Torres, Aaron; Poole, Stephen W.

    2016-01-26

    Improved sorting techniques are provided that perform a parallel sort using a ranged, partitioned key-value store in a high performance computing (HPC) environment. A plurality of input data files comprising unsorted key-value data in a partitioned key-value store are sorted. The partitioned key-value store comprises a range server for each of a plurality of ranges. Each input data file has an associated reader thread. Each reader thread reads the unsorted key-value data in the corresponding input data file and performs a local sort of the unsorted key-value data to generate sorted key-value data. A plurality of sorted, ranged subsets of each of the sorted key-value data are generated based on the plurality of ranges. Each sorted, ranged subset corresponds to a given one of the ranges and is provided to one of the range servers corresponding to the range of the sorted, ranged subset. Each range server sorts the received sorted, ranged subsets and provides a sorted range. A plurality of the sorted ranges are concatenated to obtain a globally sorted result.

  8. Denni Algorithm An Enhanced Of SMS (Scan, Move and Sort) Algorithm

    NASA Astrophysics Data System (ADS)

    Aprilsyah Lubis, Denni; Salim Sitompul, Opim; Marwan; Tulus; Andri Budiman, M.

    2017-12-01

    Sorting has been a profound area for the algorithmic researchers, and many resources are invested to suggest a more working sorting algorithm. For this purpose many existing sorting algorithms were observed in terms of the efficiency of the algorithmic complexity. Efficient sorting is important to optimize the use of other algorithms that require sorted lists to work correctly. Sorting has been considered as a fundamental problem in the study of algorithms that due to many reasons namely, the necessary to sort information is inherent in many applications, algorithms often use sorting as a key subroutine, in algorithm design there are many essential techniques represented in the body of sorting algorithms, and many engineering issues come to the fore when implementing sorting algorithms., Many algorithms are very well known for sorting the unordered lists, and one of the well-known algorithms that make the process of sorting to be more economical and efficient is SMS (Scan, Move and Sort) algorithm, an enhancement of Quicksort invented Rami Mansi in 2010. This paper presents a new sorting algorithm called Denni-algorithm. The Denni algorithm is considered as an enhancement on the SMS algorithm in average, and worst cases. The Denni algorithm is compared with the SMS algorithm and the results were promising.

  9. Rmax: A systematic approach to evaluate instrument sort performance using center stream catch☆

    PubMed Central

    Riddell, Andrew; Gardner, Rui; Perez-Gonzalez, Alexis; Lopes, Telma; Martinez, Lola

    2015-01-01

    Sorting performance can be evaluated with regard to Purity, Yield and/or Recovery of the sorted fraction. Purity is a check on the quality of the sample and the sort decisions made by the instrument. Recovery and Yield definitions vary with some authors regarding both as how efficient the instrument is at sorting the target particles from the original sample, others distinguishing Recovery from Yield, where the former is used to describe the accuracy of the instrument’s sort count. Yield and Recovery are often neglected, mostly due to difficulties in their measurement. Purity of the sort product is often cited alone but is not sufficient to evaluate sorting performance. All of these three performance metrics require re-sampling of the sorted fraction. But, unlike Purity, calculating Yield and/or Recovery calls for the absolute counting of particles in the sorted fraction, which may not be feasible, particularly when dealing with rare populations and precious samples. In addition, the counting process itself involves large errors. Here we describe a new metric for evaluating instrument sort Recovery, defined as the number of particles sorted relative to the number of original particles to be sorted. This calculation requires only measuring the ratios of target and non-target populations in the original pre-sort sample and in the waste stream or center stream catch (CSC), avoiding re-sampling the sorted fraction and absolute counting. We called this new metric Rmax, since it corresponds to the maximum expected Recovery for a particular set of instrument parameters. Rmax is ideal to evaluate and troubleshoot the optimum drop-charge delay of the sorter, or any instrument related failures that will affect sort performance. It can be used as a daily quality control check but can be particularly useful to assess instrument performance before single-cell sorting experiments. Because we do not perturb the sort fraction we can calculate Rmax during the sort process, being especially valuable to check instrument performance during rare population sorts. PMID:25747337

  10. ON THE NUMBER OF SOLUTIONS OF THE EQUATION x^k = a IN THE SYMMETRIC GROUP S_n

    NASA Astrophysics Data System (ADS)

    Pavlov, A. I.

    1981-04-01

    This paper consists of three sections. In the first a formula is given for the number N_n^{(k)}(a) of solutions of the equation x^k = a in S_n depending on the cyclic structure of the permutation a. In the second an asymptotic formula is given for the quantity M_n^{(k)} = \\max_{a \\in S_n} N_n^{(k)}(a) for a fixed k \\geq 2 as n \\to \\infty. In the third an asymptotic formula is found for the cardinality of the set of permutations a such that the equation x^k = a has a unique solution. Bibliography: 5 titles.

  11. EXTENDING MULTIVARIATE DISTANCE MATRIX REGRESSION WITH AN EFFECT SIZE MEASURE AND THE ASYMPTOTIC NULL DISTRIBUTION OF THE TEST STATISTIC

    PubMed Central

    McArtor, Daniel B.; Lubke, Gitta H.; Bergeman, C. S.

    2017-01-01

    Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains. PMID:27738957

  12. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic.

    PubMed

    McArtor, Daniel B; Lubke, Gitta H; Bergeman, C S

    2017-12-01

    Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.

  13. On the representation matrices of the spin permutation group. [for atomic and molecular electronic structures

    NASA Technical Reports Server (NTRS)

    Wilson, S.

    1977-01-01

    A method is presented for the determination of the representation matrices of the spin permutation group (symmetric group), a detailed knowledge of these matrices being required in the study of the electronic structure of atoms and molecules. The method is characterized by the use of two different coupling schemes. Unlike the Yamanouchi spin algebraic scheme, the method is not recursive. The matrices for the fundamental transpositions can be written down directly in one of the two bases. The method results in a computationally significant reduction in the number of matrix elements that have to be stored when compared with, say, the standard Young tableaux group theoretical approach.

  14. Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei), despite clonal reproduction of hybrids.

    PubMed

    Choleva, Lukas; Musilova, Zuzana; Kohoutova-Sediva, Alena; Paces, Jan; Rab, Petr; Janko, Karel

    2014-01-01

    Distinguishing between hybrid introgression and incomplete lineage sorting causing incongruence among gene trees in that they exhibit topological differences requires application of statistical approaches that are based on biologically relevant models. Such study is especially challenging in hybrid systems, where usual vectors mediating interspecific gene transfers--hybrids with Mendelian heredity--are absent or unknown. Here we study a complex of hybridizing species, which are known to produce clonal hybrids, to discover how one of the species, Cobitis tanaitica, has achieved a pattern of mito-nuclear mosaic genome over the whole geographic range. We appplied three distinct methods, including the method using solely the information on gene tree topologies, and found that the contrasting mito-nuclear signal might not have resulted from the retention of ancestral polymorphism. Instead, we found two signs of hybridization events related to C. tanaitica; one concerning nuclear gene flow and the other suggested mitochondrial capture. Interestingly, clonal inheritance (gynogenesis) of contemporary hybrids prevents genomic introgressions and non-clonal hybrids are either absent or too rare to be detected among European Cobitis. Our analyses therefore suggest that introgressive hybridizations are rather old episodes, mediated by previously existing hybrids whose inheritance was not entirely clonal. Cobitis complex thus supports the view that the type of resulting hybrids depends on a level of genomic divergence between sexual species.

  15. Wildland Arson as Clandestine Resource Management: A Space-Time Permutation Analysis and Classification of Informal Fire Management Regimes in Georgia, USA

    NASA Astrophysics Data System (ADS)

    Coughlan, Michael R.

    2016-05-01

    Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.

  16. Permuting input for more effective sampling of 3D conformer space

    NASA Astrophysics Data System (ADS)

    Carta, Giorgio; Onnis, Valeria; Knox, Andrew J. S.; Fayne, Darren; Lloyd, David G.

    2006-03-01

    SMILES strings and other classic 2D structural formats offer a convenient way to represent molecules as a simplistic connection table, with the inherent advantages of ease of handling and storage. In the context of virtual screening, chemical databases to be screened are often initially represented by canonicalised SMILES strings that can be filtered and pre-processed in a number of ways, resulting in molecules that occupy similar regions of chemical space to active compounds of a therapeutic target. A wide variety of software exists to convert molecules into SMILES format, namely, Mol2smi (Daylight Inc.), MOE (Chemical Computing Group) and Babel (Openeye Scientific Software). Depending on the algorithm employed, the atoms of a SMILES string defining a molecule can be ordered differently. Upon conversion to 3D coordinates they result in the production of ostensibly the same molecule. In this work we show how different permutations of a SMILES string can affect conformer generation, affecting reliability and repeatability of the results. Furthermore, we propose a novel procedure for the generation of conformers, taking advantage of the permutation of the input strings—both SMILES and other 2D formats, leading to more effective sampling of conformation space in output, and also implementing fingerprint and principal component analyses step to post process and visualise the results.

  17. Estimating Temporal Causal Interaction between Spike Trains with Permutation and Transfer Entropy

    PubMed Central

    Li, Zhaohui; Li, Xiaoli

    2013-01-01

    Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding. PMID:23940662

  18. A simplified formalism of the algebra of partially transposed permutation operators with applications

    NASA Astrophysics Data System (ADS)

    Mozrzymas, Marek; Studziński, Michał; Horodecki, Michał

    2018-03-01

    Herein we continue the study of the representation theory of the algebra of permutation operators acting on the n -fold tensor product space, partially transposed on the last subsystem. We develop the concept of partially reduced irreducible representations, which allows us to significantly simplify previously proved theorems and, most importantly, derive new results for irreducible representations of the mentioned algebra. In our analysis we are able to reduce the complexity of the central expressions by getting rid of sums over all permutations from the symmetric group, obtaining equations which are much more handy in practical applications. We also find relatively simple matrix representations for the generators of the underlying algebra. The obtained simplifications and developments are applied to derive the characteristics of a deterministic port-based teleportation scheme written purely in terms of irreducible representations of the studied algebra. We solve an eigenproblem for the generators of the algebra, which is the first step towards a hybrid port-based teleportation scheme and gives us new proofs of the asymptotic behaviour of teleportation fidelity. We also show a connection between the density operator characterising port-based teleportation and a particular matrix composed of an irreducible representation of the symmetric group, which encodes properties of the investigated algebra.

  19. Unequal homologous recombination between tandemly arranged sequences stably incorporated into cultured rat cells.

    PubMed Central

    Stringer, J R; Kuhn, R M; Newman, J L; Meade, J C

    1985-01-01

    Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene. Images PMID:3016511

  20. Detecting the influence of rare stressors on rare species in Yosemite National Park using a novel stratified permutation test

    USGS Publications Warehouse

    Matchett, John R.; Stark, Philip B.; Ostoja, Steven M.; Knapp, Roland A.; McKenny, Heather C.; Brooks, Matthew L.; Langford, William T.; Joppa, Lucas N.; Berlow, Eric L.

    2015-01-01

    Statistical models often use observational data to predict phenomena; however, interpreting model terms to understand their influence can be problematic. This issue poses a challenge in species conservation where setting priorities requires estimating influences of potential stressors using observational data. We present a novel approach for inferring influence of a rare stressor on a rare species by blending predictive models with nonparametric permutation tests. We illustrate the approach with two case studies involving rare amphibians in Yosemite National Park, USA. The endangered frog, Rana sierrae, is known to be negatively impacted by non-native fish, while the threatened toad, Anaxyrus canorus, is potentially affected by packstock. Both stressors and amphibians are rare, occurring in ~10% of potential habitat patches. We first predict amphibian occupancy with a statistical model that includes all predictors but the stressor to stratify potential habitat by predicted suitability. A stratified permutation test then evaluates the association between stressor and amphibian, all else equal. Our approach confirms the known negative relationship between fish and R. sierrae, but finds no evidence of a negative relationship between current packstock use and A. canorus breeding. Our statistical approach has potential broad application for deriving understanding (not just prediction) from observational data.

  1. A Space–Time Permutation Scan Statistic for Disease Outbreak Detection

    PubMed Central

    Kulldorff, Martin; Heffernan, Richard; Hartman, Jessica; Assunção, Renato; Mostashari, Farzad

    2005-01-01

    Background The ability to detect disease outbreaks early is important in order to minimize morbidity and mortality through timely implementation of disease prevention and control measures. Many national, state, and local health departments are launching disease surveillance systems with daily analyses of hospital emergency department visits, ambulance dispatch calls, or pharmacy sales for which population-at-risk information is unavailable or irrelevant. Methods and Findings We propose a prospective space–time permutation scan statistic for the early detection of disease outbreaks that uses only case numbers, with no need for population-at-risk data. It makes minimal assumptions about the time, geographical location, or size of the outbreak, and it adjusts for natural purely spatial and purely temporal variation. The new method was evaluated using daily analyses of hospital emergency department visits in New York City. Four of the five strongest signals were likely local precursors to citywide outbreaks due to rotavirus, norovirus, and influenza. The number of false signals was at most modest. Conclusion If such results hold up over longer study times and in other locations, the space–time permutation scan statistic will be an important tool for local and national health departments that are setting up early disease detection surveillance systems. PMID:15719066

  2. Detecting the influence of rare stressors on rare species in Yosemite National Park using a novel stratified permutation test

    PubMed Central

    Matchett, J. R.; Stark, Philip B.; Ostoja, Steven M.; Knapp, Roland A.; McKenny, Heather C.; Brooks, Matthew L.; Langford, William T.; Joppa, Lucas N.; Berlow, Eric L.

    2015-01-01

    Statistical models often use observational data to predict phenomena; however, interpreting model terms to understand their influence can be problematic. This issue poses a challenge in species conservation where setting priorities requires estimating influences of potential stressors using observational data. We present a novel approach for inferring influence of a rare stressor on a rare species by blending predictive models with nonparametric permutation tests. We illustrate the approach with two case studies involving rare amphibians in Yosemite National Park, USA. The endangered frog, Rana sierrae, is known to be negatively impacted by non-native fish, while the threatened toad, Anaxyrus canorus, is potentially affected by packstock. Both stressors and amphibians are rare, occurring in ~10% of potential habitat patches. We first predict amphibian occupancy with a statistical model that includes all predictors but the stressor to stratify potential habitat by predicted suitability. A stratified permutation test then evaluates the association between stressor and amphibian, all else equal. Our approach confirms the known negative relationship between fish and R. sierrae, but finds no evidence of a negative relationship between current packstock use and A. canorus breeding. Our statistical approach has potential broad application for deriving understanding (not just prediction) from observational data. PMID:26031755

  3. Limited Rationality and Its Quantification Through the Interval Number Judgments With Permutations.

    PubMed

    Liu, Fang; Pedrycz, Witold; Zhang, Wei-Guo

    2017-12-01

    The relative importance of alternatives expressed in terms of interval numbers in the fuzzy analytic hierarchy process aims to capture the uncertainty experienced by decision makers (DMs) when making a series of comparisons. Under the assumption of full rationality, the judgements of DMs in the typical analytic hierarchy process could be consistent. However, since the uncertainty in articulating the opinions of DMs is unavoidable, the interval number judgements are associated with the limited rationality. In this paper, we investigate the concept of limited rationality by introducing interval multiplicative reciprocal comparison matrices. By analyzing the consistency of interval multiplicative reciprocal comparison matrices, it is observed that the interval number judgements are inconsistent. By considering the permutations of alternatives, the concepts of approximation-consistency and acceptable approximation-consistency of interval multiplicative reciprocal comparison matrices are proposed. The exchange method is designed to generate all the permutations. A novel method of determining the interval weight vector is proposed under the consideration of randomness in comparing alternatives, and a vector of interval weights is determined. A new algorithm of solving decision making problems with interval multiplicative reciprocal preference relations is provided. Two numerical examples are carried out to illustrate the proposed approach and offer a comparison with the methods available in the literature.

  4. Combining p-values in replicated single-case experiments with multivariate outcome.

    PubMed

    Solmi, Francesca; Onghena, Patrick

    2014-01-01

    Interest in combining probabilities has a long history in the global statistical community. The first steps in this direction were taken by Ronald Fisher, who introduced the idea of combining p-values of independent tests to provide a global decision rule when multiple aspects of a given problem were of interest. An interesting approach to this idea of combining p-values is the one based on permutation theory. The methods belonging to this particular approach exploit the permutation distributions of the tests to be combined, and use a simple function to combine probabilities. Combining p-values finds a very interesting application in the analysis of replicated single-case experiments. In this field the focus, while comparing different treatments effects, is more articulated than when just looking at the means of the different populations. Moreover, it is often of interest to combine the results obtained on the single patients in order to get more global information about the phenomenon under study. This paper gives an overview of how the concept of combining p-values was conceived, and how it can be easily handled via permutation techniques. Finally, the method of combining p-values is applied to a simulated replicated single-case experiment, and a numerical illustration is presented.

  5. A permutation-based non-parametric analysis of CRISPR screen data.

    PubMed

    Jia, Gaoxiang; Wang, Xinlei; Xiao, Guanghua

    2017-07-19

    Clustered regularly-interspaced short palindromic repeats (CRISPR) screens are usually implemented in cultured cells to identify genes with critical functions. Although several methods have been developed or adapted to analyze CRISPR screening data, no single specific algorithm has gained popularity. Thus, rigorous procedures are needed to overcome the shortcomings of existing algorithms. We developed a Permutation-Based Non-Parametric Analysis (PBNPA) algorithm, which computes p-values at the gene level by permuting sgRNA labels, and thus it avoids restrictive distributional assumptions. Although PBNPA is designed to analyze CRISPR data, it can also be applied to analyze genetic screens implemented with siRNAs or shRNAs and drug screens. We compared the performance of PBNPA with competing methods on simulated data as well as on real data. PBNPA outperformed recent methods designed for CRISPR screen analysis, as well as methods used for analyzing other functional genomics screens, in terms of Receiver Operating Characteristics (ROC) curves and False Discovery Rate (FDR) control for simulated data under various settings. Remarkably, the PBNPA algorithm showed better consistency and FDR control on published real data as well. PBNPA yields more consistent and reliable results than its competitors, especially when the data quality is low. R package of PBNPA is available at: https://cran.r-project.org/web/packages/PBNPA/ .

  6. Tensor models, Kronecker coefficients and permutation centralizer algebras

    NASA Astrophysics Data System (ADS)

    Geloun, Joseph Ben; Ramgoolam, Sanjaye

    2017-11-01

    We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.

  7. Permutation auto-mutual information of electroencephalogram in anesthesia

    NASA Astrophysics Data System (ADS)

    Liang, Zhenhu; Wang, Yinghua; Ouyang, Gaoxiang; Voss, Logan J.; Sleigh, Jamie W.; Li, Xiaoli

    2013-04-01

    Objective. The dynamic change of brain activity in anesthesia is an interesting topic for clinical doctors and drug designers. To explore the dynamical features of brain activity in anesthesia, a permutation auto-mutual information (PAMI) method is proposed to measure the information coupling of electroencephalogram (EEG) time series obtained in anesthesia. Approach. The PAMI is developed and applied on EEG data collected from 19 patients under sevoflurane anesthesia. The results are compared with the traditional auto-mutual information (AMI), SynchFastSlow (SFS, derived from the BIS index), permutation entropy (PE), composite PE (CPE), response entropy (RE) and state entropy (SE). Performance of all indices is assessed by pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability. Main results. The PK/PD modeling and prediction probability analysis show that the PAMI index correlates closely with the anesthetic effect. The coefficient of determination R2 between PAMI values and the sevoflurane effect site concentrations, and the prediction probability Pk are higher in comparison with other indices. The information coupling in EEG series can be applied to indicate the effect of the anesthetic drug sevoflurane on the brain activity as well as other indices. The PAMI of the EEG signals is suggested as a new index to track drug concentration change. Significance. The PAMI is a useful index for analyzing the EEG dynamics during general anesthesia.

  8. Refined composite multiscale weighted-permutation entropy of financial time series

    NASA Astrophysics Data System (ADS)

    Zhang, Yongping; Shang, Pengjian

    2018-04-01

    For quantifying the complexity of nonlinear systems, multiscale weighted-permutation entropy (MWPE) has recently been proposed. MWPE has incorporated amplitude information and been applied to account for the multiple inherent dynamics of time series. However, MWPE may be unreliable, because its estimated values show large fluctuation for slight variation of the data locations, and a significant distinction only for the different length of time series. Therefore, we propose the refined composite multiscale weighted-permutation entropy (RCMWPE). By comparing the RCMWPE results with other methods' results on both synthetic data and financial time series, RCMWPE method shows not only the advantages inherited from MWPE but also lower sensitivity to the data locations, more stable and much less dependent on the length of time series. Moreover, we present and discuss the results of RCMWPE method on the daily price return series from Asian and European stock markets. There are significant differences between Asian markets and European markets, and the entropy values of Hang Seng Index (HSI) are close to but higher than those of European markets. The reliability of the proposed RCMWPE method has been supported by simulations on generated and real data. It could be applied to a variety of fields to quantify the complexity of the systems over multiple scales more accurately.

  9. Wildland Arson as Clandestine Resource Management: A Space-Time Permutation Analysis and Classification of Informal Fire Management Regimes in Georgia, USA.

    PubMed

    Coughlan, Michael R

    2016-05-01

    Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.

  10. Randomization in cancer clinical trials: permutation test and development of a computer program.

    PubMed Central

    Ohashi, Y

    1990-01-01

    When analyzing cancer clinical trial data where the treatment allocation is done using dynamic balancing methods such as the minimization method for balancing the distribution of important prognostic factors in each arm, conservativeness occurs if such a randomization scheme is ignored and a simple unstratified analysis is carried out. In this paper, the above conservativeness is demonstrated by computer simulation, and the development of a computer program that carries out permutation tests of the log-rank statistics for clinical trial data where the allocation is done by the minimization method or a stratified permuted block design is introduced. We are planning to use this program in practice to supplement a usual stratified analysis and model-based methods such as the Cox regression. The most serious problem in cancer clinical trials in Japan is how to carry out the quality control or data management in trials that are initiated and conducted by researchers without support from pharmaceutical companies. In the final section of this paper, one international collaborative work for developing international guidelines on data management in clinical trials of bladder cancer is briefly introduced, and the differences between the system adopted in US/European statistical centers and the Japanese system is described. PMID:2269216

  11. Parallel integer sorting with medium and fine-scale parallelism

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1993-01-01

    Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.

  12. Sort computation

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    1988-01-01

    Sorting has long been used to organize data in preparation for further computation, but sort computation allows some types of computation to be performed during the sort. Sort aggregation and sort distribution are the two basic forms of sort computation. Sort aggregation generates an accumulative or aggregate result for each group of records and places this result in one of the records. An aggregate operation can be any operation that is both associative and commutative, i.e., any operation whose result does not depend on the order of the operands or the order in which the operations are performed. Sort distribution copies the value from a field of a specific record in a group into that field in every record of that group.

  13. STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF CIRCULAR PERMUTATION ON THE ACTIVE SITE OF OLD YELLOW ENZYME.

    PubMed

    Daugherty, Ashley B; Horton, John R; Cheng, Xiaodong; Lutz, Stefan

    2015-02-06

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme's catalytic performance. Termini relocation into four regions of the protein (sectors I-IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I-III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location, but also provide a possible explanation for the catalytic gains in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290-310) of OYE1 which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such active site remodeling does not negatively impact the enzyme's activity and stereoselectivity, nor does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereo-selectivity for ( S )-carvone reduction. Our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.

  14. Structural and Functional Consequences of Circular Permutation on the Active Site of Old Yellow Enzyme

    DOE PAGES

    Daugherty, Ashley B.; Horton, John R.; Cheng, Xiaodong; ...

    2014-12-09

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme’s catalytic performance. Termini relocation into four regions of the protein (sectors I–IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I–III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location but also provide a possible explanation for the catalytic gainsmore » in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290–310) of OYE1, which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such an active site remodeling does not negatively impact the enzyme’s activity and stereoselectivity; neither does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereoselectivity for (S)-carvone reduction. In conclusion, our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.« less

  15. Deciphering the Preference and Predicting the Viability of Circular Permutations in Proteins

    PubMed Central

    Liu, Yen-Yi; Wang, Li-Fen; Hwang, Jenn-Kang; Lyu, Ping-Chiang

    2012-01-01

    Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology. PMID:22359629

  16. Assessing Discriminative Performance at External Validation of Clinical Prediction Models

    PubMed Central

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.

    2016-01-01

    Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients. PMID:26881753

  17. Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data.

    PubMed

    Drakesmith, M; Caeyenberghs, K; Dutt, A; Lewis, G; David, A S; Jones, D K

    2015-09-01

    Graph theory (GT) is a powerful framework for quantifying topological features of neuroimaging-derived functional and structural networks. However, false positive (FP) connections arise frequently and influence the inferred topology of networks. Thresholding is often used to overcome this problem, but an appropriate threshold often relies on a priori assumptions, which will alter inferred network topologies. Four common network metrics (global efficiency, mean clustering coefficient, mean betweenness and smallworldness) were tested using a model tractography dataset. It was found that all four network metrics were significantly affected even by just one FP. Results also show that thresholding effectively dampens the impact of FPs, but at the expense of adding significant bias to network metrics. In a larger number (n=248) of tractography datasets, statistics were computed across random group permutations for a range of thresholds, revealing that statistics for network metrics varied significantly more than for non-network metrics (i.e., number of streamlines and number of edges). Varying degrees of network atrophy were introduced artificially to half the datasets, to test sensitivity to genuine group differences. For some network metrics, this atrophy was detected as significant (p<0.05, determined using permutation testing) only across a limited range of thresholds. We propose a multi-threshold permutation correction (MTPC) method, based on the cluster-enhanced permutation correction approach, to identify sustained significant effects across clusters of thresholds. This approach minimises requirements to determine a single threshold a priori. We demonstrate improved sensitivity of MTPC-corrected metrics to genuine group effects compared to an existing approach and demonstrate the use of MTPC on a previously published network analysis of tractography data derived from a clinical population. In conclusion, we show that there are large biases and instability induced by thresholding, making statistical comparisons of network metrics difficult. However, by testing for effects across multiple thresholds using MTPC, true group differences can be robustly identified. Copyright © 2015. Published by Elsevier Inc.

  18. On the rank-distance median of 3 permutations.

    PubMed

    Chindelevitch, Leonid; Pereira Zanetti, João Paulo; Meidanis, João

    2018-05-08

    Recently, Pereira Zanetti, Biller and Meidanis have proposed a new definition of a rearrangement distance between genomes. In this formulation, each genome is represented as a matrix, and the distance d is the rank distance between these matrices. Although defined in terms of matrices, the rank distance is equal to the minimum total weight of a series of weighted operations that leads from one genome to the other, including inversions, translocations, transpositions, and others. The computational complexity of the median-of-three problem according to this distance is currently unknown. The genome matrices are a special kind of permutation matrices, which we study in this paper. In their paper, the authors provide an [Formula: see text] algorithm for determining three candidate medians, prove the tight approximation ratio [Formula: see text], and provide a sufficient condition for their candidates to be true medians. They also conduct some experiments that suggest that their method is accurate on simulated and real data. In this paper, we extend their results and provide the following: Three invariants characterizing the problem of finding the median of 3 matrices A sufficient condition for uniqueness of medians that can be checked in O(n) A faster, [Formula: see text] algorithm for determining the median under this condition A new heuristic algorithm for this problem based on compressed sensing A [Formula: see text] algorithm that exactly solves the problem when the inputs are orthogonal matrices, a class that includes both permutations and genomes as special cases. Our work provides the first proof that, with respect to the rank distance, the problem of finding the median of 3 genomes, as well as the median of 3 permutations, is exactly solvable in polynomial time, a result which should be contrasted with its NP-hardness for the DCJ (double cut-and-join) distance and most other families of genome rearrangement operations. This result, backed by our experimental tests, indicates that the rank distance is a viable alternative to the DCJ distance widely used in genome comparisons.

  19. Identification of IL-7 as a candidate disease mediator in osteoarthritis in Chinese Han population: a case-control study.

    PubMed

    Zhang, Hong-Xin; Wang, Yan-Gui; Lu, Shun-Yuan; Lu, Xiong-Xiong; Liu, Jie

    2016-09-01

    Little is known about the biochemical mediators IL-7 that correlate with the initiation and progression of OA. We performed this study to assess the role of variants of IL-7 in OA susceptibility in the Chinese Han population. We performed a retrospective, case-control study in the Chinese Han population from 2013 to 2015. Four single nucleotide polymorphisms were genotyped (using a ligase detection reaction) in 602 patients and 454 controls. Differences between groups were analysed, and association was assessed by the odds ratio (OR) and 95% CI. Among these polymorphisms, rs2583764, rs2583760 and rs6993386 showed no significant association with OA in the Chinese Han population {rs2583764 [P-allele = 0.98651, P-genotype = 0.40392, OR (95% CI): 1.00162 (0.83066, 1.20775)]; rs2583760 [P-allele = 0.384500, P-genotype = 0.58752, OR (95% CI): 0.69859 (0.30996, 1.57449)]; rs6993386 [P-allele = 0.69525, P-genotype = 0.50712, OR (95% CI): 0.96432 (0.80406, 1.15653)]}. However, the results showed that the rs2583759 polymorphism was significantly associated with OA [P-allele = 0.00 P-genotype = 3.86 × 10(-30), OR (95% CI): 0.27794 (0.22407, 0.34476)], even when the 10 000 times permutation was performed (P-allele-permutation < 0.00010, P-genotype-permutation = 0.00010). Haplotype analyses showed A-G-A-C, A-G-A-T and G-G-G-C of rs2583764-rs2583760-rs6993386-rs2583759 were risk factors for OA, both before or after the 10 000 times permutation, indicating IL-7 to be associated with OA. There was a significant association between IL-7, especially rs2583759, and OA in the Chinese Han population. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Assessing Discriminative Performance at External Validation of Clinical Prediction Models.

    PubMed

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W

    2016-01-01

    External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.

  1. Derivation of sorting programs

    NASA Technical Reports Server (NTRS)

    Varghese, Joseph; Loganantharaj, Rasiah

    1990-01-01

    Program synthesis for critical applications has become a viable alternative to program verification. Nested resolution and its extension are used to synthesize a set of sorting programs from their first order logic specifications. A set of sorting programs, such as, naive sort, merge sort, and insertion sort, were successfully synthesized starting from the same set of specifications.

  2. Safe sorting of GFP-transduced live cells for subsequent culture using a modified FACS vantage.

    PubMed

    Sørensen, T U; Gram, G J; Nielsen, S D; Hansen, J E

    1999-12-01

    A stream-in-air cell sorter enables rapid sorting to a high purity, but it is not well suited for sorting of infectious material due to the risk of airborne spread to the surroundings. A FACS Vantage cell sorter was modified for safe use with potentially HIV infected cells. Safety tests with bacteriophages were performed to evaluate the potential spread of biologically active material during cell sorting. Cells transduced with a retroviral vector carrying the gene for GFP were sorted on the basis of their GFP fluorescence, and GFP expression was followed during subsequent culture. The bacteriophage sorting showed that the biologically active material was confined to the sorting chamber. A failure mode simulating a nozzle blockage resulted in detectable droplets inside the sorting chamber, but no droplets could be detected when an additional air suction from the sorting chamber had been put on. The GFP transduced cells were sorted to 99% purity. Cells not expressing GFP at the time of sorting did not turn on the gene during subsequent culture. Un-sorted cells and cells sorted to be positive for GFP showed a decrease in the fraction of GFP positive cells during culture. Sorting of live infected cells can be performed safely and with no deleterious effects on vector expression using the modified FACS Vantage instrument. Copyright 1999 Wiley-Liss, Inc.

  3. Effects of Magnetic and Kinetic Helicities on the Growth of Magnetic Fields in Laminar and Turbulent Flows by Helical Fourier Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linkmann, Moritz; Sahoo, Ganapati; Biferale, Luca

    We present a numerical and analytical study of incompressible homogeneous conducting fluids using a helical Fourier representation. We analytically study both small- and large-scale dynamo properties, as well as the inverse cascade of magnetic helicity, in the most general minimal subset of interacting velocity and magnetic fields on a closed Fourier triad. We mainly focus on the dependency of magnetic field growth as a function of the distribution of kinetic and magnetic helicities among the three interacting wavenumbers. By combining direct numerical simulations of the full magnetohydrodynamics equations with the helical Fourier decomposition, we numerically confirm that in the kinematicmore » dynamo regime the system develops a large-scale magnetic helicity with opposite sign compared to the small-scale kinetic helicity, a sort of triad-by-triad α -effect in Fourier space. Concerning the small-scale perturbations, we predict theoretically and confirm numerically that the largest instability is achived for the magnetic component with the same helicity of the flow, in agreement with the Stretch–Twist–Fold mechanism. Vice versa, in the presence of Lorentz feedback on the velocity, we find that the inverse cascade of magnetic helicity is mostly local if magnetic and kinetic helicities have opposite signs, while it is more nonlocal and more intense if they have the same sign, as predicted by the analytical approach. Our analytical and numerical results further demonstrate the potential of the helical Fourier decomposition to elucidate the entangled dynamics of magnetic and kinetic helicities both in fully developed turbulence and in laminar flows.« less

  4. Design and realization of sort manipulator of crystal-angle sort machine

    NASA Astrophysics Data System (ADS)

    Wang, Ming-shun; Chen, Shu-ping; Guan, Shou-ping; Zhang, Yao-wei

    2005-12-01

    It is a current tendency of development in automation technology to replace manpower with manipulators in working places where dangerous, harmful, heavy or repetitive work is involved. The sort manipulator is installed in a crystal-angle sort machine to take the place of manpower, and engaged in unloading and sorting work. It is the outcome of combing together mechanism, electric transmission, and pneumatic element and micro-controller control. The step motor makes the sort manipulator operate precisely. The pneumatic elements make the sort manipulator be cleverer. Micro-controller's software bestows some simple artificial intelligence on the sort manipulator, so that it can precisely repeat its unloading and sorting work. The combination of manipulator's zero position and step motor counting control puts an end to accumulating error in long time operation. A sort manipulator's design in the practice engineering has been proved to be correct and reliable.

  5. A Task Analysis of the Shift from Teacher Instructions to Self-Instructions in Performing an In-Common Task.

    ERIC Educational Resources Information Center

    Grote, Irene; And Others

    1996-01-01

    Three preschoolers performed four sorts with stimulus cards--an untaught target sort and three directly taught alternating sorts considered to self-instruct the target performance. Accuracy increased first in the skill sorts and then in the untaught target sorts. All subjects generalized to new target sorts. Correct spontaneous self-instructions…

  6. To sort or not to sort: the impact of spike-sorting on neural decoding performance.

    PubMed

    Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie

    2014-10-01

    Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.

  7. To sort or not to sort: the impact of spike-sorting on neural decoding performance

    NASA Astrophysics Data System (ADS)

    Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie

    2014-10-01

    Objective. Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. Approach. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Main results. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Significance. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.

  8. Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport

    PubMed Central

    Carlton, Jez G.; Bujny, Miriam V.; Peter, Brian J.; Oorschot, Viola M. J.; Rutherford, Anna; Arkell, Rebecca S.; Klumperman, Judith; McMahon, Harvey T.; Cullen, Peter J.

    2006-01-01

    Summary Sorting nexins are a large family of phox-homology-domain-containing proteins that have been implicated in the control of endosomal sorting. Sorting nexin-1 is a component of the mammalian retromer complex that regulates retrieval of the cation-independent mannose 6-phosphate receptor from endosomes to the trans-Golgi network. In yeast, retromer is composed of Vps5p (the orthologue of sorting nexin-1), Vps17p (a related sorting nexin) and a cargo selective subcomplex composed of Vps26p, Vps29p and Vps35p. With the exception of Vps17p, mammalian orthologues of all yeast retromer components have been identified. For Vps17p, one potential mammalian orthologue is sorting nexin-2. Here we show that, like sorting nexin-1, sorting nexin-2 binds phosphatidylinositol 3-monophosphate and phosphatidylinositol 3,5-bisphosphate, and possesses a Bin/Amphiphysin/Rvs domain that can sense membrane curvature. However, in contrast to sorting nexin-1, sorting nexin-2 could not induce membrane tubulation in vitro or in vivo. Functionally, we show that endogenous sorting nexin-1 and sorting nexin-2 co-localise on high curvature tubular elements of the 3-phosphoinositide-enriched early endosome, and that suppression of sorting nexin-2 does not perturb the degradative sorting of receptors for epidermal growth factor or transferrin, nor the steady-state distribution of the cation-independent mannose 6-phosphate receptor. However, suppression of sorting nexin-2 results in a subtle alteration in the kinetics of cation-independent mannose 6-phosphate receptor retrieval. These data suggest that although sorting nexin-2 may be a component of the retromer complex, its presence is not essential for the regulation of endosome-to-trans Golgi network retrieval of the cation-independent mannose 6-phosphate receptor. PMID:16179610

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlenko, E. V., E-mail: eorlenko@mail.ru; Evstafev, A. V.; Orlenko, F. E.

    A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithiummore » atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated.« less

  10. Security Analysis of Some Diffusion Mechanisms Used in Chaotic Ciphers

    NASA Astrophysics Data System (ADS)

    Zhang, Leo Yu; Zhang, Yushu; Liu, Yuansheng; Yang, Anjia; Chen, Guanrong

    As a variant of the substitution-permutation network, the permutation-diffusion structure has received extensive attention in the field of chaotic cryptography over the last three decades. Because of the high implementation speed and nonlinearity over GF(2), the Galois field of two elements, mixing modulo addition/multiplication and Exclusive OR becomes very popular in various designs to achieve the desired diffusion effect. This paper reports that some diffusion mechanisms based on modulo addition/multiplication and Exclusive OR are not resistant to plaintext attacks as claimed. By cracking several recently proposed chaotic ciphers as examples, it is demonstrated that a good understanding of the strength and weakness of these crypto-primitives is crucial for designing more practical chaotic encryption algorithms in the future.

  11. Optimal recombination in genetic algorithms for flowshop scheduling problems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Julia

    2016-10-01

    The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.

  12. Nonparametric evaluation of birth cohort trends in disease rates.

    PubMed

    Tarone, R E; Chu, K C

    2000-01-01

    Although interpretation of age-period-cohort analyses is complicated by the non-identifiability of maximum likelihood estimates, changes in the slope of the birth-cohort effect curve are identifiable and have potential aetiologic significance. A nonparametric test for a change in the slope of the birth-cohort trend has been developed. The test is a generalisation of the sign test and is based on permutational distributions. A method for identifying interactions between age and calendar-period effects is also presented. The nonparametric method is shown to be powerful in detecting changes in the slope of the birth-cohort trend, although its power can be reduced considerably by calendar-period patterns of risk. The method identifies a previously unidentified decrease in the birth-cohort risk of lung-cancer mortality from 1912 to 1919, which appears to reflect a reduction in the initiation of smoking by young men at the beginning of the Great Depression (1930s). The method also detects an interaction between age and calendar period in leukemia mortality rates, reflecting the better response of children to chemotherapy. The proposed nonparametric method provides a data analytic approach, which is a useful adjunct to log-linear Poisson analysis of age-period-cohort models, either in the initial model building stage, or in the final interpretation stage.

  13. Examining Gaseous Behavior of Galaxies and their Environments

    NASA Astrophysics Data System (ADS)

    Ivory, KeShawn; Barger, Kathleen

    2017-01-01

    The development of galaxies hinges upon the behavior of the gas within and around them, as this is paramount to understanding the regulation of star formation. To investigate these processes, we analyzed data from the MaNGA survey for two galaxies with nearby background quasars for which Hubble Space Telescope data exists. We plotted and analyzed spectra for various elemental transitions, especially [N II] , [O III], and H-alpha, to gain information about gas properties such as temperature, ionization fraction, and star formation. We also plotted velocity fields based upon the gas motions as determined through Doppler shift. One of the galaxies displayed signs of heavy star formation and the other displayed signs of Active Galactic Nucleus activity. The stellar and gaseous velocity fields of the AGN galaxy were very disparate which suggests some sort of interaction with another galaxy in the galaxy’s past. The properties of the gas in these galaxies could potentially teach us more about the evolutionary path of the Milky Way, which forms stars itself while interacting heavily with other galaxies. This work base on data from the forth-generation Sloan Digital Sky Survey (SDSS-IV)/Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), and is part of the Project No.0034 in SDSS-IV.

  14. Design of monitoring system for mail-sorting based on the Profibus S7 series PLC

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Jia, S. H.; Wang, Y. H.; Liu, H.; Tang, G. C.

    2017-01-01

    With the rapid development of the postal express, the workload of mail sorting is increasing, but the automatic technology of mail sorting is not mature enough. In view of this, the system uses Siemens S7-300 PLC as the main station controller, PLC of Siemens S7-200/400 is from the station controller, through the man-machine interface configuration software MCGS, PROFIBUS-DP communication, RFID technology and mechanical sorting hand achieve mail classification sorting monitoring. Among them, distinguish mail-sorting by scanning RFID posted in the mail electronic bar code (fixed code), the system uses the corresponding controller on the acquisition of information processing, the processed information transmit to the sorting manipulator by PROFIBUS-DP. The system can realize accurate and efficient mail sorting, which will promote the development of mail sorting technology.

  15. Dissecting Stop Transfer versus Conservative Sorting Pathways for Mitochondrial Inner Membrane Proteins in Vivo*

    PubMed Central

    Park, Kwangjin; Botelho, Salomé Calado; Hong, Joonki; Österberg, Marie; Kim, Hyun

    2013-01-01

    Mitochondrial inner membrane proteins that carry an N-terminal presequence are sorted by one of two pathways: stop transfer or conservative sorting. However, the sorting pathway is known for only a small number of proteins, in part due to the lack of robust experimental tools with which to study. Here we present an approach that facilitates determination of inner membrane protein sorting pathways in vivo by fusing a mitochondrial inner membrane protein to the C-terminal part of Mgm1p containing the rhomboid cleavage region. We validated the Mgm1 fusion approach using a set of proteins for which the sorting pathway is known, and determined sorting pathways of inner membrane proteins for which the sorting mode was previously uncharacterized. For Sdh4p, a multispanning membrane protein, our results suggest that both conservative sorting and stop transfer mechanisms are required for insertion. Furthermore, the sorting process of Mgm1 fusion proteins was analyzed under different growth conditions and yeast mutant strains that were defective in the import motor or the m-AAA protease function. Our results show that the sorting of mitochondrial proteins carrying moderately hydrophobic transmembrane segments is sensitive to cellular conditions, implying that mitochondrial import and membrane sorting in the physiological environment may be dynamically tuned. PMID:23184936

  16. Sampling Modification Effects in the Subgingival Microbiome Profile of Healthy Children.

    PubMed

    Santigli, Elisabeth; Trajanoski, Slave; Eberhard, Katharina; Klug, Barbara

    2016-01-01

    Background: Oral microbiota are considered major players in the development of periodontal diseases. Thorough knowledge of intact subgingival microbiomes is required to elucidate microbial shifts from health to disease. Aims: This comparative study investigated the subgingival microbiome of healthy children, possible inter- and intra-individual effects of modified sampling, and basic comparability of subgingival microprints. Methods: In five 10-year-old children, biofilm was collected from the upper first premolars and first molars using sterilized, UV-treated paper-points inserted into the subgingival sulcus at eight sites. After supragingival cleaning using an electric toothbrush and water, sampling was performed, firstly, excluding (Mode A) and, secondly, including (Mode B) cleansing with sterile cotton pellets. DNA was extracted from the pooled samples, and primers targeting 16S rRNA hypervariable regions V5 and V6 were used for 454-pyrosequencing. Wilcoxon signed rank test and t -test were applied to compare sampling modes. Principal coordinate analysis (PCoA) and average agglomerative hierarchical clustering were calculated with unweighted UniFrac distance matrices. Sample grouping was tested with permutational MANOVA (Adonis). Results: Data filtering and quality control yielded 67,218 sequences with an average sequence length of 243bp (SD 6.52; range 231-255). Actinobacteria (2.8-24.6%), Bacteroidetes (9.2-25.1%), Proteobacteria (4.9-50.6%), Firmicutes (16.5-57.4%), and Fusobacteria (2.2-17.1%) were the five major phyla found in all samples. Differences in microbial abundances between sampling modes were not evident. High sampling numbers are needed to achieve significance for rare bacterial phyla. Samples taken from one individual using different sampling modes were more similar to each other than to other individuals' samples. PCoA and hierarchical clustering showed a grouping of the paired samples. Permutational MANOVA did not reveal sample grouping by sampling modes ( p = 0.914 by R 2 = 0.09). Conclusion: A slight modification of sampling mode has minor effects corresponding to a natural variability in the microbiome profiles of healthy children. The inter-individual variability in subgingival microprints is greater than intra-individual differences. Statistical analyses of microbial populations should consider this baseline variability and move beyond mere quantification with input from visual analytics. Comparative results are difficult to summarize as methods for studying huge datasets are still evolving. Advanced approaches are needed for sample size calculations in clinical settings.

  17. Neuropsychological Deficits in Huntington’s Disease Gene Carriers and Correlates of Early “Conversion”

    PubMed Central

    Brandt, Jason; Inscore, Anjeli B.; Ward, Julianna; Shpritz, Barnett; Rosenblatt, Adam; Margolis, Russell L.; Ross, Christopher A.

    2010-01-01

    The authors examined whether the baseline cognitive functioning of 21 clinically normal huntingtin mutation carriers who developed manifest Huntington’s disease on follow-up differed from that of 49 mutation carriers who remain asymptomatic over the same period in a longitudinal study. One hundred thirty-four gene-negative offspring of Huntington’s disease patients were studied as well. Overall, there were no differences in cognitive test performance among the three groups. However, “converters” who developed signs of Huntington’s disease within 8.6 years demonstrated poorer performance on the Wisconsin Card Sorting Test at baseline. People with the Huntington’s disease mutation who are carefully examined neurologically and found to be asymptomatic have, at most, very minimal problem-solving impairment, and only if they are within a few years of clinical onset. PMID:19196932

  18. Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle.

    PubMed

    Hu, Liandong; Hu, Qiaofeng; Yang, Jianxue

    2014-10-01

    The objective of this study was to find a stable microemulsion vehicle for transdermal delivery of ibuprofen to improve the skin permeability. Microemulsion was prepared using different sorts of oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were used to evaluate the microemulsion domain. The effects of oleic acid and surfactant mixture on skin permeation of ibuprofen were evaluated with excised skins. The optimum formulation F3 consisting of 6% oleic acid, 30% Cremophor RH40/Transcutol P (2:1, w/w) and 59% water phase, showed a high permeation rate of 42.98 µg/cm(2)/hr. The mean droplet size of microemulsion was about 43 nm and no skin irritation signs were observed on the skin of rabbits. These results indicated that this novel microemulsion is a useful formulation for the transdermal delivery of ibuprofen.

  19. Seminal plasma affects sperm sex sorting in boars.

    PubMed

    Alkmin, Diego V; Parrilla, Inmaculada; Tarantini, Tatiana; Del Olmo, David; Vazquez, Juan M; Martinez, Emilio A; Roca, Jordi

    2016-04-01

    Two experiments were conducted in boar semen samples to evaluate how both holding time (24h) and the presence of seminal plasma (SP) before sorting affect sperm sortability and the ability of sex-sorted spermatozoa to tolerate liquid storage. Whole ejaculate samples were divided into three aliquots immediately after collection: one was diluted (1:1, v/v) in Beltsville thawing solution (BTS; 50% SP); the SP of the other two aliquots was removed and the sperm pellets were diluted with BTS + 10% of their own SP (10% SP) or BTS alone (0% SP). The three aliquots of each ejaculate were divided into two portions, one that was processed immediately for sorting and a second that was sorted after 24h storage at 15-17°C. In the first experiment, the ability to exhibit well-defined X- and Y-chromosome-bearing sperm peaks (split) in the cytometry histogram and the subsequent sorting efficiency were assessed (20 ejaculates). In contrast with holding time, the SP proportion influenced the parameters examined, as evidenced by the higher number of ejaculates exhibiting split and better sorting efficiency (P<0.05) in semen samples with 0-10% SP compared with those with 50% SP. In a second experiment, the quality (viability, total and progressive motility) and functionality (plasma membrane fluidity and intracellular generation of reactive oxygen species) of sex-sorted spermatozoa were evaluated after 0, 72 and 120h storage at 15-17°C (10 ejaculates). Holding time and SP proportion did not influence the quality or functionality of stored sex-sorted spermatozoa. In conclusion, a holding time as long as 24h before sorting did not negatively affect sex sorting efficiency or the ability of sorted boar spermatozoa to tolerate long-term liquid storage. A high proportion of SP (50%) in the semen samples before sorting reduced the number of ejaculates to be sorted and negatively influenced the sorting efficiency, but did not affect the ability of sex-sorted spermatozoa to tolerate liquid storage.

  20. Stochastic Model of Vesicular Sorting in Cellular Organelles

    NASA Astrophysics Data System (ADS)

    Vagne, Quentin; Sens, Pierre

    2018-02-01

    The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intracellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations, considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values lead to fast sorting but result in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well-defined sorted compartments but sorting is exponentially slow. Our results suggest an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components and highlight the importance of stochastic effects for the steady-state organization of intracellular compartments.

  1. Identification and genetic analysis of cancer cells with PCR-activated cell sorting

    PubMed Central

    Eastburn, Dennis J.; Sciambi, Adam; Abate, Adam R.

    2014-01-01

    Cell sorting is a central tool in life science research for analyzing cellular heterogeneity or enriching rare cells out of large populations. Although methods like FACS and FISH-FC can characterize and isolate cells from heterogeneous populations, they are limited by their reliance on antibodies, or the requirement to chemically fix cells. We introduce a new cell sorting technology that robustly sorts based on sequence-specific analysis of cellular nucleic acids. Our approach, PCR-activated cell sorting (PACS), uses TaqMan PCR to detect nucleic acids within single cells and trigger their sorting. With this method, we identified and sorted prostate cancer cells from a heterogeneous population by performing >132 000 simultaneous single-cell TaqMan RT-PCR reactions targeting vimentin mRNA. Following vimentin-positive droplet sorting and downstream analysis of recovered nucleic acids, we found that cancer-specific genomes and transcripts were significantly enriched. Additionally, we demonstrate that PACS can be used to sort and enrich cells via TaqMan PCR reactions targeting single-copy genomic DNA. PACS provides a general new technical capability that expands the application space of cell sorting by enabling sorting based on cellular information not amenable to existing approaches. PMID:25030902

  2. Atypical nucleus accumbens morphology in psychopathy: another limbic piece in the puzzle.

    PubMed

    Boccardi, Marina; Bocchetta, Martina; Aronen, Hannu J; Repo-Tiihonen, Eila; Vaurio, Olli; Thompson, Paul M; Tiihonen, Jari; Frisoni, Giovanni B

    2013-01-01

    Psychopathy has been associated with increased putamen and striatum volumes. The nucleus accumbens - a key structure in reversal learning, less effective in psychopathy - has not yet received specific attention. Moreover, basal ganglia morphology has never been explored. We examined the morphology of the caudate, putamen and accumbens, manually segmented from magnetic resonance images of 26 offenders (age: 32.5 ± 8.4) with medium-high psychopathy (mean PCL-R=30 ± 5) and 25 healthy controls (age: 34.6 ± 10.8). Local differences were statistically modeled using a surface-based radial distance mapping method (p<0.05; multiple comparisons correction through permutation tests). In psychopathy, the caudate and putamen had normal global volume, but different morphology, significant after correction for multiple comparisons, for the right dorsal putamen (permutation test: p=0.02). The volume of the nucleus accumbens was 13% smaller in psychopathy (p corrected for multiple comparisons <0.006). The atypical morphology consisted of predominant anterior hypotrophy bilaterally (10-30%). Caudate and putamen local morphology displayed negative correlation with the lifestyle factor of the PCL-R (permutation test: p=0.05 and 0.03). From these data, psychopathy appears to be associated with an atypical striatal morphology, with highly significant global and local differences of the accumbens. This is consistent with the clinical syndrome and with theories of limbic involvement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Multiscale permutation entropy analysis of laser beam wandering in isotropic turbulence.

    PubMed

    Olivares, Felipe; Zunino, Luciano; Gulich, Damián; Pérez, Darío G; Rosso, Osvaldo A

    2017-10-01

    We have experimentally quantified the temporal structural diversity from the coordinate fluctuations of a laser beam propagating through isotropic optical turbulence. The main focus here is on the characterization of the long-range correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. To fulfill this goal, a laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing the symbolic technique based on ordinal patterns to estimate the well-known permutation entropy. We show that the permutation entropy estimations at multiple time scales evidence an interplay between different dynamical behaviors. More specifically, a crossover between two different scaling regimes is observed. We confirm a transition from an integrated stochastic process contaminated with electronic noise to a fractional Brownian motion with a Hurst exponent H=5/6 as the sampling time increases. Besides, we are able to quantify, from the estimated entropy, the amount of electronic noise as a function of the turbulence strength. We have also demonstrated that these experimental observations are in very good agreement with numerical simulations of noisy fractional Brownian motions with a well-defined crossover between two different scaling regimes.

  4. A secure transmission scheme of streaming media based on the encrypted control message

    NASA Astrophysics Data System (ADS)

    Li, Bing; Jin, Zhigang; Shu, Yantai; Yu, Li

    2007-09-01

    As the use of streaming media applications increased dramatically in recent years, streaming media security becomes an important presumption, protecting the privacy. This paper proposes a new encryption scheme in view of characteristics of streaming media and the disadvantage of the living method: encrypt the control message in the streaming media with the high security lever and permute and confuse the data which is non control message according to the corresponding control message. Here the so-called control message refers to the key data of the streaming media, including the streaming media header and the header of the video frame, and the seed key. We encrypt the control message using the public key encryption algorithm which can provide high security lever, such as RSA. At the same time we make use of the seed key to generate key stream, from which the permutation list P responding to GOP (group of picture) is derived. The plain text of the non-control message XORs the key stream and gets the middle cipher text. And then obtained one is permutated according to P. In contrast the decryption process is the inverse process of the above. We have set up a testbed for the above scheme and found our scheme is six to eight times faster than the conventional method. It can be applied not only between PCs but also between handheld devices.

  5. Effectiveness of qPCR permutations, internal controls and dilution as means for minimizing the impact of inhibition while measuring Enterococcus in environmental waters.

    PubMed

    Cao, Y; Griffith, J F; Dorevitch, S; Weisberg, S B

    2012-07-01

      Draft criteria for the optional use of qPCR for recreational water quality monitoring have been published in the United States. One concern is that inhibition of the qPCR assay can lead to false-negative results and potentially inadequate public health protection. We evaluate the effectiveness of strategies for minimizing the impact of inhibition.   Five qPCR method permutations for measuring Enterococcus were challenged with 133 potentially inhibitory fresh and marine water samples. Serial dilutions were conducted to assess Enterococcus target assay inhibition, to which inhibition identified using four internal controls (IC) was compared. The frequency and magnitude of inhibition varied considerably among qPCR methods, with the permutation using an environmental master mix performing substantially better. Fivefold dilution was also effective at reducing inhibition in most samples (>78%). ICs were variable and somewhat ineffective, with 54-85% agreement between ICs and serial dilution.   The current IC methods appear to not accurately predict Enterococcus inhibition and should be used with caution; fivefold dilution and the use of reagents designed for environmental sample analysis (i.e. more robust qPCR chemistry) may be preferable.   Suitable approaches for defining, detecting and reducing inhibition will improve implementation of qPCR for water monitoring. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  6. Evaluation of motility, membrane status and DNA integrity of frozen-thawed bottlenose dolphin (Tursiops truncatus) spermatozoa after sex-sorting and recryopreservation.

    PubMed

    Montano, G A; Kraemer, D C; Love, C C; Robeck, T R; O'Brien, J K

    2012-06-01

    Artificial insemination (AI) with sex-sorted frozen-thawed spermatozoa has led to enhanced management of ex situ bottlenose dolphin populations. Extended distance of animals from the sorting facility can be overcome by the use of frozen-thawed, sorted and recryopreserved spermatozoa. Although one bottlenose dolphin calf had been born using sexed frozen-thawed spermatozoa derived from frozen semen, a critical evaluation of in vitro sperm quality is needed to justify the routine use of such samples in AI programs. Sperm motility parameters and plasma membrane integrity were influenced by stage of the sex-sorting process, sperm type (non-sorted and sorted) and freezing method (straw and directional) (P<0.05). After recryopreservation, sorted spermatozoa frozen with the directional freezing method maintained higher (P<0.05) motility parameters over a 24-h incubation period compared to spermatozoa frozen using straws. Quality of sperm DNA of non-sorted spermatozoa, as assessed by the sperm chromatin structure assay (SCSA), was high and remained unchanged throughout freeze-thawing and incubation processes. Though a possible interaction between Hoechst 33342 and the SCSA-derived acridine orange was observed in stained and sorted samples, the proportion of sex-sorted, recryopreserved spermatozoa exhibiting denatured DNA was low (6.6±4.1%) at 6 h after the second thawing step and remained unchanged (P>0.05) at 24 h. The viability of sorted spermatozoa was higher (P<0.05) than that of non-sorted spermatozoa across all time points after recryopreservation. Collective results indicate that bottlenose dolphin spermatozoa undergoing cryopreservation, sorting and recryopreservation are of adequate quality for use in AI.

  7. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation.

    PubMed

    Shields, C Wyatt; Reyes, Catherine D; López, Gabriel P

    2015-03-07

    Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism.

  8. Microfluidic Cell Sorting: A Review of the Advances in the Separation of Cells from Debulking to Rare Cell Isolation

    PubMed Central

    Shields, C. Wyatt; Reyes, Catherine D.; López, Gabriel P.

    2015-01-01

    Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism. PMID:25598308

  9. A Binary Array Asynchronous Sorting Algorithm with Using Petri Nets

    NASA Astrophysics Data System (ADS)

    Voevoda, A. A.; Romannikov, D. O.

    2017-01-01

    Nowadays the tasks of computations speed-up and/or their optimization are actual. Among the approaches on how to solve these tasks, a method applying approaches of parallelization and asynchronization to a sorting algorithm is considered in the paper. The sorting methods are ones of elementary methods and they are used in a huge amount of different applications. In the paper, we offer a method of an array sorting that based on a division into a set of independent adjacent pairs of numbers and their parallel and asynchronous comparison. And this one distinguishes the offered method from the traditional sorting algorithms (like quick sorting, merge sorting, insertion sorting and others). The algorithm is implemented with the use of Petri nets, like the most suitable tool for an asynchronous systems description.

  10. A Quality Sorting of Fruit Using a New Automatic Image Processing Method

    NASA Astrophysics Data System (ADS)

    Amenomori, Michihiro; Yokomizu, Nobuyuki

    This paper presents an innovative approach for quality sorting of objects such as apples sorting in an agricultural factory, using an image processing algorithm. The objective of our approach are; firstly to sort the objects by their colors precisely; secondly to detect any irregularity of the colors surrounding the apples efficiently. An experiment has been conducted and the results have been obtained and compared with that has been preformed by human sorting process and by color sensor sorting devices. The results demonstrate that our approach is capable to sort the objects rapidly and the percentage of classification valid rate was 100 %.

  11. Permutation entropy analysis of financial time series based on Hill's diversity number

    NASA Astrophysics Data System (ADS)

    Zhang, Yali; Shang, Pengjian

    2017-12-01

    In this paper the permutation entropy based on Hill's diversity number (Nn,r) is introduced as a new way to assess the complexity of a complex dynamical system such as stock market. We test the performance of this method with simulated data. Results show that Nn,r with appropriate parameters is more sensitive to the change of system and describes the trends of complex systems clearly. In addition, we research the stock closing price series from different data that consist of six indices: three US stock indices and three Chinese stock indices during different periods, Nn,r can quantify the changes of complexity for stock market data. Moreover, we get richer information from Nn,r, and obtain some properties about the differences between the US and Chinese stock indices.

  12. Tag-KEM from Set Partial Domain One-Way Permutations

    NASA Astrophysics Data System (ADS)

    Abe, Masayuki; Cui, Yang; Imai, Hideki; Kurosawa, Kaoru

    Recently a framework called Tag-KEM/DEM was introduced to construct efficient hybrid encryption schemes. Although it is known that generic encode-then-encrypt construction of chosen ciphertext secure public-key encryption also applies to secure Tag-KEM construction and some known encoding method like OAEP can be used for this purpose, it is worth pursuing more efficient encoding method dedicated for Tag-KEM construction. This paper proposes an encoding method that yields efficient Tag-KEM schemes when combined with set partial one-way permutations such as RSA and Rabin's encryption scheme. To our knowledge, this leads to the most practical hybrid encryption scheme of this type. We also present an efficient Tag-KEM which is CCA-secure under general factoring assumption rather than Blum factoring assumption.

  13. Performance evaluation of firefly algorithm with variation in sorting for non-linear benchmark problems

    NASA Astrophysics Data System (ADS)

    Umbarkar, A. J.; Balande, U. T.; Seth, P. D.

    2017-06-01

    The field of nature inspired computing and optimization techniques have evolved to solve difficult optimization problems in diverse fields of engineering, science and technology. The firefly attraction process is mimicked in the algorithm for solving optimization problems. In Firefly Algorithm (FA) sorting of fireflies is done by using sorting algorithm. The original FA is proposed with bubble sort for ranking the fireflies. In this paper, the quick sort replaces bubble sort to decrease the time complexity of FA. The dataset used is unconstrained benchmark functions from CEC 2005 [22]. The comparison of FA using bubble sort and FA using quick sort is performed with respect to best, worst, mean, standard deviation, number of comparisons and execution time. The experimental result shows that FA using quick sort requires less number of comparisons but requires more execution time. The increased number of fireflies helps to converge into optimal solution whereas by varying dimension for algorithm performed better at a lower dimension than higher dimension.

  14. Learning cellular sorting pathways using protein interactions and sequence motifs.

    PubMed

    Lin, Tien-Ho; Bar-Joseph, Ziv; Murphy, Robert F

    2011-11-01

    Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/.

  15. New adaptive color quantization method based on self-organizing maps.

    PubMed

    Chang, Chip-Hong; Xu, Pengfei; Xiao, Rui; Srikanthan, Thambipillai

    2005-01-01

    Color quantization (CQ) is an image processing task popularly used to convert true color images to palletized images for limited color display devices. To minimize the contouring artifacts introduced by the reduction of colors, a new competitive learning (CL) based scheme called the frequency sensitive self-organizing maps (FS-SOMs) is proposed to optimize the color palette design for CQ. FS-SOM harmonically blends the neighborhood adaptation of the well-known self-organizing maps (SOMs) with the neuron dependent frequency sensitive learning model, the global butterfly permutation sequence for input randomization, and the reinitialization of dead neurons to harness effective utilization of neurons. The net effect is an improvement in adaptation, a well-ordered color palette, and the alleviation of underutilization problem, which is the main cause of visually perceivable artifacts of CQ. Extensive simulations have been performed to analyze and compare the learning behavior and performance of FS-SOM against other vector quantization (VQ) algorithms. The results show that the proposed FS-SOM outperforms classical CL, Linde, Buzo, and Gray (LBG), and SOM algorithms. More importantly, FS-SOM achieves its superiority in reconstruction quality and topological ordering with a much greater robustness against variations in network parameters than the current art SOM algorithm for CQ. A most significant bit (MSB) biased encoding scheme is also introduced to reduce the number of parallel processing units. By mapping the pixel values as sign-magnitude numbers and biasing the magnitudes according to their sign bits, eight lattice points in the color space are condensed into one common point density function. Consequently, the same processing element can be used to map several color clusters and the entire FS-SOM network can be substantially scaled down without severely scarifying the quality of the displayed image. The drawback of this encoding scheme is the additional storage overhead, which can be cut down by leveraging on existing encoder in an overall lossy compression scheme.

  16. "Clinical brain profiling": a neuroscientific diagnostic approach for mental disorders.

    PubMed

    Peled, Abraham; Geva, Amir B

    2014-10-01

    Clinical brain profiling is an attempt to map a descriptive nosology in psychiatry to underlying constructs in neurobiology and brain dynamics. This paper briefly reviews the motivation behind clinical brain profiling (CBP) and presents some provisional validation using clinical assessments and meta-analyses of neuroscientific publications. The paper has four sections. In the first, we review the nature and motivation for clinical brain profiling. This involves a description of the key aspects of functional anatomy that can lead to psychopathology. These features constitute the dimensions or categories for a profile of brain disorders based upon pathophysiology. The second section describes a mapping or translation matrix that maps from symptoms and signs, of a descriptive sort, to the CBP dimensions that provide a more mechanistic explanation. We will describe how this mapping engenders archetypal diagnoses, referring readers to tables and figures. The third section addresses the construct validity of clinical brain profiling by establishing correlations between profiles based on clinical ratings of symptoms and signs under classical diagnostic categories with the corresponding profiles generated automatically using archetypal diagnoses. We then provide further validation by performing a cluster analysis on the symptoms and signs and showing how they correspond to the equivalent brain profiles based upon clinical and automatic diagnosis. In the fourth section, we address the construct validity of clinical brain profiling by looking for associations between pathophysiological mechanisms (such as connectivity and plasticity) and nosological diagnoses (such as schizophrenia and depression). Based upon the mechanistic perspective offered in the first section, we test some particular hypotheses about double dissociations using a meta-analysis of PubMed searches. The final section concludes with perspectives for the future and outstanding validation issues for clinical brain profiling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Permutation-symmetric three-particle hyper-spherical harmonics based on the S3 ⊗ SO(3)rot ⊂ O(2)⊗SO(3)rot ⊂ U(3)⋊S2 ⊂ O(6) subgroup chain

    NASA Astrophysics Data System (ADS)

    Salom, Igor; Dmitrašinović, V.

    2017-07-01

    We construct the three-body permutation symmetric hyperspherical harmonics to be used in the non-relativistic three-body Schrödinger equation in three spatial dimensions (3D). We label the state vectors according to the S3 ⊗ SO(3)rot ⊂ O (2) ⊗ SO(3)rot ⊂ U (3) ⋊S2 ⊂ O (6) subgroup chain, where S3 is the three-body permutation group and S2 is its two element subgroup containing transposition of first two particles, O (2) is the ;democracy transformation;, or ;kinematic rotation; group for three particles; SO(3)rot is the 3D rotation group, and U (3) , O (6) are the usual Lie groups. We discuss the good quantum numbers implied by the above chain of algebras, as well as their relation to the S3 permutation properties of the harmonics, particularly in view of the SO(3)rot ⊂ SU (3) degeneracy. We provide a definite, practically implementable algorithm for the calculation of harmonics with arbitrary finite integer values of the hyper angular momentum K, and show an explicit example of this construction in a specific case with degeneracy, as well as tables of K ≤ 6 harmonics. All harmonics are expressed as homogeneous polynomials in the Jacobi vectors (λ , ρ) with coefficients given as algebraic numbers unless the ;operator method; is chosen for the lifting of the SO(3)rot ⊂ SU (3) multiplicity and the dimension of the degenerate subspace is greater than four - in which case one must resort to numerical diagonalization; the latter condition is not met by any K ≤ 15 harmonic, or by any L ≤ 7 harmonic with arbitrary K. We also calculate a certain type of matrix elements (the Gaunt integrals of products of three harmonics) in two ways: 1) by explicit evaluation of integrals and 2) by reduction to known SU (3) Clebsch-Gordan coefficients. In this way we complete the calculation of the ingredients sufficient for the solution to the quantum-mechanical three-body bound state problem.

  18. Birth of kids after artificial insemination with sex-sorted, frozen-thawed goat spermatozoa.

    PubMed

    Bathgate, R; Mace, N; Heasman, K; Evans, G; Maxwell, W M C; de Graaf, S P

    2013-12-01

    Successful sex-sorting of goat spermatozoa and subsequent birth of pre-sexed kids have yet to be reported. As such, a series of experiments were conducted to develop protocols for sperm-sorting (using a modified flow cytometer, MoFlo SX(®) ) and cryopreservation of goat spermatozoa. Saanen goat spermatozoa (n = 2 males) were (i) collected into Salamon's or Tris catch media post-sorting and (ii) frozen in Tris-citrate-glucose media supplemented with 5, 10 or 20% egg yolk in (iii) 0.25 ml pellets on dry ice or 0.25 ml straws in a controlled-rate freezer. Post-sort and post-thaw sperm quality were assessed by motility (CASA), viability and acrosome integrity (PI/FITC-PNA). Sex-sorted goat spermatozoa frozen in pellets displayed significantly higher post-thaw motility and viability than spermatozoa frozen in straws. Catch media and differing egg yolk concentration had no effect on the sperm parameters tested. The in vitro and in vivo fertility of sex-sorted goat spermatozoa produced with this optimum protocol were then tested by means of a heterologous ova binding assay and intrauterine artificial insemination of Saanen goat does, respectively. Sex-sorted goat spermatozoa bound to sheep ova zona pellucidae in similar numbers (p > 0.05) to non-sorted goat spermatozoa, non-sorted ram spermatozoa and sex-sorted ram spermatozoa. Following intrauterine artificial insemination with sex-sorted spermatozoa, 38% (5/13) of does kidded with 83% (3/5) of kids being of the expected sex. Does inseminated with non-sorted spermatozoa achieved a 50% (3/6) kidding rate and a sex ratio of 3 : 1 (F : M). This study demonstrates for the first time that goat spermatozoa can be sex-sorted by flow cytometry, successfully frozen and used to produce pre-sexed kids. © 2013 Blackwell Verlag GmbH.

  19. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter.

    PubMed

    Schmid, Lothar; Weitz, David A; Franke, Thomas

    2014-10-07

    We describe a versatile microfluidic fluorescence-activated cell sorter that uses acoustic actuation to sort cells or drops at ultra-high rates. Our acoustic sorter combines the advantages of traditional fluorescence-activated cell (FACS) and droplet sorting (FADS) and is applicable for a multitude of objects. We sort aqueous droplets, at rates as high as several kHz, into two or even more outlet channels. We can also sort cells directly from the medium without prior encapsulation into drops; we demonstrate this by sorting fluorescently labeled mouse melanoma cells in a single phase fluid. Our acoustic microfluidic FACS is compatible with standard cell sorting cytometers, yet, at the same time, enables a rich variety of more sophisticated applications.

  20. Surface acoustic wave actuated cell sorting (SAWACS).

    PubMed

    Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A

    2010-03-21

    We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.

  1. Phylogeography of Pinus subsection Australes in the Caribbean Basin

    PubMed Central

    Jardón-Barbolla, Lev; Delgado-Valerio, Patricia; Geada-López, Gretel; Vázquez-Lobo, Alejandra; Piñero, Daniel

    2011-01-01

    Background and Aims Four species of Pinus subsection Australes occur in the Caribbean Basin: P. caribaea, P. cubensis, P. maestrensis and P. occidentalis. This study analyses the phylogeography of these species to assess possible colonization events from Central America to the islands and subsequent population expansions during glacial periods driven by both drier climate and larger emerged land areas. Methods Allele size data were obtained for plastid microsatellites for 314 individuals from 24 populations, covering the distribution range of subsection Australes in the Caribbean Basin. Key Results In total, 113 plastid haplotypes were identified. The highest genetic diversity was found in populations of P. caribaea. Overall, Caribbean Basin populations fit the isolation by distance model. Significant phylogeographical structure was found (RST = 0·671 > permuted RST = 0·101; P < 0·0001). The haplotype network and a Bayesian analysis of population structure (BAPS) indicated different Central American origins for P. caribaea var. bahamensis and P. caribaea var. caribaea plastids, with Central America populations in northern and south-eastern groups. Sudden expansion times for BAPS clusters were close to three glacial maxima. Conclusions Central America contains ancestral plastid haplotypes. Population expansion has played a major role in the distribution of genetic diversity in P. caribaea var. hondurensis. Two colonization events gave rise to the P. caribaea var. bahamensis and P. caribaea var. caribaea lineages. Plastid variation in the eastern species (P. cubensis, P. maestrensis and P. occidentalis) evolved independently from that in P. caribaea var. caribaea. Incomplete lineage sorting between P. cubensis and P. maestrensis is apparent. Inferred expansion times for P. caribaea var. bahamensis and for the eastern lineages correspond to glacial maxima, whereas those for P. caribaea var. hondurensis correspond to the beginning of the temperature decrease that led to Marine Isotope Stage 8. PMID:21118838

  2. Path Planning Algorithms for the Adaptive Sensor Fleet

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Hosler, Jeff

    2005-01-01

    The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.

  3. The restrictive concept of good health in patients with hypochondriasis.

    PubMed

    Weck, Florian; Neng, Julia M B; Richtberg, Samantha; Stangier, Ulrich

    2012-12-01

    The restrictive concept of good health and the misinterpretation of bodily symptoms as a sign of illness are considered in the DSM and in well-established cognitive models as central characteristics of hypochondriasis. However, until now it has not been satisfactorily resolved whether this tendency is unique for hypochondriasis. In the current study a modified card sorting technique was used to investigate the extent to which bodily complaints were seen as compatible with a state of good health. We found that patients with hypochondriasis (n = 45) showed a more restrictive concept of good health than anxiety patients (n = 45) and healthy controls (n = 45). Those differences were only observable when a concrete evaluation of own bodily symptoms was carried out in comparison to a more general evaluation of symptoms. The misinterpretation of bodily symptoms demonstrates to be a highly specific characteristic of hypochondriasis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Conceptual model and map of financial exploitation of older adults.

    PubMed

    Conrad, Kendon J; Iris, Madelyn; Ridings, John W; Fairman, Kimberly P; Rosen, Abby; Wilber, Kathleen H

    2011-10-01

    This article describes the processes and outcomes of three-dimensional concept mapping to conceptualize financial exploitation of older adults. Statements were generated from a literature review and by local and national panels consisting of 16 experts in the field of financial exploitation. These statements were sorted and rated using Concept Systems software, which grouped the statements into clusters and depicted them as a map. Statements were grouped into six clusters, and ranked by the experts as follows in descending severity: (a) theft and scams, (b) financial victimization, (c) financial entitlement, (d) coercion, (e) signs of possible financial exploitation, and (f) money management difficulties. The hierarchical model can be used to identify elder financial exploitation and differentiate it from related but distinct areas of victimization. The severity hierarchy may be used to develop measures that will enable more precise screening for triage of clients into appropriate interventions.

  5. Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle

    PubMed Central

    Hu, Liandong; Hu, Qiaofeng; Yang, Jianxue

    2014-01-01

    Objective(s): The objective of this study was to find a stable microemulsion vehicle for transdermal delivery of ibuprofen to improve the skin permeability. Materials and Methods: Microemulsion was prepared using different sorts of oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were used to evaluate the microemulsion domain. The effects of oleic acid and surfactant mixture on skin permeation of ibuprofen were evaluated with excised skins. Results: The optimum formulation F3 consisting of 6% oleic acid, 30% Cremophor RH40/Transcutol P (2:1, w/w) and 59% water phase, showed a high permeation rate of 42.98 µg/cm2/hr. The mean droplet size of microemulsion was about 43 nm and no skin irritation signs were observed on the skin of rabbits. Conclusion: These results indicated that this novel microemulsion is a useful formulation for the transdermal delivery of ibuprofen. PMID:25729544

  6. The modular nature of trustworthiness detection.

    PubMed

    Bonnefon, Jean-François; Hopfensitz, Astrid; De Neys, Wim

    2013-02-01

    The capacity to trust wisely is a critical facilitator of success and prosperity, and it has been conjectured that people of higher intelligence are better able to detect signs of untrustworthiness from potential partners. In contrast, this article reports five trust game studies suggesting that reading trustworthiness of the faces of strangers is a modular process. Trustworthiness detection from faces is independent of general intelligence (Study 1) and effortless (Study 2). Pictures that include nonfacial features such as hair and clothing impair trustworthiness detection (Study 3) by increasing reliance on conscious judgments (Study 4), but people largely prefer to make decisions from this sort of pictures (Study 5). In sum, trustworthiness detection in an economic interaction is a genuine and effortless ability, possessed in equal amount by people of all cognitive capacities, but whose impenetrability leads to inaccurate conscious judgments and inappropriate informational preferences. 2013 APA, all rights reserved

  7. Supporting Simple Activity Engagement in Persons With Moderate to Severe Alzheimer's Disease Through a Technology-Aided Program.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; D'Amico, Fiora; Pinto, Katia; Chiapparino, Claudia

    2017-05-01

    These 2 studies assessed a technology-aided program to support mild physical exercise or simple occupational activity in participants with moderate to severe Alzheimer's disease. Study 1 included 11 participants who were to perform a leg-raising response. Study 2 included 10 participants who were to sort objects into different containers. The program ensured that they received positive stimulation contingent on the responses and reminders/prompts after periods of nonresponding. Each study was carried out according to a nonconcurrent multiple baseline design across participants. The program was successful in supporting mild physical exercise and activity with objects in the 2 groups of participants, respectively. The participants also showed signs of positive involvement (eg, smiles and verbalizations) during the sessions. Moreover, staff personnel rated the program and its impact positively. The program may be considered a practical resource for supporting positive engagement in persons with moderate to severe Alzheimer's disease.

  8. Research of grasping algorithm based on scara industrial robot

    NASA Astrophysics Data System (ADS)

    Peng, Tao; Zuo, Ping; Yang, Hai

    2018-04-01

    As the tobacco industry grows, facing the challenge of the international tobacco giant, efficient logistics service is one of the key factors. How to complete the tobacco sorting task of efficient economy is the goal of tobacco sorting and optimization research. Now the cigarette distribution system uses a single line to carry out the single brand sorting task, this article adopts a single line to realize the cigarette sorting task of different brands. Using scara robot special algorithm for sorting and packaging, the optimization scheme significantly enhances the indicators of smoke sorting system. Saving labor productivity, obviously improve production efficiency.

  9. Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs

    PubMed Central

    Lin, Tien-Ho; Bar-Joseph, Ziv

    2011-01-01

    Abstract Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/. PMID:21999284

  10. A New Algorithm Using the Non-Dominated Tree to Improve Non-Dominated Sorting.

    PubMed

    Gustavsson, Patrik; Syberfeldt, Anna

    2018-01-01

    Non-dominated sorting is a technique often used in evolutionary algorithms to determine the quality of solutions in a population. The most common algorithm is the Fast Non-dominated Sort (FNS). This algorithm, however, has the drawback that its performance deteriorates when the population size grows. The same drawback applies also to other non-dominating sorting algorithms such as the Efficient Non-dominated Sort with Binary Strategy (ENS-BS). An algorithm suggested to overcome this drawback is the Divide-and-Conquer Non-dominated Sort (DCNS) which works well on a limited number of objectives but deteriorates when the number of objectives grows. This article presents a new, more efficient algorithm called the Efficient Non-dominated Sort with Non-Dominated Tree (ENS-NDT). ENS-NDT is an extension of the ENS-BS algorithm and uses a novel Non-Dominated Tree (NDTree) to speed up the non-dominated sorting. ENS-NDT is able to handle large population sizes and a large number of objectives more efficiently than existing algorithms for non-dominated sorting. In the article, it is shown that with ENS-NDT the runtime of multi-objective optimization algorithms such as the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) can be substantially reduced.

  11. Capacity of the generalized PPM channel

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Klimesh, Matt; McEliece, Bob; Moision, Bruce

    2004-01-01

    We show the capacity of a generalized pulse-position-modulation (PPM) channel, where the input vectors may be any set that allows a transitive group of coordinate permutations, is achieved by a uniform input distribution.

  12. A space efficient flexible pivot selection approach to evaluate determinant and inverse of a matrix.

    PubMed

    Jafree, Hafsa Athar; Imtiaz, Muhammad; Inayatullah, Syed; Khan, Fozia Hanif; Nizami, Tajuddin

    2014-01-01

    This paper presents new simple approaches for evaluating determinant and inverse of a matrix. The choice of pivot selection has been kept arbitrary thus they reduce the error while solving an ill conditioned system. Computation of determinant of a matrix has been made more efficient by saving unnecessary data storage and also by reducing the order of the matrix at each iteration, while dictionary notation [1] has been incorporated for computing the matrix inverse thereby saving unnecessary calculations. These algorithms are highly class room oriented, easy to use and implemented by students. By taking the advantage of flexibility in pivot selection, one may easily avoid development of the fractions by most. Unlike the matrix inversion method [2] and [3], the presented algorithms obviate the use of permutations and inverse permutations.

  13. User manual for Blossom statistical package for R

    USGS Publications Warehouse

    Talbert, Marian; Cade, Brian S.

    2005-01-01

    Blossom is an R package with functions for making statistical comparisons with distance-function based permutation tests developed by P.W. Mielke, Jr. and colleagues at Colorado State University (Mielke and Berry, 2001) and for testing parameters estimated in linear models with permutation procedures developed by B. S. Cade and colleagues at the Fort Collins Science Center, U.S. Geological Survey. This manual is intended to provide identical documentation of the statistical methods and interpretations as the manual by Cade and Richards (2005) does for the original Fortran program, but with changes made with respect to command inputs and outputs to reflect the new implementation as a package for R (R Development Core Team, 2012). This implementation in R has allowed for numerous improvements not supported by the Cade and Richards (2005) Fortran implementation, including use of categorical predictor variables in most routines.

  14. An authenticated image encryption scheme based on chaotic maps and memory cellular automata

    NASA Astrophysics Data System (ADS)

    Bakhshandeh, Atieh; Eslami, Ziba

    2013-06-01

    This paper introduces a new image encryption scheme based on chaotic maps, cellular automata and permutation-diffusion architecture. In the permutation phase, a piecewise linear chaotic map is utilized to confuse the plain-image and in the diffusion phase, we employ the Logistic map as well as a reversible memory cellular automata to obtain an efficient and secure cryptosystem. The proposed method admits advantages such as highly secure diffusion mechanism, computational efficiency and ease of implementation. A novel property of the proposed scheme is its authentication ability which can detect whether the image is tampered during the transmission or not. This is particularly important in applications where image data or part of it contains highly sensitive information. Results of various analyses manifest high security of this new method and its capability for practical image encryption.

  15. Repelling Point Bosons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, J. B.

    2011-12-01

    There is a body of conventional wisdom that holds that a solvable quantum problem, by virtue of its solvability, is pathological and thus irrelevant. It has been difficult to refute this view owing to the paucity of theoretical constructs and experimental results. Recent experiments involving equivalent ions trapped in a spatial conformation of extreme anisotropic confinement (longitudinal extension tens, hundreds or even thousands of times transverse extension) have modified the view of relevancy, and it is now possible to consider systems previously thought pathological, in particular point Bosons that repel in one dimension. It has been difficult for the experimentalistsmore » to utilize existing theory, mainly due to long-standing theoretical misunderstanding of the relevance of the permutation group, in particular the non-commutativity of translations (periodicity) and transpositions (permutation). This misunderstanding is most easily rectified in the case of repelling Bosons.« less

  16. Parallel solution of closely coupled systems

    NASA Technical Reports Server (NTRS)

    Utku, S.; Salama, M.

    1986-01-01

    The odd-even permutation and associated unitary transformations for reordering the matrix coefficient A are employed as means of breaking the strong seriality which is characteristic of closely coupled systems. The nested dissection technique is also reviewed, and the equivalence between reordering A and dissecting its network is established. The effect of transforming A with odd-even permutation on its topology and the topology of its Cholesky factors is discussed. This leads to the construction of directed graphs showing the computational steps required for factoring A, their precedence relationships and their sequential and concurrent assignment to the available processors. Expressions for the speed-up and efficiency of using N processors in parallel relative to the sequential use of a single processor are derived from the directed graph. Similar expressions are also derived when the number of available processors is fewer than required.

  17. Simulating the component counts of combinatorial structures.

    PubMed

    Arratia, Richard; Barbour, A D; Ewens, W J; Tavaré, Simon

    2018-02-09

    This article describes and compares methods for simulating the component counts of random logarithmic combinatorial structures such as permutations and mappings. We exploit the Feller coupling for simulating permutations to provide a very fast method for simulating logarithmic assemblies more generally. For logarithmic multisets and selections, this approach is replaced by an acceptance/rejection method based on a particular conditioning relationship that represents the distribution of the combinatorial structure as that of independent random variables conditioned on a weighted sum. We show how to improve its acceptance rate. We illustrate the method by estimating the probability that a random mapping has no repeated component sizes, and establish the asymptotic distribution of the difference between the number of components and the number of distinct component sizes for a very general class of logarithmic structures. Copyright © 2018. Published by Elsevier Inc.

  18. The structure of EAP-groups and self-autopermutable subgroups.

    PubMed

    Housieni, Shima; Moghaddam, Mohammad Reza Rajabzadeh

    2014-01-01

    A subgroup H of a given group G is said to be autopermutable, if HH(α) = H(α)H for all α ∈ Aut(G). We also call H a self-autopermutable subgroup of G, when HH(α) = H(α)H implies that H(α) = H. Moreover, G is said to be EAP-group, if every subgroup of G is autopermutable. One notes that if α runs over the inner automorphisms of the group, one obtains the notions of conjugate-permutability, self-conjugate-permutability, and ECP-groups, which were studied by Foguel in 1997, Li and Meng in 2007, and Xu and Zhang in 2005, respectively. In the present paper, we determine the structure of a finite EAP-group when its centre is of index 4 in G. We also show that self-autopermutability and characteristic properties are equivalent for nilpotent groups.

  19. Permutation Entropy Applied to Movement Behaviors of Drosophila Melanogaster

    NASA Astrophysics Data System (ADS)

    Liu, Yuedan; Chon, Tae-Soo; Baek, Hunki; Do, Younghae; Choi, Jin Hee; Chung, Yun Doo

    Movement of different strains in Drosophila melanogaster was continuously observed by using computer interfacing techniques and was analyzed by permutation entropy (PE) after exposure to toxic chemicals, toluene (0.1 mg/m3) and formaldehyde (0.01 mg/m3). The PE values based on one-dimensional time series position (vertical) data were variable according to internal constraint (i.e. strains) and accordingly increased in response to external constraint (i.e. chemicals) by reflecting diversity in movement patterns from both normal and intoxicated states. Cross-correlation function revealed temporal associations between the PE values and between the component movement patterns in different chemicals and strains through the period of intoxication. The entropy based on the order of position data could be a useful means for complexity measure in behavioral changes and for monitoring the impact of stressors in environment.

  20. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energymore » surfaces for OH{sub 3} and CH{sub 4} were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.« less

  1. Recursive boson system in the Cuntz algebra O{sub {infinity}}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Katsunori

    2007-09-15

    Bosons and fermions are often written by elements of other algebras. Abe (private communication) gave a realization of bosons by formal infinite sums of the canonical generators of the Cuntz algebra O{sub {infinity}}. We show that such formal infinite sum always makes sense on a certain dense subspace of any permutative representation of O{sub {infinity}}. In this meaning, we can regard as if the algebra B of bosons was a unital *-subalgebra of O{sub {infinity}} on a given permutative representation. According to this relation, we compute branching laws arising from restrictions of representations of O{sub {infinity}} on B. For example,more » it is shown that the Fock representation of B is given as the restriction of the standard representation of O{sub {infinity}} on B.« less

  2. Intrinsically bent DNA in replication origins and gene promoters.

    PubMed

    Gimenes, F; Takeda, K I; Fiorini, A; Gouveia, F S; Fernandez, M A

    2008-06-24

    Intrinsically bent DNA is an alternative conformation of the DNA molecule caused by the presence of dA/dT tracts, 2 to 6 bp long, in a helical turn phase DNA or with multiple intervals of 10 to 11 bp. Other than flexibility, intrinsic bending sites induce DNA curvature in particular chromosome regions such as replication origins and promoters. Intrinsically bent DNA sites are important in initiating DNA replication, and are sometimes found near to regions associated with the nuclear matrix. Many methods have been developed to localize bent sites, for example, circular permutation, computational analysis, and atomic force microscopy. This review discusses intrinsically bent DNA sites associated with replication origins and gene promoter regions in prokaryote and eukaryote cells. We also describe methods for identifying bent DNA sites for circular permutation and computational analysis.

  3. Permutation testing of orthogonal factorial effects in a language-processing experiment using fMRI.

    PubMed

    Suckling, John; Davis, Matthew H; Ooi, Cinly; Wink, Alle Meije; Fadili, Jalal; Salvador, Raymond; Welchew, David; Sendur, Levent; Maxim, Vochita; Bullmore, Edward T

    2006-05-01

    The block-paradigm of the Functional Image Analysis Contest (FIAC) dataset was analysed with the Brain Activation and Morphological Mapping software. Permutation methods in the wavelet domain were used for inference on cluster-based test statistics of orthogonal contrasts relevant to the factorial design of the study, namely: the average response across all active blocks, the main effect of speaker, the main effect of sentence, and the interaction between sentence and speaker. Extensive activation was seen with all these contrasts. In particular, different vs. same-speaker blocks produced elevated activation in bilateral regions of the superior temporal lobe and repetition suppression for linguistic materials (same vs. different-sentence blocks) in left inferior frontal regions. These are regions previously reported in the literature. Additional regions were detected in this study, perhaps due to the enhanced sensitivity of the methodology. Within-block sentence suppression was tested post-hoc by regression of an exponential decay model onto the extracted time series from the left inferior frontal gyrus, but no strong evidence of such an effect was found. The significance levels set for the activation maps are P-values at which we expect <1 false-positive cluster per image. Nominal type I error control was verified by empirical testing of a test statistic corresponding to a randomly ordered design matrix. The small size of the BOLD effect necessitates sensitive methods of detection of brain activation. Permutation methods permit the necessary flexibility to develop novel test statistics to meet this challenge.

  4. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  5. Effects of propofol, sevoflurane, remifentanil, and (S)-ketamine in subanesthetic concentrations on visceral and somatosensory pain-evoked potentials.

    PubMed

    Untergehrer, Gisela; Jordan, Denis; Eyl, Sebastian; Schneider, Gerhard

    2013-02-01

    Although electroencephalographic parameters and auditory evoked potentials (AEP) reflect the hypnotic component of anesthesia, there is currently no specific and mechanism-based monitoring tool for anesthesia-induced blockade of nociceptive inputs. The aim of this study was to assess visceral pain-evoked potentials (VPEP) and contact heat-evoked potentials (CHEP) as electroencephalographic indicators of drug-induced changes of visceral and somatosensory pain. Additionally, AEP and electroencephalographic permutation entropy were used to evaluate sedative components of the applied drugs. In a study enrolling 60 volunteers, VPEP, CHEP (amplitude N2-P1), and AEP (latency Nb, amplitude Pa-Nb) were recorded without drug application and at two subanesthetic concentration levels of propofol, sevoflurane, remifentanil, or (s)-ketamine. Drug-induced changes of evoked potentials were analyzed. VPEP were generated by electric stimuli using bipolar electrodes positioned in the distal esophagus. For CHEP, heat pulses were given to the medial aspect of the right forearm using a CHEP stimulator. In addition to AEP, electroencephalographic permutation entropy was used to indicate level of sedation. With increasing concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine, VPEP and CHEP N2-P1 amplitudes decreased. AEP and electroencephalographic permutation entropy showed neither clinically relevant nor statistically significant suppression of cortical activity during drug application. Decreasing VPEP and CHEP amplitudes under subanesthetic concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine indicate suppressive drug effects. These effects seem to be specific for analgesia.

  6. Linear algebra of the permutation invariant Crow-Kimura model of prebiotic evolution.

    PubMed

    Bratus, Alexander S; Novozhilov, Artem S; Semenov, Yuri S

    2014-10-01

    A particular case of the famous quasispecies model - the Crow-Kimura model with a permutation invariant fitness landscape - is investigated. Using the fact that the mutation matrix in the case of a permutation invariant fitness landscape has a special tridiagonal form, a change of the basis is suggested such that in the new coordinates a number of analytical results can be obtained. In particular, using the eigenvectors of the mutation matrix as the new basis, we show that the quasispecies distribution approaches a binomial one and give simple estimates for the speed of convergence. Another consequence of the suggested approach is a parametric solution to the system of equations determining the quasispecies. Using this parametric solution we show that our approach leads to exact asymptotic results in some cases, which are not covered by the existing methods. In particular, we are able to present not only the limit behavior of the leading eigenvalue (mean population fitness), but also the exact formulas for the limit quasispecies eigenvector for special cases. For instance, this eigenvector has a geometric distribution in the case of the classical single peaked fitness landscape. On the biological side, we propose a mathematical definition, based on the closeness of the quasispecies to the binomial distribution, which can be used as an operational definition of the notorious error threshold. Using this definition, we suggest two approximate formulas to estimate the critical mutation rate after which the quasispecies delocalization occurs. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Particle Transport and Size Sorting in Bubble Microstreaming Flow

    NASA Astrophysics Data System (ADS)

    Thameem, Raqeeb; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha

    2014-11-01

    Ultrasonic driving of sessile semicylindrical bubbles results in powerful steady streaming flows that are robust over a wide range of driving frequencies. In a microchannel, this flow field pattern can be fine-tuned to achieve size-sensitive sorting and trapping of particles at scales much smaller than the bubble itself; the sorting mechanism has been successfully described based on simple geometrical considerations. We investigate the sorting process in more detail, both experimentally (using new parameter variations that allow greater control over the sorting) and theoretically (incorporating the device geometry as well as the superimposed channel flow into an asymptotic theory). This results in optimized criteria for size sorting and a theoretical description that closely matches the particle behavior close to the bubble, the crucial region for size sorting.

  8. Sperm sex-sorting and preservation for managing the sex ratio and genetic diversity of the southern white rhinoceros (Ceratotherium simum simum).

    PubMed

    O'Brien, J K; Roth, T L; Stoops, M A; Ball, R L; Steinman, K J; Montano, G A; Love, C C; Robeck, T R

    2015-01-01

    White rhinoceros ejaculates (n=9) collected by electroejaculation from four males were shipped (10°C, 12h) to develop procedures for the production of chilled and frozen-thawed sex-sorted spermatozoa of adequate quality for artificial insemination (AI). Of all electroejaculate fractions, 39.7% (31/78) exhibited high quality post-collection (≥70% total motility and membrane integrity) and of those, 54.8% (17/31) presented reduced in vitro quality after transport and were retrospectively determined to exhibit urine-contamination (≥21.0μg creatinine/ml). Of fractions analyzed for creatinine concentration, 69% (44/64) were classified as urine-contaminated. For high quality non-contaminated fractions, in vitro parameters (motility, velocity, membrane, acrosome and DNA integrity) of chilled non-sorted and sorted spermatozoa were well-maintained at 5°C up to 54h post-collection, whereby >70% of post-transport (non-sorted) or post-sort (sorted) values were retained. By 54h post-collection, some motility parameters were higher (P<0.05) for non-sorted spermatozoa (total motility, rapid velocity, average path velocity) whereas all remaining motion parameters as well as membrane, acrosome and DNA integrity were similar between sperm types. In comparison with a straw method, directional freezing resulted in enhanced (P<0.05) motility and velocity of non-sorted and sorted spermatozoa, with comparable overall post-thaw quality between sperm types. High purity enrichment of X-bearing (89±6%) or Y-bearing (86±3%) spermatozoa was achieved using moderate sorting rates (2540±498X-spermatozoa/s; 1800±557Y-spermatozoa/s). Collective in vitro characteristics of sorted-chilled or sorted-frozen-thawed spermatozoa derived from high quality electroejaculates indicate acceptable fertility potential for use in AI. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Encapsulation of sex sorted boar semen: sperm membrane status and oocyte penetration parameters.

    PubMed

    Spinaci, Marcella; Chlapanidas, Theodora; Bucci, Diego; Vallorani, Claudia; Perteghella, Sara; Lucconi, Giulia; Communod, Ricardo; Vigo, Daniele; Galeati, Giovanna; Faustini, Massimo; Torre, Maria Luisa

    2013-03-01

    Although sorted semen is experimentally used for artificial, intrauterine, and intratubal insemination and in vitro fertilization, its commercial application in swine species is still far from a reality. This is because of the low sort rate and the large number of sperm required for routine artificial insemination in the pig, compared with other production animals, and the greater susceptibility of porcine spermatozoa to stress induced by the different sex sorting steps and the postsorting handling protocols. The encapsulation technology could overcome this limitation in vivo, protecting and allowing the slow release of low-dose sorted semen. The aim of this work was to evaluate the impact of the encapsulation process on viability, acrosome integrity, and on the in vitro fertilizing potential of sorted boar semen. Our results indicate that the encapsulation technique does not damage boar sorted semen; in fact, during a 72-hour storage, no differences were observed between liquid-stored sorted semen and encapsulated sorted semen in terms of plasma membrane (39.98 ± 14.38% vs. 44.32 ± 11.72%, respectively) and acrosome integrity (74.32 ± 12.17% vs. 66.07 ± 10.83%, respectively). Encapsulated sorted spermatozoa presented a lower penetration potential than nonencapsulated ones (47.02% vs. 24.57%, respectively, P < 0.0001), and a significant reduction of polyspermic fertilization (60.76% vs. 36.43%, respectively, polyspermic ova/total ova; P < 0.0001). However, no difference (P > 0.05) was observed in terms of total efficiency of fertilization expressed as normospermic oocytes/total oocytes (18.45% vs. 15.43% for sorted diluted and sorted encapsulated semen, respectively). The encapsulation could be an alternative method of storing of pig sex sorted spermatozoa and is potentially a promising technique in order to optimize the use of low dose of sexed spermatozoa in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Sortilin 1 Loss-of-Function Protects Against Cholestatic Liver Injury by Attenuating Hepatic Bile Acid Accumulation in Bile Duct Ligated Mice.

    PubMed

    Li, Jibiao; Woolbright, Benjamin L; Zhao, Wen; Wang, Yifeng; Matye, David; Hagenbuch, Bruno; Jaeschke, Hartmut; Li, Tiangang

    2018-01-01

    Sortilin 1 (Sort1) is an intracellular trafficking receptor that mediates protein sorting in the endocytic or secretory pathways. Recent studies revealed a role of Sort1 in the regulation of cholesterol and bile acid (BA) metabolism. This study further investigated the role of Sort1 in modulating BA detoxification and cholestatic liver injury in bile duct ligated mice. We found that Sort1 knockout (KO) mice had attenuated liver injury 24 h after bile duct ligation (BDL), which was mainly attributed to less bile infarct formation. Sham-operated Sort1 KO mice had about 20% larger BA pool size than sham-operated wildtype (WT) mice, but 24 h after BDL Sort1 KO mice had significantly attenuated hepatic BA accumulation and smaller BA pool size. After 14 days BDL, Sort1 KO mice showed significantly lower hepatic BA concentration and reduced expression of inflammatory and fibrotic marker genes, but similar degree of liver fibrosis compared with WT mice. Unbiased quantitative proteomics revealed that Sort1 KO mice had increased hepatic BA sulfotransferase 2A1, but unaltered phase-I BA metabolizing cytochrome P450s or phase-III BA efflux transporters. Consistently, Sort1 KO mice showed elevated plasma sulfated taurocholate after BDL. Finally, we found that liver Sort1 was repressed after BDL, which may be due to BA activation of farnesoid x receptor. In conclusion, we report a role of Sort1 in the regulation of hepatic BA detoxification and cholestatic liver injury in mice. The mechanisms underlying increased hepatic BA elimination in Sort1 KO mice after BDL require further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Reducing 4D CT artifacts using optimized sorting based on anatomic similarity.

    PubMed

    Johnston, Eric; Diehn, Maximilian; Murphy, James D; Loo, Billy W; Maxim, Peter G

    2011-05-01

    Four-dimensional (4D) computed tomography (CT) has been widely used as a tool to characterize respiratory motion in radiotherapy. The two most commonly used 4D CT algorithms sort images by the associated respiratory phase or displacement into a predefined number of bins, and are prone to image artifacts at transitions between bed positions. The purpose of this work is to demonstrate a method of reducing motion artifacts in 4D CT by incorporating anatomic similarity into phase or displacement based sorting protocols. Ten patient datasets were retrospectively sorted using both the displacement and phase based sorting algorithms. Conventional sorting methods allow selection of only the nearest-neighbor image in time or displacement within each bin. In our method, for each bed position either the displacement or the phase defines the center of a bin range about which several candidate images are selected. The two dimensional correlation coefficients between slices bordering the interface between adjacent couch positions are then calculated for all candidate pairings. Two slices have a high correlation if they are anatomically similar. Candidates from each bin are then selected to maximize the slice correlation over the entire data set using the Dijkstra's shortest path algorithm. To assess the reduction of artifacts, two thoracic radiation oncologists independently compared the resorted 4D datasets pairwise with conventionally sorted datasets, blinded to the sorting method, to choose which had the least motion artifacts. Agreement between reviewers was evaluated using the weighted kappa score. Anatomically based image selection resulted in 4D CT datasets with significantly reduced motion artifacts with both displacement (P = 0.0063) and phase sorting (P = 0.00022). There was good agreement between the two reviewers, with complete agreement 34 times and complete disagreement 6 times. Optimized sorting using anatomic similarity significantly reduces 4D CT motion artifacts compared to conventional phase or displacement based sorting. This improved sorting algorithm is a straightforward extension of the two most common 4D CT sorting algorithms.

  12. NIH Toolbox Cognition Battery (NIHTB-CB): list sorting test to measure working memory.

    PubMed

    Tulsky, David S; Carlozzi, Noelle; Chiaravalloti, Nancy D; Beaumont, Jennifer L; Kisala, Pamela A; Mungas, Dan; Conway, Kevin; Gershon, Richard

    2014-07-01

    The List Sorting Working Memory Test was designed to assess working memory (WM) as part of the NIH Toolbox Cognition Battery. List Sorting is a sequencing task requiring children and adults to sort and sequence stimuli that are presented visually and auditorily. Validation data are presented for 268 participants ages 20 to 85 years. A subset of participants (N=89) was retested 7 to 21 days later. As expected, the List Sorting Test had moderately high correlations with other measures of working memory and executive functioning (convergent validity) but a low correlation with a test of receptive vocabulary (discriminant validity). Furthermore, List Sorting demonstrates expected changes over the age span and has excellent test-retest reliability. Collectively, these results provide initial support for the construct validity of the List Sorting Working Memory Measure as a measure of working memory. However, the relationship between the List Sorting Test and general executive function has yet to be determined.

  13. Manual sorting to eliminate aflatoxin from peanuts.

    PubMed

    Galvez, F C F; Francisco, M L D L; Villarino, B J; Lustre, A O; Resurreccion, A V A

    2003-10-01

    A manual sorting procedure was developed to eliminate aflatoxin contamination from peanuts. The efficiency of the sorting process in eliminating aflatoxin-contaminated kernels from lots of raw peanuts was verified. The blanching of 20 kg of peanuts at 140 degrees C for 25 min in preheated roasters facilitated the manual sorting of aflatoxin-contaminated kernels after deskinning. The manual sorting of raw materials with initially high aflatoxin contents (300 ppb) resulted in aflatoxin-free peanuts (i.e., peanuts in which no aflatoxin was detected). Verification procedures showed that the sorted sound peanuts contained no aflatoxin or contained low levels (<15 ppb) of aflatoxin. The results obtained confirmed that the sorting process was effective in separating contaminated peanuts whether or nor contamination was extensive. At the commercial level, when roasters were not preheated, the dry blanching of 50 kg of peanuts for 45 to 55 min facilitated the proper deskinning and subsequent manual sorting of aflatoxin-contaminated peanut kernels from sound kernels.

  14. Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering.

    PubMed

    Chah, E; Hok, V; Della-Chiesa, A; Miller, J J H; O'Mara, S M; Reilly, R B

    2011-02-01

    This study presents a new automatic spike sorting method based on feature extraction by Laplacian eigenmaps combined with k-means clustering. The performance of the proposed method was compared against previously reported algorithms such as principal component analysis (PCA) and amplitude-based feature extraction. Two types of classifier (namely k-means and classification expectation-maximization) were incorporated within the spike sorting algorithms, in order to find a suitable classifier for the feature sets. Simulated data sets and in-vivo tetrode multichannel recordings were employed to assess the performance of the spike sorting algorithms. The results show that the proposed algorithm yields significantly improved performance with mean sorting accuracy of 73% and sorting error of 10% compared to PCA which combined with k-means had a sorting accuracy of 58% and sorting error of 10%.A correction was made to this article on 22 February 2011. The spacing of the title was amended on the abstract page. No changes were made to the article PDF and the print version was unaffected.

  15. A Simple Deep Learning Method for Neuronal Spike Sorting

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Wu, Haifeng; Zeng, Yu

    2017-10-01

    Spike sorting is one of key technique to understand brain activity. With the development of modern electrophysiology technology, some recent multi-electrode technologies have been able to record the activity of thousands of neuronal spikes simultaneously. The spike sorting in this case will increase the computational complexity of conventional sorting algorithms. In this paper, we will focus spike sorting on how to reduce the complexity, and introduce a deep learning algorithm, principal component analysis network (PCANet) to spike sorting. The introduced method starts from a conventional model and establish a Toeplitz matrix. Through the column vectors in the matrix, we trains a PCANet, where some eigenvalue vectors of spikes could be extracted. Finally, support vector machine (SVM) is used to sort spikes. In experiments, we choose two groups of simulated data from public databases availably and compare this introduced method with conventional methods. The results indicate that the introduced method indeed has lower complexity with the same sorting errors as the conventional methods.

  16. NIH Toolbox Cognition Battery (NIHTB-CB): The List Sorting Test to Measure Working Memory

    PubMed Central

    Tulsky, David S.; Carlozzi, Noelle; Chiaravalloti, Nancy D.; Beaumont, Jennifer L.; Kisala, Pamela A.; Mungas, Dan; Conway, Kevin; Gershon, Richard

    2015-01-01

    The List Sorting Working Memory Test was designed to assess working memory (WM) as part of the NIH Toolbox Cognition Battery. List Sorting is a sequencing task requiring children and adults to sort and sequence stimuli that are presented visually and auditorily. Validation data are presented for 268 participants ages 20 to 85 years. A subset of participants (N=89) was retested 7 to 21 days later. As expected, the List Sorting Test had moderately high correlations with other measures of working memory and executive functioning (convergent validity) but a low correlation with a test of receptive vocabulary (discriminant validity). Furthermore, List Sorting demonstrates expected changes over the age span and has excellent test-retest reliability. Collectively, these results provide initial support the construct validity of the List Sorting Working Memory Measure as a measure of working memory. However, the relation between the List Sorting Test and general executive function has yet to be determined. PMID:24959983

  17. Regulation of synaptic activity by snapin-mediated endolysosomal transport and sorting

    PubMed Central

    Di Giovanni, Jerome; Sheng, Zu-Hang

    2015-01-01

    Recycling synaptic vesicles (SVs) transit through early endosomal sorting stations, which raises a fundamental question: are SVs sorted toward endolysosomal pathways? Here, we used snapin mutants as tools to assess how endolysosomal sorting and trafficking impact presynaptic activity in wild-type and snapin−/− neurons. Snapin acts as a dynein adaptor that mediates the retrograde transport of late endosomes (LEs) and interacts with dysbindin, a subunit of the endosomal sorting complex BLOC-1. Expressing dynein-binding defective snapin mutants induced SV accumulation at presynaptic terminals, mimicking the snapin−/− phenotype. Conversely, over-expressing snapin reduced SV pool size by enhancing SV trafficking to the endolysosomal pathway. Using a SV-targeted Ca2+ sensor, we demonstrate that snapin–dysbindin interaction regulates SV positional priming through BLOC-1/AP-3-dependent sorting. Our study reveals a bipartite regulation of presynaptic activity by endolysosomal trafficking and sorting: LE transport regulates SV pool size, and BLOC-1/AP-3-dependent sorting fine-tunes the Ca2+ sensitivity of SV release. Therefore, our study provides new mechanistic insights into the maintenance and regulation of SV pool size and synchronized SV fusion through snapin-mediated LE trafficking and endosomal sorting. PMID:26108535

  18. [Surgery without blood transfusion for pheocromocytoma in a Jehovah's Witness patient: a case report].

    PubMed

    Ito, Toshiki; Kurita, Yutaka; Shinbo, Hitoshi; Yasumi, Yasuhiro; Ushiyama, Tomomi

    2013-05-01

    A 59-year-old woman who identified as a Jehovah's Witness was diagnosed with pheochromocytoma in the left adrenal gland, measuring 11 cm in diameter, during treatment for hypertension. Given her desire to undergo transfusion-less surgery for religious reasons, we obtained fully informed consent and had the patient sign both a transfusion refusal and exemption-from-responsibility certificate and received consent to instead use plasma derivatives, preoperative diluted autologous transfusion and intraoperative salvaged autologous transfusion. To manage anemia and maintain total blood volume, we preoperatively administered erythropoiesis-stimulating agents and alpha 1 blocker, respectively. During the left adrenalectomy, the patient underwent a transfusion of 400 mL of preoperative diluted autologous blood, ultimately receiving no intraoperative salvaged autologous blood. The operation took 4 hours 42 minutes, and the total volume of blood lost was 335 mL. In conclusion, to complete transfusion-less surgery for pheochromocytoma, it is necessary to have the patient sign a generic refusal form for transfusion and exemption-from-responsibility certificate as well as outline via another consent form exactly what sort of transfusion is permitted on a more specific basis. And doctors should become skilled in perioperative management and operative technique for pheochromocytoma and make the best effort by all alternative medical treatment in order to build trust confidence with a patient.

  19. CellSort: a support vector machine tool for optimizing fluorescence-activated cell sorting and reducing experimental effort.

    PubMed

    Yu, Jessica S; Pertusi, Dante A; Adeniran, Adebola V; Tyo, Keith E J

    2017-03-15

    High throughput screening by fluorescence activated cell sorting (FACS) is a common task in protein engineering and directed evolution. It can also be a rate-limiting step if high false positive or negative rates necessitate multiple rounds of enrichment. Current FACS software requires the user to define sorting gates by intuition and is practically limited to two dimensions. In cases when multiple rounds of enrichment are required, the software cannot forecast the enrichment effort required. We have developed CellSort, a support vector machine (SVM) algorithm that identifies optimal sorting gates based on machine learning using positive and negative control populations. CellSort can take advantage of more than two dimensions to enhance the ability to distinguish between populations. We also present a Bayesian approach to predict the number of sorting rounds required to enrich a population from a given library size. This Bayesian approach allowed us to determine strategies for biasing the sorting gates in order to reduce the required number of enrichment rounds. This algorithm should be generally useful for improve sorting outcomes and reducing effort when using FACS. Source code available at http://tyolab.northwestern.edu/tools/ . k-tyo@northwestern.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. Feasibility of web-based self-triage by parents of children with influenza-like illness: a cautionary tale.

    PubMed

    Anhang Price, Rebecca; Fagbuyi, Daniel; Harris, Racine; Hanfling, Dan; Place, Frederick; Taylor, Todd B; Kellermann, Arthur L

    2013-02-01

    Self-triage using web-based decision support could be a useful way to encourage appropriate care-seeking behavior and reduce health system surge in epidemics. However, the feasibility and safety of this strategy have not previously been evaluated. To assess the usability and safety of Strategy for Off-site Rapid Triage (SORT) for Kids, a web-based decision support tool designed to translate clinical guidance developed by the Centers for Disease Control and Prevention to help parents and adult caregivers determine if a child with influenza-like illness requires immediate care in an emergency department (ED). Prospective pilot validation study conducted between February 8 and April 30, 2012. Staff who abstracted medical records and made follow-up calls were blinded to the SORT algorithm's assessment of the child's level of risk. Two pediatric emergency departments in the National Capital Region. Convenience sample of 294 parents and adult caregivers who were at least 18 years of age; able to read and speak English; and the parent or legal guardian of a child 18 years or younger presenting to 1 of 2 EDs with signs and symptoms meeting Centers for Disease Control and Prevention criteria for influenza-like illness. Completion of the SORT for Kids survey. Caregiver ratings of the website's usability and the sensitivity of the underlying algorithm for identifying children who required immediate ED management of influenza-like illness, defined as receipt of 1 or more of 5 essential clinical services. Ninety percent of participants reported that the website was "very easy" to understand and use. Ratings did not differ by respondent race, ethnicity, or educational attainment. Of the 15 patients whose initial ED visit met explicit criteria for clinical necessity, the Centers for Disease Control and Prevention algorithm classified 14 as high risk, resulting in an overall sensitivity of 93.3% (exact 95% CI, 68.1%-99.8%). Specificity of the algorithm was poor. This pilot study suggests that web-based decision support to help parents and adult caregivers self-triage children with influenza-like illness is feasible. However, prospective refinement of the clinical algorithm is needed to improve its specificity without compromising patient safety.

  1. Categorizing Variations of Student-Implemented Sorting Algorithms

    ERIC Educational Resources Information Center

    Taherkhani, Ahmad; Korhonen, Ari; Malmi, Lauri

    2012-01-01

    In this study, we examined freshmen students' sorting algorithm implementations in data structures and algorithms' course in two phases: at the beginning of the course before the students received any instruction on sorting algorithms, and after taking a lecture on sorting algorithms. The analysis revealed that many students have insufficient…

  2. Review of log sort yards

    Treesearch

    John Rusty Dramm; Gerry L. Jackson; Jenny Wong

    2002-01-01

    This report provides a general overview of current log sort yard operations in the United States, including an extensive literature review and information collected during on-site visits to several operations throughout the nation. Log sort yards provide many services in marketing wood and fiber by concentrating, merchandising, processing, sorting, and adding value to...

  3. COST EVALUATION OF AUTOMATED AND MANUAL POST- CONSUMER PLASTIC BOTTLE SORTING SYSTEMS

    EPA Science Inventory

    This project evaluates, on the basis of performance and cost, two Automated BottleSort® sorting systems for post-consumer commingled plastic containers developed by Magnetic Separation Systems. This study compares the costs to sort mixed bales of post-consumer plastic at these t...

  4. Application of visible spectroscopy in waste sorting

    NASA Astrophysics Data System (ADS)

    Spiga, Philippe; Bourely, Antoine

    2011-10-01

    Today, waste recycling, (bottles, papers...), is a mechanical operation: the waste are crushed, fused and agglomerated in order to obtain new manufactured products (e.g. new bottles, clothes ...). The plastics recycling is the main application in the color sorting process. The colorless plastics recovered are more valuable than the colored plastics. Other emergent applications are in the paper sorting, where the main goal is to sort dyed paper from white papers. Up to now, Pellenc Selective Technologies has manufactured color sorting machines based on RGB cameras. Three dimensions (red, green and blue) are no longer sufficient to detect low quantities of dye in the considered waste. In order to increase the efficiency of the color detection, a new sorting machine, based on visible spectroscopy, has been developed. This paper presents the principles of the two approaches and their difference in terms of sorting performance, making visible spectroscopy a clear winner.

  5. MetaSort untangles metagenome assembly by reducing microbial community complexity

    PubMed Central

    Ji, Peifeng; Zhang, Yanming; Wang, Jinfeng; Zhao, Fangqing

    2017-01-01

    Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort to an unexplored microflora colonized on the surface of marine kelp and successfully recovered 75 high-quality genomes at one time. This approach will greatly improve access to microbial genomes from complex or novel communities. PMID:28112173

  6. Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes

    PubMed Central

    Piper, Robert C.

    2007-01-01

    Summary The pathways that deliver newly synthesized proteins that reside in lysosomes are well understood by comparison with our knowledge of how integral membrane proteins are sorted and delivered to the lysosome for degradation. Many membrane proteins are sorted to lysosomes following ubiquitination, which provides a sorting signal that can operate for sorting at the TGN (trans-Golgi network), at the plasma membrane or at the endosome for delivery into lumenal vesicles. Candidate multicomponent machines that can potentially move ubiquitinated integral membrane cargo proteins have been identified, but much work is still required to ascertain which of these candidates directly recognizes ubiquitinated cargo and what they do with cargo after recognition. In the case of the machinery required for sorting into the lumenal vesicles of endosomes, other functions have also been determined including a link between sorting and movement of endosomes along microtubules. PMID:17689064

  7. Is it time to revisit the log-sort yard?

    Treesearch

    John Dramm; Gerry Jackson

    2000-01-01

    Log-sort yards provide better utilization and marketing with improved value recovery of currently available timber resources in North America. Log-sort yards provide many services in marketing wood and fiber by concentrating, merchandising, manufacturing, sorting, and adding value to logs. Such operations supply forest products firms with desired raw materials, which...

  8. Word Sorts for General Music Classes

    ERIC Educational Resources Information Center

    Cardany, Audrey Berger

    2015-01-01

    Word sorts are standard practice for aiding children in acquiring skills in English language arts. When included in the general music classroom, word sorts may aid students in acquiring a working knowledge of music vocabulary. The author shares a word sort activity drawn from vocabulary in John Lithgow's children's book "Never Play…

  9. Regional Value Analysis at Threat Evaluation

    DTIC Science & Technology

    2014-06-01

    targets based on information entropy and fuzzy optimization theory. in Industrial Engineering and Engineering Management (IEEM), 2011 IEEE...Assignment by Virtual Permutation and Tabu Search Heuristics. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 2010

  10. Assessing the Implications of Modified Nanomaterials in Bioassay Testing

    EPA Science Inventory

    As nanotechnology advances to product development, filling environmental health and safety knowledge gaps is critical. Nanotoxicology is over-generalized, provided the permutations of nanomaterial variants created by the classes of nanomaterials (carbonaceous, metals, quantum dot...

  11. Molecular symmetry: Why permutation-inversion (PI) groups don't render the point groups obsolete

    NASA Astrophysics Data System (ADS)

    Groner, Peter

    2018-01-01

    The analysis of spectra of molecules with internal large-amplitude motions (LAMs) requires molecular symmetry (MS) groups that are larger than and significantly different from the more familiar point groups. MS groups are described often by the permutation-inversion (PI) group method. It is shown that point groups still can and should play a significant role together with the PI groups for a class of molecules with internal rotors. In molecules of this class, several simple internal rotors are attached to a rigid molecular frame. The PI groups for this class are semidirect products like H ^ F, where the invariant subgroup H is a direct product of cyclic groups and F is a point group. This result is used to derive meaningful labels for MS groups, and to derive correlation tables between MS groups and point groups. MS groups of this class have many parallels to space groups of crystalline solids.

  12. Permutation entropy with vector embedding delays

    NASA Astrophysics Data System (ADS)

    Little, Douglas J.; Kane, Deb M.

    2017-12-01

    Permutation entropy (PE) is a statistic used widely for the detection of structure within a time series. Embedding delay times at which the PE is reduced are characteristic timescales for which such structure exists. Here, a generalized scheme is investigated where embedding delays are represented by vectors rather than scalars, permitting PE to be calculated over a (D -1 ) -dimensional space, where D is the embedding dimension. This scheme is applied to numerically generated noise, sine wave and logistic map series, and experimental data sets taken from a vertical-cavity surface emitting laser exhibiting temporally localized pulse structures within the round-trip time of the laser cavity. Results are visualized as PE maps as a function of embedding delay, with low PE values indicating combinations of embedding delays where correlation structure is present. It is demonstrated that vector embedding delays enable identification of structure that is ambiguous or masked, when the embedding delay is constrained to scalar form.

  13. A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy

    NASA Astrophysics Data System (ADS)

    Li, Yongbo; Li, Guoyan; Yang, Yuantao; Liang, Xihui; Xu, Minqiang

    2018-05-01

    The fault diagnosis of planetary gearboxes is crucial to reduce the maintenance costs and economic losses. This paper proposes a novel fault diagnosis method based on adaptive multi-scale morphological filter (AMMF) and modified hierarchical permutation entropy (MHPE) to identify the different health conditions of planetary gearboxes. In this method, AMMF is firstly adopted to remove the fault-unrelated components and enhance the fault characteristics. Second, MHPE is utilized to extract the fault features from the denoised vibration signals. Third, Laplacian score (LS) approach is employed to refine the fault features. In the end, the obtained features are fed into the binary tree support vector machine (BT-SVM) to accomplish the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault categories of planetary gearboxes.

  14. An efficient genome-wide association test for mixed binary and continuous phenotypes with applications to substance abuse research.

    PubMed

    Buu, Anne; Williams, L Keoki; Yang, James J

    2018-03-01

    We propose a new genome-wide association test for mixed binary and continuous phenotypes that uses an efficient numerical method to estimate the empirical distribution of the Fisher's combination statistic under the null hypothesis. Our simulation study shows that the proposed method controls the type I error rate and also maintains its power at the level of the permutation method. More importantly, the computational efficiency of the proposed method is much higher than the one of the permutation method. The simulation results also indicate that the power of the test increases when the genetic effect increases, the minor allele frequency increases, and the correlation between responses decreases. The statistical analysis on the database of the Study of Addiction: Genetics and Environment demonstrates that the proposed method combining multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests.

  15. SAR processing on the MPP

    NASA Technical Reports Server (NTRS)

    Batcher, K. E.; Eddey, E. E.; Faiss, R. O.; Gilmore, P. A.

    1981-01-01

    The processing of synthetic aperture radar (SAR) signals using the massively parallel processor (MPP) is discussed. The fast Fourier transform convolution procedures employed in the algorithms are described. The MPP architecture comprises an array unit (ARU) which processes arrays of data; an array control unit which controls the operation of the ARU and performs scalar arithmetic; a program and data management unit which controls the flow of data; and a unique staging memory (SM) which buffers and permutes data. The ARU contains a 128 by 128 array of bit-serial processing elements (PE). Two-by-four surarrays of PE's are packaged in a custom VLSI HCMOS chip. The staging memory is a large multidimensional-access memory which buffers and permutes data flowing with the system. Efficient SAR processing is achieved via ARU communication paths and SM data manipulation. Real time processing capability can be realized via a multiple ARU, multiple SM configuration.

  16. Demonstration of universal parametric entangling gates on a multi-qubit lattice

    PubMed Central

    Reagor, Matthew; Osborn, Christopher B.; Tezak, Nikolas; Staley, Alexa; Prawiroatmodjo, Guenevere; Scheer, Michael; Alidoust, Nasser; Sete, Eyob A.; Didier, Nicolas; da Silva, Marcus P.; Acala, Ezer; Angeles, Joel; Bestwick, Andrew; Block, Maxwell; Bloom, Benjamin; Bradley, Adam; Bui, Catvu; Caldwell, Shane; Capelluto, Lauren; Chilcott, Rick; Cordova, Jeff; Crossman, Genya; Curtis, Michael; Deshpande, Saniya; El Bouayadi, Tristan; Girshovich, Daniel; Hong, Sabrina; Hudson, Alex; Karalekas, Peter; Kuang, Kat; Lenihan, Michael; Manenti, Riccardo; Manning, Thomas; Marshall, Jayss; Mohan, Yuvraj; O’Brien, William; Otterbach, Johannes; Papageorge, Alexander; Paquette, Jean-Philip; Pelstring, Michael; Polloreno, Anthony; Rawat, Vijay; Ryan, Colm A.; Renzas, Russ; Rubin, Nick; Russel, Damon; Rust, Michael; Scarabelli, Diego; Selvanayagam, Michael; Sinclair, Rodney; Smith, Robert; Suska, Mark; To, Ting-Wai; Vahidpour, Mehrnoosh; Vodrahalli, Nagesh; Whyland, Tyler; Yadav, Kamal; Zeng, William; Rigetti, Chad T.

    2018-01-01

    We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity with the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all these permutations, an average fidelity of ℱ = 91.6 ± 2.6% is observed. These results thus offer a path to a scalable architecture with high selectivity and low cross-talk. PMID:29423443

  17. Chaotic reconfigurable ZCMT precoder for OFDM data encryption and PAPR reduction

    NASA Astrophysics Data System (ADS)

    Chen, Han; Yang, Xuelin; Hu, Weisheng

    2017-12-01

    A secure orthogonal frequency division multiplexing (OFDM) transmission scheme precoded by chaotic Zadoff-Chu matrix transform (ZCMT) is proposed and demonstrated. It is proved that the reconfigurable ZCMT matrices after row/column permutations can be applied as an alternative precoder for peak-to-average power ratio (PAPR) reduction. The permutations and the reconfigurable parameters in ZCMT matrix are generated by a hyper digital chaos, in which a huge key space of ∼ 10800 is created for physical-layer OFDM data encryption. An encrypted data transmission of 8.9 Gb/s optical OFDM signals is successfully demonstrated over 20 km standard single-mode fiber (SSMF) for 16-QAM. The BER performance of the encrypted signals is improved by ∼ 2 dB (BER@ 10-3), which is mainly attributed to the effective reduction of PAPR via chaotic ZCMT precoding. Moreover, the chaotic ZCMT precoding scheme requires no sideband information, thus the spectrum efficiency is enhanced during transmission.

  18. A Comparison of Techniques for Scheduling Fleets of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    Earth observing satellite (EOS) scheduling is a complex real-world domain representative of a broad class of over-subscription scheduling problems. Over-subscription problems are those where requests for a facility exceed its capacity. These problems arise in a wide variety of NASA and terrestrial domains and are .XI important class of scheduling problems because such facilities often represent large capital investments. We have run experiments comparing multiple variants of the genetic algorithm, hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on two variants of a realistically-sized model of the EOS scheduling problem. These are implemented as permutation-based methods; methods that search in the space of priority orderings of observation requests and evaluate each permutation by using it to drive a greedy scheduler. Simulated annealing performs best and random mutation operators outperform our squeaky (more intelligent) operator. Furthermore, taking smaller steps towards the end of the search improves performance.

  19. Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia

    NASA Astrophysics Data System (ADS)

    Schlemmer, Alexander; Berg, Sebastian; Lilienkamp, Thomas; Luther, Stefan; Parlitz, Ulrich

    2018-05-01

    Permutation entropy (PE) is a robust quantity for measuring the complexity of time series. In the cardiac community it is predominantly used in the context of electrocardiogram (ECG) signal analysis for diagnoses and predictions with a major application found in heart rate variability parameters. In this article we are combining spatial and temporal PE to form a spatiotemporal PE that captures both, complexity of spatial structures and temporal complexity at the same time. We demonstrate that the spatiotemporal PE (STPE) quantifies complexity using two datasets from simulated cardiac arrhythmia and compare it to phase singularity analysis and spatial PE (SPE). These datasets simulate ventricular fibrillation (VF) on a two-dimensional and a three-dimensional medium using the Fenton-Karma model. We show that SPE and STPE are robust against noise and demonstrate its usefulness for extracting complexity features at different spatial scales.

  20. Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review.

    PubMed

    Groppe, David M; Urbach, Thomas P; Kutas, Marta

    2011-12-01

    Event-related potentials (ERPs) and magnetic fields (ERFs) are typically analyzed via ANOVAs on mean activity in a priori windows. Advances in computing power and statistics have produced an alternative, mass univariate analyses consisting of thousands of statistical tests and powerful corrections for multiple comparisons. Such analyses are most useful when one has little a priori knowledge of effect locations or latencies, and for delineating effect boundaries. Mass univariate analyses complement and, at times, obviate traditional analyses. Here we review this approach as applied to ERP/ERF data and four methods for multiple comparison correction: strong control of the familywise error rate (FWER) via permutation tests, weak control of FWER via cluster-based permutation tests, false discovery rate control, and control of the generalized FWER. We end with recommendations for their use and introduce free MATLAB software for their implementation. Copyright © 2011 Society for Psychophysiological Research.

  1. Signal processing applications of massively parallel charge domain computing devices

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)

    1999-01-01

    The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.

  2. Consultation sequencing of a hospital with multiple service points using genetic programming

    NASA Astrophysics Data System (ADS)

    Morikawa, Katsumi; Takahashi, Katsuhiko; Nagasawa, Keisuke

    2018-07-01

    A hospital with one consultation room operated by a physician and several examination rooms is investigated. Scheduled patients and walk-ins arrive at the hospital, each patient goes to the consultation room first, and some of them visit other service points before consulting the physician again. The objective function consists of the sum of three weighted average waiting times. The problem of sequencing patients for consultation is focused. To alleviate the stress of waiting, the consultation sequence is displayed. A dispatching rule is used to decide the sequence, and best rules are explored by genetic programming (GP). The simulation experiments indicate that the rules produced by GP can be reduced to simple permutations of queues, and the best permutation depends on the weight used in the objective function. This implies that a balanced allocation of waiting times can be achieved by ordering the priority among three queues.

  3. Entanglement distillation protocols and number theory

    NASA Astrophysics Data System (ADS)

    Bombin, H.; Martin-Delgado, M. A.

    2005-09-01

    We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension D benefits from applying basic concepts from number theory, since the set ZDn associated with Bell diagonal states is a module rather than a vector space. We find that a partition of ZDn into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analytically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension D . When D is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

  4. Permutation methods for the structured exploratory data analysis (SEDA) of familial trait values.

    PubMed

    Karlin, S; Williams, P T

    1984-07-01

    A collection of functions that contrast familial trait values between and across generations is proposed for studying transmission effects and other collateral influences in nuclear families. Two classes of structured exploratory data analysis (SEDA) statistics are derived from ratios of these functions. SEDA-functionals are the empirical cumulative distributions of the ratio of the two contrasts computed within each family. SEDA-indices are formed by first averaging the numerator and denominator contrasts separately over the population and then forming their ratio. The significance of SEDA results are determined by a spectrum of permutation techniques that selectively shuffle the trait values across families. The process systematically alters certain family structure relationships while keeping other familial relationships intact. The methodology is applied to five data examples of plasma total cholesterol concentrations, reported height values, dermatoglyphic pattern intensity index scores, measurements of dopamine-beta-hydroxylase activity, and psychometric cognitive test results.

  5. Analysis of genome rearrangement by block-interchanges.

    PubMed

    Lu, Chin Lung; Lin, Ying Chih; Huang, Yen Lin; Tang, Chuan Yi

    2007-01-01

    Block-interchanges are a new kind of genome rearrangements that affect the gene order in a chromosome by swapping two nonintersecting blocks of genes of any length. More recently, the study of such rearrangements is becoming increasingly important because of its applications in molecular evolution. Usually, this kind of study requires to solve a combinatorial problem, called the block-interchange distance problem, which is to find a minimum number of block-interchanges between two given gene orders of linear/circular chromosomes to transform one gene order into another. In this chapter, we shall introduce the basics of block-interchange rearrangements and permutation groups in algebra that are useful in analyses of genome rearrangements. In addition, we shall present a simple algorithm on the basis of permutation groups to efficiently solve the block-interchange distance problem, as well as ROBIN, a web server for the online analyses of block-interchange rearrangements.

  6. A one-time pad color image cryptosystem based on SHA-3 and multiple chaotic systems

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Wang, Siwei; Zhang, Yingqian; Luo, Chao

    2018-04-01

    A novel image encryption algorithm is proposed that combines the SHA-3 hash function and two chaotic systems: the hyper-chaotic Lorenz and Chen systems. First, 384 bit keystream hash values are obtained by applying SHA-3 to plaintext. The sensitivity of the SHA-3 algorithm and chaotic systems ensures the effect of a one-time pad. Second, the color image is expanded into three-dimensional space. During permutation, it undergoes plane-plane displacements in the x, y and z dimensions. During diffusion, we use the adjacent pixel dataset and corresponding chaotic value to encrypt each pixel. Finally, the structure of alternating between permutation and diffusion is applied to enhance the level of security. Furthermore, we design techniques to improve the algorithm's encryption speed. Our experimental simulations show that the proposed cryptosystem achieves excellent encryption performance and can resist brute-force, statistical, and chosen-plaintext attacks.

  7. Learning molecular energies using localized graph kernels.

    PubMed

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-21

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  8. Learning molecular energies using localized graph kernels

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  9. Credit market Jitters in the course of the financial crisis: A permutation entropy approach in measuring informational efficiency in financial assets

    NASA Astrophysics Data System (ADS)

    Siokis, Fotios M.

    2018-06-01

    We explore the evolution of the informational efficiency for specific instruments of the U.S. money, bond and stock exchange markets, prior and after the outbreak of the Great Recession. We utilize the permutation entropy and the complexity-entropy causality plane to rank the time series and measure the degree of informational efficiency. We find that after the credit crunch and the collapse of Lehman Brothers the efficiency level of specific money market instruments' yield falls considerably. This is an evidence of less uncertainty included in predicting the related yields throughout the financial disarray. Similar trend is depicted in the indices of the stock exchange markets but efficiency remains in much higher levels. On the other hand, bond market instruments maintained their efficiency levels even after the outbreak of the crisis, which could be interpreted into greater randomness and less predictability of their yields.

  10. Multiscale permutation entropy analysis of electrocardiogram

    NASA Astrophysics Data System (ADS)

    Liu, Tiebing; Yao, Wenpo; Wu, Min; Shi, Zhaorong; Wang, Jun; Ning, Xinbao

    2017-04-01

    To make a comprehensive nonlinear analysis to ECG, multiscale permutation entropy (MPE) was applied to ECG characteristics extraction to make a comprehensive nonlinear analysis of ECG. Three kinds of ECG from PhysioNet database, congestive heart failure (CHF) patients, healthy young and elderly subjects, are applied in this paper. We set embedding dimension to 4 and adjust scale factor from 2 to 100 with a step size of 2, and compare MPE with multiscale entropy (MSE). As increase of scale factor, MPE complexity of the three ECG signals are showing first-decrease and last-increase trends. When scale factor is between 10 and 32, complexities of the three ECG had biggest difference, entropy of the elderly is 0.146 less than the CHF patients and 0.025 larger than the healthy young in average, in line with normal physiological characteristics. Test results showed that MPE can effectively apply in ECG nonlinear analysis, and can effectively distinguish different ECG signals.

  11. regioneR: an R/Bioconductor package for the association analysis of genomic regions based on permutation tests.

    PubMed

    Gel, Bernat; Díez-Villanueva, Anna; Serra, Eduard; Buschbeck, Marcus; Peinado, Miguel A; Malinverni, Roberto

    2016-01-15

    Statistically assessing the relation between a set of genomic regions and other genomic features is a common challenging task in genomic and epigenomic analyses. Randomization based approaches implicitly take into account the complexity of the genome without the need of assuming an underlying statistical model. regioneR is an R package that implements a permutation test framework specifically designed to work with genomic regions. In addition to the predefined randomization and evaluation strategies, regioneR is fully customizable allowing the use of custom strategies to adapt it to specific questions. Finally, it also implements a novel function to evaluate the local specificity of the detected association. regioneR is an R package released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/regioneR). rmalinverni@carrerasresearch.org. © The Author 2015. Published by Oxford University Press.

  12. The effects of hoechst 33342 staining and the male sample donor on the sorting efficiency of canine spermatozoa.

    PubMed

    Rodenas, C; Lucas, X; Tarantini, T; Del Olmo, D; Roca, J; Vazquez, J M; Martinez, E A; Parrilla, I

    2014-02-01

    The aim of this study was to evaluate the influence of Hoechst 33342 (H-42) concentration and of the male donor on the efficiency of sex-sorting procedure in canine spermatozoa. Semen samples from six dogs (three ejaculates/dog) were diluted to 100 × 10(6) sperm/ml, split into four aliquots, stained with increasing H-42 concentrations (5, 7.5, 10 and 12.5 μl, respectively) and sorted by flow cytometry. The rates of non-viable (FDA+), oriented (OS) and selected spermatozoa (SS), as well as the average sorting rates (SR, sorted spermatozoa/s), were used to determine the sorting efficiency. The effects of the sorting procedure on the quality of sorted spermatozoa were evaluated in terms of total motility (TM), percentage of viable spermatozoa (spermatozoa with membrane and acrosomal integrity) and percentage of spermatozoa with reacted/damaged acrosomes. X- and Y-chromosome-bearing sperm populations were identified in all of the samples stained with 7.5, 10 and 12.5 μl of H-42, while these two populations were only identified in 77.5% of samples stained with 5 μl. The values of OS, SS and SR were influenced by the male donor (p < 0.01) but not by the H-42 concentration used. The quality of sorted sperm samples immediately after sorting was similar to that of fresh samples, while centrifugation resulted in significant reduction (p < 0.05) in TM and in the percentage of viable spermatozoa and a significant increase (p < 0.01) in the percentage of spermatozoa with damage/reacted acrosomes. In conclusion, the sex-sorting of canine spermatozoa by flow cytometry can be performed successfully using H-42 concentrations between 7.5 and 12.5 μl. The efficiency of the sorting procedure varies based on the dog from which the sperm sample derives. © 2013 Blackwell Verlag GmbH.

  13. Sorting out Ideas about Function

    ERIC Educational Resources Information Center

    Hillen, Amy F.; Malik, LuAnn

    2013-01-01

    Card sorting has the potential to provide opportunities for exploration of a variety of topics and levels. In a card-sorting task, each participant is presented with a set of cards--each of which depicts a relationship--and is asked to sort the cards into categories that make sense to him or her. The concept of function is critical to…

  14. Gender Sorting across K-12 Schools in the United States

    ERIC Educational Resources Information Center

    Long, Mark C.; Conger, Dylan

    2013-01-01

    This article documents evidence of nonrandom gender sorting across K-12 schools in the United States. The sorting exists among coed schools and at all grade levels, and it is highest in the secondary school grades. We observe some gender sorting across school sectors and types: for instance, males are slightly underrepresented in private schools…

  15. Lazarus's BASIC ID: Making Initial Client Assessments Using Q-Sorts.

    ERIC Educational Resources Information Center

    Miller, Mark J.

    1987-01-01

    Presents overview of Lazarus's multimodal therapy model and the Q-sort, an observer-evaluation scoring instrument. Outlines feasibility of integrating Q-sort within multimodal model. Describes both a preliminary attempt using expert raters to categorize Q-sort cards within the model and a case study on how to assess client by incorporating Q-sort…

  16. Machine Vision System for Color Sorting Wood Edge-Glued Panel Parts

    Treesearch

    Qiang Lu; S. Srikanteswara; W. King; T. Drayer; Richard Conners; D. Earl Kline; Philip A. Araman

    1997-01-01

    This paper describes an automatic color sorting system for hardwood edge-glued panel parts. The color sorting system simultaneously examines both faces of a panel part and then determines which face has the "better" color given specified color uniformity and priority defined by management. The real-time color sorting system software and hardware are briefly...

  17. Flankers Facilitate 3-Year-Olds' Performance in a Card-Sorting Task

    ERIC Educational Resources Information Center

    Jordan, Patricia L.; Morton, J. Bruce

    2008-01-01

    Three-year-old children often act inflexibly in card-sorting tasks by continuing to sort by an old rule after being asked to switch and sort by a new rule. This inflexibility has been variously attributed to age-related constraints on higher order rule use, object redescription, and attention shifting. In 2 experiments, flankers that were…

  18. My eSorts and Digital Extensions of Word Study

    ERIC Educational Resources Information Center

    Zucker, Tricia A.; Invernizzi, Marcia

    2008-01-01

    "My eSorts" is a strategy for helping children learn to read and spell in a socially motivated context. It is based on developmental spelling research and the word study approach to teaching phonics and spelling. "eSorting" employs digital desktop publishing tools that allow children to author their own electronic word sorts and then share these…

  19. Continuous sorting of Brownian particles using coupled photophoresis and asymmetric potential cycling.

    PubMed

    Ng, Tuck Wah; Neild, Adrian; Heeraman, Pascal

    2008-03-15

    Feasible sorters need to function rapidly and permit the input and delivery of particles continuously. Here, we describe a scheme that incorporates (i) restricted spatial input location and (ii) orthogonal sort and movement direction features. Sorting is achieved using an asymmetric potential that is cycled on and off, whereas movement is accomplished using photophoresis. Simulations with 0.2 and 0.5 microm diameter spherical particles indicate that sorting can commence quickly from a continuous stream. Procedures to optimize the sorting scheme are also described.

  20. Application of Raman spectroscopy to identification and sorting of post-consumer plastics for recycling

    DOEpatents

    Sommer, Edward J.; Rich, John T.

    2001-01-01

    A high accuracy rapid system for sorting a plurality of waste products by polymer type. The invention involves the application of Raman spectroscopy and complex identification techniques to identify and sort post-consumer plastics for recycling. The invention reads information unique to the molecular structure of the materials to be sorted to identify their chemical compositions and uses rapid high volume sorting techniques to sort them into product streams at commercially viable throughput rates. The system employs a laser diode (20) for irradiating the material sample (10), a spectrograph (50) is used to determine the Raman spectrum of the material sample (10) and a microprocessor based controller (70) is employed to identify the polymer type of the material sample (10).

  1. Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Lang, Jun

    2015-03-01

    In this paper, we propose a novel color image encryption method by using Color Blend (CB) and Chaos Permutation (CP) operations in the reality-preserving multiple-parameter fractional Fourier transform (RPMPFRFT) domain. The original color image is first exchanged and mixed randomly from the standard red-green-blue (RGB) color space to R‧G‧B‧ color space by rotating the color cube with a random angle matrix. Then RPMPFRFT is employed for changing the pixel values of color image, three components of the scrambled RGB color space are converted by RPMPFRFT with three different transform pairs, respectively. Comparing to the complex output transform, the RPMPFRFT transform ensures that the output is real which can save storage space of image and convenient for transmission in practical applications. To further enhance the security of the encryption system, the output of the former steps is scrambled by juxtaposition of sections of the image in the reality-preserving multiple-parameter fractional Fourier domains and the alignment of sections is determined by two coupled chaotic logistic maps. The parameters in the Color Blend, Chaos Permutation and the RPMPFRFT transform are regarded as the key in the encryption algorithm. The proposed color image encryption can also be applied to encrypt three gray images by transforming the gray images into three RGB color components of a specially constructed color image. Numerical simulations are performed to demonstrate that the proposed algorithm is feasible, secure, sensitive to keys and robust to noise attack and data loss.

  2. Structural consequences of cutting a binding loop: two circularly permuted variants of streptavidin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Trong, Isolde; University of Washington, Box 357742, Seattle, WA 98195-7742; Chu, Vano

    2013-06-01

    The crystal structures of two circularly permuted streptavidins probe the role of a flexible loop in the tight binding of biotin. Molecular-dynamics calculations for one of the mutants suggests that increased fluctuations in a hydrogen bond between the protein and biotin are associated with cleavage of the binding loop. Circular permutation of streptavidin was carried out in order to investigate the role of a main-chain amide in stabilizing the high-affinity complex of the protein and biotin. Mutant proteins CP49/48 and CP50/49 were constructed to place new N-termini at residues 49 and 50 in a flexible loop involved in stabilizing themore » biotin complex. Crystal structures of the two mutants show that half of each loop closes over the binding site, as observed in wild-type streptavidin, while the other half adopts the open conformation found in the unliganded state. The structures are consistent with kinetic and thermodynamic data and indicate that the loop plays a role in enthalpic stabilization of the bound state via the Asn49 amide–biotin hydrogen bond. In wild-type streptavidin, the entropic penalties of immobilizing a flexible portion of the protein to enhance binding are kept to a manageable level by using a contiguous loop of medium length (six residues) which is already constrained by its anchorage to strands of the β-barrel protein. A molecular-dynamics simulation for CP50/49 shows that cleavage of the binding loop results in increased structural fluctuations for Ser45 and that these fluctuations destabilize the streptavidin–biotin complex.« less

  3. System for routing messages in a vertex symmetric network by using addresses formed from permutations of the transmission line indicees

    DOEpatents

    Faber, Vance; Moore, James W.

    1992-01-01

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs .GAMMA..sub.d (k) with degree d, diameter k, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k and .GAMMA..sub.d (k,-1) with degree 3-1, diameter k+1, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k.gtoreq.4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network .GAMMA..sub.d (k,-1) is provided, no processor has a channel connected to form an edge in a direction .delta..sub.1. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations.

  4. On complexity of trellis structure of linear block codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1990-01-01

    The trellis structure of linear block codes (LBCs) is discussed. The state and branch complexities of a trellis diagram (TD) for a LBC is investigated. The TD with the minimum number of states is said to be minimal. The branch complexity of a minimal TD for a LBC is expressed in terms of the dimensions of specific subcodes of the given code. Then upper and lower bounds are derived on the number of states of a minimal TD for a LBC, and it is shown that a cyclic (or shortened cyclic) code is the worst in terms of the state complexity among the LBCs of the same length and dimension. Furthermore, it is shown that the structural complexity of a minimal TD for a LBC depends on the order of its bit positions. This fact suggests that an appropriate permutation of the bit positions of a code may result in an equivalent code with a much simpler minimal TD. Boolean polynomial representation of codewords of a LBC is also considered. This representation helps in study of the trellis structure of the code. Boolean polynomial representation of a code is applied to construct its minimal TD. Particularly, the construction of minimal trellises for Reed-Muller codes and the extended and permuted binary primitive BCH codes which contain Reed-Muller as subcodes is emphasized. Finally, the structural complexity of minimal trellises for the extended and permuted, and double-error-correcting BCH codes is analyzed and presented. It is shown that these codes have relatively simple trellis structure and hence can be decoded with the Viterbi decoding algorithm.

  5. Using permutation tests to enhance causal inference in interrupted time series analysis.

    PubMed

    Linden, Ariel

    2018-06-01

    Interrupted time series analysis (ITSA) is an evaluation methodology in which a single treatment unit's outcome is studied serially over time and the intervention is expected to "interrupt" the level and/or trend of that outcome. The internal validity is strengthened considerably when the treated unit is contrasted with a comparable control group. In this paper, we introduce a robustness check based on permutation tests to further improve causal inference. We evaluate the effect of California's Proposition 99 for reducing cigarette sales by iteratively casting each nontreated state into the role of "treated," creating a comparable control group using the ITSAMATCH package in Stata, and then evaluating treatment effects using ITSA regression. If statistically significant "treatment effects" are estimated for pseudotreated states, then any significant changes in the outcome of the actual treatment unit (California) cannot be attributed to the intervention. We perform these analyses setting the cutpoint significance level to P > .40 for identifying balanced matches (the highest threshold possible for which controls could still be found for California) and use the difference in differences of trends as the treatment effect estimator. Only California attained a statistically significant treatment effect, strengthening confidence in the conclusion that Proposition 99 reduced cigarette sales. The proposed permutation testing framework provides an additional robustness check to either support or refute a treatment effect identified in for the true treated unit in ITSA. Given its value and ease of implementation, this framework should be considered as a standard robustness test in all multiple group interrupted time series analyses. © 2018 John Wiley & Sons, Ltd.

  6. Inference With Difference-in-Differences With a Small Number of Groups: A Review, Simulation Study, and Empirical Application Using SHARE Data.

    PubMed

    Rokicki, Slawa; Cohen, Jessica; Fink, Günther; Salomon, Joshua A; Landrum, Mary Beth

    2018-01-01

    Difference-in-differences (DID) estimation has become increasingly popular as an approach to evaluate the effect of a group-level policy on individual-level outcomes. Several statistical methodologies have been proposed to correct for the within-group correlation of model errors resulting from the clustering of data. Little is known about how well these corrections perform with the often small number of groups observed in health research using longitudinal data. First, we review the most commonly used modeling solutions in DID estimation for panel data, including generalized estimating equations (GEE), permutation tests, clustered standard errors (CSE), wild cluster bootstrapping, and aggregation. Second, we compare the empirical coverage rates and power of these methods using a Monte Carlo simulation study in scenarios in which we vary the degree of error correlation, the group size balance, and the proportion of treated groups. Third, we provide an empirical example using the Survey of Health, Ageing, and Retirement in Europe. When the number of groups is small, CSE are systematically biased downwards in scenarios when data are unbalanced or when there is a low proportion of treated groups. This can result in over-rejection of the null even when data are composed of up to 50 groups. Aggregation, permutation tests, bias-adjusted GEE, and wild cluster bootstrap produce coverage rates close to the nominal rate for almost all scenarios, though GEE may suffer from low power. In DID estimation with a small number of groups, analysis using aggregation, permutation tests, wild cluster bootstrap, or bias-adjusted GEE is recommended.

  7. Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, So

    2003-11-20

    We develop a symbolic manipulation program and program generator (Tensor Contraction Engine or TCE) that automatically derives the working equations of a well-defined model of second-quantized many-electron theories and synthesizes efficient parallel computer programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs valid contractions of creation and annihilation operators according to Wick's theorem, consolidates identical terms, and reduces the expressions into the form of multiple tensor contractions acted by permutation operators. Subsequently, it determines the binary contraction order for each multiple tensor contraction with the minimal operation and memory cost, factorizes commonmore » binary contractions (defines intermediate tensors), and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and index permutations is translated into an optimized program that is combined with the NWChem and UTChem computational chemistry software packages. The programs synthesized by TCE take advantage of spin symmetry, Abelian point-group symmetry, and index permutation symmetry at every stage of calculations to minimize the number of arithmetic operations and storage requirement, adjust the peak local memory usage by index range tiling, and support parallel I/O interfaces and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic derivation and implementation of parallel programs for various models of configuration-interaction theory (CISD, CISDT, CISDTQ), many-body perturbation theory [MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and CCSDTQ).« less

  8. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.

    PubMed

    Leibig, Christian; Wachtler, Thomas; Zeck, Günther

    2016-09-15

    Unsupervised identification of action potentials in multi-channel extracellular recordings, in particular from high-density microelectrode arrays with thousands of sensors, is an unresolved problem. While independent component analysis (ICA) achieves rapid unsupervised sorting, it ignores the convolutive structure of extracellular data, thus limiting the unmixing to a subset of neurons. Here we present a spike sorting algorithm based on convolutive ICA (cICA) to retrieve a larger number of accurately sorted neurons than with instantaneous ICA while accounting for signal overlaps. Spike sorting was applied to datasets with varying signal-to-noise ratios (SNR: 3-12) and 27% spike overlaps, sampled at either 11.5 or 23kHz on 4365 electrodes. We demonstrate how the instantaneity assumption in ICA-based algorithms has to be relaxed in order to improve the spike sorting performance for high-density microelectrode array recordings. Reformulating the convolutive mixture as an instantaneous mixture by modeling several delayed samples jointly is necessary to increase signal-to-noise ratio. Our results emphasize that different cICA algorithms are not equivalent. Spike sorting performance was assessed with ground-truth data generated from experimentally derived templates. The presented spike sorter was able to extract ≈90% of the true spike trains with an error rate below 2%. It was superior to two alternative (c)ICA methods (≈80% accurately sorted neurons) and comparable to a supervised sorting. Our new algorithm represents a fast solution to overcome the current bottleneck in spike sorting of large datasets generated by simultaneous recording with thousands of electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Properties of permutation-based gene tests and controlling type 1 error using a summary statistic based gene test

    PubMed Central

    2013-01-01

    Background The advent of genome-wide association studies has led to many novel disease-SNP associations, opening the door to focused study on their biological underpinnings. Because of the importance of analyzing these associations, numerous statistical methods have been devoted to them. However, fewer methods have attempted to associate entire genes or genomic regions with outcomes, which is potentially more useful knowledge from a biological perspective and those methods currently implemented are often permutation-based. Results One property of some permutation-based tests is that their power varies as a function of whether significant markers are in regions of linkage disequilibrium (LD) or not, which we show from a theoretical perspective. We therefore develop two methods for quantifying the degree of association between a genomic region and outcome, both of whose power does not vary as a function of LD structure. One method uses dimension reduction to “filter” redundant information when significant LD exists in the region, while the other, called the summary-statistic test, controls for LD by scaling marker Z-statistics using knowledge of the correlation matrix of markers. An advantage of this latter test is that it does not require the original data, but only their Z-statistics from univariate regressions and an estimate of the correlation structure of markers, and we show how to modify the test to protect the type 1 error rate when the correlation structure of markers is misspecified. We apply these methods to sequence data of oral cleft and compare our results to previously proposed gene tests, in particular permutation-based ones. We evaluate the versatility of the modification of the summary-statistic test since the specification of correlation structure between markers can be inaccurate. Conclusion We find a significant association in the sequence data between the 8q24 region and oral cleft using our dimension reduction approach and a borderline significant association using the summary-statistic based approach. We also implement the summary-statistic test using Z-statistics from an already-published GWAS of Chronic Obstructive Pulmonary Disorder (COPD) and correlation structure obtained from HapMap. We experiment with the modification of this test because the correlation structure is assumed imperfectly known. PMID:24199751

  10. Properties of permutation-based gene tests and controlling type 1 error using a summary statistic based gene test.

    PubMed

    Swanson, David M; Blacker, Deborah; Alchawa, Taofik; Ludwig, Kerstin U; Mangold, Elisabeth; Lange, Christoph

    2013-11-07

    The advent of genome-wide association studies has led to many novel disease-SNP associations, opening the door to focused study on their biological underpinnings. Because of the importance of analyzing these associations, numerous statistical methods have been devoted to them. However, fewer methods have attempted to associate entire genes or genomic regions with outcomes, which is potentially more useful knowledge from a biological perspective and those methods currently implemented are often permutation-based. One property of some permutation-based tests is that their power varies as a function of whether significant markers are in regions of linkage disequilibrium (LD) or not, which we show from a theoretical perspective. We therefore develop two methods for quantifying the degree of association between a genomic region and outcome, both of whose power does not vary as a function of LD structure. One method uses dimension reduction to "filter" redundant information when significant LD exists in the region, while the other, called the summary-statistic test, controls for LD by scaling marker Z-statistics using knowledge of the correlation matrix of markers. An advantage of this latter test is that it does not require the original data, but only their Z-statistics from univariate regressions and an estimate of the correlation structure of markers, and we show how to modify the test to protect the type 1 error rate when the correlation structure of markers is misspecified. We apply these methods to sequence data of oral cleft and compare our results to previously proposed gene tests, in particular permutation-based ones. We evaluate the versatility of the modification of the summary-statistic test since the specification of correlation structure between markers can be inaccurate. We find a significant association in the sequence data between the 8q24 region and oral cleft using our dimension reduction approach and a borderline significant association using the summary-statistic based approach. We also implement the summary-statistic test using Z-statistics from an already-published GWAS of Chronic Obstructive Pulmonary Disorder (COPD) and correlation structure obtained from HapMap. We experiment with the modification of this test because the correlation structure is assumed imperfectly known.

  11. A petabyte size electronic library using the N-Gram memory engine

    NASA Technical Reports Server (NTRS)

    Bugajski, Joseph M.

    1993-01-01

    A model library containing petabytes of data is proposed by Triada, Ltd., Ann Arbor, Michigan. The library uses the newly patented N-Gram Memory Engine (Neurex), for storage, compression, and retrieval. Neurex splits data into two parts: a hierarchical network of associative memories that store 'information' from data and a permutation operator that preserves sequence. Neurex is expected to offer four advantages in mass storage systems. Neurex representations are dense, fully reversible, hence less expensive to store. Neurex becomes exponentially more stable with increasing data flow; thus its contents and the inverting algorithm may be mass produced for low cost distribution. Only a small permutation operator would be recalled from the library to recover data. Neurex may be enhanced to recall patterns using a partial pattern. Neurex nodes are measures of their pattern. Researchers might use nodes in statistical models to avoid costly sorting and counting procedures. Neurex subsumes a theory of learning and memory that the author believes extends information theory. Its first axiom is a symmetry principle: learning creates memory and memory evidences learning. The theory treats an information store that evolves from a null state to stationarity. A Neurex extracts information data without a priori knowledge; i.e., unlike neural networks, neither feedback nor training is required. The model consists of an energetically conservative field of uniformly distributed events with variable spatial and temporal scale, and an observer walking randomly through this field. A bank of band limited transducers (an 'eye'), each transducer in a bank being tuned to a sub-band, outputs signals upon registering events. Output signals are 'observed' by another transducer bank (a mid-brain), except the band limit of the second bank is narrower than the band limit of the first bank. The banks are arrayed as n 'levels' or 'time domains, td.' The banks are the hierarchical network (a cortex) and transducers are (associative) memories. A model Neurex was built and studied. Data were 50 MB to 10 GB samples of text, data base, and images: black/white, grey scale, and high resolution in several spectral bands. Memories at td, S(m(sub td)), were plotted against outputs of memories at td-1. S(m(sub td)) was Boltzman distributed, and memory frequencies exhibited self-organized criticality (SOC); i.e., 'l/f(sup beta)' after long exposures to data. Whereas output signals from level n may be encoded with B(sub output) = O(-log(2)f(sup beta)) bits, and input data encoded with B(sub input) = O((S(td)/S(td-1))(sup n)), B(sup output)/B(sub input) is much less than 1 always, the Neurex determines a canonical code for data and it is a lossless data compressor. Further tests are underway to confirm these results with more data types and larger samples.

  12. Automatic Color Sorting of Hardwood Edge-Glued Panel Parts

    Treesearch

    D. Earl Kline; Richard Conners; Qiang Lu; Philip A. Araman

    1997-01-01

    This paper describes an automatic color sorting system for red oak edge-glued panel parts. The color sorting system simultaneously examines both faces of a panel part and then determines which face has the "best" color, and sorts the part into one of a number of color classes at plant production speeds. Initial test results show that the system generated over...

  13. Two Types of Perseveration in the Dimension Change Card Sort Task

    ERIC Educational Resources Information Center

    Hanania, Rima

    2010-01-01

    In the Dimension Change Card Sort (DCCS) task, 3-year-olds can sort cards well by one dimension but have difficulty in switching to sort the same cards by another dimension when asked; that is, they perseverate on the first relevant information. What is the information that children perseverate on? Using a new version of the DCCS, the experiments…

  14. Sampling Modification Effects in the Subgingival Microbiome Profile of Healthy Children

    PubMed Central

    Santigli, Elisabeth; Trajanoski, Slave; Eberhard, Katharina; Klug, Barbara

    2017-01-01

    Background: Oral microbiota are considered major players in the development of periodontal diseases. Thorough knowledge of intact subgingival microbiomes is required to elucidate microbial shifts from health to disease. Aims: This comparative study investigated the subgingival microbiome of healthy children, possible inter- and intra-individual effects of modified sampling, and basic comparability of subgingival microprints. Methods: In five 10-year-old children, biofilm was collected from the upper first premolars and first molars using sterilized, UV-treated paper-points inserted into the subgingival sulcus at eight sites. After supragingival cleaning using an electric toothbrush and water, sampling was performed, firstly, excluding (Mode A) and, secondly, including (Mode B) cleansing with sterile cotton pellets. DNA was extracted from the pooled samples, and primers targeting 16S rRNA hypervariable regions V5 and V6 were used for 454-pyrosequencing. Wilcoxon signed rank test and t-test were applied to compare sampling modes. Principal coordinate analysis (PCoA) and average agglomerative hierarchical clustering were calculated with unweighted UniFrac distance matrices. Sample grouping was tested with permutational MANOVA (Adonis). Results: Data filtering and quality control yielded 67,218 sequences with an average sequence length of 243bp (SD 6.52; range 231–255). Actinobacteria (2.8–24.6%), Bacteroidetes (9.2–25.1%), Proteobacteria (4.9–50.6%), Firmicutes (16.5–57.4%), and Fusobacteria (2.2–17.1%) were the five major phyla found in all samples. Differences in microbial abundances between sampling modes were not evident. High sampling numbers are needed to achieve significance for rare bacterial phyla. Samples taken from one individual using different sampling modes were more similar to each other than to other individuals' samples. PCoA and hierarchical clustering showed a grouping of the paired samples. Permutational MANOVA did not reveal sample grouping by sampling modes (p = 0.914 by R2 = 0.09). Conclusion: A slight modification of sampling mode has minor effects corresponding to a natural variability in the microbiome profiles of healthy children. The inter-individual variability in subgingival microprints is greater than intra-individual differences. Statistical analyses of microbial populations should consider this baseline variability and move beyond mere quantification with input from visual analytics. Comparative results are difficult to summarize as methods for studying huge datasets are still evolving. Advanced approaches are needed for sample size calculations in clinical settings. PMID:28149291

  15. Cell-Free Reconstitution of Multivesicular Body Formation and Receptor Sorting

    PubMed Central

    Sun, Wei; Vida, Thomas A.; Sirisaengtaksin, Natalie; Merrill, Samuel A.; Hanson, Phyllis I.; Bean, Andrew J.

    2010-01-01

    The number of surface membrane proteins and their residence time on the plasma membrane are critical determinants of cellular responses to cues that can control plasticity, growth and differentiation. After internalization, the ultimate fate of many plasma membrane proteins is dependent on whether they are sorted for internalization into the lumenal vesicles of multivesicular bodies (MVBs), an obligate step prior to lysosomal degradation. To help to elucidate the mechanisms underlying MVB sorting, we have developed a novel cell-free assay that reconstitutes the sorting of a prototypical membrane protein, the epidermal growth factor receptor, with which we have probed some of its molecular requirements. The sorting event measured is dependent on cytosol, ATP, time, temperature and an intact proton gradient. Depletion of Hrs inhibited biochemical and morphological measures of sorting that were rescued by inclusion of recombinant Hrs in the assay. Moreover, depletion of signal-transducing adaptor molecule (STAM), or addition of mutated ATPase-deficient Vps4, also inhibited sorting. This assay reconstitutes the maturation of late endosomes, including the formation of internal vesicles and the sorting of a membrane protein, and allows biochemical investigation of this process. PMID:20214752

  16. An Unsupervised Online Spike-Sorting Framework.

    PubMed

    Knieling, Simeon; Sridharan, Kousik S; Belardinelli, Paolo; Naros, Georgios; Weiss, Daniel; Mormann, Florian; Gharabaghi, Alireza

    2016-08-01

    Extracellular neuronal microelectrode recordings can include action potentials from multiple neurons. To separate spikes from different neurons, they can be sorted according to their shape, a procedure referred to as spike-sorting. Several algorithms have been reported to solve this task. However, when clustering outcomes are unsatisfactory, most of them are difficult to adjust to achieve the desired results. We present an online spike-sorting framework that uses feature normalization and weighting to maximize the distinctiveness between different spike shapes. Furthermore, multiple criteria are applied to either facilitate or prevent cluster fusion, thereby enabling experimenters to fine-tune the sorting process. We compare our method to established unsupervised offline (Wave_Clus (WC)) and online (OSort (OS)) algorithms by examining their performance in sorting various test datasets using two different scoring systems (AMI and the Adamos metric). Furthermore, we evaluate sorting capabilities on intra-operative recordings using established quality metrics. Compared to WC and OS, our algorithm achieved comparable or higher scores on average and produced more convincing sorting results for intra-operative datasets. Thus, the presented framework is suitable for both online and offline analysis and could substantially improve the quality of microelectrode-based data evaluation for research and clinical application.

  17. Design of mechanical arm for an automatic sorting system of recyclable cans

    NASA Astrophysics Data System (ADS)

    Resti, Y.; Mohruni, A. S.; Burlian, F.; Yani, I.; Amran, A.

    2018-04-01

    The use of a mechanical arm for an automatic sorting system of used cans should be designed carefully. The right design will result in a high precision sorting rate and a short sorting time. The design includes first; design manipulator,second; determine link and joint specifications, and third; build mechanical systems and control systems. This study aims to design the mechanical arm as a hardware system for automatic cans sorting system. The material used for the manipulator is the aluminum plate. The manipulator is designed using 6 links and 6 join where the 6th link is the end effectorand the 6th join is the gripper. As a driving motor used servo motor, while as a microcontroller used Arduino Uno which is connected with Matlab programming language. Based on testing, a mechanical arm designed for this recyclable canned recycling system has a precision sorting rate at 93%, where the average total time required for sorting is 10.82 seconds.

  18. Low power and high accuracy spike sorting microprocessor with on-line interpolation and re-alignment in 90 nm CMOS process.

    PubMed

    Chen, Tung-Chien; Ma, Tsung-Chuan; Chen, Yun-Yu; Chen, Liang-Gee

    2012-01-01

    Accurate spike sorting is an important issue for neuroscientific and neuroprosthetic applications. The sorting of spikes depends on the features extracted from the neural waveforms, and a better sorting performance usually comes with a higher sampling rate (SR). However for the long duration experiments on free-moving subjects, the miniaturized and wireless neural recording ICs are the current trend, and the compromise on sorting accuracy is usually made by a lower SR for the lower power consumption. In this paper, we implement an on-chip spike sorting processor with integrated interpolation hardware in order to improve the performance in terms of power versus accuracy. According to the fabrication results in 90nm process, if the interpolation is appropriately performed during the spike sorting, the system operated at the SR of 12.5 k samples per second (sps) can outperform the one not having interpolation at 25 ksps on both accuracy and power.

  19. Algorithm Sorts Groups Of Data

    NASA Technical Reports Server (NTRS)

    Evans, J. D.

    1987-01-01

    For efficient sorting, algorithm finds set containing minimum or maximum most significant data. Sets of data sorted as desired. Sorting process simplified by reduction of each multielement set of data to single representative number. First, each set of data expressed as polynomial with suitably chosen base, using elements of set as coefficients. Most significant element placed in term containing largest exponent. Base selected by examining range in value of data elements. Resulting series summed to yield single representative number. Numbers easily sorted, and each such number converted back to original set of data by successive division. Program written in BASIC.

  20. Chip-based droplet sorting

    DOEpatents

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2014-07-01

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  1. A QR code identification technology in package auto-sorting system

    NASA Astrophysics Data System (ADS)

    di, Yi-Juan; Shi, Jian-Ping; Mao, Guo-Yong

    2017-07-01

    Traditional manual sorting operation is not suitable for the development of Chinese logistics. For better sorting packages, a QR code recognition technology is proposed to identify the QR code label on the packages in package auto-sorting system. The experimental results compared with other algorithms in literatures demonstrate that the proposed method is valid and its performance is superior to other algorithms.

  2. When Seeing Is Knowing: The Role of Visual Cues in the Dissociation between Children's Rule Knowledge and Rule Use

    ERIC Educational Resources Information Center

    Buss, Aaron T.; Spencer, John P.

    2012-01-01

    The Dimensional Change Card Sort (DCCS) task requires children to switch from sorting cards based on shape or color to sorting based on the other dimension. Typically, 3-year-olds perseverate, whereas 4-year-olds flexibly sort by different dimensions. Zelazo and colleagues (1996, Cognitive Development, 11, 37-63) asked children questions about the…

  3. Technology to sort lumber by color and grain for furniture parts

    Treesearch

    D. Earl Kline; Richard Conners; Philip A. Araman

    2000-01-01

    This paper describes an automatic color and grain sorting system for wood edge-glued panel parts. The color sorting system simultaneously examines both faces of a panel part and then determines which face has the "best" color, and sorts the part into one of a number of color classes at plant production speeds. In-plant test results show that the system...

  4. BayesMotif: de novo protein sorting motif discovery from impure datasets.

    PubMed

    Hu, Jianjun; Zhang, Fan

    2010-01-18

    Protein sorting is the process that newly synthesized proteins are transported to their target locations within or outside of the cell. This process is precisely regulated by protein sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences usually located at the N-terminals or C-terminals of protein sequences. Genome-wide experimental identification of protein sorting signals is extremely time-consuming and costly. Effective computational algorithms for de novo discovery of protein sorting signals is needed to improve the understanding of protein sorting mechanisms. We formulated the protein sorting motif discovery problem as a classification problem and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a common type of protein sorting motifs in which a highly conserved anchor is present along with a less conserved motif regions. A false positive removal procedure is developed to iteratively remove sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from impure input sequences. Experiments on both implanted motif datasets and real-world datasets showed that the enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein sequence dataset. It also shows that the false positive removal procedure can help to identify true motifs even when there is only 20% of the input sequences containing true motif instances. We proposed BayesMotif, a novel Bayesian classification based algorithm for de novo discovery of a special category of anchored protein sorting motifs from impure datasets. Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the motifs which may help to overcome the limitations of PWM (position weight matrix) motif model.

  5. Sorted bedforms developed on sandy lobes fed by small ephemeral streams (Catalan continental shelf)

    NASA Astrophysics Data System (ADS)

    Durán, R.; Guillén, J.; Muñoz, A.; Guerrero, Q.

    2016-12-01

    The morphology and sedimentological characteristics of sorted bedforms identified in the Catalan continental shelf (NW Mediterranean Sea) have been characterized using multibeam echosounder data and sediment samples collected in 2013 within the FORMED project. Bathymetric data was compared with previous data gathered in 2004 within the ESPACE project to assess the decadal stability of these bedforms. The sorted bedforms were observed on the inner shelf at water depths from 10 to 40 m, along a coastal stretch of more than 3 km. They are associated with elongated patches of low backscatter, corresponding to fine sand. The fine-grained sediment patches are located off small bays fed by short, intermittent streams, extending down to 40 m water depth. The sorted bedforms exhibit elongated shapes with subtle relief (up to 1 m) and are oriented nearly perpendicular to the shoreline. In cross-section, the sorted bedforms display lateral symmetry in bathymetric relief and backscatter, with high backscatter corresponding to poorly sorted coarse sand (median size of 0.55-0.96 mm) centered on the bathymetric depression, and low backscatter consisting of well-sorted fine to medium sand (median sized of 0.22-0.35 mm) on the crest. The local input of well-sorted fine sand supplied by ephemeral streams over the coarse sand domain of the infralittoral prograding wedge contributes to the bed sediment heterogeneity (mixture of sediment), which is further reorganized into sorted bedforms. The sorted bedforms are better developed in deeper waters (20-40 m) than near the shoreline, probably due to stronger wave forcing in the shallower shelf that prevents the maintenance of these morphologies. At a decadal time scale, the morphological evolution of these bedforms indicates that they are persistent features, showing small changes in their boundaries, which is in agreement with previous observations and numerical simulations that highlighted the persistence and long-term stability of sorted bedforms at water depths greater than 15-20 m over annual or even decadal timescales.

  6. Put your hands up! Gesturing improves preschoolers' executive function.

    PubMed

    Rhoads, Candace L; Miller, Patricia H; Jaeger, Gina O

    2018-09-01

    This study addressed the causal direction of a previously reported relation between preschoolers' gesturing and their executive functioning on the Dimensional Change Card Sort (DCCS) sorting-switch task. Gesturing the relevant dimension for sorting was induced in a Gesture group through instructions, imitation, and prompts. In contrast, the Control group was instructed to "think hard" when sorting. Preschoolers (N = 50) performed two DCCS tasks: (a) sort by size and then spatial orientation of two objects and (b) sort by shape and then proximity of the two objects. An examination of performance over trials permitted a fine-grained depiction of patterns of younger and older children in the Gesture and Control conditions. After the relevant dimension was switched, the Gesture group had more accurate sorts than the Control group, particularly among younger children on the second task. Moreover, the amount of gesturing predicted the number of correct sorts among younger children on the second task. The overall association between gesturing and sorting was not reflected at the level of individual trials, perhaps indicating covert gestural representation on some trials or the triggering of a relevant verbal representation by the gesturing. The delayed benefit of gesturing, until the second task, in the younger children may indicate a utilization deficiency. Results are discussed in terms of theories of gesturing and thought. The findings open up a new avenue of research and theorizing about the possible role of gesturing in emerging executive function. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. [CD34(+)/CD123(+) cell sorting from the patients with leukemia by Midi MACS method].

    PubMed

    Wang, Guang-Ping; Cao, Xin-Yu; Xin, Hong-Ya; Li, Qun; Qi, Zhen-Hua; Chen, Fang-Ping

    2006-10-01

    The aim of this study was to sort the CD34(+)/CD123(+) cells from the bone marrow cells of patients with acute myeloid leukemia (AML) by Midi MACS method. Firstly, the bone marrow mononuclear cells (BMMNC) were isolated from the patients with AML with Ficoll Paque, CD34(+) cells were then isolated by Midi MACS method followed by the isolation of CD34(+)/CD123(+) cells from the fraction of CD34(+) cells. The enrichment and recovery of CD34(+) and CD34(+)/CD123(+) cells were assayed by FACS technique. The results showed that the enrichment of CD34(+) cells was up to 98.73%, its average enrichment was 95.6%, and the recovery of CD34(+) was 84.6%, its average recovery was 51% after the first round sorting, by the second round sorting, the enrichment of CD34(+)/CD123(+) cells was up to 99.23%, its average enrichment was 83%. With regard to BMMNCs before sorting, the recovery of CD34(+)/CD123(+) was 34%. But, on the CD34(+) cells obtained by the first round sorting, its recovery was 56%. In conclusion, these results confirmed that the method of Midi MACS sorting can be applied to sort CD34(+)/CD123(+) cells from the bone marrow cells of AML patients, which give rise to the similar enrichment and recovery of the sorted cells with that of literature reported by the method of FACS.

  8. Perseveration and the Status of 3-Year-Olds' Knowledge in a Card-Sorting Task: Evidence from Studies Involving Congruent Flankers

    ERIC Educational Resources Information Center

    Jordan, Patricia L.; Morton, J. Bruce

    2012-01-01

    Infants and young children often perseverate despite apparent knowledge of the correct response. Two Experiments addressed questions concerning the status of such knowledge in the context of a card-sorting task. In Experiment 1, three groups of 3-year-olds sorted bivalent cards one way and then were instructed to switch and sort the same cards…

  9. Activation of epidermal growth factor receptor mediates receptor axon sorting and extension in the developing olfactory system of the moth Manduca sexta.

    PubMed

    Gibson, Nicholas J; Tolbert, Leslie P

    2006-04-10

    During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies indicating that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs, with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. Copyright 2006 Wiley-Liss, Inc.

  10. Activation of EGF Receptor Mediates Receptor Axon Sorting and Extension in the Developing Olfactory System of the Moth Manduca sexta

    PubMed Central

    Gibson, Nicholas J.; Tolbert, Leslie P.

    2008-01-01

    During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally-derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies that indicate that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer, as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. PMID:16498681

  11. Effect of staining and freezing media on sortability of stallion spermatozoa and their post-thaw viability after sex-sorting and cryopreservation.

    PubMed

    Clulow, J R; Buss, H; Evans, G; Sieme, H; Rath, D; Morris, L H A; Maxwell, W M C

    2012-02-01

    Sex-sorted, frozen-thawed stallion spermatozoa remain out of reach of commercial horse breeders because of the low efficiency of the sex-sorting process and unacceptable fertility rates after insemination. Two experiments were designed to test the effects of alternative staining and freezing media to improve the viability of sex-sorted frozen-thawed stallion spermatozoa. Experiment 1 compared two freezing media, INRA 82(®) and a modified lactose-ethylenediaminetetraacetic acid (EDTA), for the cryopreservation of sex-sorted stallion spermatozoa. No significant differences between the two freezing media could be identified, suggesting that both cryodiluents would be suitable for incorporation into a sex-preselection protocol for stallion spermatozoa. Experiment 2 compared Kenney's modified Tyrode's (KMT) and Sperm TALP (Sp-TALP) as the staining and incubation medium for stallion spermatozoa prior to sex-sorting. A significant increase in the percentage of acrosome-reacted spermatozoa occurred after staining and incubation in the clarified Sp-TALP compared with KMT. As no improvements in sorting rates were achieved using Sp-TALP, it was concluded that stallion sorting protocols could include KMT as the staining and incubation medium while either INRA 82(®) or lactose-EDTA could be employed as a cryodiluents. © 2011 Blackwell Verlag GmbH.

  12. Sorted bedform pattern evolution: Persistence, destruction and self-organized intermittency

    NASA Astrophysics Data System (ADS)

    Goldstein, Evan B.; Murray, A. Brad; Coco, Giovanni

    2011-12-01

    We investigate the long-term evolution of inner continental shelf sorted bedform patterns. Numerical modeling suggests that a range of behaviors are possible, from pattern persistence to spatial-temporal intermittency. Sorted bedform persistence results from a robust sorting feedback that operates when the seabed features a sufficient concentration of coarse material. In the absence of storm events, pattern maturation processes such as defect dynamics and pattern migration tend to cause the burial of coarse material and excavation of fine material, leading to the fining of the active layer. Vertical sorting occurs until a critical state of active layer coarseness is reached. This critical state results in the local cessation of the sorting feedback, leading to a self-organized spatially intermittent pattern, a hallmark of observed sorted bedforms. Bedforms in shallow conditions and those subject to high wave climates may be temporally intermittent features as a result of increased wave orbital velocity during storms. Erosion, or deposition of bimodal sediment, similarly leads to a spatially intermittent pattern, with individual coarse domains exhibiting temporal intermittence. Recurring storm events cause coarsening of the seabed (strengthening the sorting feedback) and the development of large wavelength patterns. Cessation of storm events leads to the superposition of storm (large wavelength) and inter-storm (small wavelength) patterns and spatial heterogeneity of pattern modes.

  13. Fucosylated clusterin in semen promotes the uptake of stress-damaged proteins by dendritic cells via DC-SIGN.

    PubMed

    Merlotti, A; Dantas, E; Remes Lenicov, F; Ceballos, A; Jancic, C; Varese, A; Rubione, J; Stover, S; Geffner, J; Sabatté, J

    2015-07-01

    Could seminal plasma clusterin play a role in the uptake of stress-damaged proteins by dendritic cells? Seminal plasma clusterin, but not serum clusterin, promotes the uptake of stress-damaged proteins by dendritic cells via DC-SIGN. Clusterin is one of the major extracellular chaperones. It interacts with a variety of stressed proteins to prevent their aggregation, guiding them for receptor-mediated endocytosis and intracellular degradation. The concentration of clusterin in semen is almost 20-fold higher than that found in serum, raising the question about the role of seminal plasma clusterin in reproduction. No previous studies have analyzed whether seminal plasma clusterin has chaperone activity. We have previously shown that seminal plasma clusterin, but not serum clusterin, expresses an extreme abundance of fucosylated glycans. These motifs enable seminal plasma clusterin to bind DC-SIGN with very high affinity. In vitro experiments were performed to evaluate the ability of seminal plasma clusterin to inhibit the precipitation of stressed proteins, promoting their uptake by dendritic cells via DC-SIGN (a C-type lectin receptor selectively expressed on dendritic cells (DC)). Moreover, the ability of seminal plasma clusterin to modulate the phenotype and function of DCs was also assessed. Clusterin was purified from human semen and human serum. Catalase, bovine serum albumin, glutathione S-transferase, and normal human serum were stressed and the ability of seminal plasma clusterin to prevent the precipitation of these proteins, guiding them to DC-SIGN expressed by DCs, was evaluated using a fluorescence-activated cell sorter (FACS). Endocytosis of stressed proteins was analyzed by confocal microscopy and the ability of seminal plasma clusterin-treated DCs to stimulate the proliferation of CD25+FOXP3+CD4+ T cells was also evaluated by FACS. Seminal plasma clusterin interacts with stressed proteins, inhibits their aggregation (P < 0.01) and efficiently targets them to dendritic cells via DC-SIGN (P < 0.01). DCs efficiently endocytosed clusterin-client complexes and sorted them to degradative compartments involved in antigen processing and presentation. Moreover, we also found that the interaction of seminal plasma clusterin with DC-SIGN did not change the phenotype of DCs, but stimulates their ability to induce the expansion of CD25+FOXP3+CD4+ T lymphocytes (P < 0.05 versus control). All the experiments were performed in vitro; hence the relevance of our observations should be validated in vivo. Our results suggest that by inducing the endocytosis of stress-damaged proteins by DCs via DC-SIGN, seminal plasma clusterin might promote a tolerogenic response to male antigens, thereby contributing to female tolerance to seminal antigens. The present research was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas, the Buenos Aires University School of Medicine, and the Agencia Nacional de Promoción Científica y Tecnológica (Argentina). The authors have no conflicts of interest to declare. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. A Sequence of Sorting Strategies.

    ERIC Educational Resources Information Center

    Duncan, David R.; Litwiller, Bonnie H.

    1984-01-01

    Describes eight increasingly sophisticated and efficient sorting algorithms including linear insertion, binary insertion, shellsort, bubble exchange, shakersort, quick sort, straight selection, and tree selection. Provides challenges for the reader and the student to program these efficiently. (JM)

  15. UBE4B Protein Couples Ubiquitination and Sorting Machineries to Enable Epidermal Growth Factor Receptor (EGFR) Degradation*

    PubMed Central

    Sirisaengtaksin, Natalie; Gireud, Monica; Yan, Qing; Kubota, Yoshihisa; Meza, Denisse; Waymire, Jack C.; Zage, Peter E.; Bean, Andrew J.

    2014-01-01

    The signaling of plasma membrane proteins is tuned by internalization and sorting in the endocytic pathway prior to recycling or degradation in lysosomes. Ubiquitin modification allows recognition and association of cargo with endosomally associated protein complexes, enabling sorting of proteins to be degraded from those to be recycled. The mechanism that provides coordination between the cellular machineries that mediate ubiquitination and endosomal sorting is unknown. We report that the ubiquitin ligase UBE4B is recruited to endosomes in response to epidermal growth factor receptor (EGFR) activation by binding to Hrs, a key component of endosomal sorting complex required for transport (ESCRT) 0. We identify the EGFR as a substrate for UBE4B, establish UBE4B as a regulator of EGFR degradation, and describe a mechanism by which UBE4B regulates endosomal sorting, affecting cellular levels of the EGFR and its downstream signaling. We propose a model in which the coordinated action of UBE4B, ESCRT-0, and the deubiquitinating enzyme USP8 enable the endosomal sorting and lysosomal degradation of the EGFR. PMID:24344129

  16. Path integral Monte Carlo and the electron gas

    NASA Astrophysics Data System (ADS)

    Brown, Ethan W.

    Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational principle inherent in the path integral Monte Carlo method to optimize the nodal surface. By using a ansatz resembling a free particle density matrix, we make a unique connection between a nodal effective mass and the traditional effective mass of many-body quantum theory. We then propose and test several alternate nodal ansatzes and apply them to single atomic systems. Finally, we propose a method to tackle the sign problem head on, by leveraging the relatively simple structure of permutation space. Using this method, we find we can perform exact simulations this of the electron gas and 3He that were previously impossible.

  17. INTERMITTENT AND PERENNIAL STREAM MACROINVERTEBRATE COMMUNITY RESPONSE TO IMPERVIOUS COVER: THRESHOLD INDICATOR TAXA ANALYSIS AND PERMUTATIONS

    EPA Science Inventory

    The urban stream syndrome and the impact of impervious cover on macroinvertebrate communities is well-documented, but many exclude intermittent streams despite their prevalence. This study investigated macroinvertebrate communities of intermittent and perennial streams separately...

  18. Enhancement of automated blood flow estimates (ENABLE) from arterial spin-labeled MRI.

    PubMed

    Shirzadi, Zahra; Stefanovic, Bojana; Chappell, Michael A; Ramirez, Joel; Schwindt, Graeme; Masellis, Mario; Black, Sandra E; MacIntosh, Bradley J

    2018-03-01

    To validate a multiparametric automated algorithm-ENhancement of Automated Blood fLow Estimates (ENABLE)-that identifies useful and poor arterial spin-labeled (ASL) difference images in multiple postlabeling delay (PLD) acquisitions and thereby improve clinical ASL. ENABLE is a sort/check algorithm that uses a linear combination of ASL quality features. ENABLE uses simulations to determine quality weighting factors based on an unconstrained nonlinear optimization. We acquired a set of 6-PLD ASL images with 1.5T or 3.0T systems among 98 healthy elderly and adults with mild cognitive impairment or dementia. We contrasted signal-to-noise ratio (SNR) of cerebral blood flow (CBF) images obtained with ENABLE vs. conventional ASL analysis. In a subgroup, we validated our CBF estimates with single-photon emission computed tomography (SPECT) CBF images. ENABLE produced significantly increased SNR compared to a conventional ASL analysis (Wilcoxon signed-rank test, P < 0.0001). We also found the similarity between ASL and SPECT was greater when using ENABLE vs. conventional ASL analysis (n = 51, Wilcoxon signed-rank test, P < 0.0001) and this similarity was strongly related to ASL SNR (t = 24, P < 0.0001). These findings suggest that ENABLE improves CBF image quality from multiple PLD ASL in dementia cohorts at either 1.5T or 3.0T, achieved by multiparametric quality features that guided postprocessing of dementia ASL. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:647-655. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Statistical Characteristics of Single Sort of Grape Bulgarian Wines

    NASA Astrophysics Data System (ADS)

    Boyadzhiev, D.

    2008-10-01

    The aim of this paper is to evaluate the differences in the values of the 8 basic physicochemical indices of single sort of grape Bulgarian wines (white and red ones), obligatory for the standardization of ready production in the winery. Statistically significant differences in the values of various sorts and vintages are established and possibilities for identifying the sort and the vintage on the base of these indices by applying discriminant analysis are discussed.

  20. Cloning of Plasmodium falciparum by single-cell sorting

    PubMed Central

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  1. PhySortR: a fast, flexible tool for sorting phylogenetic trees in R.

    PubMed

    Stephens, Timothy G; Bhattacharya, Debashish; Ragan, Mark A; Chan, Cheong Xin

    2016-01-01

    A frequent bottleneck in interpreting phylogenomic output is the need to screen often thousands of trees for features of interest, particularly robust clades of specific taxa, as evidence of monophyletic relationship and/or reticulated evolution. Here we present PhySortR, a fast, flexible R package for classifying phylogenetic trees. Unlike existing utilities, PhySortR allows for identification of both exclusive and non-exclusive clades uniting the target taxa based on tip labels (i.e., leaves) on a tree, with customisable options to assess clades within the context of the whole tree. Using simulated and empirical datasets, we demonstrate the potential and scalability of PhySortR in analysis of thousands of phylogenetic trees without a priori assumption of tree-rooting, and in yielding readily interpretable trees that unambiguously satisfy the query. PhySortR is a command-line tool that is freely available and easily automatable.

  2. Sortilin 1 knockout alters basal adipose glucose metabolism but not diet-induced obesity in mice.

    PubMed

    Li, Jibiao; Matye, David J; Wang, Yifeng; Li, Tiangang

    2017-04-01

    Sortilin 1 (Sort1) is a trafficking receptor that has been implicated in the regulation of plasma cholesterol in humans and mice. Here, we use metabolomics and hyperinsulinemic-euglycemic clamp approaches to obtain further understanding of the in vivo effects of Sort1 deletion on diet-induced obesity as well as on adipose lipid and glucose metabolism. Results show that Sort1 knockout (KO) does not affect Western diet-induced obesity nor adipose fatty acid and ceramide concentrations. Under the basal fasting state, chow-fed Sort1 KO mice have decreased adipose glycolytic metabolites, but Sort1 deletion does not affect insulin-stimulated tissue glucose uptake during the insulin clamp. These results suggest that Sort1 loss-of-function in vivo does not affect obesity development, but differentially modulates adipose glucose metabolism under fasting and insulin-stimulated states. © 2017 Federation of European Biochemical Societies.

  3. Standard practice for cell sorting in a BSL-3 facility.

    PubMed

    Perfetto, Stephen P; Ambrozak, David R; Nguyen, Richard; Roederer, Mario; Koup, Richard A; Holmes, Kevin L

    2011-01-01

    Over the past decade, there has been a rapid growth in the number of BSL-3 and BSL-4 laboratories in the USA and an increase in demand for infectious cell sorting in BSL-3 laboratories. In 2007, the International Society for Advancement of Cytometry (ISAC) Biosafety Committee published standards for the sorting of unfixed cells and is an important resource for biosafety procedures when performing infectious cell sorting. Following a careful risk assessment, if it is determined that a cell sorter must be located within a BSL-3 laboratory, there are a variety of factors to be considered prior to the establishment of the laboratory. This chapter outlines procedures for infectious cell sorting in a BSL-3 environment to facilitate the establishment and safe operation of a BSL-3 cell sorting laboratory. Subjects covered include containment verification, remote operation, disinfection, personal protective equipment (PPE), and instrument-specific modifications for enhanced aerosol evacuation.

  4. Standard Practice for Cell Sorting in a BSL-3 Facility

    PubMed Central

    Perfetto, Stephen P.; Ambrozak, David R.; Nguyen, Richard; Roederer, Mario; Koup, Richard A.; Holmes, Kevin L.

    2016-01-01

    Over the past decade, there has been a rapid growth in the number of BSL-3 and BSL-4 laboratories in the USA and an increase in demand for infectious cell sorting in BSL-3 laboratories. In 2007, the International Society for Advancement of Cytometry (ISAC) Biosafety Committee published standards for the sorting of unfixed cells and is an important resource for biosafety procedures when performing infectious cell sorting. Following a careful risk assessment, if it is determined that a cell sorter must be located within a BSL-3 laboratory, there are a variety of factors to be considered prior to the establishment of the laboratory. This chapter outlines procedures for infectious cell sorting in a BSL-3 environment to facilitate the establishment and safe operation of a BSL-3 cell sorting laboratory. Subjects covered include containment verification, remote operation, disinfection, personal protective equipment (PPE), and instrument-specific modifications for enhanced aerosol evacuation. PMID:21116997

  5. Data parallel sorting for particle simulation

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1992-01-01

    Sorting on a parallel architecture is a communications intensive event which can incur a high penalty in applications where it is required. In the case of particle simulation, only integer sorting is necessary, and sequential implementations easily attain the minimum performance bound of O (N) for N particles. Parallel implementations, however, have to cope with the parallel sorting problem which, in addition to incurring a heavy communications cost, can make the minimun performance bound difficult to attain. This paper demonstrates how the sorting problem in a particle simulation can be reduced to a merging problem, and describes an efficient data parallel algorithm to solve this merging problem in a particle simulation. The new algorithm is shown to be optimal under conditions usual for particle simulation, and its fieldwise implementation on the Connection Machine is analyzed in detail. The new algorithm is about four times faster than a fieldwise implementation of radix sort on the Connection Machine.

  6. The interactive electrode localization utility: software for automatic sorting and labeling of intracranial subdural electrodes

    PubMed Central

    Tang, Wei; Peled, Noam; Vallejo, Deborah I.; Borzello, Mia; Dougherty, Darin D.; Eskandar, Emad N.; Widge, Alik S.; Cash, Sydney S.; Stufflebeam, Steven M.

    2018-01-01

    Purpose Existing methods for sorting, labeling, registering, and across-subject localization of electrodes in intracranial encephalography (iEEG) may involve laborious work requiring manual inspection of radiological images. Methods We describe a new open-source software package, the interactive electrode localization utility which presents a full pipeline for the registration, localization, and labeling of iEEG electrodes from CT and MR images. In addition, we describe a method to automatically sort and label electrodes from subdural grids of known geometry. Results We validated our software against manual inspection methods in twelve subjects undergoing iEEG for medically intractable epilepsy. Our algorithm for sorting and labeling performed correct identification on 96% of the electrodes. Conclusions The sorting and labeling methods we describe offer nearly perfect performance and the software package we have distributed may simplify the process of registering, sorting, labeling, and localizing subdural iEEG grid electrodes by manual inspection. PMID:27915398

  7. Estimating times of surgeries with two component procedures: comparison of the lognormal and normal models.

    PubMed

    Strum, David P; May, Jerrold H; Sampson, Allan R; Vargas, Luis G; Spangler, William E

    2003-01-01

    Variability inherent in the duration of surgical procedures complicates surgical scheduling. Modeling the duration and variability of surgeries might improve time estimates. Accurate time estimates are important operationally to improve utilization, reduce costs, and identify surgeries that might be considered outliers. Surgeries with multiple procedures are difficult to model because they are difficult to segment into homogenous groups and because they are performed less frequently than single-procedure surgeries. The authors studied, retrospectively, 10,740 surgeries each with exactly two CPTs and 46,322 surgical cases with only one CPT from a large teaching hospital to determine if the distribution of dual-procedure surgery times fit more closely a lognormal or a normal model. The authors tested model goodness of fit to their data using Shapiro-Wilk tests, studied factors affecting the variability of time estimates, and examined the impact of coding permutations (ordered combinations) on modeling. The Shapiro-Wilk tests indicated that the lognormal model is statistically superior to the normal model for modeling dual-procedure surgeries. Permutations of component codes did not appear to differ significantly with respect to total procedure time and surgical time. To improve individual models for infrequent dual-procedure surgeries, permutations may be reduced and estimates may be based on the longest component procedure and type of anesthesia. The authors recommend use of the lognormal model for estimating surgical times for surgeries with two component procedures. Their results help legitimize the use of log transforms to normalize surgical procedure times prior to hypothesis testing using linear statistical models. Multiple-procedure surgeries may be modeled using the longest (statistically most important) component procedure and type of anesthesia.

  8. Vascular tone pathway polymorphisms in relation to primary open-angle glaucoma.

    PubMed

    Kang, J H; Loomis, S J; Yaspan, B L; Bailey, J C; Weinreb, R N; Lee, R K; Lichter, P R; Budenz, D L; Liu, Y; Realini, T; Gaasterland, D; Gaasterland, T; Friedman, D S; McCarty, C A; Moroi, S E; Olson, L; Schuman, J S; Singh, K; Vollrath, D; Wollstein, G; Zack, D J; Brilliant, M; Sit, A J; Christen, W G; Fingert, J; Forman, J P; Buys, E S; Kraft, P; Zhang, K; Allingham, R R; Pericak-Vance, M A; Richards, J E; Hauser, M A; Haines, J L; Wiggs, J L; Pasquale, L R

    2014-06-01

    Vascular perfusion may be impaired in primary open-angle glaucoma (POAG); thus, we evaluated a panel of markers in vascular tone-regulating genes in relation to POAG. We used Illumina 660W-Quad array genotype data and pooled P-values from 3108 POAG cases and 3430 controls from the combined National Eye Institute Glaucoma Human Genetics Collaboration consortium and Glaucoma Genes and Environment studies. Using information from previous literature and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we compiled single-nucleotide polymorphisms (SNPs) in 186 vascular tone-regulating genes. We used the 'Pathway Analysis by Randomization Incorporating Structure' analysis software, which performed 1000 permutations to compare the overall pathway and selected genes with comparable randomly generated pathways and genes in their association with POAG. The vascular tone pathway was not associated with POAG overall or POAG subtypes, defined by the type of visual field loss (early paracentral loss (n=224 cases) or only peripheral loss (n=993 cases)) (permuted P≥0.20). In gene-based analyses, eight were associated with POAG overall at permuted P<0.001: PRKAA1, CAV1, ITPR3, EDNRB, GNB2, DNM2, HFE, and MYL9. Notably, six of these eight (the first six listed) code for factors involved in the endothelial nitric oxide synthase activity, and three of these six (CAV1, ITPR3, and EDNRB) were also associated with early paracentral loss at P<0.001, whereas none of the six genes reached P<0.001 for peripheral loss only. Although the assembled vascular tone SNP set was not associated with POAG, genes that code for local factors involved in setting vascular tone were associated with POAG.

  9. Rapid and Accurate Multiple Testing Correction and Power Estimation for Millions of Correlated Markers

    PubMed Central

    Han, Buhm; Kang, Hyun Min; Eskin, Eleazar

    2009-01-01

    With the development of high-throughput sequencing and genotyping technologies, the number of markers collected in genetic association studies is growing rapidly, increasing the importance of methods for correcting for multiple hypothesis testing. The permutation test is widely considered the gold standard for accurate multiple testing correction, but it is often computationally impractical for these large datasets. Recently, several studies proposed efficient alternative approaches to the permutation test based on the multivariate normal distribution (MVN). However, they cannot accurately correct for multiple testing in genome-wide association studies for two reasons. First, these methods require partitioning of the genome into many disjoint blocks and ignore all correlations between markers from different blocks. Second, the true null distribution of the test statistic often fails to follow the asymptotic distribution at the tails of the distribution. We propose an accurate and efficient method for multiple testing correction in genome-wide association studies—SLIDE. Our method accounts for all correlation within a sliding window and corrects for the departure of the true null distribution of the statistic from the asymptotic distribution. In simulations using the Wellcome Trust Case Control Consortium data, the error rate of SLIDE's corrected p-values is more than 20 times smaller than the error rate of the previous MVN-based methods' corrected p-values, while SLIDE is orders of magnitude faster than the permutation test and other competing methods. We also extend the MVN framework to the problem of estimating the statistical power of an association study with correlated markers and propose an efficient and accurate power estimation method SLIP. SLIP and SLIDE are available at http://slide.cs.ucla.edu. PMID:19381255

  10. Permutation importance: a corrected feature importance measure.

    PubMed

    Altmann, André; Toloşi, Laura; Sander, Oliver; Lengauer, Thomas

    2010-05-15

    In life sciences, interpretability of machine learning models is as important as their prediction accuracy. Linear models are probably the most frequently used methods for assessing feature relevance, despite their relative inflexibility. However, in the past years effective estimators of feature relevance have been derived for highly complex or non-parametric models such as support vector machines and RandomForest (RF) models. Recently, it has been observed that RF models are biased in such a way that categorical variables with a large number of categories are preferred. In this work, we introduce a heuristic for normalizing feature importance measures that can correct the feature importance bias. The method is based on repeated permutations of the outcome vector for estimating the distribution of measured importance for each variable in a non-informative setting. The P-value of the observed importance provides a corrected measure of feature importance. We apply our method to simulated data and demonstrate that (i) non-informative predictors do not receive significant P-values, (ii) informative variables can successfully be recovered among non-informative variables and (iii) P-values computed with permutation importance (PIMP) are very helpful for deciding the significance of variables, and therefore improve model interpretability. Furthermore, PIMP was used to correct RF-based importance measures for two real-world case studies. We propose an improved RF model that uses the significant variables with respect to the PIMP measure and show that its prediction accuracy is superior to that of other existing models. R code for the method presented in this article is available at http://www.mpi-inf.mpg.de/ approximately altmann/download/PIMP.R CONTACT: altmann@mpi-inf.mpg.de, laura.tolosi@mpi-inf.mpg.de Supplementary data are available at Bioinformatics online.

  11. CiPerGenesis, A Mutagenesis Approach that Produces Small Libraries of Circularly Permuted Proteins Randomly Opened at a Focused Region: Testing on the Green Fluorescent Protein.

    PubMed

    Gaytán, Paul; Roldán-Salgado, Abigail; Yáñez, Jorge A; Morales-Arrieta, Sandra; Juárez-González, Víctor R

    2018-06-12

    Circularly permuted proteins (cpPs) represent a novel type of mutant proteins with original termini that are covalently linked through a peptide connector and opened at any other place of the polypeptide backbone to create new ends. cpPs are finding wide applications in biotechnology because their properties may be quite different from those of the parental protein. However, the actual challenge for the creation of successful cpPs is to identify those peptide bonds that can be broken to create new termini and ensure functional and well-folded cpPs. Herein, we describe CiPerGenesis, a combinatorial mutagenesis approach that uses two oligonucleotide libraries to amplify a circularized gene by PCR, starting and ending from a focused target region. This approach creates small libraries of circularly permuted genes that are easily cloned in the correct direction and frame using two different restriction sites encoded in the oligonucleotides. Once expressed, the protein libraries exhibit a unique sequence diversity, comprising cpPs that exhibit ordinary breakpoints between adjacent amino acids localized at the target region as well as cpPs with new termini containing user-defined truncations and repeats of some amino acids. CiPerGenesis was tested at the lid region G134-H148 of green fluorescent protein (GFP), revealing that the most fluorescent variants were those starting at Leu141 and ending at amino acids Tyr145, Tyr143, Glu142, Leu141, Lys140, and H139. Purification and biochemical characterization of some variants suggested a differential expression, solubility and maturation extent of the mutant proteins as the likely cause for the variability in fluorescence intensity observed in colonies.

  12. BROCCOLI: Software for fast fMRI analysis on many-core CPUs and GPUs

    PubMed Central

    Eklund, Anders; Dufort, Paul; Villani, Mattias; LaConte, Stephen

    2014-01-01

    Analysis of functional magnetic resonance imaging (fMRI) data is becoming ever more computationally demanding as temporal and spatial resolutions improve, and large, publicly available data sets proliferate. Moreover, methodological improvements in the neuroimaging pipeline, such as non-linear spatial normalization, non-parametric permutation tests and Bayesian Markov Chain Monte Carlo approaches, can dramatically increase the computational burden. Despite these challenges, there do not yet exist any fMRI software packages which leverage inexpensive and powerful graphics processing units (GPUs) to perform these analyses. Here, we therefore present BROCCOLI, a free software package written in OpenCL (Open Computing Language) that can be used for parallel analysis of fMRI data on a large variety of hardware configurations. BROCCOLI has, for example, been tested with an Intel CPU, an Nvidia GPU, and an AMD GPU. These tests show that parallel processing of fMRI data can lead to significantly faster analysis pipelines. This speedup can be achieved on relatively standard hardware, but further, dramatic speed improvements require only a modest investment in GPU hardware. BROCCOLI (running on a GPU) can perform non-linear spatial normalization to a 1 mm3 brain template in 4–6 s, and run a second level permutation test with 10,000 permutations in about a minute. These non-parametric tests are generally more robust than their parametric counterparts, and can also enable more sophisticated analyses by estimating complicated null distributions. Additionally, BROCCOLI includes support for Bayesian first-level fMRI analysis using a Gibbs sampler. The new software is freely available under GNU GPL3 and can be downloaded from github (https://github.com/wanderine/BROCCOLI/). PMID:24672471

  13. Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR).

    PubMed

    O'Leary, Neil; Chauhan, Balwantray C; Artes, Paul H

    2012-10-01

    To establish a method for estimating the overall statistical significance of visual field deterioration from an individual patient's data, and to compare its performance to pointwise linear regression. The Truncated Product Method was used to calculate a statistic S that combines evidence of deterioration from individual test locations in the visual field. The overall statistical significance (P value) of visual field deterioration was inferred by comparing S with its permutation distribution, derived from repeated reordering of the visual field series. Permutation of pointwise linear regression (PoPLR) and pointwise linear regression were evaluated in data from patients with glaucoma (944 eyes, median mean deviation -2.9 dB, interquartile range: -6.3, -1.2 dB) followed for more than 4 years (median 10 examinations over 8 years). False-positive rates were estimated from randomly reordered series of this dataset, and hit rates (proportion of eyes with significant deterioration) were estimated from the original series. The false-positive rates of PoPLR were indistinguishable from the corresponding nominal significance levels and were independent of baseline visual field damage and length of follow-up. At P < 0.05, the hit rates of PoPLR were 12, 29, and 42%, at the fifth, eighth, and final examinations, respectively, and at matching specificities they were consistently higher than those of pointwise linear regression. In contrast to population-based progression analyses, PoPLR provides a continuous estimate of statistical significance for visual field deterioration individualized to a particular patient's data. This allows close control over specificity, essential for monitoring patients in clinical practice and in clinical trials.

  14. Impact of respiratory-correlated CT sorting algorithms on the choice of margin definition for free-breathing lung radiotherapy treatments.

    PubMed

    Thengumpallil, Sheeba; Germond, Jean-François; Bourhis, Jean; Bochud, François; Moeckli, Raphaël

    2016-06-01

    To investigate the impact of Toshiba phase- and amplitude-sorting algorithms on the margin strategies for free-breathing lung radiotherapy treatments in the presence of breathing variations. 4D CT of a sphere inside a dynamic thorax phantom was acquired. The 4D CT was reconstructed according to the phase- and amplitude-sorting algorithms. The phantom was moved by reproducing amplitude, frequency, and a mix of amplitude and frequency variations. Artefact analysis was performed for Mid-Ventilation and ITV-based strategies on the images reconstructed by phase- and amplitude-sorting algorithms. The target volume deviation was assessed by comparing the target volume acquired during irregular motion to the volume acquired during regular motion. The amplitude-sorting algorithm shows reduced artefacts for only amplitude variations while the phase-sorting algorithm for only frequency variations. For amplitude and frequency variations, both algorithms perform similarly. Most of the artefacts are blurring and incomplete structures. We found larger artefacts and volume differences for the Mid-Ventilation with respect to the ITV strategy, resulting in a higher relative difference of the surface distortion value which ranges between maximum 14.6% and minimum 4.1%. The amplitude- is superior to the phase-sorting algorithm in the reduction of motion artefacts for amplitude variations while phase-sorting for frequency variations. A proper choice of 4D CT sorting algorithm is important in order to reduce motion artefacts, especially if Mid-Ventilation strategy is used. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Efficient sampling of parsimonious inversion histories with application to genome rearrangement in Yersinia.

    PubMed

    Miklós, István; Darling, Aaron E

    2009-06-22

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called "MC4Inversion." We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique.

  16. Update on Munchausen syndrome by proxy.

    PubMed

    Galvin, Hannah K; Newton, Alice W; Vandeven, Andrea M

    2005-04-01

    Munchausen syndrome by proxy (MBP) is a complicated form of child maltreatment. Difficulties remain in properly defining the condition, as well as in detection and differentiation from organic illness. This review will discuss the epidemiology and diagnosis of MBP, as well as the role of the physician in sorting out these cases. Several recent case studies, including two in which children were diagnosed with celiac disease, add to our knowledge of the protean manifestations of MBP. There is growth in our understanding of how sudden infant death syndrome (SIDS) and the symptom complex seen in acute life-threatening events (ALTEs) may in fact represent manifestations of MBP. Recent legal issues in the United Kingdom pose concern for all physicians engaged in child protection work. In spite of these challenges, the high mortality and recidivism rates associated with MBP make it imperative that pediatricians be familiar with the condition, the subtle signs and symptoms with which it may present, and methods to best protect the children in their care.

  17. The neuropsychology of emerging psychosis and the role of working memory in episodic memory encoding.

    PubMed

    Pflueger, Marlon O; Calabrese, Pasquale; Studerus, Erich; Zimmermann, Ronan; Gschwandtner, Ute; Borgwardt, Stefan; Aston, Jacqueline; Stieglitz, Rolf-Dieter; Riecher-Rössler, Anita

    2018-01-01

    Episodic memory encoding and working memory (WM) deficits are among the first cognitive signs and symptoms in the course of schizophrenia spectrum disorders. However, it is not clear whether the deficit pattern is generalized or specific in nature. We hypothesized that encoding deficits at an early stage of the disease might be due to the more fundamental WM deficits. We examined episodic memory encoding and WM by administering the California Verbal Learning Test, a 2-back task, and the Wisconsin Card Sorting Test in 90 first-episode psychosis (FE) patients and 116 individuals with an at-risk mental state for psychosis (ARMS) compared to 57 healthy subjects. Learning progress, but not span of apprehension, was diminished to a similar extent in both the ARMS and the FE. We showed that this was due to WM impairment by applying a structural equation approach. Thus, we conclude that verbal memory encoding deficits are secondary to primary WM impairment in emerging psychosis.

  18. In one's own image: ethics and the reproduction of deafness.

    PubMed

    Johnston, Trevor

    2005-01-01

    The ethics of the use of genetic screening and reproductive technologies to select against and for deafness is presented. It is argued that insofar as deafness is a disability it is ethical to act in such a way as to avoid the conception or birth of children with genetic or congenital deafness. The discovery and recognition of signing deaf communities as cultural and linguistic communities (minorities) does not alter this basic ethical position, although the consequences of widespread application of this technology appears destined to lead to the eventual disappearance of these communities. The argument that acting to avoid deafness is unethical because it will lead to the elimination of a linguistic or cultural group (genocide or ethnocide) or conversely that acting to ensure deafness is ethical, if not praiseworthy, can only be sustained if deafness is not regarded as a disability at all. I argue that the premise that deafness is not a disability of some sort is false and thus the claim that genetic selection against deafness is unethical is untenable.

  19. The distribution of reconnection geometry in flux transfer events using energetic ion, plasma and magnetic data. [on dayside magnetopause

    NASA Technical Reports Server (NTRS)

    Daly, P. W.; Rijnbeek, R. P.; Sckopke, N.; Russell, C. T.; Saunders, M. A.

    1984-01-01

    The distribution of energetic ion anisotropies in flux transfer events (FTEs) about the dayside magnetopause has been determined for ISEE 2 crossings of the boundary in 1977 and 1978. When the events are sorted according to the sign of the east-west component of the magnetic field in the magnetosphere, a clear correlation is observed on the northern morningside. When the field is eastward, particles flow antiparallel to the field, implying field line connection to the Northern Hemisphere; when the field is westward, the opposite is true. On the afternoonside, the particle anisotropies are correlated with latitude. Explanations for this pattern are discussed which involve FTE formation at low latitudes with subsequent motion at a velocity given by the vector superposition of the Alfven velocity from the release of magnetic tension and the magnetosheath bulk flow velocity. Evidence that the geomagnetic and not the geocentric solar magnetospheric equator is the source of FTEs is considered.

  20. Size-based cell sorting with a resistive pulse sensor and an electromagnetic pump in a microfluidic chip.

    PubMed

    Song, Yongxin; Li, Mengqi; Pan, Xinxiang; Wang, Qi; Li, Dongqing

    2015-02-01

    An electrokinetic microfluidic chip is developed to detect and sort target cells by size from human blood samples. Target-cell detection is achieved by a differential resistive pulse sensor (RPS) based on the size difference between the target cell and other cells. Once a target cell is detected, the detected RPS signal will automatically actuate an electromagnetic pump built in a microchannel to push the target cell into a collecting channel. This method was applied to automatically detect and sort A549 cells and T-lymphocytes from a peripheral fingertip blood sample. The viability of A549 cells sorted in the collecting well was verified by Hoechst33342 and propidium iodide staining. The results show that as many as 100 target cells per minute can be sorted out from the sample solution and thus is particularly suitable for sorting very rare target cells, such as circulating tumor cells. The actuation of the electromagnetic valve has no influence on RPS cell detection and the consequent cell-sorting process. The viability of the collected A549 cell is not impacted by the applied electric field when the cell passes the RPS detection area. The device described in this article is simple, automatic, and label-free and has wide applications in size-based rare target cell sorting for medical diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microfluidic droplet sorting using integrated bilayer micro-valves

    NASA Astrophysics Data System (ADS)

    Chen, Yuncong; Tian, Yang; Xu, Zhen; Wang, Xinran; Yu, Sicong; Dong, Liang

    2016-10-01

    This paper reports on a microfluidic device capable of sorting microfluidic droplets utilizing conventional bilayer pneumatic micro-valves as sorting controllers. The device consists of two micro-valves placed symmetrically on two sides of a sorting area, each on top of a branching channel at an inclined angle with respect to the main channel. Changes in transmitted light intensity, induced by varying light absorbance by each droplet, are used to divert the droplet from the sorting area into one of the three outlet channels. When no valve is activated, the droplet flows into the outlet channel in the direction of the main channel. When one of the valves is triggered, the flexible membrane of valve will first be deflected. Once the droplet leaves the detection point, the deflected membrane will immediately return to its default flattened position, thereby exerting a drawing pressure on the droplet and deviating it from its original streamline to the outlet on the same side as the valve. This sorting method will be particularly suitable for numerous large-scale integrated microfluidic systems, where pneumatic micro-valves are already used. Only few structural modifications are needed to achieve droplet sorting capabilities in these systems. Due to the mechanical nature of diverting energy applied to droplets, the proposed sorting method may induce only minimal interference to biological species or microorganisms encapsulated inside the droplets that may accompany electrical, optical and magnetic-based techniques.

  2. Understanding the tropical cloud feedback from an analysis of the circulation and stability regimes simulated from an upgraded multiscale modeling framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kuan-Man; Cheng, Anning

    As revealed from studies using conventional general circulation models (GCMs), the thermodynamic contribution to the tropical cloud feedback dominates the dynamic contribution, but these models have difficulty in simulating the subsidence regimes in the tropics. In this study, we analyze the tropical cloud feedback from a 2 K sea surface temperature (SST) perturbation experiment performed with a multiscale modeling framework (MMF). The MMF explicitly represents cloud processes using 2-D cloud-resolving models with an advanced higher-order turbulence closure in each atmospheric column of the host GCM. We sort the monthly mean cloud properties and cloud radiative effects according to circulation andmore » stability regimes. Here, we find that the regime-sorted dynamic changes dominate the thermodynamic changes in terms of the absolute magnitude. The dynamic changes in the weak subsidence regimes exhibit strong negative cloud feedback due to increases in shallow cumulus and deep clouds while those in strongly convective and moderate-to-strong subsidence regimes have opposite signs, resulting in a small contribution to cloud feedback. On the other hand, the thermodynamic changes are large due to decreases in stratocumulus clouds in the moderate-to-strong subsidence regimes with small opposite changes in the weak subsidence and strongly convective regimes, resulting in a relatively large contribution to positive cloud feedback. The dynamic and thermodynamic changes contribute equally to positive cloud feedback and are relatively insensitive to stability in the moderate-to-strong subsidence regimes. But they are sensitive to stability changes from the SST increase in convective and weak subsidence regimes. Lastly, these results have implications for interpreting cloud feedback mechanisms.« less

  3. Understanding the tropical cloud feedback from an analysis of the circulation and stability regimes simulated from an upgraded multiscale modeling framework

    DOE PAGES

    Xu, Kuan-Man; Cheng, Anning

    2016-11-15

    As revealed from studies using conventional general circulation models (GCMs), the thermodynamic contribution to the tropical cloud feedback dominates the dynamic contribution, but these models have difficulty in simulating the subsidence regimes in the tropics. In this study, we analyze the tropical cloud feedback from a 2 K sea surface temperature (SST) perturbation experiment performed with a multiscale modeling framework (MMF). The MMF explicitly represents cloud processes using 2-D cloud-resolving models with an advanced higher-order turbulence closure in each atmospheric column of the host GCM. We sort the monthly mean cloud properties and cloud radiative effects according to circulation andmore » stability regimes. Here, we find that the regime-sorted dynamic changes dominate the thermodynamic changes in terms of the absolute magnitude. The dynamic changes in the weak subsidence regimes exhibit strong negative cloud feedback due to increases in shallow cumulus and deep clouds while those in strongly convective and moderate-to-strong subsidence regimes have opposite signs, resulting in a small contribution to cloud feedback. On the other hand, the thermodynamic changes are large due to decreases in stratocumulus clouds in the moderate-to-strong subsidence regimes with small opposite changes in the weak subsidence and strongly convective regimes, resulting in a relatively large contribution to positive cloud feedback. The dynamic and thermodynamic changes contribute equally to positive cloud feedback and are relatively insensitive to stability in the moderate-to-strong subsidence regimes. But they are sensitive to stability changes from the SST increase in convective and weak subsidence regimes. Lastly, these results have implications for interpreting cloud feedback mechanisms.« less

  4. Pediatric Psoriasis Comorbidity Screening Guidelines.

    PubMed

    Osier, Emily; Wang, Audrey S; Tollefson, Megha M; Cordoro, Kelly M; Daniels, Stephen R; Eichenfield, Andrew; Gelfand, Joel M; Gottlieb, Alice B; Kimball, Alexa B; Lebwohl, Mark; Mehta, Nehal N; Paller, Amy S; Schwimmer, Jeffrey B; Styne, Dennis M; Van Voorhees, Abby S; Tom, Wynnis L; Eichenfield, Lawrence F

    2017-07-01

    Psoriasis is a complex inflammatory skin condition associated with serious medical comorbidities in adults, including obesity, hypertension, dyslipidemia, type 2 diabetes mellitus, psoriatic arthritis, nonalcoholic fatty liver disease, depression, anxiety, and decreased quality of life. Because psoriasis begins in childhood in almost one-third of patients, early identification of risk may be critical to minimizing effects on future health. To develop the first set of guidelines for comorbidity screening for patients with pediatric psoriasis based on current evidence. A literature review was performed using PubMed from January 1999 through December 2015. Limiting the search to human studies published in English and removing reviews and editorials produced 153 relevant manuscripts. An expert panel in psoriasis, pediatric dermatology, pediatric rheumatology, pediatric gastroenterology, pediatric endocrinology, and adult and pediatric cardiology used the patient-centered Strength of Recommendation Taxonomy (SORT) method to evaluate and grade the quality of evidence. Because of the limited number of pediatric studies published on these topics, the strength of the panel's recommendations is classified as SORT level C expert consensus recommendations. The majority of recommendations coincide with those endorsed by the American Academy of Pediatrics for the general pediatric patient but with added attention to signs and symptoms of arthritis, depression, and anxiety. The panel also identified key areas for further investigation. Patients with pediatric psoriasis should receive routine screening and identification of risk factors for associated comorbidities. These guidelines are relevant for all health care providers caring for patients with pediatric psoriasis, including primary care clinicians, dermatologists, and pediatric specialists. Because these are the first pediatric guidelines, re-review and refinement will be necessary as studies further detail, and possibly stratify, risk in affected children.

  5. Perceptions of doctors and nurses at a Ugandan hospital regarding the introduction and use of the South African Triage Scale.

    PubMed

    Mulindwa, Francis; Blitz, Julia

    2016-03-29

    International Hospital Kampala (IHK) experienced a challenge with how to standardise the triaging and sorting of patients. There was no triage tool to help to prioritise which patients to attend to first, with very sick patient often being missed. To explore whether the introduction of the South African Triage Scale (SATS) was seen as valuable and sustainable by the IHK's outpatient department and emergency unit (OPD and EU) staff. The study used qualitative methods to introduce SATS in the OPD and EU at IHK and to obtain the perceptions of doctors and nurses who had used it for 3-6 months on its applicability and sustainability. Specific questions about challenges faced prior to its introduction, strengths and weaknesses of the triage tool, the impact it had on staff practices, and their recommendations on the continued use of the tool were asked. In-depth interviews were conducted with 4 doctors and 12 nurses. SATS was found to be necessary, applicable and recommended for use in the IHK setting. It improved the sorting of patients, as well as nurse-patient and nurse-doctor communication.The IHK OPD & EU staff attained new skills, with nurses becoming more involved in-patient care. It is possibly also useful in telephone triaging and planning of hospital staffing. Adequate nurse staffing, a computer application for automated coding of patients, and regular training would encourage consistent use and sustainability of SATS. Setting up a hospital committee to review signs and symptoms would increase acceptability and sustainability. SATS is valuable in the IHK setting because it improved overall efficiency of triaging and care, with significantly more strengths than weaknesses.

  6. Learning molecular energies using localized graph kernels

    DOE PAGES

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    2017-03-21

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  7. Improved Potential Energy Surface of Ozone Constructed Using the Fitting by Permutationally Invariant Polynomial Function

    DOE PAGES

    Ayouz, Mehdi; Babikov, Dmitri

    2012-01-01

    New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are added tomore » the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less

  8. A chaotic cryptosystem for images based on Henon and Arnold cat map.

    PubMed

    Soleymani, Ali; Nordin, Md Jan; Sundararajan, Elankovan

    2014-01-01

    The rapid evolution of imaging and communication technologies has transformed images into a widespread data type. Different types of data, such as personal medical information, official correspondence, or governmental and military documents, are saved and transmitted in the form of images over public networks. Hence, a fast and secure cryptosystem is needed for high-resolution images. In this paper, a novel encryption scheme is presented for securing images based on Arnold cat and Henon chaotic maps. The scheme uses Arnold cat map for bit- and pixel-level permutations on plain and secret images, while Henon map creates secret images and specific parameters for the permutations. Both the encryption and decryption processes are explained, formulated, and graphically presented. The results of security analysis of five different images demonstrate the strength of the proposed cryptosystem against statistical, brute force and differential attacks. The evaluated running time for both encryption and decryption processes guarantee that the cryptosystem can work effectively in real-time applications.

  9. Graph Matching: Relax at Your Own Risk.

    PubMed

    Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo

    2016-01-01

    Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches.

  10. A novel chaotic image encryption scheme using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Yuan; Zhang, Ying-Qian; Bao, Xue-Mei

    2015-10-01

    In this paper, we propose a novel image encryption scheme based on DNA (Deoxyribonucleic acid) sequence operations and chaotic system. Firstly, we perform bitwise exclusive OR operation on the pixels of the plain image using the pseudorandom sequences produced by the spatiotemporal chaos system, i.e., CML (coupled map lattice). Secondly, a DNA matrix is obtained by encoding the confused image using a kind of DNA encoding rule. Then we generate the new initial conditions of the CML according to this DNA matrix and the previous initial conditions, which can make the encryption result closely depend on every pixel of the plain image. Thirdly, the rows and columns of the DNA matrix are permuted. Then, the permuted DNA matrix is confused once again. At last, after decoding the confused DNA matrix using a kind of DNA decoding rule, we obtain the ciphered image. Experimental results and theoretical analysis show that the scheme is able to resist various attacks, so it has extraordinarily high security.

  11. Four-point functions and the permutation group S4

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot; Fischer, Christian S.; Heupel, Walter

    2015-09-01

    Four-point functions are at the heart of many interesting physical processes. A prime example is the light-by-light scattering amplitude, which plays an important role in the calculation of hadronic contributions to the anomalous magnetic moment of the muon. In the calculation of such quantities one faces the challenge of finding a suitable and well-behaved basis of tensor structures in coordinate and/or momentum space. Provided all (or many) of the external legs represent similar particle content, a powerful tool to construct and organize such bases is the permutation group S4. We introduce an efficient notation for dealing with the irreducible multiplets of S4, and we highlight the merits of this treatment by exemplifying four-point functions with gauge-boson legs such as the four-gluon vertex and the light-by-light scattering amplitude. The multiplet analysis is also useful for isolating the important kinematic regions and the dynamical singularity content of such amplitudes. Our analysis serves as a basis for future efficient calculations of these and similar objects.

  12. Evolution of a protein folding nucleus.

    PubMed

    Xia, Xue; Longo, Liam M; Sutherland, Mason A; Blaber, Michael

    2016-07-01

    The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome. © 2015 The Protein Society.

  13. Security scheme in IMDD-OFDM-PON system with the chaotic pilot interval and scrambling

    NASA Astrophysics Data System (ADS)

    Chen, Qianghua; Bi, Meihua; Fu, Xiaosong; Lu, Yang; Zeng, Ran; Yang, Guowei; Yang, Xuelin; Xiao, Shilin

    2018-01-01

    In this paper, a random chaotic pilot interval and permutations scheme without any requirement of redundant sideband information is firstly proposed for the physical layer security-enhanced intensity modulation direct detection orthogonal frequency division multiplexing passive optical network (IMDD-OFDM-PON) system. With the help of the position feature of inserting the pilot, a simple logistic chaos map is used to generate the random pilot interval and scramble the chaotic subcarrier allocation of each column pilot data for improving the physical layer confidentiality. Due to the dynamic chaotic permutations of pilot data, the enhanced key space of ∼103303 is achieved in OFDM-PON. Moreover, the transmission experiment of 10-Gb/s 16-QAM encrypted OFDM data is successfully demonstrated over 20-km single-mode fiber, which indicates that the proposed scheme not only improves the system security, but also can achieve the same performance as in the common IMDD-OFDM-PON system without encryption scheme.

  14. A permutation testing framework to compare groups of brain networks.

    PubMed

    Simpson, Sean L; Lyday, Robert G; Hayasaka, Satoru; Marsh, Anthony P; Laurienti, Paul J

    2013-01-01

    Brain network analyses have moved to the forefront of neuroimaging research over the last decade. However, methods for statistically comparing groups of networks have lagged behind. These comparisons have great appeal for researchers interested in gaining further insight into complex brain function and how it changes across different mental states and disease conditions. Current comparison approaches generally either rely on a summary metric or on mass-univariate nodal or edge-based comparisons that ignore the inherent topological properties of the network, yielding little power and failing to make network level comparisons. Gleaning deeper insights into normal and abnormal changes in complex brain function demands methods that take advantage of the wealth of data present in an entire brain network. Here we propose a permutation testing framework that allows comparing groups of networks while incorporating topological features inherent in each individual network. We validate our approach using simulated data with known group differences. We then apply the method to functional brain networks derived from fMRI data.

  15. Statistical physics of the symmetric group.

    PubMed

    Williams, Mobolaji

    2017-04-01

    Ordered chains (such as chains of amino acids) are ubiquitous in biological cells, and these chains perform specific functions contingent on the sequence of their components. Using the existence and general properties of such sequences as a theoretical motivation, we study the statistical physics of systems whose state space is defined by the possible permutations of an ordered list, i.e., the symmetric group, and whose energy is a function of how certain permutations deviate from some chosen correct ordering. Such a nonfactorizable state space is quite different from the state spaces typically considered in statistical physics systems and consequently has novel behavior in systems with interacting and even noninteracting Hamiltonians. Various parameter choices of a mean-field model reveal the system to contain five different physical regimes defined by two transition temperatures, a triple point, and a quadruple point. Finally, we conclude by discussing how the general analysis can be extended to state spaces with more complex combinatorial properties and to other standard questions of statistical mechanics models.

  16. Significance levels for studies with correlated test statistics.

    PubMed

    Shi, Jianxin; Levinson, Douglas F; Whittemore, Alice S

    2008-07-01

    When testing large numbers of null hypotheses, one needs to assess the evidence against the global null hypothesis that none of the hypotheses is false. Such evidence typically is based on the test statistic of the largest magnitude, whose statistical significance is evaluated by permuting the sample units to simulate its null distribution. Efron (2007) has noted that correlation among the test statistics can induce substantial interstudy variation in the shapes of their histograms, which may cause misleading tail counts. Here, we show that permutation-based estimates of the overall significance level also can be misleading when the test statistics are correlated. We propose that such estimates be conditioned on a simple measure of the spread of the observed histogram, and we provide a method for obtaining conditional significance levels. We justify this conditioning using the conditionality principle described by Cox and Hinkley (1974). Application of the method to gene expression data illustrates the circumstances when conditional significance levels are needed.

  17. A single circularly permuted GFP sensor for inositol-1,3,4,5-tetrakisphosphate based on a split PH domain.

    PubMed

    Sakaguchi, Reiko; Endoh, Takashi; Yamamoto, Seigo; Tainaka, Kazuki; Sugimoto, Kenji; Fujieda, Nobutaka; Kiyonaka, Shigeki; Mori, Yasuo; Morii, Takashi

    2009-10-15

    A fluorescent sensor for the detection of inositol-1,3,4,5-tetrakisphosphate, Ins(1,3,4,5)P(4), was constructed from a split PH domain and a single circularly permuted GFP. A structure-based design was conducted to transduce a ligand-induced subtle structural perturbation of the split PH domain to an alteration in the population of the protonated and the deprotonated states of the GFP chromophore. Excitation of each distinct absorption band corresponding to the protonated or the deprotonated state of GFP resulted an increase and a decrease, respectively, in the intensity of emission spectra upon addition of Ins(1,3,4,5)P(4) to the split PH domain-based sensor. The Ins(1,3,4,5)P(4) sensor retained the ligand affinity and the selectivity of the parent PH domain, and realized the ratiometric fluorescence detection of Ins(1,3,4,5)P(4).

  18. Efficiency and credit ratings: a permutation-information-theory analysis

    NASA Astrophysics Data System (ADS)

    Fernandez Bariviera, Aurelio; Zunino, Luciano; Belén Guercio, M.; Martinez, Lisana B.; Rosso, Osvaldo A.

    2013-08-01

    The role of credit rating agencies has been under severe scrutiny after the subprime crisis. In this paper we explore the relationship between credit ratings and informational efficiency of a sample of thirty nine corporate bonds of US oil and energy companies from April 2008 to November 2012. For this purpose we use a powerful statistical tool, relatively new in the financial literature: the complexity-entropy causality plane. This representation space allows us to graphically classify the different bonds according to their degree of informational efficiency. We find that this classification agrees with the credit ratings assigned by Moody’s. In particular, we detect the formation of two clusters, which correspond to the global categories of investment and speculative grades. Regarding the latter cluster, two subgroups reflect distinct levels of efficiency. Additionally, we also find an intriguing absence of correlation between informational efficiency and firm characteristics. This allows us to conclude that the proposed permutation-information-theory approach provides an alternative practical way to justify bond classification.

  19. On the Shapley Value of Unrooted Phylogenetic Trees.

    PubMed

    Wicke, Kristina; Fischer, Mareike

    2018-01-17

    The Shapley value, a solution concept from cooperative game theory, has recently been considered for both unrooted and rooted phylogenetic trees. Here, we focus on the Shapley value of unrooted trees and first revisit the so-called split counts of a phylogenetic tree and the Shapley transformation matrix that allows for the calculation of the Shapley value from the edge lengths of a tree. We show that non-isomorphic trees may have permutation-equivalent Shapley transformation matrices and permutation-equivalent null spaces. This implies that estimating the split counts associated with a tree or the Shapley values of its leaves does not suffice to reconstruct the correct tree topology. We then turn to the use of the Shapley value as a prioritization criterion in biodiversity conservation and compare it to a greedy solution concept. Here, we show that for certain phylogenetic trees, the Shapley value may fail as a prioritization criterion, meaning that the diversity spanned by the top k species (ranked by their Shapley values) cannot approximate the total diversity of all n species.

  20. Learning molecular energies using localized graph kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

Top