NASA Astrophysics Data System (ADS)
Hamilton, Mark F.
1990-12-01
This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.
A climatology of gravity wave parameters based on satellite limb soundings
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin
2017-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin
2018-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.
NASA Technical Reports Server (NTRS)
Hamabata, Hiromitsu
1993-01-01
A class of parametric instabilities of finite-amplitude, circularly polarized Alfven waves in a plasma with pressure anisotropy is studied by application of the CGL equations. A linear perturbation analysis is used to find the dispersion relation governing the instabilities, which is a fifth-order polynomial and is solved numerically. A large-amplitude, circularly polarized wave is unstable with respect to decay into three waves: one sound-like wave and two side-band Alfven-like waves. It is found that, in addition to the decay instability, two new instabilities that are absent in the framework of the MHD equations can occur, depending on the plasma parameters.
Mathematically trivial control of sound using a parametric beam focusing source.
Tanaka, Nobuo; Tanaka, Motoki
2011-01-01
By exploiting a case regarded as trivial, this paper presents global active noise control using a parametric beam focusing source (PBFS). As with a dipole model, one is used for a primary sound source and the other for a control sound source, the control effect for minimizing a total acoustic power depends on the distance between the two. When the distance becomes zero, the total acoustic power becomes null, hence nothing less than a trivial case. Because of the constraints in practice, there exist difficulties in placing a control source close enough to a primary source. However, by projecting a sound beam of a parametric array loudspeaker onto the target sound source (primary source), a virtual sound source may be created on the target sound source, thereby enabling the collocation of the sources. In order to further ensure feasibility of the trivial case, a PBFS is then introduced in an effort to meet the size of the two sources. Reflected sound wave of the PBFS, which is tantamount to the virtual sound source output, aims to suppress the primary sound. Finally, a numerical analysis as well as an experiment is conducted, verifying the validity of the proposed methodology.
NASA Technical Reports Server (NTRS)
Wong, H. K.; Goldstein, M. L.
1986-01-01
A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.
Effect of Micro-Bubbles in Water on Beam Patterns of Parametric Array
NASA Astrophysics Data System (ADS)
Hashiba, Kunio; Masuzawa, Hiroshi
2003-05-01
The improvement in efficiency of a parametric array by nonlinear oscillation of micro-bubbles in water is studied in this paper. The micro-bubble oscillation can increase the nonlinear coefficient of the acoustic medium. The amplitude of the difference-frequency wave along the longitudinal axis and its beam patterns in the field including the layer with micro-bubbles were analyzed using a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. As a result, the largest improvement in efficiency was obtained and a narrow parametric beam was formed by forming a layer with micro-bubbles in front of a parametric sound radiator as thick as about the shock formation distance. If the layer becomes significantly thicker than the distance, the beam of the difference-frequency wave in the far-field will become broader. If the layer is significantly thinner than the distance, the intensity level of the wave in the far-field will be too low.
Characteristics of stereo reproduction with parametric loudspeakers
NASA Astrophysics Data System (ADS)
Aoki, Shigeaki; Toba, Masayoshi; Tsujita, Norihisa
2012-05-01
A parametric loudspeaker utilizes nonlinearity of a medium and is known as a super-directivity loudspeaker. The parametric loudspeaker is one of the prominent applications of nonlinear ultrasonics. So far, the applications have been limited monaural reproduction sound system for public address in museum, station and street etc. In this paper, we discussed characteristics of stereo reproduction with two parametric loudspeakers by comparing with those with two ordinary dynamic loudspeakers. In subjective tests, three typical listening positions were selected to investigate the possibility of correct sound localization in a wide listening area. The binaural information was ILD (Interaural Level Difference) or ITD (Interaural Time Delay). The parametric loudspeaker was an equilateral hexagon. The inner and outer diameters were 99 and 112 mm, respectively. Signals were 500 Hz, 1 kHz, 2 kHz and 4 kHz pure tones and pink noise. Three young males listened to test signals 10 times in each listening condition. Subjective test results showed that listeners at the three typical listening positions perceived correct sound localization of all signals using the parametric loudspeakers. It was almost similar to those using the ordinary dynamic loudspeakers, however, except for the case of sinusoidal waves with ITD. It was determined the parametric loudspeaker could exclude the contradiction between the binaural information ILD and ITD that occurred in stereo reproduction with ordinary dynamic loudspeakers because the super directivity of parametric loudspeaker suppressed the cross talk components.
Active noise control using a steerable parametric array loudspeaker.
Tanaka, Nobuo; Tanaka, Motoki
2010-06-01
Arguably active noise control enables the sound suppression at the designated control points, while the sound pressure except the targeted locations is likely to augment. The reason is clear; a control source normally radiates the sound omnidirectionally. To cope with this problem, this paper introduces a parametric array loudspeaker (PAL) which produces a spatially focused sound beam due to the attribute of ultrasound used for carrier waves, thereby allowing one to suppress the sound pressure at the designated point without causing spillover in the whole sound field. First the fundamental characteristics of PAL are overviewed. The scattered pressure in the near field contributed by source strength of PAL is then described, which is needed for the design of an active noise control system. Furthermore, the optimal control law for minimizing the sound pressure at control points is derived, the control effect being investigated analytically and experimentally. With a view to tracking a moving target point, a steerable PAL based upon a phased array scheme is presented, with the result that the generation of a moving zone of quiet becomes possible without mechanically rotating the PAL. An experiment is finally conducted, demonstrating the validity of the proposed method.
Growth rates of new parametric instabilities occurring in a plasma with streaming He(2+)
NASA Technical Reports Server (NTRS)
Jayanti, V.; Hollweg, Joseph V.
1994-01-01
We consider parametic instabilities of a circularly polarized pump Alfven wave, which propagates parallel to the ambient magnetic field; the daughter waves are also parallel-propagating. We follow Hollweg et al. (1993) and consider several new instabilites that owe their existence to the presence of streaming alpha particles. One of the new instabilites is similar to the famililar decay instability, but the daughter waves are a forward going alpha sound wave and a backward going Alfven wave. The growth rate of this instability is usually small if the alpha abundance is small. The other three new instabilities occur at high frequencies and small wavelengths. We find that the new instability which involves the proton cyclotron wave and alpha sound (i.e., the +f, - alpha) instability, which involves both the proton and alpha cycltron resonances, but if the pump wave must have low frequency and large amplitude. These instabilities may be a means of heating and accelerating alpha particles in the solar wind, but this claim is unproven until a fully kinetic study is carried out.
Sound waves and resonances in electron-hole plasma
NASA Astrophysics Data System (ADS)
Lucas, Andrew
2016-06-01
Inspired by the recent experimental signatures of relativistic hydrodynamics in graphene, we investigate theoretically the behavior of hydrodynamic sound modes in such quasirelativistic fluids near charge neutrality, within linear response. Locally driving an electron fluid at a resonant frequency to such a sound mode can lead to large increases in the electrical response at the edges of the sample, a signature, which cannot be explained using diffusive models of transport. We discuss the robustness of this signal to various effects, including electron-acoustic phonon coupling, disorder, and long-range Coulomb interactions. These long-range interactions convert the sound mode into a collective plasmonic mode at low frequencies unless the fluid is charge neutral. At the smallest frequencies, the response in a disordered fluid is quantitatively what is predicted by a "momentum relaxation time" approximation. However, this approximation fails at higher frequencies (which can be parametrically small), where the classical localization of sound waves cannot be neglected. Experimental observation of such resonances is a clear signature of relativistic hydrodynamics, and provides an upper bound on the viscosity of the electron-hole plasma.
NASA Astrophysics Data System (ADS)
Hamilton, Mark F.
1989-08-01
Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.
Je, Yub; Lee, Haksue; Park, Jongkyu; Moon, Wonkyu
2010-06-01
An ultrasonic radiator is developed to generate a difference frequency sound from two frequencies of ultrasound in air with a parametric array. A design method is proposed for an ultrasonic radiator capable of generating highly directive, high-amplitude ultrasonic sound beams at two different frequencies in air based on a modification of the stepped-plate ultrasonic radiator. The stepped-plate ultrasonic radiator was introduced by Gallego-Juarez et al. [Ultrasonics 16, 267-271 (1978)] in their previous study and can effectively generate highly directive, large-amplitude ultrasonic sounds in air, but only at a single frequency. Because parametric array sources must be able to generate sounds at more than one frequency, a design modification is crucial to the application of a stepped-plate ultrasonic radiator as a parametric array source in air. The aforementioned method was employed to design a parametric radiator for use in air. A prototype of this design was constructed and tested to determine whether it could successfully generate a difference frequency sound with a parametric array. The results confirmed that the proposed single small-area transducer was suitable as a parametric radiator in air.
Parametric Instabilities During High Power Helicon Wave Injection on DIII-D
NASA Astrophysics Data System (ADS)
Porkolab, M.; Pinsker, R. I.
2017-10-01
High power helicon (whistler) waves at a frequency of 0.47 GHz are being considered for efficient off-axis current generation in high performance DIII-D plasmas and in K-Star [3]. The need for deploying helicon waves for current profile control has been noted in previous publications since penetration to the core of reactor grade plasmas is easier than with lower hybrid slow waves (LHCD) which suffer from accessibility limitations and strong electron Landau absorption in fusion grade high temperature plasmas. In this work we show that under typical experimental conditions in present day tokamaks with 1 MW of RF power coupled per antenna, the associated perpendicular electric fields of the order of 40 kV/m can drive strong parametric decay instabilities near the lower hybrid layer. The EXB and polarization drift velocities which are the dominant driver of the PDI can be comparable to the speed of sound in the outer plasma layers, a key measure of driving PDI instabilities. Here we calculate growth rates and convective thresholds for PDIs, and we find that decay waves into hot ion lower hybrid waves and ion cyclotron quasi modes dominate in the vicinity of the lower hybrid layer, possibly leading to pump depletion. Such instabilities in future reactor grade high temperature plasmas are less likely.
Quench dynamics in SRF cavities: can we locate the quench origin with 2nd sound?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maximenko, Yulia; /Moscow, MIPT; Segatskov, Dmitri A.
2011-03-01
A newly developed method of locating quenches in SRF cavities by detecting second-sound waves has been gaining popularity in SRF laboratories. The technique is based on measurements of time delays between the quench as determined by the RF system and arrival of the second-sound wave to the multiple detectors placed around the cavity in superfluid helium. Unlike multi-channel temperature mapping, this approach requires only a few sensors and simple readout electronics; it can be used with SRF cavities of almost arbitrary shape. One of its drawbacks is that being an indirect method it requires one to solve an inverse problemmore » to find the location of a quench. We tried to solve this inverse problem by using a parametric forward model. By analyzing the data we found that the approximation where the second-sound emitter is a near-singular source does not describe the physical system well enough. A time-dependent analysis of the quench process can help us to put forward a more adequate model. We present here our current algorithm to solve the inverse problem and discuss the experimental results.« less
Effects of mean flow on transmission loss of orthogonally rib-stiffened aeroelastic plates.
Xin, F X; Lu, T J
2013-06-01
This paper investigates the sound transmission loss (STL) of aeroelastic plates reinforced by two sets of orthogonal rib-stiffeners in the presence of external mean flow. Built upon the periodicity of the structure, a comprehensive theoretical model is developed by considering the convection effect of mean flow. The rib-stiffeners are modeled by employing the Bernoulli-Euler beam theory and the torsional wave equation. While the solution for the transmission loss of the structure based on plate displacement and acoustic pressures is given in the form of space-harmonic series, the corresponding coefficients are obtained from the solution of a system of linear equations derived from the plate-beam coupling vibration governing equation and Helmholtz equation. The model predictions are validated by comparing with existing theoretical and experimental results in the absence of mean flow. A parametric study is subsequently performed to quantify the effects of mean flow as well as structure geometrical parameters upon the transmission loss. It is demonstrated that the transmission loss of periodically rib-stiffened structure is increased significantly with increasing Mach number of mean flow over a wide frequency range. The STL value for the case of sound wave incident downstream is pronouncedly larger than that associated with sound wave incident upstream.
Temperature Dependence of Parametric Phenomenon in Airborne Ultrasound for Temperature Measurement
NASA Astrophysics Data System (ADS)
Kon, Akihiko; Wakatsuki, Naoto; Mizutani, Koichi
2008-08-01
The temperature dependence of parametric phenomenon in air was experimentally studied. It was confirmed from experimental data that the amplitude of upper sideband sound with a frequency of 36.175 kHz, which is caused by parametric phenomenon between high-power ultrasound with a frequency of 20.175 kHz and another normal sound with a frequency of 16.0 kHz, is proportional to -0.88×10-4×(T+273.15). This temperature dependence of the amplitude of upper sideband sound caused by the parametric phenomenon suggests a simple and effective method of temperature measurement.
Physics of Acoustic Radiation from Jet Engine Inlets
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.
2012-01-01
Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.
Infrasound data inversion for atmospheric sounding
NASA Astrophysics Data System (ADS)
Lalande, J.-M.; Sèbe, O.; Landès, M.; Blanc-Benon, Ph.; Matoza, R. S.; Le Pichon, A.; Blanc, E.
2012-07-01
The International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) continuously records acoustic waves in the 0.01-10 Hz frequency band, known as infrasound. These waves propagate through the layered structure of the atmosphere. Coherent infrasonic waves are produced by a variety of anthropogenic and natural sources and their propagation is controlled by spatiotemporal variations of temperature and wind velocity. Natural stratification of atmospheric properties (e.g. temperature, density and winds) forms waveguides, allowing long-range propagation of infrasound waves. However, atmospheric specifications used in infrasound propagation modelling suffer from lack and sparsity of available data above an altitude of 50 km. As infrasound can propagate in the upper atmosphere up to 120 km, we assume that infrasonic data could be used for sounding the atmosphere, analogous to the use of seismic data to infer solid Earth structure and the use of hydroacoustic data to infer oceanic structure. We therefore develop an inversion scheme for vertical atmospheric wind profiles in the framework of an iterative linear inversion. The forward problem is treated in the high-frequency approximation using a Hamiltonian formulation and complete first-order ray perturbation theory is developed to construct the Fréchet derivatives matrix. We introduce a specific parametrization for the unknown model parameters based on Principal Component Analysis. Finally, our algorithm is tested on synthetic data cases spanning different seasonal periods and network configurations. The results show that our approach is suitable for infrasound atmospheric sounding on a regional scale.
Parametric phase conjugation for the second harmonic of a nonlinear ultrasonic beam
NASA Astrophysics Data System (ADS)
Brysev, A. P.; Bunkin, F. V.; Hamilton, M. F.; Klopotov, R. V.; Krutyanskii, L. M.; Yan, K.
2003-01-01
The effect of phase conjugation for the second harmonic of a focused ultrasonic beam was investigated experimentally and by numerical simulation. An ultrasonic pulse with the carrier frequency f=3 MHz was emitted into water and focused at a point between the source and the phase conjugating system. The phase conjugation for the second harmonic of the incident wave (2 f=6 MHz) was performed in a magnetostrictive ceramic as a result of the parametric interaction of the incident wave with the pumping magnetic field (the pumping frequency was f p=4 f=12 MHz). The axial and focal distributions of sound pressure in the incident and conjugated beams were measured using a broadband PVDF membrane hydrophone. The corresponding calculations were performed by solving numerically the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation allowing for the nonlinearity, diffraction, and thermoviscous absorption. The results of measurements agreed well with the calculations and showed that the field of a conjugate wave adequately reproduces the field of the second harmonic of the incident wave. A certain advantage of focusing with the phase conjugation for the second harmonic was demonstrated in comparison with the operation at the doubled frequency of the incident wave. The results of this study can serve as a basis for the utilization of the phase conjugation of harmonics in ultrasonic tomography and nondestructive testing.
Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP
NASA Astrophysics Data System (ADS)
Kuo, Spencer; Snyder, Arnold; Lee, M. C.
2014-06-01
Parametric instabilities excited by O-mode HF heater and the induced ionospheric modification were explored via HAARP digisonde operated in a fast mode. The impact of excited Langmuir waves and upper hybrid waves on the ionosphere are manifested by bumps in the virtual spread, which expand the ionogram echoes upward as much as 140 km and the downward range spread of the sounding echoes, which exceeds 50 km over a significant frequency range. The theory of parametric instabilities is presented. The theory identifies the ionogram bump located between the 3.2 MHz heater frequency and the upper hybrid resonance frequency and the bump below the upper hybrid resonance frequency to be associated with the Langmuir and upper hybrid instabilities, respectively. The Langmuir bump is located close to the upper hybrid resonance frequency, rather than to the heater frequency, consistent with the theory. Each bump in the virtual height spread of the ionogram is similar to the cusp occurring in daytime ionograms at the E-F2 layer transition, indicating that there is a small ledge in the density profile similar to E-F2 layer transitions. The experimental results also show that the strong impact of the upper hybrid instability on the ionosphere can suppress the Langmuir instability.
Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Spencer; Snyder, Arnold; Lee, M. C.
2014-06-15
Parametric instabilities excited by O-mode HF heater and the induced ionospheric modification were explored via HAARP digisonde operated in a fast mode. The impact of excited Langmuir waves and upper hybrid waves on the ionosphere are manifested by bumps in the virtual spread, which expand the ionogram echoes upward as much as 140 km and the downward range spread of the sounding echoes, which exceeds 50 km over a significant frequency range. The theory of parametric instabilities is presented. The theory identifies the ionogram bump located between the 3.2 MHz heater frequency and the upper hybrid resonance frequency and the bump below themore » upper hybrid resonance frequency to be associated with the Langmuir and upper hybrid instabilities, respectively. The Langmuir bump is located close to the upper hybrid resonance frequency, rather than to the heater frequency, consistent with the theory. Each bump in the virtual height spread of the ionogram is similar to the cusp occurring in daytime ionograms at the E-F2 layer transition, indicating that there is a small ledge in the density profile similar to E-F2 layer transitions. The experimental results also show that the strong impact of the upper hybrid instability on the ionosphere can suppress the Langmuir instability.« less
Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain.
Wang, Tsong-Dong; Huang, Yen-Chieh; Chuang, Ming-Yun; Lin, Yen-Hou; Lee, Ching-Han; Lin, Yen-Yin; Lin, Fan-Yi; Kitaeva, Galiya Kh
2013-01-28
Optical parametric mixing is a popular scheme to generate an idler wave at THz frequencies, although the THz wave is often absorbing in the nonlinear optical material. It is widely suggested that the useful material length for co-directional parametric mixing with strong THz-wave absorption is comparable to the THz-wave absorption length in the material. Here we show that, even in the limit of the absorption loss exceeding parametric gain, the THz idler wave can grows monotonically from optical parametric amplification over a much longer distance in a nonlinear optical material until pump depletion. The coherent production of the non-absorbing signal wave can assist the growth of the highly absorbing idler wave. We also show that, for the case of an equal input pump and signal in difference frequency generation, the quick saturation of the THz idler wave predicted from a much simplified and yet popular plane-wave model fails when fast diffraction of the THz wave from the co-propagating optical mixing waves is considered.
Realization of an omnidirectional source of sound using parametric loudspeakers.
Sayin, Umut; Artís, Pere; Guasch, Oriol
2013-09-01
Parametric loudspeakers are often used in beam forming applications where a high directivity is required. Withal, in this paper it is proposed to use such devices to build an omnidirectional source of sound. An initial prototype, the omnidirectional parametric loudspeaker (OPL), consisting of a sphere with hundreds of ultrasonic transducers placed on it has been constructed. The OPL emits audible sound thanks to the parametric acoustic array phenomenon, and the close proximity and the large number of transducers results in the generation of a highly omnidirectional sound field. Comparisons with conventional dodecahedron loudspeakers have been made in terms of directivity, frequency response, and in applications such as the generation of diffuse acoustic fields in reverberant chambers. The OPL prototype has performed better than the conventional loudspeaker especially for frequencies higher than 500 Hz, its main drawback being the difficulty to generate intense pressure levels at low frequencies.
NASA Astrophysics Data System (ADS)
Bravo, Teresa; Maury, Cédric
2018-07-01
Enhancing the attenuation or the absorption of low-frequency noise using lightweight bulk-reacting liners is still a demanding task in surface and air transport systems. The aim of this study is to understand the physical mechanisms involved in the attenuation and absorption properties of partitions made up of a thin micro-perforated panel (MPP) rigidly backed by a cavity filled with anisotropic fibrous material. Such a layout is denoted as a MPPF partition. Analytical models are formulated in the flow and no-flow cases to predict the axial damping of the least attenuated wave in a MPPF partition as well as the plane wave absorption coefficient. They account for a rigid or an elastic MPP facing a bulk-reacting fully-anisotropic material. A cost-efficient solution of the propagation constant for the least attenuated mode is obtained using a simulated annealing search method as well as a low-frequency approximation to the axial attenuation. The normal incidence absorption model is assessed in the no-flow case against pressure-velocity measurements of the surface impedance over a MPPF partition filled with fibreglass material. A parametric study is conducted to evaluate the MPP and the cavity constitutive parameters that mostly enhance the axial attenuation and sound absorption properties, with special interest on the MPP airframe relative velocity. This sensitivity study provides guidelines that could be used to further reduce the search space in parametric or impedance optimization studies.
NASA Astrophysics Data System (ADS)
Kirichok, A. V.; Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.
2015-09-01
The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirichok, A. V., E-mail: sandyrcs@gmail.com; Kuklin, V. M.; Pryimak, A. V.
The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lowermore » than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.« less
Dietz, Mathias; Marquardt, Torsten; Salminen, Nelli H.; McAlpine, David
2013-01-01
The ability to locate the direction of a target sound in a background of competing sources is critical to the survival of many species and important for human communication. Nevertheless, brain mechanisms that provide for such accurate localization abilities remain poorly understood. In particular, it remains unclear how the auditory brain is able to extract reliable spatial information directly from the source when competing sounds and reflections dominate all but the earliest moments of the sound wave reaching each ear. We developed a stimulus mimicking the mutual relationship of sound amplitude and binaural cues, characteristic to reverberant speech. This stimulus, named amplitude modulated binaural beat, allows for a parametric and isolated change of modulation frequency and phase relations. Employing magnetoencephalography and psychoacoustics it is demonstrated that the auditory brain uses binaural information in the stimulus fine structure only during the rising portion of each modulation cycle, rendering spatial information recoverable in an otherwise unlocalizable sound. The data suggest that amplitude modulation provides a means of “glimpsing” low-frequency spatial cues in a manner that benefits listening in noisy or reverberant environments. PMID:23980161
A micromachined efficient parametric array loudspeaker with a wide radiation frequency band.
Je, Yub; Lee, Haksue; Been, Kyounghun; Moon, Wonkyu
2015-04-01
Parametric array (PA) loudspeakers generate directional audible sound via the PA effect, which can make private listening possible. The practical applications of PA loudspeakers include information technology devices that require large power efficiency transducers with a wide frequency bandwidth. Piezoelectric micromachined ultrasonic transducers (PMUTs) are compact and efficient units for PA sources [Je, Lee, and Moon, Ultrasonics 53, 1124-1134 (2013)]. This study investigated the use of an array of PMUTs to make a PA loudspeaker with high power efficiency and wide bandwidth. The achievable maximum radiation bandwidth of the driver was calculated, and an array of PMUTs with two distinct resonance frequencies (f1 = 100 kHz, f2 = 110 kHz) was designed. Out-of-phase driving was used with the dual-resonance transducer array to increase the bandwidth. The fabricated PMUT array exhibited an efficiency of up to 71%, together with a ±3-dB bandwidth of 17 kHz for directly radiated primary waves, and 19.5 kHz (500 Hz to 20 kHz) for the difference frequency waves (with equalization).
Terahertz wave parametric oscillations at polariton resonance using a MgO:LiNbO3 crystal.
Li, Zhongyang; Bing, Pibin; Yuan, Sheng; Xu, Degang; Yao, Jianquan
2015-06-20
Terahertz wave (THz-wave) parametric oscillations with a noncollinear phase-matching scheme at polariton resonance using a MgO:LiNbO3 crystal with a surface-emitted configuration are investigated. We investigate frequency tuning characteristics of a THz-wave via varying the wavelength of the pump wave and phase-matching angle. The effective parametric gain length under the noncollinear phase-matching condition is calculated. Parametric gain and absorption characteristics of a THz-wave in the vicinity of polariton resonances are analyzed.
Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay
NASA Astrophysics Data System (ADS)
Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.
2018-02-01
Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.
Ince-Strutt stability charts for ship parametric roll resonance in irregular waves
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Yang, He-zhen; Xiao, Fei; Xu, Pei-ji
2017-08-01
Ince-Strutt stability chart of ship parametric roll resonance in irregular waves is conducted and utilized for the exploration of the parametric roll resonance in irregular waves. Ship parametric roll resonance will lead to large amplitude roll motion and even wreck. Firstly, the equation describing the parametric roll resonance in irregular waves is derived according to Grim's effective theory and the corresponding Ince-Strutt stability charts are obtained. Secondly, the differences of stability charts for the parametric roll resonance in irregular and regular waves are compared. Thirdly, wave phases and peak periods are taken into consideration to obtain a more realistic sea condition. The influence of random wave phases should be taken into consideration when the analyzed points are located near the instability boundary. Stability charts for different wave peak periods are various. Stability charts are helpful for the parameter determination in design stage to better adapt to sailing condition. Last, ship variables are analyzed according to stability charts by a statistical approach. The increase of the metacentric height will help improve ship stability.
Particle acceleration and magnetic field generation in SNR shocks
NASA Astrophysics Data System (ADS)
Suslov, M.; Diamond, P. H.; Malkov, M. A.
2006-04-01
We discuss the diffusive acceleration mechanism in SNR shocks in terms of its potential to accelerate CRs to 10^18 eV, as observations imply. One possibility, currently discussed in the literature, is to resonantly generate a turbulent magnetic field via accelerated particles in excess of the background field. We analyze some problems of this scenario and suggest a different mechanism, which is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves. The essential idea is an A->A+S decay instability process, where one of the interacting scatterers (i.e. the sound, or S-waves) are driven by the Drury instability process. This rapidly generates longer wavelength Alfven waves, which in turn resonate with high energy CRs thus binding them to the shock and enabling their further acceleration.
NASA Astrophysics Data System (ADS)
Boris, D. R.; Emmert, G. A.
2007-11-01
The ion source region of the UW-Inertial Electrostatic Confinement device is comprised of a filament assisted DC discharge plasma that exists between the wall of the IEC vacuum chamber and the grounded spherical steel grid that makes up the anode of the IEC device. A 0-dimensional rate equation calculation of the molecular deuterium ion species concentration has been applied utilizing varying primary electron energy, and neutral gas pressure. By propagating ion acoustic waves in the source region of the IEC device the concentrations of molecular deuterium ion species have been determined for these varying plasma conditions, and high D3^+ concentrations have been verified. This was done by utilizing the multi-species ion acoustic wave dispersion relation, which relates the phase speed of the multi-species ion acoustic wave, vph, to the sum in quadrature of the concentration weighted ion acoustic sound speeds of the individual ion species.
Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.
Longhi, Stefano
2016-04-15
Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.
Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier
NASA Astrophysics Data System (ADS)
Brächer, T.; Heussner, F.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Hillebrands, B.; Pirro, P.
2018-03-01
We present a time-resolved study of the evolution of the spin-wave intensity and phase in a local parametric spin-wave amplifier at pumping powers close to the threshold of parametric generation. We show that the phase of the amplified spin waves is determined by the phase of the incoming signal-carrying spin waves and that it can be preserved on long time scales as long as the energy input by the input spin waves is provided. In contrast, the phase-information is lost in such a local spin-wave amplifier as soon as the input spin-wave is switched off. These findings are an important benchmark for the use of parametric amplifiers in logic circuits relying on the spin-wave phase as information carrier.
Acoustic Parametric Array for Identifying Standoff Targets
NASA Astrophysics Data System (ADS)
Hinders, M. K.; Rudd, K. E.
2010-02-01
An integrated simulation method for investigating nonlinear sound beams and 3D acoustic scattering from any combination of complicated objects is presented. A standard finite-difference simulation method is used to model pulsed nonlinear sound propagation from a source to a scattering target via the KZK equation. Then, a parallel 3D acoustic simulation method based on the finite integration technique is used to model the acoustic wave interaction with the target. Any combination of objects and material layers can be placed into the 3D simulation space to study the resulting interaction. Several example simulations are presented to demonstrate the simulation method and 3D visualization techniques. The combined simulation method is validated by comparing experimental and simulation data and a demonstration of how this combined simulation method assisted in the development of a nonlinear acoustic concealed weapons detector is also presented.
NASA Astrophysics Data System (ADS)
Wang, Xiang; Cannon, Patrick; Zhou, Chen; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu
2016-04-01
Recent ionospheric modification experiments performed at Tromsø, Norway, have indicated that X-mode pump wave is capable of stimulating high-frequency enhanced plasma lines, which manifests the excitation of parametric instability. This paper investigates theoretically how the observation can be explained by the excitation of parametric instability driven by X-mode pump wave. The threshold of the parametric instability has been calculated for several recent experimental observations at Tromsø, illustrating that our derived equations for the excitation of parametric instability for X-mode heating can explain the experimental observations. According to our theoretical calculation, a minimum fraction of pump wave electric field needs to be directed along the geomagnetic field direction in order for the parametric instability threshold to be met. A full-wave finite difference time domain simulation has been performed to demonstrate that a small parallel component of pump wave electric field can be achieved during X-mode heating in the presence of inhomogeneous plasma.
NASA Astrophysics Data System (ADS)
Diamond, Patrick
2005-10-01
SNR shocks are the most probable source of galactic cosmic rays. We discuss the diffusive acceleration mechanism in terms of its potential to accelerate CRs to 10^18 eV, as observations imply. One possibility, currently discussed in the literature, is to resonantly generate a turbulent magnetic field via accelerated particles in excess of the background field. We indicate some difficulties of this scenario and suggest a different possibility, which is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves. The essential idea is an A-->A+S decay instability process, where one of the interacting scatterers (i.e. the sound, or S-waves) are driven by the Drury instability process. This rapidly generates longer wavelength Alfven waves, which in turn resonate with high energy CRs thus binding them to the shock and enabling their further acceleration.
Parametric instability induced by X-mode wave heating at EISCAT
NASA Astrophysics Data System (ADS)
Wang, Xiang; Zhou, Chen; Liu, Moran; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu
2016-10-01
In this paper, we present results of parametric instability induced by X-mode wave heating observed by EISCAT (European Incoherent Scatter Scientific Association) radar at Tromsø, Norway. Three typical X-mode ionospheric heating experiments on 22 October 2013, 19 October 2012, and 21 February 2013 are investigated in details. Both parametric decay instability (PDI) and oscillating two-stream instability are observed during the X-mode heating period. We suggest that the full dispersion relationship of the Langmuir wave can be employed to analyze the X-mode parametric instability excitation. A modified kinetic electron distribution is proposed and analyzed, which is able to satisfy the matching condition of parametric instability excitation. Parallel electric field component of X-mode heating wave can also exceed the parametric instability excitation threshold under certain conditions.
Nonlinear wave interactions in shallow water magnetohydrodynamics of astrophysical plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimachkov, D. A., E-mail: klimachkovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru
2016-05-15
The rotating magnetohydrodynamic flows of a thin layer of astrophysical and space plasmas with a free surface in a vertical external magnetic field are considered in the shallow water approximation. The presence of a vertical external magnetic field changes significantly the dynamics of wave processes in an astrophysical plasma, in contrast to a neutral fluid and a plasma layer in an external toroidal magnetic field. There are three-wave nonlinear interactions in the case under consideration. Using the asymptotic method of multiscale expansions, we have derived nonlinear equations for the interaction of wave packets: three magneto- Poincare waves, three magnetostrophic waves,more » two magneto-Poincare and one magnetostrophic waves, and two magnetostrophic and one magneto-Poincare waves. The existence of decay instabilities and parametric amplification is predicted. We show that a magneto-Poincare wave decays into two magneto-Poincare waves, a magnetostrophic wave decays into two magnetostrophic waves, a magneto-Poincare wave decays into one magneto-Poincare and one magnetostrophic waves, and a magnetostrophic wave decays into one magnetostrophic and one magneto-Poincare waves. There are the following parametric amplification mechanisms: the parametric amplification of magneto-Poincare waves, the parametric amplification of magnetostrophic waves, the amplification of a magneto-Poincare wave in the field of a magnetostrophic wave, and the amplification of a magnetostrophic wave in the field of a magneto-Poincare wave. The instability growth rates and parametric amplification factors have been found for the corresponding processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verba, Roman, E-mail: verrv@ukr.net; Tiberkevich, Vasil; Slavin, Andrei
2015-09-14
The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) on the parametric amplification of spin waves propagating in ultrathin ferromagnetic film is considered theoretically. It is shown that the IDMI changes the relation between the group velocities of the signal and idler spin waves in a parametric amplifier, which may result in the complete vanishing of the reversed idler wave. In the optimized case, the idler spin wave does not propagate from the pumping region at all, which increases the efficiency of the amplification of the signal wave and suppresses the spurious impact of the idler waves on neighboring spin-wave processingmore » devices.« less
Multiple Frequency Parametric Sonar
2015-09-28
300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...a method for increasing the bandwidth of a parametric sonar system by using multiple primary frequencies rather than only two primary frequencies...2) Description of Prior Art [0004] Parametric sonar generates narrow beams at low frequencies by projecting sound at two distinct primary
Grating lobe elimination in steerable parametric loudspeaker.
Shi, Chuang; Gan, Woon-Seng
2011-02-01
In the past two decades, the majority of research on the parametric loudspeaker has concentrated on the nonlinear modeling of acoustic propagation and pre-processing techniques to reduce nonlinear distortion in sound reproduction. There are, however, very few studies on directivity control of the parametric loudspeaker. In this paper, we propose an equivalent circular Gaussian source array that approximates the directivity characteristics of the linear ultrasonic transducer array. By using this approximation, the directivity of the sound beam from the parametric loudspeaker can be predicted by the product directivity principle. New theoretical results, which are verified through measurements, are presented to show the effectiveness of the delay-and-sum beamsteering structure for the parametric loudspeaker. Unlike the conventional loudspeaker array, where the spacing between array elements must be less than half the wavelength to avoid spatial aliasing, the parametric loudspeaker can take advantage of grating lobe elimination to extend the spacing of ultrasonic transducer array to more than 1.5 wavelengths in a typical application.
Harmonic generation and parametric decay in the ion cyclotron frequency range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skiff, F.N.; Wong, K.L.; Ono, M.
1984-06-01
Harmonic generation and parametric decay are examined in a toroidal ACT-I plasma using electrostatic plate antennas. The harmonic generation, which is consistent with sheath rectification, is sufficiently strong that the nonlinearly generated harmonic modes themselves decay parametrically. Resonant and nonresonant parametric decay of the second harmonic are observed and compared with uniform pump theory. Resonant decay of lower hybrid waves into lower hybrid waves and slow ion cyclotron waves is seen for the first time. Surprisingly, the decay processes are nonlinearly saturated, indicating absolute instability.
Vasilyev, M; Choi, S K; Kumar, P; D'Ariano, G M
1998-09-01
Photon-number distributions for parametric fluorescence from a nondegenerate optical parametric amplifier are measured with a novel self-homodyne technique. These distributions exhibit the thermal-state character predicted by theory. However, a difference between the fluorescence gain and the signal gain of the parametric amplifier is observed. We attribute this difference to a change in the signal-beam profile during the traveling-wave pulsed amplification process.
Parametric decay of oblique Alfvén waves in two-dimensional hybrid simulations.
Verscharen, D; Marsch, E; Motschmann, U; Müller, J
2012-08-01
Certain types of plasma waves are known to become parametrically unstable under specific plasma conditions, in which the pump wave will decay into several daughter waves with different wavenumbers and frequencies. In the past, the related plasma instabilities have been treated analytically for various parameter regimes and by use of various numerical methods, yet the oblique propagation with respect to the background magnetic field has rarely been dealt with in two dimensions, mainly because of the high computational demand. Here we present a hybrid-simulation study of the parametric decay of a moderately oblique Alfvén wave having elliptical polarization. It is found that such a compressive wave can decay into waves with higher and lower wavenumbers than the pump.
Attenuation of low frequency duct noise by a flute-like silencer
NASA Astrophysics Data System (ADS)
Huang, Lixi
2009-09-01
A broadband, duct noise reflection mechanism is introduced in this theoretical study. It consists of side-branch cavities filled with a light gas, e.g. helium, and covered by impervious, tensioned membranes as two apertures, one at the inlet and another at the exit. Incident waves are scattered by the membranes into two passages, one through the central duct and another through the cavity bypass. Due to the faster speed of sound in the bypass, a Herschel-Quincke tube resonance appears and gives a peak in the transmission loss spectrum. Another resonance occurs when the frequency of the incident sound coincides with the vibroacoustic frequency determined by the membrane tension and inertia contributions from the membrane and the fluid media. With appropriate tensile stress, the trough between the two spectral peaks can be elevated to a desirable high level, e.g. 10 dB, and the crucial factor is identified as the low density of the cavity gas filling. The broadband sound reflection performance is comparable with and even exceeds that of the drum-like silencer [L. Huang, Parametric study of a drum-like silencer, Journal of Sound and Vibration 269 (2004) 467-488] with the same cavity geometry, but the current mechanism requires a low tensile stress which is much easier to implement in practice.
Four-wave parametric oscillation in sodium vapor by electromagnetically induced diffraction.
Harada, Ken-ichi; Ogata, Minoru; Mitsunaga, Masaharu
2007-05-01
We have observed a novel type of parametric oscillation in sodium atomic vapor where four off-axis signal waves simultaneously build up under resonant and counterpropagating pump beams with elliptical beam profiles. The four waves, two of them Stokes shifted and the other two anti-Stokes shifted, have similar output powers of up to 10 mW with a conversion efficiency of 30% and are parametrically coupled by electromagnetically induced diffraction.
NASA Astrophysics Data System (ADS)
Smetanin, S. N.; Jelínek, M.; Kubeček, V.
2017-07-01
Stimulated-Raman-scattering in crystals can be used for the single-pass frequency-conversion to the Stokes-shifted wavelengths. The anti-Stokes shift can also be achieved but the phase-matching condition has to be fulfilled because of the parametric four-wave mixing process. To widen the angular-tolerance of four-wave mixing and to obtain high-conversion-efficiency into the anti-Stokes, we developed a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally-polarized Raman components in calcite oriented at the phase-matched angle under 532 nm 20 ps laser excitation. The excitation laser beam was split into two orthogonally-polarized components entering the calcite at the certain incidence angles to fulfill the nearly collinear phase-matching and also to compensate walk-off of extraordinary waves for collinear beam interaction. The phase matching of parametric Raman interaction is tangential and insensitive to the angular mismatch if the Poynting vectors of the biharmonic pump and parametrically generated (anti-Stokes) waves are collinear. For the first time it allows to achieve experimentally the highest conversion efficiency into the anti-Stokes wave (503 nm) up to 30% from the probe wave and up to 3.5% from both pump and probe waves in the single-pass picosecond parametric calcite Raman laser. The highest anti-Stokes pulse energy was 1.4 μJ.
NASA Astrophysics Data System (ADS)
Hemmatian, M.; Sedaghati, R.
2016-04-01
This study aims to investigate the effect of using magnetorheological elastomer (MRE)-based adaptive tuned vibration absorbers (ATVA) on the sound transmission in an elastic plate. Sound transmission loss (STL) of an elastic circular thin plate is analytically studied. The plate is excited by a plane acoustic wave as an incident sound and the displacement of the plate is calculated using corresponding mode shapes of the system for clamped boundary condition. Rayleigh integral approach is used to express the transmitted sound pressure in terms of the plate's displacement modal amplitude. In order to increase sound transmission loss of the plate, the MRE-based ATVA is considered. The basic idea is to be able to change the stiffness of the ATVA by varying magnetic field in order to reduce the transmitted acoustic energy of the host structure in a wide frequency range. Here, a MRE-based ATVA under the shear mode consisting of an oscillator mass, magnetic conductor, coils and MRE is investigated. In order to predict the viscoelastic characteristics of the field-dependent MRE based on the applied magnetic field, the double pole model is used. Finally, MRE-based ATVAs are integrated with the plate to absorb the plate energy with the aim of decreasing the transmitted sound power. Results show that plate with integrated MRE-based ATVAs suppresses the axisymmetric vibration of the plate and thus considerably improves the STL. Parametric studies on the influence of the position of MRE-based ATVAs and the effects of applied current on their performance are also presented.
Secondary instability in boundary-layer flows
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.; Bozatli, A. N.
1979-01-01
The stability of a secondary Tollmien-Schlichting wave, whose wavenumber and frequency are nearly one half those of a fundamental Tollmien-Schlichting instability wave is analyzed using the method of multiple scales. Under these conditions, the fundamental wave acts as a parametric exciter for the secondary wave. The results show that the amplitude of the fundamental wave must exceed a critical value to trigger this parametric instability. This value is proportional to a detuning parameter which is the real part of k - 2K, where k and K are the wavenumbers of the fundamental and its subharmonic, respectively. For Blasius flow, the critical amplitude is approximately 29% of the mean flow, and hence many other secondary instabilities take place before this parametric instability becomes significant. For other flows where the detuning parameter is small, such as free-shear layer flows, the critical amplitude can be small, thus the parametric instability might play a greater role.
Inverse four-wave-mixing and self-parametric amplification effect in optical fibre
Turitsyn, Sergei K.; Bednyakova, Anastasia E.; Fedoruk, Mikhail P.; Papernyi, Serguei B.; Clements, Wallace R.L.
2015-01-01
An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics. PMID:26345290
Parametric Decay Instability of Near-Acoustic Waves in Fluid and Kinetic Regimes
NASA Astrophysics Data System (ADS)
Affolter, M.; Anderegg, F.; Driscoll, C. F.; Valentini, F.
2016-10-01
We present quantitative measurements of parametric wave-wave coupling rates and decay instabilities in the range 10 meV
A micro-machined source transducer for a parametric array in air.
Lee, Haksue; Kang, Daesil; Moon, Wonkyu
2009-04-01
Parametric array applications in air, such as highly directional parametric loudspeaker systems, usually rely on large radiators to generate the high-intensity primary beams required for nonlinear interactions. However, a conventional transducer, as a primary wave projector, requires a great deal of electrical power because its electroacoustic efficiency is very low due to the large characteristic mechanical impedance in air. The feasibility of a micro-machined ultrasonic transducer as an efficient finite-amplitude wave projector was studied. A piezoelectric micro-machined ultrasonic transducer array consisting of lead zirconate titanate uni-morph elements was designed and fabricated for this purpose. Theoretical and experimental evaluations showed that a micro-machined ultrasonic transducer array can be used as an efficient source transducer for a parametric array in air. The beam patterns and propagation curves of the difference frequency wave and the primary wave generated by the micro-machined ultrasonic transducer array were measured. Although the theoretical results were based on ideal parametric array models, the theoretical data explained the experimental results reasonably well. These experiments demonstrated the potential of micro-machined primary wave projector.
Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas
NASA Astrophysics Data System (ADS)
Hansen, S. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Stober, J.; the ASDEX Upgrade Team
2017-10-01
In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory of the above parametric decay instability (PDI), unifying earlier treatments, and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the ASDEX Upgrade tokamak. The theory may also account for similar observations during CTS experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and O-X-B heating experiments.
LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krafft, C.; Volokitin, A. S.; Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr
2015-08-20
Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuationsmore » lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.« less
Parametric pendulum based wave energy converter
NASA Astrophysics Data System (ADS)
Yurchenko, Daniil; Alevras, Panagiotis
2018-01-01
The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.
Three-wave interaction solitons in optical parametric amplification.
Ibragimov, E; Struthers, A A; Kaup, D J; Khaydarov, J D; Singer, K D
1999-05-01
This paper applies three-wave interaction (TWI)-soliton theory to optical parametric amplification when the signal, idler, and pump wave can all contain TWI solitons. We use an analogy between two different velocity regimes to compare the theory with output from an experimental synchronously pumped optical parametric amplifier. The theory explains the observed inability to compress the intermediate group-velocity wave and 20-fold pulse compression in this experiment. The theory and supporting numerics show that one can effectively control the shape and energy of the optical pulses by shifting the TWI solitons in the pulses.
Remote recoil: a new wave mean interaction effect
NASA Astrophysics Data System (ADS)
Bühler, Oliver; McIntyre, Michael E.
2003-10-01
We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the atmosphere and may be important for the development of future gravity-wave parametrization schemes in numerical models of the global atmospheric circulation. At present, all such schemes neglect remote-recoil effects caused by horizontally inhomogeneous mean flows. Taking these effects into account should make the parametrization schemes significantly more accurate.
Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier
NASA Technical Reports Server (NTRS)
Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)
2014-01-01
A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.
ERIC Educational Resources Information Center
Deal, Walter F., III
2007-01-01
Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…
Parametric amplification of a superconducting plasma wave
Rajasekaran, S.; Casandruc, E.; Laplace, Y.; ...
2016-07-11
Many applications in photonics require all-optical manipulation of plasma waves, which can concentrate electromagnetic energy on sub-wavelength length scales. This is difficult in metallic plasmas because of their small optical nonlinearities. Some layered superconductors support Josephson plasma waves, involving oscillatory tunnelling of the superfluid between capacitively coupled planes. Josephson plasma waves are also highly nonlinear, and exhibit striking phenomena such as cooperative emission of coherent terahertz radiation, superconductor–metal oscillations and soliton formation. In this paper, we show that terahertz Josephson plasma waves can be parametrically amplified through the cubic tunnelling nonlinearity in a cuprate superconductor. Finally, parametric amplification is sensitivemore » to the relative phase between pump and seed waves, and may be optimized to achieve squeezing of the order-parameter phase fluctuations or terahertz single-photon devices.« less
Continuous-wave optical parametric oscillators on their way to the terahertz range
NASA Astrophysics Data System (ADS)
Sowade, Rosita; Breunig, Ingo; Kiessling, Jens; Buse, Karsten
2010-02-01
Continuous-wave optical parametric oscillators (OPOs) are known to be working horses for spectroscopy in the near- and mid-infrared. However, strong absorption in nonlinear media like lithium niobate complicates the generation of far-infrared light. This absorption leads to pump thresholds vastly exceeding the power of standard pump lasers. Our first approach was, therefore, to combine the established technique of photomixing with optical parametric oscillators. Here, two OPOs provide one wave each, with a tunable difference frequency. These waves are combined to a beat signal as a source for photomixers. Terahertz radiation between 0.065 and 1.018 THz is generated with powers in the order of nanowatts. To overcome the upper frequency limit of the opto-electronic photomixers, terahertz generation has to rely entirely on optical methods. Our all-optical approach, getting around the high thresholds for terahertz generation, is based on cascaded nonlinear processes: the resonantly enhanced signal field, generated in the primary parametric process, is intense enough to act as the pump for a secondary process, creating idler waves with frequencies in the terahertz regime. The latter ones are monochromatic and tunable with detected powers of more than 2 μW at 1.35 THz. Thus, continuous-wave optical parametric oscillators have entered the field of terahertz photonics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xinliang; Lu, Quanming; Hao, Yufei
2014-01-01
The parametric instabilities of an Alfvén wave in a proton-electron plasma system are found to have great influence on proton dynamics, where part of the protons can be accelerated through the Landau resonance with the excited ion acoustic waves, and a beam component along the background magnetic field is formed. In this paper, with a one-dimensional hybrid simulation model, we investigate the evolution of the parametric instabilities of a monochromatic left-hand polarized Alfvén wave in a proton-electron-alpha plasma with a low beta. When the drift velocity between the protons and alpha particles is sufficiently large, the wave numbers of themore » backward daughter Alfvén waves can be cascaded toward higher values due to the modulational instability during the nonlinear evolution of the parametric instabilities, and the alpha particles are resonantly heated in both the parallel and perpendicular direction by the backward waves. On the other hand, when the drift velocity of alpha particles is small, the alpha particles are heated in the linear growth stage of the parametric instabilities due to the Landau resonance with the excited ion acoustic waves. Therefore, the heating occurs only in the parallel direction, and there is no obvious heating in the perpendicular direction. The relevance of our results to the preferential heating of heavy ions observed in the solar wind within 0.3 AU is also discussed in this paper.« less
Parametrically disciplined operation of a vibratory gyroscope
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Peay, Chris S. (Inventor)
2008-01-01
Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.
Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper
2014-08-15
The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have to be included to evaluate the parametric gain correctly in dispersion-tailored speciality fibers and that mode profile engineering can provide a way to increase the parametric gain range.
Taking advantage of acoustic inhomogeneities in photoacoustic measurements
NASA Astrophysics Data System (ADS)
Da Silva, Anabela; Handschin, Charles; Riedinger, Christophe; Piasecki, Julien; Mensah, Serge; Litman, Amélie; Akhouayri, Hassan
2016-03-01
Photoacoustic offers promising perspectives in probing and imaging subsurface optically absorbing structures in biological tissues. The optical uence absorbed is partly dissipated into heat accompanied with microdilatations that generate acoustic pressure waves, the intensity which is related to the amount of fluuence absorbed. Hence the photoacoustic signal measured offers access, at least potentially, to a local monitoring of the absorption coefficient, in 3D if tomographic measurements are considered. However, due to both the diffusing and absorbing nature of the surrounding tissues, the major part of the uence is deposited locally at the periphery of the tissue, generating an intense acoustic pressure wave that may hide relevant photoacoustic signals. Experimental strategies have been developed in order to measure exclusively the photoacoustic waves generated by the structure of interest (orthogonal illumination and detection). Temporal or more sophisticated filters (wavelets) can also be applied. However, the measurement of this primary acoustic wave carries a lot of information about the acoustically inhomogeneous nature of the medium. We propose a protocol that includes the processing of this primary intense acoustic wave, leading to the quantification of the surrounding medium sound speed, and, if appropriate to an acoustical parametric image of the heterogeneities. This information is then included as prior knowledge in the photoacoustic reconstruction scheme to improve the localization and quantification.
Choi, Yura; Park, Jeong-Eun; Jeong, Jong Seob; Park, Jung-Keug; Kim, Jongpil; Jeon, Songhee
2016-10-01
Mesenchymal stem cells (MSCs) have shown considerable promise as an adaptable cell source for use in tissue engineering and other therapeutic applications. The aims of this study were to develop methods to test the hypothesis that human MSCs could be differentiated using sound wave stimulation alone and to find the underlying mechanism. Human bone marrow (hBM)-MSCs were stimulated with sound waves (1 kHz, 81 dB) for 7 days and the expression of neural markers were analyzed. Sound waves induced neural differentiation of hBM-MSC at 1 kHz and 81 dB but not at 1 kHz and 100 dB. To determine the signaling pathways involved in the neural differentiation of hBM-MSCs by sound wave stimulation, we examined the Pyk2 and CREB phosphorylation. Sound wave induced an increase in the phosphorylation of Pyk2 and CREB at 45 min and 90 min, respectively, in hBM-MSCs. To find out the upstream activator of Pyk2, we examined the intracellular calcium source that was released by sound wave stimulation. When we used ryanodine as a ryanodine receptor antagonist, sound wave-induced calcium release was suppressed. Moreover, pre-treatment with a Pyk2 inhibitor, PF431396, prevented the phosphorylation of Pyk2 and suppressed sound wave-induced neural differentiation in hBM-MSCs. These results suggest that specific sound wave stimulation could be used as a neural differentiation inducer of hBM-MSCs.
Amplitude and Wavelength Measurement of Sound Waves in Free Space using a Sound Wave Phase Meter
NASA Astrophysics Data System (ADS)
Ham, Sounggil; Lee, Kiwon
2018-05-01
We developed a sound wave phase meter (SWPM) and measured the amplitude and wavelength of sound waves in free space. The SWPM consists of two parallel metal plates, where the front plate was operated as a diaphragm. An aluminum perforated plate was additionally installed in front of the diaphragm, and the same signal as that applied to the sound source was applied to the perforated plate. The SWPM measures both the sound wave signal due to the diaphragm vibration and the induction signal due to the electric field of the aluminum perforated plate. Therefore, the two measurement signals interfere with each other due to the phase difference according to the distance between the sound source and the SWPM, and the amplitude of the composite signal that is output as a result is periodically changed. We obtained the wavelength of the sound wave from this periodic amplitude change measured in the free space and compared it with the theoretically calculated values.
Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B
2015-01-01
We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.
How to Use a Candle to Study Sound Waves
ERIC Educational Resources Information Center
Carvalho, P. Simeão; Briosa, E.; Rodrigues, M.; Pereira, C.; Ataíde, M.
2013-01-01
It is well known that sound waves in air are longitudinal waves. Although teachers use analogies such as compressing horizontal springs to demonstrate what longitudinal waves look like, students still present some difficulty in understanding that (1) sound waves correspond to oscillations of air particles, and (2) there is no "air flow"…
Complementary optical rogue waves in parametric three-wave mixing.
Chen, Shihua; Cai, Xian-Ming; Grelu, Philippe; Soto-Crespo, J M; Wabnitz, Stefan; Baronio, Fabio
2016-03-21
We investigate the resonant interaction of two optical pulses of the same group velocity with a pump pulse of different velocity in a weakly dispersive quadratic medium and report on the complementary rogue wave dynamics which are unique to such a parametric three-wave mixing. Analytic rogue wave solutions up to the second order are explicitly presented and their robustness is confirmed by numerical simulations, in spite of the onset of modulation instability activated by quantum noise.
Waveform inversion for orthorhombic anisotropy with P waves: feasibility and resolution
NASA Astrophysics Data System (ADS)
Kazei, Vladimir; Alkhalifah, Tariq
2018-05-01
Various parametrizations have been suggested to simplify inversions of first arrivals, or P waves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six parameters can be retrieved from the dynamic linearized inversion of P waves. These parameters are different from the six parameters needed to describe the kinematics of P waves. Reflection-based radiation patterns from the P-P scattered waves are remapped into the spectral domain to allow for our resolution analysis based on the effective angle of illumination concept. Singular value decomposition of the spectral sensitivities from various azimuths, offset coverage scenarios and data bandwidths allows us to quantify the resolution of different parametrizations, taking into account the signal-to-noise ratio in a given experiment. According to our singular value analysis, when the primary goal of inversion is determining the velocity of the P waves, gradually adding anisotropy of lower orders (isotropic, vertically transversally isotropic and orthorhombic) in hierarchical parametrization is the best choice. Hierarchical parametrization reduces the trade-off between the parameters and makes gradual introduction of lower anisotropy orders straightforward. When all the anisotropic parameters affecting P-wave propagation need to be retrieved simultaneously, the classic parametrization of orthorhombic medium with elastic stiffness matrix coefficients and density is a better choice for inversion. We provide estimates of the number and set of parameters that can be retrieved from surface seismic data in different acquisition scenarios. To set up an inversion process, the singular values determine the number of parameters that can be inverted and the resolution matrices from the parametrizations can be used to ascertain the set of parameters that can be resolved.
THz-wave parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2004-12-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We have also developed a novel basic technology for THz imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral trasillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.
Wavelength-agile near-IR optical parametric oscillator using a deposited silicon waveguide.
Wang, Ke-Yao; Foster, Mark A; Foster, Amy C
2015-06-15
Using a deposited hydrogenated amorphous silicon (a-Si:H) waveguide, we demonstrate ultra-broad bandwidth (60 THz) parametric amplification via four-wave mixing (FWM), and subsequently achieve the first silicon optical parametric oscillator (OPO) at near-IR wavelengths. Utilization of the time-dispersion-tuned technique provides an optical source with active wavelength tuning over 42 THz with a fixed pump wave.
High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.
Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan
2016-05-15
A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.
Salomons, Erik M.; Lohman, Walter J. A.; Zhou, Han
2016-01-01
Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing. PMID:26789631
Salomons, Erik M; Lohman, Walter J A; Zhou, Han
2016-01-01
Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.
Dynamics of Aqueous Foam Drops
NASA Technical Reports Server (NTRS)
Akhatov, Iskander; McDaniel, J. Gregory; Holt, R. Glynn
2001-01-01
We develop a model for the nonlinear oscillations of spherical drops composed of aqueous foam. Beginning with a simple mixture law, and utilizing a mass-conserving bubble-in-cell scheme, we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture. The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the higher-order shape modes and their parametric coupling to the breathing mode. The proposed model is used to explain recently obtained experimental data.
Effective isolation of primo vessels in lymph using sound- and ultrasonic-wave stimulation.
Park, Do-Young; Lee, Hye-Rie; Rho, Min-Suk; Lee, Sang-Suk
2014-12-01
The effects of stimulation with sound and ultrasonic waves of a specific bandwidth on the microdissection of primo vessels in lymphatic vessels of rabbit were investigated. The primo vessels stained with alcian-blue dye injected in the lymph nodes were definitely visualized and more easily isolated by sound-wave vibration and ultrasonic stimulation applied to rabbits at various frequencies and intensities. With sound wave at 7 Hz and ultrasonic waves at 2 MHz, the probability of detecting the primo vessels was improved to 90%; however, without wave stimulation the probability of discovering primo vessels was about 50% only. Sound and ultrasonic waves at specific frequency bands should be effective for microdissection of the primo vessels in the abdominal lymph of rabbit. We suggest that oscillation of the primo vessels by sound and ultrasonic waves may be useful to visualize specific primo structure, and wave vibration can be a very supportive process for observation and isolation of the primo vessels of rabbits. Copyright © 2014. Published by Elsevier B.V.
Laboratory modeling of edge wave generation over a plane beach by breaking waves
NASA Astrophysics Data System (ADS)
Abcha, Nizar; Ezersky, Alexander; Pelinovsky, Efim
2015-04-01
Edge waves play an important role in coastal hydrodynamics: in sediment transport, in formation of coastline structure and coastal bottom topography. Investigation of physical mechanisms leading to the edge waves generation allows us to determine their effect on the characteristics of spatially periodic patterns like crescent submarine bars and cusps observed in the coastal zone. In the present paper we investigate parametric excitation of edge wave with frequency two times less than the frequency of surface wave propagating perpendicular to the beach. Such mechanism of edge wave generation has been studied previously in a large number of papers using the assumption of non-breaking waves. This assumption was used in theoretical calculations and such conditions were created in laboratory experiments. In the natural conditions, the wave breaking is typical when edge waves are generated at sea beach. We study features of such processes in laboratory experiments. Experiments were performed in the wave flume of the Laboratory of Continental and Coast Morphodynamics (M2C), Caen. The flume is equipment with a wave maker controlled by computer. To model a plane beach, a PVC plate is placed at small angle to the horizontal bottom. Several resistive probes were used to measure characteristics of waves: one of them was used to measure free surface displacement near the wave maker and two probes were glued on the inclined plate. These probes allowed us to measure run-up due to parametrically excited edge waves. Run-up height is determined by processing a movie shot by high-speed camera. Sub-harmonic generation of standing edge waves is observed for definite control parameters: edge waves represent themselves a spatial mode with wavelength equal to double width of the flume; the frequency of edge wave is equal to half of surface wave frequency. Appearance of sub-harmonic mode instability is studied using probes and movie processing. The dependence of edge wave exponential growth rate index on the amplitude of surface wave is found. On the plane of parameters (amplitude - frequency) of surface wave we have found a region corresponding parametric instability leading to excitation of edge waves. It is shown that for small super criticalities, the amplitude of edge wave grows with amplitude of surface wave. For large amplitude of surface wave, wave breaking appears and parametric instability is suppressed. Such suppression of instability is caused by increasing of turbulent viscosity in near shore zone. It was shown that parametric excitation of edge wave can increase significantly (up to two times) the maximal run-up. Theoretical model is developed to explain suppression of instability due to turbulent viscosity. This theoretical model is based on nonlinear mode amplitude equation including terms responsible for parametric forcing, frequency detuning, nonlinear detuning, linear and nonlinear edge wave damping. Dependence of coefficients on turbulent viscosity is discussed.
NASA Astrophysics Data System (ADS)
Brächer, T.; Pirro, P.; Hillebrands, B.
2017-06-01
Magnonics and magnon spintronics aim at the utilization of spin waves and magnons, their quanta, for the construction of wave-based logic networks via the generation of pure all-magnon spin currents and their interfacing with electric charge transport. The promise of efficient parallel data processing and low power consumption renders this field one of the most promising research areas in spintronics. In this context, the process of parallel parametric amplification, i.e., the conversion of microwave photons into magnons at one half of the microwave frequency, has proven to be a versatile tool to excite and to manipulate spin waves. Its beneficial and unique properties such as frequency and mode-selectivity, the possibility to excite spin waves in a wide wavevector range and the creation of phase-correlated wave pairs, have enabled the achievement of important milestones like the magnon Bose-Einstein condensation and the cloning and trapping of spin-wave packets. Parallel parametric amplification, which allows for the selective amplification of magnons while conserving their phase is, thus, one of the key methods of spin-wave generation and amplification. The application of parallel parametric amplification to CMOS-compatible micro- and nano-structures is an important step towards the realization of magnonic networks. This is motivated not only by the fact that amplifiers are an important tool for the construction of any extended logic network but also by the unique properties of parallel parametric amplification. In particular, the creation of phase-correlated wave pairs allows for rewarding alternative logic operations such as a phase-dependent amplification of the incident waves. Recently, the successful application of parallel parametric amplification to metallic microstructures has been reported which constitutes an important milestone for the application of magnonics in practical devices. It has been demonstrated that parametric amplification provides an excellent tool to generate and to amplify spin waves in these systems in a wide wavevector range. In particular, the amplification greatly benefits from the discreteness of the spin-wave spectra since the size of the microstructures is comparable to the spin-wave wavelength. This opens up new, interesting routes of spin-wave amplification and manipulation. In this review, we will give an overview over the recent developments and achievements in this field.
NASA Astrophysics Data System (ADS)
Halford, A. J.
2017-12-01
When space computers first started listening into space radio, they noticed that there were radio noises that happened on the morning side of the Earth. Because these waves sounded like noises birds make in the morning, we named these waves after them. These bird sounding waves can move around the Earth, flying up and down, and sometimes move into an area where there is more stuff. This area is also much colder than where these bird noises are first made. When the waves move into this cold area where there is more stuff, they start to sound like angry birds instead of happy birds. Both of these waves, the happy and angry bird sounding waves, are very important to our understanding of how the tiny things in space move and change. Sometimes the waves which sound like birds can push these tiniest of things into the sky. The happy bird sounding waves can push the tiniest things quickly while the angry bird sounding waves push the tinest of things more slowly. When the tiny things fall into the sky, they create beautiful space lights and light that burns which can hurt people in up goers and not so up goers as well as our things like phones, and space computers. We study these waves that sound like birds to better understand when and where the tiny things will fall. That way we can be prepared and enjoy watching the pretty space lights at night with no worries.
ERIC Educational Resources Information Center
Shipman, Bob
2006-01-01
When children first hear the term "sound wave" perhaps they might associate it with the way a hand waves or perhaps the squiggly line image on a television monitor when sound recordings are being made. Research suggests that children tend to think sound somehow travels as a discrete package, a fast-moving invisible thing, and not something that…
Hindmarsh, Mark
2018-02-16
A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.
NASA Astrophysics Data System (ADS)
Hindmarsh, Mark
2018-02-01
A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.
Parametric Excitation of Electrostatic Dust-Modes by Ion-Cyclotron Waves in a Dusty Plasma
NASA Astrophysics Data System (ADS)
Islam, M. K.; Salahuddin, M.; Ferdous, T.; Salimullah, M.
A large amplitude electrostatic ion-cyclotron wave propagating through a magnetized and collisional dusty plasma undergoes strong parametric instability off the low-frequency dust-modes. The presence of the dust-component has effect on the nonlinear coupling via the dust-modes. The ion-neutral collisions are seen to have significant effect on the damping and consequent overall growth of the parametric excitation process.
Observational Signatures of Parametric Instability at 1AU
NASA Astrophysics Data System (ADS)
Bowen, T. A.; Bale, S. D.; Badman, S.
2017-12-01
Observations and simulations of inertial compressive turbulence in the solar wind are characterized by density structures anti-correlated with magnetic fluctuations parallel to the mean field. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures (PBS), kinetic ion acoustic waves, as well as the MHD slow mode. Recent work, specifically Verscharen et al. (2017), has highlighted the unexpected fluid like nature of the solar wind. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggests the presence of a driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the parametric instability, in which large amplitude Alfvenic fluctuations decay into parallel propagating compressive waves. This work employs 10 years of WIND observations in order to test the parametric decay process as a source of compressive waves in the solar wind through comparing collisionless damping rates of compressive fluctuations with growth rates of the parametric instability. Preliminary results suggest that generation of compressive waves through parametric decay is overdamped at 1 AU. However, the higher parametric decay rates expected in the inner heliosphere likely allow for growth of the slow mode-the remnants of which could explain density fluctuations observed at 1AU.
Wavelength-doubling optical parametric oscillator
Armstrong, Darrell J [Albuquerque, NM; Smith, Arlee V [Albuquerque, NM
2007-07-24
A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.
Chaotic neoclassical separatrix dissipation in parametric drift-wave decay.
Kabantsev, A A; Tsidulko, Yu A; Driscoll, C F
2014-02-07
Experiments and theory characterize a parametric decay instability between plasma drift waves when the nonlinear coupling is modified by an electrostatic barrier. Novel mode coupling terms representing enhanced dissipation and mode phase shifts are caused by chaotic separatrix crossings on the wave-ruffled separatrix. Experimental determination of these coupling terms is in broad agreement with new chaotic neoclassical transport analyses.
Parametric traveling wave amplifier with a low pump frequency
NASA Astrophysics Data System (ADS)
Marchenko, V. F.; Streltsov, A. M.; Zhmurov, S. E.
1983-01-01
Consideration is given to the model of a parametric traveling wave amplifier with a cubic nonlinearity in the form of an LF filter with MOS varactors. The operation of the amplifier is analyzed with allowance for wave damping and nonlinearity saturation, and the nonlinear mode of operation is examined. Experimental results are discussed, with emphasis on the amplitude-frequency response characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sati, Priti; Tripathi, V. K.
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of lowmore » frequency electromagnetic wave.« less
Visualizing Sound: Demonstrations to Teach Acoustic Concepts
NASA Astrophysics Data System (ADS)
Rennoll, Valerie
Interference, a phenomenon in which two sound waves superpose to form a resultant wave of greater or lower amplitude, is a key concept when learning about the physics of sound waves. Typical interference demonstrations involve students listening for changes in sound level as they move throughout a room. Here, new tools are developed to teach this concept that provide a visual component, allowing individuals to see changes in sound level on a light display. This is accomplished using a microcontroller that analyzes sound levels collected by a microphone and displays the sound level in real-time on an LED strip. The light display is placed on a sliding rail between two speakers to show the interference occurring between two sound waves. When a long-exposure photograph is taken of the light display being slid from one end of the rail to the other, a wave of the interference pattern can be captured. By providing a visual component, these tools will help students and the general public to better understand interference, a key concept in acoustics.
Standing Sound Waves in Air with DataStudio
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2010-01-01
Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…
Participation in the scientific activities of the Waves in Space Plasma (WISP) project
NASA Technical Reports Server (NTRS)
Alpert, Yakov L.; Grossi, Mario D.
1994-01-01
This is the Final Report for Contract NAG5-1925, that consisted of experiment design, for possible use by the space science mission called WISP (Waves in Space Plasma). This mission is under study by the Canadian Space Agency and by NASA. Two WISP configurations are contemplated, under the name of BICEPS: one is called BOLAS, and the other WISPRS. Both these configurations are meant to perform bistatic sounding of the ionosphere, at a height close to F(sub 2) H(sub max) (about 350 Km), with a pair of satellites, either tethered or in free flight. Investigation A (with Y.L. Alpert as P.I.) addresses the subject of parametric decay effects, expected to arise in a magnetoplasma under the influence of high-intensity HF fields. Criteria were formulated that could be used in searching for parametric instabilities and of electric fields in the ionosphere and magnetosphere, by in-situ satellites, such as the BICEPS Pair. Investigation B (with M.D.Grossi as P.I.) addressed the bistatic measurement, by the BICEPS pair,of ionospheric features, such as large-scale and small-scale disturbances, travelling ionospheric disturbances, electron density irregularities, spread-F phenomena, etc. These measurements by BICEPS could be correlated with the waveform distortion and degradation experienced by microwave links from geosynchronous height to ground, such as the ACTS satellite, expected to radiate pulses as short as 1 nanosecond in the band 20 to 30 GHz. These links are transionospheric and propagate e.m. waves in the volume of the ionosphere where BICEPS operates. It will be possible, therefore, to correlate the two classes of measurements, and learn the causative mechanisms that are responsible for the time-spread and frequency-spread nature of communications waveforms at microwave, in geosynchronous height to ground paths.
An Experimental Study on the Impact of Different-frequency Elastic Waves on Water Retention Curve
NASA Astrophysics Data System (ADS)
Deng, J. H.; Dai, J. Y.; Lee, J. W.; Lo, W. C.
2017-12-01
ABSTEACTOver the past few decades, theoretical and experimental studies on the connection between elastic wave attributes and the physical properties of a fluid-bearing porous medium have attracted the attention of many scholars in fields of porous medium flow and hydrogeology. It has been previously determined that the transmission of elastic waves in a porous medium containing two immiscible fluids will have an effect on the water retention curve, but it has not been found that the water retention curve will be affected by the frequency of elastic vibration waves or whether the effect on the soil is temporary or permanent. This research is based on a sand box test in which the soil is divided into three layers (a lower, middle, and upper layer). In this case, we discuss different impacts on the water retention curve during the drying process under sound waves (elastic waves) subject to three frequencies (150Hz, 300Hz, and 450Hz), respectively. The change in the water retention curve before and after the effect is then discussed. In addition, how sound waves affect the water retention curve at different depths is also observed. According to the experimental results, we discover that sound waves can cause soil either to expand or to contract. When the soil is induced to expand due to sound waves, it can contract naturally and return to the condition it was in before the influence of the sound waves. On the contrary, when the soil is induced to contract, it is unable to return to its initial condition. Due to the results discussed above, it is suggested that sound waves causing soil to expand have a temporary impact while those causing soil to contract have a permanent impact. In addition, our experimental results show how sound waves affect the water retention curve at different depths. The degree of soil expansion and contraction caused by the sound waves will differ at various soil depths. Nevertheless, the expanding or contracting of soil is only subject to the frequency of sound waves. Key words: Elastic waves, Water retention curve, Sand box test.
Stimulated Parametric Decay of Large Amplitude Alfvén waves in the Large Plasma Device (LaPD)
NASA Astrophysics Data System (ADS)
Dorfman, S. E.; Carter, T.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.
2012-12-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may be key to the spectrum of solar wind turbulence. Ion acoustic waves have been observed in the heliosphere, but their origin and role have not yet been determined [2]. Such waves produced by parametric decay in the corona could contribute to coronal heating [3]. Parametric decay has also been suggested as an intermediate instability mediating the observed turbulent cascade of Alfvén waves to small spatial scales [4]. The present laboratory experiments aim to stimulate the parametric decay process by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has a dispersion relation consistent with an ion acoustic wave. Also consistent with a stimulated decay process: 1) The beat amplitude peaks when the frequency difference between the two Alfvén waves is near the value predicted by Alfvén-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfvén waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfvén wave. Strong damping observed after the pump Alfvén waves are turned off and observed heating of the plasma by the Alfvén waves are under investigation. [1] W. Gekelman, J. Geophys. Res., 104:14417-14436, July 1999. [2] A. Mangeney,et. al., Annales Geophysicae, Volume 17, Number 3 (1999). [3] F. Pruneti, F and M. Velli, ESA Spec. Pub. 404, 623 (1997). [4] P. Yoon and T. Fang, Plasma Phys. Control. Fusion 50 (2008). This work was performed at UCLA's Basic Plasma Science Facility, which is jointly supported by the U.S. DoE and NSF.
Frequency locking in auditory hair cells: Distinguishing between additive and parametric forcing
NASA Astrophysics Data System (ADS)
Edri, Yuval; Bozovic, Dolores; Yochelis, Arik
2016-10-01
The auditory system displays remarkable sensitivity and frequency discrimination, attributes shown to rely on an amplification process that involves a mechanical as well as a biochemical response. Models that display proximity to an oscillatory onset (also known as Hopf bifurcation) exhibit a resonant response to distinct frequencies of incoming sound, and can explain many features of the amplification phenomenology. To understand the dynamics of this resonance, frequency locking is examined in a system near the Hopf bifurcation and subject to two types of driving forces: additive and parametric. Derivation of a universal amplitude equation that contains both forcing terms enables a study of their relative impact on the hair cell response. In the parametric case, although the resonant solutions are 1 : 1 frequency locked, they show the coexistence of solutions obeying a phase shift of π, a feature typical of the 2 : 1 resonance. Different characteristics are predicted for the transition from unlocked to locked solutions, leading to smooth or abrupt dynamics in response to different types of forcing. The theoretical framework provides a more realistic model of the auditory system, which incorporates a direct modulation of the internal control parameter by an applied drive. The results presented here can be generalized to many other media, including Faraday waves, chemical reactions, and elastically driven cardiomyocytes, which are known to exhibit resonant behavior.
NASA Astrophysics Data System (ADS)
Boito, D.; Dedonder, J.-P.; El-Bennich, B.; Escribano, R.; Kamiński, R.; Leśniak, L.; Loiseau, B.
2017-12-01
We introduce parametrizations of hadronic three-body B and D weak decay amplitudes that can be readily implemented in experimental analyses and are a sound alternative to the simplistic and widely used sum of Breit-Wigner type amplitudes, also known as the isobar model. These parametrizations can be particularly useful in the interpretation of C P asymmetries in the Dalitz plots. They are derived from previous calculations based on a quasi-two-body factorization approach in which two-body hadronic final-state interactions are fully taken into account in terms of unitary S - and P -wave π π , π K , and K K ¯ form factors. These form factors can be determined rigorously, fulfilling fundamental properties of quantum field-theory amplitudes such as analyticity and unitarity, and are in agreement with the low-energy behavior predicted by effective theories of QCD. They are derived from sets of coupled-channel equations using T -matrix elements constrained by experimental meson-meson phase shifts and inelasticities, chiral symmetry, and asymptotic QCD. We provide explicit amplitude expressions for the decays B±→π+π-π±, B →K π+π-, B±→K+K-K±, D+→π-π+π+, D+→K-π+π+, and D0→KS0π+π-, for which we have shown in previous studies that this approach is phenomenologically successful; in addition, we provide expressions for the D0→KS0K+K- decay. Other three-body hadronic channels can be parametrized likewise.
NASA Astrophysics Data System (ADS)
Sotnikov, V.; Kim, T.; Caplinger, J.; Main, D.; Mishin, E.; Gershenzon, N.; Genoni, T.; Paraschiv, I.; Rose, D.
2018-04-01
The concept of a parametric antenna in ionospheric plasma is analyzed. Such antennas are capable of exciting electromagnetic radiation fields, specifically the creation of whistler waves generated at the very low frequency (VLF) range, which are also capable of propagating large distances away from the source region. The mechanism of whistler wave generation is considered a parametric interaction of quasi-electrostatic whistler waves (also known as low oblique resonance (LOR) oscillations) excited by a conventional loop antenna. The interaction of LOR waves with quasi-neutral density perturbations in the near field of an antenna gives rise to electromagnetic whistler waves on combination frequencies. It is shown in this work that the amplitude of these waves can considerably exceed the amplitude of whistler waves directly excited by a loop. Additionally, particle-in-cell simulations, which demonstrate the excitation and spatial structure of VLF waves excited by a loop antenna, are presented. Possible applications including the wave-particle interactions to mitigate performance anomalies of low Earth orbit satellites, active space experiments, communication via VLF waves, and modification experiments in the ionosphere will be discussed.
Source and listener directivity for interactive wave-based sound propagation.
Mehra, Ravish; Antani, Lakulish; Kim, Sujeong; Manocha, Dinesh
2014-04-01
We present an approach to model dynamic, data-driven source and listener directivity for interactive wave-based sound propagation in virtual environments and computer games. Our directional source representation is expressed as a linear combination of elementary spherical harmonic (SH) sources. In the preprocessing stage, we precompute and encode the propagated sound fields due to each SH source. At runtime, we perform the SH decomposition of the varying source directivity interactively and compute the total sound field at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave decomposition approach based on higher-order derivatives of the sound field that enables dynamic HRTF-based listener directivity at runtime. We provide a generic framework to incorporate our source and listener directivity in any offline or online frequency-domain wave-based sound propagation algorithm. We have integrated our sound propagation system in Valve's Source game engine and use it to demonstrate realistic acoustic effects such as sound amplification, diffraction low-passing, scattering, localization, externalization, and spatial sound, generated by wave-based propagation of directional sources and listener in complex scenarios. We also present results from our preliminary user study.
Electron acceleration by parametrically excited Langmuir waves. [in ionospheric modification
NASA Technical Reports Server (NTRS)
Fejer, J. A.; Graham, K. N.
1974-01-01
Simple physical arguments are used to estimate the downward-going energetic electron flux due to parametrically excited Langmuir waves in ionospheric modification experiments. The acceleration mechanism is a single velocity reversal as seen in the frame of the Langmuir wave. The flux is sufficient to produce the observed ionospheric airglow if focusing-type instabilities are invoked to produce moderate local enhancements of the pump field.
Acoustic parametric pumping of spin waves
NASA Astrophysics Data System (ADS)
Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.
2014-11-01
Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.
Veligdan, James T.
2000-01-11
An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.
A numerical study of fundamental shock noise mechanisms. Ph.D. Thesis - Cornell Univ.
NASA Technical Reports Server (NTRS)
Meadows, Kristine R.
1995-01-01
The results of this thesis demonstrate that direct numerical simulation can predict sound generation in unsteady aerodynamic flows containing shock waves. Shock waves can be significant sources of sound in high speed jet flows, on helicopter blades, and in supersonic combustion inlets. Direct computation of sound permits the prediction of noise levels in the preliminary design stage and can be used as a tool to focus experimental studies, thereby reducing cost and increasing the probability of a successfully quiet product in less time. This thesis reveals and investigates two mechanisms fundamental to sound generation by shocked flows: shock motion and shock deformation. Shock motion is modeled by the interaction of a sound wave with a shock. During the interaction, the shock wave begins to move and the sound pressure is amplified as the wave passes through the shock. The numerical approach presented in this thesis is validated by the comparison of results obtained in a quasi-one dimensional simulation with linear theory. Analysis of the perturbation energy demonstrated for the first time that acoustic energy is generated by the interaction. Shock deformation is investigated by the numerical simulation of a ring vortex interacting with a shock. This interaction models the passage of turbulent structures through the shock wave. The simulation demonstrates that both acoustic waves and contact surfaces are generated downstream during the interaction. Analysis demonstrates that the acoustic wave spreads cylindrically, that the sound intensity is highly directional, and that the sound pressure level increases significantly with increasing shock strength. The effect of shock strength on sound pressure level is consistent with experimental observations of shock noise, indicating that the interaction of a ring vortex with a shock wave correctly models a dominant mechanism of shock noise generation.
Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg; Grigoryan, K.K.
2013-06-15
The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period τ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the soundmore » wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods τ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.« less
NASA Technical Reports Server (NTRS)
Cook, R. K.
1969-01-01
The propagation of sound waves at infrasonic frequencies (oscillation periods 1.0 - 1000 seconds) in the atmosphere is being studied by a network of seven stations separated geographically by distances of the order of thousands of kilometers. The stations measure the following characteristics of infrasonic waves: (1) the amplitude and waveform of the incident sound pressure, (2) the direction of propagation of the wave, (3) the horizontal phase velocity, and (4) the distribution of sound wave energy at various frequencies of oscillation. Some infrasonic sources which were identified and studied include the aurora borealis, tornadoes, volcanos, gravity waves on the oceans, earthquakes, and atmospheric instability waves caused by winds at the tropopause. Waves of unknown origin seem to radiate from several geographical locations, including one in the Argentine.
Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage
NASA Astrophysics Data System (ADS)
Khrapov, Sergey; Khoperskov, Alexander
2018-03-01
A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.
Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.
Stothard, David J M; Dunn, Malcolm H
2010-01-18
We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.
Sound absorption coefficient of coal bottom ash concrete for railway application
NASA Astrophysics Data System (ADS)
Ramzi Hannan, N. I. R.; Shahidan, S.; Maarof, Z.; Ali, N.; Abdullah, S. R.; Ibrahim, M. H. Wan
2017-11-01
A porous concrete able to reduce the sound wave that pass through it. When a sound waves strike a material, a portion of the sound energy was reflected back and another portion of the sound energy was absorbed by the material while the rest was transmitted. The larger portion of the sound wave being absorbed, the lower the noise level able to be lowered. This study is to investigate the sound absorption coefficient of coal bottom ash (CBA) concrete compared to the sound absorption coefficient of normal concrete by carried out the impedance tube test. Hence, this paper presents the result of the impedance tube test of the CBA concrete and normal concrete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern; Pirro, P.
2014-03-03
We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. Thismore » provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.« less
Computational fluid dynamics simulation of sound propagation through a blade row.
Zhao, Lei; Qiao, Weiyang; Ji, Liang
2012-10-01
The propagation of sound waves through a blade row is investigated numerically. A wave splitting method in a two-dimensional duct with arbitrary mean flow is presented, based on which pressure amplitude of different wave mode can be extracted at an axial plane. The propagation of sound wave through a flat plate blade row has been simulated by solving the unsteady Reynolds average Navier-Stokes equations (URANS). The transmission and reflection coefficients obtained by Computational Fluid Dynamics (CFD) are compared with semi-analytical results. It indicates that the low order URANS scheme will cause large errors if the sound pressure level is lower than -100 dB (with as reference pressure the product of density, main flow velocity, and speed of sound). The CFD code has sufficient precision when solving the interaction of sound wave and blade row providing the boundary reflections have no substantial influence. Finally, the effects of flow Mach number, blade thickness, and blade turning angle on sound propagation are studied.
Determining the speed of sound in the air by sound wave interference
NASA Astrophysics Data System (ADS)
Silva, Abel A.
2017-07-01
Mechanical waves propagate through material media. Sound is an example of a mechanical wave. In fluids like air, sound waves propagate through successive longitudinal perturbations of compression and decompression. Audible sound frequencies for human ears range from 20 to 20 000 Hz. In this study, the speed of sound v in the air is determined using the identification of maxima of interference from two synchronous waves at frequency f. The values of v were correct to 0 °C. The experimental average value of {\\bar{ν }}\\exp =336 +/- 4 {{m}} {{{s}}}-1 was found. It is 1.5% larger than the reference value. The standard deviation of 4 m s-1 (1.2% of {\\bar{ν }}\\exp ) is an improved value by the use of the concept of the central limit theorem. The proposed procedure to determine the speed of sound in the air aims to be an academic activity for physics classes of scientific and technological courses in college.
NASA Astrophysics Data System (ADS)
Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran
2018-01-01
The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.
NASA Astrophysics Data System (ADS)
Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran
2018-05-01
The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.
Nonlinear Tides in Close Binary Systems
NASA Astrophysics Data System (ADS)
Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh
2012-06-01
We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' >~ 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static "equilibrium" tidal distortion is, however, stable to parametric resonance except for solar binaries with P <~ 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N ≈ 103[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P <~ a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing; this coupling appears particularly efficient at draining energy out of the dynamical tide and may be more important than either wave breaking or parametric resonance at determining the nonlinear dissipation of the dynamical tide.
Ultrasound Algorithm Derivation for Soil Moisture Content Estimation
NASA Technical Reports Server (NTRS)
Belisle, W.R.; Metzl, R.; Choi, J.; Aggarwal, M. D.; Coleman, T.
1997-01-01
Soil moisture content can be estimated by evaluating the velocity at which sound waves travel through a known volume of solid material. This research involved the development of three soil algorithms relating the moisture content to the velocity at which sound waves moved through dry and moist media. Pressure and shear wave propagation equations were used in conjunction with soil property descriptions to derive algorithms appropriate for describing the effects of moisture content variation on the velocity of sound waves in soils with and without complete soil pore water volumes, An elementary algorithm was used to estimate soil moisture contents ranging from 0.08 g/g to 0.5 g/g from sound wave velocities ranging from 526 m/s to 664 m/s. Secondary algorithms were also used to estimate soil moisture content from sound wave velocities through soils with pores that were filled predominantly with air or water.
NASA Technical Reports Server (NTRS)
Kentzer, C. P.
1976-01-01
A statistical approach to sound propagation is considered in situations where, due to the presence of large gradients of properties of the medium, the classical (deterministic) treatment of wave motion is inadequate. Mathematical methods for wave motions not restricted to small wavelengths (analogous to known methods of quantum mechanics) are used to formulate a wave theory of sound in nonuniform flows. Nonlinear transport equations for field probabilities are derived for the limiting case of noninteracting sound waves and it is postulated that such transport equations, appropriately generalized, may be used to predict the statistical behavior of sound in arbitrary flows.
Sterilizing effects of high-intensity airborne sonic and ultrasonic waves.
Pisano, M A; Boucher, M G; Alcamo, I E
1966-09-01
The lethal effects of high-intensity airborne sonic (9.9 kc/sec) and ultrasonic waves (30.4 kc/sec) on spores of Bacillus subtilis var. niger ATCC 9372 were determined. The spores, which were deposited on filter-paper strips, were exposed to sound waves for periods varying from 1 to 8 hr, at a temperature of 40 C and a relative humidity of 40%. Significant reductions in the viable counts of spores exposed to airborne sonic or ultrasonic irradiations were obtained. The antibacterial activity of airborne sound waves varied with the sound intensity level, the period of irradiation, and the distance of the sample from the sound source. At similar intensity levels, the amplitude of motion of the sound waves appeared to be a factor in acoustic sterilization.
Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.
Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan
2012-07-30
We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.
Ionospheric modifications in high frequency heating experiments
NASA Astrophysics Data System (ADS)
Kuo, Spencer P.
2015-01-01
Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.
Parametric decay of plasma waves near the upper-hybrid resonance
Dodin, I. Y.; Arefiev, A. V.
2017-03-28
An intense X wave propagating perpendicularly to dc magnetic field is unstable with respect to a parametric decay into an electron Bernstein wave and a lower-hybrid wave. A modified theory of this effect is proposed that extends to the high-intensity regime, where the instability rate γ ceases to be a linear function of the incident-wave amplitude. An explicit formula for γ is derived and expressed in terms of cold-plasma parameters. Here, theory predictions are in reasonable agreement with the results of the particle-in-cell simulations presented in a separate publication.
NASA Astrophysics Data System (ADS)
Gelikonov, V. M.; Romashov, V. N.; Shabanov, D. V.; Ksenofontov, S. Yu.; Terpelov, D. A.; Shilyagin, P. A.; Gelikonov, G. V.; Vitkin, I. A.
2018-05-01
We consider a cross-polarization optical coherence tomography system with a common path for the sounding and reference waves and active maintenance of the circular polarization of a sounding wave. The system is based on the formation of birefringent characteristics of the total optical path, which are equivalent to a quarter-wave plate with a 45° orientation of its optical axes with respect to the linearly polarized reference wave. Conditions under which any light-polarization state can be obtained using a two-element phase controller are obtained. The dependence of the local cross-scattering coefficient of light in a model medium and biological tissue on the sounding-wave polarization state is demonstrated. The necessity of active maintenance of the circular polarization of a sounding wave in this common path system (including a flexible probe) is shown to realize uniform optimal conditions for cross-polarization studies of biological tissue.
Sounds of the Ancient Universe
2013-03-21
Tones represents sound waves that traveled through the early universe, and were later heard by ESA Planck space telescope. The primordial sound waves have been translated into frequencies we can hear.
Study of parametric instability in gravitational wave detectors with silicon test masses
NASA Astrophysics Data System (ADS)
Zhang, Jue; Zhao, Chunnong; Ju, Li; Blair, David
2017-03-01
Parametric instability is an intrinsic risk in high power laser interferometer gravitational wave detectors, in which the optical cavity modes interact with the acoustic modes of the mirrors, leading to exponential growth of the acoustic vibration. In this paper, we investigate the potential parametric instability for a proposed next generation gravitational wave detector, the LIGO Voyager blue design, with cooled silicon test masses of size 45 cm in diameter and 55 cm in thickness. It is shown that there would be about two unstable modes per test mass at an arm cavity power of 3 MW, with the highest parametric gain of ∼76. While this is less than the predicted number of unstable modes for Advanced LIGO (∼40 modes with max gain of ∼32 at the designed operating power of 830 kW), the importance of developing suitable instability suppression schemes is emphasized.
Internal Wave Impact on the Performance of a Hypothetical Mine Hunting Sonar
2014-10-01
time steps) to simulate the propagation of the internal wave field through the mine field. Again the transmission loss and acoustic signal strength...dependent internal wave perturbed sound speed profile was evaluated by calculating the temporal variability of the signal excess (SE) of acoustic...internal wave perturbation of the sound speed profile, was calculated for a limited sound speed field time section. Acoustic signals were projected
Parametric instability, inverse cascade and the range of solar-wind turbulence
NASA Astrophysics Data System (ADS)
Chandran, Benjamin D. G.
2018-02-01
In this paper, weak-turbulence theory is used to investigate the nonlinear evolution of the parametric instability in three-dimensional low- plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy +\\gg e-$ , where +$ and -$ are the frequency ( ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If +$ initially has a peak frequency 0$ (at which +$ is maximized) and an `infrared' scaling p$ at smaller with , then +$ acquires an -1$ scaling throughout a range of frequencies that spreads out in both directions from 0$ . At the same time, -$ acquires an -2$ scaling within this same frequency range. If the plasma parameters and infrared +$ spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an +$ spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed -1$ scaling at -4~\\text{Hz}$ . The results of this paper suggest that the -1$ spectrum seen by Helios in the fast solar wind at -4~\\text{Hz}$ is produced in situ by parametric decay and that the -1$ range of +$ extends over an increasingly narrow range of frequencies as decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe.
Wang, Chong
2018-03-01
In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0 is also given.
Sound wave transmission (image)
When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...
Time dependent wave envelope finite difference analysis of sound propagation
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1984-01-01
A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.
NASA Technical Reports Server (NTRS)
Penin, A. N.; Reutova, T. A.; Sergienko, A. V.
1992-01-01
An experiment on one-photon state localization in space using a correlation technique in Spontaneous Parametric Down Conversion (SPDC) process is discussed. Results of measurements demonstrate an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate and momentum variables of photon states. Results of the experiment can be explained with the help of an advanced wave technique. The experiment is based on the idea that two-photon states of optical electromagnetic fields arising in the nonlinear process of the spontaneous parametric down conversion (spontaneous parametric light scattering) can be explained by quantum mechanical theory with the help of a single wave function.
NASA Astrophysics Data System (ADS)
Penin, A. N.; Reutova, T. A.; Sergienko, A. V.
1992-02-01
An experiment on one-photon state localization in space using a correlation technique in Spontaneous Parametric Down Conversion (SPDC) process is discussed. Results of measurements demonstrate an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate and momentum variables of photon states. Results of the experiment can be explained with the help of an advanced wave technique. The experiment is based on the idea that two-photon states of optical electromagnetic fields arising in the nonlinear process of the spontaneous parametric down conversion (spontaneous parametric light scattering) can be explained by quantum mechanical theory with the help of a single wave function.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-18
... sound waves emanating from the pile, thereby reducing the sound energy. A confined bubble curtain... physically block sound waves and they prevent air bubbles from migrating away from the pile. The literature... acoustic pressure wave propagates out from a source, was estimated as so-called ``practical spreading loss...
Visualization of Sound Waves Using Regularly Spaced Soap Films
ERIC Educational Resources Information Center
Elias, F.; Hutzler, S.; Ferreira, M. S.
2007-01-01
We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…
Parametric Interactions between Alfven waves in LaPD
NASA Astrophysics Data System (ADS)
Brugman, B.; Carter, T. A.; Cowley, S. C.; Pribyl, P.; Lybarger, W.
2004-11-01
The physics governing interactions between large amplitude Alfvén waves, which are relevant to plasmas in space as well as the laboratory, is at present not well understood. A major class of such interactions which are believed to occur in compressible plasmas is referred to as parametric decay. We will present the results of a series of experiments involving the interactions of large amplitude LHP Alfvén wave conducted on the Large Plasma Device (LaPD); where β ≪ 1, n ˜ 10^12 frac1cm^3 and B0 in (200,2500) G. These experiments show strong signs of one form of parametric decay, known as the Modulational Instability, which represents the interaction of two Alfvén waves and a low frequency density perturbation. This interaction is believed to occur in plasmas with β < 1 as well as β > 1, over a broad range of wavevector space, and for RHP as well as LHP Alfvén waves - distinguishing it from the Beat and Decay instabilities. Details of this interaction, in particular the structure of the incident waves as well as that of their byproducts, will be shown in physical as well as wavevector space. The generation of large amplitude waves using both an Alfvén wave MASER and high current loop antennas will also be illustrated. Lastly theoretical descriptions of parametric decay will be presented and compared to observations. Future work will also include comparisons of experimental results with applicable simulations, such as GS2. Work supported by DOE grant number DE-FG03-02ER54688
Terahertz generation by difference frequency generation from a compact optical parametric oscillator
NASA Astrophysics Data System (ADS)
Li, Zhongyang; Wang, Silei; Wang, Mengtao; Wang, Weishu
2017-11-01
Terahertz (THz) generation by difference frequency generation (DFG) processes with dual idler waves is theoretically analyzed. The dual idler waves are generated by a compact optical parametric oscillator (OPO) with periodically poled lithium niobate (PPLN). The phase-matching conditions in a same PPLN for the optical parametric oscillation generating signal and idler waves and for the DFG generating THz waves can be simultaneously satisfied by selecting the poling period of PPLN. Moreover, 3-order cascaded DFG processes generating THz waves can be realized in the same PPLN. To take an example of 8.341 THz which locates in the vicinity of polariton resonances, THz intensities and quantum conversion efficiencies are calculated. Compared with non-cascaded DFG processes, THz intensities of 8.341 THz in 3-order cascaded DFG processes increase to 2.57 times. When the pump intensity equals to 20 MW/mm2, the quantum conversion efficiency of 106% in 3-order cascaded DFG processes can be realized, which exceeds the Manley-Rowe limit.
Theoretical studies of the solar atmosphere and interstellar pickup ions
NASA Technical Reports Server (NTRS)
1994-01-01
Solar atmosphere research activities are summarized. Specific topics addressed include: (1) coronal mass ejections and related phenomena; (2) parametric instabilities of Alfven waves; (3) pickup ions in the solar wind; and (4) cosmic rays in the outer heliosphere. Also included is a list of publications covering the following topics: catastrophic evolution of a force-free flux rope; maximum energy release in flux-rope models of eruptive flares; sheet approximations in models of eruptive flares; material ejection, motions of loops and ribbons of two-ribbon flares; dispersion relations for parametric instabilities of parallel-propagating; parametric instabilities of parallel-propagating Alfven waves; beat, modulation, and decay instabilities of a circularly-polarized Alfven wave; effects of time-dependent photoionization on interstellar pickup helium; observation of waves generated by the solar wind pickup of interstellar hydrogen ions; ion thermalization and wave excitation downstream of the quasi-perpendicular bowshock; ion cyclotron instability and the inverse correlation between proton anisotrophy and proton beta; and effects of cosmic rays and interstellar gas on the dynamics of a wind.
The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme
NASA Astrophysics Data System (ADS)
Wang, Rui-Jie; Xu, Kun
2012-08-01
Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carried out for a wide range of wave oscillating frequencies. The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency. The simulation covers the flow regime from the continuum to free molecule one. The treatment of the oscillating wall boundary condition and the methods for evaluating the absorption coefficient and sound wave speed are presented in detail. The simulation results from the UGKS are compared to the Navier-Stokes solutions, the direct simulation Monte Carlo (DSMC) simulation, and experimental measurements. Good agreement with the experimental data has been obtained in the whole flow regimes for the corresponding Knudsen number from 0.08 to 32. The current study clearly demonstrates the capability of the UGKS method in capturing the sound wave propagation and its usefulness for the rarefied flow study.
Song, Zhongchang; Zhang, Yu; Thornton, Steven W; Li, Songhai; Dong, Jianchen
2017-10-01
The wave propagation, sound field, and transmission beam pattern of a pygmy sperm whale (Kogia breviceps) were investigated in both the horizontal and vertical planes. Results suggested that the signals obtained at both planes were similarly characterized with a high peak frequency and a relatively narrow bandwidth, close to the ones recorded from live animals. The sound beam measured outside the head in the vertical plane was narrower than that of the horizontal one. Cases with different combinations of air-filled structures in both planes were used to study the respective roles in controlling wave propagation and beam formation. The wave propagations and beam patterns in the horizontal and vertical planes elucidated the important reflection effect of the spermaceti and vocal chambers on sound waves, which was highly significant in forming intensive forward sound beams. The air-filled structures, the forehead soft tissues and skull structures formed wave guides in these two planes for emitted sounds to propagate forward.
Lewis, James W.; Talkington, William J.; Tallaksen, Katherine C.; Frum, Chris A.
2012-01-01
Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and “auditory objects” can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more “object-like,” independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds—a quantitative measure of change in entropy of the acoustic signals over time—and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages of the auditory system appear to process or extract a number of quantifiable low-order signal attributes that are characteristic of action events perceived as being object-like, representing stages that may begin to dissociate different perceptual dimensions and categories of every-day, real-world action sounds. PMID:22582038
Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.
Shao, Guang-hao; Song, Xiao-shi; Xu, Fei; Lu, Yan-qing
2012-08-13
Optical parametric amplification (OPA) of arbitrarily polarized light is proposed in a multi-section periodically poled Lithium Niobate (PPLN). External electric field is applied on selected sections to induce the polarization rotation of involved lights, thus the quasi-phase matched optical parametric processes exhibit polarization insensitivity under suitable voltage. In addition to the amplified signal wave, an idler wave with the same polarization is generated simultaneously. As an example, a ~10 times OPA showing polarization independency is simulated. Applications of this technology are also discussed.
Stimulated Raman scattering of sub-millimeter waves in bismuth
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Tripathi, V. K.
2007-12-01
A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.
Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa
2010-08-02
A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.
NASA Astrophysics Data System (ADS)
Okishev, Andrey V.; Zuegel, Jonathan D.
2006-12-01
Intracavity-pumped Raman laser action in a fiber-laser pumped, single-resonant, continuous-wave (cw) MgO:PPLN optical parametric oscillator with a high-Q linear resonator has been observed for the first time to our knowledge. Experimental results of this phenomenon investigation will be discussed.
Lee, Soomin; Katsuura, Tetsuo; Shimomura, Yoshihiro
2011-01-01
In recent years, a new type of speaker called the parametric speaker has been used to generate highly directional sound, and these speakers are now commercially available. In our previous study, we verified that the burden of the parametric speaker was lower than that of the general speaker for endocrine functions. However, nothing has yet been demonstrated about the effects of the shorter distance than 2.6 m between parametric speakers and the human body. Therefore, we investigated the distance effect on endocrinological function and subjective evaluation. Nine male subjects participated in this study. They completed three consecutive sessions: a 20-min quiet period as a baseline, a 30-min mental task period with general speakers or parametric speakers, and a 20-min recovery period. We measured salivary cortisol and chromogranin A (CgA) concentrations. Furthermore, subjects took the Kwansei-gakuin Sleepiness Scale (KSS) test before and after the task and also a sound quality evaluation test after it. Four experiments, one with a speaker condition (general speaker and parametric speaker), the other with a distance condition (0.3 m and 1.0 m), were conducted, respectively, at the same time of day on separate days. We used three-way repeated measures ANOVA (speaker factor × distance factor × time factor) to examine the effects of the parametric speaker. We found that the endocrinological functions were not significantly different between the speaker condition and the distance condition. The results also showed that the physiological burdens increased with progress in time independent of the speaker condition and distance condition.
Slowing down bubbles with sound
NASA Astrophysics Data System (ADS)
Poulain, Cedric; Dangla, Remie; Guinard, Marion
2009-11-01
We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down even for moderate acoustic pressure. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. We render the bubble's oscillations and translational movements using high speed video. We show that radial oscillations (Rayleigh-Plesset type) have no effect on the mean velocity, while above a critical pressure, a parametric type instability (Faraday waves) is triggered and gives rise to nonlinear surface oscillations. We evidence that these surface waves are subharmonic and responsible for the bubble's drag increase. When the acoustic intensity is increased, Faraday modes interact and the strongly nonlinear oscillations behave randomly, leading to a random behavior of the bubble's trajectory and consequently to a higher slow down. Our observations may suggest new strategies for bubbly flow control, or two-phase microfluidic devices. It might also be applicable to other elastic objects, such as globules, cells or vesicles, for medical applications such as elasticity-based sorting.
Beyond Chemical Triggers: Evidence for Sound-Evoked Physiological Reactions in Plants
Jung, Jihye; Kim, Seon-Kyu; Kim, Joo Y.; Jeong, Mi-Jeong; Ryu, Choong-Min
2018-01-01
Sound is ubiquitous in nature. Recent evidence supports the notion that naturally occurring and artificially generated sound waves contribute to plant robustness. New information is emerging about the responses of plants to sound and the associated downstream signaling pathways. Here, beyond chemical triggers which can improve plant health by enhancing plant growth and resistance, we provide an overview of the latest findings, limitations, and potential applications of sound wave treatment as a physical trigger to modulate physiological traits and to confer an adaptive advantage in plants. We believe that sound wave treatment is a new trigger to help protect plants against unfavorable conditions and to maintain plant fitness. PMID:29441077
Design and evaluation of a parametric model for cardiac sounds.
Ibarra-Hernández, Roilhi F; Alonso-Arévalo, Miguel A; Cruz-Gutiérrez, Alejandro; Licona-Chávez, Ana L; Villarreal-Reyes, Salvador
2017-10-01
Heart sound analysis plays an important role in the auscultative diagnosis process to detect the presence of cardiovascular diseases. In this paper we propose a novel parametric heart sound model that accurately represents normal and pathological cardiac audio signals, also known as phonocardiograms (PCG). The proposed model considers that the PCG signal is formed by the sum of two parts: one of them is deterministic and the other one is stochastic. The first part contains most of the acoustic energy. This part is modeled by the Matching Pursuit (MP) algorithm, which performs an analysis-synthesis procedure to represent the PCG signal as a linear combination of elementary waveforms. The second part, also called residual, is obtained after subtracting the deterministic signal from the original heart sound recording and can be accurately represented as an autoregressive process using the Linear Predictive Coding (LPC) technique. We evaluate the proposed heart sound model by performing subjective and objective tests using signals corresponding to different pathological cardiac sounds. The results of the objective evaluation show an average Percentage of Root-Mean-Square Difference of approximately 5% between the original heart sound and the reconstructed signal. For the subjective test we conducted a formal methodology for perceptual evaluation of audio quality with the assistance of medical experts. Statistical results of the subjective evaluation show that our model provides a highly accurate approximation of real heart sound signals. We are not aware of any previous heart sound model rigorously evaluated as our proposal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Efficient techniques for wave-based sound propagation in interactive applications
NASA Astrophysics Data System (ADS)
Mehra, Ravish
Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data-driven, rotating or time-varying directivity function at runtime. Unlike previous approaches, the listener directivity approach can be used to compute spatial audio (3D audio) for a moving, rotating listener at interactive rates. Lastly, we propose an efficient GPU-based time-domain solver for the wave equation that enables wave simulation up to the mid-frequency range in tens of minutes on a desktop computer. It is demonstrated that by carefully mapping all the components of the wave simulator to match the parallel processing capabilities of the graphics processors, significant improvement in performance can be achieved compared to the CPU-based simulators, while maintaining numerical accuracy. We validate these techniques with offline numerical simulations and measured data recorded in an outdoor scene. We present results of preliminary user evaluations conducted to study the impact of these techniques on user's immersion in virtual environment. We have integrated these techniques with the Half-Life 2 game engine, Oculus Rift head-mounted display, and Xbox game controller to enable users to experience high-quality acoustics effects and spatial audio in the virtual environment.
Root phonotropism: Early signalling events following sound perception in Arabidopsis roots.
Rodrigo-Moreno, Ana; Bazihizina, Nadia; Azzarello, Elisa; Masi, Elisa; Tran, Daniel; Bouteau, François; Baluska, Frantisek; Mancuso, Stefano
2017-11-01
Sound is a fundamental form of energy and it has been suggested that plants can make use of acoustic cues to obtain information regarding their environments and alter and fine-tune their growth and development. Despite an increasing body of evidence indicating that it can influence plant growth and physiology, many questions concerning the effect of sound waves on plant growth and the underlying signalling mechanisms remains unknown. Here we show that in Arabidopsis thaliana, exposure to sound waves (200Hz) for 2 weeks induced positive phonotropism in roots, which grew towards to sound source. We found that sound waves triggered very quickly (within minutes) an increase in cytosolic Ca 2+ , possibly mediated by an influx through plasma membrane and a release from internal stock. Sound waves likewise elicited rapid reactive oxygen species (ROS) production and K + efflux. Taken together these results suggest that changes in ion fluxes (Ca 2+ and K + ) and an increase in superoxide production are involved in sound perception in plants, as previously established in animals. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George
2014-01-01
In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on…
High-frequency sound waves to eliminate a horizon in the mixmaster universe.
NASA Technical Reports Server (NTRS)
Chitre, D. M.
1972-01-01
From the linear wave equation for small-amplitude sound waves in a curved space-time, there is derived a geodesiclike differential equation for sound rays to describe the motion of wave packets. These equations are applied in the generic, nonrotating, homogeneous closed-model universe (the 'mixmaster universe,' Bianchi type IX). As for light rays described by Doroshkevich and Novikov (DN), these sound rays can circumnavigate the universe near the singularity to remove particle horizons only for a small class of these models and in special directions. Although these results parallel those of DN, different Hamiltonian methods are used for treating the Einstein equations.
A mechanism study of sound wave-trapping barriers.
Yang, Cheng; Pan, Jie; Cheng, Li
2013-09-01
The performance of a sound barrier is usually degraded if a large reflecting surface is placed on the source side. A wave-trapping barrier (WTB), with its inner surface covered by wedge-shaped structures, has been proposed to confine waves within the area between the barrier and the reflecting surface, and thus improve the performance. In this paper, the deterioration in performance of a conventional sound barrier due to the reflecting surface is first explained in terms of the resonance effect of the trapped modes. At each resonance frequency, a strong and mode-controlled sound field is generated by the noise source both within and in the vicinity outside the region bounded by the sound barrier and the reflecting surface. It is found that the peak sound pressures in the barrier's shadow zone, which correspond to the minimum values in the barrier's insertion loss, are largely determined by the resonance frequencies and by the shapes and losses of the trapped modes. These peak pressures usually result in high sound intensity component impinging normal to the barrier surface near the top. The WTB can alter the sound wave diffraction at the top of the barrier if the wavelengths of the sound wave are comparable or smaller than the dimensions of the wedge. In this case, the modified barrier profile is capable of re-organizing the pressure distribution within the bounded domain and altering the acoustic properties near the top of the sound barrier.
NASA Technical Reports Server (NTRS)
Embleton, Tony F. W.; Daigle, Gilles A.
1991-01-01
Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency.
Wave field synthesis of moving virtual sound sources with complex radiation properties.
Ahrens, Jens; Spors, Sascha
2011-11-01
An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.
Sound pressure distribution within natural and artificial human ear canals: forward stimulation.
Ravicz, Michael E; Tao Cheng, Jeffrey; Rosowski, John J
2014-12-01
This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5-2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11-16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC.
Energy Flux in the Cochlea: Evidence Against Power Amplification of the Traveling Wave.
van der Heijden, Marcel; Versteegh, Corstiaen P C
2015-10-01
Traveling waves in the inner ear exhibit an amplitude peak that shifts with frequency. The peaking is commonly believed to rely on motile processes that amplify the wave by inserting energy. We recorded the vibrations at adjacent positions on the basilar membrane in sensitive gerbil cochleae and tested the putative power amplification in two ways. First, we determined the energy flux of the traveling wave at its peak and compared it to the acoustic power entering the ear, thereby obtaining the net cochlear power gain. For soft sounds, the energy flux at the peak was 1 ± 0.6 dB less than the middle ear input power. For more intense sounds, increasingly smaller fractions of the acoustic power actually reached the peak region. Thus, we found no net power amplification of soft sounds and a strong net attenuation of intense sounds. Second, we analyzed local wave propagation on the basilar membrane. We found that the waves slowed down abruptly when approaching their peak, causing an energy densification that quantitatively matched the amplitude peaking, similar to the growth of sea waves approaching the beach. Thus, we found no local power amplification of soft sounds and strong local attenuation of intense sounds. The most parsimonious interpretation of these findings is that cochlear sensitivity is not realized by amplifying acoustic energy, but by spatially focusing it, and that dynamic compression is realized by adjusting the amount of dissipation to sound intensity.
NASA Astrophysics Data System (ADS)
Deldar, H.; Bidokhti, A. A.; Chegini, V.
2018-01-01
Internal waves usually cause temporal and spatial changes of density and consequently affect the acoustic wave propagation in the ocean. The purpose of this study is a laboratory investigation of the effects of internal waves generated by oscillation of a cylinder in a large stratified glass tank with a sloping bed on the sound waves propagation. Results showed that sound waves are affected by internal waves that depend on the slope angle to the direction of internal wave propagation angle ratio. When the ratio is subcritical or supercritical, the acoustic signal is much reduced as compared to the case with no sloped bottom. This can be explained in terms of the internal waves energy reaching the sloped bed and their reflections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusakov, E. Z., E-mail: Evgeniy.Gusakov@mail.ioffe.ru; Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Irzak, M. A., E-mail: irzak@mail.ioffe.ru
The most probable scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an electron cyclotron extraordinary wave has been analyzed. Within this scenario two upperhybrid plasmons at frequencies close to half the pump wave frequency radially trapped in the vicinity of the local maximum of the plasma density profile are excited due to the excitation of primary instability. The primary instability saturation results from the decays of the daughter upper-hybrid waves into secondary upperhybrid waves that are also radially trapped in the vicinity of the local maximum of the plasma density profile and ion Bernstein waves.
Sound transmission in porcine thorax through airway insonification.
Peng, Ying; Dai, Zoujun; Mansy, Hansen A; Henry, Brian M; Sandler, Richard H; Balk, Robert A; Royston, Thomas J
2016-04-01
Many pulmonary injuries and pathologies may lead to structural and functional changes in the lungs resulting in measurable sound transmission changes on the chest surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung structural property changes and, hence, may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, lung, and chest wall under normal and pneumothorax conditions. Experiments were carried out to validate the model. Here, sound waves with frequency content from 50 to 700 Hz were introduced into airways of five porcine subjects via an endotracheal tube, and transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of decreased sound transmission with pneumothorax were consistent with experimental measurements. The in silico model can also be used to visualize wave propagation inside and on the chest wall surface for other pulmonary pathologies, which may help in developing and interpreting diagnostic procedures that utilize sound and vibration.
Sound transmission in porcine thorax through airway insonification
Dai, Zoujun; Mansy, Hansen A.; Henry, Brian M.; Sandler, Richard H.; Balk, Robert A.; Royston, Thomas J.
2015-01-01
Many pulmonary injuries and pathologies may lead to structural and functional changes in the lungs resulting in measurable sound transmission changes on the chest surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung structural property changes and, hence, may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, lung, and chest wall under normal and pneumothorax conditions. Experiments were carried out to validate the model. Here, sound waves with frequency content from 50 to 700 Hz were introduced into airways of five porcine subjects via an endotracheal tube, and transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of decreased sound transmission with pneumothorax were consistent with experimental measurements. The in silico model can also be used to visualize wave propagation inside and on the chest wall surface for other pulmonary pathologies, which may help in developing and interpreting diagnostic procedures that utilize sound and vibration. PMID:26280512
Realization of High-Fidelity, on Chip Readout of Solid-state Quantum Bits
2017-08-29
estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...and characterized Josephson Traveling Wave Parametric Amplifiers (JTWPA or TWPA), superconducting amplifiers providing significantly greater...Publications/Patents: 2015: • C. Macklin, et al., “A near-quantum-limited Josephson traveling -wave parametric amplifier”, Science, (2015). • N
Terahertz parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo; Ogawa, Yuichi; Minamide, Hiroaki; Ito, Hiromasa
2005-07-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO3 or MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave source with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni-directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a THz-wave parametric oscillator, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which are illegal, while one is an over-the-counter drug.
Choi, Yun-Kyong; Urnukhsaikhan, Enerelt; Yoon, Hee-Hoon; Seo, Young-Kwon; Cho, Hyunjin; Jeong, Jong-Seob; Kim, Soo-Chan; Park, Jung-Keug
2017-01-01
Biophysical wave stimulus has been used as an effective tool to promote cellular maturation and differentiation in the construction of engineered tissue. Pulsed electromagnetic fields (PEMFs) and sound waves have been selected as effective stimuli that can promote neural differentiation. The aim of this study was to investigate the synergistic effect of PEMFs and sound waves on the neural differentiation potential in vitro and in vivo using human bone marrow mesenchymal stem cells (hBM-MSCs). In vitro, neural-related genes in hBM-MSCs were accelerated by the combined exposure to both waves more than by individual exposure to PEMFs or sound waves. The combined wave also up-regulated the expression of neural and synaptic-related proteins in a three-dimensional (3-D) culture system through the phosphorylation of extracellular signal-related kinase. In a mouse model of photochemically induced ischemia, exposure to the combined wave reduced the infarction volume and improved post-injury behavioral activity. These results indicate that a combined stimulus of biophysical waves, PEMFs and sound can enhance and possibly affect the differentiation of MSCs into neural cells. Our study is meaningful for highlighting the potential of combined wave for neurogenic effects and providing new therapeutic approaches for neural cell therapy. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:201-211, 2017. © 2016 American Institute of Chemical Engineers.
Research on ponderomotive driven Vlasov–Poisson system in electron acoustic wave parametric region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, C. Z.; Huang, T. W.; Liu, Z. J.
2014-03-15
Theoretical analysis and corresponding 1D Particle-in-Cell (PIC) simulations of ponderomotive driven Vlasov–Poisson system in electron acoustic wave (EAW) parametric region are demonstrated. Theoretical analysis identifies that under the resonant condition, a monochromatic EAW can be excited when the wave number of the drive ponderomotive force satisfies 0.26≲k{sub d}λ{sub D}≲0.53. If k{sub d}λ{sub D}≲0.26, nonlinear superposition of harmonic waves can be resonantly excited, called kinetic electrostatic electron nonlinear waves. Numerical simulations have demonstrated these wave excitation and evolution dynamics, in consistence with the theoretical predictions. The physical nature of these two waves is supposed to be interaction of harmonic waves, andmore » their similar phase space properties are also discussed.« less
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
NASA Astrophysics Data System (ADS)
Isaienko, Oleksandr; Robel, István
2016-03-01
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.
Hearing the Music in the Spectrum of Hydrogen
ERIC Educational Resources Information Center
LoPresto, Michael C.
2016-01-01
Throughout a general education course on sound and light aimed at music and art students, analogies between subjective perceptions of objective properties of sound and light waves are a recurring theme. Demonstrating that the pitch and loudness of musical sounds are related to the frequency and intensity of a sound wave is simple and students are…
Design of a terahertz parametric oscillator based on a resonant cavity in a terahertz waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, K., E-mail: k-saito@material.tohoku.ac.jp; Oyama, Y.; Tanabe, T.
We demonstrate ns-pulsed pumping of terahertz (THz) parametric oscillations in a quasi-triply resonant cavity in a THz waveguide. The THz waves, down converted through parametric interactions between the pump and signal waves at telecom frequencies, are confined to a GaP single mode ridge waveguide. By combining the THz waveguide with a quasi-triply resonant cavity, the nonlinear interactions can be enhanced. A low threshold pump intensity for parametric oscillations can be achieved in the cavity waveguide. The THz output power can be maximized by optimizing the quality factors of the cavity so that an optical to THz photon conversion efficiency, η{submore » p}, of 0.35, which is near the quantum-limit level, can be attained. The proposed THz optical parametric oscillator can be utilized as an efficient and monochromatic THz source.« less
Fundamental plasma emission involving ion sound waves
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1987-01-01
The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.
Mechanical Parametric Oscillations and Waves
ERIC Educational Resources Information Center
Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.
2013-01-01
Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…
NASA Astrophysics Data System (ADS)
Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef
2018-01-01
Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leyser, T.B.
1994-06-01
A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. Themore » electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission.« less
NASA Technical Reports Server (NTRS)
Cairns, I. H.
1984-01-01
Observations of low frequency ion acoustic-like waves associated with Langmuir waves present during interplanetary Type 3 bursts are used to study plasma emission mechanisms and wave processes involving ion acoustic waves. It is shown that the observed wave frequency characteristics are consistent with the processes L yields T + S (where L = Langmuir waves, T = electromagnetic waves, S = ion acoustic waves) and L yields L' + S proceeding. The usual incoherent (random phase) version of the process L yields T + S cannot explain the observed wave production time scale. The clumpy nature of the observed Langmuir waves is vital to the theory of IP Type 3 bursts. The incoherent process L yields T + S may encounter difficulties explaining the observed Type 3 brightness temperatures when Langmuir wave clumps are incorporated into the theory. The parametric process L yields T + S may be the important emission process for the fundamental radiation of interplanetary Type 3 bursts.
Parametric Instability, Inverse Cascade, and the 1/f Range of Solar-Wind Turbulence.
Chandran, Benjamin D G
2018-02-01
In this paper, weak turbulence theory is used to investigate the nonlinear evolution of the parametric instability in 3D low- β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e + ≫ e - , where e + and e - are the frequency ( f ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e + initially has a peak frequency f 0 (at which fe + is maximized) and an "infrared" scaling f p at smaller f with -1 < p < 1, then e + acquires an f -1 scaling throughout a range of frequencies that spreads out in both directions from f 0 . At the same time, e - acquires an f -2 scaling within this same frequency range. If the plasma parameters and infrared e + spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an e + spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed f -1 scaling at f ≳ 3 × 10 -4 Hz. The results of this paper suggest that the f -1 spectrum seen by Helios in the fast solar wind at f ≳ 3 × 10 -4 Hz is produced in situ by parametric decay and that the f -1 range of e + extends over an increasingly narrow range of frequencies as r decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe .
The Shock and Vibration Digest, Volume 14, Number 2, February 1982
1982-02-01
figurations. 75 4J DUCTS 82-424 (Also see No. 346) Coupling Lou Factors for Statistical Energy Analysis of Sound Transnission at Rectangular...waves, Sound waves, Wave props- tures by means of statistical energy analysis (SEA) coupling gation loss factors for the structure-borne sound...multilayered panels are discussed. Statistical energy analysis (SEA) has proved to be a promising Experimental results of stiffened panels, damping tape
Sound absorption characteristics of tree bark and forest floor
G. Reethof; O. H. McDaniel; G. M. Heisler
1977-01-01
Results of basic research on absorption of sound by tree bark and forest floors are presented. Amount of sound absorption by tree bark was determined by laboratory experiments with bark samples in a standing-wave tube. A modified portable standing-wave tube was used to measure absorption of sound by forest floors with different moisture contents, with and without leaf...
A Semi-Analytical Method for the PDFs of A Ship Rolling in Random Oblique Waves
NASA Astrophysics Data System (ADS)
Liu, Li-qin; Liu, Ya-liu; Xu, Wan-hai; Li, Yan; Tang, You-gang
2018-03-01
The PDFs (probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA (2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship's manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.
Sounds of earthquakes in West Bohemia: analysis of sonic and infrasonic records
NASA Astrophysics Data System (ADS)
Fischer, Tomáš; Vilhelm, Jan; Kuna, Václav; Chum, Jaroslav; Horálek, Josef
2013-04-01
Earthquake sounds are usually observed during the occurrence of small earthquakes. The observations of audible manifestations of earthquakes date back to the ancient age and have been recently analyzed in more detail based both on macroseismic observations and audio recordings. In most cases the earthquake sounds resemble low-frequency underground thundering that is generated by seismic-acoustic conversion of P and SV waves at the earth surface. This is also supported by the fact that earthquake sounds usually precede shaking caused by S-waves. The less frequent are explosion-type sounds whose origin remains unclear. We analyze the observations of sounds associating the occurrence of earthquake swarms in the area of West Bohemia/Vogtland, Central Europe. Macroseismic data include 250 reports of sounds with 90% thundering and 10% of explosions. Additional data consist of sonic and infrasonic records acquired by microphones and microbarographs at seismic stations in the area. All the sonic and infrasonic records correspond to sounds of the thunder type; no explosions were recorded. Comparison of these records enabled to determine the seismic wave - air pressure transfer function. The measurements using a 3D microphone array confirm that in the epicentral area the sonic wave is propagating subvertically. We also compared the coda of seismograms and sonic records. It turned out that additional to seismo-acoustic coupling, a later acoustic wave of thunder type arrives at the observation site whose arrival time corresponds to sonic propagation from the epicenter. We analyse the possible generation mechanisms of this type of sonic wave.
Sound pressure distribution within natural and artificial human ear canals: Forward stimulation
Ravicz, Michael E.; Tao Cheng, Jeffrey; Rosowski, John J.
2014-01-01
This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5–2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11–16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC. PMID:25480061
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth; Rickel, Dwight
1989-06-01
Different wave fronts affected by significant nonlinearities have been observed in the ionosphere by a pulsed HF sounding experiment at a distance of 38 km from the source point of a 4800-kg ammonium nitrate and fuel oil (ANFO) explosion on the ground. These wave fronts are revealed by partial reflections of the radio sounding waves. A small-scale irregular structure has been generated by a first wave front at the level of a sporadic E layer which characterized the ionosphere at the time of the experiment. The time scale of these fluctuations is about 1 to 2 s; its lifetime is about 2 min. Similar irregularities were also observed at the level of a second wave front in the F region. This structure appears also as diffusion on a continuous wave sounding at horizontal distances of the order of 200 km from the source. In contrast, a third front unaffected by irregularities may originate from the lowest layers of the ionosphere or from a supersonic wave front propagating at the base of the thermosphere. The origin of these structures is discussed.
Slanted snaking of localized Faraday waves
NASA Astrophysics Data System (ADS)
Pradenas, Bastián; Araya, Isidora; Clerc, Marcel G.; Falcón, Claudio; Gandhi, Punit; Knobloch, Edgar
2017-06-01
We report on an experimental, theoretical, and numerical study of slanted snaking of spatially localized parametrically excited waves on the surface of a water-surfactant mixture in a Hele-Shaw cell. We demonstrate experimentally the presence of a hysteretic transition to spatially extended parametrically excited surface waves when the acceleration amplitude is varied, as well as the presence of spatially localized waves exhibiting slanted snaking. The latter extend outside the hysteresis loop. We attribute this behavior to the presence of a conserved quantity, the liquid volume trapped within the meniscus, and introduce a universal model based on symmetry arguments, which couples the wave amplitude with such a conserved quantity. The model captures both the observed slanted snaking and the presence of localized waves outside the hysteresis loop, as demonstrated by numerical integration of the model equations.
Zhang, Dongsheng; Wang, Shiyu; Xiu, Jie
2017-11-01
Elastic wave quality determines the operating performance of traveling wave ultrasonic motor (TWUM). The time-variant circumferential force from the shrink of piezoelectric ceramic is one of the factors that distort the elastic wave. The distorted waveshape deviates from the ideal standard sinusoidal fashion and affects the contact mechanics and driving performance. An analytical dynamic model of ring ultrasonic motor is developed. Based on this model, the piezoelectric parametric effects on the wave distortion and contact mechanics are examined. Multi-scale method is employed to obtain unstable regions and distorted wave response. The unstable region is verified by Floquét theory. Since the waveshape affects the contact mechanism, a contact model involving the distorted waveshape and normal stiffness of the contact layer is established. The contact model is solved by numerical calculation. The results verify that the deformation of the contact layer deviates from sinusoidal waveshape and the pressure distribution is changed, which influences the output characteristics directly. The surface speed within the contact region is averaged such that the rotor speed decreases for lower torque and increases for larger torque. The effects from different parametric strengths, excitation frequencies and pre-pressures on pressure distribution and torque-speed relation are compared. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Smetanin, Sergei; Jelínek, Michal; Kubeček, Václav
2017-05-01
Lasers based on stimulated-Raman-scattering process can be used for the frequency-conversion to the wavelengths that are not readily available from solid-state lasers. Parametric Raman lasers allow generation of not only Stokes, but also anti-Stokes components. However, practically all the known crystalline parametric Raman anti-Stokes lasers have very low conversion efficiencies of about 1 % at theoretically predicted values of up to 40 % because of relatively narrow angular tolerance of phase matching in comparison with angular divergence of the interacting beams. In our investigation, to widen the angular tolerance of four-wave mixing and to obtain high conversion efficiency into the antiStokes wave we propose and study a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phasematched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping. We use only one 532-nm laser source to pump the Raman-active calcite crystal oriented at the phase matched angle for orthogonally polarized Raman components four-wave mixing. Additionally, we split the 532-nm laser radiation into the orthogonally polarized components entering to the Raman-active calcite crystal at the certain incidence angles to fulfill the tangential phase matching compensating walk-off of extraordinary waves for collinear beam interaction in the crystal with the widest angular tolerance of four-wave mixing. For the first time the highest 503-nm anti-Stokes conversion efficiency of 30 % close to the theoretical limit of about 40 % at overall optical efficiency of the parametric Raman anti-Stokes generation of up to 3.5 % in calcite is obtained due to realization of tangential phase matching insensitive to the angular mismatch.
Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Turner, T. N.
1979-01-01
Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.
Nonlinear modulation of an extraordinary wave under the conditions of parametric decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.
2012-06-15
A self-consistent set of Hamilton equations describing nonlinear saturation of the amplitude of oscillations excited under the conditions of parametric decay of an elliptically polarized extraordinary wave in cold plasma is solved analytically and numerically. It is shown that the exponential increase in the amplitude of the secondary wave excited at the half-frequency of the primary wave changes into a reverse process in which energy is returned to the primary wave and nonlinear oscillations propagating across the external magnetic field are generated. The system of 'slow' equations for the amplitudes, obtained by averaging the initial equations over the high-frequency period,more » is used to describe steady-state nonlinear oscillations in plasma.« less
THz-wave parametric source and its imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2004-08-01
Widely tunable coherent terahertz (THz) wave generation has been demonstrated based on the parametric oscillation using MgO doped LiNbO3 crystal pumped by a Q-switched Nd:YAG laser. This method exhibits multiple advantages like wide tunability, coherency and compactness of its system. We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.
Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems
NASA Astrophysics Data System (ADS)
Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain
2018-01-01
Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.
Quasi-Phasematched Nonlinear Optics: Materials and Devices
2007-04-16
the soliton energy in pump, signal and idler waves as a function of the final wave- vector mismatch in the chirped QPM gratings. We see good agreement...devices including OP-GaAs devices for broadband optical parametric generation (OPG) at mid-infrared wavelengths, bulk PPLN devices for soliton ...Carrasco, and L. Torner,"Engineering of multi-color spatial solitons with chirped-period quasi-phase-matching gratings in optical parametric amplification
Raman-Suppressing Coupling for Optical Parametric Oscillator
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico
2007-01-01
A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.
Polarization switch of four-wave mixing in a lawtunable fiber optical parametric oscillator.
Yang, Kangwen; Ye, Pengbo; Zheng, Shikai; Jiang, Jieshi; Huang, Kun; Hao, Qiang; Zeng, Heping
2018-02-05
We reported the simultaneous generation and selective manipulation of scalar and cross-phase modulation instabilities in a fiber optical parametric oscillator. Numerical and experimental results show independent control of parametric gain by changing the input pump polarization state. The resonant cavity enables power enhancement of 45 dB for the spontaneous sidebands, generating laser pulses tunable from 783 to 791 nm and 896 to 1005 nm due to the combination of four-wave mixing, cascaded Raman scattering and other nonlinear effects. This gain controlled, wavelength tunable, fiber-based laser source may find applications in the fields of nonlinear biomedical imaging and stimulated Raman spectroscopy.
Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin
2011-09-01
A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America
Tympanal travelling waves in migratory locusts.
Windmill, James F C; Göpfert, Martin C; Robert, Daniel
2005-01-01
Hearing animals, including many vertebrates and insects, have the capacity to analyse the frequency composition of sound. In mammals, frequency analysis relies on the mechanical response of the basilar membrane in the cochlear duct. These vibrations take the form of a slow vibrational wave propagating along the basilar membrane from base to apex. Known as von Békésy's travelling wave, this wave displays amplitude maxima at frequency-specific locations along the basilar membrane, providing a spatial map of the frequency of sound--a tonotopy. In their structure, insect auditory systems may not be as sophisticated at those of mammals, yet some are known to perform sound frequency analysis. In the desert locust, this analysis arises from the mechanical properties of the tympanal membrane. In effect, the spatial decomposition of incident sound into discrete frequency components involves a tympanal travelling wave that funnels mechanical energy to specific tympanal locations, where distinct groups of mechanoreceptor neurones project. Notably, observed tympanal deflections differ from those predicted by drum theory. Although phenomenologically equivalent, von Békésy's and the locust's waves differ in their physical implementation. von Békésy's wave is born from interactions between the anisotropic basilar membrane and the surrounding incompressible fluids, whereas the locust's wave rides on an anisotropic membrane suspended in air. The locust's ear thus combines in one structure the functions of sound reception and frequency decomposition.
NASA Astrophysics Data System (ADS)
Kornienko, Vladimir V.; Kitaeva, Galiya Kh.; Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G. L.
2018-05-01
We study a calibration scheme for terahertz wave nonlinear-optical detectors based on spontaneous parametric down-conversion. Contrary to the usual low wavelength pump in the green, we report here on the observation of spontaneous parametric down-conversion originating from an in-growth poled lithium niobate crystal pumped with a continuous wave 50 mW, 795 nm diode laser system, phase-matched to a terahertz frequency idler wave. Such a system is more compact and allows for longer poling periods as well as lower losses in the crystal. Filtering the pump radiation by a rubidium-87 vapor cell allowed the frequency-angular spectra to be obtained down to ˜0.5 THz or ˜1 nm shift from the pump radiation line. The presence of an amplified spontaneous emission "pedestal" in the diode laser radiation spectrum significantly hampers the observation of spontaneous parametric down-conversion spectra, in contrast to conventional narrowband gas lasers. Benefits of switching to longer pump wavelengths are pointed out, such as collinear optical-terahertz phase-matching in bulk crystals.
The Parametric Instability of Alfvén Waves: Effects of Temperature Anisotropy
NASA Astrophysics Data System (ADS)
Tenerani, Anna; Velli, Marco; Hellinger, Petr
2017-12-01
We study the stability of large-amplitude, circularly polarized Alfvén waves in an anisotropic plasma described by the double-adiabatic/CGL closure, and in particular the effect of a background thermal pressure anisotropy on the well-known properties of Alfvén wave parametric decay in magnetohydrodynamics (MHD). Anisotropy allows instability over a much wider range of values of parallel plasma beta (β ∥) when ξ = p 0⊥/p 0∥ > 1. When the pressure anisotropy exceeds a critical value, ξ ≥ ξ* with ξ* ≃ 2.7, there is a new regime in which the parametric instability is no longer quenched at high β ∥, and in the limit β ∥ ≫ 1, the growth rate becomes independent of β ∥. In the opposite case of ξ < ξ*, the instability is strongly suppressed with increasing parallel plasma beta, similarly to the MHD case. We analyze marginal stability conditions for parametric decay in the (ξ, β ∥) parameter space and discuss possible implications for Alfvénic turbulence in the solar wind.
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Isaienko, Oleksandr; Robel, Istvan
2016-03-15
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to themore » oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ (2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. Furthermore, the pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations P NL of the impulsively excited phonons and those of parametrically amplified waves.« less
NASA Astrophysics Data System (ADS)
Zuo, Zhifeng; Maekawa, Hiroshi
2014-02-01
The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier-Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex-wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock-vortex interaction; (ii) a dipolar sound source due to the vortex-wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock-vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock-vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2-vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex-wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field.
Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma
2010-06-18
We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.
Effect of acoustic coupling on power-law flame acceleration in spherical confinement
NASA Astrophysics Data System (ADS)
Akkerman, V'yacheslav; Law, Chung K.
2013-01-01
A model describing acoustically-generated parametric instability in a spherical chamber is developed for quasi-one-dimensional, low-Mach number flames. We demonstrate how sound waves generated by a centrally-ignited, outwardly-propagating accelerating flamefront can be incorporated into an existing theory of self-similar flame acceleration in free space [V. Akkerman, C. K. Law, and V. Bychkov, "Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering," Phys. Rev. E 83, 026305 (2011)], 10.1103/PhysRevE.83.026305. Being reflected from the chamber wall, flame-generated acoustics interact with the flamefront and the attendant hydrodynamic flamefront cellular instability. This in turn affects the subsequent flame morphology and propagation speed. It is shown that the acoustics modify the power-law flame acceleration, concomitantly facilitating or inhibiting the transition to detonation in confinement, which allows reconciliation of a discrepancy in experimental measurements of different groups.
Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures
NASA Astrophysics Data System (ADS)
Lu, George J.; Farhadi, Arash; Szablowski, Jerzy O.; Lee-Gosselin, Audrey; Barnes, Samuel R.; Lakshmanan, Anupama; Bourdeau, Raymond W.; Shapiro, Mikhail G.
2018-05-01
Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.
NASA Astrophysics Data System (ADS)
Sauer, Konrad; Malaspina, David M.; Pulupa, Marc; Salem, Chadi S.
2017-07-01
Langmuir amplitude modulation in association with type III radio bursts is a well-known phenomenon since the beginning of space observations. It is commonly attributed to the superposition of beam-excited Langmuir waves and their backscattered counterparts as a result of parametric decay. The dilemma, however, is the discrepancy between fast beam relaxation and long-lasting Langmuir wave activity. Instead of starting with an unstable electron beam, our focus in this paper is on the nonlinear response of Langmuir oscillations that are driven after beam stabilization by the still persisting current of the (stable) two-electron plasma. The velocity distribution function of the second population forms a plateau (index h) with a point at which ∂fh/∂v ˜0 associated with weak damping over a more or less extended wave number range k. As shown by particle-in-cell simulations, this so-called plateau plasma drives primarily Langmuir oscillations at the plasma frequency (ωe) with k = 0 over long times without remarkable change of the distribution function. These Langmuir oscillations act as a pump wave for parametric decay by which an electron-acoustic wave slightly below ωe and a counterstreaming ion-acoustic wave are generated. Both high-frequency waves have nearly the same amplitude, which is given by the product of plateau density and velocity. Beating of these two wave types leads to pronounced Langmuir amplitude modulation, in reasonable agreement with solar wind and terrestrial foreshock observations made by the Wind spacecraft.
Musical Sound, Instruments, and Equipment
NASA Astrophysics Data System (ADS)
Photinos, Panos
2017-12-01
'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.
NASA Astrophysics Data System (ADS)
Loot, A.; Hizhnyakov, V.
2018-05-01
A numerical study of the enhancement of the spontaneous parametric down-conversion in plasmonic and dielectric structures is considered. The modeling is done using a nonlinear transfer-matrix method which is extended to include vacuum fluctuations and realistic waves (e.g. Gaussian beam). The results indicate that in the case of short-range surface plasmon polaritons, the main limiting factor of the enhancement is the short length of the coherent buildup. In the case of long-range surface plasmon polaritons or dielectric guided waves, the very narrow resonances are the main limiting factor instead.
Non-linear wave interaction in a plasma column
NASA Technical Reports Server (NTRS)
Larsen, J.-M.; Crawford, F. W.
1979-01-01
Non-linear three-wave interaction is analysed for propagation along a cylindrical plasma column surrounded by an infinite dielectric, in the absence of a static magnetic field. An averaged-Lagrangian method is used, and the results are specialized to parametric interaction and mode conversion, assuming an undepleted pump wave. The theory for these two types of interactions is extended to include imperfect synchronism, and the effects of loss. Computations are presented indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma column parameters.
A fiber-laser-pumped four-wavelength continuous-wave mid-infrared optical parametric oscillator
NASA Astrophysics Data System (ADS)
Wang, Peng; Shang, Yaping; Li, Xiao; Xu, Xiaojun
2017-10-01
In this paper, a four-wavelength continuous-wave mid-infrared optical parametric oscillator was demonstrated for the first time. The pump source was a home-built linearly polarized Yb-doped fiber laser and the maximum output power was 72.5 W. The pump source had three central wavelengths locating at 1060 nm, 1065 nm and 1080 nm. Four idler emissions with different wavelengths were generated which were 3132 nm, 3171 nm, 3310 nm and 3349 nm under the maximum pump power. The maximum idler output reached 8.7 W, indicating a 15% pump-to-idler slope efficiency. The signal wave generated in the experiment had two wavelengths which were 1595 nm and 1603 nm under the maximum pump power. It was analyzed that four nonlinear progresses occurred in the experiment, two of them being optical parametric oscillation and the rest two being intracavity difference frequency generation.
NASA Astrophysics Data System (ADS)
Gusakov, E. Z.; Popov, A. Yu.; Saveliev, A. N.
2018-06-01
We analyze the saturation of the low-threshold absolute parametric decay instability of an extraordinary pump wave leading to the excitation of two upper hybrid (UH) waves, only one of which is trapped in the vicinity of a local maximum of the plasma density profile. The pump depletion and the secondary decay of the localized daughter UH wave are treated as the most likely moderators of a primary two-plasmon decay instability. The reduced equations describing the nonlinear saturation phenomena are derived. The general analytical consideration is accompanied by the numerical analysis performed under the experimental conditions typical of the off-axis X2-mode ECRH experiments at TEXTOR. The possibility of substantial (up to 20%) anomalous absorption of the pump wave is predicted.
NASA Astrophysics Data System (ADS)
Gosselin, Jeremy M.; Dosso, Stan E.; Cassidy, John F.; Quijano, Jorge E.; Molnar, Sheri; Dettmer, Jan
2017-10-01
This paper develops and applies a Bernstein-polynomial parametrization to efficiently represent general, gradient-based profiles in nonlinear geophysical inversion, with application to ambient-noise Rayleigh-wave dispersion data. Bernstein polynomials provide a stable parametrization in that small perturbations to the model parameters (basis-function coefficients) result in only small perturbations to the geophysical parameter profile. A fully nonlinear Bayesian inversion methodology is applied to estimate shear wave velocity (VS) profiles and uncertainties from surface wave dispersion data extracted from ambient seismic noise. The Bayesian information criterion is used to determine the appropriate polynomial order consistent with the resolving power of the data. Data error correlations are accounted for in the inversion using a parametric autoregressive model. The inversion solution is defined in terms of marginal posterior probability profiles for VS as a function of depth, estimated using Metropolis-Hastings sampling with parallel tempering. This methodology is applied to synthetic dispersion data as well as data processed from passive array recordings collected on the Fraser River Delta in British Columbia, Canada. Results from this work are in good agreement with previous studies, as well as with co-located invasive measurements. The approach considered here is better suited than `layered' modelling approaches in applications where smooth gradients in geophysical parameters are expected, such as soil/sediment profiles. Further, the Bernstein polynomial representation is more general than smooth models based on a fixed choice of gradient type (e.g. power-law gradient) because the form of the gradient is determined objectively by the data, rather than by a subjective parametrization choice.
NASA Astrophysics Data System (ADS)
Kaplun, A. B.; Meshalkin, A. B.
2013-08-01
Using methods and approaches developed by the authors, a new low-parametric state equation for describing the thermal properties of normal substances is obtained that allows us to describe the thermal properties of gases, liquids, and fluids over a range of densities from the ideal gas state to the triple point, except for a critical region, with a high degree of accuracy close to that of an experiment. The caloric properties and speed of sound are calculated for argon, nitrogen, and carbon dioxide without using any caloric data except for the enthalpy of an ideal gas. It is established that the calculated values of enthalpy, heat capacity, the speed of speed of sound, etc., are in good agreement with the experimental (reliably tabulated) data.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Araneda, J. A.; Poedts, S.
2014-12-01
We consider parametric instabilities of finite-amplitude large-scale Alfven waves in a low-beta collisionless multi-species plasma, consisting of fluid electrons, kinetic protons and a drifting population of minor ions. Complementary to many theoretical studies, relying on fluid or multi-fluid approach, in this work we present the solutions of the parametric instability dispersion relation, including kinetic effects in the parallel direction, along the ambient magnetic field. This provides us with the opportunity to predict the importance of some wave-particle interactions like Landau damping of the daughter ion-acoustic waves for the given pump wave and plasma conditions. We apply the dispersion relation to plasma parameters, typical for low-beta collisionless solar wind close to the Sun. We compare the analytical solutions to the linear stage of hybrid numerical simulations and discuss the application of the model to the problems of preferential heating and differential acceleration of minor ions in the solar corona and the fast solar wind. The results of this study provide tools for prediction and interpretation of the magnetic field and particles data as expected from the future Solar Orbiter and Solar Probe Plus missions.
Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission
NASA Astrophysics Data System (ADS)
Yang, Jieun; Lee, Joong Seok; Lee, Hyeong Rae; Kang, Yeon June; Kim, Yoon Young
2018-02-01
Sound transmission reduction is typically governed by the mass law, requiring thicker panels to handle lower frequencies. When open holes must be inserted in panels for heat transfer, ventilation, or other purposes, the efficient reduction of sound transmission through holey panels becomes difficult, especially in the low-frequency ranges. Here, we propose slow-wave metamaterial open panels that can dramatically lower the working frequencies of sound transmission loss. Global resonances originating from slow waves realized by multiply inserted, elaborately designed subwavelength rigid partitions between two thin holey plates contribute to sound transmission reductions at lower frequencies. Owing to the dispersive characteristics of the present metamaterial panels, local resonances that trap sound in the partitions also occur at higher frequencies, exhibiting negative effective bulk moduli and zero effective velocities. As a result, low-frequency broadened sound transmission reduction is realized efficiently in the present metamaterial panels. The theoretical model of the proposed metamaterial open panels is derived using an effective medium approach and verified by numerical and experimental investigations.
Enhanced viscous flow drag reduction using acoustic excitation
NASA Technical Reports Server (NTRS)
Nagel, R. T.
1988-01-01
Large eddy break up devices (LEBUs) constitute a promising method of obtaining drag reduction in a turbulent boundary layer. Enhancement of the LEBU effectiveness by exciting its trailing edge with acoustic waves phase locked to the large scale structure influencing the momentum transfer to the wall is sought. An initial estimate of the required sound pressure level for an effective pulse was obtained by considering the magnitude of the pressure perturbations at the near wake of a thin plate in inviscid flow. Detailed skin friction measurments were obtained in the flow region downstream of a LEBU excited with acoustic waves. The data are compared with skin friction measurements of a simply manipulated flow, without acoustic excitation and with a plain flow configuration. The properties and the scales of motion in the flow regime downstream of the acoustically excited LEBU are studied. A parametric study based upon the characteristics of the acoustic input was pursued in addition to the careful mapping of the drag reduction phenomenon within the acoustically manipulated boundary layer. This study of boundary layer manipulation has lead to improved skin friction drag reduction and further understanding of the turbulent boundary layer.
The attenuation of sound by turbulence in internal flows.
Weng, Chenyang; Boij, Susann; Hanifi, Ardeshir
2013-06-01
The attenuation of sound waves due to interaction with low Mach number turbulent boundary layers in internal flows (channel or pipe flow) is examined. Dynamic equations for the turbulent Reynolds stress on the sound wave are derived, and the analytical solution to the equation provides a frequency dependent eddy viscosity model. This model is used to predict the attenuation of sound propagating in fully developed turbulent pipe flow. The predictions are shown to compare well with the experimental data. The proposed dynamic equation shows that the turbulence behaves like a viscoelastic fluid in the interaction process, and that the ratio of turbulent relaxation time near the wall and the sound wave period is the parameter that controls the characteristics of the attenuation induced by the turbulent flow.
Experimental investigation of sound generation by a protuberance in a laminar boundary layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, M.; Asai, M.; Inasawa, A.
2014-08-15
Sound radiation from a two-dimensional protuberance glued on the wall in a laminar boundary layer was investigated experimentally at low Mach numbers. When the protuberance was as high as the boundary-layer thickness, a feedback-loop mechanism set in between protuberance-generated sound and Tollmien-Schlichting (T-S) waves generated by the leading-edge receptivity to the upstream-propagating sound. Although occurrence of a separation bubble immediately upstream of the protuberance played important roles in the evolution of instability waves into vortices interacting with the protuberance, the frequency of tonal vortex sound was determined by the selective amplification of T-S waves in the linear instability stage upstreammore » of the separation bubble and was not affected by the instability of the separation bubble.« less
NASA Astrophysics Data System (ADS)
Itaya, K.; Ishisaka, K.; Ashihara, Y.; Abe, T.; Kumamoto, A.; Kurihara, J.
2015-12-01
S-520-29 sounding rocket experiment was carried out at Uchinoura Space Center (USC) at 19:10 JST on 17 August, 2014. The purpose of this sounding rocket experiments is observation of sporadic E layer that appears in the lower ionosphere at near 100km. Three methods were used in order to observe the sporadic E layer. The first method is an optical method that observe the light of metal ion emitted by the resonance scattering in sporadic E layer using the imager. The second method is observation of characteristic of radio wave propagation that the LF/MF band radio waves transmitted from the ground. The third method is measuring the electron density in the vicinity of sounding rocket using the fast Langmuir probe and the impedance probe. We analyze the propagation characteristics of radio wave in sporadic E layer appeared from the results of the second method observation. This rocket was equipped with LF/MF band radio receiver for observe the LF/MF band radio waves in rocket flight. Antenna of LF/MF band radio receiver is composed of three axis loop antenna. LF/MF band radio receiver receives three radio waves of 873kHz (JOGB), 666kHz (JOBK), 60kHz (JJY) from the ground. 873kHz and 60kHz radio waves are transmitting from north side, and 666kHz radio waves are transmitting from the east side to the trajectory of the rocket. In the sounding rocket experiment, LF/MF band radio receiver was working properly. We have completed the observation of radio wave intensity. We analyze the observation results using a Doppler shift calculations by frequency analysis. Radio waves received by the sounding rocket include the influences of Doppler shift by polarization and the direction of rocket spin and the magnetic field of the Earth. So received radio waves that are separate into characteristics waves using frequency analysis. Then we calculate the Doppler shift from the separated data. As a result, 873kHz, 666kHz radio waves are reflected by the ionosphere. 60kHz wave was able to propagate in ionosphere because wavelength of 60kHz was longer than the thickness of the sporadic E layer. In this study, we explain the result of LF/MF band radio receiver observations and the electron density of the ionosphere using frequency analysis by S-520-29 sounding rocket experiment.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... Sound travels in waves, the basic components of which are frequency, wavelength, velocity, and amplitude. Frequency is the number of pressure waves that pass by a reference point per unit of time and is measured in... frequency sounds have longer wavelengths than higher frequency sounds, and attenuate (decrease) more rapidly...
Demonstrating Sound Wave Propagation with Candle Flame and Loudspeaker
ERIC Educational Resources Information Center
Hrepic, Zdeslav; Nettles, Corey; Bonilla, Chelsea
2013-01-01
The motion of a candle flame in front of a loudspeaker has been suggested as a productive demonstration of the longitudinal wave nature of sound. The demonstration has been used also as a research tool to investigate students' understanding about sound. The underpinning of both applications is the expectation of a horizontal, back-and-forth…
The Physical Effects of Detonation in a Closed Cylindrical Chamber
NASA Technical Reports Server (NTRS)
Draper, C S
1935-01-01
Detonation in the internal-combustion engine is studied as a physical process. It is shown that detonation is accompanied by pressure waves within the cylinder charge. Sound theory is applied to the calculation of resonant pressure-wave frequencies. Apparatus is described for direct measurement of pressure-wave frequencies. Frequencies determined from two engines of different cylinder sizes are shown to agree with the values calculated from sound theory. An outline of the theoretically possible modes of vibration in a right circular cylinder with flat ends is included. An appendix by John P. Elting gives a method of calculating pressure in the sound wave following detonation.
NASA Astrophysics Data System (ADS)
Ali Asgarian, M.; Abbasi, M.
2018-04-01
Electron Bernstein waves (EBW) consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes) through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.
MedlinePlus Videos and Cool Tools
Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two- ... sound waves and appear dark or black. An ultrasound can supply vital information about a mother's pregnancy ...
Lateralization of Travelling Wave Response in the Hearing Organ of Bushcrickets
Palghat Udayashankar, Arun; Kössl, Manfred; Nowotny, Manuela
2014-01-01
Travelling waves are the physical basis of frequency discrimination in many vertebrate and invertebrate taxa, including mammals, birds, and some insects. In bushcrickets (Tettigoniidae), the crista acustica is the hearing organ that has been shown to use sound-induced travelling waves. Up to now, data on mechanical characteristics of sound-induced travelling waves were only available along the longitudinal (proximal-distal) direction. In this study, we use laser Doppler vibrometry to investigate in-vivo radial (anterior-posterior) features of travelling waves in the tropical bushcricket Mecopoda elongata. Our results demonstrate that the maximum of sound-induced travelling wave amplitude response is always shifted towards the anterior part of the crista acustica. This lateralization of the travelling wave response induces a tilt in the motion of the crista acustica, which presumably optimizes sensory transduction by exerting a shear motion on the sensory cilia in this hearing organ. PMID:24465889
Scattering of sound waves by a compressible vortex
NASA Technical Reports Server (NTRS)
Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz
1991-01-01
Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.
Sensory illusions: Common mistakes in physics regarding sound, light and radio waves
NASA Astrophysics Data System (ADS)
Briles, T. M.; Tabor-Morris, A. E.
2013-03-01
Optical illusions are well known as effects that we see that are not representative of reality. Sensory illusions are similar but can involve other senses than sight, such as hearing or touch. One mistake commonly noted among instructors is that students often mis-identify radio signals as sound waves and not as part of the electromagnetic spectrum. A survey of physics students from multiple high schools highlights the frequency of this common misconception, as well as other nuances on this misunderstanding. Many students appear to conclude that, since they experience radio broadcasts as sound, then sound waves are the actual transmission of radio signals and not, as is actually true, a representation of those waves as produced by the translator box, the radio. Steps to help students identify and correct sensory illusion misconceptions are discussed. School of Education
NASA Astrophysics Data System (ADS)
Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George
2014-12-01
In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Maggs, J. E.; Gallagher, D. L.; Kurth, W. S.; Scarf, F. L.
1981-01-01
Observations are presented of the parametric decay and spatial collapse of Langmuir waves driven by an electron beam streaming into the solar wind from the Jovian bow shock. Long wavelength Langmuir waves upstream of the bow shock are effectively converted into short wavelength waves no longer in resonance with the beam. The conversion is shown to be the result of a nonlinear interaction involving the beam-driven pump, a sideband emission, and a low level of ion-acoustic turbulence. The beam-driven Langmuir wave emission breaks up into a complex sideband structure with both positive and negative Doppler shifts. In some cases, the sideband emission consists of isolated wave packets with very short duration bursts, which are very intense and are thought to consist of envelope solitons which have collapsed to spatial scales of only a few Debye lengths.
Parametric array technique for microbubble excitation.
Vos, Hendrik J; Goertz, David E; van der Steen, Antonius F W; de Jong, Nico
2011-05-01
This study investigates the use of an acoustic parametric array as a means for microbubble excitation. The excitation wave is generated during propagation in a nonlinear medium of two high-frequency carrier waves, whereby the frequency of the excitation wave is the difference frequency of the carrier waves. Carrier waves of around 10 and 25 MHz are used to generate low-frequency waves between 0.5 and 3.5 MHz at amplitudes in the range of 25 to 80 kPa in water. We demonstrate with high-speed camera observations that it is possible to induce microbubble oscillations with the low frequency signal arising from the nonlinear propagation process. As an application, we determined the resonance frequency of Definity contrast agent microbubbles with radius ranging from 1.5 to 5 μm by sweeping the difference frequency in the range from 0.5 to 3.5 MHz.
NASA Astrophysics Data System (ADS)
Shoda, Munehito; Yokoyama, Takaaki
2018-06-01
We conduct a 3D magnetohydrodynamic (MHD) simulation of the parametric decay instability of Alfvén waves and resultant compressible MHD turbulence, which is likely to develop in the solar wind acceleration region. Because of the presence of the mean magnetic field, the nonlinear stage is characterized by filament-like structuring and anisotropic cascading. By calculating the timescales of phase mixing and the evolution of Alfvén wave turbulence, we have found that the early nonlinear stage is dominated by phase mixing, while the later phase is dominated by imbalanced Alfvén wave turbulence. Our results indicate that the regions in the solar atmosphere with large density fluctuation, such as the coronal bottom and wind acceleration region, are heated by phase-mixed Alfvén waves, while the other regions are heated by Alfvén wave turbulence.
Teaching about Mechanical Waves and Sound with a Tuning Fork and the Sun
ERIC Educational Resources Information Center
Leccia, Silvio; Colantonio, Arturo; Puddu, Emanuella; Galano, Silvia; Testa, Italo
2015-01-01
Literature in "Physics Education" has shown that students encounter many difficulties in understanding wave propagation. Such difficulties lead to misconceptions also in understanding sound, often used as context to teach wave propagation. To address these issues, we present in this paper a module in which the students are engaged in…
The generation of sound by vorticity waves in swirling duct flows
NASA Technical Reports Server (NTRS)
Howe, M. S.; Liu, J. T. C.
1977-01-01
Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.
Influence of Sound Wave Stimulation on the Growth of Strawberry in Sunlight Greenhouse
NASA Astrophysics Data System (ADS)
Qi, Lirong; Teng, Guanghui; Hou, Tianzhen; Zhu, Baoying; Liu, Xiaona
In this paper, we adopt the QGWA-03 plant audio apparatus to investigate the sound effects on strawberry in the leaf area, the photosynthetic characteristics and other physiological indexes. It was found that when there were no significant differences between the circumstances of the two sunlight greenhouses, the strawberry after the sound wave stimulation grew stronger than in the control and its leaf were deeper green, and shifted to an earlier time about one week to blossom and bear fruit. It was also found that the resistance of strawberry against disease and insect pest were enhanced. The experiment results show that sound wave stimulation can certainly promote the growth of plants.
Sound synchronization of bubble trains in a viscous fluid: experiment and modeling.
Pereira, Felipe Augusto Cardoso; Baptista, Murilo da Silva; Sartorelli, José Carlos
2014-10-01
We investigate the dynamics of formation of air bubbles expelled from a nozzle immersed in a viscous fluid under the influence of sound waves. We have obtained bifurcation diagrams by measuring the time between successive bubbles, having the air flow (Q) as a parameter control for many values of the sound wave amplitude (A), the height (H) of the solution above the top of the nozzle, and three values of the sound frequency (fs). Our parameter spaces (Q,A) revealed a scenario for the onset of synchronization dominated by Arnold tongues (frequency locking) which gives place to chaotic phase synchronization for sufficiently large A. The experimental results were accurately reproduced by numerical simulations of a model combining a simple bubble growth model for the bubble train and a coupling term with the sound wave added to the equilibrium pressure.
Sound. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
A door closes. A horn beeps. A crowd roars. Sound waves travel outward in all directions from the source. They can all be heard, but how? Did they travel directly to the ears? Perhaps they bounced off another object first or traveled through a different medium, changing speed along the way. Students learn how sound waves travel and about their…
Sound Radiated by a Wave-Like Structure in a Compressible Jet
NASA Technical Reports Server (NTRS)
Golubev, V. V.; Prieto, A. F.; Mankbadi, R. R.; Dahl, M. D.; Hixon, R.
2003-01-01
This paper extends the analysis of acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. Compared to previous work, a modified approach to the sound source modeling is examined that employs a set of solutions to linearized Euler equations. The sound radiation is then calculated using an integral surface method.
Experimental study of sound propagation in a flexible duct
Huang; Choy; So; Chong
2000-08-01
Propagation of sound in a flexible duct is investigated both theoretically and experimentally. Strong coupling of sound and flexural waves on the duct wall is found when the wall-to-air mass ratio is of the order of unity. The axial phase speed of sound approaches the in vacuo speed of flexural waves (subsonic in this case) at low frequencies. However, a speed higher than the isentropic sound speed in free space (340 m/s) is found beyond a critical frequency which is a function of the mass ratio. Experiments using a duct with a finite section of tensioned membrane are compared with the propagating modes pertaining to the infinite membrane model. Satisfactory quantitative agreement is obtained and the measured phase speed ranges from 8.3 to 1348 m/s. In the moderate frequency range, the theory predicts high spatial damping rate for the subsonic waves, which is consistent with the experimental observation that subsonic waves become increasingly undetectable as the frequency increases. Substantial sound reflection is observed at the interface between the rigid and the flexible segments of the duct without cross-section discontinuity, which, together with the high spatial damping, could form a basis for passive control of low-frequency duct noise.
White-light parametric instabilities in plasmas.
Santos, J E; Silva, L O; Bingham, R
2007-06-08
Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.
Infra-sound cancellation and mitigation in wind turbines
NASA Astrophysics Data System (ADS)
Boretti, Albert; Ordys, Andrew; Al Zubaidy, Sarim
2018-03-01
The infra-sound spectra recorded inside homes located even several kilometres far from wind turbine installations is characterized by large pressure fluctuation in the low frequency range. There is a significant body of literature suggesting inaudible sounds at low frequency are sensed by humans and affect the wellbeing through different mechanisms. These mechanisms include amplitude modulation of heard sounds, stimulating subconscious pathways, causing endolymphatic hydrops, and possibly potentiating noise-induced hearing loss. We suggest the study of infra-sound active cancellation and mitigation to address the low frequency noise issues. Loudspeakers generate pressure wave components of same amplitude and frequency but opposite phase of the recorded infra sound. They also produce pressure wave components within the audible range reducing the perception of the infra-sound to minimize the sensing of the residual infra sound.
1989-07-31
Morfey, consultant, Institute of Sound and Vibration Research, University of Southampton , England J. Naze Tjotta, Research Fellow, on leave from... lithotripsy , a medical treatment whereby focused shock waves are used to disintegrate kidney stones, we have set up this project to study the interaction of...standing practice of using N waves from sparks to try to understand the behavior of finite-amplitude sound.Ŕ Besides furnishing some input to lithotripsy
Non-linear solitary sound waves in lipid membranes and their possible role in biological signaling
NASA Astrophysics Data System (ADS)
Shrivastava, Shamit
Biological macromolecules self-assemble under entropic forces to form a dynamic 2D interfacial medium where the elastic properties arise from the curvature of the entropic potential of the interface. Elastic interfaces should be capable of propagating localized perturbations analogous to sound waves. However, (1) the existence and (2) the possible role of such waves in affecting biological functions remain unexplored. Both these aspects of "sound" as a signaling mechanism in biology are explored experimentally on mixed monolayers of lipids-fluorophores-proteins at the air/water interface as a model biological interface. This study shows - for the first time - that the nonlinear susceptibility near a thermodynamic transition in a lipid monolayer results in nonlinear solitary sound waves that are of 'all or none' nature. The state dependence of the nonlinear propagation is characterized by studying the velocity-amplitude relationship and results on distance dependence, effect of geometry and collision of solitary waves are presented. Given that the lipid bilayers and real biological membranes have such nonlinearities in their susceptibility diagrams, similar solitary phenomenon should be expected in biological membranes. In fact the observed characteristics of solitary sound waves such as, their all or none nature, a biphasic pulse shape with a long tail and optp-mechano-electro-thermal coupling etc. are strikingly similar to the phenomenon of nerve pulse propagation as observed in single nerve fibers. Finally given the strong correlation between the activity of membrane bound enzymes and the susceptibility and the fact that the later varies within a single solitary pulse, a new thermodynamic basis for biological signaling is proposed. The state of the interface controls both the nature of sound propagation and its impact on incorporated enzymes and proteins. The proof of concept is demonstrated for acetylcholine esterase embedded in a lipid monolayer, where the enzyme is spatiotemporally "knocked out" by a propagating sound wave.
Effect of flow on the acoustic performance of extended reaction lined ducts
NASA Technical Reports Server (NTRS)
Hersh, A. S.; Walker, B.
1983-01-01
A model is developed for the effects of uniform and boundary-layer mean flow on the attenuation and propagation of harmonically excited sound waves in an extended reaction lined cylindrical duct. A duct geometry consisting of an annular outer region of bulk material surrounding an inner cylinder of air is utilized. A numerical solution is obtained for the coupled wave equations governing the motion of the sound in both the inner and annular regions. It is found that the numerically predicted attenuation and propagations constants are in excellent agreement with measured values using Kevlar as the liner material for plane-wave mode (O,O) excitation over a wide range of mean flows and sound frequency. The boundary-layer effects are determined to be unimportant, at least for plane-wave sound. In addition, numerical studies indicate small differences between the use of either the radial velocity or the radial displacement boundary conditions.
Sound radiation from a water-filled pipe, radiation into light fluid.
Liu, Bilong; Pan, Jie; Li, Xiaodong; Tian, Jing
2002-12-01
This paper is concerned with the sound radiation from a water-filled exhaust pipe. The pipe opening and a plate attached to it form a vibrating surface for this radiation. Fluid-structural coupling between the pipe and enclosed fluid is included in the system modeling, but light fluid assumption is used for sound radiation into the space above the vibrating surface. In this paper, a numerical study on the n = 0 mode in the pipe shows that the wave types associated with this mode have different characteristics in two regions of the nondimensional frequency omega. In the first region of 0
Method to improve optical parametric oscillator beam quality
Smith, Arlee V.; Alford, William J.; Bowers, Mark S.
2003-11-11
A method to improving optical parametric oscillator (OPO) beam quality having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
Optical parametric osicllators with improved beam quality
Smith, Arlee V.; Alford, William J.
2003-11-11
An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
Photoacoustic Effect Generated from an Expanding Spherical Source
NASA Astrophysics Data System (ADS)
Bai, Wenyu; Diebold, Gerald J.
2018-02-01
Although the photoacoustic effect is typically generated by amplitude-modulated continuous or pulsed radiation, the form of the wave equation for pressure that governs the generation of sound indicates that optical sources moving in an absorbing fluid can produce sound as well. Here, the characteristics of the acoustic wave produced by a radially symmetric Gaussian source expanding outwardly from the origin are found. The unique feature of the photoacoustic effect from the spherical source is a trailing compressive wave that arises from reflection of an inwardly propagating component of the wave. Similar to the one-dimensional geometry, an unbounded amplification effect is found for the Gaussian source expanding at the sound speed.
Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.
Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu
2006-12-01
A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.
Phase-sensitive fiber-based parametric all-optical switch.
Parra-Cetina, Josué; Kumpera, Aleš; Karlsson, Magnus; Andrekson, Peter A
2015-12-28
We experimentally demonstrate, for the first time, an all-optical switch in a phase-sensitive fiber optic parametric amplifier operated in saturation. We study the effect of phase variation of the signal and idler waves on the pump power depletion. By changing the phase of a 0.9 mW signal/idler pair wave by π/2 rad, a pump power extinction ratio of 30.4 dB is achieved. Static and dynamic characterizations are also performed and time domain results presented.
Acoustic Characterization of Fluorinert FC-43 Liquid with Helium Gas Bubbles: Numerical Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanhille, Christian; Pantea, Cristian; Sinha, Dipen N.
In this work, we define the acoustic characteristics of a biphasic fluid consisting of static helium gas bubbles in liquid Fluorinert FC-43 and study the propagation of ultrasound of finite amplitudes in this medium. Very low sound speed and high sound attenuation are found, in addition to a particularly high acoustic nonlinear parameter. This result suggests the possibility of using this medium as a nonlinear enhancer in various applications. In particular, parametric generation of low ultrasonic frequencies is studied in a resonator cavity as a function of driving pressure showing high conversion efficiency. This work suggests that this medium couldmore » be used for applications such as parametric arrays, nondestructive testing, diagnostic medicine, sonochemistry, underwater acoustics, and ultrasonic imaging and to boost the shock formation in fluids.« less
Acoustic Characterization of Fluorinert FC-43 Liquid with Helium Gas Bubbles: Numerical Experiments
Vanhille, Christian; Pantea, Cristian; Sinha, Dipen N.
2017-01-19
In this work, we define the acoustic characteristics of a biphasic fluid consisting of static helium gas bubbles in liquid Fluorinert FC-43 and study the propagation of ultrasound of finite amplitudes in this medium. Very low sound speed and high sound attenuation are found, in addition to a particularly high acoustic nonlinear parameter. This result suggests the possibility of using this medium as a nonlinear enhancer in various applications. In particular, parametric generation of low ultrasonic frequencies is studied in a resonator cavity as a function of driving pressure showing high conversion efficiency. This work suggests that this medium couldmore » be used for applications such as parametric arrays, nondestructive testing, diagnostic medicine, sonochemistry, underwater acoustics, and ultrasonic imaging and to boost the shock formation in fluids.« less
NASA Technical Reports Server (NTRS)
Noble, S. T.; Gordon, W. E.; Djuth, F. T.; Jost, R. J.; Hedberg, A.
1987-01-01
This paper discusses the results of the September 1983 observations of artificial field-aligned irregularities (AFAIs) in the Tromso, Norway region, made by backscatter radars operating at 46.9, 143.8, 21.4, and 140.0 MHz. Four classes of resonant instability processes at work in the E and F regions are examined in detail: (1) the coupling of parametric decay instability waves across geomagnetic field lines, (2) thermal parametric instability, (3) four-wave interaction thermal parametric instability, and (4) the resonance instability. The characteristics of the AFAI scatter are described, with special attention given to the growth and decay time constants, functional dependence on the heater power and polarization, and the scattering cross sections of the irregularities.
Khaydarov, J D; Andrews, J H; Singer, K D
1994-06-01
We report on experimental intracavity compression of generated pulses (down to one quarter of the pumppulse duration) in a widely tunable synchronously pumped picosecond optical parametric oscillator. This pulse compression takes place when the optical parametric oscillator is well above threshold and is due to the pronounced group-velocity mismatch of the pump and oscillating waves in the nonlinear crystal.
Michaud, Mark; Leong, Thomas; Swiergon, Piotr; Juliano, Pablo; Knoerzer, Kai
2015-09-01
This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study. Copyright © 2015 Elsevier B.V. All rights reserved.
Shock Waves in a Bose-Einstein Condensate
NASA Technical Reports Server (NTRS)
Kulikov, Igor; Zak, Michail
2005-01-01
A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.
The NASA-LeRC wind turbine sound prediction code
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1981-01-01
Development of the wind turbine sound prediction code began as part of an effort understand and reduce the noise generated by Mod-1. Tone sound levels predicted with this code are in good agreement with measured data taken in the vicinity Mod-1 wind turbine (less than 2 rotor diameters). Comparison in the far field indicates that propagation effects due to terrain and atmospheric conditions may amplify the actual sound levels by 6 dB. Parametric analysis using the code shows that the predominant contributors to Mod-1 rotor noise are (1) the velocity deficit in the wake of the support tower, (2) the high rotor speed, and (3) off-optimum operation.
Stimulated Parametric Decay of Large Amplitude Alfv'en waves in the Large Plasma Device (LaPD)
NASA Astrophysics Data System (ADS)
Dorfman, S.; Carter, T.; Pribyl, P.; Tripathi, S. K. P.; van Compernolle, B.; Vincena, S.
2012-10-01
Alfv'en waves, the fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied, non-linear effects are important in many real systems. In particular, a parametric decay process in which a large amplitude Alfv'en wave decays into an ion acoustic wave and backward propagating Alfv'en wave may be key to the spectrum of solar wind turbulence. The present laboratory experiments aim to stimulate this process by launching counter-propagating Alfv'en waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has many properties consistent with an ion acoustic wave including: 1) The beat amplitude peaks when the frequency difference between the two Alfv'en waves is near the value predicted by Alfv'en-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfv'en waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfv'en wave. Strong damping observed after the pump Alfv'en waves are turned off is under investigation.
Light-induced vibration in the hearing organ
Ren, Tianying; He, Wenxuan; Li, Yizeng; Grosh, Karl; Fridberger, Anders
2014-01-01
The exceptional sensitivity of mammalian hearing organs is attributed to an active process, where force produced by sensory cells boost sound-induced vibrations, making soft sounds audible. This process is thought to be local, with each section of the hearing organ capable of amplifying sound-evoked movement, and nearly instantaneous, since amplification can work for sounds at frequencies up to 100 kHz in some species. To test these fundamental precepts, we developed a method for focally stimulating the living hearing organ with light. Light pulses caused intense and highly damped mechanical responses followed by traveling waves that developed with considerable delay. The delayed response was identical to movements evoked by click-like sounds. This shows that the active process is neither local nor instantaneous, but requires mechanical waves traveling from the cochlear base toward its apex. A physiologically-based mathematical model shows that such waves engage the active process, enhancing hearing sensitivity. PMID:25087606
NASA Astrophysics Data System (ADS)
Tokizane, Yu; Nawata, Kouji; Han, Zhengli; Koyama, Mio; Notake, Takashi; Takida, Yuma; Minamide, Hiroaki
2017-02-01
We developed a widely tunable terahertz (THz)-wave source covering the sub-THz frequency by difference frequency generation using a 4-dimethylamino-N‧-methyl-4‧-stibazolium tosylate (DAST) crystal. Near-infrared waves generated by dual-wavelength injection-seeded β-BaB2O4 optical parametric generation (is-BBO-OPG) were used for pumping the DAST crystal, which had separated wavelengths in the spectrum with a difference frequency of sub-THz. Furthermore, the non-collinear phase-matching condition was designed to compensate the walk-off effect of the BBO crystal. Consequently, tunable THz-waves from 0.3 to 4 THz were generated by tuning the wavelength of one of the seeding beams. The generated sub-THz-waves were monochromatic (dν < 33 GHz) with a maximum energy of 80 pJ at 0.65 THz.
Sound wave energy emitted by water drop during the splash on the soil surface
NASA Astrophysics Data System (ADS)
Bieganowski, Andrzej; Ryżak, Magdalena; Korbiel, Tomasz
2017-04-01
A drop of rain falling on the surface of bare soil not only moisturizes but also can cause splash or compaction, depending on the energy of incident drops and the condition of the surface on which it falls. The splash phenomenon can be characterized by the weight of detached soil material (using splash cups) as well as the number and trajectory of splashed particles (using high-speed cameras). The study presents a new aspect of the analysis of the splash phenomenon by measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out in an anechoic chamber. Three soils (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol, and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa, and 16 kPa) were tested. Drops of 4.2 mm diameter were falling from a height of 1.5m. The sound pressure level was recorded after 10 consecutive water drop impacts using a special set of microphones. In all measuring conditions with 1m distance, the sound pressure level ranged from 27 to 42dB. The impact of water drops on the ground created sound pulses, which were recalculated to the energy emitted in the form of sound waves. For all soil samples, the sound wave energy was within the range of 0.14 μJ to 5.26 μJ, which corresponds to 0.03-1.07% of the energy of the incident drops (Ryżak et al., 2016). This work was partly financed from the National Science Centre, Poland; project no. 2014/14/E/ST10/00851. References Ryżak M., Bieganowski A., Korbiel T.: Sound wave Energy resulting from the impact of water drops on the soil surface. PLoS One 11(7):e0158472. doi:10.1371/journal.pone.0158472, 2016
Wang, Yan; Chen, Kean
2017-10-01
A spherical microphone array has proved effective in reconstructing an enclosed sound field by a superposition of spherical wave functions in Fourier domain. It allows successful reconstructions surrounding the array, but the accuracy will be degraded at a distance. In order to extend the effective reconstruction to the entire cavity, a plane-wave basis in space domain is used owing to its non-decaying propagating characteristic and compared with the conventional spherical wave function method in a low frequency sound field within a cylindrical cavity. The sensitivity to measurement noise, the effects of the numbers of plane waves, and measurement positions are discussed. Simulations show that under the same measurement conditions, the plane wave function method is superior in terms of reconstruction accuracy and data processing efficiency, that is, the entire sound field imaging can be achieved by only one time calculation instead of translations of local sets of coefficients with respect to every measurement position into a global one. An experiment was conducted inside an aircraft cabin mock-up for validation. Additionally, this method provides an alternative possibility to recover the coefficients of high order spherical wave functions in a global coordinate system without coordinate translations with respect to local origins.
NASA Technical Reports Server (NTRS)
Calvert, Wynne
1994-01-01
Activities under this project have included participation in the Waves in Space Plasmas (WISP) program, a study of the data processing requirements for WISP, and theoretical studies of radio sounding, ducting, and magnetoionic theory. An analysis of radio sounding in the magnetosphere was prepared.
Quantitative photoacoustic imaging in the acoustic regime using SPIM
NASA Astrophysics Data System (ADS)
Beigl, Alexander; Elbau, Peter; Sadiq, Kamran; Scherzer, Otmar
2018-05-01
While in standard photoacoustic imaging the propagation of sound waves is modeled by the standard wave equation, our approach is based on a generalized wave equation with variable sound speed and material density, respectively. In this paper we present an approach for photoacoustic imaging, which in addition to the recovery of the absorption density parameter, the imaging parameter of standard photoacoustics, also allows us to reconstruct the spatially varying sound speed and density, respectively, of the medium. We provide analytical reconstruction formulas for all three parameters based in a linearized model based on single plane illumination microscopy (SPIM) techniques.
Propagation of detonation wave in hydrogen-air mixture in channels with sound-absorbing surfaces
NASA Astrophysics Data System (ADS)
Bivol, G. Yu.; Golovastov, S. V.; Golub, V. V.
2015-12-01
The possibility of using sound-absorbing surfaces for attenuating the intensity of detonation waves propagating in hydrogen-air mixtures has been experimentally studied in a cylindrical detonation tube open at one end, with an explosive initiated by spark discharge at the closed end. Sound-absorbing elements were made of an acoustic-grade foamed rubber with density of 0.035 g/cm3 containing open pores with an average diameter of 0.5 mm. The degree of attenuation of the detonation wave front velocity was determined as dependent on the volume fraction of hydrogen in the gas mixture.
Towards parameter-free classification of sound effects in movies
NASA Astrophysics Data System (ADS)
Chu, Selina; Narayanan, Shrikanth; Kuo, C.-C. J.
2005-08-01
The problem of identifying intense events via multimedia data mining in films is investigated in this work. Movies are mainly characterized by dialog, music, and sound effects. We begin our investigation with detecting interesting events through sound effects. Sound effects are neither speech nor music, but are closely associated with interesting events such as car chases and gun shots. In this work, we utilize low-level audio features including MFCC and energy to identify sound effects. It was shown in previous work that the Hidden Markov model (HMM) works well for speech/audio signals. However, this technique requires a careful choice in designing the model and choosing correct parameters. In this work, we introduce a framework that will avoid such necessity and works well with semi- and non-parametric learning algorithms.
Opo lidar sounding of trace atmospheric gases in the 3 - 4 μm spectral range
NASA Astrophysics Data System (ADS)
Romanovskii, Oleg A.; Sadovnikov, Sergey A.; Kharchenko, Olga V.; Yakovlev, Semen V.
2018-04-01
The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.
Observations of sound-speed fluctuations in the western Philippine Sea in the spring of 2009.
Colosi, John A; Van Uffelen, Lora J; Cornuelle, Bruce D; Dzieciuch, Matthew A; Worcester, Peter F; Dushaw, Brian D; Ramp, Steven R
2013-10-01
As an aid to understanding long-range acoustic propagation in the Philippine Sea, statistical and phenomenological descriptions of sound-speed variations were developed. Two moorings of oceanographic sensors located in the western Philippine Sea in the spring of 2009 were used to track constant potential-density surfaces (isopycnals) and constant potential-temperature surfaces (isotherms) in the depth range 120-2000 m. The vertical displacements of these surfaces are used to estimate sound-speed fluctuations from internal waves, while temperature/salinity variability along isopycnals are used to estimate sound-speed fluctuations from intrusive structure often termed spice. Frequency spectra and vertical covariance functions are used to describe the space-time scales of the displacements and spiciness. Internal-wave contributions from diurnal and semi-diurnal internal tides and the diffuse internal-wave field [related to the Garrett-Munk (GM) spectrum] are found to dominate the sound-speed variability. Spice fluctuations are weak in comparison. The internal wave and spice frequency spectra have similar form in the upper ocean but are markedly different below 170-m depth. Diffuse internal-wave mode spectra show a form similar to the GM model, while internal-tide mode spectra scale as mode number to the minus two power. Spice decorrelates rapidly with depth, with a typical correlation scale of tens of meters.
On the Advanced Wave Model of Parametric Down-Conversion
NASA Astrophysics Data System (ADS)
Lvovsky, A. I.; Aichele, T.
The spatiotemporal optical mode of the single-photon Fock state prepared by conditional measurements on a biphoton is investigated and found to be identical to that of a classical wave due to a nonlinear interaction of the pump wave and Klyshko's advanced wave. We discuss the applicability of this identity in various experimental settings.
Explicit Solutions and Bifurcations for a Class of Generalized Boussinesq Wave Equation
NASA Astrophysics Data System (ADS)
Ma, Zhi-Min; Sun, Yu-Huai; Liu, Fu-Sheng
2013-03-01
In this paper, the generalized Boussinesq wave equation utt — uxx + a(um)xx + buxxxx = 0 is investigated by using the bifurcation theory and the method of phase portraits analysis. Under the different parameter conditions, the exact explicit parametric representations for solitary wave solutions and periodic wave solutions are obtained.
Rapid decay of nonlinear whistler waves in two dimensions: Full particle simulation
NASA Astrophysics Data System (ADS)
Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro
2017-05-01
The decay of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave is investigated by utilizing a two-dimensional (2D) fully relativistic electromagnetic particle-in-cell code. The simulation is performed under a low-beta condition in which the plasma pressure is much lower than the magnetic pressure. It has been shown that the nonlinear (large-amplitude) parent whistler wave decays through the parametric instability in a one-dimensional (1D) system. The present study shows that there is another channel for the decay of the parent whistler wave in 2D, which is much faster than in the timescale of the parametric decay in 1D. The parent whistler wave decays into two sideband daughter whistlers propagating obliquely with respect to the ambient magnetic field with a frequency close to the parent wave and two quasi-perpendicular electromagnetic modes with a frequency close to zero via a 2D decay instability. The two sideband daughter oblique whistlers also enhance a nonlinear longitudinal electrostatic wave via a three-wave interaction as a secondary process.
Detonation models of fast combustion waves in nanoscale Al-MoO3 bulk powder media
NASA Astrophysics Data System (ADS)
Shaw, Benjamin D.; Pantoya, Michelle L.; Dikici, Birce
2013-02-01
The combustion of nanometric aluminum (Al) powder with an oxidiser such as molybdenum trioxide (MoO3) is studied analytically. This study focuses on detonation wave models and a Chapman-Jouget detonation model provides reasonable agreement with experimentally-observed wave speeds provided that multiphase equilibrium sound speeds are applied at the downstream edge of the detonation wave. The results indicate that equilibrium sound speeds of multiphase mixtures can play a critical role in determining speeds of fast combustion waves in nanoscale Al-MoO3 powder mixtures.
Phase mismatched optical parametric generation in semiconductor magnetoplasma
NASA Astrophysics Data System (ADS)
Dubey, Swati; Ghosh, S.; Jain, Kamal
2017-05-01
Optical parametric generation involves the interaction of pump, signal, and idler waves satisfying law of conservation of energy. Phase mismatch parameter plays important role for the spatial distribution of the field along the medium. In this paper instead of exactly matching wave vector, a small mismatch is admitted with a degree of phase velocity mismatch between these waves. Hence the medium must possess certain finite coherence length. This wave mixing process is well explained by coupled mode theory and one dimensional hydrodynamic model. Based on this scheme, expressions for threshold pump field and transmitted intensity have been derived. It is observed that the threshold pump intensity and transmitted intensity can be manipulated by varying doping concentration and magnetic field under phase mismatched condition. A compound semiconductor crystal of n-InSb is assumed to be shined at 77 K by a 10.6μm CO2 laser with photon energy well below band gap energy of the crystal, so that only free charge carrier influence the optical properties of the medium for the I.R. parametric generation in a semiconductor plasma medium. Favorable parameters were explored to incite the said process keeping in mind the cost effectiveness and conversion efficiency of the process.
Modeling the Effects of Transbasin Nonlinear Internal Waves Through the South China Sea Basin
2013-06-01
sound propagation through the SCS needs to be developed to help maintain tactical superiority. This model will provide valuable information for...METHODOLOGY A. ACOUSTIC MODEL 1. Ray Trace Theory Modeling of sound propagation through the ocean requires solving the governing spherical wave equation...arrival structure simulation code. The model permits the study of the physics and phenomenology of sound propagation though the SCS
1998 Physical Acoustics Summer School (PASS 98). Volume III: Background Materials.
1998-01-01
propagating hydrodynamic soliton ■ Shock waves, N waves, and sound eating sound ■ Acoustic Bernoulli effect ■ Acoustic levitation ■ Acoustic match ...cess. The resulting saturation values are given in the diagrams and nicely match the values given in (10). Delay reconstructions using the experimen...VOLUME 47, NUMBER 20 PHYSICAL REVIEW LETTERS 16 NOVEMBER 1981 oscillations of the driving sound field match three oscillations of the natural
A capacitive ultrasonic transducer based on parametric resonance.
Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F
2017-07-24
A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.
Linkage mapping of beta 2 EEG waves via non-parametric regression.
Ghosh, Saurabh; Begleiter, Henri; Porjesz, Bernice; Chorlian, David B; Edenberg, Howard J; Foroud, Tatiana; Goate, Alison; Reich, Theodore
2003-04-01
Parametric linkage methods for analyzing quantitative trait loci are sensitive to violations in trait distributional assumptions. Non-parametric methods are relatively more robust. In this article, we modify the non-parametric regression procedure proposed by Ghosh and Majumder [2000: Am J Hum Genet 66:1046-1061] to map Beta 2 EEG waves using genome-wide data generated in the COGA project. Significant linkage findings are obtained on chromosomes 1, 4, 5, and 15 with findings at multiple regions on chromosomes 4 and 15. We analyze the data both with and without incorporating alcoholism as a covariate. We also test for epistatic interactions between regions of the genome exhibiting significant linkage with the EEG phenotypes and find evidence of epistatic interactions between a region each on chromosome 1 and chromosome 4 with one region on chromosome 15. While regressing out the effect of alcoholism does not affect the linkage findings, the epistatic interactions become statistically insignificant. Copyright 2003 Wiley-Liss, Inc.
Resonant dampers for parametric instabilities in gravitational wave detectors
NASA Astrophysics Data System (ADS)
Gras, S.; Fritschel, P.; Barsotti, L.; Evans, M.
2015-10-01
Advanced gravitational wave interferometric detectors will operate at their design sensitivity with nearly ˜1 MW of laser power stored in the arm cavities. Such large power may lead to the uncontrolled growth of acoustic modes in the test masses due to the transfer of optical energy to the mechanical modes of the arm cavity mirrors. These parametric instabilities have the potential to significantly compromise the detector performance and control. Here we present the design of "acoustic mode dampers" that use the piezoelectric effect to reduce the coupling of optical to mechanical energy. Experimental measurements carried on an Advanced LIGO-like test mass have shown a tenfold reduction in the amplitude of several mechanical modes, thus suggesting that this technique can greatly mitigate the impact of parametric instabilities in advanced detectors.
Experimental realization of a feedback optical parametric amplifier with four-wave mixing
NASA Astrophysics Data System (ADS)
Pan, Xiaozhou; Chen, Hui; Wei, Tianxiang; Zhang, Jun; Marino, Alberto M.; Treps, Nicolas; Glasser, Ryan T.; Jing, Jietai
2018-04-01
Optical parametric amplifiers (OPAs) play a fundamental role in the generation of quantum correlation for quantum information processing and quantum metrology. In order to increase the communication fidelity of the quantum information protocol and the measurement precision of quantum metrology, it requires a high degree of quantum correlation. In this Rapid Communication we report a feedback optical parametric amplifier that employs a four-wave mixing (FWM) process as the underlying OPA and a beam splitter as the feedback controller. We first construct a theoretical model for this feedback-based FWM process and experimentally study the effect of the feedback control on the quantum properties of the system. Specifically, we find that the quantum correlation between the output fields can be enhanced by tuning the strength of the feedback.
Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface
Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz
2016-01-01
The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing–most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon’s characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops. PMID:27388276
Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.
Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz
2016-01-01
The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.
Sound reduction by metamaterial-based acoustic enclosure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Shanshan; Li, Pei; Zhou, Xiaoming
In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of themore » source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.« less
Parametric disordering of meta-atoms and nonlinear topological transitions in liquid metacrystals
NASA Astrophysics Data System (ADS)
Zharov, Alexander A.; Zharova, Nina A.; Zharov, Alexander A.
2017-09-01
We show that amplitude-modulated electromagnetic wave incident onto a liquid metacrystal may cause parametric instability of meta-atoms resulting in isotropization of the medium that can be treated in terms of effective temperature. It makes possible to switch the sign of certain components of dielectric permittivity and/or magnetic permeability tensors that, in turn, modifies the topology of isofrequency surface. At the same time it leads to the changes of the conditions of electromagnetic wave propagation appearing in the form of focusing or defocusing nonlinearity.
NASA Technical Reports Server (NTRS)
Mcdaniel, Oliver Herbert
1975-01-01
The propagation of plane wave and higher order acoustic modes in both hard-walled and absorbent cylindrical ducts was studied at moderate sound intensities where the linear wave equation is valid, and at high intensities where nonlinear effects can be observed. The experiments were conducted with an anechoically terminated twelve-inch inside-diameter transite pipe. Various types of sound sources were mounted at one end of the duct to generate the desired acoustic fields within the duct. Arrays of conventional loudspeakers were used to generate plane waves and higher order acoustic modes at moderate intensities, and an array of four high intensity electro-pneumatic sound sources was used for the experiments in the nonlinear region. The attenuation of absorbent liners made of several different materials was obtained at moderate intensities for both plane waves and high order modes. It was found that the characteristics of the liners studied did not change appreciably at high intensities.
The forced sound transmission of finite single leaf walls using a variational technique.
Brunskog, Jonas
2012-09-01
The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement.
A Discrete Constraint for Entropy Conservation and Sound Waves in Cloud-Resolving Modeling
NASA Technical Reports Server (NTRS)
Zeng, Xi-Ping; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
Ideal cloud-resolving models contain little-accumulative errors. When their domain is so large that synoptic large-scale circulations are accommodated, they can be used for the simulation of the interaction between convective clouds and the large-scale circulations. This paper sets up a framework for the models, using moist entropy as a prognostic variable and employing conservative numerical schemes. The models possess no accumulative errors of thermodynamic variables when they comply with a discrete constraint on entropy conservation and sound waves. Alternatively speaking, the discrete constraint is related to the correct representation of the large-scale convergence and advection of moist entropy. Since air density is involved in entropy conservation and sound waves, the challenge is how to compute sound waves efficiently under the constraint. To address the challenge, a compensation method is introduced on the basis of a reference isothermal atmosphere whose governing equations are solved analytically. Stability analysis and numerical experiments show that the method allows the models to integrate efficiently with a large time step.
Chandra "Hears" A Black Hole For The First Time
NASA Astrophysics Data System (ADS)
2003-09-01
NASA's Chandra X-ray Observatory detected sound waves, for the first time, from a super-massive black hole. The "note" is the deepest ever detected from an object in the universe. The tremendous amounts of energy carried by these sound waves may solve a longstanding problem in astrophysics. The black hole resides in the Perseus cluster, located 250 million light years from Earth. In 2002, astronomers obtained a deep Chandra observation that shows ripples in the gas filling the cluster. These ripples are evidence for sound waves that have traveled hundreds of thousands of light years away from the cluster's central black hole. perseus animation Illustration of Ripples in Perseus "We have observed the prodigious amounts of light and heat created by black holes, now we have detected the sound," said Andrew Fabian of the Institute of Astronomy (IoA) in Cambridge, England, and leader of the study. In musical terms, the pitch of the sound generated by the black hole translates into the note of B flat. But, a human would have no chance of hearing this cosmic performance, because the note is 57 octaves lower than middle-C (by comparison a typical piano contains only about seven octaves). At a frequency over a million, billion times deeper than the limits of human hearing, this is the deepest note ever detected from an object in the universe. "The Perseus sound waves are much more than just an interesting form of black hole acoustics," said Steve Allen, also of the IoA and a co-investigator in the research. "These sound waves may be the key in figuring out how galaxy clusters, the largest structures in the universe, grow," Allen said. For years astronomers have tried to understand why there is so much hot gas in galaxy clusters and so little cool gas. Hot gas glowing with X-rays should cool, and the dense central gas should cool the fastest. The pressure in this cool central gas should then fall, causing gas further out to sink in towards the galaxy, forming trillions of stars along the way. Scant evidence has been found for such a flow of cool gas or star formation. This forced astronomers to invent several different ways to explain why the gas contained in clusters remained hot, and, until now, none of them was satisfactory. perseus animation Animation of Sound Waves Generated in Perseus Cluster of Ripples in Perseus Heating caused by a central black hole has long been considered a good way to prevent cluster gas from cooling. Although jets have been observed at radio wavelengths, their effect on cluster gas was unclear since this gas is only detectable in X-rays, and early X-ray observations did not have Chandra's ability to find detailed structure. Previous Chandra observations of the Perseus cluster showed two vast, bubble-shaped cavities in the cluster gas extending away from the central black hole. Jets of material pushing back the cluster gas have formed these X-ray cavities, which are bright sources of radio waves. They have long been suspected of heating the surrounding gas, but the mechanism was unknown. The sound waves, seen spreading out from the cavities in the recent Chandra observation, could provide this heating mechanism. A tremendous amount of energy is needed to generate the cavities, as much as the combined energy from 100 million supernovae. Much of this energy is carried by the sound waves and should dissipate in the cluster gas, keeping the gas warm and possibly preventing a cooling flow. If so, the B-flat pitch of the sound wave, 57 octaves below middle-C, would have remained roughly constant for about 2.5 billion years. Perseus is the brightest cluster of galaxies in X-rays, and therefore was a perfect Chandra target for finding sound waves rippling through the hot cluster gas. Other clusters show X-ray cavities, and future Chandra observations may yet detect sound waves in these objects.
NASA Astrophysics Data System (ADS)
Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.
2018-05-01
We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.
High-speed imaging of traveling waves in a granular material during silo discharge.
Börzsönyi, Tamás; Kovács, Zsolt
2011-03-01
We report experimental observations of sound waves in a granular material during resonant silo discharge called silo music. The grain motion was tracked by high-speed imaging while the resonance of the silo was detected by accelerometers and acoustic methods. The grains do not oscillate in phase at neighboring vertical locations, but information propagates upward in this system in the form of sound waves. We show that the wave velocity is not constant throughout the silo but considerably increases toward the lower end of the system, suggesting increased pressure in this region, where the flow changes from cylindrical to converging flow. In the upper part of the silo the wave velocity matches the sound velocity measured in the same material when standing (in the absence of flow). Grain oscillations show a stick-slip character only in the upper part of the silo.
Development of an acoustic filter for parametric loudspeaker using phononic crystals.
Ji, Peifeng; Hu, Wenlin; Yang, Jun
2016-04-01
The spurious signal generated as a result of nonlinearity at the receiving system affects the measurement of the difference-frequency sound in the parametric loudspeaker, especially in the nearfield or near the beam axis. In this paper, an acoustic filter is designed using phononic crystals and its theoretical simulations are carried out by quasi-one- and two-dimensional models with Comsol Multiphysics. According to the simulated transmission loss (TL), an acoustic filter is prototyped consisting of 5×7 aluminum alloy cylinders and its performance is verified experimentally. There is good agreement with the simulation result for TL. After applying our proposed filter in the axial measurement of the parametric loudspeaker, a clear frequency dependence from parametric array effect is detected, which exhibits a good match with the well-known theory described by the Gaussian-beam expansion technique. During the directivity measurement for the parametric loudspeaker, the proposed filter has also proved to be effective and is only needed for small angles. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dorfman, S.; Carter, T.; Pribyl, P.; Tripathi, S. K. P.; van Compernolle, B.; Vincena, S.; Sydora, R.
2013-10-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behavior of these waves has been extensively studied, non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may play an important role in coronal heating and/or in establishing the spectrum of solar wind turbulence. Recent counter-propagating Alfvén wave experiments have recorded the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of this parametric decay instability. The resonance in the observed beat process has several features consistent with ponderomotive coupling to an ion acoustic mode, including the measured dispersion relation and spatial profile. Strong damping observed after the pump Alfvén waves are turned off is under investigation. New experiments and simulations also aim to identify decay instabilities from a single large-amplitude Alfvén wave. Supported by DOE and NSF.
Directional Acoustic Wave Manipulation by a Porpoise via Multiphase Forehead Structure
NASA Astrophysics Data System (ADS)
Zhang, Yu; Song, Zhongchang; Wang, Xianyan; Cao, Wenwu; Au, Whitlow W. L.
2017-12-01
Porpoises are small-toothed whales, and they can produce directional acoustic waves to detect and track prey with high resolution and a wide field of view. Their sound-source sizes are rather small in comparison with the wavelength so that beam control should be difficult according to textbook sonar theories. Here, we demonstrate that the multiphase material structure in a porpoise's forehead is the key to manipulating the directional acoustic field. Computed tomography (CT) derives the multiphase (bone-air-tissue) complex, tissue experiments obtain the density and sound-velocity multiphase gradient distributions, and acoustic fields and beam formation are numerically simulated. The results suggest the control of wave propagations and sound-beam formations is realized by cooperation of the whole forehead's tissues and structures. The melon size significantly impacts the side lobes of the beam and slightly influences the main beams, while the orientation of the vestibular sac mainly adjusts the main beams. By compressing the forehead complex, the sound beam can be expanded for near view. The porpoise's biosonar allows effective wave manipulations for its omnidirectional sound source, which can help the future development of miniaturized biomimetic projectors in underwater sonar, medical ultrasonography, and other ultrasonic imaging applications.
A theoretical study of passive control of duct noise using panels of varying compliance.
Huang, L
2001-06-01
It is theoretically demonstrated that, in a duct, a substantial amount of sound energy can be transferred to flexural waves on a finite wall panel when the upstream portion of the panel is made to couple strongly with sound. The flexural wave then loses its energy either through radiating reflection sound waves or by internal friction. The effectiveness of the energy transfer and damping is greatly enhanced if the panel has a gradually decreasing in vacuo wave speed, which, in this study, is achieved by using a tapered membrane under tension. A high noise attenuation rate is possible with the usual viscoelastic materials such as rubber. The transmission loss has a broadband spectrum, and it offers an alternative to conventional duct lining where a smooth air passage is desired and nonacoustical considerations, such as chemical contamination or cost of operation maintenance, are important. Another advantage of the tapered panel is that, at very low frequencies, typically 5% of the first cut-on frequency of the duct, sound reflection occurs over the entire panel length. This supplements the inevitable drop in sound absorption coefficient, and a high transmission loss may still be obtained at very low frequencies.
Analysis of sound propagation in ducts using the wave envelope concept
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1974-01-01
A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow for plane wave input. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution does not oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude, and the number of grid points becomes independent of the sound frequency. Physically, the transformed pressure represents the amplitude of the conventional sound wave. Example solutions are presented for sound propagation in a one-dimensional straight hard-wall duct and in a two-dimensional straight soft-wall duct without steady flow. The numerical solutions show evidence of the existence along the duct wall of a developing acoustic pressure diffusion boundary layer which is similar in nature to the conventional viscous flow boundary layer. In order to better illustrate this concept, the wave equation and boundary conditions are written such that the frequency no longer appears explicitly in them. The frequency effects in duct propagation can be visualized solely as an expansion and stretching of the suppressor duct.
Psycho-Physiological Responses by Listening to Some Sounds from Our Daily Life
NASA Astrophysics Data System (ADS)
Sakamoto, H.; Hayashi, F.; Tsujikawa, M.; Sugiura, S.
1997-08-01
This study was made to clarify the relationship between mode of identification, mode of emotion and physiological response to noise. Twenty-six subjects, young females, listened to six different daily sounds for 150 s through head phones. The level of sound was 60-61LAcq. The pulse wave and blood pressure were observed, and pulse wave interval, wave height and maximum and minimum blood pressures were measured. Measurements were taken twice once 30 s before listening and again during the final 30 s of listening. The ratio of the latter value to the former value was used as the index for the evaluation of change. Immediately after the listening session, identification of the sound source and emotional response were surveyed via a questionnaire and the sounds were judged as related to comfort or discomfort. In the case of incorrect identification, physiological functions were not seen to change significantly. However, in the case of correct identification, maximum and minimum blood pressures were significantly increased form the pre-listening values. The physiological functions of the discomfort group did not change significantly. In the comfort group, wave height was decreased and blood pressure was significantly elevated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatano, H.; Watanabe, T.
A new system was developed for the reciprocity calibration of acoustic emission transducers in Rayleigh-wave and longitudinal-wave sound fields. In order to reduce interference from spurious waves due to reflections and mode conversions, a large cylindrical block of forged steel was prepared for the transfer medium, and direct and spurious waves were discriminated between on the basis of their arrival times. Frequency characteristics of velocity sensitivity to both the Rayleigh wave and longitudinal wave were determined in the range of 50 kHz{endash}1 MHz by means of electrical measurements without the use of mechanical sound sources or reference transducers. {copyright} {italmore » 1997 Acoustical Society of America.}« less
NASA Astrophysics Data System (ADS)
Sauer, K.; Malaspina, D.; Pulupa, M.
2016-12-01
Instead of starting with an unstable electron beam, our focus is directed on the nonlinear response of Langmuir oscillations which are driven after beam stabilization by the still persisting current of the (stable) two-electron plasma. The velocity distribution function of the second population forms a plateau with weak damping over a more or less extended wave number range k. As shown by PIC simulations, this so-called plateau plasma drives primarily Langmuir oscillations at the plasma frequency ωe with k=0 over long times without remarkable change of the distribution function. The Langmuir oscillations, however, act as pump wave for parametric decay by which an electron-acoustic wave slightly below ωe and a counter-streaming ion-acoustic wave are generated. Both high-frequency waves have nearly the same amplitude which is simply given by the product of plateau density and velocity. Beating of these two wave types leads to pronounced Langmuir amplitude modulation, in good agreement with solar wind and foreshock WIND observations where waveforms and electron distribution functions have simultaneously been analyzed.
Wave field and evanescent waves produced by a sound beam incident on a simulated sediment
NASA Astrophysics Data System (ADS)
Osterhoudt, Curtis F.; Marston, Philip L.; Morse, Scot F.
2005-09-01
When a sound beam in water is incident on a sediment at a sufficiently small grazing angle, the resulting wave field in the sediment is complicated, even for the case of flat, fluidlike sediments. The wave field in the sediment for a sound beam from a simple, unshaded, finite transducer has an evanescent component and diffractive components. These components can interfere to produce a series of nulls outside the spatial region dominated by the evanescent wave field. This situation has been experimentally simulated by using a combination of previously described immiscible liquids [Osterhoudt et al., J. Acoust. Soc. Am. 117, 2483 (2005)]. The spacing between the observed nulls is similar to that seen in a wave-number-integration-based synthesis (using OASES) for a related problem. An analysis of a dephasing distance for evanescent and algebraically decaying components [T .J. Matula and P. L. Marston, J. Acoust. Soc. Am. 97, 1389-1398 (1995)] explains the spacing of the nulls. [Work supported by ONR.
Sound decay in a rectangular room with impedance walls
NASA Astrophysics Data System (ADS)
Kanev, N. G.
2012-09-01
The problem of sound decay in a rectangular room is considered for the case of a room with walls the acoustic properties of which are described by the impedance, which implies a dependence of the absorption coefficient on the angle of incidence of sound waves. The ray approximation is used to determine the sound decay laws for different distributions of wall absorption. It is shown that, in a room with impedance walls, the sound decay is slower than in the conventional reverberation model, in which the wall absorption coefficient is independent of the angle of incidence. The problem is also solved in the wave approximation to determine the decay law for a preset frequency band.
Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility
NASA Astrophysics Data System (ADS)
Hargather, Michael John; Settles, Gary S.; Madalis, Matthew J.
2010-02-01
A large schlieren system with exceptional sensitivity and a high-speed digital camera are used to visualize loud sounds and a variety of common phenomena that produce weak shock waves in the atmosphere. Frame rates varied from 10,000 to 30,000 frames/s with microsecond frame exposures. Sound waves become visible to this instrumentation at frequencies above 10 kHz and sound pressure levels in the 110 dB (6.3 Pa) range and above. The density gradient produced by a weak shock wave is examined and found to depend upon the profile and thickness of the shock as well as the density difference across it. Schlieren visualizations of weak shock waves from common phenomena include loud trumpet notes, various impact phenomena that compress a bubble of air, bursting a toy balloon, popping a champagne cork, snapping a wooden stick, and snapping a wet towel. The balloon burst, snapping a ruler on a table, and snapping the towel and a leather belt all produced readily visible shock-wave phenomena. In contrast, clapping the hands, snapping the stick, and the champagne cork all produced wave trains that were near the weak limit of visibility. Overall, with sensitive optics and a modern high-speed camera, many nonlinear acoustic phenomena in the air can be observed and studied.
ERIC Educational Resources Information Center
Carrier, Sarah J.; Scott, Catherine Marie; Hall, Debra T.
2012-01-01
The science of sound helps students learn that sound is energy traveling in waves as vibrations transfer the energy through various media: solids, liquids, and gases. In addition to learning about the physical science of sound, students can learn about the sounds of different animal species: how sounds contribute to animals' survival, and how…
Study on Pressure Wave Propagation in a Liquid Containing Spherical Bubbles in a Rectangular Duct
NASA Astrophysics Data System (ADS)
Kawahara, Junya; Watanabe, Masao; Kobayashi, Kazumichi
2015-12-01
Pressure wave propagation in a liquid containing several bubbles is numerically investigated. We simulate liner plane wave propagation in a liquid containing 10 spherical bubbles in a rectangular duct with the equation of motion for N spherical bubbles. The sound pressures of the reflected waves from the rigid walls are calculated by using the method of images. The result shows that the phase velocity of the pressure wave propagating in the liquid containing 10 spherical bubbles in the duct agrees well with the low-frequency speed of sound in a homogeneous bubbly liquid.
NASA Astrophysics Data System (ADS)
Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw
2005-09-01
Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to
Parametrization study of the land multiparameter VTI elastic waveform inversion
NASA Astrophysics Data System (ADS)
He, W.; Plessix, R.-É.; Singh, S.
2018-06-01
Multiparameter inversion of seismic data remains challenging due to the trade-off between the different elastic parameters and the non-uniqueness of the solution. The sensitivity of the seismic data to a given subsurface elastic parameter depends on the source and receiver ray/wave path orientations at the subsurface point. In a high-frequency approximation, this is commonly analysed through the study of the radiation patterns that indicate the sensitivity of each parameter versus the incoming (from the source) and outgoing (to the receiver) angles. In practice, this means that the inversion result becomes sensitive to the choice of parametrization, notably because the null-space of the inversion depends on this choice. We can use a least-overlapping parametrization that minimizes the overlaps between the radiation patterns, in this case each parameter is only sensitive in a restricted angle domain, or an overlapping parametrization that contains a parameter sensitive to all angles, in this case overlaps between the radiation parameters occur. Considering a multiparameter inversion in an elastic vertically transverse isotropic medium and a complex land geological setting, we show that the inversion with the least-overlapping parametrization gives less satisfactory results than with the overlapping parametrization. The difficulties come from the complex wave paths that make difficult to predict the areas of sensitivity of each parameter. This shows that the parametrization choice should not only be based on the radiation pattern analysis but also on the angular coverage at each subsurface point that depends on geology and the acquisition layout.
Theoretical study on a water muffler
NASA Astrophysics Data System (ADS)
Du, T.; Chen, Y. W.; Miao, T. C.; Wu, D. Z.
2016-05-01
Theoretical computation on a previously studied water muffler is carried out in this article. Structure of the water muffler is composed of two main parts, namely, the Kevlar- reinforced rubber tube and the inner-noise-reduction structure. Rubber wall of the rubber tube is assumed to function as rigid wall lined with sound absorption material and is described by a complex radial wave number. Comparison among the results obtained from theoretical computation, FEM (finite element method) simulation and experiment of the rubber tube and that of the water muffler has been made. The theoretical results show a good accordance in general tendency with the FEM simulated and the measured results. After that, parametric study on the diameter of the inner structure and that of the rubber tube is conducted. Results show that the diameter of the left inner structure has the most significant effect on the SPL of the water muffler due to its location and its effect on the diameter ratio D2/D1.
Development of a hybrid wave based-transfer matrix model for sound transmission analysis.
Dijckmans, A; Vermeir, G
2013-04-01
In this paper, a hybrid wave based-transfer matrix model is presented that allows for the investigation of the sound transmission through finite multilayered structures placed between two reverberant rooms. The multilayered structure may consist of an arbitrary configuration of fluid, elastic, or poro-elastic layers. The field variables (structural displacements and sound pressures) are expanded in terms of structural and acoustic wave functions. The boundary and continuity conditions in the rooms determine the participation factors in the pressure expansions. The displacement of the multilayered structure is determined by the mechanical impedance matrix, which gives a relation between the pressures and transverse displacements at both sides of the structure. The elements of this matrix are calculated with the transfer matrix method. First, the hybrid model is numerically validated. Next a comparison is made with sound transmission loss measurements of a hollow brick wall and a sandwich panel. Finally, numerical simulations show the influence of structural damping, room dimensions and plate dimensions on the sound transmission loss of multilayered structures.
The interaction of sound with a poroelastic ground
NASA Astrophysics Data System (ADS)
Hickey, C. J.
2012-12-01
An airborne acoustic wave impinging on the surface of the ground provides a good mechanical source for investigating the near surface. Since the ground is porous, the impinging sound wave induces motion of the fluid within the pores as well as vibrating the solid framework. The most complete understanding of the interaction of airborne sound with the ground is to treat the ground as a poroelastic or poroviscoelastic medium. This treatment predicts that three types of waves can propagate in a ground with a deformable framework: two compressional waves, the fast or Type I and slow or Type II wave and one shear wave. Model calculations of the energy partition and an air-soil interface predict that most of the energy is partitioned into the Type II compressional wave, less into the Type I compressional wave, and little energy is partitioned into the shear wave. However, when measuring the solid motion of the soil one must consider how much of that wave energy is in terms of solid velocity. The deformation associated with Type II compressional wave has only a small contribution from the solid component whereas the bulk deformation of the Type I compressional wave has a solid to fluid deformation ratio of approximately one. This modeling suggests that the soil solid velocity induced by an acoustic source is associated with the Type I compressional wave. In other words, the airborne source is simply an inefficient seismic source.
Monograph on propagation of sound waves in curved ducts
NASA Technical Reports Server (NTRS)
Rostafinski, Wojciech
1991-01-01
After reviewing and evaluating the existing material on sound propagation in curved ducts without flow, it seems strange that, except for Lord Rayleigh in 1878, no book on acoustics has treated the case of wave motion in bends. This monograph reviews the available analytical and experimental material, nearly 30 papers published on this subject so far, and concisely summarizes what has been learned about the motion of sound in hard-wall and acoustically lined cylindrical bends.
NASA Astrophysics Data System (ADS)
Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.
2013-12-01
Bursty Langmuir waves have been interpreted as the result of the superposition of multiple Langmuir normal-mode waves, with the resultant modulation being the beat pattern between waves with e.g. 10 kHz frequency differences. The normal-mode waves could be generated either through wave-wave interactions with VLF waves, or through independent linear processes. The CHARM II sounding rocket was launched into a substorm at 9:49 UT on 15 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the Dartmouth High-Frequency Experiment (HFE), a receiver system which effectively yields continuous (100% duty cycle) E-field waveform measurements up to 5 MHz, as well as a number of charged particle detectors, including a wave-particle correlator. The payload also included a magnetometer and several low-frequency wave instruments. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, including several hundred discrete Langmuir-wave bursts. We show results of a statistical analysis of CHARM II data for the entire flight, comparing HFE data with the other payload instruments, specifically looking at timings and correlations between bursty Langmuir waves, Alfvén and whistler-mode waves, and electrons precipitating parallel to the magnetic field. Following a similar analysis on TRICE dayside sounding rocket data, we also calculate the fraction of correlated waves with VLF waves at appropriate frequencies to support the wave-wave interaction bursty Langmuir wave generation mechanism, and compare to results from CHARM II nightside data.
NASA Astrophysics Data System (ADS)
Dorfman, S. E.; Carter, T. A.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.; Sydora, R. D.
2013-12-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in space plasmas. While the linear behavior of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar corona and solar wind. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may play an important role in the coronal heating problem. Specifically, the decay of large-amplitude Alfvén waves propagating outward from the photosphere could lead to heating of the corona by the daughter ion acoustic modes [2]. As direct observational evidence of parametric decay is limited [3], laboratory experiments may play an important role in validating simple theoretical predictions and aiding in the interpretation of space measurements. Recent counter-propagating Alfvén wave experiments in the Large Plasma Device (LAPD) have recorded the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of this parametric decay instability [4]. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. Strong damping observed after the pump Alfvén waves are turned off is under investigation; a novel ion acoustic wave launcher is under development to launch the mode directly for damping studies. New experiments also aim to identify decay instabilities from a single large-amplitude Alfvén wave. In conjunction with these experiments, gyrokinetic simulation efforts are underway to scope out the relevant parameter space. [1] W. Gekelman, et. al., Phys. Plasmas 18, 055501 (2011). [2] F. Pruneti, F and M. Velli, ESA Spec. Pub. 404, 623 (1997). [3] S. R. Spangler, et. al., Phys. Plasmas 4, 846 (1997). [4] S. Dorfman and T. Carter, Phys. Rev. Lett. 110, 195001 (2013).
Wave Phenomena in an Acoustic Resonant Chamber
ERIC Educational Resources Information Center
Smith, Mary E.; And Others
1974-01-01
Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…
Visualization of Harmonic Series in Resonance Tubes Using a Smartphone
ERIC Educational Resources Information Center
Jaafar, Rosly; Ayop, Shahrul Kadri; Ismail, Ahmad Tarmimi; Hon, Kok Keng; Daud, Anis Nazihah Mat; Hashim, Mohd Helmy
2016-01-01
Because sound waves are such an abstract concept in physics, hands-on activities are often recommended to improve students' understanding and strengthen their knowledge. However, most schools do not have sufficiently sophisticated measuring instruments to perform sound wave experiments. Recently, researchers used smartphones as oscilloscopes,…
Modeling and Sound Insulation Performance Analysis of Two Honeycomb-hole Coatings
NASA Astrophysics Data System (ADS)
Ye, H. F.; Tao, M.; Zhang, W. Z.
2018-05-01
During the sound transmission loss test in the standing-wave tube, the unavoidable reflected wave from the termination of downstream tube would affect the precision measurement of sound transmission loss(TL). However, it can be solved by defining the non-reflected boundary conditions when modeling based on the finite element method. Then, the model has been validated by comparing with the analytical method. Based on the present model, the sound insulation performance of two types of honeycomb-hole coatings have been analyzed and discussed. Moreover, the changes of parameters play an important role on the sound insulation performance of honeycomb-hole coating and the negative Poisson’s ratio honeycomb-hole coating has better sound insulation performance at special frequencies. Finally, it is summarized that sound insulation performance is the result of various factors that include the impedance changes, the waveform transformation and so on.
NASA Astrophysics Data System (ADS)
Li, Z. P.; Duan, Y. M.; Wu, K. R.; Zhang, G.; Zhu, H. Y.; Wang, X. L.; Chen, Y. H.; Xue, Z. Q.; Lin, Q.; Song, G. C.; Su, H.
2013-05-01
We report a continuous-wave (CW), intra-cavity singly resonant optical parametric oscillator (OPO), based on periodically poled MgO:LiNbO3 pumped by a diode-end-pumped CW Nd:YVO4 laser, and calculate the gain of optical parametric amplification as a function of pump beam waist (at 1064 nm) in the singly resonant OPO (SRO) cavity, to balance the mode-matching and the intensity for the higher gain of a signal wave in the operation of the SRO. In order to achieve maximum gain, we use a convex lens to limit the 1064 nm beam waist. In the experiment, a tunable signal output from 1492 to 1614 nm and an idler output from 3122 to 3709 nm are obtained. For an 808 nm pump power of 11.5 W, a maximum signal output power of up to 2.48 W at 1586 nm and an idler output power of 1.1 W at 3232 nm are achieved with a total optical-to-optical conversion efficiency of 31%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, A. R.; Mansell, G. L.; McRae, T. G., E-mail: Terry.Mcrae@anu.edu.au
With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass opticalmore » parametric oscillator that has been operated under a vacuum of 10{sup −6} mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.« less
NASA Astrophysics Data System (ADS)
Wade, A. R.; Mansell, G. L.; McRae, T. G.; Chua, S. S. Y.; Yap, M. J.; Ward, R. L.; Slagmolen, B. J. J.; Shaddock, D. A.; McClelland, D. E.
2016-06-01
With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10-6 mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.
NASA Technical Reports Server (NTRS)
Brown, James L.
2014-01-01
Examined is sensitivity of separation extent, wall pressure and heating to variation of primary input flow parameters, such as Mach and Reynolds numbers and shock strength, for 2D and Axisymmetric Hypersonic Shock Wave Turbulent Boundary Layer interactions obtained by Navier-Stokes methods using the SST turbulence model. Baseline parametric sensitivity response is provided in part by comparison with vetted experiments, and in part through updated correlations based on free interaction theory concepts. A recent database compilation of hypersonic 2D shock-wave/turbulent boundary layer experiments extensively used in a prior related uncertainty analysis provides the foundation for this updated correlation approach, as well as for more conventional validation. The primary CFD method for this work is DPLR, one of NASA's real-gas aerothermodynamic production RANS codes. Comparisons are also made with CFL3D, one of NASA's mature perfect-gas RANS codes. Deficiencies in predicted separation response of RANS/SST solutions to parametric variations of test conditions are summarized, along with recommendations as to future turbulence approach.
Wade, A R; Mansell, G L; McRae, T G; Chua, S S Y; Yap, M J; Ward, R L; Slagmolen, B J J; Shaddock, D A; McClelland, D E
2016-06-01
With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.
Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, T. C.; Mutus, J. Y.; Hoi, I.-C.
Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance, while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted λ/4 resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12 dB acrossmore » a 4 GHz span, along with an average saturation power of −92 dBm with noise approaching the quantum limit.« less
3D DNS and LES of Breaking Inertia-Gravity Waves
NASA Astrophysics Data System (ADS)
Remmler, S.; Fruman, M. D.; Hickel, S.; Achatz, U.
2012-04-01
As inertia-gravity waves we refer to gravity waves that have a sufficiently low frequency and correspondingly large horizontal wavelength to be strongly influenced by the Coriolis force. Inertia-gravity waves are very active in the middle atmosphere and their breaking is potentially an important influence on the circulation in this region. The parametrization of this process requires a good theoretical understanding, which we want to enhance with the present study. Primary linear instabilities of an inertia-gravity wave and "2.5-dimensional" nonlinear simulations (where the spatial dependence is two dimensional but the velocity and vorticity fields are three-dimensional) with the wave perturbed by its leading primary instabilities by Achatz [1] have shown that the breaking differs significantly from that of high-frequency gravity waves due to the strongly sheared component of velocity perpendicular to the plane of wave-propagation. Fruman & Achatz [2] investigated the three-dimensionalization of the breaking by computing the secondary linear instabilities of the same waves using singular vector analysis. These secondary instabilities are variations perpendicular to the direction of the primary perturbation and the wave itself, and their wavelengths are an order of magnitude shorter than both. In continuation of this work, we carried out fully three-dimensional nonlinear simulations of inertia-gravity waves perturbed by their leading primary and secondary instabilities. The direct numerical simulation (DNS) was made tractable by restricting the domain size to the dominant scales selected by the linear analyses. The study includes both convectively stable and unstable waves. To the best of our knowledge, this is the first fully three-dimensional nonlinear direct numerical simulation of inertia-gravity waves at realistic Reynolds numbers with complete resolution of the smallest turbulence scales. Previous simulations either were restricted to high frequency gravity waves (e. g. Fritts et al. [3]), or the ratio N/f was artificially reduced (e. g. Lelong & Dunkerton [4]). The present simulations give us insight into the three-dimensional breaking process as well as the emerging turbulence. We assess the possibility of reducing the computational costs of three-dimensional simulations by using an implicit turbulence subgrid-scale parametrization based on the Adaptive Local Deconvolution Method (ALDM) for stratified turbulence [5]. In addition, we have performed ensembles of nonlinear 2.5-dimensional DNS, like those in Achatz [1] but with a small amount of noise superposed to the initial state, and compared the results with coarse-resolution simulations using either ALDM as well as with standard LES schemes. We found that the results of the models with parametrized turbulence, which are orders of magnitude more computationally economical than the DNS, compare favorably with the DNS in terms of the decay of the wave amplitude with time (the quantity most important for application to gravity-wave drag parametrization) suggesting that they may be trusted in future simulations of gravity wave breaking.
Gravitational waves from a very strong electroweak phase transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitao, Leonardo; Mégevand, Ariel, E-mail: lleitao@mdp.edu.ar, E-mail: megevand@mdp.edu.ar
We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider extensions of the Standard Model which can give very strongly first-order phase transitions, such that the transition fronts either propagate as detonations or run away. To compute the bubble wall velocity, we estimate the friction with the plasma and take into account the hydrodynamics. We track the development of the phase transition up to the percolation time, and we calculate the gravitational wave spectrum generated by bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider, we findmore » parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. In such cases, the signal from sound waves is generally dominant, while that from bubble collisions is the least significant of them. Since the sound waves and turbulence mechanisms are diminished for runaway walls, the models with the best prospects of detection at eLISA are those which do not have such solutions. In particular, we find that heavy extra bosons provide stronger gravitational wave signals than tree-level terms.« less
Limitations on the upconversion of ion sound to Langmuir turbulence
NASA Technical Reports Server (NTRS)
Vlahos, L.; Papadopoulos, K.
1982-01-01
The weak turbulence theory of Tsytovich, Stenflo and Wilhelmsson (1981) for evaluation of the nonlinear transfer of ion acoustic waves to Langmuir waves is shown to be limited in its region of validity to the level of ion acoustic waves. It is also demonstrated that, in applying the upconversion of ion sound to Langmuir waves for electron acceleration, nonlinear scattering should be self-consistently included, with a suppression of the upconversion process resulting. The impossibility of accelerating electrons by such a process for any reasonable physical system is thereby reaffirmed.
NASA Astrophysics Data System (ADS)
Capstick, J. W.
2013-01-01
1. The nature of sound; 2. Elasticity and vibrations; 3. Transverse waves; 4. Longitudinal waves; 5. Velocity of longitudinal waves; 6. Reflection and refraction. Doppler's principle; 7. Interference. Beats. Combination tones; 8. Resonance and forced vibrations; 9. Quality of musical notes; 10. Organ pipes; 11. Rods. Plates. Bells; 12. Acoustical measurements; 13. The phonograph, microphone and telephone; 14. Consonance; 15. Definition of intervals. Scales. Temperament; 16. Musical instruments; 17. Application of acoustical principles to military purposes; Questions; Answers to questions; Index.
Effect of wave localization on plasma instabilities
NASA Astrophysics Data System (ADS)
Levedahl, William Kirk
1987-10-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Mijie; Xiao, Chijie; Wang, Xiaogang
2017-06-10
We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. Thismore » result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.« less
Experiments to Investigate the Acoustic Properties of Sound Propagation
ERIC Educational Resources Information Center
Dagdeviren, Omur E.
2018-01-01
Propagation of sound waves is one of the fundamental concepts in physics. Some of the properties of sound propagation such as attenuation of sound intensity with increasing distance are familiar to everybody from the experiences of daily life. However, the frequency dependence of sound propagation and the effect of acoustics in confined…
ERIC Educational Resources Information Center
Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan
2014-01-01
While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…
Transmission of wave energy in curved ducts
NASA Technical Reports Server (NTRS)
Rostafinski, W.
1973-01-01
A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.
NASA Astrophysics Data System (ADS)
Fu, Xiangrong; Li, Hui; Guo, Fan; Li, Xiaocan; Roytershteyn, Vadim
2018-03-01
Evolution of the parametric decay instability (PDI) of a circularly polarized Alfvén wave in a turbulent low-beta plasma background is investigated using 3D hybrid simulations. It is shown that the turbulence reduces the growth rate of PDI as compared to the linear theory predictions, but PDI can still exist. Interestingly, the damping rate of the ion acoustic mode (as the product of PDI) is also reduced as compared to the linear Vlasov predictions. Nonetheless, significant heating of ions in the direction parallel to the background magnetic field is observed due to resonant Landau damping of the ion acoustic waves. In low-beta turbulent plasmas, PDI can provide an important channel for energy dissipation of low-frequency Alfvén waves at a scale much larger than the ion kinetic scales, different from the traditional turbulence dissipation models.
Faraday waves under time-reversed excitation.
Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas
2013-03-01
Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.
Diffraction of dust acoustic waves by a circular cylinder
NASA Astrophysics Data System (ADS)
Kim, S.-H.; Heinrich, J. R.; Merlino, R. L.
2008-09-01
The diffraction of dust acoustic (DA) waves around a long dielectric rod is observed using video imaging methods. The DA waves are spontaneously excited in a dusty plasma produced in a direct current glow discharge plasma. The rod acquires a negative charge that produces a coaxial dust void around it. The diameter of the void is the effective size of the "obstacle" encountered by the waves. The wavelength of the DA waves is approximately the size of the void. The observations are considered in relation to the classical problem of the diffraction of sound waves from a circular cylinder, a problem first analyzed by Lord Rayleigh [Theory of Sound, 2nd ed. (MacMillan, London, 1896)].
1987-07-01
fields (see also Chapter 4 of Ref. 22). Like our investigation, theirs is based on the Khokhlov-Zabolotskaya-Kuznetsov ( KZK ) equa- tion [23,24...25,26], also based on the KZK e(iualiou, is limited to weakly nonlinear systems. However, the practical case of a focused circular source with gain of...iment. The demonstrated abihty of the KZK equation to accurately model focused sound fields from reahstic sources [i.e., having abrupt edges and
Einstein contra Aristotle: The sound from the heavens
NASA Astrophysics Data System (ADS)
Neves, J. C. S.
2017-09-01
In "On the Heavens" Aristotle criticizes the Pythagorean point of view which claims the existence of a cosmic music and a cosmic sound. According to the Pythagorean argument, there exists a cosmic music produced by stars and planets. These celestial bodies generate sound in its movements, and the music appears due to the cosmic harmony. For Aristotle, there is no sound produced by celestial bodies. Then, there is no music as well. However, recently, LIGO (Laser Interferometer Gravitational-Waves Observatory) has detected the gravitational waves predicted by Einstein. In some sense, a sound originated from black holes has been heard. That is, Einstein or the General Relativity and LIGO appear to be with the Pythagoreanism and against the master of the Lyceum.
Bevans, Dieter A; Buckingham, Michael J
2017-10-01
The frequency bandwidth of the sound from a light helicopter, such as a Robinson R44, extends from about 13 Hz to 2.5 kHz. As such, the R44 has potential as a low-frequency sound source in underwater acoustics applications. To explore this idea, an experiment was conducted in shallow water off the coast of southern California in which a horizontal line of hydrophones detected the sound of an R44 hovering in an end-fire position relative to the array. Some of the helicopter sound interacted with seabed to excite the head wave in the water column. A theoretical analysis of the sound field in the water column generated by a stationary airborne source leads to an expression for the two-point horizontal coherence function of the head wave, which, apart from frequency, depends only on the sensor separation and the sediment sound speed. By matching the zero crossings of the measured and theoretical horizontal coherence functions, the sound speed in the sediment was recovered and found to take a value of 1682.42 ± 16.20 m/s. This is consistent with the sediment type at the experiment site, which is known from a previous survey to be a fine to very-fine sand.
Veligdan, James T.
2000-11-14
A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.
Sound Beams with Shockwave Pulses
NASA Astrophysics Data System (ADS)
Enflo, B. O.
2000-11-01
The beam equation for a sound beam in a diffusive medium, called the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, has a class of solutions, which are power series in the transverse variable with the terms given by a solution of a generalized Burgers’ equation. A free parameter in this generalized Burgers’ equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude, and the sound velocity in the fluid.
Pure detection of the acoustic spin pumping in Pt/YIG/PZT structures
NASA Astrophysics Data System (ADS)
Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Saitoh, Eiji
2014-11-01
The acoustic spin pumping (ASP) stands for the generation of a spin voltage from sound waves in a ferromagnet/paramagnet junction. In this letter, we propose and demonstrate a method for pure detection of the ASP, which enables the separation of sound-wave-driven spin currents from the spin Seebeck effect due to the heating of a sample caused by a sound-wave injection. Our demonstration using a Pt/YIG/PZT sample shows that the ASP signal in this structure measured by a conventional method is considerably offset by the heating signal and that the pure ASP signal is one order of magnitude greater than that reported in the previous study.
Explanatory model for sound amplification in a stethoscope
NASA Astrophysics Data System (ADS)
Eshach, H.; Volfson, A.
2015-01-01
In the present paper we suggest an original physical explanatory model that explains the mechanism of the sound amplification process in a stethoscope. We discuss the amplification of a single pulse, a continuous wave of certain frequency, and finally we address the resonant frequencies. It is our belief that this model may provide students with opportunities to not only better understand the amplification mechanism of a stethoscope, but also to strengthen their understanding of sound, pressure, waves, resonance modes, etc.
NASA Technical Reports Server (NTRS)
Chen, W. T.
1972-01-01
Technology developed for signal and data processing was applied to diagnostic techniques in the area of phonocardiography (pcg), the graphic recording of the sounds of the heart generated by the functioning of the aortic and ventricular valves. The relatively broad bandwidth of the PCG signal (20 to 2000 Hz) was reduced to less than 100 Hz by the use of a heart sound envelope. The process involves full-wave rectification of the PCG signal, envelope detection of the rectified wave, and low pass filtering of the resultant envelope.
Aircraft noise propagation. [sound diffraction by wings
NASA Technical Reports Server (NTRS)
Hadden, W. J.; Pierce, A. D.
1978-01-01
Sound diffraction experiments conducted at NASA Langley Research Center to study the acoustical implications of the engine over wing configuration (noise-shielding by wing) and to provide a data base for assessing various theoretical approaches to the problem of aircraft noise reduction are described. Topics explored include the theory of sound diffraction around screens and wedges; the scattering of spherical waves by rectangular patches; plane wave diffraction by a wedge with finite impedence; and the effects of ambient flow and distribution sources.
1989-07-31
Research, University of Southampton , England J. Naze Tjotta, Research Fellow, on leave from Mathematics Institute, Univer- sity of Bergen, Norway S... lithotripsy , a medical treatment whereby focused shock waves are used to disintegrate kidney stones, we have set up this project to study the interaction of...standing practice of using N waves from sparks o try to understand the behavior of finite-amplitude sound.Ŕ Besides furnishing some input to lithotripsy
Barlow, Nathaniel S; Schultz, Andrew J; Weinstein, Steven J; Kofke, David A
2015-08-21
The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.
Parametric resonance in acoustically levitated water drops
NASA Astrophysics Data System (ADS)
Shen, C. L.; Xie, W. J.; Wei, B.
2010-05-01
Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.
Dynamic of Langmuir and Ion-Sound Waves in Type 3 Solar Radio Sources
NASA Technical Reports Server (NTRS)
Robinson, P. A.; Willes, A. J.; Cairns, I. H.
1993-01-01
The evolution of Langmuir and ion-sound waves in type 3 sources is investigated, incorporating linear growth, linear damping, and nonlinear electrostatic decay. Improved estimates are obtained for the wavenumber range of growing waves and the nonlinear coupling coefficient for the decay process. The resulting prediction for the electrostatic decay threshold is consistent with the observed high-field cutoff in the Langmuir field distribution. It is shown that the conditions in the solar wind do not allow a steady state to be attained; rather, bursty linear and nonlinear interactions take place, consistent with the highly inhomogeneous and impulsive waves actually observed. Nonlinear growth is found to be fast enough to saturate the growth of the parent Langmuir waves in the available interaction time. The resulting levels of product Langmuir and ion-sound waves are estimated theoretically and shown to be consistent with in situ ISEE 3 observations of type 3 events at 1 AU. Nonlinear interactions slave the growth and decay of product sound waves to that of the product Langmuir waves. The resulting probability distribution of ion-sound field strengths is predicted to have a flat tail extending to a high-field cutoff. This prediction is consistent with statistics derived here from ISEE 3 observations. Agreement is also found between the frequencies of the observed waves and predictions for the product S waves. The competing processes of nonlinear wave collapse and quasilinear relaxation are discussed, and it is concluded that neither is responsible for the saturation of Langmuir growth. When wave and beam inhomogeneities are accounted for, arguments from quasi-linear relaxation yield an upper bound on the Langmuir fields that is too high to be relevant. Nor are the criteria for direct wave collapse of the beam-driven waves met, consistent with earlier simulation results that imply that this process is not responsible for saturation of the beam instability. Indeed, even if the highest observed Langmuir fields are assumed to he part of a long-wavelength 'condensate' produced via electrostatic decay, they still fall short of the relevant requirements for wave collapse. The most stringent requirement for collapse is that collapsing wave packets not be disrupted by ambient density fluctuations in the solar wind. Fields of several mV m(exp -1) extending over several hundred km would be needed to satisfy this requirement; at 1 AU such fields are rare at best.
A general introduction to aeroacoustics and atmospheric sound
NASA Technical Reports Server (NTRS)
Lighthill, James
1992-01-01
A single unifying principle (based upon the nonlinear 'momentum-flux' effects produced when different components of a motion transport different components of its momentum) is used to give a broad scientific background to several aspects of the interaction between airflows and atmospheric sound. First, it treats the generation of sound by airflows of many different types. These include, for example, jet-like flows involving convected turbulent motions (with the resulting aeroacoustic radiation sensitively dependent on the Mach number of convection) and they include, as an extreme case, the supersonic 'boom' (shock waves generated by a supersonically convected flow pattern). Next, an analysis is given of sound propagation through nonuniformly moving airflows, and the exchange is quantified of energy between flow and sound; while, finally, problems are examined of how sound waves 'on their own' may generate the airflows known as acoustic streaming.
Wen, Feng; Ali, Imran; Hasan, Abdulkhaleq; Li, Changbiao; Tang, Haijun; Zhang, Yufei; Zhang, Yanpeng
2015-10-15
We study the realization of an optical transistor (switch and amplifier) and router in multi-order fluorescence (FL) and spontaneous parametric four-wave mixing (SP-FWM). We estimate that the switching speed is about 15 ns. The router action results from the Autler-Townes splitting in spectral or time domain. The switch and amplifier are realized by dressing suppression and enhancement in FL and SP-FWM. The optical transistor and router can be controlled by multi-parameters (i.e., power, detuning, or polarization).
Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier
NASA Astrophysics Data System (ADS)
O'Brien, Kevin
Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
BEETIT Project: Penn State is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State’s chiller uses helium gas to replace synthetic refrigerants. Becausemore » helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.« less
Phase Shifting and the Beating of Complex Waves
ERIC Educational Resources Information Center
Keeports, David
2011-01-01
At the introductory level, the demonstration and analysis of sound beating is usually limited to the superposition of two purely sinusoidal waves with equal amplitudes and very similar frequencies. Under such conditions, an observer hears the periodic variation of the loudness of a sound with an unchanging timbre. On the other hand, when complex…
ERIC Educational Resources Information Center
Grable-Wallace, Lisa; And Others
1989-01-01
Evaluates 5 courseware packages covering the topics of simple harmonic motion, 7 packages for wave motion, and 10 packages for sound. Discusses the price range, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each courseware. Selects several packages based on the criteria. (YP)
Poppe, Lawrence J.; Cohen-DiGiacomo, M. L.; Smith, S.M.; Stewart, H.F.; Forfinski, N.A.
2006-01-01
Multibeam bathymetric data and seismic-reflection profiles collected in eastern Long Island Sound and western Block Island Sound reveal previously unrecognized glacial features and modern bedforms. Glacial features include an ice-sculptured bedrock surface, a newly identified recessional moraine, exposed glaciolacustrine sediments, and remnants of stagnant-ice-contact deposits. Modern bedforms include fields of transverse sand waves, barchanoid waves, giant scour depressions, and pockmarks. Bedform asymmetry and scour around obstructions indicate that net sediment transport is westward across the northern part of the study area near Fishers Island, and eastward across the southern part near Great Gull Island.
Compressional and Shear Wakes in a 2D Dusty Plasma Crystal
NASA Astrophysics Data System (ADS)
Nosenko, V.; Goree, J.; Ma, Z. W.; Dubin, D. H. E.
2001-10-01
A 2D crystalline lattice can vibrate with two kinds of sound waves, compressional and shear (transverse), where the latter has a much slower sound speed. When these waves are excited by a moving supersonic disturbance, the superposition of the waves creates a Mach cone, i.e., a V-shaped wake. In our experiments, the supersonic disturbance was a moving spot of argon laser light, and this laser light applied a force, due to radiation pressure, on the particles. The beam was swept across the lattice in a controlled and repeatable manner. The particles were levitated in an argon rf discharge. By moving the laser spot faster than the shear sound speed c_t, but slower than the compressional sound speed c_l, we excited a shear wave Mach cone. Alternatively, by moving the laser spot faster than c_l, we excited both cones. In addition to Mach cones, we also observed a wake structure that arises from the compressional wave’s dispersion. We compare our results to Dubin’s theory (Phys. Plasmas 2000) and to molecular dynamics (MD) simulations.
Modulations of MLT turbulence by waves observed during the WADIS sounding rocket project.
NASA Astrophysics Data System (ADS)
Strelnikov, Boris; Latteck, Ralph; Strelnikova, Irina; Lübken, Franz-Josef; Baumgarten, Gerd; Rapp, Markus
2017-04-01
The WADIS project (WAve propagation and DISsipation in the middle atmosphere) aimed at studying waves, their dissipation, and effects on trace constituents. Among other things, it addressed the question of the variability of MLT turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar in Tromsø. The project comprised two sounding rocket campaigns conducted at the Andøya Space Center (69 °N, 16 °E). One sounding rocket was launched in summer 2013 and one in winter 2015. The joint in-situ and ground-based observations showed horizontal variability of the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate varied in space in a wave-like manner both horizontally and in the vertical direction. This wave-like modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that vertical mean value of radar turbulence observations reveals wave-like modulation in time domain. This time variability results in up to two orders of magnitude change of the energy dissipation values with periods of 24 h. It also shows 12 h and shorter ( hours) modulations resulting in one decade variation. In this paper we present recent measurement results of turbulence-mean flow interaction and discuss possible reasons of the observed modulations.
1981-02-01
GUteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Physics Publication Number 81...GCiteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University oflMaryland College Park, Maryland 20742 i AflS1RACi Parametric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maji, Partha Sona; Roy Chaudhuri, Partha
In this article, we have presented a new design methodology of obtaining wide band parametric sources based on highly nonlinear chalcogenide material of As{sub 2}S{sub 3}. The dispersion profile of the photonic crystal fiber (PCF) has been engineered wisely by reducing the diameter of the second air-hole ring to have a favorable higher order dispersion parameter. The parametric gain dependence upon fiber length, pump power, and different pumping wavelengths has been investigated in detail. Based upon the nonlinear four wave mixing phenomenon, we are able to achieve a wideband parametric amplifier with peak gain of 29 dB with FWHM of ≈2000 nmmore » around the IR wavelength by proper tailoring of the dispersion profile of the PCF with a continuous wave Erbium (Er{sup 3+})-doped ZBLAN fiber laser emitting at 2.8 μm as the pump source with an average power of 5 W. The new design methodology will unleash a new dimension to the chalcogenide material based investigation for wavelength translation around IR wavelength band.« less
Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity
NASA Astrophysics Data System (ADS)
Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun
2018-05-01
Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.
Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves
2015-09-30
propagation in very fine-grained sediments (silt and clay ). OBJECTIVES 1) The scientific objective of the deep-water ambient noise research is to...forces in silts and clays and the role they play in controlling wave speeds and attenuations. On a 2 quantum mechanical level, these forces are... clays . APPROACH 1) Deep-water ambient noise Three deep-diving, autonomous instrument platforms, known as Deep Sound I, II, & III, have been
NASA Technical Reports Server (NTRS)
Warne, L.; Jaggard, D. L.; Elachi, C.
1979-01-01
The relationship between the wave tilt and the electrical parameters of a multilayered structure is investigated. Particular emphasis is placed on the inverse problem associated with the sounding planetary surfaces. An inversion technique, based on multifrequency wave tilt, is proposed and demonstrated with several computer models. It is determined that there is close agreement between the electrical parameters used in the models and those in the inversion values.
Schwalenberg, Simon
2005-06-01
The present work represents a first attempt to perform computations of output intensity distributions for different parametric holographic scattering patterns. Based on the model for parametric four-wave mixing processes in photorefractive crystals and taking into account realistic material properties, we present computed images of selected scattering patterns. We compare these calculated light distributions to the corresponding experimental observations. Our analysis is especially devoted to dark scattering patterns as they make high demands on the underlying model.
NASA Astrophysics Data System (ADS)
Taki, Majid; San Miguel, Maxi; Santagiustina, Marco
2000-02-01
Degenerate optical parametric oscillators can exhibit both uniformly translating fronts and nonuniformly translating envelope fronts under the walk-off effect. The nonlinear dynamics near threshold is shown to be described by a real convective Swift-Hohenberg equation, which provides the main characteristics of the walk-off effect on pattern selection. The predictions of the selected wave vector and the absolute instability threshold are in very good quantitative agreement with numerical solutions found from the equations describing the optical parametric oscillator.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; MacFarlane, Alaina M.; Morris, Gary A.; Yorks, John E.; Miller, Sonya K.; Taubman, Brett F.; Verver, Ge; Voemel, Holger; Avery, Melody A.; Hair, Johnathan W.;
2009-01-01
During the months of July-August 2007 NASA conducted a research campaign called the Tropical Composition, Clouds and Climate Coupling (TC4) experiment. Vertical profiles of ozone were measured daily using an instrument known as an ozonesonde, which is attached to a weather balloon and launch to altitudes in excess of 30 km. These ozone profiles were measured over coastal Las Tablas, Panama (7.8N, 80W) and several times per week at Alajuela, Costa Rica (ION, 84W). Meteorological systems in the form of waves, detected most prominently in 100- 300 in thick ozone layer in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves ("GW," possibly Kelvin waves), occur with similar stricture and frequency over the Paramaribo (5.8N, 55W) and San Cristobal (0.925, 90W) sites of the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The gravity wave labeled layers in individual soundings correspond to cloud outflow as indicated by the tracers measured from the NASA DC-8 and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi-horizontal displacements, referred to as Rossby waves, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extra-tropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999-2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated meteorological waves appear to dominate ozone transport in the tropical tropopause layer.
Saturation of Langmuir waves in laser-produced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, K.L.
1996-04-01
This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments aremore » proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser.« less
Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave.
Hołyst, Robert; Litniewski, Marek; Garstecki, Piotr
2012-05-01
Molecular-dynamics simulations of the Lennard-Jones fluid (up to 10(7) atoms) are used to analyze the collapse of a nanoscopic bubble. The collapse is triggered by a traveling sound wave that forms a shock wave at the interface. The peak temperature T(max) in the focal point of the collapse is approximately ΣR(0)(a), where Σ is the surface density of energy injected at the boundary of the container of radius R(0) and α ≈ 0.4-0.45. For Σ = 1.6 J/m(2) and R(0) = 51 nm, the shock wave velocity, which is proportional to √Σ, reaches 3400 m/s (4 times the speed of sound in the liquid); the pressure at the interface, which is proportional to Σ, reaches 10 GPa; and T(max) reaches 40,000 K. The Rayleigh-Plesset equation together with the time of the collapse can be used to estimate the pressure at the front of the shock wave.
On Sound Reflection in Superfluid
NASA Astrophysics Data System (ADS)
Melnikovsky, L. A.
2008-02-01
We consider reflection of first and second sound waves by a rigid flat wall in superfluid. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at slanted incidence.
Noise, anti-noise and fluid flow control.
Williams, J E Ffowcs
2002-05-15
This paper celebrates Thomas Young's discovery that wave interference was responsible for much that is known about light and colour. A substantial programme of work has been aimed at controlling the noise of aerodynamic flows. Much of that field can be explained in terms of interference and it is argued in this paper that the theoretical techniques for analysing noise can also be seen to rest on interference effects. Interference can change the character of wave fields to produce, out of well-ordered fields, wave systems quite different from the interfering wave elements. Lighthill's acoustic analogy is described as an example of this effect, an example in which the exact model of turbulence-generated noise is seen to consist of elementary interfering sound waves; waves that are sometimes heard in advance of their sources. The paper goes on to describe an emerging field of technology where sound is suppressed by superimposing on it a destructively interfering secondary sound; one designed and manufactured specifically for interference. That sound is known as anti-sound, or anti-noise when the sound is chaotic enough. Examples are then referred to where the noisy effect to be controlled is actually a disturbance of a linearly unstable system; a disturbance that is destroyed by destructive interference with a deliberately constructed antidote. The practical benefits of this kind of instability control are much greater and can even change the whole character of flows. It is argued that completely unnatural unstable conditions can be held with active controllers generating destructively interfering elements. Examples are given in which gravitational instability of stratified fluids can be prevented. The Kelvin-Helmholtz instability of shear flows can also be avoided by simple controls. Those are speculative examples of what might be possible in future developments of an interference effect, which has made anti-noise a useful technology.
NASA Astrophysics Data System (ADS)
Rekhy, Anuj
Acoustic absorbers like foams, fiberglass or liners have been used commonly in structures for infrastructural, industrial, automotive and aerospace applications to mitigate noise. However, these conventional materials have limited effectiveness to mitigate low-frequency (LF) acoustic waves with frequency less than 400 Hz owing to the need for impractically large mass or volume. LF acoustic waves contribute significantly towards environmental noise pollution as well as unwanted structural responses. Therefore, there is a need to develop lightweight, compact, structurally-integrated solutions to mitigate LF noise in several applications. Inspired by metamaterials, which are man-made structural materials that derive their unique dynamic behavior not just from material constituents but more so from engineered configurations, tuned mass-loaded membranes as vibro-impact attachments on a baseline structure are investigated to determine their performance as a LF acoustic barrier. The hypothesis is that the LF incident waves are up-converted via impact to higher modes in the baseline structure which are far more evanescent and may then be effectively mitigated using conventional means. Such Metamaterials-Inspired Vibro-Impact Structures (MIVIS) could be tuned to match the dominant frequency content of LF acoustic sources in specific applications. Prototype MIVIS unit cells were designed and tested to study the energy transfer mechanism via impact-induced frequency up-conversion, and the consequent sound transmission loss. Structural acoustic simulations were done to predict responses using models based on normal incidence transmission loss tests. Experimental proof-of-concept was achieved and further correlations to simulations were utilized to optimize the energy up-conversion mechanism using parametric studies. Up to 36 dB of sound transmission loss increase is obtained at the anti-resonance frequency (326 Hz) within a tunable LF bandwidth of about 200 Hz while impact-induced up-conversion could enable further broadband transmission loss via subsequent dissipation in conventional absorbers. Moreover, this approach while minimizing parasitic mass addition retains or could conceivably augment primary functionalities of the baseline structure. Successful transition to applications could enable new mission capabilities for aerospace and military vehicles and help create quieter built environments.
Two-color walking Peregrine solitary waves.
Baronio, Fabio; Chen, Shihua; Mihalache, Dumitru
2017-09-15
We study the extreme localization of light, evolving upon a non-zero background, in two-color parametric wave interaction in nonlinear quadratic media. We report the existence of quadratic Peregrine solitary waves, in the presence of significant group-velocity mismatch between the waves (or Poynting vector beam walk-off), in the regime of cascading second-harmonic generation. This finding opens a novel path for the experimental demonstration of extreme rogue waves in ultrafast quadratic nonlinear optics.
Nonreciprocal Gain in Non-Hermitian Time-Floquet Systems
NASA Astrophysics Data System (ADS)
Koutserimpas, Theodoros T.; Fleury, Romain
2018-02-01
We explore the unconventional wave scattering properties of non-Hermitian systems in which amplification or damping are induced by time-periodic modulation. These non-Hermitian time-Floquet systems are capable of nonreciprocal operations in the frequency domain, which can be exploited to induce novel physical phenomena such as unidirectional wave amplification and perfect nonreciprocal response with zero or even negative insertion losses. This unique behavior is obtained by imparting a specific low-frequency time-periodic modulation to the complex coupling between lossless resonators, promoting only upward frequency conversion, and leading to nonreciprocal parametric gain. We provide a full-wave demonstration of our findings in a one-way microwave amplifier, and establish the potential of non-Hermitian time-Floquet devices for insertion-loss free microwave isolation and unidirectional parametric amplification.
Non-linear wave interaction in a magnetoplasma column. I - Theory. II Experiment
NASA Technical Reports Server (NTRS)
Larsen, J.-M.; Crawford, F. W.
1979-01-01
The paper presents an analysis of non-linear three-wave interaction for propagation along a cylindrical plasma column surrounded either by a metallic boundary, or by an infinite dielectric, and immersed in an infinite, static, axial magnetic field. An averaged Lagrangian method is used and the results are specialized to parametric amplification and mode conversion, assuming an undepleted pump wave. Computations are presented for a magneto-plasma column surrounded by free space, indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma parameters. In addition, experiments on non-linear mode conversion in a cylindrical magnetoplasma column are described. The results are compared with the theoretical predictions and good qualitative agreement is demonstrated.
Phase matched parametric amplification via four-wave mixing in optical microfibers.
Abdul Khudus, Muhammad I M; De Lucia, Francesco; Corbari, Costantino; Lee, Timothy; Horak, Peter; Sazio, Pier; Brambilla, Gilberto
2016-02-15
Four-wave mixing (FWM) based parametric amplification in optical microfibers (OMFs) is demonstrated over a wavelength range of over 1000 nm by exploiting their tailorable dispersion characteristics to achieve phase matching. Simulations indicate that for any set of wavelengths satisfying the FWM energy conservation condition there are two diameters at which phase matching in the fundamental mode can occur. Experiments with a high-power pulsed source working in conjunction with a periodically poled silica fiber (PPSF), producing both fundamental and second harmonic signals, are undertaken to investigate the possibility of FWM parametric amplification in OMFs. Large increases of idler output power at the third harmonic wavelength were recorded for diameters close to the two phase matching diameters. A total amplification of more than 25 dB from the initial signal was observed in a 6 mm long optical microfiber, after accounting for the thermal drift of the PPSF and other losses in the system.
Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho
2009-07-20
Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.
A Study of Fundamental Shock Noise Mechanisms
NASA Technical Reports Server (NTRS)
Meadows, Kristine R.
1997-01-01
This paper investigates two mechanisms fundamental to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. This numerical approach is validated by comparison with results obtained by linear theory for a small-disturbance case. Analysis of the perturbation energy with Myers' energy corollary demonstrates that acoustic energy is generated by the interaction of acoustic disturbances with shocks. This analysis suggests that shock motion generates acoustic and entropy disturbance energy. Shock deformation is modeled numerically by examining the interaction of a vortex ring with a shock. These numerical simulations demonstrate the generation of both an acoustic wave and contact surfaces. The acoustic wave spreads cylindrically. The sound intensity is highly directional and the sound pressure increases with increasing shock strength. The numerically determined relationship between the sound pressure and the Mach number is found to be consistent with experimental observations of shock noise. This consistency implies that a dominant physical process in the generation of shock noise is modeled in this study.
A convergent series expansion for hyperbolic systems of conservation laws
NASA Technical Reports Server (NTRS)
Harabetian, E.
1985-01-01
The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.
Intermittent large amplitude internal waves observed in Port Susan, Puget Sound
NASA Astrophysics Data System (ADS)
Harris, J. C.; Decker, L.
2017-07-01
A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.
Reichenbach, Tobias; Stefanovic, Aleksandra; Nin, Fumiaki; Hudspeth, A. J.
2012-01-01
Summary Sound is detected and converted into electrical signals within the ear. The cochlea not only acts as a passive detector of sound, however, but can also produce tones itself. These otoacoustic emissions are a striking manifestation of the cochlea’s mechanical active process. A controversy remains of how these mechanical signals propagate back to the middle ear, from which they are emitted as sound. Here we combine theoretical and experimental studies to show that mechanical signals can be transmitted by waves on Reissner’s membrane, an elastic structure within the cochea. We develop a theory for wave propagation on Reissner’s membrane and its role in otoacoustic emissions. Employing a scanning laser interferometer, we measure traveling waves on Reissner’s membrane in the gerbil, guinea pig, and chinchilla. The results accord with the theory and thus support a role for Reissner’s membrane in otoacoustic emissions. PMID:22580949
NASA Technical Reports Server (NTRS)
Tam, C. K. W.; Burton, D. E.
1984-01-01
An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
The benchmark problems in Category 1 (Internal Propagation) of the third Computational Aeroacoustics (CAA) Work-shop sponsored by NASA Glenn Research Center are solved using the space-time conservation element and solution element (CE/SE) method. The first problem addresses the propagation of sound waves through a nearly choked transonic nozzle. The second one concerns shock-sound interaction in a supersonic nozzle. A quasi one-dimension CE/SE Euler solver for a nonuniform mesh is developed and employed to solve both problems. Numerical solutions are compared with the analytical solution for both problems. It is demonstrated that the CE/SE method is capable of solving aeroacoustic problems with/without shock waves in a simple way. Furthermore, the simple nonreflecting boundary condition used in the CE/SE method which is not based on the characteristic theory works very well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sysoeva, E. V., E-mail: tinlit@yandex.ru; Gusakov, E. Z.; Simonchik, L. V.
2016-07-15
The possibility of the low-threshold decay of an ordinary wave into an upper hybrid wave localized in a plasma column (or in an axisymmetric plasma filament) and a low-frequency wave is analyzed. It is shown that the threshold for such a decay, accompanied by the excitation of an ion-acoustic wave, can easily be overcome for plasma parameters typical of model experiments on the Granit linear plasma facility.
Square-Wave Model for a Pendulum with Oscillating Suspension
ERIC Educational Resources Information Center
Yorke, Ellen D.
1978-01-01
Demonstrates that if a sinusoidal oscillation of the point of support of a pendulum is approximated by a square wave, a matrix method may be used to discuss parametric resonance and the stability of the inverted pendulum. (Author/SL)
Plane-wave decomposition by spherical-convolution microphone array
NASA Astrophysics Data System (ADS)
Rafaely, Boaz; Park, Munhum
2004-05-01
Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.
Hearing the music in the spectrum of hydrogen
NASA Astrophysics Data System (ADS)
LoPresto, Michael C.
2016-03-01
Throughout a general education course on sound and light aimed at music and art students, analogies between subjective perceptions of objective properties of sound and light waves are a recurring theme. Demonstrating that the pitch and loudness of musical sounds are related to the frequency and intensity of a sound wave is simple and students are easily able to draw the analogies with the color and brightness of light. When considering an entire spectrum, the presence of multiple frequencies and wavelengths of different intensities is perceived by the ear as sound quality, or musical timbre, while the perception of the eye is the tone or hue of a color. What follows is a description of a demonstration that draws the analogy between musical sound quality and the tone or hue of light in which the emission spectrum of hydrogen is considered and actually played as a musical chord.
2010-07-01
by changes in wind and stability to a vertical wavelength lying outside the observable range. Gravity-wave parametrizations also represent intermit ...tropopause variability. J. Atmos. Sci. 65: 1817–1837. Salby ML. 1982. Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic
Cheng, Jeffrey Tao; Hamade, Mohamad; Merchant, Saumil N.; Rosowski, John J.; Harrington, Ellery; Furlong, Cosme
2013-01-01
Sound-induced motions of the surface of the tympanic membrane (TM) were measured using stroboscopic holography in cadaveric human temporal bones at frequencies between 0.2 and 18 kHz. The results are consistent with the combination of standing-wave-like modal motions and traveling-wave-like motions on the TM surface. The holographic techniques also quantified sound-induced displacements of the umbo of the malleus, as well as volume velocity of the TM. These measurements were combined with sound-pressure measurements near the TM to compute middle-ear input impedance and power reflectance at the TM. The results are generally consistent with other published data. A phenomenological model that behaved qualitatively like the data was used to quantify the relative magnitude and spatial frequencies of the modal and traveling-wave-like displacement components on the TM surface. This model suggests the modal magnitudes are generally larger than those of the putative traveling waves, and the computed wave speeds are much slower than wave speeds predicted by estimates of middle-ear delay. While the data are inconsistent with simple modal displacements of the TM, an alternate model based on the combination of modal motions in a lossy membrane can also explain these measurements without invoking traveling waves. PMID:23363110
Effect of wave localization on plasma instabilities. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Levedahl, William Kirk
1987-01-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
Lumped parametric model of the human ear for sound transmission.
Feng, Bin; Gan, Rong Z
2004-09-01
A lumped parametric model of the human auditoria peripherals consisting of six masses suspended with six springs and ten dashpots was proposed. This model will provide the quantitative basis for the construction of a physical model of the human middle ear. The lumped model parameters were first identified using published anatomical data, and then determined through a parameter optimization process. The transfer function of the middle ear obtained from human temporal bone experiments with laser Doppler interferometers was used for creating the target function during the optimization process. It was found that, among 14 spring and dashpot parameters, there were five parameters which had pronounced effects on the dynamic behaviors of the model. The detailed discussion on the sensitivity of those parameters was provided with appropriate applications for sound transmission in the ear. We expect that the methods for characterizing the lumped model of the human ear and the model parameters will be useful for theoretical modeling of the ear function and construction of the ear physical model.
Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.
NASA Astrophysics Data System (ADS)
van Doren, Thomas Walter
1993-01-01
This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.
Experiencing Earth's inaudible symphony
NASA Astrophysics Data System (ADS)
Marlton, Graeme; Charlton-Perez, Andrew; Harrison, Giles; Robson, Juliet
2017-04-01
Everyday the human body is exposed to thousands of different sounds; smartphones, music, cars and overhead aircraft to name a few. There are some sounds however which we cannot hear as they are below our range of hearing, sound at this level is known as infrasound and is of very low frequency. Such examples of infrasound are the sounds made by glaciers and volcanos, distant mining activities and the sound of the ocean. These sounds are emitted by these sources constantly all over the world and are recorded at infrasound stations, thus providing a recording of Earth's inaudible symphony. The aim of this collaboration between artists and scientists is to create a proof of concept immersive experience in which members of the public are invited to experience and understand infrasound. Participants will sit in an installation and be shown images of natural infrasound sources whilst their seat is vibrated at with an amplitude modulated version of the original infrasound wave. To further enhance the experience, subwoofers will play the same amplitude modulated soundwave to place the feeling of the infrasound wave passing through the installation. Amplitude modulation is performed so that a vibration is played at a frequency that can be felt by the human body but its amplitude varies at the frequency of the infrasound wave. The aim of the project is to see how humans perceive sounds that can't be heard and many did not know were there. The second part of the project is educational in which that this installation can be used to educate the general public about infrasound and its scientific uses. A simple demonstration for this session could be the playing of amplitude modulated infrasound wave that can be heard as opposed to felt as the transport of an installation at this is not possible and the associated imagery.
NASA Astrophysics Data System (ADS)
Atobe, Satoshi; Nonami, Shunsuke; Hu, Ning; Fukunaga, Hisao
2017-09-01
Foreign object impact events are serious threats to composite laminates because impact damage leads to significant degradation of the mechanical properties of the structure. Identification of the location and force history of the impact that was applied to the structure can provide useful information for assessing the structural integrity. This study proposes a method for identifying impact forces acting on CFRP (carbon fiber reinforced plastic) laminated plates on the basis of the sound radiated from the impacted structure. Identification of the impact location and force history is performed using the sound pressure measured with microphones. To devise a method for identifying the impact location from the difference in the arrival times of the sound wave detected with the microphones, the propagation path of the sound wave from the impacted point to the sensor is examined. For the identification of the force history, an experimentally constructed transfer matrix is employed to relate the force history to the corresponding sound pressure. To verify the validity of the proposed method, impact tests are conducted by using a CFRP cross-ply laminate as the specimen, and an impulse hammer as the impactor. The experimental results confirm the validity of the present method for identifying the impact location from the arrival time of the sound wave detected with the microphones. Moreover, the results of force history identification show the feasibility of identifying the force history accurately from the measured sound pressure using the experimental transfer matrix.
Waves and instabilities in an anisotropic universe
NASA Astrophysics Data System (ADS)
Papadopoulos, D.; Vlahos, L.; Esposito, F. P.
2002-01-01
The excitation of low frequency plasma waves in an expanding anisotropic cosmological model that contains a magnetic field frozen into the matter and pointing in the longitudinal direction is discussed. Using the exact equations governing finite-amplitude wave propagation in hydromagnetic media within the framework of the general theory of relativity, we show that a spectrum of magnetized sound waves will be excited and form large-scale ``damped oscillations'' in the expanding universe. The characteristic frequency of the excited waves is slightly shifted away from the sound frequency and the shift depends on the strength of the primordial magnetic field. This magnetic field dependent shift may have an effect on the acoustic peaks of the CMB.
Demonstrating Sound Wave Propagation with Candle Flame and Loudspeaker
NASA Astrophysics Data System (ADS)
Hrepic, Zdeslav; Nettles, Corey; Bonilla, Chelsea
2013-01-01
The motion of a candle flame in front of a loudspeaker has been suggested as a productive demonstration of the longitudinal wave nature of sound. The demonstration has been used also as a research tool to investigate students' understanding about sound.2-4 The underpinning of both applications is the expectation of a horizontal, back-and-forth vibration of the flame around its upright position. Unlike experts, who regularly anticipate this outcome, students with no previous formal knowledge typically anticipate that the flame will lean away from the speaker.
Infrasound induced instability by modulation of condensation process in the atmosphere.
Naugolnykh, Konstantin; Rybak, Samuil
2008-12-01
A sound wave in supersaturated water vapor can modulate both the process of heat release caused by condensation, and subsequently, as a result, the resonance interaction of sound with the modulated heat release provides sound amplification. High-intensity atmospheric perturbations such as cyclones and thunderstorms generate infrasound, which is detectable at large distances from the source. The wave-condensation instability can lead to variation in the level of infrasound radiation by a developing cyclone, and this can be as a precursor of these intense atmospheric events.
Waves and instabilities in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parchevsky, K. V.; Zhao, J.; Hartlep, T.
We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agreemore » well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.« less
Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant
NASA Astrophysics Data System (ADS)
Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.
2017-11-01
We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.
NASA Astrophysics Data System (ADS)
Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan
2016-05-01
Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.
Terahertz parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Yamashita, M.; Ogawa, Y.; Otani, C.; Kawase, K.
2005-12-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO 3 or MgO-doped LiNbO 3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a TPO, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which illegal, while one is an over-the-counter drug.
Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep.
Leminen, Miika M; Virkkala, Jussi; Saure, Emma; Paajanen, Teemu; Zee, Phyllis C; Santostasi, Giovanni; Hublin, Christer; Müller, Kiti; Porkka-Heiskanen, Tarja; Huotilainen, Minna; Paunio, Tiina
2017-03-01
Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results showed that the sound stimulation increased both slow wave (p = .002) and sleep spindle activity (p < .001). When overnight improvement of memory performance was compared between stimulus and control nights, we found a significant effect in word pair task but not in other memory tasks. The stimulation did not affect sleep structure or subjective sleep quality. We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].
Separation of acoustic waves in isentropic flow perturbations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henke, Christian, E-mail: christian.henke@atlas-elektronik.com
2015-04-15
The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier–Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfilsmore » Lighthill’s acoustic analogy. Moreover, we can define the deviations of the Navier–Stokes equation from the convective wave equation as “true” sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided. - Highlights: • First splitting of non-uniform flows in acoustic and non-acoustic components. • These result leads to a generalisation of sound which is compatible with Lighthill’s acoustic analogy. • A closed equation for the generation and propagation of sound is given.« less
ERIC Educational Resources Information Center
JENSON, PAUL G.; WESTERMEIER, FRANZ X.
A RESEARCH PROJECT USING THE OSCILLOSCOPE TO DETERMINE VISUAL FEEDBACK IN THE TEACHING OF FOREIGN LANGUAGE PRONUNCIATION WAS TERMINATED BECAUSE OF TECHNICAL DIFFICULTIES THAT COULD NOT BE RESOLVED WITH THE EQUIPMENT AVAILABLE. FAILURE IS ATTRIBUTED TO SUCH FACTORS AS (1) THE SPEECH SOUND WAVES SOUND THE SAME THOUGH THEIR WAVE SHAPES DIFFER, (2)…
Experimenting with End-Correction and the Speed of Sound
ERIC Educational Resources Information Center
LoPresto, Michael C.
2011-01-01
What follows is an alternative to the standard tuning fork and quarter-wave tube speed of sound experiment. Rather than adjusting the water level in a glass or plastic tube to vary the length of an air column, a set of resonance tubes of different lengths is used. The experiment still demonstrates the principles of standing waves in air columns…
Three-in-One Resonance Tube for Harmonic Series Sound Wave Experiments
ERIC Educational Resources Information Center
Jaafar, Rosly; Nazihah Mat Daud, Anis; Ali, Shaharudin; Kadri Ayop, Shahrul
2017-01-01
In this study we constructed a special three-in-one resonance tube for a harmonic series sound waves experiment. It is designed for three different experiments: both-open-end, one-closed-end and both-closed-end tubes. The resonance tube consists of a PVC conduit with a rectangular hole, rubber tube, plastic stopper with an embedded microphone and…
Viscous Torques on a Levitating Body
NASA Technical Reports Server (NTRS)
Busse, F.; Wang, T.
1982-01-01
New analytical expressions for viscous torque generated by orthogonal sound waves agree well with experiment. It is possible to calculate torque on an object levitated in a fluid. Levitation has applications in containerless materials processing, coating, and fabrication of small precision parts. Sound waves cause fluid particles to move in elliptical paths and induce azimuthal circulation in boundary layer, giving rise to time-averaged torque.
Cell type-specific suppression of mechanosensitive genes by audible sound stimulation.
Kumeta, Masahiro; Takahashi, Daiji; Takeyasu, Kunio; Yoshimura, Shige H
2018-01-01
Audible sound is a ubiquitous environmental factor in nature that transmits oscillatory compressional pressure through the substances. To investigate the property of the sound as a mechanical stimulus for cells, an experimental system was set up using 94.0 dB sound which transmits approximately 10 mPa pressure to the cultured cells. Based on research on mechanotransduction and ultrasound effects on cells, gene responses to the audible sound stimulation were analyzed by varying several sound parameters: frequency, wave form, composition, and exposure time. Real-time quantitative PCR analyses revealed a distinct suppressive effect for several mechanosensitive and ultrasound-sensitive genes that were triggered by sounds. The effect was clearly observed in a wave form- and pressure level-specific manner, rather than the frequency, and persisted for several hours. At least two mechanisms are likely to be involved in this sound response: transcriptional control and RNA degradation. ST2 stromal cells and C2C12 myoblasts exhibited a robust response, whereas NIH3T3 cells were partially and NB2a neuroblastoma cells were completely insensitive, suggesting a cell type-specific response to sound. These findings reveal a cell-level systematic response to audible sound and uncover novel relationships between life and sound.
Cell type-specific suppression of mechanosensitive genes by audible sound stimulation
Takahashi, Daiji; Takeyasu, Kunio; Yoshimura, Shige H.
2018-01-01
Audible sound is a ubiquitous environmental factor in nature that transmits oscillatory compressional pressure through the substances. To investigate the property of the sound as a mechanical stimulus for cells, an experimental system was set up using 94.0 dB sound which transmits approximately 10 mPa pressure to the cultured cells. Based on research on mechanotransduction and ultrasound effects on cells, gene responses to the audible sound stimulation were analyzed by varying several sound parameters: frequency, wave form, composition, and exposure time. Real-time quantitative PCR analyses revealed a distinct suppressive effect for several mechanosensitive and ultrasound-sensitive genes that were triggered by sounds. The effect was clearly observed in a wave form- and pressure level-specific manner, rather than the frequency, and persisted for several hours. At least two mechanisms are likely to be involved in this sound response: transcriptional control and RNA degradation. ST2 stromal cells and C2C12 myoblasts exhibited a robust response, whereas NIH3T3 cells were partially and NB2a neuroblastoma cells were completely insensitive, suggesting a cell type-specific response to sound. These findings reveal a cell-level systematic response to audible sound and uncover novel relationships between life and sound. PMID:29385174
Parametric resonance in quantum electrodynamics vacuum birefringence
NASA Astrophysics Data System (ADS)
Arza, Ariel; Elias, Ricardo Gabriel
2018-05-01
Vacuum magnetic birefringence is one of the most interesting nonlinear phenomena in quantum electrodynamics because it is a pure photon-photon result of the theory and it directly signalizes the violation of the classical superposition principle of electromagnetic fields in the full quantum theory. We perform analytical and numerical calculations when an electromagnetic wave interacts with an oscillating external magnetic field. We find that in an ideal cavity, when the external field frequency is around the electromagnetic wave frequency, the normal and parallel components of the wave suffer parametric resonance at different rates, producing a vacuum birefringence effect growing in time. We also study the case where there is no cavity and the oscillating magnetic field is spatially localized in a region of length L . In both cases we find also a rotation of the elliptical axis.
Parametric decay of an extraordinary electromagnetic wave in relativistic plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorofeenko, V. G.; Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.
2015-03-15
Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations showsmore » that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.« less
Sonotropic effects of commercial air transport sound on birds.
DOT National Transportation Integrated Search
1962-03-01
The Electra sound spectrum contains an audible chirp which appears identical in frequency and wave form to the chirp of field crickets. Field observations strongly indicate the sound of the taxiing Electra exerts an attraction for starlings, and poss...
Numerical Recovering of a Speed of Sound by the BC-Method in 3D
NASA Astrophysics Data System (ADS)
Pestov, Leonid; Bolgova, Victoria; Danilin, Alexandr
We develop the numerical algorithm for solving the inverse problem for the wave equation by the Boundary Control method. The problem, which we refer to as a forward one, is an initial boundary value problem for the wave equation with zero initial data in the bounded domain. The inverse problem is to find the speed of sound c(x) by the measurements of waves induced by a set of boundary sources. The time of observation is assumed to be greater then two acoustical radius of the domain. The numerical algorithm for sound reconstruction is based on two steps. The first one is to find a (sufficiently large) number of controls {f_j} (the basic control is defined by the position of the source and some time delay), which generates the same number of known harmonic functions, i.e. Δ {u_j}(.,T) = 0 , where {u_j} is the wave generated by the control {f_j} . After that the linear integral equation w.r.t. the speed of sound is obtained. The piecewise constant model of the speed is used. The result of numerical testing of 3-dimensional model is presented.
NASA Astrophysics Data System (ADS)
Sugimoto, Tsuneyoshi; Sugimoto, Kazuko; Kosuge, Nobuaki; Utagawa, Noriyuki; Katakura, Kageyoshi
2017-07-01
The noncontact acoustic inspection method focuses on the resonance phenomenon, and the target surface is measured by being vibrated with an airborne sound. It is possible to detect internal defects near the surface layer of a concrete structure from a long distance. However, it requires a fairly long measurement time to achieve the signal-to-noise (S/N) ratio just to find some resonance frequencies. In our method using the conventional waveform “single-tone burst wave”, only one frequency was used for one-sound-wave emission to achieve a high S/N ratio using a laser Doppler vibrometer (LDV) at a safe low power (e.g., He-Ne 1 mW). On the other hand, in terms of the difference in propagation velocity between laser light and sound waves, the waveform that can be used for high-speed measurement was devised using plural frequencies for one-sound-wave emission (“multitone burst wave”). The measurement time at 35 measurement points has been dramatically decreased from 210 to 28 s when using this waveform. Accordingly, 7.5-fold high-speed measurement became possible. By some demonstration experiments, we confirmed the effectiveness of our measurement technique.
Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M
2014-01-01
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.
Joint inversion of apparent resistivity and seismic surface and body wave data
NASA Astrophysics Data System (ADS)
Garofalo, Flora; Sauvin, Guillaume; Valentina Socco, Laura; Lecomte, Isabelle
2013-04-01
A novel inversion algorithm has been implemented to jointly invert apparent resistivity curves from vertical electric soundings, surface wave dispersion curves, and P-wave travel times. The algorithm works in the case of laterally varying layered sites. Surface wave dispersion curves and P-wave travel times can be extracted from the same seismic dataset and apparent resistivity curves can be obtained from continuous vertical electric sounding acquisition. The inversion scheme is based on a series of local 1D layered models whose unknown parameters are thickness h, S-wave velocity Vs, P-wave velocity Vp, and Resistivity R of each layer. 1D models are linked to surface-wave dispersion curves and apparent resistivity curves through classical 1D forward modelling, while a 2D model is created by interpolating the 1D models and is linked to refracted P-wave hodograms. A priori information can be included in the inversion and a spatial regularization is introduced as a set of constraints between model parameters of adjacent models and layers. Both a priori information and regularization are weighted by covariance matrixes. We show the comparison of individual inversions and joint inversion for a synthetic dataset that presents smooth lateral variations. Performing individual inversions, the poor sensitivity to some model parameters leads to estimation errors up to 62.5 %, whereas for joint inversion the cooperation of different techniques reduces most of the model estimation errors below 5% with few exceptions up to 39 %, with an overall improvement. Even though the final model retrieved by joint inversion is internally consistent and more reliable, the analysis of the results evidences unacceptable values of Vp/Vs ratio for some layers, thus providing negative Poisson's ratio values. To further improve the inversion performances, an additional constraint is added imposing Poisson's ratio in the range 0-0.5. The final results are globally improved by the introduction of this constraint further reducing the maximum error to 30 %. The same test was performed on field data acquired in a landslide-prone area close by the town of Hvittingfoss, Norway. Seismic data were recorded on two 160-m long profiles in roll-along mode using a 5-kg sledgehammer as source and 24 4.5-Hz vertical geophones with 4-m separation. First-arrival travel times were picked at every shot locations and surface wave dispersion curves extracted at 8 locations for each profile. 2D resistivity measurements were carried out on the same profiles using Gradient and Dipole-Dipole arrays with 2-m electrode spacing. The apparent resistivity curves were extracted at the same location as for the dispersion curves. The data were subsequently jointly inverted and the resulting model compared to individual inversions. Although models from both, individual and joint inversions are consistent, the estimation error is smaller for joint inversion, and more especially for first-arrival travel times. The joint inversion exploits different sensitivities of the methods to model parameters and therefore mitigates solution nonuniqueness and the effects of intrinsic limitations of the different techniques. Moreover, it produces an internally consistent multi-parametric final model that can be profitably interpreted to provide a better understanding of subsurface properties.
Lagos, Hellen Nataly Correia; Santos, Rosane Sampaio; Abdulmassih, Edna Marcia da Silva; Gallinea, Liliane Friedrich; Langone, Mariangela
2013-10-01
Introduction Technological advances have provided a large variety of instruments to view the swallowing event, aiding in the evaluation, diagnosis, and monitoring of disturbances. These advances include electromyography of the surface, dynamic video fluoroscopy, and most recently sonar Doppler. Objective To characterize swallowing sounds in typical children through the use of sonar Doppler. Method Thirty newborns participated in this prospective study. All newborns received breast milk through either their mother's breasts or bottles during data collection. The newborns were placed in either right lateral or left lateral positions when given breast milk through their mother's breasts and in a sitting position when given a bottle. There were five variables measured: initial frequency of sound wave (FoI), frequency of the first peak of the sound wave (FoP1), frequency of the second peak of the sound wave (FoP2), initial intensity and final sound wave (II and IF), and swallowing length (T), the time elapsed from the beginning until the end of the analyzed acoustic signal measured by the audio signal, in seconds. Results The values obtained in the initial frequency of the babies had a mean of 850 Hz. In terms of frequency of first peak, only three presented with a subtle peak, which was due to the elevated larynx position. Conclusion The use of sonar Doppler as a complementary exam for clinical evaluations is of upmost importance because it is nonintrusive and painless, and it is not necessary to place patients in a special room or expose them to radiation.
Lagos, Hellen Nataly Correia; Santos, Rosane Sampaio; Abdulmassih, Edna Marcia da Silva; Gallinea, Liliane Friedrich; Langone, Mariangela
2013-01-01
Introduction Technological advances have provided a large variety of instruments to view the swallowing event, aiding in the evaluation, diagnosis, and monitoring of disturbances. These advances include electromyography of the surface, dynamic video fluoroscopy, and most recently sonar Doppler. Objective To characterize swallowing sounds in typical children through the use of sonar Doppler. Method Thirty newborns participated in this prospective study. All newborns received breast milk through either their mother's breasts or bottles during data collection. The newborns were placed in either right lateral or left lateral positions when given breast milk through their mother's breasts and in a sitting position when given a bottle. There were five variables measured: initial frequency of sound wave (FoI), frequency of the first peak of the sound wave (FoP1), frequency of the second peak of the sound wave (FoP2), initial intensity and final sound wave (II and IF), and swallowing length (T), the time elapsed from the beginning until the end of the analyzed acoustic signal measured by the audio signal, in seconds. Results The values obtained in the initial frequency of the babies had a mean of 850 Hz. In terms of frequency of first peak, only three presented with a subtle peak, which was due to the elevated larynx position. Conclusion The use of sonar Doppler as a complementary exam for clinical evaluations is of upmost importance because it is nonintrusive and painless, and it is not necessary to place patients in a special room or expose them to radiation. PMID:25992041
NASA Technical Reports Server (NTRS)
Corda, Stephen (Inventor); Smith, Mark Stephen (Inventor); Myre, David Daniel (Inventor)
2008-01-01
The present invention blocks and/or attenuates the upstream travel of acoustic disturbances or sound waves from a flight vehicle or components of a flight vehicle traveling at subsonic speed using a local injection of a high molecular weight gas. Additional benefit may also be obtained by lowering the temperature of the gas. Preferably, the invention has a means of distributing the high molecular weight gas from the nose, wing, component, or other structure of the flight vehicle into the upstream or surrounding air flow. Two techniques for distribution are direct gas injection and sublimation of the high molecular weight solid material from the vehicle surface. The high molecular weight and low temperature of the gas significantly decreases the local speed of sound such that a localized region of supersonic flow and possibly shock waves are formed, preventing the upstream travel of sound waves from the flight vehicle.
Deltas, freshwater discharge, and waves along the Young Sound, NE Greenland.
Kroon, Aart; Abermann, Jakob; Bendixen, Mette; Lund, Magnus; Sigsgaard, Charlotte; Skov, Kirstine; Hansen, Birger Ulf
2017-02-01
A wide range of delta morphologies occurs along the fringes of the Young Sound in Northeast Greenland due to spatial heterogeneity of delta regimes. In general, the delta regime is related to catchment and basin characteristics (geology, topography, drainage pattern, sediment availability, and bathymetry), fluvial discharges and associated sediment load, and processes by waves and currents. Main factors steering the Arctic fluvial discharges into the Young Sound are the snow and ice melt and precipitation in the catchment, and extreme events like glacier lake outburst floods (GLOFs). Waves are subordinate and only rework fringes of the delta plain forming sandy bars if the exposure and fetch are optimal. Spatial gradients and variability in driving forces (snow and precipitation) and catchment characteristics (amount of glacier coverage, sediment characteristics) as well as the strong and local influence of GLOFs in a specific catchment impede a simple upscaling of sediment fluxes from individual catchments toward a total sediment flux into the Young Sound.
Changing space and sound: Parametric design and variable acoustics
NASA Astrophysics Data System (ADS)
Norton, Christopher William
This thesis examines the potential for parametric design software to create performance based design using acoustic metrics as the design criteria. A former soundstage at the University of Southern California used by the Thornton School of Music is used as a case study for a multiuse space for orchestral, percussion, master class and recital use. The criteria used for each programmatic use include reverberation time, bass ratio, and the early energy ratios of the clarity index and objective support. Using a panelized ceiling as a design element to vary the parameters of volume, panel orientation and type of absorptive material, the relationships between these parameters and the design criteria are explored. These relationships and subsequently derived equations are applied to Grasshopper parametric modeling software for Rhino 3D (a NURBS modeling software). Using the target reverberation time and bass ratio for each programmatic use as input for the parametric model, the genomic optimization function of Grasshopper - Galapagos - is run to identify the optimum ceiling geometry and material distribution.
NASA Astrophysics Data System (ADS)
Chen, Guangzhi; Pageot, Damien; Legland, Jean-Baptiste; Abraham, Odile; Chekroun, Mathieu; Tournat, Vincent
2018-04-01
The spectral element method is used to perform a parametric sensitivity study of the nonlinear coda wave interferometry (NCWI) method in a homogeneous sample with localized damage [1]. The influence of a strong pump wave on a localized nonlinear damage zone is modeled as modifications to the elastic properties of an effective damage zone (EDZ), depending on the pump wave amplitude. The local change of the elastic modulus and the attenuation coefficient have been shown to vary linearly with respect to the excitation amplitude of the pump wave as in previous experimental studies of Zhang et al. [2]. In this study, the boundary conditions of the cracks, i.e. clapping effects is taken into account in the modeling of the damaged zone. The EDZ is then modeled with random cracks of random orientations, new parametric studies are established to model the pump wave influence with two new parameters: the change of the crack length and the crack density. The numerical results reported constitute another step towards quantification and forecasting of the nonlinear acoustic response of a cracked material, which proves to be necessary for quantitative non-destructive evaluation.
Varma, N K; Kushwaha, R; Beydoun, A; Williams, W J; Drury, I
1997-10-01
The purpose of this paper is to compare the morphological features of interictal epileptiform discharges (IED) in patients with benign epilepsy of childhood with centrotemporal spikes to IED of those with symptomatic localization related epilepsies using information theory. Three patients from each clinical group were selected. Two-second epochs centered at the peak negativity of the sharp waves were analyzed from a referential montage during stage I sleep. The epochs from the two groups were compared using parametric and information theory analysis. Information analysis determined the likelihood of correctly identifying the clinical group based on the IED. Standard parametric, morphological and spectral analyses were also performed. We found no significant difference in the morphology of the sharp wave between the two groups. The after-going slow wave contained the greatest information that separated the two groups. This result was supported by morphological and spectral differences in the after-going slow wave. Greater distinguishing information is held in the after-going slow wave than the sharp wave for the identification of clinical groups. Information analysis may assist in differentiating clinical syndromes from EEG signals.
On the measurement of airborne, angular-dependent sound transmission through supercritical bars.
Shaw, Matthew D; Anderson, Brian E
2012-10-01
The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory.
Wide forbidden band induced by the interference of different transverse acoustic standing-wave modes
NASA Astrophysics Data System (ADS)
Tao, Zhiyong; He, Weiyu; Xiao, Yumeng; Wang, Xinlong
2008-03-01
A non-Bragg nature forbidden band is experimentally observed in an axially symmetric hard-walled duct with a periodically varying cross section. Unlike the familiar Bragg ones, the observed bandgap is found to result from the interference of sound wave modes having different transverse standing-wave profiles, the so-called non-Bragg resonance. The experiments also show that the non-Bragg band can be comparably wider than the Bragg one; furthermore, the sound transmission loss within the band can be much more effective, exhibiting the great significance of the non-Bragg resonance in wave propagation in periodic waveguides.
Active room compensation for sound reinforcement using sound field separation techniques.
Heuchel, Franz M; Fernandez-Grande, Efren; Agerkvist, Finn T; Shabalina, Elena
2018-03-01
This work investigates how the sound field created by a sound reinforcement system can be controlled at low frequencies. An indoor control method is proposed which actively absorbs the sound incident on a reflecting boundary using an array of secondary sources. The sound field is separated into incident and reflected components by a microphone array close to the secondary sources, enabling the minimization of reflected components by means of optimal signals for the secondary sources. The method is purely feed-forward and assumes constant room conditions. Three different sound field separation techniques for the modeling of the reflections are investigated based on plane wave decomposition, equivalent sources, and the Spatial Fourier transform. Simulations and an experimental validation are presented, showing that the control method performs similarly well at enhancing low frequency responses with the three sound separation techniques. Resonances in the entire room are reduced, although the microphone array and secondary sources are confined to a small region close to the reflecting wall. Unlike previous control methods based on the creation of a plane wave sound field, the investigated method works in arbitrary room geometries and primary source positions.
Calibration of phase contrast imaging on HL-2A Tokamak
NASA Astrophysics Data System (ADS)
Yu, Y.; Gong, S. B.; Xu, M.; Xiao, C. J.; Jiang, W.; Zhong, W. L.; Shi, Z. B.; Wang, H. J.; Wu, Y. F.; Yuan, B. D.; Lan, T.; Ye, M. Y.; Duan, X. R.; HL-2A Team
2017-10-01
Phase contrast imaging (PCI) has recently been developed on HL-2A tokamak. In this article we present the calibration of this diagnostic. This system is to diagnose chord integral density fluctuations by measuring the phase shift of a CO2 laser beam with a wavelength of 10.6 μm when the laser beam passes through plasma. Sound waves are used to calibrate PCI diagnostic. The signal series in different PCI channels show a pronounced modulation of incident laser beam by the sound wave. Frequency-wavenumber spectrum is achieved. Calibrations by sound waves with different frequencies exhibit a maximal wavenumber response of 12 cm-1. The conversion relationship between the chord integral plasma density fluctuation and the signal intensity is 2.3 × 1013 m-2/mV, indicating a high sensitivity.
Ultrasound Analysis of Slurries
Soong, Yee and Blackwell, Arthur G.
2005-11-01
An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N, gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.
Ultrasound Analysis Of Slurries
Soong, Yee; Blackwell, Arthur G.
2005-11-01
An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N.sub.2 gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.
The Influence of Trapped Particles on the Parametric Decay Instability of Near-Acoustic Waves
NASA Astrophysics Data System (ADS)
Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.
2017-10-01
We present quantitative measurements of a decay instability to lower frequencies of near-acoustic waves. These experiments are conducted on pure ion plasmas confined in a cylindrical Penning-Malmberg trap. The axisymmetric, standing plasma waves have near-acoustic dispersion, discretized by the axial wave number kz =mz(π /Lp) . The nonlinear coupling rates are measured between large amplitude mz = 2 (pump) waves and small amplitude mz = 1 (daughter) waves, which have a small frequency detuning Δω = 2ω1 -ω2 . Classical 3-wave parametric coupling rates are proportional to pump wave amplitude as Γ (δn2 /n0) , with oscillatory energy exchange for Γ < Δω / 2 and decay instability for Γ > Δω / 2 . Experiments on cold plasmas agree quantitatively for oscillatory energy exchange, and agree within a factor-of-two for decay instability rates. However, nascent theory suggest that this latter agreement is merely fortuitous, and that the instability mechanism is trapped particles. Experiments at higher temperatures show that trapped particles reduce the instability threshold below classical 3-wave theory predictions. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693. M. Affolter is supported by the DOE FES Postdoctoral Research Program administered by ORISE for the DOE. ORISE is managed by ORAU under DOE Contract Number DE-SC0014664.
Nostradamus: The radar that wanted to be a seismometer
NASA Astrophysics Data System (ADS)
Occhipinti, Giovanni; Dorey, Philippe; Farges, Thomas; Lognonné, Philippe
2010-09-01
Surface waves emitted after large earthquakes are known to induce, by dynamic coupling, atmospheric infrasonic waves propagating upward through the neutral and ionized atmosphere. Those waves have been detected in the past at ionospheric heights using a variety of techniques, such as HF Doppler sounding or GPS receivers. The HF Doppler technique, particularly sensitive to the ionospheric signature of Rayleigh waves is used here to show ionospheric perturbations consistent with the propagation of Rayleigh wave phases R1 and R2 following the Sumatra earthquake on the 28 March 2005 (M = 8.6). This is in our knowledge the first time that the phase R2 is detected by ionospheric sounding. In addition, we prove here that the ionospheric signature of R2 is also observed by over-the-horizon (OTH) Radar. The latter was never used before to detect seismic signature in the ionosphere. Adding the OTH Radar to the list of the “ionospheric seismometers” we discuss and compare the performances of the three different instruments mentioned above, namely HF Doppler sounding, GPS receivers and OTH radar.
Reflected wave manipulation by inhomogeneous impedance via varying-depth acoustic liners
NASA Astrophysics Data System (ADS)
Guo, Jingwen; Zhang, Xin; Fang, Yi; Fattah, Ryu
2018-05-01
Acoustic liners, consisting of a perforated panel affixed to a honeycomb core with a rigid back plate, are widely used for noise attenuation purpose. In this study, by exploiting inhomogeneous impedance properties, we report an experimental and numerical study on a liner-type acoustic metasurface, which possesses the functionality of both reflected wave manipulation and sound energy attenuation simultaneously. To realize the inhomogeneous acoustic impedance, an acoustic metasurface constructed by varying-depth acoustic liners is designed and fabricated. The reflected sound pressure fields induced by the metasurface are obtained in both experiments and simulations. A complete characterization of this metasurface is performed, including the effects of depth gradient, incident angle, and incident frequency. Anomalous reflection, apparent negative reflection, and conversion from an incident wave to a surface wave with strong energy dissipation are achieved by the structure. Moreover, our proposed structure can overcome the single frequency performance limitation that exists in conventional metasurfaces and performs well in a broadband frequency range. The proposed acoustic metasurface offers flexibility in controlling the direction of sound wave propagation with energy dissipation property and holds promise for various applications of noise reduction.
NASA Astrophysics Data System (ADS)
Sabiniarz, Patrick; Kropp, Wolfgang
2010-07-01
Although tyre/road noise has been a research subject for more than three decades, there is still no consensus in the literature as to which waves on a tyre are mainly responsible for the radiation of sound during rolling. Even the free vibrational behaviour of a stationary (non-rotating) tyre, not in contact with the ground, is still not well understood in the mid- and high-frequency ranges. Thus, gaining an improved understanding of this behaviour is a natural first step towards illuminating the question of which waves on a rolling tyre contribute to sound radiation. This is the topic of the present paper, in which a model based on the waveguide finite element method (WFEM) is used to study free wave propagation, on a stationary tyre, in the range 0-1500 Hz. In the low-frequency region (0-300 Hz), wave propagation is found to be rather straightforward, with two main wave-types present. Both have cross-section modes involving a nearly rigid motion of the belt. For higher frequencies (300-1500 Hz) the behaviour is more complex, including phenomena such as 'curve veering' and waves for which the phase speed and group speed have opposite signs. Wave-types identified in this region include (i) waves involving mainly sidewall deformation, (ii) belt bending waves, (iii) a wave with significant extensional deformation of the central belt region and (iv) a wave with a 'breathing' cross-section mode. The phase speed corresponding to found waves is computed and their radiation efficiency is discussed, assuming free-field conditions. In a future publication, the tyre model will be used in conjunction with a contact model and a radiation model to investigate the contribution of these waves to radiated sound during rolling.
Sound radiation from an infinite elastic cylinder with dual-wave propagation-intensity distributions
NASA Technical Reports Server (NTRS)
Fuller, C. R.
1988-01-01
The radiation of sound from an elastic cylindrical shell filled with fluid and supporting multiwave propagation is studied analytically. Combinations of supersonic and subsonic shell waves are considered. The radiated field is mapped by using acoustic intensity vectors evaluated at various locations. Both time averaged and instantaneous intensity are investigated. The acoustic intensity is seen to vary markedly with axial distance down the cylinder. The effect is shown to be associated with cross terms in the intensity relations, and its magnitude and location to depend upon the relative phase and amplitudes of individual waves. Subsonic shell waves are demonstrated to interact strongly with supersonic shell waves to cause a large modification in the radiated intensity distributions near the shell surface.
Kundt's Tube: An Acoustic Gas Analyzer
ERIC Educational Resources Information Center
Aristov, Natasha; Habekost, Gehsa; Habekost, Achim
2011-01-01
A Kundt tube is normally used to measure the speed of sound in gases. Therefore, from known speeds of sound, a Kundt tube can be used to identify gases and their fractions in mixtures. In these experiments, the speed of sound is determined by measuring the frequency of a standing sound wave at a fixed tube length, temperature, and pressure. This…
Boundary-layer receptivity of sound with roughness
NASA Technical Reports Server (NTRS)
Saric, William S.; Hoos, Jon A.; Radeztsky, Ronald H.
1991-01-01
An experimental study of receptivity was carried out using an acoustical disturbance in the freestream. The receptivity was enhanced by using a uniform two-dimensional roughness strip (tape). The roughness strip generated the local adjustment in the flow needed to couple the long-wavelength sound wave with the short-wavelength T-S wave. The method proved to be highly sensitive, with slight changes in the forcing frequency or in the height of the 2D roughness element having a strong effect on the amplitude of the observed T-S wave.
Ultrasonic waves in classical gases
NASA Astrophysics Data System (ADS)
Magner, A. G.; Gorenstein, M. I.; Grygoriev, U. V.
2017-12-01
The velocity and absorption coefficient for the plane sound waves in a classical gas are obtained by solving the Boltzmann kinetic equation, which describes the reaction of the single-particle distribution function to a periodic external field. Within the linear response theory, the nonperturbative dispersion equation valid for all sound frequencies is derived and solved numerically. The results are in agreement with the approximate analytical solutions found for both the frequent- and rare-collision regimes. These results are also in qualitative agreement with the experimental data for ultrasonic waves in dilute gases.
OCEAN BOTTOM, ULTRASONIC PROPERTIES), (*UNDERWATER SOUND, SOUND TRANSMISSION), KAOLINITE , ABSORPTION, COMPRESSIVE PROPERTIES, POROSITY, VELOCITY, VISCOELASTICITY, MATHEMATICAL MODELS, THESES, SEDIMENTATION
NASA Astrophysics Data System (ADS)
Guigou, Catherine Renee J.
1992-01-01
Much progress has been made in recent years in active control of sound radiation from vibrating structures. Reduction of the far-field acoustic radiation can be obtained by directly modifying the response of the structure by applying structural inputs rather than by adding acoustic sources. Discontinuities, which are present in many structures are often important in terms of sound radiation due to wave scattering behavior at their location. In this thesis, an edge or boundary type discontinuity (clamped edge) and a point discontinuity (blocking mass) are analytically studied in terms of sound radiation. When subsonic vibrational waves impinge on these discontinuities, large scattered sound levels are radiated. Active control is then achieved by applying either control forces, which approximate shakers, or pairs of control moments, which approximate piezoelectric actuators, near the discontinuity. Active control of sound radiation from a simply-supported beam is also examined. For a single frequency, the flexural response of the beam subject to an incident wave or an input force (disturbance) and to control forces or control moments is expressed in terms of waves of both propagating and near-field types. The far-field radiated pressure is then evaluated in terms of the structural response, using Rayleigh's formula or a stationary phase approach, depending upon the application. The control force and control moment magnitudes are determined by optimizing a quadratic cost function, which is directly related to the control performance. On determining the optimal control complex amplitudes, these can be resubstituted in the constitutive equations for the system under study and the minimized radiated fields can be evaluated. High attenuation in radiated sound power and radiated acoustic pressure is found to be possible when one or two active control actuators are located near the discontinuity, as is shown to be mostly associated with local changes in beam response near the discontinuity. The effect of the control actuators on the far-field radiated pressure, the wavenumber spectrum, the flexural displacement and the near-field time averaged intensity and pressure distributions are studied in order to further understand the control mechanisms. The influence of the near-field structural waves is investigated as well. Some experimental results are presented for comparison.
NASA Astrophysics Data System (ADS)
Wakamatsu, Tatsuya; Ohta, Kenji; Yagi, Takashi; Hirose, Kei; Ohishi, Yasuo
2018-01-01
By comparing the seismic wave velocity profile in the Earth with laboratory data of the sound velocity of iron alloys, we can infer the chemical composition of materials in the Earth's core. The sound velocity of pure iron (Fe) has been sufficiently measured using various techniques, while experimental study on the sound velocity of iron-nickel (Fe-Ni) alloys is limited. Here, we measured longitudinal wave velocities of hexagonal-close-packed (hcp) structured Fe up to 29 GPa, Fe-5 wt% Ni, and Fe-15 wt% Ni up to 64 GPa via a combination of the femtosecond pulse laser pump-probe technique and a diamond anvil cell at room temperature condition. We found that the effect of Ni on the sound velocity of an Fe-based alloy is weaker than that determined by previous experimental study. In addition, we obtained the parameters of Birch's law to be V P = 1146(57)ρ - 3638(567) for Fe-5 wt% Ni and V P = 1141(45)ρ- 3808(446) for Fe-15 wt% Ni, respectively, where V P is longitudinal wave velocity (m/s) and ρ is density (g/cm3).
NASA Astrophysics Data System (ADS)
Wakamatsu, Tatsuya; Ohta, Kenji; Yagi, Takashi; Hirose, Kei; Ohishi, Yasuo
2018-06-01
By comparing the seismic wave velocity profile in the Earth with laboratory data of the sound velocity of iron alloys, we can infer the chemical composition of materials in the Earth's core. The sound velocity of pure iron (Fe) has been sufficiently measured using various techniques, while experimental study on the sound velocity of iron-nickel (Fe-Ni) alloys is limited. Here, we measured longitudinal wave velocities of hexagonal-close-packed (hcp) structured Fe up to 29 GPa, Fe-5 wt% Ni, and Fe-15 wt% Ni up to 64 GPa via a combination of the femtosecond pulse laser pump-probe technique and a diamond anvil cell at room temperature condition. We found that the effect of Ni on the sound velocity of an Fe-based alloy is weaker than that determined by previous experimental study. In addition, we obtained the parameters of Birch's law to be V P = 1146(57) ρ - 3638(567) for Fe-5 wt% Ni and V P = 1141(45) ρ- 3808(446) for Fe-15 wt% Ni, respectively, where V P is longitudinal wave velocity (m/s) and ρ is density (g/cm3).
Complete geometric computer simulation of a classical guitar
NASA Astrophysics Data System (ADS)
Bader, Rolf
2005-04-01
The aim of formulating a complete model of a classical guitar body as a transient-time geometry is to get detailed insight into the vibrating and coupling behavior of the time-dependent guitar system. Here, especially the evolution of the guitars initial transient can be looked at with great detail and the produced sounds from this computer implementation can be listened to. Therefore, a stand-alone software was developed to build, calculate, and visualize the guitar. The model splits the guitar body into top plate, back plate, ribs, neck, inclosed air, and strings and couples these parts together including the coupling of bending waves and in-plane waves of these plates to serve for a better understanding of the coupling between the guitar parts and between these two kinds of waves. The resulting waveforms are integrated over the geometry and the resulting sounds show up the different roles and contributions of the different guitar body parts to the guitar sound. Here cooperation with guitar makers is established, as changes on the guitars geometry on the resulting sound can be considered as computer simulation and promising new sound qualities can then be used again in real instrument production.
Topological Transport of Light and Sound
NASA Astrophysics Data System (ADS)
Brendel, Christian; Peano, Vittorio; Schmidt, Michael; Marquardt, Florian
Since they exploit global features of a material's band structure, topological states of matter are particularly robust. Having already been observed for electrons, atoms, and photons, it is an outstanding challenge to create a Chern insulator of sound waves in the solid state. In this work, we propose an implementation based on cavity optomechanics in a photonic crystal. We demonstrate the feasibility of our proposal by means of an effective lattice model as well as first principle simulations. The topological properties of the sound waves can be wholly tuned in situ by adjusting the amplitude and frequency of a driving laser that controls the optomechanical interaction between light and sound. The resulting chiral, topologically protected phonon transport can be probed completely optically.
Acoustic holography: Problems associated with construction and reconstruction techniques
NASA Technical Reports Server (NTRS)
Singh, J. J.
1978-01-01
The implications of the difference between the inspecting and interrogating radiations are discussed. For real-time, distortionless, sound viewing, it is recommended that infrared radiation of wavelength comparable to the inspecting sound waves be used. The infrared images can be viewed with (IR visible) converter phosphors. The real-time display of the visible image of the acoustically-inspected object at low sound levels such as are used in medical diagnosis is evaluated. In this connection attention is drawn to the need for a phosphor screen which is such that its optical transmission at any point is directly related to the incident electron beam intensity at that point. Such a screen, coupled with an acoustical camera, can enable instantaneous sound wave reconstruction.
3D simulation of an audible ultrasonic electrolarynx using difference waves.
Mills, Patrick; Zara, Jason
2014-01-01
A total laryngectomy removes the vocal folds which are fundamental in forming voiced sounds that make speech possible. Although implanted prosthetics are commonly used in developed countries, simple handheld vibrating electrolarynxes are still common worldwide. These devices are easy to use but suffer from many drawbacks including dedication of a hand, mechanical sounding voice, and sound leakage. To address some of these drawbacks, we introduce a novel electrolarynx that uses vibro-acoustic interference of dual ultrasonic waves to generate an audible fundamental frequency. A 3D simulation of the principles of the device is presented in this paper.
Radiation of sound from unflanged cylindrical ducts
NASA Technical Reports Server (NTRS)
Hartharan, S. L.; Bayliss, A.
1983-01-01
Calculations of sound radiated from unflanged cylindrical ducts are presented. The numerical simulation models the problem of an aero-engine inlet. The time dependent linearized Euler equations are solved from a state of rest until a harmonic solution is attained. A fourth order accurate finite difference scheme is used and solutions are obtained from a fully vectorized Cyber-203 computer program. Cases of both plane waves and spin modes are treated. Spin modes model the sound generated by a turbofan engine. Boundary conditions for both plane waves and spin modes are treated. Solutions obtained are compared with experiments conducted at NASA Langley Research Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galechyan, G.A.; Anna, P.R.
One of the main problems in low temperature plasma is control plasma parameters at fixed values of current and gas pressure in the discharge. It is known that an increase in the intensity of sound wave directed along the positive column to values in excess of a definite threshold leads to essential rise of the temperature of electrons. However, no less important is the reduction of electron temperature in the discharge down to the value less than that in plasma in the absence external influence. It is known that to reduce the electron temperature in the plasma of CO{sub 2}more » laser, easily ionizable admixture are usually introduced in the discharge area with the view of increasing the overpopulation. In the present work we shall show that the value of electron temperature can be reduced by varying of sound wave intensity at its lower values. The experiment was performed on an experimental setup consisted of the tube with length 52 cm and diameter 9.8 cm, two electrodes placed at the distance of 27 cm from each other. An electrodynamical radiator of sound wave was fastened to one of tube ends. Fastened to the flange at the opposite end was a microphone for the control of sound wave parameters. The studies were performed in range of pressures from 40 to 180 Torr and discharge currents from 40 to 110 mA. The intensity of sound wave was varied from 74 to 92 dB. The measurement made at the first resonance frequency f = 150 Hz of sound in the discharge tube, at which a quarter of wave length keep within the length of the tube. The measurement of longitudinal electric field voltage in plasma of positive column was conducted with the help of two probes according to the compensation method. Besides, the measurement of gas temperature in the discharge were taken. Two thermocouple sensors were arranged at the distance of 8 cm from the anode, one of them being installed on the discharge tube axis, the second-fixed the tube wall.« less
Sound Visualization and Holography
ERIC Educational Resources Information Center
Kock, Winston E.
1975-01-01
Describes liquid surface holograms including their application to medicine. Discusses interference and diffraction phenomena using sound wave scanning techniques. Compares focussing by zone plate to holographic image development. (GH)
Fukuike, C; Kodama, N; Manda, Y; Hashimoto, Y; Sugimoto, K; Hirata, A; Pan, Q; Maeda, N; Minagi, S
2015-05-01
The wave analysis of swallowing sounds has been receiving attention because the recording process is easy and non-invasive. However, up until now, an expert has been needed to visually examine the entire recorded wave to distinguish swallowing from other sounds. The purpose of this study was to establish a methodology to automatically distinguish the sound of swallowing from sound data recorded during a meal in the presence of everyday ambient sound. Seven healthy participants (mean age: 26·7 ± 1·3 years) participated in this study. A laryngeal microphone and a condenser microphone attached to the nostril were used for simultaneous recording. Recoding took place while participants were taking a meal and talking with a conversational partner. Participants were instructed to step on a foot pedal trigger switch when they swallowed, representing self-enumeration of swallowing, and also to achieve six additional noise-making tasks during the meal in a randomised manner. The automated analysis system correctly detected 342 out of the 352 self-enumerated swallowing events (sensitivity: 97·2%) and 479 out of the 503 semblable wave periods of swallowing (specificity: 95·2%). In this study, the automated detection system for swallowing sounds using a nostril microphone was able to detect the swallowing event with high sensitivity and specificity even under the conditions of daily life, thus showing potential utility in the diagnosis or screening of dysphagic patients in future studies. © 2014 John Wiley & Sons Ltd.
Radio Sounding of the Magnetopause from the Ground (NIRFI Part)
2000-04-06
subsolar point sounding from SURA location leads to oblique sounding wave propagation through the ionosphere when penetration condition requires less... ecliptic plane (along the direction of solar wind sector boundaries, morning hours) • near the subsolar point (along the solar wind velocity, noon
Effects of nanosilver on sound absorption coefficients in solid wood species.
Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib
2016-06-01
Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens.
Boundary element analyses for sound transmission loss of panels.
Zhou, Ran; Crocker, Malcolm J
2010-02-01
The sound transmission characteristics of an aluminum panel and two composite sandwich panels were investigated by using two boundary element analyses. The effect of air loading on the structural behavior of the panels is included in one boundary element analysis, by using a light-fluid approximation for the eigenmode series to evaluate the structural response. In the other boundary element analysis, the air loading is treated as an added mass. The effect of the modal energy loss factor on the sound transmission loss of the panels was investigated. Both boundary element analyses were used to study the sound transmission loss of symmetric sandwich panels excited by a random incidence acoustic field. A classical wave impedance analysis was also used to make sound transmission loss predictions for the two foam-filled honeycomb sandwich panels. Comparisons between predictions of sound transmission loss for the two foam-filled honeycomb sandwich panels excited by a random incidence acoustic field obtained from the wave impedance analysis, the two boundary element analyses, and experimental measurements are presented.
Spatiotemporally Resolved Acoustics in a Photoelastic Granular Material
NASA Astrophysics Data System (ADS)
Owens, Eli; Daniels, Karen
2010-03-01
In granular materials, stress transmission is manifested as force chains that propagate through the material in a branching structure. We send acoustic pulses into a two dimensional photoelastic granular material in which force chains are visible and investigate how the force chains influence the amplitude, speed, and dispersion of the sound waves. We observe particle scale dynamics using two methods, movies which provide spatiotemporally resolved measurements and accelerometers within individual grains. The movies allow us to visualize the sound's path through the material, revealing that the sound travels primarily along the force chains. Using the brightness of the photoelastic particles as a measure of the force chain strength, we observe that the sound travels both faster and at higher amplitude along the strong force chains. An exception to this trend is seen in transient force chains that only exist while the sound is closing particle contacts. We also measure the frequency dependence of the amplitude, speed, and dispersion of the sound wave.
Role of entrainment in convectively-coupled equatorial waves in an aquaplanet model
NASA Astrophysics Data System (ADS)
Peatman, Simon; Methven, John; Woolnough, Steve
2016-04-01
Equatorially-trapped waves are known to be one of the key phenomena in determining the distribution of convective precipitation in the tropics as well as being crucial to the dynamics of the Madden-Julian Oscillation. However, numerical weather prediction models struggle to sustain such waves for a realistic length of time, which has a significant impact on forecasting precipitation for regions such as equatorial Africa. It has been found in the past that enhancing the rate of moisture entrainment can improve certain aspects of parametrized tropical convection in climate models. A parameter F controls the rate of entrainment into the convective plume for deep- and mid-level convection, with F = 1 denoting the control case. Here it is found in an aquaplanet simulation that F > 1 produces more convective precipitation at all zonal wavenumbers. Furthermore, Kelvin wave activity increases for waves with low frequency and zonal wavenumber but is slightly suppressed for shorter, higher-frequency waves, and vice versa for westward-propagating waves. A change in entrainment rate also brings about a change in the basic state wind and humidity fields. Therefore, the question arises as to whether changes in wave activity are due directly to changes in the coupling to the humidity in the waves by entrainment or due to changes in the basic state. An experiment was devised in which the convective parametrization scheme is allowed to entrain a weighted sum of the environmental humidity and a prescribed zonally-symmetric climatology, with a parameter α controlling the extent of the decoupling from the environment. Experiments with this new mechanism in the parametrization scheme reveal a complex relationship. For long waves at low frequency (period > ˜13 days), removing zonal asymmetry in the humidity seen by the entrainment scheme has very little influence on the ratio of eastward- to westward-propagating power. At higher frequencies and zonal wavenumbers, removing this zonal asymmetry acts to suppress wave activity. Enhanced entrainment rate relative to the control case is also shown to slow the phase speed of Kelvin waves by around 20%. The phase speed depends also on the decoupling parameter α, with the minimum speed occurring around the special case α = 1 - 1/F , when the basic state humidity is entrained at the enhanced rate and perturbations from it are entrained at the control rate.
Nonparaxial wave beams and packets with general astigmatism
NASA Astrophysics Data System (ADS)
Kiselev, A. P.; Plachenov, A. B.; Chamorro-Posada, P.
2012-04-01
We present exact solutions of the wave equation involving an arbitrary wave form with a phase closely similar to the general astigmatic phase of paraxial wave optics. Special choices of the wave form allow general astigmatic beamlike and pulselike waves with a Gaussian-type unrestricted localization in space and time. These solutions are generalizations of the known Bateman-type waves obtained from the connection existing between beamlike solutions of the paraxial parabolic equation and relatively undistorted wave solutions of the wave equation. As a technical tool, we present a full description of parametrizations of 2×2 symmetric matrices with positive imaginary part, which arise in the theory of Gaussian beams.
Miles, J
1980-04-01
Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.
The photon: Experimental emphasis on its wave-particle duality
NASA Technical Reports Server (NTRS)
Shih, Yan-Hua; Sergienko, A. V.; Rubin, Morton H.; Kiess, Thomas E.; Alley, Carroll O.
1994-01-01
Two types of Einstein-Podolsky-Rosen experiments were demonstrated recently in our laboratory. It is interesting to see that in an interference experiment (wave-like experiment) the photon exhibits its particle property, and in a beam-splitting experiment (particle-like experiment) the photon exhibits its wave property. The two-photon states are produced from Type 1 and Type 2 optical spontaneous parametric down conversion, respectively.
The Physiological Basis of Chinese Höömii Generation.
Li, Gelin; Hou, Qian
2017-01-01
The study aimed to investigate the physiological basis of vibration mode of sound source of a variety of Mongolian höömii forms of singing in China. The participant is a Mongolian höömii performing artist who was recommended by the Chinese Medical Association of Art. He used three types of höömii, namely vibration höömii, whistle höömii, and overtone höömii, which were compared with general comfortable pronunciation of /i:/ as control. Phonation was observed during /i:/. A laryngostroboscope (Storz) was used to determine vibration source-mucosal wave in the throat. For vibration höömii, bilateral ventricular folds approximated to the midline and made contact at the midline during pronunciation. Ventricular and vocal folds oscillated together as a single unit to form a composite vibration (double oscillator) sound source. For whistle höömii, ventricular folds approximated to the midline to cover part of vocal folds, but did not contact each other. It did not produce mucosal wave. The vocal folds produced mucosal wave to form a single vibration sound source. For overtone höömii, the anterior two-thirds of ventricular folds touched each other during pronunciation. The last one-third produced the mucosal wave. The vocal folds produced mucosal wave at the same time, which was a composite vibration (double oscillator) sound source mode. The Höömii form of singing, including mixed voices and multivoice, was related to the presence of dual vibration sound sources. Its high overtone form of singing (whistle höömii) was related to stenosis at the resonance chambers' initiation site (ventricular folds level). Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
The Role of Hydromagnetic Waves in the Magnetosphere and the Ionosphere
1991-01-31
of right-hand-polarized waves in instabilities, we follow the examples discussed by Wong interplanetary shocks and in the terrestrial foreshock and... foreshock , (Received January 14, 1988;J. Geophys. Res., 90, 1429, 1985. Spangler, S.R., and J.P. Sheerin, Alfv6.n wave revised April 15, 1988;collapse...bow shocks,2 and in the interplanetary shocks and the a four-wave parametric coupling process is a.alyzed for the terrestrial foreshock .3 .4 Moreover
The NASA-LeRC wind turbine sound prediction code
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1981-01-01
Since regular operation of the DOE/NASA MOD-1 wind turbine began in October 1979 about 10 nearby households have complained of noise from the machine. Development of the NASA-LeRC with turbine sound prediction code began in May 1980 as part of an effort to understand and reduce the noise generated by MOD-1. Tone sound levels predicted with this code are in generally good agreement with measured data taken in the vicinity MOD-1 wind turbine (less than 2 rotor diameters). Comparison in the far field indicates that propagation effects due to terrain and atmospheric conditions may be amplifying the actual sound levels by about 6 dB. Parametric analysis using the code has shown that the predominant contributions to MOD-1 rotor noise are: (1) the velocity deficit in the wake of the support tower; (2) the high rotor speed; and (3) off column operation.
Voinovich, Peter; Merlen, Alain
2005-12-01
The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.
Development of a wave-induced forcing threshold for nearshore impact of Wave Energy Converter arrays
NASA Astrophysics Data System (ADS)
O'Dea, A.; Haller, M. C.; Ozkan-Haller, H. T.
2016-02-01
Wave-induced forcing is a function of spatial gradients in the wave radiation stresses and is the main driver of alongshore currents, rip currents, and nearshore sediment transport. The installation of nearshore Wave Energy Converter (WEC) arrays may cause significant changes in the surf zone radiation stresses and could therefore impact nearshore littoral processes. In the first part of this study, a new threshold for nearshore hydrodynamic impact due to the presence of WEC devices is established based on changes in the alongshore radiation stress gradients shoreward of WEC arrays. The threshold is defined based on the relationship between nearshore radiation stresses and alongshore currents as observed in field data. Next, we perform a parametric study of the nearshore impact of WEC arrays using the SWAN wave model. Trials are conducted on an idealized, alongshore-uniform beach with a range of WEC array configurations, locations, and incident wave conditions, and conditions that generate radiation stress gradients above the impact threshold are identified. Finally, the same methodology is applied to two wave energy test sites off the coast of Newport, OR with more complicated bathymetries. Although the trends at the field sites are similar to those seen in the parametric study, the location and extent of the changes in the alongshore radiation stress gradients appear to be heavily influenced by the local bathymetry.
NASA Astrophysics Data System (ADS)
Voinovich, Peter; Merlen, Alain
2005-12-01
The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.
Minozzi, M; Bonora, S; Sergienko, A V; Vallone, G; Villoresi, P
2013-02-15
We present an efficient method for optimizing the spatial profile of entangled-photon wave function produced in a spontaneous parametric down conversion process. A deformable mirror that modifies a wavefront of a 404 nm CW diode laser pump interacting with a nonlinear β-barium borate type-I crystal effectively controls the profile of the joint biphoton function. The use of a feedback signal extracted from the biphoton coincidence rate is used to achieve the optimal wavefront shape. The optimization of the two-photon coupling into two, single spatial modes for correlated detection is used for a practical demonstration of this physical principle.
Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.
Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa
2009-12-01
We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.
NASA Astrophysics Data System (ADS)
Cao, Nan; Zhu, Hongna; Li, Peipei; Taccheo, Stefano; Zhu, Yuanna; Gao, Xiaorong; Wang, Zeyong
2018-06-01
A two-pump fiber optical parametric amplifier (FOPA) based on the photonic crystal fiber (PCF) in the telecommunication region is investigated numerically. The fiber loss and pump depletion are considered. The influences of the fiber length, input signal power, input pump power, and the center pump wavelength on the gain bandwidth, flatness, and peak gain are discussed. The 6-wave model-based analysis of two-pump FOPA is also achieved and compared with that based on the 4-wave model; furthermore, the gain properties of the FOPA based on the 6-wave model are optimized and investigated. The comparison results show that the PCF-based two-pump FOPA achieves flatter and wider gain spectra with less fiber length and input pump power compared to the two-pump FOPA based on the normal highly nonlinear fiber, where the obtained results show the great potential of the FOPA for the optical communication system.
NASA Astrophysics Data System (ADS)
Cao, Nan; Zhu, Hongna; Li, Peipei; Taccheo, Stefano; Zhu, Yuanna; Gao, Xiaorong; Wang, Zeyong
2018-03-01
A two-pump fiber optical parametric amplifier (FOPA) based on the photonic crystal fiber (PCF) in the telecommunication region is investigated numerically. The fiber loss and pump depletion are considered. The influences of the fiber length, input signal power, input pump power, and the center pump wavelength on the gain bandwidth, flatness, and peak gain are discussed. The 6-wave model-based analysis of two-pump FOPA is also achieved and compared with that based on the 4-wave model; furthermore, the gain properties of the FOPA based on the 6-wave model are optimized and investigated. The comparison results show that the PCF-based two-pump FOPA achieves flatter and wider gain spectra with less fiber length and input pump power compared to the two-pump FOPA based on the normal highly nonlinear fiber, where the obtained results show the great potential of the FOPA for the optical communication system.
NASA Astrophysics Data System (ADS)
Wilhelm, Jennifer Anne
This case study examined what student content understanding could occur in an inner city Industrial Electronics classroom located at Tree High School where project-based instruction, enhanced with technology, was implemented for the first time. Students participated in a project implementation unit involving sound waves and trigonometric reasoning. The unit was designed to foster common content learning (via benchmark lessons) by all students in the class, and to help students gain a deeper conceptual understanding of a sub-set of the larger content unit (via group project research). The objective goal of the implementation design unit was to have students gain conceptual understanding of sound waves, such as what actually waves in a wave, how waves interfere with one another, and what affects the speed of a wave. This design unit also intended for students to develop trigonometric reasoning associated with sinusoidal curves and superposition of sinusoidal waves. Project criteria within this design included implementation features, such as the need for the student to have a driving research question and focus, the need for benchmark lessons to help foster and scaffold content knowledge and understanding, and the need for project milestones to complete throughout the implementation unit to allow students the time for feedback and revision. The Industrial Electronics class at Tree High School consisted of nine students who met daily during double class periods giving 100 minutes of class time per day. The class teacher had been teaching for 18 years (mathematics, physics, and computer science). He had a background in engineering and experience teaching at the college level. Benchmark activities during implementation were used to scaffold fundamental ideas and terminology needed to investigate characteristics of sound and waves. Students participating in benchmark activities analyzed motion and musical waveforms using probeware, and explored wave phenomena using waves simulation software. Benchmark activities were also used to bridge the ideas of triangle trigonometric ratios to the graphs of sinusoidal curves, which could lead to understanding the concepts of frequency, period, amplitude, and wavelength. (Abstract shortened by UMI.)
ERIC Educational Resources Information Center
Hrepic, Zdeslav; Zollman, Dean A.; Rebello, N. Sanjay
2010-01-01
We investigated introductory physics students' mental models of sound propagation. We used a phenomenographic method to analyze the data in the study. In addition to the scientifically accepted Wave model, students used the "Entity" model to describe the propagation of sound. In this latter model sound is a self-standing entity,…
NASA Astrophysics Data System (ADS)
Shoda, Munehito; Yokoyama, Takaaki; Suzuki, Takeru K.
2018-06-01
Using numerical simulations we investigate the onset and suppression of parametric decay instability (PDI) in the solar wind, focusing on the suppression effect by the wind acceleration and expansion. Wave propagation and dissipation from the coronal base to 1 au is solved numerically in a self-consistent manner; we take into account the feedback of wave energy and pressure in the background. Monochromatic waves with various injection frequencies, f 0, are injected to discuss the suppression of PDI, while broadband waves are applied to compare the numerical results with observation. We find that high-frequency ({f}0≳ {10}-3 {Hz}) Alfvén waves are subject to PDI. Meanwhile, the maximum growth rate of the PDI of low-frequency ({f}0≲ {10}-4 {Hz}) Alfvén waves becomes negative due to acceleration and expansion effects. Medium-frequency ({f}0≈ {10}-3.5 {Hz}) Alfvén waves have a positive growth rate but do not show the signature of PDI up to 1 au because the growth rate is too small. The medium-frequency waves experience neither PDI nor reflection so they propagate through the solar wind most efficiently. The solar wind is shown to possess a frequency-filtering mechanism with respect to Alfvén waves. The simulations with broadband waves indicate that the observed trend of the density fluctuation is well explained by the evolution of PDI while the observed cross-helicity evolution is in agreement with low-frequency wave propagation.
Efficient, High-Power Mid-Infrared Laser for National Securityand Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiani, Leily S.
The LLNL fiber laser group developed a unique short-wave-infrared, high-pulse energy, highaverage- power fiber based laser. This unique laser source has been used in combination with a nonlinear frequency converter to generate wavelengths, useful for remote sensing and other applications in the mid-wave infrared (MWIR). Sources with high average power and high efficiency in this MWIR wavelength region are not yet available with the size, weight, and power requirements or energy efficiency necessary for future deployment. The LLNL developed Fiber Laser Pulsed Source (FiLPS) design was adapted to Erbium doped silica fibers for 1.55 μm pumping of Cadmium Silicon Phosphidemore » (CSP). We have demonstrated, for the first time optical parametric amplification of 2.4 μm light via difference frequency generation using CSP with an Erbium doped fiber source. In addition, for efficiency comparison purposes, we also demonstrated direct optical parametric generation (OPG) as well as optical parametric oscillation (OPO).« less
NASA Astrophysics Data System (ADS)
Sowade, R.; Breunig, I.; Kiessling, J.; Buse, K.
2009-07-01
We demonstrate that for a given pump source, there is an optimum pump threshold to achieve the maximum single-frequency output power in singly resonant optical parametric oscillators. Therefore, cavity losses and parametric amplification have to be adjusted. In particular, continuous-wave output powers of 1.5 W were achieved with a 2.5 cm lithium niobate crystal in comparison with 0.5 W by a 5 cm long crystal within the same cavity design. This counter-intuitive result of weaker amplification leading to larger powers can be explained using a model from L.B. Kreuzer (Proc. Joint Conf. Lasers and Opt.-Elect., p. 52, 1969). Kreuzer also states that single-mode operation is possible only up to pump powers which are 4.6 times the threshold value. Additionally, implementing an outcoupling mirror to increase losses, single-frequency waves with powers of 3 W at 3.2 µm and 7 W at 1.5 µm could be generated simultaneously.
Sound propagation in light-modulated carbon nanosponge suspensions
NASA Astrophysics Data System (ADS)
Zhou, W.; Tiwari, R. P.; Annamalai, R.; Sooryakumar, R.; Subramaniam, V.; Stroud, D.
2009-03-01
Single-walled carbon nanotube bundles dispersed in a highly polar fluid are found to agglomerate into a porous structure when exposed to low levels of laser radiation. The phototunable nanoscale porous structures provide an unusual way to control the acoustic properties of the suspension. Despite the high sound speed of the nanotubes, the measured speed of longitudinal-acoustic waves in the suspension decreases sharply with increasing bundle concentration. Two possible explanations for this reduction in sound speed are considered. One is simply that the sound speed decreases because of fluid heat induced by laser light absorption by the carbon nanotubes. The second is that this decrease results from the smaller sound velocity of fluid confined in a porous medium. Using a simplified description of convective heat transport, we estimate that the increase in temperature is too small to account for the observed decrease in sound velocity. To test the second possible explanation, we calculate the sound velocity in a porous medium, using a self-consistent effective-medium approximation. The results of this calculation agree qualitatively with experiment. In this case, the observed sound wave would be the analog of the slow compressional mode of porous solids at a structural length scale of order of 100 nm.
NASA Technical Reports Server (NTRS)
Meredith, R. W.; Zuckerwar, A. J.
1984-01-01
A low-cost digital system based on an 8-bit Apple II microcomputer has been designed to provide on-line control, data acquisition, and evaluation of sound absorption measurements in gases. The measurements are conducted in a resonant tube, in which an acoustical standing wave is excited, the excitation removed, and the sound absorption evaluated from the free decay envelope. The free decay is initiated from the computer keyboard after the standing wave is established, and the microphone response signal is the source of the analog signal for the A/D converter. The acquisition software is written in ASSEMBLY language and the evaluation software in BASIC. This paper describes the acoustical measurement, hardware, software, and system performance and presents measurements of sound absorption in air as an example.
NASA Astrophysics Data System (ADS)
Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie
2016-07-01
In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.
Analysis of standing sound waves using holographic interferometry
NASA Astrophysics Data System (ADS)
Russell, Daniel A.; Parker, David E.; Hughes, Russell S.
2009-08-01
Optical holographic interferometry was used to study standing sound waves in air inside a resonance tube driven by a small loudspeaker at one end. The front face of the resonance tube was constructed with plexiglass, allowing optical interrogation of the tube interior. The object beam of the holographic setup was directed through the plexiglass and reflected off the back wall of the resonator. When driven at resonance, the fluctuations in the air density at the antinodes altered the refractive index of the air in the tube, causing interference patterns in the resulting holographic images. Real-time holography was used to determine resonance frequencies and to measure the wavelengths of the standing waves. Time-average holography was used to observe the effect of increasing the sound pressure level on the resulting fringe pattern. A simple theory was developed to successfully predict the fringe pattern.
Finite element modelling of sound transmission from outer to inner ear.
Areias, Bruno; Santos, Carla; Natal Jorge, Renato M; Gentil, Fernanda; Parente, Marco Pl
2016-11-01
The ear is one of the most complex organs in the human body. Sound is a sequence of pressure waves, which propagates through a compressible media such as air. The pinna concentrates the sound waves into the external auditory meatus. In this canal, the sound is conducted to the tympanic membrane. The tympanic membrane transforms the pressure variations into mechanical displacements, which are then transmitted to the ossicles. The vibration of the stapes footplate creates pressure waves in the fluid inside the cochlea; these pressure waves stimulate the hair cells, generating electrical signals which are sent to the brain through the cochlear nerve, where they are decoded. In this work, a three-dimensional finite element model of the human ear is developed. The model incorporates the tympanic membrane, ossicular bones, part of temporal bone (external auditory meatus and tympanic cavity), middle ear ligaments and tendons, cochlear fluid, skin, ear cartilage, jaw and the air in external auditory meatus and tympanic cavity. Using the finite element method, the magnitude and the phase angle of the umbo and stapes footplate displacement are calculated. Two slightly different models are used: one model takes into consideration the presence of air in the external auditory meatus while the other does not. The middle ear sound transfer function is determined for a stimulus of 60 dB SPL, applied to the outer surface of the air in the external auditory meatus. The obtained results are compared with previously published data in the literature. This study highlights the importance of external auditory meatus in the sound transmission. The pressure gain is calculated for the external auditory meatus.
A model for gravity-wave spectra observed by Doppler sounding systems
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.
1986-01-01
A model for Mesosphere - Stratosphere - Troposphere (MST) radar spectra is developed following the formalism presented by Pinkel (1981). Expressions for the one-dimensional spectra of radial velocity versus frequency and versus radial wave number are presented. Their dependence on the parameters of the gravity-wave spectrum and on the experimental parameters, radar zenith angle and averaging time are described and the conditions for critical tests of the gravity-wave hypothesis are discussed. The model spectra is compared with spectra observed in the Arctic summer mesosphere by the Poker Flat radar. This model applies to any monostatic Doppler sounding system, including MST radar, Doppler lidar and Doppler sonar in the atmosphere, and Doppler sonar in the ocean.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
NASA Technical Reports Server (NTRS)
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Comment on "Parametric Instability Induced by X-Mode Wave Heating at EISCAT" by Wang et al. (2016)
NASA Astrophysics Data System (ADS)
Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.
2017-12-01
In their recent article Wang et al. (2016) analyzed observations from EISCAT (European Incoherent Scatter) Scientific Association Russian X-mode heating experiments and claimed to explain the potential mechanisms for the parametric decay instability (PDI) and oscillating two-stream instability (OTSI). Wang et al. (2016) claim that they cannot separate the HF-enhanced plasma and ion lines excited by O or X mode in the EISCAT UHF radar spectra. Because of this they distinguished the parametric instability excited by O-/X-mode heating waves according to their different excitation heights. Their reflection heights were determined from ionosonde records, which provide a rough measure of excitation altitudes and cannot be used for the separation of the O- and X-mode effects. The serious limitation in their analysis is the use of a 30 s integration time of the UHF radar data. There are also serious disagreements between their analysis and the real observational facts. The fact is that it is the radical difference in the behavior of the X- and O-mode plasma and ion line spectra derived with a 5 s resolution, which provides the correct separation of the X- and O-mode effects. It is not discussed and explained how the parallel component of the electric field under X-mode heating is generated. Apart from the leakage to the O mode, results by Wang et al. (2016) do not explain the potential mechanisms for PDI and OTSI and add nothing to understanding the physical factors accounting for the parametric instability generated by an X-mode HF pump wave.
NASA Astrophysics Data System (ADS)
Chatterjee, Sudip K.; Khan, Saba N.; Chaudhuri, Partha Roy
2014-12-01
An ultra-wide 1646 nm (1084-2730 nm), continuous-wave single pump parametric amplification spanning from near-infrared to short-wave infrared band (NIR-SWIR) in a host lead-silicate based binary multi-clad microstructure fiber (BMMF) is analyzed and reported. This ultra-broad band (widest reported to date) parametric amplification with gain more than 10 dB is theoretically achieved by a combination of low input pump power source ~7 W and a short-length of ~70 cm of nonlinear-BMMF through accurately engineered multi-order dispersion coefficients. A highly efficient theoretical formulation based on four-wave-mixing (FWM) is worked out to determine fiber's chromatic dispersion (D) profile which is used to optimise the gain-bandwidth and ripple of the parametric gain profile. It is seen that by appropriately controlling the higher-order dispersion coefficient (up-to sixth order), a great enhancement in the gain-bandwidth (2-3 times) can be achieved when operated very close to zero-dispersion wavelength (ZDW) in the anomalous dispersion regime. Moreover, the proposed theoretical model can predict the maximum realizable spectral width and the required pump-detuning (w.r.t ZDW) of any advanced complex microstructured fiber. Our thorough investigation of the wide variety of broadband gain spectra obtained as an integral part of this research work opens up the way for realizing amplification in the region (SWIR) located far from the pump (NIR) where good amplifiers currently do not exist.
Transmission of sound across a vortex layer enclosing a cylindrical column of jet
NASA Technical Reports Server (NTRS)
Luh, R.; Chao, C. C.
1982-01-01
An approximate solution to the problem of transmission of sound across a cylindrical vortex was obtained. Results are considerably different from the plane vortex sheet case because of the added role played by the curvature of the jet. In comparison with the plane case, the specularly transmitted waves are more complex and require some numerical integration. Resonance waves are identically predicted for M 2, but there is also a wave field whose modified effect appears to extend the region of resonance just as the instability waves cover a region in space and time. The instability waves are predicted to exist for all Mach numbers but vanish for wavelengths that are large compared to the jet radius. The region of propagation is similarly wavelength dependent.
2010-06-01
parts to detect a nuclear explosion: seismic, hydroacoustic, infrasound and radionuclide. Figure 3. CTBTO International Monitoring System Sites26...Conference,” (Oct. 14, 2009), www.armscontrol.org.. [17] from earthquakes and mining explosions, but have proved effective in detecting past nuclear...hydroacoustic monitoring stations detect sound waves in the oceans, and the 60 infrasound stations detect above ground, ultra-low frequency sound waves
NASA Astrophysics Data System (ADS)
Tang, Xiaping; Churazov, Eugene
2018-04-01
We analyze the impact of thermal conduction on the appearance of a shock-heated gas shell which is produced when a spherically symmetric outburst of a supermassive black hole inflates bubbles of relativistic plasma at the center of a galaxy cluster. The presence of the hot and low-density shell can be used as an ancillary indicator for a high rate of energy release during the outburst, which is required to drive strong shocks into the gas. Here we show that conduction can effectively erase such shell, unless the diffusion of electrons is heavily suppressed. We conclude that a more robust proxy to the energy release rate is the ratio between the shock radius and bubble radius. We also revisited the issue of sound waves dissipation induced by thermal conduction in a scenario, where characteristic wavelength of the sound wave is set by the total energy of the outburst. For a fiducial short outburst model, the dissipation length does not exceed the cooling radius in a typical cluster, provided that the conduction is suppressed by a factor not larger than ˜100. For quasi-continuous energy injection neither the shock-heated shell nor the outgoing sound wave are important and the role of conduction is subdominant.
Application of sound and temperature to control boundary-layer transition
NASA Technical Reports Server (NTRS)
Maestrello, Lucio; Parikh, Paresh; Bayliss, A.; Huang, L. S.; Bryant, T. D.
1987-01-01
The growth and decay of a wave packet convecting in a boundary layer over a concave-convex surface and its active control by localized surface heating are studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiations are computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wave packet increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically, exhibiting a decay characteristic of acoustic waves in two dimensions. The far-field acoustic behavior exhibits a super-directivity type of behavior with a beaming downstream. Active control by surface heating is shown to reduce the growth of the wave packet but have little effect on acoustic far field behavior for the cases considered. Active control by sound emanating from the surface of an airfoil in the vicinity of the leading edge is experimentally investigated. The purpose is to control the separated region at high angles of attack. The results show that injection of sound at shedding frequency of the flow is effective in an increase of lift and reduction of drag.
Numerical Study of Transmission Loss Through a Slow Gas Layer Adjacent to a Plate
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Beck, Benjamin S.; Slagle, Adam C.
2013-01-01
This paper describes a systematic numerical investigation of the sound transmission loss through a multilayer system consisting of a bagged gas and lightweight panel. The goal of the study is to better understand the effect of the gas on transmission loss and determine whether a gas with a slow speed of sound is beneficial for noise control applications. As part of the study, the density and speed of sound of the gas are varied independently to assess the impact of each on transmission loss. Results show that near grazing incidence the plane wave transmission loss through the multilayer system is more sensitive to the speed of sound than the density of the gas. In addition, it was found that a slow wave speed in the bagged gas provides more low-frequency transmission loss benefit than a fast wave speed. At low angles of incidence, close to the plate normal, the benefit is due to the reduction of the characteristic impedance of the gas. At high angles of incidence, the benefit is attributed to the fact that the incident waves at the air/gas interface are bent towards the surface normal. Since transmission loss is angle dependent, refraction in the slow gas layer results in a significant improvement in the transmission loss at high angles of incidence.
Development of suspended core soft glass fibers for far-detuned parametric conversion
NASA Astrophysics Data System (ADS)
Rampur, Anupamaa; Ciąćka, Piotr; Cimek, Jarosław; Kasztelanic, Rafał; Buczyński, Ryszard; Klimczak, Mariusz
2018-04-01
Light sources utilizing χ (2) parametric conversion combine high brightness with attractive operation wavelengths in the near and mid-infrared. In optical fibers, it is possible to use χ (3) degenerate four-wave mixing in order to obtain signal-to-idler frequency detuning of over 100 THz. We report on a test series of nonlinear soft glass suspended core fibers intended for parametric conversion of 1000-1100 nm signal wavelengths available from an array of mature lasers into the near-to-mid-infrared range of 2700-3500 nm under pumping with an erbium sub-picosecond laser system. The presented discussion includes modelling of the fiber properties, details of their physical development and characterization, and experimental tests of parametric conversion.
Sua, Yong Meng; Chen, Jia-Yang; Huang, Yu-Ping
2018-06-15
We report a wideband optical parametric amplification (OPA) over 14 THz covering telecom S, C, and L bands with observed maximum parametric gain of 38.3 dB. The OPA is realized through cascaded second-harmonic generation and difference-frequency generation (cSHG-DFG) in a 2 cm periodically poled LiNbO 3 (PPLN) waveguide. With tailored cross section geometry, the waveguide is optimally mode matched for efficient cascaded nonlinear wave mixing. We also identify and study the effect of competing nonlinear processes in this cSHG-DFG configuration.
NASA Astrophysics Data System (ADS)
Antonangeli, Daniele; Siebert, Julien; Badro, James; Farber, Daniel L.; Fiquet, Guillaume; Morard, Guillaume; Ryerson, Frederick J.
2010-06-01
We performed room-temperature sound velocity and density measurements on a polycrystalline alloy, Fe0.89Ni0.04Si0.07, in the hexagonal close-packed (hcp) phase up to 108 GPa. Over the investigated pressure range the aggregate compressional sound velocity is ∼ 9% higher than in pure iron at the same density. The measured aggregate compressional (VP) and shear (VS) sound velocities, extrapolated to core densities and corrected for anharmonic temperature effects, are compared with seismic profiles. Our results provide constraints on the silicon abundance in the core, suggesting a model that simultaneously matches the primary seismic observables, density, P-wave and S-wave velocities, for an inner core containing 4 to 5 wt.% of Ni and 1 to 2 wt.% of Si.
Hydrographic surveys of rivers and lakes using a multibeam echosounder mapping system
Huizinga, Richard J.; Heimann, David C.
2018-06-12
A multibeam echosounder is a type of sound navigation and ranging device that uses sound waves to “see” through even murky waters. Unlike a single beam echosounder (also known as a depth sounder or fathometer) that releases a single sound pulse in a single, narrow beam and “listens” for the return echo, a multibeam system emits a multidirectional radial beam to obtain information within a fan-shaped swath. The timing and direction of the returning sound waves provide detailed information on the depth of water and the shape of the river channel, lake bottom, or any underwater features of interest. This information has been used by the U.S. Geological Survey to efficiently generate high-resolution maps of river and lake bottoms.
Simulating wave-turbulence on thin elastic plates with arbitrary boundary conditions
NASA Astrophysics Data System (ADS)
van Rees, Wim M.; Mahadevan, L.
2016-11-01
The statistical characteristics of interacting waves are described by the theory of wave turbulence, with the study of deep water gravity wave turbulence serving as a paradigmatic physical example. Here we consider the elastic analog of this problem in the context of flexural waves arising from vibrations of a thin elastic plate. Such flexural waves generate the unique sounds of so-called thunder machines used in orchestras - thin metal plates that make a thunder-like sound when forcefully shaken. Wave turbulence in elastic plates is typically investigated numerically using spectral simulations with periodic boundary conditions, which are not very realistic. We will present the results of numerical simulations of the dynamics of thin elastic plates in physical space, with arbitrary shapes, boundary conditions, anisotropy and inhomogeneity, and show first results on wave turbulence beyond the conventionally studied rectangular plates. Finally, motivated by a possible method to measure ice-sheet thicknesses in the open ocean, we will further discuss the behavior of a vibrating plate when floating on an inviscid fluid.
ERIC Educational Resources Information Center
Brown, Tom; Boehringer, Kim
2007-01-01
Students in a fourth-grade class participated in a series of dynamic sound learning centers followed by a dramatic capstone event--an exploration of the amazing Trashcan Whoosh Waves. It's a notoriously difficult subject to teach, but this hands-on, exploratory approach ignited student interest in sound, promoted language acquisition, and built…
Distribution of standing-wave errors in real-ear sound-level measurements.
Richmond, Susan A; Kopun, Judy G; Neely, Stephen T; Tan, Hongyang; Gorga, Michael P
2011-05-01
Standing waves can cause measurement errors when sound-pressure level (SPL) measurements are performed in a closed ear canal, e.g., during probe-microphone system calibration for distortion-product otoacoustic emission (DPOAE) testing. Alternative calibration methods, such as forward-pressure level (FPL), minimize the influence of standing waves by calculating the forward-going sound waves separate from the reflections that cause errors. Previous research compared test performance (Burke et al., 2010) and threshold prediction (Rogers et al., 2010) using SPL and multiple FPL calibration conditions, and surprisingly found no significant improvements when using FPL relative to SPL, except at 8 kHz. The present study examined the calibration data collected by Burke et al. and Rogers et al. from 155 human subjects in order to describe the frequency location and magnitude of standing-wave pressure minima to see if these errors might explain trends in test performance. Results indicate that while individual results varied widely, pressure variability was larger around 4 kHz and smaller at 8 kHz, consistent with the dimensions of the adult ear canal. The present data suggest that standing-wave errors are not responsible for the historically poor (8 kHz) or good (4 kHz) performance of DPOAE measures at specific test frequencies.
Estimation of viscoelastic parameters in Prony series from shear wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu; Lee, Hyoung-Ki
2016-06-21
When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.
The Audible Human Project: Modeling Sound Transmission in the Lungs and Torso
NASA Astrophysics Data System (ADS)
Dai, Zoujun
Auscultation has been used qualitatively by physicians for hundreds of years to aid in the monitoring and diagnosis of pulmonary diseases. Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable changes in lung sound production and transmission. Numerous acoustic measurements have revealed the differences of breath sounds and transmitted sounds in the lung under normal and pathological conditions. Compared to the extensive cataloging of lung sound measurements, the mechanism of sound transmission in the pulmonary system and how it changes with alterations of lung structural and material properties has received less attention. A better understanding of sound transmission and how it is altered by injury and disease might improve interpretation of lung sound measurements, including new lung imaging modalities that are based on an array measurement of the acoustic field on the torso surface via contact sensors or are based on a 3-dimensional measurement of the acoustic field throughout the lungs and torso using magnetic resonance elastography. A long-term goal of the Audible Human Project (AHP ) is to develop a computational acoustic model that would accurately simulate generation, transmission and noninvasive measurement of sound and vibration within the pulmonary system and torso caused by both internal (e.g. respiratory function) and external (e.g. palpation) sources. The goals of this dissertation research, fitting within the scope of the AHP, are to develop specific improved theoretical understandings, computational algorithms and experimental methods aimed at transmission and measurement. The research objectives undertaken in this dissertation are as follows. (1) Improve theoretical modeling and experimental identification of viscoelasticity in soft biological tissues. (2) Develop a poroviscoelastic model for lung tissue vibroacoustics. (3) Improve lung airway acoustics modeling and its coupling to the lung parenchyma; and (4) Develop improved techniques in array acoustic measurement on the torso surface of sound transmitted through the pulmonary system and torso. Tissue Viscoelasticity. Two experimental identification approaches of shear viscoelasticity were used. The first approach is to directly estimate the frequency-dependent surface wave speed and then to optimize the coefficients in an assumed viscoelastic model type. The second approach is to measure the complex-valued frequency response function (FRF) between the excitation location and points at known radial distances. The FRF has embedded in it frequency-dependent information about both surface wave phase speed and attenuation that can be used to directly estimate the complex shear modulus. The coefficients in an assumed viscoelastic tissue model type can then be optimized. Poroviscoelasticity Model for Lung Vibro-acoustics. A poroviscoelastic model based on Biot theory of wave propagation in porous media was used for compression waves in the lungs. This model predicts a fast compression wave speed close to the one predicted by the effective medium theory at low frequencies and an additional slow compression wave due to the out of phase motion of the air and the lung parenchyma. Both compression wave speeds vary with frequency. The fast compression wave speed and attenuation were measured on an excised pig lung under two different transpulmonary pressures. Good agreement was achieved between the experimental observation and theoretical predictions. Sound Transmission in Airways and Coupling to Lung Parenchyma. A computer generated airway tree was simplified to 255 segments and integrated into the lung geometry from the Visible Human Male for numerical simulations. Acoustic impedance boundary conditions were applied at the ends of the terminal segments to represent the unmodeled downstream airway segments. Experiments were also carried out on a preserved pig lung and similar trends of lung surface velocity distribution were observed between the experiments and simulations. This approach provides a feasible way of simplifying the airway tree and greatly reduces the computation time. Acoustic Measurements of Sound Transmission in Human Subjects. Scanning laser Doppler vibrometry (SLDV) was used as a gold standard for transmitted sound measurements on a human subject. A low cost piezodisk sensor array was also constructed as an alternative to SLDV. The advantages and disadvantages of each technique are discussed.
Energy localization and frequency analysis in the locust ear.
Malkin, Robert; McDonagh, Thomas R; Mhatre, Natasha; Scott, Thomas S; Robert, Daniel
2014-01-06
Animal ears are exquisitely adapted to capture sound energy and perform signal analysis. Studying the ear of the locust, we show how frequency signal analysis can be performed solely by using the structural features of the tympanum. Incident sound waves generate mechanical vibrational waves that travel across the tympanum. These waves shoal in a tsunami-like fashion, resulting in energy localization that focuses vibrations onto the mechanosensory neurons in a frequency-dependent manner. Using finite element analysis, we demonstrate that two mechanical properties of the locust tympanum, distributed thickness and tension, are necessary and sufficient to generate frequency-dependent energy localization.
Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.
Garrett, Joanne K; Witt, Matthew J; Johanning, Lars
2016-01-01
Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.
Physical processes in a coupled bay-estuary coastal system: Whitsand Bay and Plymouth Sound
NASA Astrophysics Data System (ADS)
Uncles, R. J.; Stephens, J. A.; Harris, C.
2015-09-01
Whitsand Bay and Plymouth Sound are located in the southwest of England. The Bay and Sound are separated by the ∼2-3 km-wide Rame Peninsula and connected by ∼10-20 m-deep English Channel waters. Results are presented from measurements of waves and currents, drogue tracking, surveys of salinity, temperature and turbidity during stratified and unstratified conditions, and bed sediment surveys. 2D and 3D hydrodynamic models are used to explore the generation of tidally- and wind-driven residual currents, flow separation and the formation of the Rame eddy, and the coupling between the Bay and the Sound. Tidal currents flow around the Rame Peninsula from the Sound to the Bay between approximately 3 h before to 2 h after low water and form a transport path between them that conveys lower salinity, higher turbidity waters from the Sound to the Bay. These waters are then transported into the Bay as part of the Bay-mouth limb of the Rame eddy and subsequently conveyed to the near-shore, east-going limb and re-circulated back towards Rame Head. The Simpson-Hunter stratification parameter indicates that much of the Sound and Bay are likely to stratify thermally during summer months. Temperature stratification in both is pronounced during summer and is largely determined by coastal, deeper-water stratification offshore. Small tidal stresses in the Bay are unable to move bed sediment of the observed sizes. However, the Bay and Sound are subjected to large waves that are capable of driving a substantial bed-load sediment transport. Measurements show relatively low levels of turbidity, but these respond rapidly to, and have a strong correlation with, wave height.
A double expansion method for the frequency response of finite-length beams with periodic parameters
NASA Astrophysics Data System (ADS)
Ying, Z. G.; Ni, Y. Q.
2017-03-01
A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response and remarkable reduction of the maximum frequency response for certain parametric wave number and wave amplitude. The results have the potential application to structural vibration control.
NASA Astrophysics Data System (ADS)
Simpson, Harry Jay
Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially and Doppler shifted foci relative to the main focus.
NASA Astrophysics Data System (ADS)
Simpson, Harry Jay
Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 micron diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2 to 10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33 degrees on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz 'pump' wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz 'probe' wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially and Doppler shifted foci relative to the main focus.
Optimal Design of a Traveling-Wave Kinetic Inductance Amplifier Operated in Three-Wave Mixing Mode
NASA Astrophysics Data System (ADS)
Erickson, Robert; Bal, Mustafa; Ku, Ksiang-Sheng; Wu, Xian; Pappas, David
In the presence of a DC bias, an injected pump, of frequency fP, and a signal, of frequency fS, undergo parametric three-way mixing (3WM) within a traveling-wave kinetic inductance (KIT) amplifier, producing an idler product of frequency fI =fP -fS . Periodic frequency stops are engineered into the coplanar waveguide of the device to enhance signal amplification. With fP placed just above the first frequency stop gap, 3WM broadband signal gain is achieved with maximum gain at fS =fP / 2 . Within a theory of the dispersion of traveling waves in the presence of these engineered loadings, which accounts for this broadband signal gain, we show how an optimal frequency-stop design may be constructed to achieve maximum signal amplification. The optimization approach we describe can be applied to the design of other nonlinear traveling-wave parametric amplifiers. This work was supported by the Army Research Office and the Laboratory for Physical Sciences under EAO221146, EAO241777, and the NIST Quantum Initiative. RPE acknowledges Grant 60NANB14D024 from the US Department of Commerce, NIST.
An open-structure sound insulator against low-frequency and wide-band acoustic waves
NASA Astrophysics Data System (ADS)
Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin
2015-10-01
To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.
Low-frequency and multiple-bands sound insulation using hollow boxes with membrane-type faces
NASA Astrophysics Data System (ADS)
Yu, Wei-wei; Fan, Li; Ma, Ren-hao; Zhang, Hui; Zhang, Shu-yi
2018-04-01
Hollow boxes with their faces made up of elastic membranes are used to block acoustic waves. It is demonstrated that placing a cuboid membrane-type box inside a pipe can effectively insulate acoustic waves even if the box is smaller than the cross-section of the pipe. The sound insulation is achieved within multiple frequency-bands below 500 Hz based on different mechanisms, which originate from the coaction of the cavity, membrane-type faces, and the intervals between the box and pipe walls. Furthermore, by adjusting the structural parameters and establishing an array of boxes, we can achieve better sound insulation at more frequency-bands.
Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo
2017-01-01
A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably. PMID:28632183
Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo
2017-06-20
A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.
Fast Multiscale Algorithms for Wave Propagation in Heterogeneous Environments
2016-01-07
methods for waves’’, Nonlinear solvers for high- intensity focused ultrasound with application to cancer treatment, AIMS, Palo Alto, 2012. ``Hermite...formulation but different parametrizations. . . . . . . . . . . . 6 4 Density µ(t) at mode 0 for scattering of a plane Gaussian pulse from a sphere. On the...spatiotemporal scales. Two crucial components of the highly-efficient, general-purpose wave simulator we envision are • Reliable, low -cost methods for truncating
Development of an ICT-Based Air Column Resonance Learning Media
NASA Astrophysics Data System (ADS)
Purjiyanta, Eka; Handayani, Langlang; Marwoto, Putut
2016-08-01
Commonly, the sound source used in the air column resonance experiment is the tuning fork having disadvantage of unoptimal resonance results due to the sound produced which is getting weaker. In this study we made tones with varying frequency using the Audacity software which were, then, stored in a mobile phone as a source of sound. One advantage of this sound source is the stability of the resulting sound enabling it to produce the same powerful sound. The movement of water in a glass tube mounted on the tool resonance and the tone sound that comes out from the mobile phone were recorded by using a video camera. Sound resonances recorded were first, second, and third resonance, for each tone frequency mentioned. The resulting sound stays longer, so it can be used for the first, second, third and next resonance experiments. This study aimed to (1) explain how to create tones that can substitute tuning forks sound used in air column resonance experiments, (2) illustrate the sound wave that occurred in the first, second, and third resonance in the experiment, and (3) determine the speed of sound in the air. This study used an experimental method. It was concluded that; (1) substitute tones of a tuning fork sound can be made by using the Audacity software; (2) the form of sound waves that occured in the first, second, and third resonance in the air column resonance can be drawn based on the results of video recording of the air column resonance; and (3) based on the experiment result, the speed of sound in the air is 346.5 m/s, while based on the chart analysis with logger pro software, the speed of sound in the air is 343.9 ± 0.3171 m/s.
Criteria for the selection of focusing ultrasonic probes
NASA Technical Reports Server (NTRS)
Schlengermann, U.
1978-01-01
The principles of operation employed in the focusing of a sound field are considered, taking into account the use of solid and liquid coupling media. The focusing limits for a given transducer are investigated. As a diffraction phenomenon, focusing is a function of the system dimensions, the frequency, and the sound velocity. The frequency and the material used for the lenses are in most cases determined in accordance with considerations regarding sound propagation. Changes in the focus are therefore effected mainly by the selection of transducer and lens dimensions. The functions of the focusing factor for a normal immersion probe and a direct contact angle probe are represented in graphs. The deviation of the appropriate parametric values for an ultrasonic probe is illustrated with the aid of examples.
1984-01-01
the 14 to 222 Hz band. In a tank, the echolocation signals made by dolphins were found (167) to be directional, with peak energies above 100 kHz...17. Daniels, F. B., Mechanisms of Generation of Infrasound by Ocean Waves, JASA 24, 83, 1952. 18. Daniels, F. B., Generation of Infrasound by Ocean...in the Ocean by Surface Waves, J. Sound and Vibration 37, 185, 1974. 58. Hughes, B., Estimates of Underwater Sound (and Infrasound ) Produced by Non
NASA Astrophysics Data System (ADS)
Dowling, David R.; Sabra, Karim G.
2015-01-01
Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.