Sample records for source aps synchrotron

  1. Support for Synchrotron Access by Environmental Scientists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Michael; Madden, Andrew; Palumbo, Anthony

    2006-06-01

    To support ERSP-funded scientists in all aspects of synchrotron-based research at the Advanced Photon Source (APS). This support comes in one or more of the following forms: (1) writing proposals to the APS General User (GU) program, (2) providing time at MRCAT/EnviroCAT beamlines via the membership of the Molecular Environmental Science (MES) Group in MRCAT/EnviroCAT, (3) assistance in experimental design and sample preparation, (4) support at the beamline during the synchrotron experiment, (5) analysis and interpretation of the synchrotron data, and (6) integration of synchrotron experimental results into manuscripts.

  2. 1993 CAT workshop on beamline optical designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following thesemore » presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ``catalog`` of various monochromator designs.« less

  3. Advanced Photon Source accelerator ultrahigh vacuum guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Noonan, J.

    1994-03-01

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS.

  4. Chemical applications of synchrotron radiation: Workshop report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the fieldmore » of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.« less

  5. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    PubMed Central

    Conrad, Chelsie E.; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A.; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C.; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C. H.; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F.; Liu, Wei

    2017-01-01

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals. PMID:28875031

  6. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation.

    PubMed

    Martin-Garcia, Jose M; Conrad, Chelsie E; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; James, Daniel; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C H; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F; Liu, Wei

    2017-07-01

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2A AR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2A AR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2A AR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.

  7. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    DOE PAGES

    Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett; ...

    2017-05-24

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. Furthermore, these developments will enable structure determination from smaller and/or weakly diffracting microcrystals.« less

  8. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. Furthermore, these developments will enable structure determination from smaller and/or weakly diffracting microcrystals.« less

  9. Design Study of an MBA Lattice for the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, Glenn

    2014-11-02

    Recent interest in ultra-low-emittance designs for storage-ring-based synchrotron light sources has spurred a focused design effort on a multi-bend achromat (MBA) storage ring replacement for the Advanced Photon Source (APS). The APS is relatively large (1104 m circumference) and, as such, an upgrade to a fourth-generation storage ring holds the potential for a two to three order of magnitude enhancement of X-ray brightness due to the approximate inverse cubic scaling of emittance with the number of dipole bend magnets.

  10. Non-Destructive Characterization of Engineering Materials Using High-Energy X-rays at the Advanced Photon Source

    DOE PAGES

    Park, Jun-Sang; Okasinski, John; Chatterjee, Kamalika; ...

    2017-05-30

    High energy X-rays can penetrate large components and samples made from engineering alloys. Brilliant synchrotron sources like the Advanced Photon Source (APS) combined with unique experimental setups are increasingly allowing scientists and engineers to non-destructively characterize the state of materials across a range of length scales. In this article, some of the new developments at the APS, namely the high energy diffraction microscopy technique for grain-by-grain maps and aperture-based techniques for aggregate maps, are described.

  11. Non-Destructive Characterization of Engineering Materials Using High-Energy X-rays at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jun-Sang; Okasinski, John; Chatterjee, Kamalika

    High energy X-rays can penetrate large components and samples made from engineering alloys. Brilliant synchrotron sources like the Advanced Photon Source (APS) combined with unique experimental setups are increasingly allowing scientists and engineers to non-destructively characterize the state of materials across a range of length scales. In this article, some of the new developments at the APS, namely the high energy diffraction microscopy technique for grain-by-grain maps and aperture-based techniques for aggregate maps, are described.

  12. Synchrotron sheds new light on geophysical materials

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    On December 20,1996, scientists working with the Advanced Photon Source (APS) at Argonne National Laboratory in Illinois conducted “first light” experiments in a new laboratory for synchrotron radiation research in the geosciences. The demonstration marks the dawn of a new era in rock and mineral physics when, as geophysicist Thomas Duffy of Princeton University notes, researchers will be able to 'shine a bright new light on some of our planet's deepest and darkest secrets.”The new light is from the APS, a particle accelerator dedicated to the production of brilliant X rays for research, and it shone on the GeoSoilEnviroCARS (GSECARS) experimental facility. The purpose of GSECARS is to develop X-ray beamlines at the APS and make them available to scientists for frontier research in Earth, planetary, geophysics, soil, and environmental sciences.

  13. Frontiers of X-ray research at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehmer, J.J.

    1995-12-31

    With providential timing, the Advanced Photon Source (APS) at Argonne National Laboratory has begun to produce x-rays during the centennial year of Wilhelm Rongtgen`s discovery of a {open_quotes}new kind of rays.{close_quotes} When complete, this third-generation, 7-GeV positron storage ring will produce nearly one hundred intense x-ray beams, with a major emphasis on the laser-like (highly collimated, locally coherent) beams from undulator sources. This talk will provide an overview of (1) the important properties of the synchrotron radiation to be produced by the APS, (2) the major classes of experimental approaches that use x-rays, and (3) some speculation on the impactsmore » of the APS on the materials, chemical, biological, and environmental sciences.« less

  14. Comparison of a CCD and an APS for soft X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Stewart, Graeme; Bates, R.; Blue, A.; Clark, A.; Dhesi, S. S.; Maneuski, D.; Marchal, J.; Steadman, P.; Tartoni, N.; Turchetta, R.

    2011-12-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost. The APS employed was the Vanilla sensor designed by the MI3 collaboration and funded by an RCUK Basic technology grant. This sensor has 520 x 520 square pixels, of size 25 μm on each side. The sensor can operate at a full frame readout of up to 20 Hz. The sensor had been back-thinned, to the epitaxial layer. This was the first time that a back-thinned APS had been demonstrated at a beam line at DLS. In the synchrotron experiment soft X-rays with an energy of approximately 708 eV were used to produce a diffraction pattern from a permalloy sample. The pattern was imaged at a range of integration times with both sensors. The CCD had to be operated at a temperature of -55°C whereas the Vanilla was operated over a temperature range from 20°C to -10°C. We show that the APS detector can operate with frame rates up to two hundred times faster than the CCD, without excessive degradation of image quality. The signal to noise of the APS is shown to be the same as that of the CCD at identical integration times and the response is shown to be linear, with no charge blooming effects. The experiment has allowed a direct comparison of back thinned APS and CCDs in a real soft x-ray synchrotron experiment.

  15. Hard X-Rays can BE Used to Visualize Cochlear Soft Tissue Displacements in a Closed Cochlea

    NASA Astrophysics Data System (ADS)

    Richter, C.-P.; Fishman, A.; Fan, L.; Shintani, S.; Rau, C.

    2009-02-01

    Experiments were made at the Advanced Photon Source (APS), Argonne National Laboratory. The APS is a synchrotron radiation source of the third generation, for which the particular characteristic is the highly coherent X-ray radiation. X-rays are generated with an undulator, inserted in a straight section of the storage ring. Images taken with hard X-rays at full field. A video flow algorithm by Lucas and Kanade was used to determine and quantify cochlear soft tissue displacements. The results show that displacements as low as 100 nm could be visualized.

  16. Constraints on a Proton Synchrotron Origin of VHE Gamma Rays from the Extended Jet of AP Librae

    NASA Astrophysics Data System (ADS)

    Pratim Basumallick, Partha; Gupta, Nayantara

    2017-07-01

    The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires an extreme proton energy of 3.98 × 1021 eV and a high magnetic field of 1 mG of the extended jet with jet power ˜5 × 1048 erg s-1 in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.

  17. Benchmarking of Touschek Beam Lifetime Calculations for the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, A.; Yang, B.

    2017-06-25

    Particle loss from Touschek scattering is one of the most significant issues faced by present and future synchrotron light source storage rings. For example, the predicted, Touschek-dominated beam lifetime for the Advanced Photon Source (APS) Upgrade lattice in 48-bunch, 200-mA timing mode is only ~ 2 h. In order to understand the reliability of the predicted lifetime, a series of measurements with various beam parameters was performed on the present APS storage ring. This paper first describes the entire process of beam lifetime measurement, then compares measured lifetime with the calculated one by applying the measured beam parameters. The resultsmore » show very good agreement.« less

  18. High-resolution x-ray imaging for microbiology at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, B.; Kemner, K. M.; Maser, J.

    1999-11-02

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and theirmore » associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria ({approx}1 {micro}m x 4 {micro}m in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies.« less

  19. APS SCIENCE 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenner, Richard B.

    The Advanced Photon Source (APS) occupies an 80-acre site on the Argonne national laboratory campus, about 25 miles from downtown chicago, illinois. it shares the site with the center for nanoscale materials and the Advanced Protein characterization facility. for directions to Argonne, see http://www.anl.gov/directions-and-visitor-information. The APS, a national synchrotron radiation research facility operated by Argonne for the u.S. department of energy (doe) office of Science, provides this nation’s brightest high-energy x-ray beams for science. research by APS users extends from the center of the earth to outer space, from new information on combustion engines and microcircuits to new drugs andmore » nanotechnologies whose scale is measured in billionths of a meter. The APS helps researchers illuminate answers to the challenges of our high-tech world, from developing new forms of energy, to sustaining our nation’s technological and economic competitiveness, to pushing back against the ravages of disease. research at the APS promises to have far-reaching« less

  20. Results from the RF BPM Upgrade Prototype at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietryla, Anthony; Lill, Robert; Norum, Eric

    2006-11-20

    The Advanced Photon Source (APS), a third-generation synchrotron light source, has been in operation for 10 years. The monopulse radio frequency (RF) beam position monitor (BPM) is one of three BPM types now employed in the storage ring at the APS. It is a broadband (10 MHz) system designed to measure single-turn and multi-turn beam positions, but it suffers from an aging data acquisition system. The replacement BPM system retains the existing monopulse receivers and replaces the data acquisition system with high-speed analog-to-digital converters (ADCs) and a field programmable gate array (FPGA) that performs the signal processing. A prototype systemmore » was constructed and is currently being evaluated. This paper presents the results obtained from laboratory and field tests of the prototype system.« less

  1. Results from the RF BPM upgrade prototype at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietryla, A.; Lill, R.; Norum, E.

    2006-01-01

    The Advanced Photon Source (APS), a third-generation synchrotron light source, has been in operation for 10 years. The monopulse radio frequency (RF) beam position monitor (BPM) is one of three BPM types now employed in the storage ring at the APS. It is a broadband (10 MHz) system designed to measure single-turn and multi-turn beam positions, but it suffers from an aging data acquisition system. The replacement BPM system retains the existing monopulse receivers and replaces the data acquisition system with high-speed analog-to-digital converters (ADCs) and a field programmable gate array (FPGA) that performs the signal processing. A prototype systemmore » was constructed and is currently being evaluated. This paper presents the results obtained from laboratory and field tests of the prototype system.« less

  2. Proceedings of the Advanced Photon Source renewal workshop.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, J. M.; Mills, D. M.; Kobenhavns Univ.

    2008-12-01

    Beginning in March 2008, Advanced Photon Source (APS) management engaged users, facility staff, the distinguished members of the APS Scientific Advisory Committee, and other outside experts in crafting a renewal plan for this premier synchrotron x-ray research facility. It is vital that the investment in the APS renewal begin as soon as possible in order to keep this important U.S. facility internationally competitive. The APS renewal plan encompasses innovations in the beamlines and the x-ray source that are needed for major advances in science - advances that promise to further extend the impact of x-ray science on energy research, technologymore » development, materials innovation, economic competitiveness, health, and far-reaching fundamental knowledge. A planning milestone was the APS Renewal Workshop held on October 20-21, 2008. Organized by the APS Renewal Steering Committee, the purpose of the workshop was to provide a forum where leading researchers could present the broad outlines of forward-looking plans for science at the APS in all major disciplines serviced by x-ray techniques. Two days of scientific presentations, discussions, and dialogue involved more than 180 scientists representing 41 institutions. The scientific talks and breakout/discussion sessions provided a forum for Science Team leaders to present the outlines of forward-looking plans for experimentation in all the major scientific disciplines covered by photon science. These proceedings comprise the reports from the Science Teams that were commissioned by the APS Renewal Steering Committee, having been edited by the Science Teams after discussion at the workshop.« less

  3. Status of the RF BPM upgrade at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietryla, A.; Bui, H.; Decker, G.

    2008-01-01

    The Advanced Photon Source (APS),a third-generation synchrotron light source, has been in operation for eleven years. The monopulse radio frequency (rf) beam position monitor (BPM) is one of three BPM types now employed in the storage ring at the APS. It is a broadband (10 MHz) system designed to measure single-turn and multi-turn beam positions, but it suffers from an aging data acquisition system. The replacement BPM system retains the existing monopulse receivers and replaces the data acquisition system with high-speed analog-to-digital converters (ADCs) and a field-programmable gate array (FPGA) that performs the signal processing. A first-article system has beenmore » constructed and is currently being evaluated. This paper presents the results of testing of the first-article system as well as the progress made in other areas of this upgrade effort.« less

  4. Stanford Synchrotron Radiation Laboratory activity report for 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantwell, K.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEARmore » was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.« less

  5. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iverson, Adam; Carlson, Carl; Young, Jason

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSEmore » experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.« less

  6. X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrander, Albert; Erdmann, Mark; Kujala, Naresh

    2016-07-27

    Beamline 1-BM at the APS has been reconfigured in part for testing of synchrotron optics with both monochromatic and white beams. Operational since 2013, it was reconfigured to accommodate users of the APS as well as users from other DOE facilities. Energies between 6 and 28 keV are available. The beamline was reconfigured to remove two large mirrors and to provide a 100 mm wide monochromatics beam at 54 m from the source. In addition a custom white beam shutter was implemented for topography exposures as short as 65 millisec over the full available horizontal width. Primary agendas include bothmore » white beam and monochromatic beam topography, Talbot grating interferometry, and tests of focusing optics. K-B mirrors, MLLs, and FZPs have been characterized. Measurements of the spatial coherence lengths on the beamline were obtained with Talbot interferometry. Topography data has been reported.« less

  7. X-ray optics testing beamline 1-BM at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrander, Albert, E-mail: atm@anl.gov; Erdmann, Mark; Kujala, Naresh

    2016-07-27

    Beamline 1-BM at the APS has been reconfigured in part for testing of synchrotron optics with both monochromatic and white beams. Operational since 2013, it was reconfigured to accommodate users of the APS as well as users from other DOE facilities. Energies between 6 and 28 keV are available. The beamline was reconfigured to remove two large mirrors and to provide a 100 mm wide monochromatic beam at 54 m from the source. In addition a custom white beam shutter was implemented for topography exposures as short as 65 millisec over the full available horizontal width. Primary agendas include bothmore » white beam and monochromatic beam topography, Talbot grating interferometry, and tests of focusing optics. K-B mirrors, MLLs, and FZPs have been characterized. Measurements of the spatial coherence lengths on the beamline were obtained with Talbot interferometry. Topography data has been reported.« less

  8. MeV per Nucleon Ion Irradiation of Nuclear Materials with High Energy Synchrotron X-ray Characterization

    DOE PAGES

    Pellin, M. J.; Yacout, Abdellatif M.; Mo, Kun; ...

    2016-01-14

    The combination of MeV/Nucleon ion irradiation (e.g. 133 MeV Xe) and high energy synchrotron x-ray characterization (e.g. at the Argonne Advanced Photon Source, APS) provides a powerful characterization method to understand radiation effects and to rapidly screen materials for the nuclear reactor environment. Ions in this energy range penetrate ~10 μm into materials. Over this range, the physical interactions vary (electronic stopping, nuclear stopping and added interstitials). Spatially specific x-ray (and TEM and nanoindentation) analysis allow individual quantification of these various effects. Hard x-rays provide the penetration depth needed to analyze even nuclear fuels. Here, this combination of synchrotron x-raymore » and MeV/Nucleon ion irradiation is demonstrated on U-Mo fuels. A preliminary look at HT-9 steels is also presented. We suggest that a hard x-ray facility with in situ MeV/nucleon irradiation capability would substantially accelerate the rate of discovery for extreme materials.« less

  9. Study of gold nanoparticle synthesis by synchrotron x-ray diffraction and fluorescence

    NASA Astrophysics Data System (ADS)

    Yan, Zhongying; Wang, Xiao; Yu, Le; Moeendarbari, Sina; Hao, Yaowu; Cai, Zhonghou; Cheng, Xuemei

    Gold nanoparticles have a wide range of potential applications, including therapeutic agent delivery, catalysis, and electronics. Recently a new process of hollow nanoparticle synthesis was reported, the mechanism of which was hypothesized to involve electroless deposition around electrochemically evolved hydrogen bubbles. However, the growth mechanism still needs experimental evidence. We report investigation of this synthesis process using synchrotron x-ray diffraction and fluorescence measurements performed at beamline 2-ID-D of the Advanced Photon Source (APS). A series of gold nanoparticle samples with different synthesis time (50-1200 seconds) were deposited using a mixture electrolyte solution of Na3Au(SO3)2 and H4N2NiO6S2 on anodic aluminum oxide (AAO) membranes. The 2D mapping of fluorescence intensity and comparison of x-ray diffraction peaks of the samples have provided valuable information on the growth mechanism. Work at Bryn Mawr College and University of Texas at Arlington is supported by NSF Grants (1207085 and 1207377) and use of the APS at Argonne National Laboratory is supported by the U. S. Department of Energy under Contract No. DE-AC02-06CH11357.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basumallick, Partha Pratim; Gupta, Nayantara, E-mail: basuparth314@gmail.com

    The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires anmore » extreme proton energy of 3.98 × 10{sup 21} eV and a high magnetic field of 1 mG of the extended jet with jet power ∼5 × 10{sup 48} erg s{sup −1} in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.« less

  11. Overview of Lattice Design and Evaluation for the APS Upgrade

    DOE PAGES

    Borland, M.; Emery, L.; Lindberg, R.; ...

    2017-08-01

    The Advanced Photon Source (APS) is a 7-GeV synchrotron light source that has been in operation since 1996. Since that time, the effective emittance has been decreased from 8 nm to 3.1 nm, which is very competitive for a 3rd-generation light source. However, newer facilities such as PETRA-III, NSLS-II, and MAX-IV are pushing the emittance to significantly smaller values. MAX-IV in particular has set the current benchmark with an emittance of about 300 pm at 3 GeV. This was accomplished by use of a multi-bend achromat lattice, which takes advantage of the 1/M3 scaling of the emittance with respect tomore » the number of dipoles M. In order to ensure that our facility remains competitive, APS is pursuing a major upgrade, which involves replacement of the existing double-bend lattice with a seven-bend achromat lattice, promising a 40-fold reduction in emittance. This paper describes the process of developing and evaluating candidate lattice designs. Two candidate 6-GeV lattices are described: one providing a natural emittance of 67 pm and the other providing 41 pm. Our analysis includes single-particle dynamics as well as single- and multi-bunch collective effects.« less

  12. Workshop on detectors for third-generation synchrotron sources: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-01

    The aims of the workshop were (1) to acquaint APS users with current R and D being carried out on detectors, (2) to identify new detector systems possible during the next five years, (3) to identify new detectors theoretically possible in the future, (4) to stimulate interactions between user groups and detector developers, and (5) to obtain recommendations from expert panels on technical issues needing resolution. Development of detectors at ESRF, Spring-8, BNL, CERN and LBL are included.

  13. Quantitative imaging of single-shot liquid distributions in sprays using broadband flash x-ray radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halls, B. R.; Roy, S.; Gord, J. R.

    Flash x-ray radiography is used to capture quantitative, two-dimensional line-of-sight averaged, single-shot liquid distribution measurements in impinging jet sprays. The accuracy of utilizing broadband x-ray radiation from compact flash tube sources is investigated for a range of conditions by comparing the data with radiographic high-speed measurements from a narrowband, high-intensity synchrotron x-ray facility at the Advanced Photon Source (APS) of Argonne National Laboratory. The path length of the liquid jets is varied to evaluate the effects of energy dependent x-ray attenuation, also known as spectral beam hardening. The spatial liquid distributions from flash x-ray and synchrotron-based radiography are compared, alongmore » with spectral characteristics using Taylor’s hypothesis. The results indicate that quantitative, single-shot imaging of liquid distributions can be achieved using broadband x-ray sources with nanosecond temporal resolution. Practical considerations for optimizing the imaging system performance are discussed, including the coupled effects of x-ray bandwidth, contrast, sensitivity, spatial resolution, temporal resolution, and spectral beam hardening.« less

  14. Progress on the Design of the Storage Ring Vacuum System for the Advanced Photon Source Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillwell, B.; Billett, B.; Brajuskovic, B.

    2017-06-20

    Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction and rf cavity straight sections. An overview of progress in these areas is presented.

  15. Total x-ray power measurements in the Sandia LIGA program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinowski, Michael E.; Ting, Aili

    2005-08-01

    Total X-ray power measurements using aluminum block calorimetry and other techniques were made at LIGA X-ray scanner synchrotron beamlines located at both the Advanced Light Source (ALS) and the Advanced Photon Source (APS). This block calorimetry work was initially performed on the LIGA beamline 3.3.1 of the ALS to provide experimental checks of predictions of the LEX-D (LIGA Exposure- Development) code for LIGA X-ray exposures, version 7.56, the version of the code in use at the time calorimetry was done. These experiments showed that it was necessary to use bend magnet field strengths and electron storage ring energies different frommore » the default values originally in the code in order to obtain good agreement between experiment and theory. The results indicated that agreement between LEX-D predictions and experiment could be as good as 5% only if (1) more accurate values of the ring energies, (2) local values of the magnet field at the beamline source point, and (3) the NIST database for X-ray/materials interactions were used as code inputs. These local magnetic field value and accurate ring energies, together with NIST database, are now defaults in the newest release of LEX-D, version 7.61. Three dimensional simulations of the temperature distributions in the aluminum calorimeter block for a typical ALS power measurement were made with the ABAQUS code and found to be in good agreement with the experimental temperature data. As an application of the block calorimetry technique, the X-ray power exiting the mirror in place at a LIGA scanner located at the APS beamline 10 BM was measured with a calorimeter similar to the one used at the ALS. The overall results at the APS demonstrated the utility of calorimetry in helping to characterize the total X-ray power in LIGA beamlines. In addition to the block calorimetry work at the ALS and APS, a preliminary comparison of the use of heat flux sensors, photodiodes and modified beam calorimeters as total X-ray power monitors was made at the ALS, beamline 3.3.1. This work showed that a modification of a commercially available, heat flux sensor could result in a simple, direct reading beam power meter that could be a useful for monitoring total X-ray power in Sandia's LIGA exposure stations at the ALS, APS and Stanford Synchrotron Radiation Laboratory (SSRL).« less

  16. KCAT, Xradia, ALS and APS Performance Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, A; Martz, H; Brown, W

    2004-09-30

    At Lawrence Livermore National Laboratory (LLNL) particular emphasis is being placed on the nondestructive characterization (NDC) of components, subassemblies and assemblies of millimeter-size extent with micrometer-size features (mesoscale). These mesoscale objects include materials that vary widely in composition, density, geometry and embedded features. Characterizing these mesoscale objects is critical for corroborating the physics codes that underlie LLNL's Stockpile Stewardship mission. In this report we present results from our efforts to quantitatively characterize the performance of several x-ray systems in an effort to benchmark existing systems and to determine which systems may have the best potential for our mesoscale imaging needs.more » Several different x-ray digital radiography (DR) and computed tomography (CT) systems exist that may be applicable to our mesoscale object characterization requirements, including microfocus and synchrotron systems. The systems we have benchmarked include KCAT (LLNL developed) and Xradia {mu}XCT (Xradia, Inc., Concord, CA), both microfocus systems, and Beamline 1-ID at the Advance Photon Source (APS) and the Tomography Beamline at the Advanced Light Source (ALS), both synchrotron based systems. The ALS Tomography Beamline is a new installation, and the data presented and analyzed here is some of the first to be acquired at the facility. It is important to note that the ALS system had not yet been optimized at the time we acquired data. Results for each of these systems has been independently documented elsewhere. In this report we summarize and compare the characterization results for these systems.« less

  17. Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A) Conference 2016

    DOE PAGES

    Pouyet, Emeline; Rose, Volker; Soriano, Carmen; ...

    2017-01-25

    Here, the seventh edition of the international conference on Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A 2016) was held September 6–8, 2016, at the Stock Exchange Room of The Art Institute of Chicago, USA. The conference was jointly organized by seven research laboratories and museums; more precisely, the Center for Scientific Studies in the Arts (NU-ACCESS) of Northwestern University, the Art Institute of Chicago, the Field Museum Chicago, the Advanced Photon Source (APS), the Oriental Institute Chicago, the Detroit Institute of Arts, and the Indianapolis Museum of Art, in close interaction with the SR2A International Committee. Nine yearsmore » after the organization of the first SR2A conference in Grenoble, the Art Institute hosted the second biennial interdisciplinary meeting in the US.« less

  18. Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A) Conference 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pouyet, Emeline; Rose, Volker; Soriano, Carmen

    Here, the seventh edition of the international conference on Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A 2016) was held September 6–8, 2016, at the Stock Exchange Room of The Art Institute of Chicago, USA. The conference was jointly organized by seven research laboratories and museums; more precisely, the Center for Scientific Studies in the Arts (NU-ACCESS) of Northwestern University, the Art Institute of Chicago, the Field Museum Chicago, the Advanced Photon Source (APS), the Oriental Institute Chicago, the Detroit Institute of Arts, and the Indianapolis Museum of Art, in close interaction with the SR2A International Committee. Nine yearsmore » after the organization of the first SR2A conference in Grenoble, the Art Institute hosted the second biennial interdisciplinary meeting in the US.« less

  19. APS Storage Ring Monopulse RF BPM Upgrade

    NASA Astrophysics Data System (ADS)

    Lill, R.; Pietryla, A.; Norum, E.; Lenkszus, F.

    2004-11-01

    The Advanced Photon Source (APS) is a third-generation synchrotron light source in its ninth year of operation. The storage ring monopulse radio frequency (rf) beam position monitor (BPM) was designed to measure single-turn and multi-turn beam positions for operations and machine physics studies. Many of the components used in the original design are obsolete and costly to replace. In this paper we present a proposal to upgrade the monopulse rf BPMs in which the existing system hardware is repartitioned and the aging data acquisition system is replaced. By replacing only the data acquisition system, we will demonstrate a cost-effective approach to improved beam stability, reliability, and enhanced postmortem capabilities. An eight-channel ADC/digitizer VXI board with sampling rate of up to 105 MHz (per channel) and 14-bit resolution coupled with a field-programmable gate array and embedded central processing will provide the flexibility to revitalize this system for another decade of operation. We will discuss the upgrade system specifications, design, and prototype test results.

  20. Advanced Photon Source Activity Report 2003: Report of Work Conducted at the APS, January 2003-December 2003, Synchrotron x-ray diffraction at the APS, Sector 16 (HPCAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, A F; Zaug, J M; Crowhurst, J C

    2005-01-27

    We present here the summary of the results of our studies using the APS synchrotron beamline IDB Sector 16 (HPCAT). Optical calibration of pressure sensors for high pressures and temperatures: The high-pressure ruby scale for static measurements is well established to at least 100 GPa (about 5% accuracy), however common use of this and other pressure scales at high temperature is clearly based upon unconfirmed assumptions. Namely that high temperature does not affect observed room temperature pressure derivatives. The establishment of a rigorous pressure scale along with the identification of appropriate pressure gauges (i.e. stable in the high P-T environmentmore » and easy to use) is important for securing the absolute accuracy of fundamental experimental science where results guide the development of our understanding of planetary sciences, geophysics, chemistry at extreme conditions, etc. X-ray diffraction in formic acid under high pressure: Formic acid (HCOOH) is common in the solar system; it is a potential component of the Galilean satellites. Despite this, formic acid has not been well-studied at high temperatures and pressures. A phase diagram of formic acid at planetary interior pressures and temperatures will add to the understanding of planetary formation and the potential for life on Europa. Formic acid (unlike most simple organic acids) forms low-temperature crystal structures characterized by infinite hydrogen-bonded chains of molecules. The behavior of these hydrogen bonds at high pressure is of great interest. Our current research fills this need.« less

  1. CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, D.

    1999-04-19

    A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less

  2. From radio to TeV: the surprising spectral energy distribution of AP Librae

    DOE PAGES

    Sanchez, D. A.; Giebels, B.; Fortin, P.; ...

    2015-10-17

    Following the discovery of high-energy (HE; E > 10 MeV) and very-high-energy (VHE; E > 100 GeV) γ-ray emission from the low-frequency-peaked BL Lac (LBL) object AP Librae, its electromagnetic spectrum is studied over 60 octaves in energy. Contemporaneous data in radio, optical and UV together with the (non-simultaneous) γ-ray data are used to construct the most precise spectral energy distribution of this source. We found that the data was modelled with difficulties with single-zone homogeneous leptonic synchrotron self-Compton (SSC) radiative scenarios due to the unprecedented width of the HE component when compared to the lower-energy component. Furthermore, the twomore » other LBL objects also detected at VHE appear to have similar modelling difficulties. Nevertheless, VHE γ-rays produced in the extended jet could account for the VHE flux observed by HESS.« less

  3. High speed systems for time-resolved experiments with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Koziol, Anna; Maj, Piotr

    2018-02-01

    The UFXC32k is a single photon counting hybrid pixel detector with 75 μm pixel pitch. It was designed to cope with high X-ray intensities and therefore it is a very good candiate for synchrotron applications. In order to use this detector in an application, a dedicated setup must be designed and built allowing proper operation of the detector within the experiment. The paper presents two setups built for the purpose of Pump-Probe-Probe experiments at the Synchrotron SOLEIL and XPCS experiments at the APS.

  4. Establishment of new design criteria for GlidCop ® X-ray absorbers

    DOE PAGES

    Collins, Jeff T.; Nudell, Jeremy; Navrotski, Gary; ...

    2017-02-20

    Here, an engineering research program has been conducted at the Advanced Photon Source (APS) in order to determine the thermomechanical conditions that lead to crack formation in GlidCop ®, a material commonly used to fabricate X-ray absorbers at X-ray synchrotron facilities. This dispersion-strengthened copper alloy is a proprietary material and detailed technical data of interest to the synchrotron community is limited. The results from the research program have allowed new design criteria to be established for GlidCop ® X-ray absorbers based upon the thermomechanically induced fatigue behavior of the material. X-ray power from APS insertion devices was used to exposemore » 30 GlidCop ® samples to 10000 thermal loading cycles each under various beam power conditions, and all of the samples were metallurgically examined for crack presence/geometry. In addition, an independent testing facility was hired to measure temperature-dependent mechanical data and uniaxial mechanical fatigue data for numerous GlidCop ® samples. Data from these studies support finite element analysis (FEA) simulation and parametric models, allowing the development of a thermal fatigue model and the establishment of new design criteria so that the thermomechanically induced fatigue life of X-ray absorbers may be predicted. It is also demonstrated how the thermal fatigue model can be used as a tool to geometrically optimize X-ray absorber designs.« less

  5. Establishment of new design criteria for GlidCop ® X-ray absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Jeff T.; Nudell, Jeremy; Navrotski, Gary

    Here, an engineering research program has been conducted at the Advanced Photon Source (APS) in order to determine the thermomechanical conditions that lead to crack formation in GlidCop ®, a material commonly used to fabricate X-ray absorbers at X-ray synchrotron facilities. This dispersion-strengthened copper alloy is a proprietary material and detailed technical data of interest to the synchrotron community is limited. The results from the research program have allowed new design criteria to be established for GlidCop ® X-ray absorbers based upon the thermomechanically induced fatigue behavior of the material. X-ray power from APS insertion devices was used to exposemore » 30 GlidCop ® samples to 10000 thermal loading cycles each under various beam power conditions, and all of the samples were metallurgically examined for crack presence/geometry. In addition, an independent testing facility was hired to measure temperature-dependent mechanical data and uniaxial mechanical fatigue data for numerous GlidCop ® samples. Data from these studies support finite element analysis (FEA) simulation and parametric models, allowing the development of a thermal fatigue model and the establishment of new design criteria so that the thermomechanically induced fatigue life of X-ray absorbers may be predicted. It is also demonstrated how the thermal fatigue model can be used as a tool to geometrically optimize X-ray absorber designs.« less

  6. Synchrotron Light Sources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Winick, Herman; Pianetta, Piero

    The more than 50 light sources in operation include facilities in Brazil, Korea, and Taiwan which started in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students. They have attracted mid-career diaspora scientists to return. Growing user communities have demanded more advanced facilities, leading to higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: ∖textbf{SESAME}in the Middle East which is scheduled to start research in 2017 (∖underline {www.sesame.org}); ∖textbf{The African Light Source}, in the planning stage (∖underline {www.safricanlightsource.org}); and ∖textbf{The Mexican Light Source}, in the planning stage (∖underline {http://www.aps.org/units/fip/newsletters/201509/mexico.cfm}). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source..

  7. Simulation Study of the Helical Superconducting Undulator Installation at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajaev, V.; Borland, M.; Sun, Y.

    A helical superconducting undulator is planned for installation at the APS. Such an installation would be first of its kind – helical devices were never installed in synchrotron light sources before. Due to its reduced horizontal aperture, a lattice modification is required to accommodate for large horizontal oscillations during injection. We describe the lattice change details and show the new lattice experimental test results. To understand the effect of the undulator on single-particle dynamics, first, its kick maps were computed using different methods. We have found that often-used Elleaume formula* for kick maps gives wrong results for this undulator. Wemore » then used the kick maps obtained by other methods to simulate the effect of the undulator on injection and lifetime.« less

  8. X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Xiao, Xianghui; Fusseis, Florian; De Carlo, Francesco

    2012-10-01

    State-of-art synchrotron radiation based micro-computed tomography provides high spatial and temporal resolution. This matches the needs of many research problems in geosciences. In this letter we report the current capabilities in microtomography at sector 2BM at the Advanced Photon Source (APS) of Argonne National Laboratory. The beamline is well suited to routinely acquire three-dimensional data of excellent quality with sub-micron resolution. Fast cameras in combination with a polychromatic beam allow time-lapse experiments with temporal resolutions of down to 200 ms. Data processing utilizes quantitative phase retrieval to optimize contrast in phase contrast tomographic data. The combination of these capabilities with purpose-designed experimental cells allows for a wide range of dynamic studies on geoscientific topics, two of which are summarized here. In the near future, new experimental cells capable of simulating conditions in most geological reservoirs will be available for general use. Ultimately, these advances will be matched by a new wide-field imaging beam line, which will be constructed as part of the APS upgrade. It is expected that even faster tomography with larger field of view can be conducted at this beam line, creating new opportunities for geoscientific studies.

  9. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  10. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  11. Metrology of variable-line-spacing x-ray gratings using the APS Long Trace Profiler

    NASA Astrophysics Data System (ADS)

    Sheung, Janet; Qian, Jun; Sullivan, Joseph; Thomasset, Muriel; Manton, Jonathan; Bean, Sunil; Takacs, Peter; Dvorak, Joseph; Assoufid, Lahsen

    2017-09-01

    As resolving power targets have increased with each generation of beamlines commissioned in synchrotron radiation facilities worldwide, diffraction gratings are quickly becoming crucial optical components for meeting performance targets. However, the metrology of variable-line-spacing (VLS) gratings for high resolution beamlines is not widespread; in particular, no metrology facility at any US DOE facility is currently equipped to fully characterize such gratings. To begin to address this issue, the Optics Group at the Advanced Photon Source at Argonne, in collaboration with SOLEIL and with support from Brookhaven National Laboratory (BNL), has developed an alternative beam path addition to the Long Trace Profiler (LTP) at Argonne's Advanced Photon Source. This significantly expands the functionality of the LTP not only to measure mirrors surface slope profile at normal incidence, but also to characterize the groove density of VLS diffraction gratings in the Littrow incidence up to 79°, which covers virtually all diffraction gratings used at synchrotrons in the first order. The LTP light source is a 20mW HeNe laser, which yields enough signal for diffraction measurements to be performed on low angle blazed gratings optimized for soft X-ray wavelengths. We will present the design of the beam path, technical requirements for the optomechanics, and our data analysis procedure. Finally, we discuss challenges still to be overcome and potential limitations with use of the LTP to perform metrology on diffraction gratings.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shenoy, G. K.; Rohlsberger, R.; X-Ray Science Division

    From the beginning of its discovery the Moessbauer effect has continued to be one of the most powerful tools with broad applications in diverse areas of science and technology. With the advent of synchrotron radiation sources such as the Advanced Photon Source (APS), the European Synchrotron Radiation Facility (ESRF) and the Super Photon Ring-8 (SPring-8), the tool has enlarged its scope and delivered new capabilities. The popular techniques most generally used in the field of materials physics, chemical physics, geoscience, and biology are hyperfine spectroscopy via elastic nuclear forward scattering (NFS), vibrational spectroscopy via nuclear inelastic scattering (NRIXS), and, tomore » a lesser extent, diffusional dynamics from quasielastic nuclear forward scattering (QNFS). As we look ahead, new storage rings with enhanced brilliance such as PETRA-III under construction at DESY, Hamburg, and PEP-III in its early design stage at SLAC, Stanford, will provide new and unique science opportunities. In the next two decades, x-ray free-electron lasers (XFELs), based both on self-amplified spontaneous emission (SASE-XFELs) and a seed (SXFELs), with unique time structure, coherence and a five to six orders higher average brilliance will truly revolutionize nuclear resonance applications in a major way. This overview is intended to briefly address the unique radiation characteristics of new sources on the horizon and to provide a glimpse of scientific prospects and dreams in the nuclear resonance field from the new radiation sources. We anticipate an expanded nuclear resonance research activity with applications such as spin and phonon mapping of a single nanostructure and their assemblies, interfaces, and surfaces; spin dynamics; nonequilibrium dynamics; photochemical reactions; excited-state spectroscopy; and nonlinear phenomena.« less

  13. Short x-ray pulse generation using deflecting cavities at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajaev, V.; Borland, M.; Chae, Y.-C.

    2007-11-11

    Storage-ring-based third-generation light sources can provide intense radiation pulses with durations as short as 100 ps. However, there is growing interest within the synchrotron radiation user community in performing experiments with much shorter X-ray pulses. Zholents et al. [Nucl. Instr. and Meth. A 425 (1999) 385] recently proposed using RF orbit deflection to generate sub-ps X-ray pulses. In this scheme, two deflecting cavities are used to deliver a longitudinally dependent vertical kick to the beam. An optical slit can then be used to slice out a short part of the radiation pulse. Implementation of this scheme is planned for onemore » APS beamline in the near future. In this paper, we summarize our feasibility study of this method and the expected X-ray beam parameters. We find that a pulse length of less than two picoseconds can be achieved.« less

  14. Development of a revolute-joint robot for the precision positioning of an x-ray detector

    NASA Astrophysics Data System (ADS)

    Preissner, Curt A.; Royston, Thomas J.; Shu, Deming

    2003-10-01

    This paper profiles the initial phase in the development of a six degree-of-freedom robot, with 1 μm dynamic positioning uncertainty, for the manipulation of x-ray detectors or test specimens at the Advanced Photon Source (APS). While revolute-joint robot manipulators exhibit a smaller footprint along with increased positioning flexibility compared to Cartesian manipulators, commercially available revolute-joint manipulators do not meet our size, positioning, or environmental specifications. Currently, a robot with 20 μm dynamic positioning uncertainty is functioning at the APS for cryogenic crystallography sample pick-and-place operation. Theoretical, computational and experimental procedures are being used to (1) identify and (2) simulate the dynamics of the present robot system using a multibody approach, including the mechanics and control architecture, and eventually to (3) design an improved version with a 1 μm dynamic positioning uncertainty. We expect that the preceding experimental and theoretical techniques will be useful design and analysis tools as multi-degree-of-freedom manipulators become more prevalent on synchrotron beamlines.

  15. Evaluation of Computed Tomography of Mock Uranium Fuel Rods at the Advanced Photon Source

    DOE PAGES

    Hunter, James F.; Brown, Donald William; Okuniewski, Maria

    2015-06-01

    This study discusses a multi-year effort to evaluate the utility of computed tomography at the Advanced Photon Source (APS) as a tool for non-destructive evaluation of uranium based fuel rods. The majority of the data presented is on mock material made with depleted uranium which mimics the x-ray attenuation characteristics of fuel rods while allowing for simpler handling. A range of data is presented including full thickness (5mm diameter) fuel rodlets, reduced thickness (1.8mm) sintering test samples, and pre/post irradiation samples (< 1mm thick). These data were taken on both a white beam (bending magnet) beamline and a high energy,more » monochromatic beamline. This data shows the utility of a synchrotron type source in the evealuation of manufacturing defects (pre-irradiation) and lays out the case for in situ CT of fuel pellet sintering. Finally, in addition data is shown from small post-irradiation samples and a case is made for post-irradiation CT of larger samples.« less

  16. Predicted TeV Gamma-ray Spectra and Images of Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    1999-04-01

    One supernova remnant, SN 1006, is now known to produce synchrotron X-rays (Koyama et al., 1995, Nature, 378, 255), requiring 100 TeV electrons. SN 1006 has also been seen in TeV gamma rays (Tanimori et al., 1998, ApJ, 497, L25), almost certainly due to cosmic-microwave-background photons being upscattered by those same electrons. Other young supernova remnants should also produce high-energy electrons, even if their X-ray synchrotron emission is swamped by conventional thermal X-ray emission. Upper limits to the maximum energy of shock-accelerated electrons can be found for those remnants by requiring that their synchrotron spectrum steepen enough to fall below observed thermal X-rays (Reynolds and Keohane 1999, ApJ, submitted). For those upper-limit spectra, I present predicted TeV inverse-Compton spectra and images for assumed values of the mean remnant magnetic field. Ground-based TeV gamma-ray observations of remnants may be able to put even more severe limits on the presence of highly energetic electrons in remnants, raising problems for conventional theories of galactic cosmic-ray production in supernova remnants. Detections will immediately confirm that SN 1006 is not alone, and will give mean remnant magnetic field strengths.

  17. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  18. BioCARS: a synchrotron resource for time-resolved X-ray science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graber, T.; Anderson, S.; Brewer, H.

    2011-08-16

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick-Baez mirror system capable of focusing the X-ray beammore » to a spot size of 90 {micro}m horizontal by 20 {micro}m vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to {approx}4 x 10{sup 10} photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450-2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.« less

  19. BioCARS: a synchrotron resource for time-resolved X-ray science

    PubMed Central

    Graber, T.; Anderson, S.; Brewer, H.; Chen, Y.-S.; Cho, H. S.; Dashdorj, N.; Henning, R. W.; Kosheleva, I.; Macha, G.; Meron, M.; Pahl, R.; Ren, Z.; Ruan, S.; Schotte, F.; Šrajer, V.; Viccaro, P. J.; Westferro, F.; Anfinrud, P.; Moffat, K.

    2011-01-01

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick–Baez mirror system capable of focusing the X-ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to ∼4 × 1010 photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450–2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained. PMID:21685684

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Macrander, A. T.

    Using the 1-BM-C beamline at the Advanced Photon Source (APS), we have performed the initial indirect x - ray imaging point-spread-function (PSF) test of a unique 88-mm diameter YAG:Ce single crystal of only 100 - micron thickness. The crystal was bonded to a fiber optic plat e (FOP) for mechanical support and to allow the option for FO coupling to a large format camera. This configuration resolution was compared to that of self - supported 25-mm diameter crystals, with and without an Al reflective coating. An upstream monochromator was used to select 17-keV x-rays from the broadband APS bending magnetmore » source of synchrotron radiation. The upstream , adjustable Mo collimators were then used to provide a series of x-ray source transverse sizes from 200 microns down to about 15-20 microns (FWHM) at the crystal surface. The emitted scintillator radiation was in this case lens coupled to the ANDOR Neo sCMOS camera, and the indirect x-ray images were processed offline by a MATLAB - based image processing program. Based on single Gaussian peak fits to the x-ray image projected profiles, we observed a 10.5 micron PSF. This sample thus exhibited superior spatial resolution to standard P43 polycrystalline phosphors of the same thickness which would have about a 100-micron PSF. Lastly, this single crystal resolution combined with the 88-mm diameter makes it a candidate to support future x-ray diffraction or wafer topography experiments.« less

  1. Surface Structure as a Foundation of Nanotechnology

    NASA Astrophysics Data System (ADS)

    Robinson, Ian

    2007-03-01

    The three generations of synchrotron sources achieved to date, parasitic, dedicated and undulator-based, have each time revolutionized the field of X-ray diffraction. Surface structure determination, demonstrated (but very difficult) already with Coolidge tube sources, benefited from the enormous flux gain in the first generation, such as SSRL. Dedicated 2nd-generation sources, such as NSLS, allowed in-situ surface preparation and reliable steady beams to be available when a surface was ready to measure. Third generation sources, such as APS, enormously improved the brightness, hence coherence, and thus allowed access to the surfaces of nanoparticles. This talk will illustrate how these technological advances led to two significant scientific breakthroughs. The concept of crystal truncation rods (CTR) led to new views of how the surface is a modification of, but still an extension of the bulk crystal structure. The development of lensless coherent x-ray diffraction (CXD) imaging has allowed access to the structure of nanocrystalline materials by three-dimensional phase mapping of the particle interiors. The structural principles of these new nano materials are being investigated at present using these new methods.

  2. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-02-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source.

  3. Protein Data Bank depositions from synchrotron sources.

    PubMed

    Jiang, Jiansheng; Sweet, Robert M

    2004-07-01

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results (http://asdp.bnl.gov/asda/Libraries/) show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources.

  4. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE PAGES

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; ...

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less

  5. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less

  6. APS Science 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, J. M; Mills, D. M.; Gerig, R.

    It is my pleasure to introduce the 2009 annual report of the Advanced Photon Source. This was a very good year for us. We operated with high reliability and availability, despite growing problems with obsolete systems, and our users produced a record output of publications. The number of user experiments increased by 14% from 2008 to more than 3600. We congratulate the recipients of the 2009 Nobel Prize in Chemistry-Venkatraman Ramakrishnan (Cambridge Institute for Medical Research), Thomas Steitz (Yale University), and Ada Yonath (Weizmann Institute) - who did a substantial amount of this work at APS beamlines. Thanks to themore » efforts of our users and staff, and the ongoing counsel of the APS Scientific Advisory Committee, we made major progress in advancing our planning for the upgrade of the APS (APS-U), producing a proposal that was positively reviewed. We hope to get formal approval in 2010 to begin the upgrade. With advocacy from our users and the support of our sponsor, the Office of Basic Energy Sciences in the Department of Energy (DOE) Office of Science, our operating budgets have grown to the level needed to more adequately staff our beamlines. We were also extremely fortunate to have received $7.9 M in American Recovery and Reinvestment Act ('stimulus') funding to acquire new detectors and improve several of our beamlines. The success of the new Linac Coherent Light Source at Stanford, the world's first x-ray free-electron laser, made us particularly proud since the undulators were designed and built by the APS. Among other highlights, we note that more than one-quarter of the 46 Energy Frontier Research Centers, funded competitively across the U.S. in 2009 by the DOE, included the Advanced Photon Source in their proposed work, which shows that synchrotron radiation, and the APS in particular, are central to energy research. While APS research covers everything from fundamental to applied science (reflected by the highlights in this report), the challenge of sustainable energy provides an opportunity for expanded involvement with industrial research. We were privileged to recruit several outstanding new leaders at the APS. Linda Young, from Argonne's Chemical Sciences Division, became the new Director of the X-ray Science Division (XSD). Chris Jacobsen (from Stony Brook University) has been added to Linda's team as an XSD Associate Division Director, joining George Srajer. Alexander (Sasha) Zholents (formerly of Berkeley Lab) became Director of the Accelerator Systems Division. Sasha is the inventor of the short-pulse x-ray scheme that we plan to implement in the APS-U to obtain very high average brightness, broadband, 1-ps x-ray pulses. Walter Lowe (formerly of Howard University) has taken a new position as senior advisor for outreach and development of the user community. Walter's role is to increase the diversity of the user community (with diversity read broadly to include users, institutions, and technical disciplines that are underrepresented at APS). Walter is also leading an effort to increase access for industrial users. I am confident that we have in place a great team to help our users and the APS take fullest advantage of the APS-U opportunity. In planning with users for the proposed APS-U, we focused on the need to study 'real materials under real conditions in real time' on spatial and temporal scales unavailable today. Only by studying materials as they are made-or as they perform-in difficult environments can we solve the grand challenge of higher-performance, sustainable materials for energy and health. The proposed APS-U will improve the brightness of penetrating x-rays produced by the APS over 100 times, and support our efforts in developing state-of-the-art instruments to address these challenges.« less

  7. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    USGS Publications Warehouse

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1990-01-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron X-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10 ??m with minimum detection limits in the 1-10 ppm range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. ?? 1990.

  8. Lithographically-fabricated channel arrays for confocal x-ray fluorescence microscopy and XAFS

    NASA Astrophysics Data System (ADS)

    Woll, Arthur R.; Agyeman-Budu, David; Choudhury, Sanjukta; Coulthard, Ian; Finnefrock, Adam C.; Gordon, Robert; Hallin, Emil; Mass, Jennifer

    2014-03-01

    Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume. The minimum-achievable size of this probe volume is limited by the collector, for which polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched in silicon, and arranged like spokes of a wheel directed towards a single source position. The optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total collection efficiency, limiting its practical application. Here, we describe a new design in which the collimating channels are formed by a staggered array of pillars whose side-walls taper away from the channel axis. This approach improves both collection efficiency and working distance, while maintaining excellent spatial resolution. We illustrate these improvements with confocal XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) beamline 20-ID-B.

  9. On the influence of monochromator thermal deformations on X-ray focusing

    DOE PAGES

    Antimonov, M. A.; Khounsary, A. M.; Sandy, A. R.; ...

    2016-03-02

    A cooled double crystal monochromator system is used on many high heat load X-ray synchrotron radiation beamlines in order to select, by diffraction, a narrow spectrum of the beam. Thermal deformation of the first crystal monochromator – and the potential loss of beam brightness – is often a concern. However, if downstream beam focusing is planned, the lensing effect of the monochromator must be considered even if thermal deformations are small. In this paper we report on recent experiments at an Advanced Photon Source (APS) beamline that focuses the X-ray beam using compound refractive lenses downstream of an X-ray monochromatormore » system. Increasing the X-ray beam power by increasing the storage ring current from 100 mA to 130 mA resulted in an effective doubling of the focal distance. We show quantitatively that this is due to a lensing effect of the distorted monochromator that results in the creation of a virtual source downstream of the actual source. Lastly, an analysis of the defocusing and options to mitigate this effect are explored.« less

  10. Renewal of the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, J. M.

    2008-12-31

    To ensure that state-of-the-art hard x-ray tools are available for US scientists and engineers who are solving key problems in energy, environment, technology development and human health, the nation's unique high-energy x-ray source needs a major renewal of its capabilities. The Advanced Photon Source renewal program responds to key scientific needs driven by our user community. The renewal encompasses many innovations in beamlines and accelerator capabilities, each of which will transform our tools and allow new problems to be solved. In particular the APS renewal dramatically expands two compelling avenues for research. Through x-ray imaging, we can illuminate complex hierarchical structures from the molecular level to the macroscopic level, and study how they change in time and in response to stimuli. Images will facilitate understanding how proteins fit together to make living organisms, contribute to development of lighter, higher-strength alloys for fuel-efficient transportation and advance the use of biomass for alternative fuels. Hard x-rays are also especially suited to the study of real materials, under realistic conditions and in real-time. The advances proposed in this area would help develop more efficient catalysts, enhance green manufacturing, point the way to artificial light-harvesting inspired by biology and help us develop more efficient lighting. The scope of the renewal of our {approx}more » $$1.5B facility is estimated to be {approx}$$350M over five years. It is vital that the investment begin as soon as possible. The renewed APS would complement other national investments such as the National Synchrotron Light Source-II and would keep the U.S. internationally competitive.« less

  11. Synchrotron light sources in developing countries

    DOE PAGES

    Mtingwa, Sekazi K.; Winick, Herman

    2018-03-21

    Here, we discuss the role that synchrotron light sources, such as SESAME, could play in improving the socioeconomic conditions in developing countries. After providing a brief description of a synchrotron light source, we discuss the important role that they played in the development of several economically emerging countries. Then we describe the state of synchrotron science in South Africa and that country’s leadership role in founding the African Light Source initiative. Next, we highlight a new initiative called Lightsources for Africa, the Americas & Middle East Project, which is a global initiative led by the International Union of Pure andmore » Applied Physics and the International Union of Crystallography, with initial funding provided by the International Council for Science. Finally, we comment on a new technology called the multibend achromat that has launched a new paradigm for the design of synchrotron light sources that should be attractive for construction in developing countries.« less

  12. Synchrotron light sources in developing countries

    NASA Astrophysics Data System (ADS)

    Mtingwa, Sekazi K.; Winick, Herman

    2018-03-01

    We discuss the role that synchrotron light sources, such as SESAME, could play in improving the socioeconomic conditions in developing countries. After providing a brief description of a synchrotron light source, we discuss the important role that they played in the development of several economically emerging countries. Then we describe the state of synchrotron science in South Africa and that country’s leadership role in founding the African Light Source initiative. Next, we highlight a new initiative called Lightsources for Africa, the Americas & Middle East Project, which is a global initiative led by the International Union of Pure and Applied Physics and the International Union of Crystallography, with initial funding provided by the International Council for Science. Finally, we comment on a new technology called the multibend achromat that has launched a new paradigm for the design of synchrotron light sources that should be attractive for construction in developing countries.

  13. Atomic physics research with second and third generation synchrotron light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.M.

    1990-10-01

    This contribution to these proceedings is intended to provide an introduction and overview for other contributions on atomic (and related) physics research at existing and planned synchrotron light sources. The emphasis will be on research accomplishments and future opportunities, but a comparison will be given of operating characteristics for first, second, and third generation machines. First generation light sources were built to do research with the primary electron and positron beams, rather than with the synchrotron radiation itself. Second generation machines were specifically designed to be dedicated synchrotron-radiation facilities, with an emphasis on the use of bending-magnet radiation. The newmore » third generation light sources are being designed to optimize radiation from insertion devices, such as undulators and wigglers. Each generation of synchrotron light source offers useful capabilities for forefront research in atomic physics and many other disciplines. 27 refs., 1 fig., 3 tabs.« less

  14. Synchrotron light sources in developing countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mtingwa, Sekazi K.; Winick, Herman

    Here, we discuss the role that synchrotron light sources, such as SESAME, could play in improving the socioeconomic conditions in developing countries. After providing a brief description of a synchrotron light source, we discuss the important role that they played in the development of several economically emerging countries. Then we describe the state of synchrotron science in South Africa and that country’s leadership role in founding the African Light Source initiative. Next, we highlight a new initiative called Lightsources for Africa, the Americas & Middle East Project, which is a global initiative led by the International Union of Pure andmore » Applied Physics and the International Union of Crystallography, with initial funding provided by the International Council for Science. Finally, we comment on a new technology called the multibend achromat that has launched a new paradigm for the design of synchrotron light sources that should be attractive for construction in developing countries.« less

  15. Synchrotron Light Sources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Winick, Herman; Pianetta, Piero

    2017-01-01

    The more than 50 light sources now in operation around the world include facilities in Brazil, Korea, and Taiwan which started their programs in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students locally, without sending them abroad and losing many of them. They have also attracted dozens of mid-career diaspora scientists to return. Their growing user communities have demanded more advanced facilities, leading to the funding of higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: SESAME in the Middle East which is scheduled to start research in 2017 (www.sesame.org); The African Light Source, in the planning stage (www.africanlightsource.org); and The Mexican Light Source, in the planning stage (http://www.aps.org/units/fip/newsletters/201509/mexico.cfm). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source. SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  16. Impact of synchrotron radiation on macromolecular crystallography: a personal view

    PubMed Central

    Dauter, Zbigniew; Jaskolski, Mariusz; Wlodawer, Alexander

    2010-01-01

    The introduction of synchrotron radiation sources almost four decades ago has led to a revolutionary change in the way that diffraction data from macromolecular crystals are being collected. Here a brief history of the development of methodologies that took advantage of the availability of synchrotron sources are presented, and some personal experiences with the utilization of synchrotrons in the early days are recalled. PMID:20567074

  17. Updates on the African Synchrotron Light Source (AfLS) Project

    NASA Astrophysics Data System (ADS)

    Dobbins, Tabbetha; Mtingwa, Sekazi; Wague, Ahmadou; Connell, Simon; Masara, Brian; Ntsoane, Tshepo; Norris, Lawrence; Winick, Herman; Evans-Lutterodt, Kenneth; Hussein, Tarek; Maresha, Feene; McLaughlin, Krystle; Oladijo, Philip; Du Plessis, Esna; Murenzi, Romain; Reed, Kennedy; Sette, Francesco; Werin, Sverker; Dorfan, Jonathan; Yousef, Mohammad

    Africa is the only habitable continent without a synchrotron light source. A full steering committee was elected at the African Light Source (AfLS) conference on November 16-20, 2015 at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The conference brought together African scientists, policy makers, and stakeholders to discuss a synchrotron light source in Africa. Firm outcomes of the Conference were a set of resolutions and a roadmap. Additionally, a collaborative proposal to promote Advanced Light Sources and crystallographic sciences in targeted regions of the world was submitted by the International Union of Pure and Applied Physics (IUPAP) and the International Union of Crystallography (IUCr) to the International Council for Science (ICSU). www.africanlightsource.org.

  18. Some aspects of cosmic synchrotron sources

    NASA Technical Reports Server (NTRS)

    Epstein, R. I.

    1973-01-01

    Synchrotron emission is considered from individual particles which have small pitch angles and the general properties of synchrotron sources which mainly contain such particles, as well as the emissivities and degrees of circular polarization for specific source distributions. The limitation of synchrotron source models for optical pulsars and compact extragalactic objects are discussed, and it is shown that several existing models for the pulsar NP 0532 are inconsistent with the measured time variations and polarizations of the optical emission. Discussion is made also of whether the low frequency falloffs in the extragalactic objects PKS 2134 + 004, OQ 208, and NGC 1068 is due to emission from particles with small pitch angles or absorption by a thermal plasma or synchrotron self-absorption. It is concluded that the absorption interpretations cannot account for the turnover in the spectrum of PKS 2134 + 004. Measurements of polarization, angular structure, and X-ray flux are also described.

  19. Design of Synchrotron Light Source in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. C.; Chang, H. P.; Chou, P. J.

    2007-01-19

    An intermediate energy synchrotron light source has been proposed. The goal is to construct a high performance light source in complementary to the existing 1.5 GeV synchrotron ring in Taiwan to boost the research capabilities. A 3 GeV machine with 518.4 m and 24-cell DBA lattice structure is considered and other options are also investigated. We report the 24-cell design considerations and its performances.

  20. Picosecond x-ray diagnostics for third and fourth generation synchrotron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeCamp, Matthew

    2016-03-30

    In the DOE-EPSCoR State/National Laboratory partnership grant ``Picosecond x-ray diagnostics for third and fourth generation synchrotron sources'' Dr. DeCamp set forth a partnership between the University of Delaware and Argonne National Laboratory. This proposal aimed to design and implement a series of experiments utilizing, or improving upon, existing time-domain hard x-ray spectroscopies at a third generation synchrotron source. Specifically, the PI put forth three experimental projects to be explored in the grant cycle: 1) implementing a picosecond ``x-ray Bragg switch'' using a laser excited nano-structured metallic film, 2) designing a robust x-ray optical delay stage for x-ray pump-probe studies atmore » a hard x-ray synchrotron source, and 3) building/installing a laser based x-ray source at the Advanced Photon Source for two-color x-ray pump-probe studies.« less

  1. GeoSoilEnviroCARS: A National User Facility for Synchrotron Radiation Research

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.; Sutton, S. R.

    2002-12-01

    GeoSoilEnviroCARS (GSECARS) is a national user facility for frontier research in the earth sciences using synchrotron radiation at the Advanced Photon Source, Argonne National Laboratory. GSECARS provides earth scientists with access to the high-brilliance hard x-rays from this third-generation synchrotron light source. Both an undulator and a bending magnet beamline are available. All principal synchrotron-based analytical techniques in demand by earth scientists are being brought to bear on earth science problems: (1) high-pressure/high-temperature crystallography and spectroscopy using the diamond anvil cell; (2) high-pressure/high-temperature crystallography using the large-volume press; (3) powder, single crystal and interface diffraction; (4) inelastic x-ray scattering; (5) x-ray absorption fine structure (XAFS) spectroscopy; (6) x-ray fluorescence microprobe analysis; and (7) microtomography. The major instrumentation includes 250 and 1000 MN multianvil presses, a double-sided laser heating system, a large general-purpose 5-circle diffractometer, a focused microprobe, and a Raman laboratory. A proposal-based system for beamtime allocation, open to all earth scientists, has been in place since Fall, 1998. Since then, over 450 beamtime proposals have been received and more than 320 outside users have conducted experiments at GSECARS. The research conducted by these investigators has resulted in more than 170 publications. The unique capabilities of the APS and GSECARS have allowed groundbreaking experiments to be conducted. These include: (1) phase transformations in the Mg-Si-O system at mantle conditions; (2) structure of hydrated a-Al2O3 surfaces; (3) alloying properties of silicon in the Earth's core; (4) dynamics of iron-rich melt segregation from silicates during core formation; (5) electronic spin state of FeO at high pressure and temperature; (6) elastic wave velocities of mantle minerals at lower mantle conditions; (7) copper partitioning and speciation in natural hydrothermal fluids; and (8) mechanisms of arsenic sequestration at a Superfund site. The GSECARS mission is to provide a research environment where users receive expert assistance in planning and conducting experiments, and in analyzing data. The facility operation is funded by the NSF EAR Instrumentation and Facilities program and the DOE Geosciences program. Major instrumentation was also provided by the W.M. Keck Foundation. Information and applications for beam time can be found at http://gsecars.org.

  2. Assessing noise sources at synchrotron infrared ports

    PubMed Central

    Lerch, Ph.; Dumas, P.; Schilcher, T.; Nadji, A.; Luedeke, A.; Hubert, N.; Cassinari, L.; Boege, M.; Denard, J.-C.; Stingelin, L.; Nadolski, L.; Garvey, T.; Albert, S.; Gough, Ch.; Quack, M.; Wambach, J.; Dehler, M.; Filhol, J.-M.

    2012-01-01

    Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors. PMID:22186638

  3. Finite Element Analysis of High Heat Load Deformation and Mechanical Bending Correction of a Beamline Mirror for the APS Upgrade

    NASA Astrophysics Data System (ADS)

    Goldring, Nicholas

    The impending Advanced Photon Source Upgrade (APS-U) will introduce a hard x-ray source that is set to surpass the current APS in brightness and coherence by two to three orders of magnitude. To achieve this, the storage ring light source will be equipped with a multi-bend achromat (MBA) lattice. In order to fully exploit and preserve the integrity of new beams actualized by upgraded storage ring components, improved beamline optics must also be introduced. The design process of new optics for the APS-U and other fourth generation synchrotrons involves the challenge of accommodating unprecedented heat loads. This dissertation presents an ex-situ analysis of heat load deformation and the subsequent mechanical bending correction of a 400 mm long, grazing-incidence, H2O side-cooled, reflecting mirror subjected to x-ray beams produced by the APS-U undulator source. Bending correction is measured as the smallest rms slope error, sigmarms, that can be resolved over a given length of the heat deformed geometry due to mechanical bending. Values of sigmarms in the <0.1 microrad regime represent a given mirror length over which incident x-ray beams from modern sources can be reflected without significant loss of quality. This study assumes a perfectly flat mirror surface and does not account for finish errors or other contributions to sigmarms beyond the scope of thermal deformation and elastic bending. The methodology of this research includes finite element analysis (FEA) employed conjointly with an analytical solution for mechanical bending deflection by means of an end couple. Additionally, the study will focus on two beam power density profiles predicted by the APS-U which were created using the software SRCalc. The profiles account for a 6 GeV electron beam with second moment widths of 0.058 and 0.011 mm in the x- and y- directions respectively; the electron beam is passed through a 4.8 m long, 28 mm period APS-U undulator which produces the x-ray beam incident at a 3 mrad grazing angle on the flat mirror surface for both cases. The first power density profile is the most extreme case created by the undulator at it's closest gap with a critical energy of 3 keV (k y=2.459); the second profile is generated for the case in which the undulator is tuned to emit at 8 keV (ky=1.026). The 3 keV case is of particular interest as it represents one of the most intense peak heat loads predicted to be incident on first optics at the APS-U. The FEA results revealed that the deflection due to the 3 keV heat load yields a 10.9 microrad rms slope error over the full mirror length. The projected correction via the elastic bending of the substrate yields a 0.10 microrad sigma rms within the center longitudinal 300 mm. The FEA also predicts that the 8 keV heat load deflection can be corrected to a sigma rms of 0.11 microrad within the center 300 mm from 1.50 microrad over the entire length. Attempts to optimize the end couple to correct over the entire 400 mm mirror length were unable to resolve the heat load deflection rms slope error to within a <0.1 microrad value for either case. However, if a larger corrected surface is required, a longer mirror can be implemented so as to absorb the heat load of a larger beam than necessary which can then be cut by an aperture to the desired size and energy range.

  4. From the Blazar Sequence to the Blazar Envelope: Revisiting the Relativistic Jet Dichotomy in Radio-Loud AGN

    NASA Technical Reports Server (NTRS)

    Meyer, Eileen T.; Fossati, Giovanini; Georganopoulos, Markos; Lister, Matthew L.

    2012-01-01

    We revisit the concept of a blazar sequence that relates the synchrotron peak frequency (Vpeak) in blazars with synchrotron peak luminosity (Lpeak, in vLv) using a large sample of radio-loud AGN. We present observational evidence that the blazar sequence is formed from two populations in the synchrotron Vpeak - Lpeak plane, each forming an upper edge to an envelope of progressively misaligned blazars, and connecting to an adjacent group of radio galaxies having jets viewed at much larger angles to the line of sight. When binned by jet kinetic power (Lkin; as measured through a scaling relationship with extended radio power), we find that radio core dominance decreases with decreasing synchrotron Lpeak, revealing that sources in the envelope are generally more misaligned. We find population-based evidence of velocity gradients in jets at low kinetic powers (approximately 10(exp 42) - 10(exp 44.5) erg s(exp -1)), corresponding to FR I radio galaxies and most BL Lacs. These low jet power 'weak jet' sources, thought to exhibit radiatively inefficient accretion, are distinguished from the population of non-decelerating, low synchrotron-peaking (LSP) blazars and FR II radio galaxies ('strong' jets) which are thought to exhibit radiatively efficient accretion. The two-population interpretation explains the apparent contradiction of the existence of highly core-dominated, low-power blazars at both low and high synchrotron peak frequencies, and further implies that most intermediate synchrotron peak (ISP) sources are not intermediate in intrinsic jet power between LSP and high synchrotron-peaking (HSP) sources, but are more misaligned versions of HSP sources with similar jet powers.

  5. Characterization of the UV detector of Solar Orbiter/Metis

    NASA Astrophysics Data System (ADS)

    Uslenghi, Michela; Schühle, Udo H.; Teriaca, Luca; Heerlein, Klaus; Werner, Stephan

    2017-08-01

    Metis, one of the instruments of the ESA mission Solar Orbiter (to be launched in February 2019), is a coronograph able to perform broadband polarization imaging in the visible range (580-640 nm), and narrow band imaging in UV (HI Lyman-α 121.6 nm) . The detector of the UV channel is an intensified camera, based on a Star-1000 rad-hard CMOS APS coupled via a 2:1 fiber optic taper to a single stage Microchannel Plate intensifier, sealed with an entrance MgF2 window and provided with an opaque KBr photocathode. Before integration in the instrument, the UVDA (UV Detector Assembly) Flight Model has been characterized at the MPS laboratory and calibrated in the UV range using the detector calibration beamline of the Metrology Light Source synchrotron of the Physikalisch-Technische Bundesanstalt (PTB). Linearity, spectral calibration, and response uniformity at 121.6 nm have been measured. Preliminary results are reported in this paper.

  6. Dynamic Initiator Imaging at the Advanced Photon Source: Understanding the early stages of initiator function and subsequent explosive interactions

    NASA Astrophysics Data System (ADS)

    Sanchez, Nate; Neal, Will; Jensen, Brian; Gibson, John; Martinez, Mike; Jaramillo, Dennis; Iverson, Adam; Carlson, Carl

    2017-06-01

    Recent advances in diagnostics coupled with synchrotron sources have allowed the in-situ investigation of exploding foil initiators (EFI) during flight. We present the first images of EFIs during flight utilizing x-ray phase contrast imaging at the Advanced Photon Source (APS) located in Argonne National Laboratory. These images have provided the DOE/DoD community with unprecedented images resolving details on the micron scale of the flyer formation, plasma instabilities and in flight characteristics along with the subsequent interaction with high explosives on the nanosecond time scale. Phase contrast imaging has allowed the ability to make dynamic measurements on the length and time scale necessary to resolve initiator function and provide insight to key design parameters. These efforts have also probed the fundamental physics at ``burst'' to better understand what burst means in a physical sense, rather than the traditional understanding of burst as a peak in voltage and increase in resistance. This fundamental understanding has led to increased knowledge on the mechanisms of burst and has allowed us to improve our predictive capability through magnetohydrodnamic modeling. Results will be presented from several EFI designs along with a look to the future for upcoming work.

  7. National Synchrotron Light Source annual report 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulbert, S.; Lazarz, N.; Williams, G.

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  8. Synchrotron based planar imaging and digital tomosynthesis of breast and biopsy phantoms using a CMOS active pixel sensor.

    PubMed

    Szafraniec, Magdalena B; Konstantinidis, Anastasios C; Tromba, Giuliana; Dreossi, Diego; Vecchio, Sara; Rigon, Luigi; Sodini, Nicola; Naday, Steve; Gunn, Spencer; McArthur, Alan; Olivo, Alessandro

    2015-03-01

    The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at Elettra is performing the first mammography study on human patients using free-space propagation phase contrast imaging. The stricter spatial resolution requirements of this method currently force the use of conventional films or specialized computed radiography (CR) systems. This also prevents the implementation of three-dimensional (3D) approaches. This paper explores the use of an X-ray detector based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology as a possible alternative, for acquisitions both in planar and tomosynthesis geometry. Results indicate higher quality of the images acquired with the synchrotron set-up in both geometries. This improvement can be partly ascribed to the use of parallel, collimated and monochromatic synchrotron radiation (resulting in scatter rejection, no penumbra-induced blurring and optimized X-ray energy), and partly to phase contrast effects. Even though the pixel size of the used detector is still too large - and thus suboptimal - for free-space propagation phase contrast imaging, a degree of phase-induced edge enhancement can clearly be observed in the images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotronmore » techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.« less

  10. RoboPol: the optical polarization of gamma-ray-loud and gamma-ray-quiet blazars

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Hovatta, T.; Blinov, D.; Pavlidou, V.; Kiehlmann, S.; Myserlis, I.; Böttcher, M.; Mao, P.; Panopoulou, G. V.; Liodakis, I.; King, O. G.; Baloković, M.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Paleologou, E.; Papadakis, I.; Papamastorakis, I.; Pazderski, E.; Pearson, T. J.; Prabhudesai, S.; Ramaprakash, A. N.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Urry, M.; Zensus, J. A.

    2016-12-01

    We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma-ray-loud and gamma-ray-quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray-loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray-quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3σ level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band luminosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high-synchrotron-peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray-quiet sources show similar median polarization fractions although they are all low-synchrotron-peaked. We also find that the randomness of the polarization angle depends on the synchrotron peak frequency. For high-synchrotron-peaked sources, it tends to concentrate around preferred directions while for low-synchrotron-peaked sources, it is more variable and less likely to have a preferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.

  11. Ultrafast X-Ray Coherent Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di racting properties of a x-ray di racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray freemore » electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the eld, and have laid the foundation for many experiments being performed on the LCLS, the world's rst hard x-ray free electron laser.« less

  12. National Synchrotron Light Source

    ScienceCinema

    None

    2017-12-09

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  13. Examining Returned Samples in their Collection Tubes Using Synchrotron Radiation-Based Techniques

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Hurowitz, J. A.; Thieme, J.; Dooryhee, E.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    Synchrotron radiation-based techniques can be leveraged for triaging and analysis of returned samples before unsealing collection tubes. Proof-of-concept measurements conducted at Brookhaven National Lab's National Synchrotron Light Source-II.

  14. Next-generation materials for future synchrotron and free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assoufid, Lahsen; Graafsma, Heinz

    We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less

  15. Next-generation materials for future synchrotron and free-electron laser sources

    DOE PAGES

    Assoufid, Lahsen; Graafsma, Heinz

    2017-06-09

    We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less

  16. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2017-12-09

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  17. Magnetic measurements of the injector synchrotron magnets for the advanced photon source

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Carnegie, D. W.; Doose, C. L.; Hogrefe, R.; Kim, K.; Merl, R.; Turner, L. R.

    1994-07-01

    The magnetic measurement data of the dipole, quadrupole, and sextupole magnets for the Advanced Photon Source injector synchrotron are summarized. Magnet design and magnetic measurements of the field strength, field shape, and multipole coefficients are described.

  18. Diffraction and Transmission Synchrotron Imaging at the German Light Source ANKA--Potential Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rack, Alexander; Weitkamp, Timm; European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex

    2009-03-10

    Diffraction and transmission synchrotron imaging methods have proven to be highly suitable for investigations in materials research and non-destructive evaluation. The high flux and spatial coherence of X-rays from modern synchrotron light sources allows one to work using high resolution and different contrast modalities. This article gives a short overview of different transmission and diffraction imaging methods with high potential for industrial applications, now available for commercial access via the German light source ANKA (Forschungszentrum Karlsruhe) and its new department ANKA Commercial Service (ANKA COS, http://www.anka-cos.de)

  19. Shielding calculations for the National Synchrotron Light Source-II experimental beamlines

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2013-01-01

    Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.

  20. Commissioning and Early Operation for the NSLS-II Booster RF System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marques, C.; Cupolo, J.; Davila, P.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL) is a third generation 3GeV, 500mA synchrotron light source. We discuss the booster synchrotron RF system responsible for providing power to accelerate an electron beam from 200MeV to 3GeV. The RF system design and construction are complete and is currently in the operational phase of the NSLS-II project. Preliminary operational data is also discussed.

  1. Fluorescence tomography using synchrotron radiation at the NSLS

    NASA Astrophysics Data System (ADS)

    Boisseau, P.; Grodzins, L.

    1987-03-01

    Fluorescence tomography utilizing focussed, tunable, monoenergetic X-rays from synchrotron light sources hold the promise of a non-invasive analytic tool for studying trace elements in specimens, particularly biological, at spatial resolutions of the order of micrometers. This note reports an early test at the National Synchrotron Light Source at Brookhaven National Laboratories in which fluorescence tomographic scans were successfully made of trace elements of iron and titanium in NBS standard glass and in a bee.

  2. Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB 080916C

    DTIC Science & Technology

    2010-01-01

    compared with keV – MeV radiation. Here we show that synchrotron radiation from cosmic ray protons accelerated in GRBs, delayed by the proton synchrotron... cosmic rays from sources within 100 Mpc for nano-Gauss intergalactic magnetic fields. The total energy requirements in a proton synchrotron model are...component arising from cosmic - ray proton synchrotron radiation explains the delayed onset of the LAT emission. If GRBs accelerate UHECRs, then the

  3. 2011 U.S. National School on Neutron and X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Jonathan; te Vethuis, Suzanne; Ekkebus, Allen E

    The 13th annual U.S. National School on Neutron and X-ray Scattering was held June 11 to 25, 2011, at both Oak Ridge and Argonne National Laboratories. This school brought together 65 early career graduate students from 56 different universities in the US and provided them with a broad introduction to the techniques available at the major large-scale neutron and synchrotron x-ray facilities. This school is focused primarily on techniques relevant to the physical sciences, but also touches on cross-disciplinary bio-related scattering measurements. During the school, students received lectures by over 30 researchers from academia, industry, and national laboratories and participatedmore » in a number of short demonstration experiments at Argonne's Advanced Photon Source (APS) and Oak Ridge's Spallation neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to get hands-on experience in using neutron and synchrotron sources. The first week of this year's school was held at Oak Ridge National Lab, where Lab director Thom Mason welcomed the students and provided a shitorical perspective of the neutron and x-ray facilities both at Oak Ridge and Argonne. The first few days of the school were dedicated to lectures laying out the basics of scattering theory and the differences and complementarity between the neutron and x-ray probes given by Sunil Sinha. Jack Carpenter provided an introduction into how neutrons are generated and detected. After this basic introduction, the students received lectures each morning on specific techniques and conducted demonstration experiments each afternoon on one of 15 different instruments at either the SNS or HFIR. Some of the topics covered during this week of the school included inelastic neutron scattering by Bruce Gaulin, x-ray and neutron reflectivity by Chuck Majkrazak, small-angle scattering by Volker Urban, powder diffraction by Ashfia Huq and diffuse scattering by Gene Ice.« less

  4. EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieira, J. D.; Crawford, T. M.; Switzer, E. R.

    2010-08-10

    We report the results of an 87 deg{sup 2} point-source survey centered at R.A. 5{sup h}30{sup m}, decl. -55{sup 0} taken with the South Pole Telescope at 1.4 and 2.0 mm wavelengths with arcminute resolution and milli-Jansky depth. Based on the ratio of flux in the two bands, we separate the detected sources into two populations, one consistent with synchrotron emission from active galactic nuclei and the other consistent with thermal emission from dust. We present source counts for each population from 11 to 640 mJy at 1.4 mm and from 4.4 to 800 mJy at 2.0 mm. The 2.0more » mm counts are dominated by synchrotron-dominated sources across our reported flux range; the 1.4 mm counts are dominated by synchrotron-dominated sources above {approx}15 mJy and by dust-dominated sources below that flux level. We detect 141 synchrotron-dominated sources and 47 dust-dominated sources at signal-to-noise ratio S/N >4.5 in at least one band. All of the most significantly detected members of the synchrotron-dominated population are associated with sources in previously published radio catalogs. Some of the dust-dominated sources are associated with nearby (z << 1) galaxies whose dust emission is also detected by the Infrared Astronomy Satellite. However, most of the bright, dust-dominated sources have no counterparts in any existing catalogs. We argue that these sources represent the rarest and brightest members of the population commonly referred to as submillimeter galaxies (SMGs). Because these sources are selected at longer wavelengths than in typical SMG surveys, they are expected to have a higher mean redshift distribution and may provide a new window on galaxy formation in the early universe.« less

  5. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE PAGES

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; ...

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  6. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  7. The Scale Invariant Synchrotron Jet of Flat Spectrum Radio Quasars

    NASA Astrophysics Data System (ADS)

    Du, L. M.; Bai, J. M.; Xie, Z. H.; Yi, T. F.; Xu, Y. B.; Xue, R.; Wang, X. H.

    2015-06-01

    In this paper, the scale invariance of the synchrotron jet of Flat Spectrum Radio Quasars has been studied using a sample of combined sources from FKM04 and from SDSS DR3 catalogue. Since the research of scale invariance has been focused on sub-Eddington cases that can be fitted onto the fundamental plane, while near-Eddington sources such as FSRQs have not been explicitly studied. The extracted physical properties of synchrotron jet of FSRQs have been shown to be scale invariant using our sample. The results are in good agreement with theoretical expectations of Heinz & Sunyaev (2003). Therefore, the jet synchrotron is shown to be scale independent, regardless of the accretion modes. Results in this article thus lend support to the scale invariant model of the jet synchrotron throughout the mass scale of black hole systems.

  8. 6th International Conference on Biophysics & Synchrotron Radiation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffat, Keith

    1999-08-03

    The 6th International Conference on Biophysics and Synchrotron Rdiation was held at the Advanced Photon Source, Argonne National Laboratory, from August 4-8, 1998, with pre-conference activities on August 3. Over 300 attendees and 65 presenters participated in the conference that was collaboratively hosted by the University of Chicago, Center for Advanced Radiation Sources and the Advanced Photon Source.

  9. National Synchrotron Light Source

    ScienceCinema

    BNL

    2017-12-09

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  10. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges

    PubMed Central

    Neutze, Richard; Moffat, Keith

    2012-01-01

    X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today’s synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics. PMID:23021004

  11. Non-Destructive Trace Element Tomography Using Europe's Brightest Synchrotron Sources (ESRF-Grenoble, DESY-Hamburg) — Towards a Better Understanding of Martian Samples

    NASA Astrophysics Data System (ADS)

    Brenker, F. E.; Vincze, L.; Vekemans, B.; de Poulle, E.

    2018-04-01

    Synchrotron sources are valuable tools to measure the main and trace element content of extraterrestrial samples. The non-destructive measurements will allow to identify important geological processes within the martian mantle and crust.

  12. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  13. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  14. SIMULATIONS OF BOOSTER INJECTION EFFICIENCY FOR THE APS-UPGRADE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvey, J.; Borland, M.; Harkay, K.

    2017-06-25

    The APS-Upgrade will require the injector chain to provide high single bunch charge for swap-out injection. One possible limiting factor to achieving this is an observed reduction of injection efficiency into the booster synchrotron at high charge. We have simulated booster injection using the particle tracking code elegant, including a model for the booster impedance and beam loading in the RF cavities. The simulations point to two possible causes for reduced efficiency: energy oscillations leading to losses at high dispersion locations, and a vertical beam size blowup caused by ions in the Particle Accumulator Ring. We also show that themore » efficiency is much higher in an alternate booster lattice with smaller vertical beta function and zero dispersion in the straight sections.« less

  15. Review of third and next generation synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Bilderback, Donald H.; Elleaume, Pascal; Weckert, Edgar

    2005-05-01

    Synchrotron radiation (SR) is having a very large impact on interdisciplinary science and has been tremendously successful with the arrival of third generation synchrotron x-ray sources. But the revolution in x-ray science is still gaining momentum. Even though new storage rings are currently under construction, even more advanced rings are under design (PETRA III and the ultra high energy x-ray source) and the uses of linacs (energy recovery linac, x-ray free electron laser) can take us further into the future, to provide the unique synchrotron light that is so highly prized for today's studies in science in such fields as materials science, physics, chemistry and biology, for example. All these machines are highly reliant upon the consequences of Einstein's special theory of relativity. The consequences of relativity account for the small opening angle of synchrotron radiation in the forward direction and the increasing mass an electron gains as it is accelerated to high energy. These are familiar results to every synchrotron scientist. In this paper we outline not only the origins of SR but discuss how Einstein's strong character and his intuition and excellence have not only marked the physics of the 20th century but provide the foundation for continuing accelerator developments into the 21st century.

  16. X-Ray Structure determination of the Glycine Cleavage System Protein H of Mycobacterium tuberculosis Using An Inverse Compton Synchrotron X-Ray Source

    PubMed Central

    Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.

    2010-01-01

    Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333

  17. Characterization of high energy Xe ion irradiation effects in single crystal molybdenum with depth-resolved synchrotron microbeam diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Di; Miao, Yinbin; Xu, Ruqing

    2016-04-01

    Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 mu m, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performedmore » to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations. (c) 2015 Elsevier B.V. All rights reserved.« less

  18. Peculiar Traits of Coarse AP (Briefing Charts)

    DTIC Science & Technology

    2014-12-01

    coarse AP Bircumshaw, Newman Active centers are sources of AP decomposition gases AP low temperature decomposition (LTD) Most unstable AP particles ...delay before coarse AP ejection *Coarse AP particle flame retardancy 19 Air Force Research Laboratory Distribution A: Approved for public release...distribution unlimited. PA clearance #. Combustion bomb trials 2 AP phase change may enable coarse particle breakage Fractured coarse AP ejection agrees

  19. Hard X-ray Sources for the Mexican Synchrotron Project

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  20. Applications of synchrotron radiation to materials science: Diffraction imaging (topography) and microradiography

    NASA Technical Reports Server (NTRS)

    Kuriyama, Masao

    1988-01-01

    Synchrotron radiation sources are now available throughout the world. The use of hard X-ray radiation from these sources for materials science is described with emphasis on diffraction imaging for material characterization. With the availability of synchrotron radiation, real-time in situ measurements of dynamic microstructural phenomena have been started. This is a new area where traditional application of X-rays has been superseded. Examples are chosen from limited areas and are by no means exhaustive. The new emerging information will, no doubt, have great impact on materials science and engineering.

  1. Physics of compact nonthermal sources. III - Energetic considerations. [electron synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Burbidge, G. R.; Jones, T. W.; Odell, S. L.

    1974-01-01

    The energy content of the compact incoherent electron-synchrotron sources 3C 84, 3C 120, 3C 273, 3C 279, 3C 454.3, CTA 102, 3C 446, PKS 2134+004, VRO 42.22.01 and OJ 287 is calculated on the assumption that the low-frequency turnovers in the radio spectrum are due to self-absorption and that the electron distribution is isotropic. The dependence of the source parameters on various modifications of the standard assumptions is determined. These involve relativistic motions, alternate explanations for the low-frequency turnover, proton-synchrotron radiation, and distance to the source. The canonical interpretation is found to be accurate in many respects; some of the difficulties and ways of dealing with them are discussed in detail.

  2. Astrophysical interpretation of the anisotropies in the unresolved gamma-ray background

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco; Zechlin, Hannes-S.

    2017-06-01

    Recently, a new measurement of the auto- and cross-correlation angular power spectrum (APS) of the isotropic gamma-ray background was performed, based on 81 months of data of the Fermi Large-Area Telescope (LAT). Here, we fit, for the first time, the new APS data with a model describing the emission of unresolved blazars. These sources are expected to dominate the anisotropy signal. The model we employ in our analysis reproduces well the blazars resolved by Fermi LAT. When considering the APS obtained by masking the sources listed in the 3FGL catalog, we find that unresolved blazars underproduce the measured APS below ˜1 GeV . Contrary to past results, this suggests the presence of a new contribution to the low-energy APS, with a significance of, at least, 5 σ . The excess can be ascribed to a new class of faint gamma-ray emitters. If we consider the APS obtained by masking the sources in the 2FGL catalog, there is no underproduction of the APS below 1 GeV, but the new source class is still preferred over the blazars-only scenario (with a significance larger than 10 σ ). The properties of the new source class and the level of anisotropies induced in the isotropic gamma-ray background are the same, independent of the APS data used. In particular, the new gamma-ray emitters must have a soft energy spectrum, with a spectral index ranging, approximately, from 2.7 to 3.2. This complicates their interpretation in terms of known sources, since, normally, star-forming and radio galaxies are observed with a harder spectrum. The new source class identified here is also expected to contribute significantly to the intensity of the isotropic gamma-ray background.

  3. Introducing Synchrotrons Into the Classroom

    ScienceCinema

    Bloch, Ashley; Lanzirotti, Tony

    2018-06-08

    Brookhaven's Introducing Synchrotrons Into the Classroom (InSynC) program gives teachers and their students access to the National Synchrotron Light Source through a competitive proposal process. The first batch of InSynC participants included a group of students from Islip Middle School, who used the massive machine to study the effectiveness of different what filters.

  4. X-ray phase-contrast tomosynthesis of a human ex vivo breast slice with an inverse Compton x-ray source

    NASA Astrophysics Data System (ADS)

    Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Grandl, S.; Sztrókay, A.; Hellerhoff, K.; Mayr, D.; Loewen, R.; Ruth, R. D.; Reiser, M. F.; Pfeiffer, F.

    2016-12-01

    While the performance of conventional x-ray tube sources often suffers from the broad polychromatic spectrum, synchrotrons that could provide highly brilliant x-rays are restricted to large research facilities and impose high investment and maintenance costs. Lately, a new type of compact synchrotron sources has been investigated. These compact light sources (CLS) based on inverse Compton scattering provide quasi-monochromatic hard x-rays. The flux and brilliance yielded by a CLS currently lie between x-ray tube sources and third-generation synchrotrons. The relatively large partially coherent x-ray beam is well suited for the investigation of preclinical applications of grating-based phase-contrast and dark-field imaging. Here we present the first grating-based multimodal tomosynthesis images of a human breast slice acquired at a CLS to investigate the possibilities of improved breast cancer diagnostics.

  5. Signature of inverse Compton emission from blazars

    NASA Astrophysics Data System (ADS)

    Gaur, Haritma; Mohan, Prashanth; Wierzcholska, Alicja; Gu, Minfeng

    2018-01-01

    Blazars are classified into high-, intermediate- and low-energy-peaked sources based on the location of their synchrotron peak. This lies in infra-red/optical to ultra-violet bands for low- and intermediate-peaked blazars. The transition from synchrotron to inverse Compton emission falls in the X-ray bands for such sources. We present the spectral and timing analysis of 14 low- and intermediate-energy-peaked blazars observed with XMM-Newton spanning 31 epochs. Parametric fits to X-ray spectra help constrain the possible location of transition from the high-energy end of the synchrotron to the low-energy end of the inverse Compton emission. In seven sources in our sample, we infer such a transition and constrain the break energy in the range 0.6-10 keV. The Lomb-Scargle periodogram is used to estimate the power spectral density (PSD) shape. It is well described by a power law in a majority of light curves, the index being flatter compared to general expectation from active galactic nuclei, ranging here between 0.01 and 1.12, possibly due to short observation durations resulting in an absence of long-term trends. A toy model involving synchrotron self-Compton and external Compton (EC; disc, broad line region, torus) mechanisms are used to estimate magnetic field strength ≤0.03-0.88 G in sources displaying the energy break and infer a prominent EC contribution. The time-scale for variability being shorter than synchrotron cooling implies steeper PSD slopes which are inferred in these sources.

  6. Negative ion source development at the cooler synchrotron COSY/Jülich

    NASA Astrophysics Data System (ADS)

    Felden, O.; Gebel, R.; Maier, R.; Prasuhn, D.

    2013-02-01

    The Nuclear Physics Institute at the Forschungszentrum Jülich, a member of the Helmholtz Association, conducts experimental and theoretical basic research in the field of hadron, particle, and nuclear physics. It operates the cooler synchrotron COSY, an accelerator and storage ring, which provides unpolarized and polarized proton and deuteron beams with beam momenta of up to 3.7 GeV/c. Main activities of the accelerator division are the design and construction of the high energy storage ring HESR, a synchrotron and part of the international FAIR project, and the operation and development of COSY with injector cyclotron and ion sources. Filament driven volume sources and a charge exchange colliding beams source, based on a nuclear polarized atomic beam source, provide unpolarized and polarized H- or D- routinely for more than 6500 hours/year. Within the Helmholtz Association's initiative Accelerator Research and Development, ARD, the existing sources at COSY, as well as new sources for future programs, are investigated and developed. The paper reports about these plans, improved pulsed beams from the volume sources and the preparation of a source for the ELENA project at CERN.

  7. Cementum structure in Beluga whale teeth

    DOE PAGES

    Stock, S. R.; Finney, L. A.; Telser, A.; ...

    2016-11-09

    We report that a large fraction of the volume of Beluga whale (Delphinapterus leucas) teeth consists of cementum, a mineralized tissue which grows throughout the life of the animal and to which the periodontal ligaments attach. Annular growth bands or growth layer groups (GLGs) form within Beluga cementum, and this study investigates GLG structure using X-ray fluorescence mapping and X-ray diffraction mapping with microbeams of synchrotron radiation. The Ca and Zn fluorescent intensities and carbonated hydroxyapatite (cAp) diffracted intensities rise and fall together and match the light-dark bands visible in transmitted light micrographs. Within the bands of maximum Ca andmore » Zn intensity, the ratio of Zn to Ca is slightly higher than in the minima bands. Further, the GLG cAp, Ca and Zn modulation is preserved throughout the cementum for durations >25 year.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomopy is a Python toolbox to perform x-ray data processing, image reconstruction and data exchange tasks at synchrotron facilities. The dependencies of the software are currently as follows: -Python related python standard library (http://docs.python.org/2/library/) numpy (http://www.numpy.org/) scipy (http://scipy.org/) matplotlib (http://matplotlip.org/) sphinx (http://sphinx-doc.org) pil (http://www.pythonware.com/products/pil/) pyhdf (http://pysclint.sourceforge.net/pyhdf/) h5py (http://www.h5py.org) pywt (http://www.pybytes.com/pywavelets/) file.py (https://pyspec.svn.sourceforge.net/svnroot/pyspec/trunk/pyspec/ccd/files.py) -C/C++ related: gridec (anonymous?? C-code written back in 1997 that uses standard C library) fftw (http://www.fftw.org/) tomoRecon (multi-threaded C++ verion of gridrec. Author: Mark Rivers from APS. http://cars9.uchicago.edu/software/epics/tomoRecon.html) epics (http://www.aps.anl.gov/epics/)

  9. National Synchrotron Light Source II

    ScienceCinema

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2018-01-16

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  10. Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2006-01-01

    The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution (sub-arcsecond) of any previous, current, or planned (for the foreseeable near future) space-based X-ray instrumentation. We present here a brief overview of the technical capability of this X-Ray observatory and some of the remarkable discoveries involving cosmic synchrotron sources.

  11. Pure-type superconducting permanent-magnet undulator.

    PubMed

    Tanaka, Takashi; Tsuru, Rieko; Kitamura, Hideo

    2005-07-01

    A novel synchrotron radiation source is proposed that utilizes bulk-type high-temperature superconductors (HTSCs) as permanent magnets (PMs) by in situ magnetization. Arrays of HTSC blocks magnetized by external magnetic fields are placed below and above the electron path instead of conventional PMs, generating a periodic magnetic field with an offset. Two methods are presented to magnetize the HTSCs and eliminate the field offset, enabling the HTSC arrays to work as a synchrotron radiation source. An analytical formula to calculate the peak field achieved in a device based on this scheme is derived in a two-dimensional form for comparison with synchrotron radiation sources using conventional PMs. Experiments were performed to demonstrate the principle of the proposed scheme and the results have been found to be very promising.

  12. Chemical Crystallography at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Laura; Giordano, Nico; Teat, Simon

    Chemical crystallography at synchrotrons was pioneered at the Daresbury SRS station 9.8. The chemical crystallography beamlines at the Advanced Light Source seek to follow that example, with orders of magnitude more flux than a lab source, and various in situ experiments. This article thus attempts to answer why a chemist would require synchrotron X-rays, to describe the techniques available at the ALS chemical crystallography beamlines, and place the current facilities in a historical context.

  13. Chemical Crystallography at the Advanced Light Source

    DOE PAGES

    McCormick, Laura; Giordano, Nico; Teat, Simon; ...

    2017-12-18

    Chemical crystallography at synchrotrons was pioneered at the Daresbury SRS station 9.8. The chemical crystallography beamlines at the Advanced Light Source seek to follow that example, with orders of magnitude more flux than a lab source, and various in situ experiments. This article thus attempts to answer why a chemist would require synchrotron X-rays, to describe the techniques available at the ALS chemical crystallography beamlines, and place the current facilities in a historical context.

  14. Status of the Siberian synchrotron radiation center

    NASA Astrophysics Data System (ADS)

    Ancharov, A. I.; Baryshev, V. B.; Chernov, V. A.; Gentselev, A. N.; Goldenberg, B. G.; Kochubei, D. I.; Korchuganov, V. N.; Kulipanov, G. N.; Kuzin, M. V.; Levichev, E. B.; Mezentsev, N. A.; Mishnev, S. I.; Nikolenko, A. D.; Pindyurin, V. F.; Sheromov, M. A.; Tolochko, B. P.; Sharafutdinov, M. R.; Shmakov, A. N.; Vinokurov, N. A.; Vobly, P. D.; Zolotarev, K. V.

    2005-05-01

    Synchrotron radiation (SR) experiments at the Budker Institute of Nuclear Physics had been started in 1973, and from 1981 the Siberian Synchrotron Radiation Center (SSRC) had an official status as Research Center of the Russian Academy of Sciences. SSRC is the research center, which is open and free of tax for the research teams from Russia and abroad. In this report some technical information about the storage rings—SR sources of the Budker INP, the main directions of activity of SSRC, experimental stations, experimental works and users—is given. Development of the free electron lasers, new SR sources and insertion devices is described.

  15. T-REX: Thomson-Radiated Extreme X-rays Moving X-Ray Science into the ''Nuclear'' Applications Space with Thompson Scattered Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, C P; Hartemann, F V

    2004-09-21

    The scattering of laser photons from relativistic electrons (Thomson scattering) has been demonstrated to be a viable method for the production of ultrashort-duration pulses of tunable radiation in the 10-keV to 100-keV range. Photons in this range are capable of exciting or ionizing even the most tightly bound of atomic electrons. A wide variety of atomistic scale applications are possible. For example, Thomson x-ray sources have been constructed at LLNL (PLEIADES) and LBL as picosecond, stroboscopic probes of atomic-scale dynamics and at Vanderbilt University as element-specific tools for medical radiography and radiology. While these sources have demonstrated an attractive abilitymore » to simultaneously probe on an atomic spatial and temporal scale, they do not necessarily exploit the full potential of the Thomson scattering process to produce high-brightness, high-energy photons. In this white paper, we suggest that the peak brightness of Thomson sources can scale as fast as the 4th power of electron beam energy and that production via Thomson scattering of quasi-monochromatic, tunable radiation in the ''nuclear-range'' between 100-keV and several MeV is potentially a much more attractive application space for this process. Traditional sources in this regime are inherently ultra-broadband and decline rapidly in brightness as a function of photon energy. The output from dedicated, national-laboratory-scale, synchrotron facilities, e.g. APS, SPring8, ESRF etc., declines by more than 10 orders from 100 keV to 1 MeV. At 1 MeV, we conservatively estimate that Thomson-source, peak brightness can exceed that of APS (the best machine in the DOE complex) by more than 15 orders of magnitude. In much the same way that tunable lasers revolutionized atomic spectroscopy, this ''Peta-step'' advance in tunable, narrow-bandwidth, capability should enable entirely new fields of study and new, programmatically-interesting, applications such as: micrometer-spatial-resolution, MeV, flash radiography of dense, energetic systems (NIF, JASPER), precision, photo-nuclear absorption spectroscopy (DNT, PAT), non-destructive, resonant nuclear fluorescent imaging of special nuclear materials (NAI, DHS), dynamic, micro-crack failure analysis (aerospace industry, SSP) etc. Concepts are presented for new Thomson-Radiated Extreme X-ray (T-REX) sources at LLNL. These leverage LLNL's world-leading expertise in high-intensity lasers, high average power lasers, diffractive optics, Thomson-based x-ray source development, and advanced photoguns to produce tunable, quasi-monochromatic radiation from 50-keV to several MeV. Above {approx}100 keV, T-REX would be unique in the world with respect to BOTH peak x-ray brilliance AND average x-ray brilliance. This capability would naturally compliment the x-ray capability of large-scale, synchrotron facilities currently within the DoE complex by significantly extending the x-ray energy range over which, tunable, high-brightness applications could be pursued. It would do so at a small fraction of the cost of the purely, accelerator-based facilities. It is anticipated that T-REX could provide new opportunities for interaction of LLNL with the DoE Office of Science, DARPA, DHS etc. and would place LLNL clearly at the forefront of laser-based, x-ray generation world-wide.« less

  16. Results of x-ray mirror round-robin metrology measurements at the APS, ESRF, and SPring-8 optical metrology laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assoufid, L.; Rommeveaux, A.; Ohashi, H.

    2005-01-01

    This paper presents the first series of round-robin metrology measurements of x-ray mirrors organized at the Advanced Photon Source (APS) in the USA, the European Synchrotron Radiation Facility in France, and the Super Photon Ring (SPring-8) (in a collaboration with Osaka University, ) in Japan. This work is part of the three institutions' three-way agreement to promote a direct exchange of research information and experience amongst their specialists. The purpose of the metrology round robin is to compare the performance and limitations of the instrumentation used at the optical metrology laboratories of these facilities and to set the basis formore » establishing guidelines and procedures to accurately perform the measurements. The optics used in the measurements were selected to reflect typical, as well as state of the art, in mirror fabrication. The first series of the round robin measurements focuses on flat and cylindrical mirrors with varying sizes and quality. Three mirrors (two flats and one cylinder) were successively measured using long trace profilers. Although the three facilities' LTPs are of different design, the measurements were found to be in excellent agreement. The maximum discrepancy of the rms slope error values is 0.1 {micro}rad, that of the rms shape error was 3 nm, and they all relate to the measurement of the cylindrical mirror. The next round-robin measurements will deal with elliptical and spherical optics.« less

  17. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuan-Pei; Dai, Zi-Gao; Zhang, Bing, E-mail: zhang@physics.unlv.edu

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In themore » meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula.« less

  18. Nsls-II Boster

    NASA Astrophysics Data System (ADS)

    Gurov, S. M.; Akimov, A. V.; Akimov, V. E.; Anashin, V. V.; Anchugov, O. V.; Baranov, G. N.; Batrakov, A. M.; Belikov, O. V.; Bekhtenev, E. A.; Blum, E.; Bulatov, A. V.; Burenkov, D. B.; Cheblakov, P. B.; Chernyakin, A. D.; Cheskidov, V. G.; Churkin, I. N.; Davidsavier, M.; Derbenev, A. A.; Erokhin, A. I.; Fliller, R. P.; Fulkerson, M.; Gorchakov, K. M.; Ganetis, G.; Gao, F.; Gurov, D. S.; Hseuh, H.; Hu, Y.; Johanson, M.; Kadyrov, R. A.; Karnaev, S. E.; Karpov, G. V.; Kiselev, V. A.; Kobets, V. V.; Konstantinov, V. M.; Kolmogorov, V. V.; Korepanov, A. A.; Kramer, S.; Krasnov, A. A.; Kremnev, A. A.; Kuper, E. A.; Kuzminykh, V. S.; Levichev, E. B.; Li, Y.; Long, J. De; Makeev, A. V.; Mamkin, V. R.; Medvedko, A. S.; Meshkov, O. I.; Nefedov, N. B.; Neyfeld, V. V.; Okunev, I. N.; Ozaki, S.; Padrazo, D.; Petrov, V. V.; Petrichenkov, M. V.; Philipchenko, A. V.; Polyansky, A. V.; Pureskin, D. N.; Rakhimov, A. R.; Rose, J.; Ruvinskiy, S. I.; Rybitskaya, T. V.; Sazonov, N. V.; Schegolev, L. M.; Semenov, A. M.; Semenov, E. P.; Senkov, D. V.; Serdakov, L. E.; Serednyakov, S. S.; Shaftan, T. V.; Sharma, S.; Shichkov, D. S.; Shiyankov, S. V.; Shvedov, D. A.; Simonov, E. A.; Singh, O.; Sinyatkin, S. V.; Smaluk, V. V.; Sukhanov, A. V.; Tian, Y.; Tsukanova, L. A.; Vakhrushev, R. V.; Vobly, P. D.; Utkin, A. V.; Wang, G.; Wahl, W.; Willeke, F.; Yaminov, K. R.; Yong, H.; Zhuravlev, A.; Zuhoski, P.

    The National Synchrotron Light Source II is a third generation light source, which was constructed at Brookhaven National Laboratory. This project includes a highly-optimized 3 GeV electron storage ring, linac preinjector, and full-energy synchrotron injector. Budker Institute of Nuclear Physics built and delivered the booster for NSLS-II. The commissioning of the booster was successfully completed. This paper reviews fulfilled work by participants.

  19. Main functions, recent updates, and applications of Synchrotron Radiation Workshop code

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Rakitin, Maksim; Chen-Wiegart, Yu-Chen Karen; Chu, Yong S.; Fluerasu, Andrei; Hidas, Dean; Wiegart, Lutz

    2017-08-01

    The paper presents an overview of the main functions and new application examples of the "Synchrotron Radiation Workshop" (SRW) code. SRW supports high-accuracy calculations of different types of synchrotron radiation, and simulations of propagation of fully-coherent radiation wavefronts, partially-coherent radiation from a finite-emittance electron beam of a storage ring source, and time-/frequency-dependent radiation pulses of a free-electron laser, through X-ray optical elements of a beamline. An extended library of physical-optics "propagators" for different types of reflective, refractive and diffractive X-ray optics with its typical imperfections, implemented in SRW, enable simulation of practically any X-ray beamline in a modern light source facility. The high accuracy of calculation methods used in SRW allows for multiple applications of this code, not only in the area of development of instruments and beamlines for new light source facilities, but also in areas such as electron beam diagnostics, commissioning and performance benchmarking of insertion devices and individual X-ray optical elements of beamlines. Applications of SRW in these areas, facilitating development and advanced commissioning of beamlines at the National Synchrotron Light Source II (NSLS-II), are described.

  20. Reciprocal Space Mapping of Macromolecular Crystals in the Home Laboratory

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Fewster, P. F.; Andrew, Norman; Boggon, T. J.; Judge, Russell A.; Pusey, Marc A.

    1999-01-01

    Reciprocal space mapping techniques are used widely by the materials science community to provide physical information about their crystal samples. We have used similar methods at synchrotron sources to look at the quality of macromolecular crystals produced both on the ground and under microgravity conditions. The limited nature of synchrotron time has led us to explore the use of a high resolution materials research diffractometer to perform similar measurements in the home laboratory. Although the available intensity is much reduced due to the beam conditioning necessary for high reciprocal space resolution, lower resolution data can be collected in the same detail as the synchrotron source. Experiments can be optimized at home to make most benefit from the synchrotron time available. Preliminary results including information on the mosaicity and the internal strains from reciprocal space maps will be presented.

  1. Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.

    2004-01-01

    X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.

  2. Real time observation of mouse fetal skeleton using a high resolution X-ray synchrotron

    PubMed Central

    Chang, Dong Woo; Kim, Bora; Shin, Jae Hoon; Yun, Young Min; Je, Jung Ho; Hwu, Yeu kuang; Yoon, Jung Hee

    2011-01-01

    The X-ray synchrotron is quite different from conventional radiation sources. This technique may expand the capabilities of conventional radiology and be applied in novel manners for special cases. To evaluate the usefulness of X-ray synchrotron radiation systems for real time observations, mouse fetal skeleton development was monitored with a high resolution X-ray synchrotron. A non-monochromatized X-ray synchrotron (white beam, 5C1 beamline) was employed to observe the skeleton of mice under anesthesia at embryonic day (E)12, E14, E15, and E18. At the same time, conventional radiography and mammography were used to compare with X-ray synchrotron. After synchrotron radiation, each mouse was sacrificed and stained with Alizarin red S and Alcian blue to observe bony structures. Synchrotron radiation enabled us to view the mouse fetal skeleton beginning at gestation. Synchrotron radiation systems facilitate real time observations of the fetal skeleton with greater accuracy and magnification compared to mammography and conventional radiography. Our results show that X-ray synchrotron systems can be used to observe the fine structures of internal organs at high magnification. PMID:21586868

  3. Influence of synchrotron self-absorption on 21-cm experiments

    NASA Astrophysics Data System (ADS)

    Zheng, Qian; Wu, Xiang-Ping; Gu, Jun-Hua; Wang, Jingying; Xu, Haiguang

    2012-08-01

    The presence of spectral curvature resulting from the synchrotron self-absorption of extragalactic radio sources could break down the spectral smoothness feature. This leads to the premise that the bright radio foreground can be successfully removed in 21-cm experiments that search for the epoch of reionization (EoR). We present a quantitative estimate of the effect of the spectral curvature resulting from the synchrotron self-absorption of extragalactic radio sources on the measurement of the angular power spectrum of the low-frequency sky. We incorporate a phenomenological model, which is characterized by the fraction (f) of radio sources with turnover frequencies in the range of 100-1000 MHz and by a broken power law for the spectral transition around the turnover frequencies νm, into simulated radio sources over a small sky area of 10° × 10°. We compare statistically the changes in their residual maps with and without the inclusion of the synchrotron self-absorption of extragalactic radio sources after the bright sources of S150 MHz ≥100 mJy are excised. Furthermore, the best-fitting polynomials in the frequency domain on each pixel are subtracted. It has been shown that the effect of synchrotron self-absorption on the detection of the EoR depends sensitively on the spectral profiles of the radio sources around the turnover frequencies νm. A hard transition model, described by the broken power law with the turnover of spectral index at νm, would leave pronounced imprints on the residual background and would therefore cause serious confusion with the cosmic EoR signal. However, the spectral signatures on the angular power spectrum of the extragalactic foreground, generated by a soft transition model in which the rising and falling power laws of the spectral distribution around νm are connected through a smooth transition spanning ≥200 MHz in a characteristic width, can be fitted and consequently subtracted by the use of polynomials to an acceptable degree (δT < 1 mK). As this latter scenario seems to be favoured in both theoretical expectations and radio spectral observations, we conclude that the contamination of extragalactic radio sources by synchrotron self-absorption in 21-cm experiments is probably very minor.

  4. Low-pressure Structural Modification of Aluminum Hydride

    DTIC Science & Technology

    2011-02-01

    Acknowledgments Use of the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory ( BNL ) was supported by the U.S. Department of Energy...National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory ( BNL ). The spectral resolution of ±4 cm–1 was used for all IR measurements...12 List of Symbols, Abbreviations, and Acronyms Al aluminum AlH3 aluminum hydride BNL Brookhaven National Laboratory EOS equation of

  5. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  6. Mini-beam collimator enables microcrystallography experiments on standard beamlines

    PubMed Central

    Fischetti, Robert F.; Xu, Shenglan; Yoder, Derek W.; Becker, Michael; Nagarajan, Venugopalan; Sanishvili, Ruslan; Hilgart, Mark C.; Stepanov, Sergey; Makarov, Oleg; Smith, Janet L.

    2009-01-01

    The high-brilliance X-ray beams from undulator sources at third-generation synchrotron facilities are excellent tools for solving crystal structures of important and challenging biological macromolecules and complexes. However, many of the most important structural targets yield crystals that are too small or too inhomogeneous for a ‘standard’ beam from an undulator source, ∼25–50 µm (FWHM) in the vertical and 50–100 µm in the horizontal direction. Although many synchrotron facilities have microfocus beamlines for other applications, this capability for macromolecular crystallography was pioneered at ID-13 of the ESRF. The National Institute of General Medical Sciences and National Cancer Institute Collaborative Access Team (GM/CA-CAT) dual canted undulator beamlines at the APS deliver high-intensity focused beams with a minimum focal size of 20 µm × 65 µm at the sample position. To meet growing user demand for beams to study samples of 10 µm or less, a ‘mini-beam’ apparatus was developed that conditions the focused beam to either 5 µm or 10 µm (FWHM) diameter with high intensity. The mini-beam has a symmetric Gaussian shape in both the horizontal and vertical directions, and reduces the vertical divergence of the focused beam by 25%. Significant reduction in background was achieved by implementation of both forward- and back-scatter guards. A unique triple-collimator apparatus, which has been in routine use on both undulator beamlines since February 2008, allows users to rapidly interchange the focused beam and conditioned mini-beams of two sizes with a single mouse click. The device and the beam are stable over many hours of routine operation. The rapid-exchange capability has greatly facilitated sample screening and resulted in several structures that could not have been obtained with the larger focused beam. PMID:19240333

  7. Synchrotron Radiation Workshop (SRW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar, O.; Elleaume, P.

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, softmore » and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  8. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possiblemore » chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.« less

  9. Perspectives of synchrotron radiation sources with superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Takashi

    2007-10-01

    The synchrotron radiation source is a magnetic device to generate a periodic magnetic field where a relativistic electron moves along a periodic trajectory and emits light called synchrotron radiation (SR), which has been used as a scientific probe for many years in various fields. Although permanent magnets (PMs) are usually used to generate the magnetic field in the SR source because of their cost-effectiveness and availability, a large number of SR sources with superconductors have been constructed for special uses, i.e., to obtain a strong magnetic field over 3 T, which cannot be achieved by using PMs alone. Most of these SR sources are composed of electromagnets with superconducting coils made of NbTi as in commercially available superconducting magnets. For stronger magnetic field, research on application of Nb3Sn is in progress. On the other hand, utilization of high Tc superconducting bulk magnets has been recently proposed and R&Ds toward realization are being carried out. This paper reviews the currents status of the SR sources with superconductivity and describes the future perspectives.

  10. VizieR Online Data Catalog: Catalog of 316 K giant candidates (Rebull+, 2015)

    NASA Astrophysics Data System (ADS)

    Rebull, L. M.; Carlberg, J. K.; Gibbs, J. C.; Deeb, J. E.; Larsen, E.; Black, D. V.; Altepeter, S.; Bucksbee, E.; Cashen, S.; Clarke, M.; Datta, A.; Hodgson, E.; Lince, M.

    2015-11-01

    There are 82 targets published in de la Reza et al. (1997ApJ...482L..77D). There are 86 K giants reported in Carlberg et al. 2012 (cat. J/ApJ/757/109). We compiled 149 additional targets that have been identified either consistently or at one time as confirmed or possible Li-rich K giants, but not included in either the de la Reza et al. (1997ApJ...482L..77D) or the Carlberg et al. 2012 (cat. J/ApJ/757/109) samples. They include targets from Adamow et al. 2014 (cat. J/A+A/569/A55), Anthony-Twarog et al. (2013ApJ...767L..19A), Carney et al. (1998AJ....116.2984C), Carlberg et al. (2015ApJ...802....7C), Castilho et al. 2000 (cat. J/A+A/364/674), Drake et al. (2002AJ....123.2703D), Fekel & Watson (1998AJ....116.2466F), Hill & Pasquini (1999A&A...348L..21H), Jasniewicz et al. (1999A&A...342..831J), Kirby et al. (2012ApJ...752L..16K), Kraft et al. (1999ApJ...518L..53K), Kumar et al. (2011ApJ...730L..12K) and references therein, Liu et al. (2014ApJ...785...94L), Luck & Heiter 2007 (cat. J/AJ/133/2464), Martell & Shetrone (2013MNRAS.430..611M), Monaco et al. (2014A&A...564L...6M), Pilachowski et al. (2003AJ....125..794P), Ruchti et al. (2011ApJ...743..107R), Silva Aguirre et al. (2014ApJ...784L..16A), Smith et al. (1999ApJ...516L..73S), and Torres et al. (2000IAUS..198..320T). Our complete list of 316 targets with position, photometric, and abundance data appears in Table1. We obtained positions for these targets, most of which are quite bright in the optical, primarily from SIMBAD, though literature was consulted for fainter sources as required. Detailed notes on the sources we suspect are subject to source confusion appear in Table4. Table6 contains notes on the entire set of sources. (3 data files).

  11. The angular power spectrum measurement of the Galactic synchrotron emission using the TGSS survey

    NASA Astrophysics Data System (ADS)

    Choudhuri, Samir; Bharadwaj, Somnath; Ali, Sk. Saiyad; Roy, Nirupam; Intema, H. T.; Ghosh, Abhik

    2018-05-01

    Characterizing the diffuse Galactic synchrotron emission (DGSE) at arcminute angular scales is needed to remove this foregrounds in cosmological 21-cm measurements. Here, we present the angular power spectrum (Cl) measurement of the diffuse Galactic synchrotron emission using two fields observed by the TIFR GMRT Sky Survey (TGSS). We apply 2D Tapered Gridded Estimator (TGE) to estimate the Cl from the visibilities. We find that the residual data after subtracting the point sources is likely dominated by the diffuse Galactic synchrotron radiation across the angular multipole range 240 <= l <~ 500. We fit a power law to the measured Cl over this l range. We find that the slopes in both fields are consistent with earlier measurements. For the second field, however, we interpret the measured Cl as an upper limit for the DGSE as there is an indication of a significant residual point source contribution.

  12. Optimizing a synchrotron based x-ray lithography system for IC manufacturing

    NASA Astrophysics Data System (ADS)

    Kovacs, Stephen; Speiser, Kenneth; Thaw, Winston; Heese, Richard N.

    1990-05-01

    The electron storage ring is a realistic solution as a radiation source for production grade, industrial X-ray lithography system. Today several large scale plans are in motion to design and implement synchrotron storage rings of different types for this purpose in the USA and abroad. Most of the scientific and technological problems related to the physics, design and manufacturing engineering, and commissioning of these systems for microlithography have been resolved or are under extensive study. However, investigation on issues connected to application of Synchrotron Orbit Radiation (SOR ) in chip production environment has been somewhat neglected. In this paper we have filled this gap pointing out direct effects of some basic synchrotron design parameters and associated subsystems (injector, X-ray beam line) on the operation and cost of lithography in production. The following factors were considered: synchrotron configuration, injection energy, beam intensity variability, number of beam lines and wafer exposure concept. A cost model has been worked out and applied to three different X-ray Lithography Source (XLS) systems. The results of these applications are compared and conclusions drawn.

  13. Single-bunch synchrotron shutter

    DOEpatents

    Norris, James R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, Marion

    1993-01-01

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4.times..pi..times.r.times.f. such that a single pulse is selected for transmission through an open position of the shutter.

  14. Development of Partially-Coherent Wavefront Propagation Simulation Methods for 3rd and 4th Generation Synchrotron Radiation Sources.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar O.; Berman, L; Chu, Y.S.

    2012-04-04

    Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, ismore » of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using 'Synchrotron Radiation Workshop' (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.« less

  15. Fundamentals of Coherent Synchrotron Radiation in Storage Rings

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Byrd, J. M.; Loftsdottir, A.; Martin, M. C.; Venturini, M.

    2004-05-01

    We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission.

  16. Observation of Multi-bunch Interference with Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; May, T.; Bergstrom, J.; DeJong, M.; Dallin, L.

    2010-02-01

    The observation of Multi-bunch interference with coherent synchrotron radiation at the Canadian Light Source is discussed along with the possibility that some of the spectral features are driven by the radiation impedance of the vacuum chamber.

  17. Local reconstruction in computed tomography of diffraction enhanced imaging

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Feng; Zhang, Li; Kang, Ke-Jun; Chen, Zhi-Qiang; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia

    2007-07-01

    Computed tomography of diffraction enhanced imaging (DEI-CT) based on synchrotron radiation source has extremely high sensitivity of weakly absorbing low-Z samples in medical and biological fields. The authors propose a modified backprojection filtration(BPF)-type algorithm based on PI-line segments to reconstruct region of interest from truncated refraction-angle projection data in DEI-CT. The distribution of refractive index decrement in the sample can be directly estimated from its reconstruction images, which has been proved by experiments at the Beijing Synchrotron Radiation Facility. The algorithm paves the way for local reconstruction of large-size samples by the use of DEI-CT with small field of view based on synchrotron radiation source.

  18. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellentmore » training for students and postdoctoral scientists in the field.« less

  19. Looking Back at International Synchrotron Radiation Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Gwyn

    2012-03-01

    With the 11th International Synchrotron Radiation Instrumentation coming up in July 2012 in Lyons, France, we thought it might be of interest to our readers to review all the past meetings in this series. We thank Denny Mills of the APS, Argonne for putting the list together. Prior to these larger meetings, and in the early days, facilities held their own meetings similar to the user meetings of today. However, the meeting held at ACO in Orsay, France in 1977 was the first such meeting with an international flavor and so it is on the list. However it is notmore » counted as number 1 since it was agreed way back to start the numbering with the 1982 DESY meeting. The 2005 USA National Meeting scheduled at CAMD in Baton Rouge had to be canceled due to Hurricane Katrina. It was ultimately held in 2007, with the CLS hosted meeting the following year. And a personal note from the magazine - Synchrotron Radiation News was born at the 1987 meeting in Madison, Wisconsin with a proposal that was put to a special session of the meeting organized by Susan Lord. Initial proposals were to model it after the CERN Courier, but it soon adopted its own distinct flavor.« less

  20. Infrared Spectroscopy of the H2/HD/D2-O2 Van Der Waals Complexes

    NASA Astrophysics Data System (ADS)

    Raston, Paul; Bunn, Hayley

    2016-06-01

    Hydrogen is the most abundant element in the universe and oxygen is the third, so understanding the interaction between the two in their different forms is important to understanding astrochemical processes. The interaction between H2 and O2 has been explored in low energy scattering experiments and by far infrared synchrotron spectroscopy of the van der Waals complex. The far infrared spectra suggest a parallel stacked average structure with seven bound rotationally excited states. Here, we present the far infrared spectrum of HD/D2-O2 and the mid infrared spectrum of H2-O2 at 80 K, recorded at the infrared beamline facility of the Australian Synchrotron. We observed 'sharp' peaks in the mid infrared region, corresponding to the end over end rotation of H2-O2, that are comparatively noisier than analogous peaks in the far infrared where the synchrotron light is brightest. The larger reduced mass of HD and D2 compared to H2 is expected to result in more rotational bound states and narrower bands. The latest results in our ongoing efforts to explore this system will be presented. Y. Kalugina, et al., Phys. Chem. Chem. Phys. 14, 16458 (2012) S. Chefdeville et al. Science 341, 1094 (2013) H. Bunn et al. ApJ 799, 65 (2015)

  1. Kiloparsec Jet Properties of Hybrid, Low-, and High-Synchrotron-Peaked Blazars

    NASA Astrophysics Data System (ADS)

    Stanley, Ethan C.

    Blazars are a rare class of active galactic nucleus (AGN) with relativistic jets closely aligned with the line of sight. Many aspects of the environments and kiloparsec-scale jet structure are not fully understood. Hybrid and high synchrotron peaked (HSP) blazars are two types of blazar that provide unique opportunities to study these jets. Hybrid blazars appear to have jets of differing morphology on each side of their core, suggesting that external factors shape their jet morphology. Three hybrid sources were investigated in radio, optical, and X-ray wavelengths: 8C 1849+670, PKS 2216-038, and PKS 1045-188. For all three, X-ray emission was detected only from the approaching jet. All three had jet radio flux densities and emission mechanisms similar to higher-power FR II sources, but two had approaching jets similar to lower-power FR I sources. None of the three showed definitive signs of asymmetry in their external environments. These results agree with previous multiwavelength studies of hybrid sources that show a dominance of FR I approaching jets and FR II emission mechanisms. With the addition of these three hybrid sources, 13 have been studied in total. Eleven have FR I approaching jets, and eight of those have FR II emission mechanisms. These trends may be due to small number statistics, or they may indicate other factors are creating hybrid-like appearances. High synchrotron peaked blazars are defined by the frequency of the peak of their jet synchrotron emission. Some have shown extreme variability which would imply incredibly-powerful and well-aligned jets, but VLBA observations have measured only modest jet speeds. A radio survey was performed to measure the extended radio luminosity of a large sample of HSP sources. These sources were compared to the complete radio flux density limited MOJAVE 1.5 Jy sample. Flat spectrum radio quasars (FSRQs) showed significant overlap with low synchrotron peaked (LSP) BL Lacs in multiple parameters, which may suggest that many FSRQs are "masquerading'' as LSP BL Lacs. HSP BL Lacs showed slightly lower extended radio luminosities and significantly lower maximum apparent jet speeds, suggesting that they are intrinsically weaker sources. There was a good correlation between maximum apparent jet speed and extended radio luminosity, which supports using the extended radio luminosity as a measure of intrinsic jet power. There was a lack of TeV-detected sources with higher extended radio luminosities, which suggests TeV emission may favor low power jets or high synchrotron peak frequencies. The apparent low power of HSP sources and TeV-detected sources questions any model of TeV emission and variability that depends on the jet (or a part of it) being intrinsically powerful.

  2. Investigating the emission mechanisms of the jet in the quasar PKS 1127-145

    NASA Astrophysics Data System (ADS)

    Duffy, Ryan T.; Siemiginowska, A.; Kashyap, V.; Stein, N.; Migliori, G.

    2014-01-01

    There is currently uncertainty surrounding the emission mechanism for X-ray photons in quasar jets, with both Inverse Compton Scattering from the Cosmic Microwave Background (IC/CMB) and synchrotron models considered possibilities. We use a 100 ks observation (Siemiginowska et al 2007) of the redshift z=1.18, radio-loud quasar PKS 1127-145 taken by the Chandra X-ray Observatory, with the hope of accurately measuring the offsets between radio and X-ray radiation peaks in order to establish the emission process for this jet. PKS 1127-145 is a bright quasar with a long jet which has several bright knots and complex morphology, making it a perfect source for this investigation. We use a Bayesian statistical method called Low-Count Image Restoration and Analysis (LIRA, Connors & van Dyk 2007, Esch et al 2004) to investigate the quasar jet. This fits the parameters of a multiscale model to the data by employing a Markov Chain Monte Carlo process. LIRA has shown the location of some jet X-ray components, although further simulations must be undertaken to determine whether these are statistically significant. We also study these jet X-ray components in both hard and soft X-ray bands in order to gain more information on the energy of the emitted photons. References: Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D.N., Connors, A., Karovska, M., & van Dyk, D.A. 2004, ApJ, 610, 1213 Siemiginowska, A., Stawarz, L., Cheung, C.C., et al. 2007, ApJ, 657, 145

  3. Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy.

    PubMed

    Hermann, Peter; Hoehl, Arne; Ulrich, Georg; Fleischmann, Claudia; Hermelink, Antje; Kästner, Bernd; Patoka, Piotr; Hornemann, Andrea; Beckhoff, Burkhard; Rühl, Eckart; Ulm, Gerhard

    2014-07-28

    We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.

  4. Diffraction-Enhanced Computed Tomographic Imaging of Growing Piglet Joints by Using a Synchrotron Light Source

    PubMed Central

    Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M

    2015-01-01

    The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464

  5. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments Database

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  6. Observation of divergent-beam X-ray diffraction from a crystal of diamond using synchrotron radiation.

    PubMed

    Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M

    2004-03-01

    In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.

  7. Radiological implications of top-off operation at national synchrotron light source-II

    NASA Astrophysics Data System (ADS)

    Job, P. K.; Casey, W. R.

    2011-08-01

    High current and low emittance have been specified to achieve ultra high brightness in the third generation medium energy Synchrotron Radiation Sources. This leads to the electron beam lifetime limited by Touschek scattering, and after commissioning may settle in at as low as ∼3 h. It may well be less in the early days of operation. At the same time, the intensity stability specified by the user community for the synchrotron beam is 1% or better. Given the anticipated lifetime of the beam, incremental filling called top-off injection at intervals on the order of ∼1 min will be required to maintain this beam stability. It is judged to be impractical to make these incremental fills by closing the beam shutters at each injection. In addition, closing the front end beam shutters during each injection will adversely affect the stability of beamline optics due to thermal cycling. Hence the radiological consequences of injection with front end beam shutters open must be evaluated. This paper summarizes results of radiological analysis carried out for the proposed top-off injection at National Synchrotron Light Source-II (NSLS-II) with beam shutters open.

  8. The synchrotron-self-Compton process in spherical geometries. I - Theoretical framework

    NASA Technical Reports Server (NTRS)

    Band, D. L.; Grindlay, J. E.

    1985-01-01

    Both spatial and spectral accuracies are stressed in the present method for the calculation of the synchrotron-self-Compton model in spherical geometries, especially in the partially opaque regime of the synchrotron spectrum of inhomogeneous sources that can span a few frequency decades and contribute a significant portion of the scattered flux. A formalism is developed that permits accurate calculation of incident photon density throughout an optically thin sphere. An approximation to the Klein-Nishina cross section is used to model the effects of variable electron and incident photon cutoffs, as well as the decrease in the cross section at high energies. General results are derived for the case of inhomogeneous sources with power law profiles in both electron density and magnetic field.

  9. Radiological considerations for bulk shielding calculations of national synchrotron light source-II

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2011-12-01

    Brookhaven National Laboratory is designing a new electron synchrotron for scientific research using synchrotron radiation. This facility, called the “National Synchrotron Light Source II” (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. The project scope includes the design, construction, installation, and commissioning of the following accelerators: a 200 MeV linac, a booster synchrotron operating from 200 MeV to 3.0 GeV, and the storage ring which stores a maximum of 500 mA current of electrons at an energy of 3.0 GeV. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in stored beam current to <1%. Because of the very demanding requirements for beam emittance and synchrotron radiation brilliance, the beam life-time is expected to be quite low, on the order of 2 h. Analysis of the bulk shielding for operating this facility and the input parameters used for this analysis have been discussed in this paper. The characteristics of each of the accelerators and their operating modes have been summarized with the input assumptions for the bulk shielding analysis.

  10. Analysis of the AP-42, supplement 5 emission model.

    DOT National Transportation Integrated Search

    1976-01-01

    This report examines the performance of the source strength model presented in the U.S. Environmental Protection Agency publication AP-42, Supplement 5 relative to field data gathered during the AIRPOL project and relative to the previous source stre...

  11. Radiological considerations for the operation of the Advanced Photon Source storage ring (revised).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, H. J.

    2002-05-02

    This report deals with the radiological considerations of operations using 7700-MeV positron and electron beams in the storage ring (SR) tunnel. The radiological considerations addressed include the following: prompt secondary radiation (bremsstrahlung, giant resonance neutrons, medium and high energy neutrons, and muons) produced by electrons/positrons interacting in a beam stop or by particle losses in the component structures; skyshine radiation, which produces a radiation field in nearby areas and at the nearest off-site location; radioactive gases produced by neutron irradiation of air in the vicinity of a particle loss site; noxious gases (ozone and others) produced in air by themore » escaping bremsstrahlung radiation that results from absorbing particles in the components or by synchrotron radiation escaping into the tunnel; activation of the storage ring components that results in a residual radiation field in the vicinity of these materials following shutdown; potential activation of water used for cooling the magnets and other purposes in the SR tunnel; evaluation of the radiation fields due to escaping synchrotron radiation and gas bremsstrahlung. Estimated dose rates outside of the tunnel, in the early assembly area (EAA), and in the Experiment Hall for several modes of operation (including potential safety envelope beam power, normal beam power, and MCI (maximum credible incident) conditions) have been computed. Shielding in the first optics enclosure (FOE) and for the photon beamlines is discussed in ANL/APS/TB-7 (IPE 93), but additional radiological considerations for the ASD diagnostic beamlines are contained in Appendix C. Although the calculations refer to positrons, electron operation would produce essentially the same effects for the identical assumptions.« less

  12. Elemental Composition of Mars Return Samples Using X-Ray Fluorescence Imaging at the National Synchrotron Light Source II

    NASA Astrophysics Data System (ADS)

    Thieme, J.; Hurowitz, J. A.; Schoonen, M. A.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    NSLS-II at BNL provides a unique and critical capability to perform assessments of the elemental composition and the chemical state of Mars returned samples using synchrotron radiation X-ray fluorescence imaging and X-ray absorption spectroscopy.

  13. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  14. Interleaving lattice for the Argonne Advanced Photon Source linac

    NASA Astrophysics Data System (ADS)

    Shin, S.; Sun, Y.; Dooling, J.; Borland, M.; Zholents, A.

    2018-06-01

    To realize and test advanced accelerator concepts and hardware, a beam line is being reconfigured in the linac extension area (LEA) of the Argonne Advanced Photon Source (APS) linac. A photocathode rf gun installed at the beginning of the APS linac will provide a low emittance electron beam into the LEA beam line. The thermionic rf gun beam for the APS storage ring and the photocathode rf gun beam for the LEA beam line will be accelerated through the linac in an interleaved fashion. In this paper, the design studies for interleaving lattice realization in the APS linac is described with the initial experiment result.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doose, Charles; Jain, Animesh

    The APS-U is planned to be a 4th generation hard X-ray light source utilizing a multi-bend achromat (MBA) magnet lattice. The MBA lattice will be installed in the existing APS storage ring enclosure. The stored electron beam will circulate clockwise when viewed from above. The X-ray beamlines will for the most part exit at the same source points as the present APS. This document defines the signs and conventions related to the APS-U MBA magnets. Included in this document are: the local magnet coordinate system, definitions of mechanical and magnetic centers, definitions of multipole field errors, magnetic roll angle, andmore » magnet polarities.« less

  16. VizieR Online Data Catalog: Spatial structure of young stellar clusters. I. (Kuhn+, 2014)

    NASA Astrophysics Data System (ADS)

    Kuhn, M. A.; Feigelson, E. D.; Getman, K. V.; Baddeley, A. J.; Broos, P. S.; Sills, A.; Bate, M. R.; Povich, M. S.; Luhman, K. L.; Busk, H. A.; Naylor, T.; King, R. R.

    2015-07-01

    The regions included in this study, listed in Table 1, are nearby sites of high-mass star formation that are included in the MYStIX sample (Feigelson et al. 2013ApJS..209...26F). These regions are covered in the near-IR by the UKIRT Infrared Deep Sky Survey (King et al. 2013, J/ApJS/209/28) or Two-Micron All Sky Survey (Skrutskie et al. 2006, VII/233), in the mid-IR by Spitzer IRAC observations (Kuhn et al. 2013, J/ApJS/209/29), and in the X-ray by the ACIS-I array on the Chandra X-Ray Observatory in the 0.5-8.0keV band (Kuhn et al. 2013, J/ApJS/209/27; Townsley et al. 2014, J/ApJS/213/1). Other sources to produce multiwavelength catalogs are described in section 2. The multiwavelength point-source catalogs are combined with a list of spectroscopic OB stars from the literature, and sources are classified probabilistically to obtain a list of MYStIX Probable Complex Members (MPCMs) (Broos et al. 2013, J/ApJS/209/32). (3 data files).

  17. Planck intermediate results. VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bhatia, R.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Colombo, L. P. L.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurinsky, N.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Lilje, P. B.; López-Caniego, M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschènes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sajina, A.; Sandri, M.; Savini, G.; Scott, D.; Smoot, G. F.; Starck, J.-L.; Sudiwala, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Türler, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2013-02-01

    We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources - infrared and radio sources - from the Planck Early Release Compact Source Catalogue (ERCSC) at 100 to 857 GHz (3 mm to 350 μm). Three zones (deep, medium and shallow) of approximately homogeneous coverage are used to permit a clean and controlled correction for incompleteness, which was explicitly not done for the ERCSC, as it was aimed at providing lists of sources to be followed up. Our sample, prior to the 80% completeness cut, contains between 217 sources at 100 GHz and 1058 sources at 857 GHz over about 12 800 to 16 550 deg2 (31 to 40% of the sky). After the 80% completeness cut, between 122 and 452 and sources remain, with flux densities above 0.3 and 1.9 Jy at 100 and 857 GHz. The sample so defined can be used for statistical analysis. Using the multi-frequency coverage of the Planck High Frequency Instrument, all the sources have been classified as either dust-dominated (infrared galaxies) or synchrotron-dominated (radio galaxies) on the basis of their spectral energy distributions (SED). Our sample is thus complete, flux-limited and color-selected to differentiate between the two populations. We find an approximately equal number of synchrotron and dusty sources between 217 and 353 GHz; at 353 GHz or higher (or 217 GHz and lower) frequencies, the number is dominated by dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide for the first time counts of bright sources from 353 to 857 GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (from earlier Planck results, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies, and covering a large range of flux densities. We derive the multi-frequency Euclidean level - the plateau in the normalised differential counts at high flux-density - and compare it to WMAP, Spitzer and IRAS results. The submillimetre number counts are not well reproduced by current evolution models of dusty galaxies, whereas the millimetre part appears reasonably well fitted by the most recent model for synchrotron-dominated sources. Finally we provide estimates of the local luminosity density of dusty galaxies, providing the first such measurements at 545 and 857 GHz. Appendices are available in electronic form at http://www.aanda.orgCorresponding author: herve.dole@ias.u-psud.fr

  18. AI-BL1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm.

    PubMed

    Xi, Shibo; Borgna, Lucas Santiago; Zheng, Lirong; Du, Yonghua; Hu, Tiandou

    2017-01-01

    In this report, AI-BL1.0, an open-source Labview-based program for automatic on-line beamline optimization, is presented. The optimization algorithms used in the program are Genetic Algorithm and Differential Evolution. Efficiency was improved by use of a strategy known as Observer Mode for Evolutionary Algorithm. The program was constructed and validated at the XAFCA beamline of the Singapore Synchrotron Light Source and 1W1B beamline of the Beijing Synchrotron Radiation Facility.

  19. A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutsaev, Sergey; Agustsson, R.; Hartzell, J

    A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power testsmore » of the cathode assembly of the new gun.« less

  20. Fermi-LAT and Swift-XRT observe exceptionally high activity from the nearby TeV blazar Mrk421

    NASA Astrophysics Data System (ADS)

    Paneque, D.; D'Ammando, F.; Orienti, M.; Falcon, A.

    2013-04-01

    The high-synchrotron-peaked BL Lac Mrk421 (also known as 2FGL J1104.4+3812, Nolan et al. 2012, ApJS, 199, 31; R.A.= 11h04m27.3139s, Dec.= +38d12m31.799s, J2000.0, Fey et al. 2004, AJ, 127, 3587), at redshift z=0.03, is the subject of an extensive multi-year and multi-instrument program that aims at characterizing with exquisite detail the temporal evolution of the blazar emission across the electromagnetic spectrum.

  1. THE ENVIRONMENT AND DISTRIBUTION OF EMITTING ELECTRONS AS A FUNCTION OF SOURCE ACTIVITY IN MARKARIAN 421

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankuzhiyil, Nijil; Ansoldi, Stefano; Persic, Massimo

    2011-05-20

    For the high-frequency-peaked BL Lac object Mrk 421, we study the variation of the spectral energy distribution (SED) as a function of source activity, from quiescent to active. We use a fully automatized {chi}{sup 2}-minimization procedure, instead of the 'eyeball' procedure more commonly used in the literature, to model nine SED data sets with a one-zone synchrotron self-Compton (SSC) model and examine how the model parameters vary with source activity. The latter issue can finally be addressed now, because simultaneous broadband SEDs (spanning from optical to very high energy photon) have finally become available. Our results suggest that in Mrkmore » 421 the magnetic field (B) decreases with source activity, whereas the electron spectrum's break energy ({gamma}{sub br}) and the Doppler factor ({delta}) increase-the other SSC parameters turn out to be uncorrelated with source activity. In the SSC framework, these results are interpreted in a picture where the synchrotron power and peak frequency remain constant with varying source activity, through a combination of decreasing magnetic field and increasing number density of {gamma} {<=} {gamma}{sub br} electrons: since this leads to an increased electron-photon scattering efficiency, the resulting Compton power increases, and so does the total (= synchrotron plus Compton) emission.« less

  2. Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies

    DOE PAGES

    Yu, Peiqiang

    2007-01-01

    Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less

  3. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  4. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    DOE PAGES

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less

  5. Polarized Negative Light Ions at the Cooler Synchrotron COSY/Juelich

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebel, R.; Felden, O.; Rossen, P. von

    2005-04-06

    The polarized ion source at the cooler synchrotron facility COSY of the research centre Juelich in Germany delivers negative polarized protons or deuterons for medium energy experiments. The polarized ion source, originally built by the universities of Bonn, Erlangen and Cologne, is based on the colliding beams principle, using after an upgrade procedure an intense pulsed neutralized caesium beam for charge exchange with a pulsed highly polarized hydrogen beam. The source is operated at 0.5 Hz repetition rate with 20 ms pulse length, which is the maximum useful length for the injection into the synchrotron. Routinely intensities of 20 {mu}Amore » are delivered for injection into the cyclotron of the COSY facility. For internal targets the intensity of 2 mA and a polarization up to 90% have been reached. Reliable long-term operation for experiments at COSY for up to 9 weeks has been achieved. Since 2003 polarized deuterons with different combinations of vector and tensor polarization were delivered to experiments.« less

  6. Refurbishment of a used in-vacuum undulator from the National Synchrotron Light Source for the National Synchrotron Light Source-II ring

    DOE PAGES

    Tanabe, Toshiya; Bassan, Harmanpreet; Broadbent, Andrew; ...

    2017-08-01

    The National Synchrotron Light Source (NSLS) ceased operation in September 2014 and was succeeded by NSLS-II. There were four in-vacuum undulators (IVUs) in operation at NSLS. The most recently constructed IVU for NSLS was the mini-gap undulator (MGU-X25, to be renamed IVU18 for NSLS-II), which was constructed in 2006. This device was selected to be reused for the New York Structural Biology Consortium Microdiffraction beamline at NSLS-II. At the time of construction, IVU18 was a state-of-the-art undulator designed to be operated as a cryogenic permanent-magnet undulator. Due to the more stringent field quality and impedance requirements of the NSLS-II ring,more » the transition region was redesigned. The control system was also updated to NSLS-II specifications. As a result, this paper reports the details of the IVU18 refurbishment activities including additional magnetic measurement and tuning.« less

  7. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  8. Refurbishment of a used in-vacuum undulator from the National Synchrotron Light Source for the National Synchrotron Light Source-II ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, Toshiya; Bassan, Harmanpreet; Broadbent, Andrew

    The National Synchrotron Light Source (NSLS) ceased operation in September 2014 and was succeeded by NSLS-II. There were four in-vacuum undulators (IVUs) in operation at NSLS. The most recently constructed IVU for NSLS was the mini-gap undulator (MGU-X25, to be renamed IVU18 for NSLS-II), which was constructed in 2006. This device was selected to be reused for the New York Structural Biology Consortium Microdiffraction beamline at NSLS-II. At the time of construction, IVU18 was a state-of-the-art undulator designed to be operated as a cryogenic permanent-magnet undulator. Due to the more stringent field quality and impedance requirements of the NSLS-II ring,more » the transition region was redesigned. The control system was also updated to NSLS-II specifications. As a result, this paper reports the details of the IVU18 refurbishment activities including additional magnetic measurement and tuning.« less

  9. Development and operating experience of a 1.1-m-long superconducting undulator at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Ivanyushenkov, Y.; Harkay, K.; Borland, M.; Dejus, R.; Dooling, J.; Doose, C.; Emery, L.; Fuerst, J.; Gagliano, J.; Hasse, Q.; Kasa, M.; Kenesei, P.; Sajaev, V.; Schroeder, K.; Sereno, N.; Shastri, S.; Shiroyanagi, Y.; Skiadopoulos, D.; Smith, M.; Sun, X.; Trakhtenberg, E.; Xiao, A.; Zholents, A.; Gluskin, E.

    2017-10-01

    Development of superconducting undulators continues at the Advanced Photon Source (APS). Two years after successful installation and commissioning of the first relatively short superconducting undulator "SCU0" in Sector 6 of the APS storage ring, the second 1.1-m-long superconducting undulator "SCU1" was installed in Sector 1 of the APS. The device has been in user operation since its commissioning in May 2015. This paper describes the magnetic and cryogenic design of the SCU1 together with the results of stand-alone cold tests. The SCU1's magnetic and cryogenic performance as well as its operating experience in the APS storage ring are also presented.

  10. Glycoscience@Synchrotron: Synchrotron radiation applied to structural glycoscience

    PubMed Central

    de Sanctis, Daniele

    2017-01-01

    Synchrotron radiation is the most versatile way to explore biological materials in different states: monocrystalline, polycrystalline, solution, colloids and multiscale architectures. Steady improvements in instrumentation have made synchrotrons the most flexible intense X-ray source. The wide range of applications of synchrotron radiation is commensurate with the structural diversity and complexity of the molecules and macromolecules that form the collection of substrates investigated by glycoscience. The present review illustrates how synchrotron-based experiments have contributed to our understanding in the field of structural glycobiology. Structural characterization of protein–carbohydrate interactions of the families of most glycan-interacting proteins (including glycosyl transferases and hydrolases, lectins, antibodies and GAG-binding proteins) are presented. Examples concerned with glycolipids and colloids are also covered as well as some dealing with the structures and multiscale architectures of polysaccharides. Insights into the kinetics of catalytic events observed in the crystalline state are also presented as well as some aspects of structure determination of protein in solution. PMID:28684994

  11. High Molecular Weight (HMW) Dissolved Organic Matter (DOM) in Seawater: Chemical Structure, Sources and Cycling

    DTIC Science & Technology

    1999-06-01

    source for APS three species of phytoplankton, Thalassiossira weissflogii, Emiliania huxleyi and Phaeocystis, were cultured in seawater and their HMW...DOM exudates examined by a variety of analytical techniques. Both the T. weissflogii and E. huxleyi exudates contain compounds that resemble APS

  12. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K; Weber, F; Dewald, E

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  13. The stopped-drop method: a novel setup for containment-free and time-resolved measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiener, Andreas; Seifert, Soenke; Magerl, Andreas

    2016-03-01

    A novel setup for containment-free time-resolved experiments at a free-hanging drop is reported. Within a dead-time of 100 ms a drop of mixed reactant solutions is formed and the time evolution of a reaction can be followed from thereon by various techniques. As an example, a small-angle X-ray scattering study on the formation mechanism of EDTA-stabilized CdS both at a synchrotron and a laboratory X-ray source is presented here. While the evolution can be followed with one drop only at a synchrotron source, a stroboscopic mode with many drops is preferable for the laboratory source.

  14. Numerical calculations of spectral turnover and synchrotron self-absorption in CSS and GPS radio sources

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.

    2016-06-01

    The dependence of the turnover frequency on the linear size is presented for a sample of Giga-hertz Peaked Spectrum and Compact Steep Spectrum radio sources derived from complete samples. The dependence of the luminosity of the emission at the peak frequency with the linear size and the peak frequency is also presented for the galaxies in the sample. The luminosity of the smaller sources evolve strongly with the linear size. Optical depth effects have been included to the 3D model for the radio source of Kaiser to study the spectral turnover. Using this model, the observed trend can be explained by synchrotron self-absorption. The observed trend in the peak-frequency-linear-size plane is not affected by the luminosity evolution of the sources.

  15. On the Possibility of Acceleration of Polarized Protons in the Synchrotron Nuclotron

    NASA Astrophysics Data System (ADS)

    Shatunov, Yu. M.; Koop, I. A.; Otboev, A. V.; Mane, S. P.; Shatunov, P. Yu.

    2018-05-01

    One of the main tasks of the NICA project is to produce colliding beams of polarized protons. It is planned to accelerate polarized protons from the source to the maximum energy in the existing proton synchrotron. We consider all depolarizing spin resonances in the Nuclotron and propose methods to overcome them.

  16. Bioimaging of cells and tissues using accelerator-based sources.

    PubMed

    Petibois, Cyril; Cestelli Guidi, Mariangela

    2008-07-01

    A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (< 1 mum) or tissue (<1 mm) analyses, (2) a temporal resolution to follow molecular dynamics, and (3) a sensitivity in the micromolar to nanomolar range, thus allowing true investigations on biological dynamics. Third-generation synchrotrons now offer the opportunity of bioanalytical measurements at nanometer resolutions with incredible sensitivity. Linear accelerators are more specialized in their physical features but may exceed synchrotron performances. All these techniques have become irreplaceable tools for developing knowledge in biology. This review highlights the pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.

  17. Reconstruction of sound source signal by analytical passive TR in the environment with airflow

    NASA Astrophysics Data System (ADS)

    Wei, Long; Li, Min; Yang, Debin; Niu, Feng; Zeng, Wu

    2017-03-01

    In the acoustic design of air vehicles, the time-domain signals of noise sources on the surface of air vehicles can serve as data support to reveal the noise source generation mechanism, analyze acoustic fatigue, and take measures for noise insulation and reduction. To rapidly reconstruct the time-domain sound source signals in an environment with flow, a method combining the analytical passive time reversal mirror (AP-TR) with a shear flow correction is proposed. In this method, the negative influence of flow on sound wave propagation is suppressed by the shear flow correction, obtaining the corrected acoustic propagation time delay and path. Those corrected time delay and path together with the microphone array signals are then submitted to the AP-TR, reconstructing more accurate sound source signals in the environment with airflow. As an analytical method, AP-TR offers a supplementary way in 3D space to reconstruct the signal of sound source in the environment with airflow instead of the numerical TR. Experiments on the reconstruction of the sound source signals of a pair of loud speakers are conducted in an anechoic wind tunnel with subsonic airflow to validate the effectiveness and priorities of the proposed method. Moreover the comparison by theorem and experiment result between the AP-TR and the time-domain beamforming in reconstructing the sound source signal is also discussed.

  18. MICROSCANNING XRF, XANES, AND XRD STUDIES OF THEDECORATED SURFACE OF ROMAN TERRA SIGILLATA CERAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirguet, C.; Sciau, P.; Goudeau, P.

    Different microscanning synchrotron techniques were used to better understand the elaboration process and origins of Terra Sigillata potteries from the Roman period. A mixture Gallic slip sample cross-section showing red and yellow colors was studied. The small (micron) size of the X-ray beam available at Stanford Synchrotron Radiation Laboratory (SSRL) and Advanced Light Source (ALS) synchrotron sources, coupled with the use of a sample scanning stage allowed us to spatially resolve the distribution of the constitutive mineral phases related to the chemical composition. Results show that red color is a result of iron-rich hematite crystals and the yellow part ismore » a result of the presence of Ti-rich rutile-type phase (brookite). Volcanic-type clay is at the origin of these marble Terra Sigillata.« less

  19. Mix-and-diffuse serial synchrotron crystallography

    DOE PAGES

    Beyerlein, Kenneth R.; Dierksmeyer, Dennis; Mariani, Valerio; ...

    2017-10-09

    Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzymemore » at a high level of detail. Here, the success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.« less

  20. Mix-and-diffuse serial synchrotron crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyerlein, Kenneth R.; Dierksmeyer, Dennis; Mariani, Valerio

    Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzymemore » at a high level of detail. Here, the success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.« less

  1. National Synchrotron Light Source II storage ring vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei

    2016-05-15

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  2. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Byrd, J. M.; Loftsdóttir, Á.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wüstefeld, G.; Hübers, H.-W.; Warnock, R.

    2004-08-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSYII storage ring. We also use this model to optimize the performance of a source for stable CSR emission.

  3. Focusing of white synchrotron radiation using large-acceptance cylindrical refractive lenses made of single – crystal diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polikarpov, M., E-mail: polikarpov.maxim@mail.ru; Snigireva, I.; Snigirev, A.

    2016-07-27

    Large-aperture cylindrical refractive lenses were manufactured by laser cutting of single-crystal diamond. Five linear single lenses with apertures of 1 mm and the depth of the structure of 1.2 mm were fabricated and tested at the ESRF ID06 beamline performing the focusing of white-beam synchrotron radiation. Uniform linear focus was stable during hours of exposure, representing such lenses as pre-focusing and collimating devices suitable for the front-end sections of today synchrotron radiation sources.

  4. Updating the Synchrotron Radiation Monitor at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. H.; Hsu, S. Y.; Wang, C. J.

    2007-01-19

    The synchrotron radiation monitor provides useful information to support routine operation and physics experiments using the beam. Precisely knowing the profile of the beam helps to improve machine performance. The synchrotron radiation monitor at the Taiwan Light Source (TLS) was recently upgraded. The optics and modeling were improved to increase the accuracy of measurement in the small beam size. A high-performance IEEE-1394 digital CCD camera was used to improve the quality of images and extend the dynamic range of measurement. The image analysis is also improved. This report summarizes status and results.

  5. Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source.

    PubMed

    Töpperwien, Mareike; Gradl, Regine; Keppeler, Daniel; Vassholz, Malte; Meyer, Alexander; Hessler, Roland; Achterhold, Klaus; Gleich, Bernhard; Dierolf, Martin; Pfeiffer, Franz; Moser, Tobias; Salditt, Tim

    2018-03-21

    We demonstrate that phase retrieval and tomographic imaging at the organ level of small animals can be advantageously carried out using the monochromatic radiation emitted by a compact x-ray light source, without further optical elements apart from source and detector. This approach allows to carry out microtomography experiments which - due to the large performance gap with respect to conventional laboratory instruments - so far were usually limited to synchrotron sources. We demonstrate the potential by mapping the functional soft tissue within the guinea pig and marmoset cochlea, including in the latter case an electrical cochlear implant. We show how 3d microanatomical studies without dissection or microscopic imaging can enhance future research on cochlear implants.

  6. Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.

    2013-08-15

    Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle ofmore » the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.« less

  7. Linear microbunching analysis for recirculation machines

    DOE PAGES

    Tsai, C. -Y.; Douglas, D.; Li, R.; ...

    2016-11-28

    Microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy-recovery-linac machines. To quantify MBI for a recirculating machine and for more systematic analyses, we have recently developed a linear Vlasov solver and incorporated relevant collective effects into the code, including the longitudinal space charge, coherent synchrotron radiation, and linac geometric impedances, with extension of the existing formulation to include beam acceleration. In our code, we semianalytically solve the linearized Vlasov equation for microbunching amplification factor formore » an arbitrary linear lattice. In this study we apply our code to beam line lattices of two comparative isochronous recirculation arcs and one arc lattice preceded by a linac section. The resultant microbunching gain functions and spectral responses are presented, with some results compared to particle tracking simulation by elegant (M. Borland, APS Light Source Note No. LS-287, 2002). These results demonstrate clearly the impact of arc lattice design on the microbunching development. Lastly, the underlying physics with inclusion of those collective effects is elucidated and the limitation of the existing formulation is also discussed.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C. -Y.; Douglas, D.; Li, R.

    Microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy-recovery-linac machines. To quantify MBI for a recirculating machine and for more systematic analyses, we have recently developed a linear Vlasov solver and incorporated relevant collective effects into the code, including the longitudinal space charge, coherent synchrotron radiation, and linac geometric impedances, with extension of the existing formulation to include beam acceleration. In our code, we semianalytically solve the linearized Vlasov equation for microbunching amplification factor formore » an arbitrary linear lattice. In this study we apply our code to beam line lattices of two comparative isochronous recirculation arcs and one arc lattice preceded by a linac section. The resultant microbunching gain functions and spectral responses are presented, with some results compared to particle tracking simulation by elegant (M. Borland, APS Light Source Note No. LS-287, 2002). These results demonstrate clearly the impact of arc lattice design on the microbunching development. Lastly, the underlying physics with inclusion of those collective effects is elucidated and the limitation of the existing formulation is also discussed.« less

  9. Compact Undulator for the Cornell High Energy Synchrotron Source: Design and Beam Test Results

    NASA Astrophysics Data System (ADS)

    Temnykh, A.; Dale, D.; Fontes, E.; Li, Y.; Lyndaker, A.; Revesz, P.; Rice, D.; Woll, A.

    2013-03-01

    We developed, built and beam tested a novel, compact, in-vacuum undulator magnet based on an adjustable phase (AP) scheme. The undulator is 1 m long with a 5mm gap. It has a pure permanent magnet structure with 24.4mm period and 1.1 Tesla maximum peak field. The device consists of two planar magnet arrays mounted on rails inside of a rectangular box-like frame with 156 mm × 146 mm dimensions. The undulator magnet is enclosed in a 273 mm (10.75") diameter cylindrical vacuum vessel with a driver mechanism placed outside. In May 2012 the CHESS Compact Undulator (CCU) was installed in Cornell Electron Storage Ring and beam tested. During four weeks of dedicated run we evaluated undulator radiation properties as well as magnetic, mechanical and vacuum properties of the undulator magnet. We also studied the effect of the CCU on storage ring beam. The spectral characteristics and intensity of radiation were found to be in very good agreement with expected. The magnet demonstrated reproducibility of undulator parameter K at 1.4 × 10-4 level. It was also found that the undulator K. parameter change does not affect electron beam orbit and betatron tunes.

  10. Patent foramen ovale and atrial septal aneurysm can cause ischemic stroke in patients with antiphospholipid syndrome.

    PubMed

    Tanaka, Yasutaka; Ueno, Yuji; Miyamoto, Nobukazu; Shimada, Yoshiaki; Tanaka, Ryota; Hattori, Nobutaka; Urabe, Takao

    2013-01-01

    The purpose of the present study was to evaluate the contributions of embolic etiologies, patent foramen ovale (PFO) and atrial septal aneurysm (ASA) to the pathogenesis of ischemic stroke in patients with antiphospholipid syndrome (APS). We performed transesophageal echocardiography (TEE) examination for consecutive stroke patients who had been diagnosed with APS (APS group) to detect potential embolic sources. APS was diagnosed based on the modified Sapporo criteria. The control stroke group comprised age- and sex-matched cryptogenic stroke patients undergoing TEE. We assessed and compared the clinical characteristics and TEE findings between stroke patients with APS and control stroke groups. Among 582 patients, nine patients (nine women; mean age, 50 ± 18 years) were classified into the APS group. In 137 patients undergoing TEE, 41 age-matched female stroke patients were recruited to the control stroke group. Prevalences of PFO and ASA were significantly higher in the APS group than in the control stroke group (89 vs. 41 %, p = 0.027; 67 vs. 20 %, p = 0.015, respectively). Multiple logistic regression analysis showed that PFO (odds ratio (OR), 13.71; 95 % confidence interval (CI), 1.01-185.62; p = 0.049) and ASA (OR, 8.06; 95 % CI, 1.17-55.59; p = 0.034) were independently associated with the APS group. PFO and ASA were strongly associated with the APS group, and could thus represent potential embolic sources in ischemic stroke patients with APS.

  11. Mono-energy coronary angiography with a compact light source

    NASA Astrophysics Data System (ADS)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-03-01

    While conventional x-ray tube sources reliably provide high-power x-ray beams for everyday clinical practice, the broad spectra that are inherent to these sources compromise the diagnostic image quality. For a monochromatic x-ray source on the other hand, the x-ray energy can be adjusted to optimal conditions with respect to contrast and dose. However, large-scale synchrotron sources impose high spatial and financial demands, making them unsuitable for clinical practice. During the last decades, research has brought up compact synchrotron sources based on inverse Compton scattering, which deliver a highly brilliant, quasi-monochromatic, tunable x-ray beam, yet fitting into a standard laboratory. One application that could benefit from the invention of these sources in clinical practice is coronary angiography. Being an important and frequently applied diagnostic tool, a high number of complications in angiography, such as renal failure, allergic reaction, or hyperthyroidism, are caused by the large amount of iodine-based contrast agent that is required for achieving sufficient image contrast. Here we demonstrate monochromatic angiography of a porcine heart acquired at the MuCLS, the first compact synchrotron source. By means of a simulation, the CNR in a coronary angiography image achieved with the quasi-mono-energetic MuCLS spectrum is analyzed and compared to a conventional x-ray-tube spectrum. The results imply that the improved CNR achieved with a quasi-monochromatic spectrum can allow for a significant reduction of iodine contrast material.

  12. Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 µm size X-ray synchrotron beam

    PubMed Central

    Cherezov, Vadim; Hanson, Michael A.; Griffith, Mark T.; Hilgart, Mark C.; Sanishvili, Ruslan; Nagarajan, Venugopalan; Stepanov, Sergey; Fischetti, Robert F.; Kuhn, Peter; Stevens, Raymond C.

    2009-01-01

    Crystallization of human membrane proteins in lipidic cubic phase often results in very small but highly ordered crystals. Advent of the sub-10 µm minibeam at the APS GM/CA CAT has enabled the collection of high quality diffraction data from such microcrystals. Herein we describe the challenges and solutions related to growing, manipulating and collecting data from optically invisible microcrystals embedded in an opaque frozen in meso material. Of critical importance is the use of the intense and small synchrotron beam to raster through and locate the crystal sample in an efficient and reliable manner. The resulting diffraction patterns have a significant reduction in background, with strong intensity and improvement in diffraction resolution compared with larger beam sizes. Three high-resolution structures of human G protein-coupled receptors serve as evidence of the utility of these techniques that will likely be useful for future structural determination efforts. We anticipate that further innovations of the technologies applied to microcrystallography will enable the solving of structures of ever more challenging targets. PMID:19535414

  13. Genomic and Functional Analyses of the 2-Aminophenol Catabolic Pathway and Partial Conversion of Its Substrate into Picolinic Acid in Burkholderia xenovorans LB400

    PubMed Central

    Agulló, Loreine; González, Myriam; Seeger, Michael

    2013-01-01

    2-aminophenol (2-AP) is a toxic nitrogen-containing aromatic pollutant. Burkholderia xenovorans LB400 possess an amn gene cluster that encodes the 2-AP catabolic pathway. In this report, the functionality of the 2-aminophenol pathway of B. xenovorans strain LB400 was analyzed. The amnRJBACDFEHG cluster located at chromosome 1 encodes the enzymes for the degradation of 2-aminophenol. The absence of habA and habB genes in LB400 genome correlates with its no growth on nitrobenzene. RT-PCR analyses in strain LB400 showed the co-expression of amnJB, amnBAC, amnACD, amnDFE and amnEHG genes, suggesting that the amn cluster is an operon. RT-qPCR showed that the amnB gene expression was highly induced by 2-AP, whereas a basal constitutive expression was observed in glucose, indicating that these amn genes are regulated. We propose that the predicted MarR-type transcriptional regulator encoded by the amnR gene acts as repressor of the amn gene cluster using a MarR-type regulatory binding sequence. This report showed that LB400 resting cells degrade completely 2-AP. The amn gene cluster from strain LB400 is highly identical to the amn gene cluster from P. knackmussi strain B13, which could not grow on 2-AP. However, we demonstrate that B. xenovorans LB400 is able to grow using 2-AP as sole nitrogen source and glucose as sole carbon source. An amnBA − mutant of strain LB400 was unable to grow with 2-AP as nitrogen source and glucose as carbon source and to degrade 2-AP. This study showed that during LB400 growth on 2-AP this substrate was partially converted into picolinic acid (PA), a well-known antibiotic. The addition of PA at lag or mid-exponential phase inhibited LB400 growth. The MIC of PA for strain LB400 is 2 mM. Overall, these results demonstrate that B. xenovorans strain LB400 posses a functional 2-AP catabolic central pathway, which could lead to the production of picolinic acid. PMID:24124510

  14. 6th international conference on biophysics and synchrotron radiation. Program/Abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittroff, Connie; Strasser, Susan Barr

    1999-08-03

    This STI product consists of the Program/Abstracts book that was prepared for the participants in the Sixth International Conference on Biophysics and Synchrotron Radiation that was held August 4-8, 1998, at the Advanced Photon Source, Argonne National Laboratory. This book contains the full conference program and abstracts of the scientific presentations.

  15. Additional Spitzer IRS Spectroscopy of Three Intermediate Polars: The Detection of a Mid-infrared Synchrotron Flare from V1223 Sagittarii

    NASA Astrophysics Data System (ADS)

    Harrison, Thomas E.; Bornak, Jillian; Rupen, Michael P.; Howell, Steve B.

    2010-02-01

    We present new Spitzer Infrared Spectrograph (IRS) observations of three intermediate polars: V1223 Sgr, EX Hya, and V603 Aql. We detected a strong, fading flare event from V1223 Sgr. During this event, the flux declined by a factor of 13 in 30 minutes. Given the similarity in the slope of its mid-infrared spectrum during this event to that of AE Aqr, we suggest that this event was caused by transient synchrotron emission. Thus, V1223 Sgr becomes the third cataclysmic variable known to be a synchrotron source. We were unable to confirm the mid-infrared excess noted by Harrison et al. (Paper I) for EX Hya, suggesting that this object is either not a synchrotron source, or is slightly variable. Due to a very high background, V603 Aql was not detected in the long-wavelength regions accessible to the IRS. Given the recent detection of SS Cygni at radio wavelengths during outburst, we extract archival Spitzer IRS spectra for this source obtained during two successive maxima. These spectra do not show a strong excess, but without simultaneous data at shorter wavelengths, it is not possible to determine whether there is any contribution to the mid-infrared fluxes from a synchrotron jet. Includes observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  16. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K.M.; Weber, F.A.; Dewald, E.L.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  17. Investigation of Gate-Stacked In-Ga-Zn-O TFTs with Ga-Zn-O Source/Drain Electrodes by Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition.

    PubMed

    Wu, Chien-Hung; Chang, Kow-Ming; Chen, Yi-Ming; Huang, Bo-Wen; Zhang, Yu-Xin; Wang, Shui-Jinn; Hsu, Jui-Mei

    2018-03-01

    Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) was employed for the fabrication of indium gallium zinc oxide thin-film transistors (IGZO TFTs) with high transparent gallium zinc oxide (GZO) source/drain electrodes. The influence of post-deposition annealing (PDA) temperature on GZO source/drain and device performance was studied. Device with a 300 °C annealing demonstrated excellent electrical characteristics with on/off current ratio of 2.13 × 108, saturation mobility of 10 cm2/V-s, and low subthreshold swing of 0.2 V/dec. The gate stacked LaAlO3/ZrO2 of AP-IGZO TFTs with highly transparent and conductive AP-GZO source/drain electrode show excellent gate control ability at a low operating voltage.

  18. A smog chamber study coupling a photoionization aerosol electron/ion spectrometer to VUV synchrotron radiation: organic and inorganic-organic mixed aerosol analysis

    NASA Astrophysics Data System (ADS)

    Baeza-Romero, María Teresa; Gaie-Levrel, Francois; Mahjoub, Ahmed; López-Arza, Vicente; Garcia, Gustavo A.; Nahon, Laurent

    2016-07-01

    A reaction chamber was coupled to a photoionization aerosol time-of-flight mass spectrometer based on an electron/ion coincidence scheme and applied for on-line analysis of organic and inorganic-organic mixed aerosols using synchrotron tunable vacuum ultraviolet (VUV) photons as the ionization source. In this proof of principle study, both aerosol and gas phase were detected simultaneously but could be differentiated. Present results and perspectives for improvement for this set-up are shown in the study of ozonolysis ([O3] = 0.13-3 ppm) of α-pinene (2-3 ppm), and the uptake of glyoxal upon ammonium sulphate. In this work the ozone concentration was monitored in real time, together with the particle size distributions and chemical composition, the latter taking advantage of the coincidence spectrometer and the tuneability of the synchrotron radiation as a soft VUV ionization source.

  19. High-energy synchrotron X-ray radiography of shock-compressed materials

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  20. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  1. Holographic illuminator for synchrotron-based projection lithography systems

    DOEpatents

    Naulleau, Patrick P.

    2005-08-09

    The effective coherence of a synchrotron beam line can be tailored to projection lithography requirements by employing a moving holographic diffuser and a stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (1) a synchrotron source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence, (2) a holographic diffuser having a surface that receives incident radiation from said source, (3) means for translating the surface of the holographic diffuser in two dimensions along a plane that is parallel to the surface of the holographic diffuser wherein the rate of the motion is fast relative to integration time of said image processing system; and (4) a condenser optic that re-images the surface of the holographic diffuser to the entrance plane of said image processing system.

  2. Pink-beam serial crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meents, A.; Wiedorn, M. O.; Srajer, V.

    Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less

  3. Pink-beam serial crystallography

    DOE PAGES

    Meents, A.; Wiedorn, M. O.; Srajer, V.; ...

    2017-11-03

    Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less

  4. Synchrotron-based far-infrared spectroscopy of furan: Rotational analysis of the ν 14 , ν 11 , ν 18 and ν 19 vibrational levels

    NASA Astrophysics Data System (ADS)

    Tokaryk, D. W.; Culligan, S. D.; Billinghurst, B. E.; van Wijngaarden, J. A.

    2011-11-01

    Four vibrational levels of the five-membered ring molecule furan (C 4H 4O) have been rotationally analyzed from far-infrared Fourier transform spectra obtained at the Canadian Light Source synchrotron. We found that the low-lying ν14 and ν11 levels at 602.9 and 599.6 cm -1 interact through a second-order Coriolis resonance. This perturbation was characterized through a coupled analysis of the ν14 and ν18 fundamental spectra and the ν18- ν11 band. The ν19 fundamental spectrum was analyzed as well, and the data for all observed bands were combined with previously reported microwave transitions to produce the final fit. The spectra are an excellent demonstration of the high quality of data that can be obtained when far-infrared synchrotron radiation is used as the radiation source in Fourier transform spectroscopy experiments.

  5. Multi-element germanium detectors for synchrotron applications

    NASA Astrophysics Data System (ADS)

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.; Vernon, E.; Pinelli, D.; Dooryhee, E.; Ghose, S.; Caswell, T.; Siddons, D. P.; Miceli, A.; Baldwin, J.; Almer, J.; Okasinski, J.; Quaranta, O.; Woods, R.; Krings, T.; Stock, S.

    2018-04-01

    We have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. We will discuss the technical details of the systems, and present some of the results from them.

  6. APS undulator and wiggler sources: Monte-Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S.L.; Lai, B.; Viccaro, P.J.

    1992-02-01

    Standard insertion devices will be provided to each sector by the Advanced Photon Source. It is important to define the radiation characteristics of these general purpose devices. In this document,results of Monte-Carlo simulation are presented. These results, based on the SHADOW program, include the APS Undulator A (UA), Wiggler A (WA), and Wiggler B (WB).

  7. Variable Magnification With Kirkpatrick-Baez Optics for Synchrotron X-Ray Microscopy

    PubMed Central

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-01-01

    We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Köhler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In addition to realizing improvements in the resolution of the optics, the synchrotron radiation microscope is not limited to the usual single magnification at a fixed image plane. Higher magnification images are produced by projection in the limit of geometrical optics with a collimated beam. However, in distinction to the common method of placing the sample behind the optical source of a diverging beam, we describe the situation in which the sample is located in the collimated beam before the optical element. The ultimate limits of this magnification result from diffraction by the specimen and are determined by the sample position relative to the focal point of the optic. We present criteria by which the diffraction is minimized. PMID:27274930

  8. X-ray emission from an Ap star /Phi Herculis/ and a late B star /Pi Ceti/

    NASA Technical Reports Server (NTRS)

    Cash, W.; Snow, T. P., Jr.; Charles, P.

    1979-01-01

    Using the HEAO 1 soft X-ray sky survey, a search was conducted for X-ray emission from 18 stars in the spectral range B5-A7. The detection of 0.25 keV X-ray sources consistent with the positions of Pi Ceti, a normal B7 V star, and Phi Herculis, a classic Ap star was reported. The detection of these stars argues for large mass motions in the upper layers of stars in this spectral range, and argues against radiative diffusion as the source of abundance anomalies in Ap stars.

  9. Development and operating experience of a 1.1-m-long superconducting undulator at the Advanced Photon Source

    DOE PAGES

    Ivanyushenkov, Y.; Harkay, K.; Borland, M.; ...

    2017-10-03

    Development of superconducting undulators continues at the Advanced Photon Source (APS). Two years after successful installation and commissioning of the first relatively short superconducting undulator “SCU0” in Sector 6 of the APS storage ring, the second 1.1-m long superconducting undulator “SCU1” was installed in Sector 1 of the APS. The device has been in user operation since its commissioning in May 2015. This paper describes the magnetic and cryogenic design of the SCU1 together with the results of stand-alone cold tests. The SCU1’s magnetic and cryogenic performance as well as its operating experience in the APS storage ring are alsomore » presented.« less

  10. Development and operating experience of a 1.1-m-long superconducting undulator at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanyushenkov, Y.; Harkay, K.; Borland, M.

    Development of superconducting undulators continues at the Advanced Photon Source (APS). Two years after successful installation and commissioning of the first relatively short superconducting undulator “SCU0” in Sector 6 of the APS storage ring, the second 1.1-m long superconducting undulator “SCU1” was installed in Sector 1 of the APS. The device has been in user operation since its commissioning in May 2015. This paper describes the magnetic and cryogenic design of the SCU1 together with the results of stand-alone cold tests. The SCU1’s magnetic and cryogenic performance as well as its operating experience in the APS storage ring are alsomore » presented.« less

  11. RF Conditioning of the Photo-Cathode RF Gun at the Advanced Photon Source - NWA RF Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, T. L.; DiMonte, N.; Nassiri, A.

    A new S-band Photo-cathode (PC) gun was recently installed and RF conditioned at the Advanced Photon Source (APS) Injector Test-stand (ITS) at Argonne National Lab (ANL). The APS PC gun is a LCLS type gun fabricated at SLAC [1]. The PC gun was delivered to the APS in October 2013 and installed in the APS ITS in December 2013. At ANL, we developed a new method of fast detection and mitigation of the guns internal arcs during the RF conditioning process to protect the gun from arc damage and to RF condition more efficiently. Here, we report the results ofmore » RF measurements for the PC gun and an Auto-Restart method for high power RF conditioning.« less

  12. Alkaline phosphatase in nasal secretion of cattle: biochemical and molecular characterisation.

    PubMed

    Ghazali, M Faizal; Koh-Tan, H H Caline; McLaughlin, Mark; Montague, Paul; Jonsson, Nicholas N; Eckersall, P David

    2014-09-05

    Nasal secretion (NS) was investigated as a source of information regarding the mucosal and systemic immune status of cattle challenged by respiratory disease. A method for the collection of substantial volumes (~12 ml) of NS from cattle was developed to establish a reference range of analytes that are present in the NS of healthy cattle. Biochemical profiles of NS from a group of 38 healthy Holstein-Friesian cows revealed high alkaline phosphatase (AP) activity of up to 2392 IU/L. The character and source of the high activity of AP in bovine NS was investigated. Histochemical analysis confirmed the localization of the AP enzyme activity to epithelial cells and serous glands of the nasal respiratory mucosa. Analysis of mRNA levels from nasal mucosa by end point RT-PCR and PCR product sequencing confirmed that the AP was locally produced and is identical at the nucleotide level to the non-specific AP splice variant found in bovine liver, bone and kidney. Analysis by isoelectric focussing confirmed that AP was produced locally at a high level in nasal epithelium demonstrating that AP from nasal secretion and nasal mucosa had similar pI bands, though differing from those of the liver, kidney, bone and intestine, suggesting different post-translational modification (PTM) of AP in these tissues. A nasal isozyme of AP has been identified that is present at a high activity in NS, resulting from local production and showing distinctive PTM and may be active in NS as an anti-endotoxin mediator.

  13. X-Ray Data Booklet

    Science.gov Websites

    X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X

  14. Tests of monolithic active pixel sensors at national synchrotron light source

    NASA Astrophysics Data System (ADS)

    Deptuch, G.; Besson, A.; Carini, G. A.; Siddons, D. P.; Szelezniak, M.; Winter, M.

    2007-01-01

    The paper discusses basic characterization of Monolithic Active Pixel Sensors (MAPS) carried out at the X12A beam-line at National Synchrotron Light Source (NSLS), Upton, NY, USA. The tested device was a MIMOSA V (MV) chip, back-thinned down to the epitaxial layer. This 1M pixels device features a pixel size of 17×17 μm2 and was designed in a 0.6 μm CMOS process. The X-ray beam energies used range from 5 to 12 keV. Examples of direct X-ray imaging capabilities are presented.

  15. High-pressure Experimental Studies on Geo-liquids Using Synchrotron Radiation at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanbin; Shen, Guoyin

    2014-12-23

    Here, we review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Moreover, we describe experimental techniques, along with scientific highlights. Future developments are also discussed.

  16. Metrology laboratory requirements for third-generation synchrotron radiation sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takacs, P.Z.; Quian, Shinan

    1997-11-01

    New third-generation synchrotron radiation sources that are now, or will soon, come on line will need to decide how to handle the testing of optical components delivered for use in their beam lines. In many cases it is desirable to establish an in-house metrology laboratory to do the work. We review the history behind the formation of the Optical Metrology Laboratory at Brookhaven National Laboratory and the rationale for its continued existence. We offer suggestions to those who may be contemplating setting up similar facilities, based on our experiences over the past two decades.

  17. Facilities for small-molecule crystallography at synchrotron sources.

    PubMed

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  18. Microscope using an x-ray tube and a bubble compound refractive lens

    NASA Astrophysics Data System (ADS)

    Piestrup, M. A.; Gary, C. K.; Park, H.; Harris, J. L.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.; Kolchevsky, N. N.; Komarov, F. F.

    2005-03-01

    We present x-ray images of grid meshes and biological material obtained using an unfiltered x-ray tube and a compound refractive lens composed of microbubbles embedded in epoxy inside a glass capillary. Images obtained using this apparatus are compared with those using a synchrotron source and the same lens. We find that the field of view is larger than that obtained using the synchrotron source, whereas the contrast and resolution are reduced. Geometrical distortion around the edges of the field of view is also reduced. The experiments demonstrate the usefulness of the apparatus in a modest laboratory setting.

  19. High Resolution Far-Infrared Spectra of Thiophosgene with a Synchrotron Source: The ν2 and ν4 Bands Near 500 cm-1

    NASA Astrophysics Data System (ADS)

    McKellar, A. R. W.; Billinghurst, B. E.

    2010-02-01

    Thiophosgene (Cl2CS) is a favorite model system for studies of vibrational dynamics. But there are no previous rotationally-resolved infrared studies because the spectra are very congested due to its (relatively) large mass and multiple isotopic species. Here we report a detailed gas-phase study of the ν2 (˜504 cm-1) and ν4 (˜471 cm-1) fundamental bands, based on spectra obtained at the Canadian Light Source far-infrared beamline using synchrotron radiation and a Bruker IFS125 FT spectrometer.

  20. RELATIVISTIC THOMSON SCATTERING EXPERIMENT AT BNL - STATUS REPORT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POGORELSKY,I.V.; BEN ZVI,I.; KUSCHE,K.

    2001-12-03

    1.7 x 10{sup 8} x-ray photons per 3.5 ps pulse have been produced in Thomson scattering by focusing CO{sub 2} laser pulse on counter-propagating relativistic electron beam. We explore a possibility of further enhancement of process efficiency by propagating both beams in a plasma capillary. Conventional synchrotron light sources based on using giga-electron-volt electron synchrotron accelerators and magnetic wigglers generate x-ray radiation for versatile application in multi-disciplinary research. An intense laser beam causes relativistic electron oscillations similar to a wiggler. However, because the laser wavelength is thousand times shorter than a wiggler period, very moderate electron energy is needed tomore » produce hard x-rays via Thomson scattering. This allows using relatively compact mega-electron-volt linear accelerators instead of giga-electron-volt synchrotrons. Another important advantage of Thomson sources is a possibility to generate femtosecond x-ray pulses whereas conventional synchrotron sources have typically {approx}300 ps pulse duration. This promises to revolutionize x-ray research in chemistry, physics, and biology expanding it to ultra-fast processes. Thomson sources do not compete in repetition rate and average intensity with conventional light sources that operate at the megahertz frequency. However, Thomson sources have a potential to produce much higher photon numbers per pulse. This may allow developing a single shot exposure important for structural analysis of live biological objects. The BNL Thomson source is a user's experiment conducted at the Accelerator Test Facility since 1998 by an international collaboration in High Energy Physics. Since inception, the ATF source produces the record peak x-ray yield, intensity and brightness among other similar proof-of-principle demonstrations attempted elsewhere. Note that this result is achieved with a moderate laser power of 15 GW. A key to this achievement is in choosing right apparatus and efficient interaction geometry. We use a CO{sub 2} laser that delivers 10 times more photons per unit energy than the 1-{micro}m laser, a high-brightness linac, and the most energy-efficient backscattering interaction geometry. The purpose of this report is to give an update on new results obtained during this year and our near-term plans.« less

  1. The APS SASE FEL : modeling and code comparison.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedron, S. G.

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  2. Towards a 4{sup th} generation storage ring at the Canadian Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallin, Les; Wurtz, Ward

    2016-07-27

    Demands from beamline scientists for more brilliant sources of synchrotron radiation have resulted in the emergence of 4{sup th} generation (diffraction-limited) storage rings. The practical development of the multi-bend achromat (MBA) concept by MAX IV lab has spurred many synchrotron light sources around the world to develop similar machines. For existing facilities two options are available: upgrading existing machines or building a new structure. The Canadian Light Source (CLS) has explored both options. For a new low emittance source in the existing CLS tunnel a decrease in electron energy would be required. A machine similar to the ALS upgrade couldmore » be contemplated. To achieve low emittance at our present energy of 2.9 GeV a new storage ring is desirable. Several options have been investigated. These designs use extremely strong focusing magnets to achieve extremely low emittances in compact lattice achromats.« less

  3. EMITTING ELECTRONS AND SOURCE ACTIVITY IN MARKARIAN 501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankuzhiyil, Nijil; Ansoldi, Stefano; Persic, Massimo

    2012-07-10

    We study the variation of the broadband spectral energy distribution (SED) of the BL Lac object Mrk 501 as a function of source activity, from quiescent to flaring. Through {chi}{sup 2}-minimization we model eight simultaneous SED data sets with a one-zone synchrotron self-Compton (SSC) model, and examine how model parameters vary with source activity. The emerging variability pattern of Mrk 501 is complex, with the Compton component arising from {gamma}-e scatterings that sometimes are (mostly) Thomson and sometimes (mostly) extreme Klein-Nishina. This can be seen from the variation of the Compton to synchrotron peak distance according to source state. Themore » underlying electron spectra are faint/soft in quiescent states and bright/hard in flaring states. A comparison with Mrk 421 suggests that the typical values of the SSC parameters are different in the two sources: however, in both jets the energy density is particle-dominated in all states.« less

  4. Beam measurement of the high frequency impedance sources with long bunches in the CERN Super Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Lasheen, A.; Argyropoulos, T.; Bohl, T.; Esteban Müller, J. F.; Timko, H.; Shaposhnikova, E.

    2018-03-01

    Microwave instability in the Super Proton Synchrotron (SPS) at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2). To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.

  5. Translation of Atherosclerotic Plaque Phase-Contrast CT Imaging from Synchrotron Radiation to a Conventional Lab-Based X-Ray Source

    PubMed Central

    Saam, Tobias; Herzen, Julia; Hetterich, Holger; Fill, Sandra; Willner, Marian; Stockmar, Marco; Achterhold, Klaus; Zanette, Irene; Weitkamp, Timm; Schüller, Ulrich; Auweter, Sigrid; Adam-Neumair, Silvia; Nikolaou, Konstantin; Reiser, Maximilian F.; Pfeiffer, Franz; Bamberg, Fabian

    2013-01-01

    Objectives Phase-contrast imaging is a novel X-ray based technique that provides enhanced soft tissue contrast. The aim of this study was to evaluate the feasibility of visualizing human carotid arteries by grating-based phase-contrast tomography (PC-CT) at two different experimental set-ups: (i) applying synchrotron radiation and (ii) using a conventional X-ray tube. Materials and Methods Five ex-vivo carotid artery specimens were examined with PC-CT either at the European Synchrotron Radiation Facility using a monochromatic X-ray beam (2 specimens; 23 keV; pixel size 5.4 µm), or at a laboratory set-up on a conventional X-ray tube (3 specimens; 35-40 kVp; 70 mA; pixel size 100 µm). Tomographic images were reconstructed and compared to histopathology. Two independent readers determined vessel dimensions and one reader determined signal-to-noise ratios (SNR) between PC-CT and absorption images. Results In total, 51 sections were included in the analysis. Images from both set-ups provided sufficient contrast to differentiate individual vessel layers. All PCI-based measurements strongly predicted but significantly overestimated lumen, intima and vessel wall area for both the synchrotron and the laboratory-based measurements as compared with histology (all p<0.001 with slope >0.53 per mm2, 95%-CI: 0.35 to 0.70). Although synchrotron-based images were characterized by higher SNRs than laboratory-based images; both PC-CT set-ups had superior SNRs compared to corresponding conventional absorption-based images (p<0.001). Inter-reader reproducibility was excellent (ICCs >0.98 and >0.84 for synchrotron and for laboratory-based measurements; respectively). Conclusion Experimental PC-CT of carotid specimens is feasible with both synchrotron and conventional X-ray sources, producing high-resolution images suitable for vessel characterization and atherosclerosis research. PMID:24039969

  6. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Grischa R.; Aragão, David; Mudie, Nathan J.

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Severalmore » real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.« less

  7. Probing magnetic transitions in (Mg,Fe)GeO3-perovskite with Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wicks, J. K.; Tracy, S. J.; Stan, C. V.; Bi, W.; Alp, E. E.; Xiao, Y.; Chow, P.; Duffy, T. S.

    2016-12-01

    The effect of iron on the properties of major lower mantle minerals must be understood for proper interpretation of seismic and geodynamic data. The role of Fe in bridgmanite in the deep earth is complicated as Fe can occupy two different crystallographic sites (8-fold site or octahedral site) and adopt different valence states (2+,3+) and electronic configurations (high or low spin). Previous experimental and theoretical work on this material has reported a pressure-induced low- to high-QS (quadrupole splitting) transition at 30 GPa, explained by a small lateral displacement of the Fe2+ ion (e.g. Jackson et al., 2005, Hsu et al., 2010). Further insight into the nature of this transition can be obtained through the study of germanates which are well-known to be effective analogues for silicates. The perovskite (Pv) to post-perovskite (pPv) transition is reduced by 50 GPa in MgGeO3 compared with MgSiO3. Despite this, a recent theoretical study predicts that in the Ge analogue the low- to high-QS transition should be 20 GPa higher in the germanate due to its larger unit cell (Shukla et al., 2015). 57Fe-enriched (Mg0.8Fe0.2)GeO3 perovskite was synthesized at 40 GPa with laser heating at Sector 13-ID-D, as confirmed with X-ray diffraction. Conventional and synchrotron Mössbauer spectroscopy was conducted at Sector 3 and Sector 16 of the Advanced Photon source, Argonne National Laboratory over the stability field of germanate perovskite: 39-61 GPa. This study took advantage of the new capability of synchrotron Mössbauer spectroscopy conducted during the APS operations in hybrid mode, which expanded the experimental time window from 150 to 800 ns. Preliminary analysis indicates that iron is predominately Fe2+ with some Fe3+ contribution at low pressure. With increasing pressure, we find the appearance of a third high-QS site, consistent with similar observations in the silicate. Our results provide new insights into high-pressure behavior of Fe in perovskite-structured materials, as well as providing a test of theoretical predictions. We also demonstrate the advantages of collection synchrotron Mössbauer data in hybrid mode.

  8. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    PubMed

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  9. Neutron and Synchrotron Radiation Studies for Designer Materials, Sustainable Energy and Healthy Lives

    NASA Astrophysics Data System (ADS)

    Gibson, J. Murray

    2009-05-01

    Probably the most prolific use of large accelerators today is in the creation of bright beams of x-ray photons or neutrons. The number of scientific users of such sources in the US alone is approaching 10,000. I will describe the some of the major applications of synchrotron and neutron radiation and their impact on society. If you have AIDS, need a better IPOD or a more efficient car, or want to clean up a superfund site, you are benefitting from these accelerators. The design of new materials is becoming more and more dependent on structural information from these sources. I will identify the trends in applications which are demanding new sources with greater capabilities.

  10. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less

  11. Probing Combustion Chemistry in a Miniature Shock Tube with Synchrotron VUV Photo Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Patrick T.; Troy, Tyler P.; Ahmed, Musahid

    2015-01-29

    Tunable synchrotron-sourced photoionization time-of-flight mass spectrometry (PI-TOF-MS) is an important technique in combustion chemistry, complementing lab-scale electron impact and laser photoionization studies for a wide variety of reactors, typically at low pressure. For high-temperature and high-pressure chemical kinetics studies, the shock tube is the reactor of choice. Extending the benefits of shock tube/TOF-MS research to include synchrotron sourced PI-TOF-MS required a radical reconception of the shock tube. An automated, miniature, high-repetition-rate shock tube was developed and can be used to study high-pressure reactive systems (T > 600 K, P < 100 bar) behind reflected shock waves. In this paper, wemore » present results of a PI-TOF-MS study at the Advanced Light Source at Lawrence Berkeley National Laboratory. Dimethyl ether pyrolysis (2% CH3OCH3/Ar) was observed behind the reflected shock (1400 < T-5 < 1700 K, 3 < P-5 < 16 bar) with ionization energies between 10 and 13 eV. Individual experiments have extremely low signal levels. However, product species and radical intermediates are well-resolved when averaging over hundreds of shots, which is ordinarily impractical in conventional shock tube studies. The signal levels attained and data throughput rates with this technique are comparable to those with other synchrotron-based PI-TOF-MS reactors, and it is anticipated that this high pressure technique will greatly complement those lower pressure techniques.« less

  12. Galactic synchrotron radiation from radio to microwaves, and its relation to cosmic-ray propagation models: past, present and future

    NASA Astrophysics Data System (ADS)

    Orlando, Elena

    2016-04-01

    Galactic synchrotron radiation observed from radio to microwaves is produced by cosmic-ray (CR) electrons propagating in magnetic fields (B-fields). The low-frequency foreground component separated maps by WMAP and Planck depend on the assumed synchrotron spectrum. The synchrotron spectrum varies for different line of sights as a result of changes on the CR spectrum due to propagation effects and source distributions. Our present knowledge of the CR spectrum at different locations in the Galaxy is not sufficient to distinguish various possibilities in the modeling. As a consequence uncertainties on synchrotron emission models complicate the foreground component separation analysis with Planck and future microwave telescopes. Hence, any advancement in synchrotron modeling is important for separating the different foreground components.The first step towards a more comprehensive understanding of degeneracy and correlation among the synchrotron model parameters is outlined in our Strong et al. 2011 and Orlando et al. 2013 papers. In the latter the conclusion was that CR spectrum, propagation models, B-fields, and foreground component separation analysis need to be studied simultaneously in order to properly obtain and interpret the synchrotron foreground. Indeed for the officially released Planck maps, we use only the best spectral model from our above paper for the component separation analysis.Here we present a collections of our latest results on synchrotron, CRs and B-fields in the context of CR propagation, showing also our recent work on B-fields within the Planck Collaboration. We underline also the importance of using the constraints on CRs that we obtain from gamma ray observations. Methods and perspectives for further studies on the synchrotron foreground will be addressed.

  13. Synchrotron pair halo and echo emission from blazars in the cosmic web: application to extreme TeV blazars

    NASA Astrophysics Data System (ADS)

    Oikonomou, Foteini; Murase, Kohta; Kotera, Kumiko

    2014-08-01

    High frequency peaked, high redshift blazars, are extreme in the sense that their spectrum is particularly hard and peaks at TeV energies. Standard leptonic scenarios require peculiar source parameters and/or a special setup in order to account for these observations. Electromagnetic cascades seeded by ultra-high energy cosmic rays (UHECR) in the intergalactic medium have also been invoked, assuming a very low intergalactic magnetic field (IGMF). Here we study the synchrotron emission of UHECR secondaries produced in blazars located in magnetised environments, and show that it can provide an alternative explanation to these challenged channels, for sources embedded in structured regions with magnetic field strengths of the order of 10-7 G. To demonstrate this, we focus on three extreme blazars: 1ES 0229+200, RGB J0710+591, and 1ES 1218+304. We model the expected gamma-ray signal from these sources through a combination of numerical Monte Carlo simulations and solving the kinetic equations of the particles in our simulations, and explore the UHECR source and intergalactic medium parameter space to test the robustness of the emission. We show that the generated synchrotron-pair halo and echo flux at the peak energy is not sensitive to variations in the overall IGMF strength. This signal is unavoidable in contrast to the inverse Compton-pair halo and echo intensity, which is appealing in view of the large uncertainties on the IGMF in voids of large scale structure. It is also shown that the variability of blazar gamma-ray emission can be accommodated by the synchrotron emission of secondary products of UHE neutral beams if these are emitted by UHECR accelerators inside magnetised regions.

  14. Coherent synchrotron radiation for laminar flows

    NASA Astrophysics Data System (ADS)

    Schmekel, Bjoern S.; Lovelace, Richard V. E.

    2006-11-01

    We investigate the effect of shear in the flow of charged particle equilibria that are unstable to the coherent synchrotron radiation (CSR) instability. Shear may act to quench this instability because it acts to limit the size of the region with a fixed phase relation between emitters. The results are important for the understanding of astrophysical sources of coherent radiation where shear in the flow is likely.

  15. Contrast agent choice for intravenous coronary angiography

    NASA Astrophysics Data System (ADS)

    Zeman, H. D.; Siddons, D. P.

    1990-05-01

    The screening of the general population for coronary artery disease would be practical if a method existed for visualizing the extent of occlusion after an intravenous injection of contrast agent. Measurements performed with monochromatic synchrotron radiation X-rays and an iodine-containing contrast agent at the Stanford Synchrotron Radiation Laboratory have shown that such an intravenous angiography procedure would be possible with an adequately intense monochromatic X-ray source. Because of the size and cost of synchrotron radiation facilities it would be desirable to make the most efficient use of the intensity available, while reducing as much as possible the radiation dose experienced by the patient. By choosing contrast agents containing elements with a higher atomic number than iodine, it is possible to both improve the image quality and reduce the patient radiation dose, while using the same synchrotron radiation source. By using Si monochromator crystals with a small mosaic spread, it is possible to increase the X-ray flux available for imaging by over an order of magnitude, without any changes in the storage ring or wiggler magnet. The most critical imaging task for intravenous coronary angiography utilizing synchrotron radiation X-rays is visualizing a coronary artery through the left ventricle or aorta which also contain contrast agent. Calculations have been made of the signal to noise ratio expected for this imaging task for various contrast agents with atomic numbers between that of iodine and bismuth. The X-ray energy spectrum of the X-17 superconduction wiggler beam line at the National Synchrotron Light Source at Brookhaven National Laboratory has been used for these calculations. Both perfect Si crystals and Si crystals with a small mosaic spread are considered as monochromators. Contrast agents containing Gd or Yb seem to have about the optimal calculated signal to noise ratio. Gd-DTPA is already approved for use as a contrast agent for magnetic resonance imaging. Experiments have already been performed with Yb-DTPA in animals, and it appears to have a lower toxicity than that of Gd-DTPA. Reported animal experiments with Gd-DOTA contrast agent show no toxicity at all.

  16. Development and operating experience of a short-period superconducting undulator at the Advanced Photon Source

    DOE PAGES

    Ivanyushenkov, Y.; Harkay, K.; Abliz, M.; ...

    2015-04-01

    In this study, a decade-long effort at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL) on development of superconducting undulators culminated in December 2012 with the installation of the first superconducting undulator “SCU0” into Sector 6 of the APS storage ring. The device was commissioned in January 2013 and has been in user operation since. This paper presents the magnetic and cryogenic design of the SCU0 together with the results of stand-alone cold tests. The initial commissioning and characterization of SCU0 as well as its operating experience in the APS storage ring are described.

  17. A Renewal Plan for the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischetti, Robert F.; Fuoss, Paul H.; Gerig, Rodney E.

    2010-06-23

    With coordination from the APS Renewal Steering Committee (the members of which are the co-authors of this paper), staff and users of the U.S. Department of Energy's Advanced Photon Source (APS) at Argonne National Laboratory are in the process of developing a renewal plan for the facility. The renewal is a coordinated upgrade of the accelerator, beamlines, and associated technical structure that will enable users of the APS to address key scientific challenges in the coming decades. The cost of the renewal is estimated to be from $300M to $400M and to take approximately six years from start to finish.

  18. A novel framework for feature extraction in multi-sensor action potential sorting.

    PubMed

    Wu, Shun-Chi; Swindlehurst, A Lee; Nenadic, Zoran

    2015-09-30

    Extracellular recordings of multi-unit neural activity have become indispensable in neuroscience research. The analysis of the recordings begins with the detection of the action potentials (APs), followed by a classification step where each AP is associated with a given neural source. A feature extraction step is required prior to classification in order to reduce the dimensionality of the data and the impact of noise, allowing source clustering algorithms to work more efficiently. In this paper, we propose a novel framework for multi-sensor AP feature extraction based on the so-called Matched Subspace Detector (MSD), which is shown to be a natural generalization of standard single-sensor algorithms. Clustering using both simulated data and real AP recordings taken in the locust antennal lobe demonstrates that the proposed approach yields features that are discriminatory and lead to promising results. Unlike existing methods, the proposed algorithm finds joint spatio-temporal feature vectors that match the dominant subspace observed in the two-dimensional data without needs for a forward propagation model and AP templates. The proposed MSD approach provides more discriminatory features for unsupervised AP sorting applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. New theoretical results in synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gitman, D. M.; Tlyachev, V. B.; Jarovoi, A. T.

    2005-11-01

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle Δ ≈ 1/γ (here γ-relativistic factor: γ = E/mc2, E energy, m electron rest mass, c light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23 27, 2001, p. 293 300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2 6, 2001, pp. 15 30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  20. Characterizing radio continuum sources in a sample of Hi-GAL massive cores

    NASA Astrophysics Data System (ADS)

    Armstrong, Jason

    In 2012 and 2013, Olmi and collaborators conducted a survey for 6.7GHz methanol masers with the Arecibo Telescope toward far infrared sources selected from the Hi-GAL catalog of massive cores. They reported a number of sources with weak 6.7GHz methanol masers, possibly indicating regions in early stages of star formation. Follow-up observations were conducted with the Karl G. Jansky Very Large Array (VLA) in New Mexico to characterize the sources. This thesis presents the results of radio continuum observations of nine of the Arecibo regions. A total of 33 radio continuum sources were detected. The nature of the radio continuum sources was analyzed based on their spectral indices. Most of the sources have negative spectral indices, which is indicative of synchrotron radiation. Many of the synchrotron sources are associated with a supernova remnant in our Galaxy, while the rest are likely background radio galaxies and quasars. Evidence for thermal bremsstrahlung radiation was found toward six sources associated with the Arecibo regions, which is consistent with the interpretation of gas ionized by young high-mass stellar objects.

  1. Synchrotron FTIR Imaging For The Identification Of Cell Types Within Human Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Michael J.; Pounder, F. Nell; Nasse, Michael J.

    2010-02-03

    The use of synchrotron Fourier Transform Infrared spectroscopy (S-FTIR) has been shown to be a very promising tool for biomedical research. S-FTIR spectroscopy allows for the fast acquisition of infrared (IR) spectra at a spatial resolution approaching the IR diffraction limit. The development of the Infrared Environmental Imaging (IRENI) beamline at the Synchrotron Radiation Center (SRC) at the University of Wisconsin-Madison has allowed for diffraction limited imaging measurements of cells in human prostate and breast tissues. This has allowed for the identification of cell types within tissues that would otherwise not have been resolvable using conventional FTIR sources.

  2. Observation of superradiant synchrotron radiation in the terahertz region

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Dallin, L.; de Jong, M.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2013-06-01

    We report the first high-resolution measurement of superradiance, using coherent synchrotron radiation in the terahertz region from the Canadian Light Source synchrotron and a Michelson interferometer with a nominal frequency resolution of 0.00096cm-1. Superradiance arises when a high degree of phase coherence exists between the radiation fields of the individual electron bunches, and manifests itself as a series of narrow spectral peaks at harmonics of the bunch frequency. We observe an enhancement factor of 16 at the spectral peaks, limited by the interferometer resolution. The spectral distribution and relative amplitudes of the superradiant peaks are modified by altering the pattern of bunches along the bunch train.

  3. Towards a table-top synchrotron based on supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Petersen, Christian R.; Moselund, Peter M.; Huot, Laurent; Hooper, Lucy; Bang, Ole

    2018-06-01

    Recently, high brightness and broadband supercontinuum (SC) sources reaching far into the infrared (IR) have emerged with the potential to rival traditional broadband sources of IR radiation. Here, the brightness of these IR SC sources is compared with that of synchrotron IR beamlines and SiC thermal emitters (Globars). It is found that SC sources can deliver a brightness that is 5-6 orders of magnitude higher than Globars and 1-2 orders of magnitude higher than typical IR beamlines, matching the beamlines at least out to 10.6 μm (940 cm-1). This means that these sources can now cover nearly all of the 800-5000 cm-1 spectrum (2-12.5 μm) which is frequently used in IR spectroscopy and microscopy. To demonstrate applicability, such an IR SC source was used for transmission spectroscopy of highly scattering filtration membranes from 3500 to 1300 cm-1, and transmission microscopy of colon tissue at 1538 cm-1.

  4. Magnetic fields in Supernova Remnants and Pulsar-Wind Nebulae: Deductions from X-ray Observations

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    2016-06-01

    Magnetic field strengths B in synchrotron sources are notoriously difficult to measure. Simple arguments such as equipartition of energy can give values for which the total energy is a minimum, but there is no guarantee that Nature obeys it, or even if so, what particle population (just electrons? electrons plus ions?) should have an energy density comparable to that in magnetic field. However, the operation of synchrotron losses can provide additional information, if those losses are manifested in the synchrotron spectra as steepenings of the spectral-energy distribution above some characteristic frequency often called a "break" (though it is more typically a gradual curvature). A source of known age, if it has been accelerating particles continuously, will have such a break above the energy at which particle radiative lifetimes equal the source age, and this can give B. However, in spatially resolved sources such as supernova remnants (SNRs) and pulsar-wind nebulae (PWNe), systematic advection of particles, if at a known rate, gives a second measure of particle age to compare with radiative lifetimes. In most young SNRs, synchrotron X-rays make a contribution to the X-ray spectrum, and are usually found in thin rims at the remnant edges. If the rims are thin in the radial direction due to electron energy losses, a magnetic-field strength can be estimated. I present recent modeling of this process, along with models in which rims are thin due to decay of magnetic turbulence, and apply them to the remnants of SN 1006 and Tycho. In PWNe, outflows of relativistic plasma behind the pulsar wind termination shock are likely quite inhomogeneous, so magnetic-field estimates based on source lifetimes and assuming spatial uniformity can give misleading values for B. I shall discuss inhomogeneous PWN models and the effects they can have on B estimates.

  5. A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications

    NASA Astrophysics Data System (ADS)

    Gaspar, M.; Pedrozzi, M.; Ferreira, L. F. R.; Garvey, T.

    2011-05-01

    We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.

  6. Sirepo for Synchrotron Radiation Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Robert; Moeller, Paul; Rakitin, Maksim

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure andmore » widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.« less

  7. VizieR Online Data Catalog: Blazars with γ-ray counterparts. II. (Massaro+, 2013)

    NASA Astrophysics Data System (ADS)

    Massaro, F.; D'Abrusco, R.; Paggi, A.; Masetti, N.; Giroletti, M.; Tosti, G.; Smith, H. A.; Funk, S.

    2013-06-01

    Our primary sample of unidentified γ-ray sources (UGSs) consists of all the sources for which no counterpart was assigned at low energies in the 2FGL or in the 2LAC (Nolan et al. 2012, Cat. J/ApJS/199/31; Ackermann et al. 2011, Cat. J/ApJ/743/171, respectively), for a total of 590 γ-ray objects. We considered and analyzed independently two subsamples of UGSs, distinguishing the 299 Fermi sources without any γ-ray analysis flags from the other 291 objects that have a warning in their γ-ray detection. The complete description of our association procedure together with the estimates of its efficiency and its completeness can be found in D'Abrusco et al. (Paper I, 2013, Cat. J/ApJS/206,12). (9 data files).

  8. Real Time In Situ Observations of Equiaxed Dendrite Coherency in Al-Cu Alloys Using High-Brilliance, 3rd Generation Synchrotron Sources

    NASA Technical Reports Server (NTRS)

    Murphy, Andrew G.; Browne, David J.; Mirihanage, Wajira U.; Mathiesen, Ragnvald H.

    2012-01-01

    In the last decade synchrotron X-ray sources have fast become the tool of choice for performing in-situ high resolution imaging during alloy solidification. This paper presents the results of an experimental campaign carried out at the European Synchrotron Radiation Facility, using a Bridgman furnace, to monitor phenomena during solidification of Al-Cu alloys - specifically the onset of equiaxed dendrite coherency. Conventional experimental methods for determining coherency involve measuring the change in viscosity or measuring the change in thermal conductivity across the solidifying melt Conflicts arise when comparing the results of these experimental techniques to find a relationship between cooling rate and coherency fraction. It has been shown that the ratio of average velocity to the average grain diameter has an inversely proportional relationship to coherency fraction. In-situ observation therefore makes it possible to measure these values directly from acquired images sequences and make comparisons with published results.

  9. Observing microscopic structures of a relativistic object using a time-stretch strategy.

    PubMed

    Roussel, E; Evain, C; Le Parquier, M; Szwaj, C; Bielawski, S; Manceron, L; Brubach, J-B; Tordeux, M-A; Ricaud, J-P; Cassinari, L; Labat, M; Couprie, M-E; Roy, P

    2015-05-28

    Emission of light by a single electron moving on a curved trajectory (synchrotron radiation) is one of the most well-known fundamental radiation phenomena. However experimental situations are more complex as they involve many electrons, each being exposed to the radiation of its neighbors. This interaction has dramatic consequences, one of the most spectacular being the spontaneous formation of spatial structures inside electrons bunches. This fundamental effect is actively studied as it represents one of the most fundamental limitations in electron accelerators, and at the same time a source of intense terahertz radiation (Coherent Synchrotron Radiation, or CSR). Here we demonstrate the possibility to directly observe the electron bunch microstructures with subpicosecond resolution, in a storage ring accelerator. The principle is to monitor the terahertz pulses emitted by the structures, using a strategy from photonics, time-stretch, consisting in slowing-down the phenomena before recording. This opens the way to unpreceeded possibilities for analyzing and mastering new generation high power coherent synchrotron sources.

  10. Observing microscopic structures of a relativistic object using a time-stretch strategy

    NASA Astrophysics Data System (ADS)

    Roussel, E.; Evain, C.; Le Parquier, M.; Szwaj, C.; Bielawski, S.; Manceron, L.; Brubach, J.-B.; Tordeux, M.-A.; Ricaud, J.-P.; Cassinari, L.; Labat, M.; Couprie, M.-E.; Roy, P.

    2015-05-01

    Emission of light by a single electron moving on a curved trajectory (synchrotron radiation) is one of the most well-known fundamental radiation phenomena. However experimental situations are more complex as they involve many electrons, each being exposed to the radiation of its neighbors. This interaction has dramatic consequences, one of the most spectacular being the spontaneous formation of spatial structures inside electrons bunches. This fundamental effect is actively studied as it represents one of the most fundamental limitations in electron accelerators, and at the same time a source of intense terahertz radiation (Coherent Synchrotron Radiation, or CSR). Here we demonstrate the possibility to directly observe the electron bunch microstructures with subpicosecond resolution, in a storage ring accelerator. The principle is to monitor the terahertz pulses emitted by the structures, using a strategy from photonics, time-stretch, consisting in slowing-down the phenomena before recording. This opens the way to unpreceeded possibilities for analyzing and mastering new generation high power coherent synchrotron sources.

  11. Brookhaven highlights. Report on research, October 1, 1992--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, M.S.; Belford, M.; Cohen, A.

    This report highlights the research activities of Brookhaven National Laboratory during the period dating from October 1, 1992 through September 30, 1993. There are contributions to the report from different programs and departments within the laboratory. These include technology transfer, RHIC, Alternating Gradient Synchrotron, physics, biology, national synchrotron light source, applied science, medical science, advanced technology, chemistry, reactor physics, safety and environmental protection, instrumentation, and computing and communications.

  12. Brookhaven National Laboratory technology transfer report, fiscal year 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The Brookhaven Office of Research and Technology Applications (ORTA) inaugurated two major initiatives. The effort by our ORTA in collaboration with the National Synchrotron Light Source (NSLS) has succeeded in alerting American industry to the potential of using a synchrotron x-ray source for high resolution lithography. We are undertaking a preconstruction study for the construction of a prototype commercial synchrotron and development of an advanced commercial cryogenic synchrotron (XLS). ORTA sponsored a technology transfer workshop where industry expressed its views on how to transfer accelerator technology during the construction of the prototype commercial machine. The Northeast Regional utility Initiative broughtmore » 14 utilities to a workshop at the Laboratory in November. One recommendation of this workshop was to create a Center at the Laboratory for research support on issues of interest to utilities in the region where BNL has unique capability. The ORTA has initiated discussions with the New York State Science and Technology Commission, Cornell University's world renowned Nannofabrication Center and the computer aided design capabilities at SUNY at Stony Brook to create, centered around the NSLS and the XLS, the leading edge semiconductor process technology development center when the XLS becomes operational in two and a half years. 1 fig.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hettiarachchi, Ganga M.; Donner, Erica; Doelsch, Emmanuel

    To understand the biogeochemistry of nutrients and contaminants in environmental media, their speciation and behavior under different conditions and at multiple scales must be determined. Synchrotron radiation-based X-ray techniques allow scientists to elucidate the underlying mechanisms responsible for nutrient and contaminant mobility, bioavailability, and behavior. The continuous improvement of synchrotron light sources and X-ray beamlines around the world has led to a profound transformation in the field of environmental biogeochemistry and, subsequently, to significant scientific breakthroughs. Following this introductory paper, this special collection includes 10 papers that either present targeted reviews of recent advancements in spectroscopic methods that are applicablemore » to environmental biogeochemistry or describe original research studies conducted on complex environmental samples that have been significantly enhanced by incorporating synchrotron radiation-based X-ray technique(s). We believe that the current focus on improving the speciation of ultra-dilute elements in environmental media through the ongoing optimization of synchrotron technologies (e.g., brighter light sources, improved monochromators, more efficient detectors) will help to significantly push back the frontiers of environmental biogeochemistry research. As many of the relevant techniques produce extremely large datasets, we also identify ongoing improvements in data processing and analysis (e.g., software improvements and harmonization of analytical methods) as a significant requirement for environmental biogeochemists to maximize the information that can be gained using these powerful tools.« less

  14. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  15. VizieR Online Data Catalog: Water masers in M31. I. Recombination lines (Darling+, 2016)

    NASA Astrophysics Data System (ADS)

    Darling, J.; Gerard, B.; Amiri, N.; Lawrence, K.

    2016-09-01

    We constructed a catalog of 506 unresolved 24um sources from the Spitzer 24um map of M31 (Gordon et al. 2006ApJ...638L..87G); see Figure 1. Darling (2011ApJ...732L...2D) observed 206 24um sources in M31 using the Green Bank Telescope (GBT) in 2010 October through December. The 616-523 22.23508GHz ortho-water maser line observations were reported in Darling (2011ApJ...732L...2D), but simultaneous observations of the para-ammonia (NH3) rotational ground-state inversion transitions in the metastable states (J,K)=(1,1) and (2,2) at 23.6945 and 23.72263GHz, respectively, and the hydrogen recombination line H66α at 22.36417GHz were not. We subsequently observed all four of these lines toward an additional 300 24um sources in 2011 October through 2012 January. The resolution of the 24um Spitzer image is 6" (Gordon et al. 2006ApJ...638L..87G), so the unresolved IR sources remained within the 33" GBT beam even during the largest pointing drifts. The 33" beam (FWHM) at 22GHz spans 125pc in M31. (1 data file).

  16. Dietary Factors Reduce Risk of Acute Pancreatitis in a Large Multiethnic Cohort.

    PubMed

    Setiawan, Veronica Wendy; Pandol, Stephen J; Porcel, Jacqueline; Wei, Pengxiao C; Wilkens, Lynne R; Le Marchand, Loïc; Pike, Malcolm C; Monroe, Kristine R

    2017-02-01

    Pancreatitis is a source of substantial morbidity and health cost in the United States. Little is known about how diet might contribute to its pathogenesis. To characterize dietary factors that are associated with risk of pancreatitis by disease subtype, we conducted a prospective analysis of 145,886 African Americans, Native Hawaiians, Japanese Americans, Latinos, and whites in the Multiethnic Cohort. In the Multiethnic Cohort (age at baseline, 45-75 y), we identified cases of pancreatitis using hospitalization claim files from 1993 through 2012. Patients were categorized as having gallstone-related acute pancreatitis (AP) (n = 1210), AP not related to gallstones (n = 1222), or recurrent AP or suspected chronic pancreatitis (n = 378). Diet information was obtained from a questionnaire administered when the study began. Associations were estimated by hazard ratios and 95% confidence intervals using Cox proportional hazard models adjusted for confounders. Dietary intakes of saturated fat (P trend = .0011) and cholesterol (P trend = .0008) and their food sources, including red meat (P trend < .0001) and eggs (P trend = .0052), were associated positively with gallstone-related AP. Fiber intake, however, was associated inversely with gallstone-related AP (P trend = .0005) and AP not related to gallstones (P trend = .0035). Vitamin D, mainly from milk, was associated inversely with gallstone-related AP (P trend = .0015), whereas coffee consumption protected against AP not related to gallstones (P trend < .0001). With the exception of red meat, no other dietary factors were associated with recurrent acute or suspected chronic pancreatitis. Associations between dietary factors and pancreatitis were observed mainly for gallstone-related AP. Interestingly, dietary fiber protected against AP related and unrelated to gallstones. Coffee drinking protected against AP not associated with gallstones. Further studies are warranted to confirm our findings. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Impact of aerosol particle sources on optical properties in urban, regional and remote areas in the north-western Mediterranean

    NASA Astrophysics Data System (ADS)

    Ealo, Marina; Alastuey, Andrés; Pérez, Noemí; Ripoll, Anna; Querol, Xavier; Pandolfi, Marco

    2018-01-01

    Further research is needed to reduce the existing uncertainties on the effect that specific aerosol particle sources have on light extinction and consequently on climate. This study presents a new approach that aims to quantify the mass scattering and absorption efficiencies (MSEs and MAEs) of different aerosol sources at urban (Barcelona - BCN), regional (Montseny - MSY) and remote (Montsec - MSA) background sites in the north-western (NW) Mediterranean. An analysis of source apportionment to the measured multi-wavelength light scattering (σsp) and absorption (σap) coefficients was performed by means of a multilinear regression (MLR) model for the periods 2009-2014, 2010-2014 and 2011-2014 at BCN, MSY and MSA respectively. The source contributions to PM10 mass concentration, identified by means of the positive matrix factorization (PMF) model, were used as dependent variables in the MLR model. With this approach we addressed both the effect that aerosol sources have on air quality and their potential effect on light extinction through the determination of their MSEs and MAEs. An advantage of the presented approach is that the calculated MSEs and MAEs take into account the internal mixing of atmospheric particles. Seven aerosol sources were identified at MSA and MSY, and eight sources at BCN. Mineral, aged marine, secondary sulfate, secondary nitrate and V-Ni bearing sources were common at the three sites. Traffic, industrial/metallurgy and road dust resuspension sources were isolated at BCN, whereas mixed industrial/traffic and aged organics sources were identified at MSY and MSA. The highest MSEs were observed for secondary sulfate (4.5 and 10.7 m2 g-1, at MSY and MSA), secondary nitrate (8.8 and 7.8 m2 g-1) and V-Ni bearing source (8 and 3.5 m2 g-1). These sources dominated the scattering throughout the year with marked seasonal trends. The V-Ni bearing source, originating mainly from shipping in the area under study, simultaneously contributed to both σsp and σap, being the second most efficient light-absorbing source in BCN (MAE = 0.9 m2 g-1). The traffic source at BCN and the industrial/traffic at MSY exhibited the highest MAEs (1.7 and 0.9 m2 g-1). These sources were major contributors to σap at BCN and MSY; however at MSA, secondary nitrate exerted the highest influence on σap (MAE = 0.4 m2 g-1). The sources which were predominantly composed of fine and relatively dark particles, such as industrial/traffic, aged organics and V-Ni, were simultaneously characterized by low single scattering albedo (SSA) and a high scattering Ångström exponent (SAE). Conversely, mineral and aged marine showed the lowest SAE and the highest SSA, being scattering the dominant process in the light extinction. The good agreement found between modelled and measured particle optical properties allowed the reconstruction of σsp and σap long-term series over the period 2004-2014 at MSY. Significant decreasing trends were found for the modelled σsp and σap (-4.6 and -4.1 % yr-1).

  18. Invited Article: Refined analysis of synchrotron radiation for NIST's SURF III facility

    NASA Astrophysics Data System (ADS)

    Shirley, Eric L.; Furst, Mitchell; Arp, Uwe

    2018-04-01

    We have developed a new method for the exact calculation of synchrotron radiation for the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility, SURF III. Instead of using the Schwinger formula, which is only an approximation, we develop formulae based on Graf's addition theorem for Bessel functions and accurate asymptotic expansions for Hankel functions and Bessel functions. By measuring the radiation intensity profile at two distances from the storage ring, we also confirm an apparent vertical emittance that is consistent with the vertical betatron oscillations that are intentionally introduced to extend beam lifetime by spreading the electron beam spatially. Finally, we determine how much diffraction by beamline apertures enhances the spectral irradiance at an integrating sphere entrance port at the end station. This should eliminate small but treatable components of the uncertainty budget that one should consider when using SURF III or similar synchrotrons as standard, calculable sources of ultraviolet and other radiation.

  19. Evaluation of agro-industrial wastes, their state, and mixing ratio for maximum polygalacturonase and biomass production in submerged fermentation.

    PubMed

    Göğüş, Nihan; Evcan, Ezgi; Tarı, Canan; Cavalitto, Sebastián F

    2015-01-01

    The potential of important agro-industrial wastes, apple pomace (AP) and orange peel (OP) as C sources, was investigated in the maximization of polygalacturonase (PG), an industrially significant enzyme, using an industrially important microorganism Aspergillus sojae. Factors such as various hydrolysis forms of the C sources (hydrolysed-AP, non-hydrolysed-AP, hydrolysed-AP + OP, non-hydrolysed-AP + OP) and N sources (ammonium sulphate and urea), and incubation time (4, 6, and 8 days) were screened. It was observed that maximum PG activity was achieved at a combination of non-hydrolysed-AP + OP and ammonium sulphate with eight days of incubation. For the pre-optimization study, ammonium sulphate concentration and the mixing ratios of AP + OP at different total C concentrations (9, 15, 21 g l(-1)) were evaluated. The optimum conditions for the maximum PG production (144.96 U ml(-1)) was found as 21 g l(-1) total carbohydrate concentration totally coming from OP at 15 g l(-1) ammonium sulphate concentration. On the other hand, 3:1 mixing ratio of OP + AP at 11.50 g l(-1) ammonium sulphate concentration also resulted in a considerable PG activity (115.73 U ml(-1)). These results demonstrated that AP can be evaluated as an additional C source to OP for PG production, which in turn both can be alternative solutions for the elimination of the waste accumulation in the food industry with economical returns.

  20. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy

    NASA Astrophysics Data System (ADS)

    Zschornack, G.; Ritter, E.; Schmidt, M.; Schwan, A.

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C4 + and C6 + ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C6 +/H+_2 ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 109 protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushkar, Yulia

    The goal of this project was to demonstrate time resolved analysis of the electronic structure dynamic using techniques of miniature X-ray emission spectrometers. The focus was on development of easy/fast to set up, portable, cost efficient, good energy resolution, good sensitivity, dispersive (particularly suitable for time resolved analysis) system. These mile stones were achieved and miniXES spectrometer for the Mn Kβ range was reported. Contrary to pointby- point detection, the miniXES setup allows a complete emission spectrum to be recorded following each laser excitation, Fig. 1. miniXES system compares favorably with other realization of a dispersive XES spectrometer with cylindricallymore » bent analyzers. Setup reported by others has disadvantages of high cost (which limits its re-creation by other researchers) and lower (0.55 eV) energy resolution (at 6490 eV). The energy resolution of our miniXES system is 0.30 eV. Additional advantage of portability allowed us to use miniXES at multiple beamlines at APS (ANL): 20-ID, 14-ID and 7-ID. Moreover, in March 2013 PI transported the Mn Kβ spectrometer (which fits into a small hand luggage bag) to SLS (Switzerland) and set it up there for the TR-XES beamtime. Our spectrometer works with 2D-PSD (Pilatus-100) which is a standard detector available via equipment pool at synchrotron sources.« less

  2. Fast X-ray imaging of cavitating flows

    DOE PAGES

    Khlifa, Ilyass; Vabre, Alexandre; Hočevar, Marko; ...

    2017-10-20

    A new method based on ultra-fast X-ray imaging was developed in this work for simultaneous investigations of the dynamics and the structures of complex two-phase flows. Here in this paper, cavitation was created inside a millimetric 2D Venturi-type test section, while seeding particles were injected into the flow. Thanks to the phase-contrast enhancement technique provided by the APS (Advanced Photon Source) synchrotron beam, high definition X-ray images of the complex cavitating flows were obtained. These images contain valuable information about both the liquid and the gaseous phases. By means of image processing, the two phases were separated, and velocity fieldsmore » of each phase were therefore calculated using image cross-correlations. The local vapour volume fractions were also obtained thanks to the local intensity levels within the recorded images. These simultaneous measurements, provided by this new technique, afford more insight into the structure and the dynamic of two-phase flows as well as the interactions between then, and hence enable to improve our understanding of their behavior. In the case of cavitating flows inside a Venturi-type test section, the X-ray measurements demonstrates, for the first time, the presence of significant slip velocities between the phases within sheet cavities for both steady and unsteady flow configurations.« less

  3. Fast X-ray imaging of cavitating flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khlifa, Ilyass; Vabre, Alexandre; Hočevar, Marko

    A new method based on ultra-fast X-ray imaging was developed in this work for simultaneous investigations of the dynamics and the structures of complex two-phase flows. Here in this paper, cavitation was created inside a millimetric 2D Venturi-type test section, while seeding particles were injected into the flow. Thanks to the phase-contrast enhancement technique provided by the APS (Advanced Photon Source) synchrotron beam, high definition X-ray images of the complex cavitating flows were obtained. These images contain valuable information about both the liquid and the gaseous phases. By means of image processing, the two phases were separated, and velocity fieldsmore » of each phase were therefore calculated using image cross-correlations. The local vapour volume fractions were also obtained thanks to the local intensity levels within the recorded images. These simultaneous measurements, provided by this new technique, afford more insight into the structure and the dynamic of two-phase flows as well as the interactions between then, and hence enable to improve our understanding of their behavior. In the case of cavitating flows inside a Venturi-type test section, the X-ray measurements demonstrates, for the first time, the presence of significant slip velocities between the phases within sheet cavities for both steady and unsteady flow configurations.« less

  4. Operation of the Australian Store.Synchrotron for macromolecular crystallography

    PubMed Central

    Meyer, Grischa R.; Aragão, David; Mudie, Nathan J.; Caradoc-Davies, Tom T.; McGowan, Sheena; Bertling, Philip J.; Groenewegen, David; Quenette, Stevan M.; Bond, Charles S.; Buckle, Ashley M.; Androulakis, Steve

    2014-01-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community. PMID:25286837

  5. Operation of the Australian Store.Synchrotron for macromolecular crystallography.

    PubMed

    Meyer, Grischa R; Aragão, David; Mudie, Nathan J; Caradoc-Davies, Tom T; McGowan, Sheena; Bertling, Philip J; Groenewegen, David; Quenette, Stevan M; Bond, Charles S; Buckle, Ashley M; Androulakis, Steve

    2014-10-01

    The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described. The service automatically receives and archives raw diffraction data, related metadata and preliminary results of automated data-processing workflows. Data are able to be shared with collaborators and opened to the public. In the nine months since its deployment in August 2013, the service has handled over 22.4 TB of raw data (∼1.7 million diffraction images). Several real examples from the Australian crystallographic community are described that illustrate the advantages of the approach, which include real-time online data access and fully redundant, secure storage. Discoveries in biological sciences increasingly require multidisciplinary approaches. With this in mind, Store.Synchrotron has been developed as a component within a greater service that can combine data from other instruments at the Australian Synchrotron, as well as instruments at the Australian neutron source ANSTO. It is therefore envisaged that this will serve as a model implementation of raw data archiving and dissemination within the structural biology research community.

  6. Comparison of expression and enzymatic properties of Aspergillus oryzae lysine aminopeptidases ApsA and ApsB.

    PubMed

    Marui, Junichiro; Matsushita-Morita, Mayumi; Tada, Sawaki; Hattori, Ryota; Suzuki, Satoshi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei; Takeuchi, Michio; Kusumoto, Ken-Ichi

    2012-08-01

    The apsA and apsB genes encoding family M1 aminopeptidases were identified in the industrial fungus Aspergillus oryzae. The apsB was transcriptionally up-regulated up to 2.5-fold in response to the deprivation of nitrogen or carbon sources in growth media, while up-regulation of apsA was less significant. The encoded proteins were bacterially expressed and purified to characterize their enzymatic properties. ApsA and ApsB were optimally active at pH 7.0 and 35 °C and stable at pH ranges of 6-10 and 4-10, respectively, up to 40 °C. The enzymes were inhibited by bestatin and EDTA, as has been reported for family M1 aminopeptidases that characteristically contain a zinc-binding catalytic motif. Both enzymes preferentially liberated N-terminal lysine, which is an essential amino acid and an important additive to animal feed. Enzymes that efficiently release N-terminal lysine from peptides could be useful for food and forage industries. Examination of the reactivity toward peptide substrate of varying length revealed that ApsB exhibited broader substrate specificity than ApsA although the reactivity of ApsB decreased as the length of peptide substrate decreased.

  7. Developing an undue influence screening tool for Adult Protective Services.

    PubMed

    Quinn, Mary Joy; Nerenberg, Lisa; Navarro, Adria E; Wilber, Kathleen H

    2017-03-01

    The study purpose was to develop and pilot an undue influence screening tool for California's Adult Protective Services (APS) personnel based on the definition of undue influence enacted into California law January 1, 2014. Methods included four focus groups with APS providers (n = 33), piloting the preliminary tool by APS personnel (n = 15), and interviews with four elder abuse experts and two APS administrators. Social service literature-including existing undue influence models-was reviewed, as were existing screening and assessment tools. Using the information from these various sources, the California Undue Influence Screening Tool (CUIST) was developed. It can be applied to APS cases and potentially adapted for use by other professionals and for use in other states. Implementation of the tool into APS practice, policy, procedures, and training of personnel will depend on the initiative of APS management. Future work will need to address the reliability and validity of CUIST.

  8. A compact tunable polarized X-ray source based on laser-plasma helical undulators

    PubMed Central

    Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126

  9. Giant Metrewave Radio Telescope Observations of Head–Tail Radio Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian, Biny; Lal, Dharam V.; Rao, A. Pramesh, E-mail: biny@ncra.tifr.res.in

    We present results from a study of seven large known head–tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spectral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of multiple bends and wiggles in several head–tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailingmore » equipartition magnetic field also decreases along the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ∼10{sup 8} yr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.« less

  10. ONLINE MINIMIZATION OF VERTICAL BEAM SIZES AT APS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng

    In this paper, online minimization of vertical beam sizes along the APS (Advanced Photon Source) storage ring is presented. A genetic algorithm (GA) was developed and employed for the online optimization in the APS storage ring. A total of 59 families of skew quadrupole magnets were employed as knobs to adjust the coupling and the vertical dispersion in the APS storage ring. Starting from initially zero current skew quadrupoles, small vertical beam sizes along the APS storage ring were achieved in a short optimization time of one hour. The optimization results from this method are briefly compared with the onemore » from LOCO (Linear Optics from Closed Orbits) response matrix correction.« less

  11. Beam Loss Simulation and Collimator System Configurations for the Advanced Photon Source Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, A.; Borland, M.

    The proposed multi-bend achromat lattice for the Advanced Photon Source upgrade (APS-U) has a design emittance of less than 70 pm. The Touschek loss rate is high: compared with the current APS ring, which has an average beam lifetime ~ 10 h, the simulated beam lifetime for APS-U is only ~2 h when operated in the high flux mode (I=200 mA in 48 bunches). An additional consequence of the short lifetime is that injection must be more frequent, which provides another potential source of particle loss. In order to provide information for the radiation shielding system evaluation and to avoidmore » particle loss in sensitive locations around the ring (for example, insertion device straight sections), simulations of the detailed beam loss distribution have been performed. Several possible collimation configurations have been simulated and compared.« less

  12. Characterization and subcellular localization of aminopeptidases in senescing barley leaves

    NASA Technical Reports Server (NTRS)

    Thayer, S. S.; Choe, H. T.; Rausser, S.; Huffaker, R. C.

    1988-01-01

    Four aminopeptidases (APs) were separated using native polyacrylamide gel electrophoresis of cell-free extracts and the stromal fractions of isolated chloroplasts prepared from primary barley (Hordeum vulgare L., var Numar) leaves. Activities were identified using a series of aminoacyl-beta-naphthylamide derivatives as substrates. AP1, 2, and 3 were found in the stromal fraction of isolated chloroplasts with respective molecular masses of 66.7, 56.5, and 54.6 kilodaltons. AP4 was found only in the cytoplasmic fraction. No AP activity was found in vacuoles of these leaves. It was found that 50% of the L-Leu-beta-naphthylamide and 25% of the L-Arg-beta-naphthylamide activities were localized in the chloroplasts. Several AP activities were associated with the membranes of the thylakoid fraction of isolated chloroplasts. AP1, 2, and 4 reacted against a broad range of substrates, whereas AP3 hydrolyzed only L-Arg-beta-naphthylamide. Only AP2 hydrolyzed L-Val-beta-naphthylamide. Since AP2 and AP3 were the only ones reacting against Val-beta-naphthylamide and Arg-beta-naphthylamide, respectively, several protease inhibitors were tested against these substrates using a stromal fraction from isolated chloroplasts as the source of the two APs. Both APs were sensitive to both metallo and sulfhydryl type inhibitors. Although AP activity decreased as leaves senesced, no new APs appeared on gels during senescence and none disappeared.

  13. A comparative study on the analytical utility of atmospheric and low-pressure MALDI sources for the mass spectrometric characterization of peptides.

    PubMed

    Moskovets, Eugene; Misharin, Alexander; Laiko, Viktor; Doroshenko, Vladimir

    2016-07-15

    A comparative MS study was conducted on the analytical performance of two matrix-assisted laser desorption/ionization (MALDI) sources that operated at either low pressure (∼1Torr) or at atmospheric pressure. In both cases, the MALDI sources were attached to a linear ion trap mass spectrometer equipped with a two-stage ion funnel. The obtained results indicate that the limits of detection, in the analysis of identical peptide samples, were much lower with the source that was operated slightly below the 1-Torr pressure. In the low-pressure (LP) MALDI source, ion signals were observed at a laser fluence that was considerably lower than the one determining the appearance of ion signals in the atmospheric pressure (AP) MALDI source. When the near-threshold laser fluences were used to record MALDI MS spectra at 1-Torr and 750-Torr pressures, the level of chemical noise at the 1-Torr pressure was much lower compared to that at AP. The dependency of the analyte ion signals on the accelerating field which dragged the ions from the MALDI plate to the MS analyzer are presented for the LP and AP MALDI sources. The study indicates that the laser fluence, background gas pressure, and field accelerating the ions away from a MALDI plate were the main parameters which determined the ion yield, signal-to-noise (S/N) ratios, the fragmentation of the analyte ions, and adduct formation in the LP and AP MALDI MS methods. The presented results can be helpful for a deeper insight into the mechanisms responsible for the ion formation in MALDI. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Signatures of Synchrotron: Low-cutoff X-ray emission and the hard X-ray spectrum of Cas A

    NASA Astrophysics Data System (ADS)

    Stage, Michael D.; Fedor, Emily Elizabeth; Martina-Hood, Hyourin

    2018-06-01

    In soft X-rays, bright, young Galactic remnants (Cas A, Kepler, Tycho, etc.) present thermal line emission and bremsstrahlung from ejecta, and synchrotron radiation from the shocks. Their hard X-ray spectra tend to be dominated by power-law sources. However, it can be non-trivial to discriminate between contributions from processes such as synchrotron and bremsstrahlung from nonthermally accelerated electrons, even though the energies of the electrons producing this radiation may be very different. Spatially-resolved spectroscopic analysis of 0.5-10 keV observations with, e.g., Chandracan provide leverage in identifying the processes and their locations. Previously, Stage & Allen (2006), Allen & Stage (2007) and Stage & Allen (2011) identified regions characterized by high-cutoff synchrotron radiation. Extrapolating synchrotron model fits to the emission in the Chandra band, they estimated the synchrotron contribution to the hard X-ray spectrum at about one-third the observed flux, fitting the balance with nonthermal bremsstrahlung emission produced by nonthermal electrons in the ejecta. Although it is unlikely this analysis missed regions of the highest-cutoff synchrotron emission, which supplies the bulk of the synchrotron above 15 keV, it may have missed regions of lower-cutoff emission, especially if they are near bright ejecta and the reverse shock. These regions cannot explain the emission at the highest energies (~50 keV), but may make significant contributions to the hard spectrum at lower energies (~10 keV). Using the technique described in Fedor, Martina-Hood & Stage (this meeting), we revisit the analysis to include regions that may be dominated by low-cutoff synchrotron, located in the interior of the remnant, and/or correlated with the reverse shock. Identifying X-ray emission from accelerated electrons associated with the reverse-shock would have important implications for synchrotron and non-thermal bremsstrahlung radiation above the 10 keV.

  15. Antioxidant genes of the emerald ash borer (Agrilus planipennis): gene characterization and expression profiles.

    PubMed

    Rajarapu, Swapna Priya; Mamidala, Praveen; Herms, Daniel A; Bonello, Pierluigi; Mittapalli, Omprakash

    2011-06-01

    Phytophagous insects frequently encounter reactive oxygen species (ROS) from exogenous and endogenous sources. To overcome the effect of ROS, insects have evolved a suite of antioxidant defense genes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GPX). The emerald ash borer (Agrilus planipennis Fairmaire), an exotic invasive insect pest from Asia has killed millions of ash trees and continues to invade North America at a rapid pace. From an on-going expressed sequence tag (EST) project of A. planipennis larval tissues, we identified ESTs coding for a Cu-Zn SOD (ApSOD1), a CAT (ApCAT1) and a GPX (ApGPX1). A multiple sequence alignment of the derived A. planipennis sequences revealed high homology with other insect sequences at the amino acid level. Phylogenetic analysis of ApSOD1 grouped it with Cu-Zn SODs of other insect taxa. Quantitative real time PCR (qRT-PCR) analysis in different larval tissues (midgut, fat body, Malpighian tubule and cuticle) revealed high mRNA levels of ApCAT1 in the midgut. Interestingly, high mRNA levels for both ApSOD1 and ApGPX1 were observed in the Malpighian tubules. Assay of mRNA levels in developmental stages (larva, prepupa and adults) by qRT-PCR indicated high transcript levels of ApCAT1 and ApGPX1 in larval and prepupal stages with a decline in adults. On the other hand, the transcript levels of ApSOD1 were observed to be constitutive in all the developmental stages assayed. Results obtained reflect a plausible role of these A. planipennis antioxidant genes in quenching ROS from both diet (ash allelochemicals) as well as endogenous sources. These studies further help in understanding the adaptation/invasiveness of A. planipennis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. SOLEIL shining on the solution-state structure of biomacromolecules by synchrotron X-ray footprinting at the Metrology beamline.

    PubMed

    Baud, A; Aymé, L; Gonnet, F; Salard, I; Gohon, Y; Jolivet, P; Brodolin, K; Da Silva, P; Giuliani, A; Sclavi, B; Chardot, T; Mercère, P; Roblin, P; Daniel, R

    2017-05-01

    Synchrotron X-ray footprinting complements the techniques commonly used to define the structure of molecules such as crystallography, small-angle X-ray scattering and nuclear magnetic resonance. It is remarkably useful in probing the structure and interactions of proteins with lipids, nucleic acids or with other proteins in solution, often better reflecting the in vivo state dynamics. To date, most X-ray footprinting studies have been carried out at the National Synchrotron Light Source, USA, and at the European Synchrotron Radiation Facility in Grenoble, France. This work presents X-ray footprinting of biomolecules performed for the first time at the X-ray Metrology beamline at the SOLEIL synchrotron radiation source. The installation at this beamline of a stopped-flow apparatus for sample delivery, an irradiation capillary and an automatic sample collector enabled the X-ray footprinting study of the structure of the soluble protein factor H (FH) from the human complement system as well as of the lipid-associated hydrophobic protein S3 oleosin from plant seed. Mass spectrometry analysis showed that the structural integrity of both proteins was not affected by the short exposition to the oxygen radicals produced during the irradiation. Irradiated molecules were subsequently analysed using high-resolution mass spectrometry to identify and locate oxidized amino acids. Moreover, the analyses of FH in its free state and in complex with complement C3b protein have allowed us to create a map of reactive solvent-exposed residues on the surface of FH and to observe the changes in oxidation of FH residues upon C3b binding. Studies of the solvent accessibility of the S3 oleosin show that X-ray footprinting offers also a unique approach to studying the structure of proteins embedded within membranes or lipid bodies. All the biomolecular applications reported herein demonstrate that the Metrology beamline at SOLEIL can be successfully used for synchrotron X-ray footprinting of biomolecules.

  17. Rapid biodiagnostic ex vivo imaging at 1 μm pixel resolution with thermal source FTIR FPA.

    PubMed

    Findlay, C R; Wiens, R; Rak, M; Sedlmair, J; Hirschmugl, C J; Morrison, Jason; Mundy, C J; Kansiz, M; Gough, K M

    2015-04-07

    A recent upgrade to the optics configuration of a thermal source FTIR microscope equipped with a focal plane array detector has enabled rapid acquisition of high magnification spectrochemical images, in transmission, with an effective geometric pixel size of ∼1 × 1 μm(2) at the sample plane. Examples, including standard imaging targets for scale and accuracy, as well as biomedical tissues and microorganisms, have been imaged with the new system and contrasted with data acquired at normal magnification and with a high magnification multi-beam synchrotron instrument. With this optics upgrade, one can now conduct rapid biodiagnostic ex vivo tissue imaging in-house, with images collected over larger areas, in less time (minutes) and with comparable quality and resolution to the best synchrotron source FTIR imaging capabilities.

  18. Attosecond light sources in the water window

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Li, Jie; Yin, Yanchun; Zhao, Kun; Chew, Andrew; Wang, Yang; Hu, Shuyuan; Cheng, Yan; Cunningham, Eric; Wu, Yi; Chini, Michael; Chang, Zenghu

    2018-02-01

    As a compact and burgeoning alternative to synchrotron radiation and free-electron lasers, high harmonic generation (HHG) has proven its superiority in static and time-resolved extreme ultraviolet spectroscopy for the past two decades and has recently gained many interests and successes in generating soft x-ray emissions covering the biologically important water window spectral region. Unlike synchrotron and free-electron sources, which suffer from relatively long pulse width or large time jitter, soft x-ray sources from HHG could offer attosecond time resolution and be synchronized with their driving field to investigate time-resolved near edge absorption spectroscopy, which could reveal rich structural and dynamical information of the interrogated samples. In this paper, we review recent progresses on generating and characterizing attosecond light sources in the water window region. We show our development of an energetic, two-cycle, carrier-envelope phase stable laser source at 1.7 μm and our achievement in producing a 53 as soft x-ray pulse covering the carbon K-edge in the water window. Such source paves the ways for the next generation x-ray spectroscopy with unprecedented temporal resolution.

  19. VizieR Online Data Catalog: IR photometry of AGNs in Swift/BAT 70 month cat. (Ichikawa+, 2017)

    NASA Astrophysics Data System (ADS)

    Ichikawa, K.; Ricci, C.; Ueda, Y.; Matsuoka, K.; Toba, Y.; Kawamuro, T.; Trakhtenbrot, B.; Koss, M. J.

    2017-08-01

    Our initial sample contains the 834 AGNs reported in the 70 month Swift/BAT catalog (Baumgartner+ 2013, J/ApJS/207/19), 105 of which are blazars. Of the remaining 729 sources, 697 sources have secure redshift information as presented in Ricci et al. (2016, ApJ, submitted). Next, we removed galaxy pairs or interacting galaxies not resolved in the BAT survey. Further, the 606 sources located at higher galactic latitudes with |b|>10° were selected to reduce the contamination in the crowded region through IR catalog matching. (1 data file).

  20. The periodic very young source EC 53 reached its maximum brightness

    NASA Astrophysics Data System (ADS)

    Giannini, T.; Antoniucci, S.; Lorenzetti, D.; Harutyunyan, A.; Licchelli, D.; Munari, U.

    2018-06-01

    In the framework of our EXor monitoring program dubbed EXORCISM (EXOR OptiCal and Infrared Systematic Monitoring - Antoniucci et al. 2013 PPVI, Lorenzetti et al. 2007 ApJ 665, 1182; Lorenzetti et al. 2009 ApJ 693, 1056), we observed the object EC53 recently signaled by Johnston et al. (ATel #11614) as a strongly embedded source showing a sub-mm luminosity burst, They also provide H- and K-band observations detecting this brightness increase also in the near-IR, in the scattered light by the nebula surrounding a compact source, invisible at those wavelengths.

  1. Diamond Light Source: status and perspectives.

    PubMed

    Materlik, Gerhard; Rayment, Trevor; Stuart, David I

    2015-03-06

    Diamond Light Source, a third-generation synchrotron radiation (SR) facility in the UK, celebrated its 10th anniversary in 2012. A private limited company was set up in April 2002 to plan, construct and operate the new user-oriented SR facility, called in brief Diamond. It succeeded the Synchrotron Radiation Source in Daresbury, a second-generation synchrotron that opened in 1980 as the world's first dedicated X-ray-providing facility, closing finally in 2008, by which time Diamond's accelerators and first beamlines were operating and user experiments were under way. This theme issue of Philosophical Transactions of the Royal Society A gives some examples of the rich diversity of research done in the initial five years, with some glimpses of activity up to 2014. Speakers at the 10 year anniversary symposium were drawn from a small number of major thematic areas and each theme was elaborated by a few speakers whose contributions were placed into a broader context by a leading member of the UK academic community in the role of rapporteur. This introduction gives a summary of the design choices and strategic planning of Diamond as a coherent user facility, a snapshot of its present status and some consideration of future perspectives. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Observations of a nearby filament of galaxy clusters with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Vacca, Valentina; Murgia, M.; Loi, F. Govoni F.; Vazza, F.; Finoguenov, A.; Carretti, E.; Feretti, L.; Giovannini, G.; Concu, R.; Melis, A.; Gheller, C.; Paladino, R.; Poppi, S.; Valente, G.; Bernardi, G.; Boschin, W.; Brienza, M.; Clarke, T. E.; Colafrancesco, S.; Enßlin, T.; Ferrari, C.; de Gasperin, F.; Gastaldello, F.; Girardi, M.; Gregorini, L.; Johnston-Hollitt, M.; Junklewitz, H.; Orrù, E.; Parma, P.; Perley, R.; Taylor, G. B.

    2018-05-01

    We report the detection of diffuse radio emission which might be connected to a large-scale filament of the cosmic web covering a 8° × 8° area in the sky, likely associated with a z≈0.1 over-density traced by nine massive galaxy clusters. In this work, we present radio observations of this region taken with the Sardinia Radio Telescope. Two of the clusters in the field host a powerful radio halo sustained by violent ongoing mergers and provide direct proof of intra-cluster magnetic fields. In order to investigate the presence of large-scale diffuse radio synchrotron emission in and beyond the galaxy clusters in this complex system, we combined the data taken at 1.4 GHz with the Sardinia Radio Telescope with higher resolution data taken with the NRAO VLA Sky Survey. We found 28 candidate new sources with a size larger and X-ray emission fainter than known diffuse large-scale synchrotron cluster sources for a given radio power. This new population is potentially the tip of the iceberg of a class of diffuse large-scale synchrotron sources associated with the filaments of the cosmic web. In addition, we found in the field a candidate new giant radio galaxy.

  3. Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, M.S.; Cohen, A.; Greenberg, D.

    1991-12-31

    This report highlights Brookhaven National Laboratory`s activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)

  4. Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, M.S.; Cohen, A.; Greenberg, D.

    1991-01-01

    This report highlights Brookhaven National Laboratory's activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)

  5. Method and devices for performing stereotactic microbeam radiation therapy

    DOEpatents

    Dilmanian, F. Avraham

    2010-01-05

    A radiation delivery system generally includes either a synchrotron source or a support frame and a plurality of microbeam delivery devices supported on the support frame, both to deliver a beam in a hemispherical arrangement. Each of the microbeam delivery devices or synchrotron irradiation ports is adapted to deliver at least one microbeam of radiation along a microbeam delivery axis, wherein the microbeam delivery axes of the plurality of microbeam delivery devices cross within a common target volume.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Eileen T.; Breiding, Peter; Georganopoulos, Markos

    The Chandra X-ray observatory has discovered several dozen anomalously X-ray-bright jets associated with powerful quasars. A popular explanation for the X-ray flux from the knots in these jets is that relativistic synchrotron-emitting electrons inverse-Compton scatter cosmic microwave background (CMB) photons to X-ray energies (the IC/CMB model). This model predicts a high gamma-ray flux that should be detectable by the Fermi /Large Area Telescope (LAT) for many sources. GeV-band upper limits from Fermi /LAT for the well-known anomalous X-ray jet in PKS 0637−752 were previously shown in Meyer et al. to violate the predictions of the IC/CMB model. Previously, measurements ofmore » the jet synchrotron spectrum, important for accurately predicting the gamma-ray flux level, were lacking between radio and infrared wavelengths. Here, we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations of the large-scale jet at 100, 233, and 319 GHz, which further constrain the synchrotron spectrum, supporting the previously published empirical model. We also present updated limits from the Fermi /LAT using the new “Pass 8” calibration and approximately 30% more time on source. With these deeper limits, we rule out the IC/CMB model at the 8.7 σ level. Finally, we demonstrate that complete knowledge of the synchrotron SED is critical in evaluating the IC/CMB model.« less

  7. Pulsed Laser Techniques in Laser Heated Diamond Anvil Cells for Studying Methane (CH4) and Water (H2O) at Extreme Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Holtgrewe, N.; Lobanov, S.; Mahmood, M.; Goncharov, A. F.

    2017-12-01

    Scientific advancement in the fields of high pressure material synthesis and research on planetary interiors rely heavily on a variety of techniques for probing such extreme conditions, such as laser-heating diamond anvil cells (LHDACs) (Goncharov et al., J. Synch. Rad., 2009) and shock compression (Nellis et al., J. Chem. Phys., 2001/ Armstrong et al., Appl. Phys. Lett., 2008). However, certain chemical properties can create complications in the detection of such extreme states, for example the instability of energetic materials, and detection of these dynamic chemical states by time-resolved methods has proven to be valuable in exploring the kinetics of these materials. Current efforts at the Linac Coherent Light Source (LCLS) for exploring the transitions between different phases of condensed matter (Armstrong et. al., APS Mar. Meeting, 2017/ Radousky et al., APS Mar. Meeting, 2017), and X-ray synchrotron pulsed heating are useful techniques but require large facilities and are not always accessible. Instead, optical properties of materials can serve as a window into the state or structure of species through electronic absorption properties. Pump-probe spectroscopy can be used to detect these electronic properties in time and allow the user to develop a picture of complex dynamic chemical events. Here we present data acquired up to 1.5 megabar (Mbar) pressures and temperatures >3000 K using pulsed transmission/reflective spectroscopy combined with a pulsed LHDAC and time-resolved detection (streak camera) (McWilliams et. al., PNAS, 2015/ McWilliams et al., PRL, 2016). Time-resolved optical properties will be presented on methane (CH4) and water (H2O) at P-T conditions found in icy bodies such as Uranus and Neptune (Lee and Scandolo, Nature Comm., 2011). Our results show that the interiors of Uranus and Neptune are optically opaque at P-T conditions corresponding to the mantles of these icy bodies, which has implications for the unusual magnetic fields of these planets.

  8. Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels

    PubMed Central

    Zhou, Han; Guo, Jianjun; Li, Peng; Fan, Tongxiang; Zhang, Di; Ye, Jinhua

    2013-01-01

    The development of an “artificial photosynthetic system” (APS) having both the analogous important structural elements and reaction features of photosynthesis to achieve solar-driven water splitting and CO2 reduction is highly challenging. Here, we demonstrate a design strategy for a promising 3D APS architecture as an efficient mass flow/light harvesting network relying on the morphological replacement of a concept prototype-leaf's 3D architecture into perovskite titanates for CO2 photoreduction into hydrocarbon fuels (CO and CH4). The process uses artificial sunlight as the energy source, water as an electron donor and CO2 as the carbon source, mimicking what real leaves do. To our knowledge this is the first example utilizing biological systems as “architecture-directing agents” for APS towards CO2 photoreduction, which hints at a more general principle for APS architectures with a great variety of optimized biological geometries. This research would have great significance for the potential realization of global carbon neutral cycle. PMID:23588925

  9. Nuclear Bragg scattering studies in [sup 57]Fe with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.

    1993-01-01

    Studies of nuclear Bragg x-ray scattering of synchrotron radiation, using crystals of [alpha]-[sup 57]Fe[sub 2]O[sub 3], have been carried out at the NSLS at Brookhaven National Laboratory and at the Cornell University CHESS facility. These studies have demonstrated that nuclear resonance states can be used to produce filtered x-ray beams which have extremely narrow bandwidth, small angular divergence and unique polarization and temporal properties. this combination of characteristics, unobtainable with radioactive sources, makes synchrotron-based Moessbauer spectroscopy feasible and is an important complement to existing methods. A review of the experimental methodology is presented. As well as come suggestions for fullermore » exploitation of this new technique.« less

  10. Nuclear Bragg scattering studies in {sup 57}Fe with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.

    1993-03-01

    Studies of nuclear Bragg x-ray scattering of synchrotron radiation, using crystals of {alpha}-{sup 57}Fe{sub 2}O{sub 3}, have been carried out at the NSLS at Brookhaven National Laboratory and at the Cornell University CHESS facility. These studies have demonstrated that nuclear resonance states can be used to produce filtered x-ray beams which have extremely narrow bandwidth, small angular divergence and unique polarization and temporal properties. this combination of characteristics, unobtainable with radioactive sources, makes synchrotron-based Moessbauer spectroscopy feasible and is an important complement to existing methods. A review of the experimental methodology is presented. As well as come suggestions for fullermore » exploitation of this new technique.« less

  11. New synchrotron powder diffraction facility for long-duration experiments

    PubMed Central

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  12. Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao

    1998-08-01

    We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.

  13. Fevers and Chills: Separating thermal and synchrotron components in SNR spectra

    NASA Astrophysics Data System (ADS)

    Fedor, Emily Elizabeth; Martina-Hood, Hyourin; Stage, Michael D.

    2018-06-01

    Spatially-resolved spectroscopy is an extremely powerful tool in X-ray analysis of extended sources, but can be computationally difficult if a source exhibits complex morphology. For example, high-resolution Chandra data of bright Galactic supernova remnants (Cas A, Tycho, etc.) allow extractions of high-quality spectra from tens to hundreds of thousands of regions, providing a rich laboratory for localizing emission from processes such as thermal line emission, bremsstrahlung, and synchrotron. This soft-band analysis informs our understanding of the typically nonthermal hard X-ray emission observed with other lower-resolution instruments. The analysis is complicated by both projection effects and the presence of multiple emission mechanisms in some regions. In particular, identifying regions with significant nonthermal emission is critical to understanding acceleration processes in remnants. Fitting tens of thousands of regions with complex, multi-component models can be time-consuming and involve so many free parameters that little constraint can be placed on the values. Previous work by Stage & Allen ('06, '07, '11) on Cas A used a technique to identify regions dominated by the highest-cutoff synchrotron emission by fitting with a simple thermal emission model and identifying regions with anomalously high apparent temperatures (caused by presence of the high-energy tail of the synchrotron emission component). Here, we present a similar technique. We verify the previous approach and, more importantly, expand it to include a method to identify regions containing strong lower-cutoff synchrotron radiation. Such regions might be associated with the reverse-shock of a supernova. Identification of a nonthermal electron population in the interior of an SNR would have significant implications for the energy balance and emission mechanisms producing the high-energy (> 10 keV) spectrum.

  14. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    U˝Lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ~133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries. Additional funds to purchase components of the new ring and beamlines are being sought from the EU, the US, and other sources. SESAME has benefited greatly from offers by other light source facilities of equipment and training fellowships in both accelerator technology and applications of synchrotron radiation. Details of this, and other aspects of the training program, are given below. It is hoped that in the future fellowship offers will continue to be made by many light source laboratories to further increase the level of experience with accelerator technology and synchrotron light science in preparation for the start of operation of SESAME.

  15. SESAME — A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Űlkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ˜133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries. Additional funds to purchase components of the new ring and beamlines are being sought from the EU, the US, and other sources. SESAME has benefited greatly from offers by other light source facilities of equipment and training fellowships in both accelerator technology and applications of synchrotron radiation. Details of this, and other aspects of the training program, are given below. It is hoped that in the future fellowship offers will continue to be made by many light source laboratories to further increase the level of experience with accelerator technology and synchrotron light science in preparation for the start of operation of SESAME.

  16. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK,more » and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries. Additional funds to purchase components of the new ring and beamlines are being sought from the EU, the US, and other sources. SESAME has benefited greatly from offers by other light source facilities of equipment and training fellowships in both accelerator technology and applications of synchrotron radiation. Details of this, and other aspects of the training program, are given below. It is hoped that in the future fellowship offers will continue to be made by many light source laboratories to further increase the level of experience with accelerator technology and synchrotron light science in preparation for the start of operation of SESAME.« less

  17. Multi-element germanium detectors for synchrotron applications

    DOE PAGES

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.; ...

    2018-04-27

    In this paper, we have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. Finally, we will discuss the technical details of the systems,more » and present some of the results from them.« less

  18. Effect of thermomechanical processing on the microstructure and retained austenite stability during in situ tensile testing using synchrotron x-ray diffraction of NbMoAI TRIP steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereloma, E.; Zhang, L.; Liss, K.-D.

    2011-06-01

    In this work we compare and contrast the stability of retained austenite during tensile testing of Nb-Mo-Al transformation-induced plasticity steel subjected to different thermomechanical processing schedules. The obtained microstructures were characterised using optical metallography, transmission electron microscopy and X-ray diffraction. The transformation of retained austenite to martensite under tensile loading was observed by in-situ high energy X-ray diffraction at 1ID / APS. It has been shown that the variations in the microstructure of the steel, such as volume fractions of present phases, their morphology and dimensions, play a critical role in the strain-induced transition of retained austenite to martensite.

  19. Multi-element germanium detectors for synchrotron applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.

    In this paper, we have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. Finally, we will discuss the technical details of the systems,more » and present some of the results from them.« less

  20. Compton scattering of self-absorbed synchrotron emission

    NASA Astrophysics Data System (ADS)

    Gao, He; Lei, Wei-Hua; Wu, Xue-Feng; Zhang, Bing

    2013-11-01

    Synchrotron self-Compton (SSC) scattering is an important emission mechanism in many astronomical sources, such as gamma-ray bursts (GRBs) and active galactic nuclei. We give a complete presentation of the analytical approximations for the Compton scattering of synchrotron emission with both weak and strong synchrotron self-absorption. All possible orders of the characteristic synchrotron spectral breaks (νa, νm and νc) are studied. In the weak self-absorption regime, i.e. νa < νc, the electron energy distribution is not modified by the self-absorption process. The shape of the SSC component broadly resembles that of synchrotron, but with the following features: The SSC flux increases linearly with frequency up to the SSC break frequency corresponding to the self-absorption frequency νa; and the presence of a logarithmic term in the high-frequency range of the SSC spectra makes it harder than the power-law approximation. In the strong absorption regime, i.e. νa > νc, heating of low-energy electrons due to synchrotron absorption leads to pile-up of electrons, and form a thermal component besides the broken power-law component. This leads to two-component (thermal + non-thermal) spectra for both the synchrotron and SSC spectral components. For νc < νa < νm, the spectrum is thermal (non-thermal) dominated if ν _a > √{ν _m ν _c} (ν _a < √{ν _m ν _c}). Similar to the weak-absorption regime, the SSC spectral component is broader than the simple broken power-law approximation. We derive the critical condition for strong absorption (electron pile-up), and discuss a case of GRB reverse shock emission in a wind medium, which invokes νa > max(νm, νc).

  1. Brookhaven National Laboratory

    MedlinePlus

    ... Sciences Center for Functional Nanomaterials Chemistry Condensed Matter Physics & Materials Science National Synchrotron Light Source II Sustainable ... and Technology Nonproliferation and National Security Nuclear & Particle ... Magnet RIKEN BNL ...

  2. Is the GeV-TeV emission of PKS 0447-439 from the proton synchrotron radiation?

    NASA Astrophysics Data System (ADS)

    Gao, Quan-Gui; Lu, Fang-Wu; Ma, Ju; Ren, Ji-Yang; Li, Huai-Zhen

    2018-06-01

    We study the multi-wavelength emission features of PKS 0447-439 in the frame of the one-zone homogeneous lepto-hadronic model. In this model, we assumed that the steady power-laws with exponential cut-offs distributions of protons and electrons are injected into the source. The non-linear time-dependent kinematic equations, describing the evolution of protons, electrons and photons, are defined; these equations self-consistently involve synchrotron radiation of protons, photon-photon interaction, synchrotron radiation of electron/positron pairs, inverse Compton scattering and synchrotron self-absorption. The model is applied to reproduce the multi-wavelength spectrum of PKS 0447-439. Our results indicate that the spectral energy distribution (SED) of PKS 0447-439 can be reproduced well by the model. In particular, the GeV-TeV emission is produced by the synchrotron radiation of relativistic protons. The physically plausible solutions require the magnetic strength 10 G≲ B ≲ 100 G. We found that the observed spectrum of PKS 0447-439 can be reproduced well by the model whether z = 0.16 or z = 0.2, and the acceptable upper limit of redshift is z=0.343.

  3. Alkaline Phosphatase, an Unconventional Immune Protein.

    PubMed

    Rader, Bethany A

    2017-01-01

    Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs), revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer's disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont.

  4. PREFACE Preface

    NASA Astrophysics Data System (ADS)

    Sakurai, Kazuo; Takahara, Atsushi

    2011-01-01

    This special issue contains peer-reviewed invited and contributed papers that were presented at The International Symposium on 'Future Trend in Soft Material Research with Advanced Light Source: Interdisciplinary of Bio- & Synthetic- Materials and Industrial Transferring', which was held in SPring-8, Japan, on September 1-3, 2010. Advanced light sources including neutron and synchrotron are becoming increasingly critical to the study of soft materials. This cutting-edge analytical tool is expected to lead to the creation of new materials with revolutionary properties and functions. At SPring-8, a new beam line dedicated to soft materials has now been launched as one of the most powerful X-rays for scattering and diffraction. Additionally, the next-generation light source, XFEL (X-ray Free Electron Laser), facilities are currently being developed in several locations. In the near future, femto-second and coherent X-ray sources will be available in soft material research and should reveal the various new aspects of advanced soft material research and technology. On the occasion of the third fiscal year of the CREST (project leader: Kazuo Sakurai) and ERATO (project leader: Atsushi Takahara) projects, we organized this international symposium in order to accelerate the discussion among global-level researchers working on next-generation synchrotron radiation science, biophysics and supramolecular science, modern surface science in soft materials, and industrial applications of neutron and synchrotron radiation sources. In this symposium 21 oral presentations, including 8 invited speakers from abroad, and 40 poster presentations from USA, France, Korea, Taiwan, and Japan were presented during the three day symposium. The symposium chairs reviewed the poster presentations by young scientists, and eight young researchers received the Award for Best Poster Presentation. We sincerely hope that these proceedings will be beneficial in future applications of advanced light sources to soft materials science and technology, not only to our ERATO and CREST projects, but also to the research of all the participants, broadening our scientific horizons. Kazuo Sakurai & Atsushi TakaharaSymposium Chairs Symposium Organization and Committee Supported by: Japan Science and Technology Agency (JST) Japan Synchrotron Radiation Research Institute (JASRI) Co-sponsored by: Society of Japan Polymer Science Japanese Society of Synchrotron Radiation Research Advanced Softmaterial Beamline Consortium Symposium Chairs: Atsushi Takahara (Kyushu University, JST, ERATO) Kazuo Sakurai (Univ. Kitakyushu, JST, CREST) Organizing Committee: Yoshiyuki Amemiya (The Univ. of Tokyo, JST, CREST) Naoto Yagi (JASRI, JST, CREST) Masaki Takata (JASRI) Isamu Akiba (Univ. Kitakyushu, JST, CREST) Yuya Shinohara (The Univ. of Tokyo, JST, CREST) Taiki Hoshino (Kyushu University, JST, ERATO) Jun-ichi Imuta (Kyushu University, JST, ERATO) Moriya Kikuchi (Kyushu University, JST, ERATO) Motoyasu Kobayashi (Kyushu University, JST, ERATO) Group photograph Group photograph Lecture meeting Lecture meeting

  5. Low-aberration beamline optics for synchrotron infrared nanospectroscopy.

    PubMed

    Freitas, Raul O; Deneke, Christoph; Maia, Francisco C B; Medeiros, Helton G; Moreno, Thierry; Dumas, Paul; Petroff, Yves; Westfahl, Harry

    2018-04-30

    Synchrotron infrared nanospectroscopy is a recently developed technique that enables new possibilities in the broadband chemical analysis of materials in the nanoscale, far beyond the diffraction limit in this frequency domain. Synchrotron infrared ports have exploited mainly the high brightness advantage provided by electron storage rings across the whole infrared range. However, optical aberrations in the beam produced by the source depth of bending magnet emission at large angles prevent infrared nanospectroscopy to reach its maximum capability. In this work we present a low-aberration optical layout specially designed and constructed for a dedicated synchrotron infrared nanospectroscopy beamline. We report excellent agreement between simulated beam profiles (from standard wave propagation and raytracing optics simulations) with experimental measurements. We report an important improvement in the infrared nanospectroscopy experiment related to the improved beamline optics. Finally, we demonstrate the performance of the nanospectroscopy endstation by measuring a hyperspectral image of a polar material and we evaluate the setup sensitivity by measuring ultra-thin polymer films down to 6 nm thick.

  6. Modeling challenges and approaches in simulating the Jovian synchrotron radiation belts from an in-situ perspective

    NASA Astrophysics Data System (ADS)

    Adumitroaie, V.; Oyafuso, F. A.; Levin, S.; Gulkis, S.; Janssen, M. A.; Santos-Costa, D.; Bolton, S. J.

    2017-12-01

    In order to obtain credible atmospheric composition retrieval values from Jupiter's observed radiative signature via Juno's MWR instrument, it is necessary to separate as robustly as possible the contributions from three emission sources: CMB, planet and synchrotron radiation belts. The numerical separation requires a refinement, based on the in-situ data, of a higher fidelity model for the synchrotron emission, namely the multi-parameter, multi-zonal model of Levin at al. (2001). This model employs an empirical electron energy distribution, which prior to the Juno mission, has been adjusted exclusively from VLA observations. At minimum 8 sets of perijove observations (i.e. by PJ9) have to be delivered to an inverse model for retrieval of the electron distribution parameters with the goal of matching the synchrotron emission observed along MWR's lines of sight. The challenges and approaches taken to perform this task are discussed here. The model will be continuously improved with the availability of additional information, both from the MWR and magnetometer instruments.

  7. Thermal Electrons in Gamma-Ray Burst Afterglows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ressler, Sean M.; Laskar, Tanmoy

    2017-08-20

    To date, nearly all multi-wavelength modeling of long-duration γ -ray bursts has ignored synchrotron radiation from the significant population of electrons expected to pass the shock without acceleration into a power-law distribution. We investigate the effect of including the contribution of thermal, non-accelerated electrons to synchrotron absorption and emission in the standard afterglow model, and show that these thermal electrons provide an additional source of opacity to synchrotron self-absorption, and yield an additional emission component at higher energies. The extra opacity results in an increase in the synchrotron self-absorption frequency by factors of 10–100 for fiducial parameters. The nature ofmore » the additional emission depends on the details of the thermal population, but is generally observed to yield a spectral peak in the optical brighter than radiation from the nonthermal population by similar factors a few seconds after the burst, remaining detectable at millimeter and radio frequencies several days later.« less

  8. Pump-probe experiments at the TEMPO beamline using the low-α operation mode of Synchrotron SOLEIL.

    PubMed

    Silly, Mathieu G; Ferté, Tom; Tordeux, Marie Agnes; Pierucci, Debora; Beaulieu, Nathan; Chauvet, Christian; Pressacco, Federico; Sirotti, Fausto; Popescu, Horia; Lopez-Flores, Victor; Tortarolo, Marina; Sacchi, Maurizio; Jaouen, Nicolas; Hollander, Philippe; Ricaud, Jean Paul; Bergeard, Nicolas; Boeglin, Christine; Tudu, Bharati; Delaunay, Renaud; Luning, Jan; Malinowski, Gregory; Hehn, Michel; Baumier, Cédric; Fortuna, Franck; Krizmancic, Damjan; Stebel, Luigi; Sergo, Rudi; Cautero, Giuseppe

    2017-07-01

    The SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump-probe experiments. Among others, the low-α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low-α mode of the experimental set-ups developed at the TEMPO beamline to perform pump-probe experiments with soft X-rays based on photoelectron or photon detection are presented. A 282 kHz repetition-rate femtosecond laser is synchronized with the synchrotron radiation time structure to induce fast electronic and/or magnetic excitations. Detection is performed using a two-dimensional space resolution plus time resolution detector based on microchannel plates equipped with a delay line. Results of time-resolved photoelectron spectroscopy, circular dichroism and magnetic scattering experiments are reported, and their respective advantages and limitations in the framework of high-time-resolution pump-probe experiments compared and discussed.

  9. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  10. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  11. Real-time data-intensive computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkinson, Dilworth Y., E-mail: dyparkinson@lbl.gov; Chen, Xian; Hexemer, Alexander

    2016-07-27

    Today users visit synchrotrons as sources of understanding and discovery—not as sources of just light, and not as sources of data. To achieve this, the synchrotron facilities frequently provide not just light but often the entire end station and increasingly, advanced computational facilities that can reduce terabytes of data into a form that can reveal a new key insight. The Advanced Light Source (ALS) has partnered with high performance computing, fast networking, and applied mathematics groups to create a “super-facility”, giving users simultaneous access to the experimental, computational, and algorithmic resources to make this possible. This combination forms an efficientmore » closed loop, where data—despite its high rate and volume—is transferred and processed immediately and automatically on appropriate computing resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beamtime. We will describe our work at the ALS ptychography, scattering, micro-diffraction, and micro-tomography beamlines.« less

  12. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process.

    PubMed

    Leng, Lijian; Li, Jun; Wen, Zhiyou; Zhou, Wenguang

    2018-05-01

    Hydrothermal liquefaction (HTL) of microalgae biomass generates an aqueous phase (AP) byproduct with limited energy value. Recycling the AP solution as a source of nutrients for microalgae cultivation provides an opportunity for a cost-effective production of HTL based biofuel and algal biomass feedstock for HTL, allowing a closed-loop biofuel production in microalgae HTL biofuel system. This paper aims to provide a comprehensive overview of characteristics of AP and its nutrients recycling for algae production. Inhibitory effects resulted from the toxic compounds in AP and alleviation strategies are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. VizieR Online Data Catalog: FIR bright sources of M83 (Foyle+, 2013)

    NASA Astrophysics Data System (ADS)

    Foyle, K.; Natale, G.; Wilson, C. D.; Popescu, C. C.; Baes, M.; Bendo, G. J.; Boquien, M.; Boselli, A.; Cooray, A.; Cormier, D.; de Looze, I.; Fischera, J.; Karczewski, O. L.; Lebouteiller, V.; Madden, S.; Pereira-Santaella, M.; Smith, M. W. L.; Spinoglio, L.; Tuffs, R. J.

    2015-07-01

    We use FIR images from the Herschel Space Observatory to trace cold dust emission. We use 70 and 160um maps taken with the PACS and 250 and 350um maps taken with the SPIRE. We trace the warm dust and PAH emission using MIR maps taken from the Spitzer Local Volume Legacy Survey (Dale et al., 2009ApJ...703..517D, Cat. J/ApJ/703/517). We use continuum-subtracted Hα maps from the Survey for Ionization in Neutral Gas Galaxies (SINGG; Meurer et al., 2006ApJS..165..307M, Cat. J/ApJS/165/307). (4 data files).

  14. Impedance measurements of the extraction kicker system for the rapid cycling synchrotron of China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Sheng; Wang, Sheng; Liu, Yu-Dong; Li, Yong; Liu, Ren-Hong; Xiao, Ou-Zheng

    2016-04-01

    The fast extraction kicker system is one of the most important accelerator components and the main source of impedance in the Rapid Cycling Synchrotron of the China Spallation Neutron Source. It is necessary to understand the kicker impedance before its installation into the tunnel. Conventional and improved wire methods are employed in the impedance measurement. The experimental results for the kicker impedance are explained by comparison with simulation using CST PARTICLE STUDIO. The simulation and measurement results confirm that the window-frame ferrite geometry and the end plate are the important structures causing coupling impedance. It is proved in the measurements that the mismatching from the power form network to the kicker leads to a serious oscillation sideband of the longitudinal and vertical impedance and the oscillation can be reduced by ferrite absorbing material. Supported by National Natural Science Foundation of China (11175193, 11275221)

  15. Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source

    PubMed Central

    Schleede, Simone; Meinel, Felix G.; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Potdevin, Guillaume; Malecki, Andreas; Adam-Neumair, Silvia; Thieme, Sven F.; Bamberg, Fabian; Nikolaou, Konstantin; Bohla, Alexander; Yildirim, Ali Ö.; Loewen, Roderick; Gifford, Martin; Ruth, Ronald; Eickelberg, Oliver; Reiser, Maximilian; Pfeiffer, Franz

    2012-01-01

    In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs. PMID:23074250

  16. The penta-prism LTP: A long-trace-profiler with stationary optical head and moving penta prism (abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S.; Jark, W.; Takacs, P.Z.

    1995-02-01

    Metrology requirements for optical components for third generation synchrotron sources are taxing the state-of-the-art in manufacturing technology. We have investigated a number of effect sources in a commercial figure measurement instrument, the Long Trace Profiler II (LTP II), and have demonstrated that, with some simple modifications, we can significantly reduce the effect of error sources and improve the accuracy and reliability of the measurement. By keeping the optical head stationary and moving a penta prism along the translation stage, the stability of the optical system is greatly improved, and the remaining error signals can be corrected by a simple referencemore » beam subtraction. We illustrate the performance of the modified system by investigating the distortion produced by gravity on a typical synchrotron mirror and demonstrate the repeatability of the instrument despite relaxed tolerances on the translation stage.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less

  19. X-ray metrology of an array of active edge pixel sensors for use at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Plackett, R.; Arndt, K.; Bortoletto, D.; Horswell, I.; Lockwood, G.; Shipsey, I.; Tartoni, N.; Williams, S.

    2018-01-01

    We report on the production and testing of an array of active edge silicon sensors as a prototype of a large array. Four Medipix3RX.1 chips were bump bonded to four single chip sized Advacam active edge n-on-n sensors. These detectors were then mounted into a 2 by 2 array and tested on B16 at Diamond Light Source with an x-ray beam spot of 2um. The results from these tests, compared with optical metrology demonstrate that this type of sensor is sensitive to the physical edge of the silicon, with only a modest loss of efficiency in the final two rows of pixels. We present the efficiency maps recorded with the microfocus beam and a sample powder diffraction measurement. These results give confidence that this sensor technology can be used effectively in larger arrays of detectors at synchrotron light sources.

  20. A compact radiation source for digital subtractive angiography

    NASA Astrophysics Data System (ADS)

    Wiedemann, H.; Baltay, M.; Carr, R.; Hernandez, M.; Lavender, W.

    1994-08-01

    Beam requirements for 33 keV radiation used in digital subtraction angiography have been established through extended experimentation first at Stanford and later at the National Synchrotron Light Source in Brookhaven. So far research and development of this medical procedure to image coronary blood vessels have been undertaken on large high energy electron storage rings. With progress in this diagnostic procedure, it is interesting to look for an optimum concept for providing a 33 keV radiation source which would fit into the environment of a hospital. A variety of competing effects and technologies to produce 33 keV radiation are available, but none of these processes provides the combination of sufficient photon flux and monochromaticity except for synchrotron radiation from an electron storage ring. The conceptual design of a compact storage ring optimized to fit into a hospital environment and producing sufficient 33 keV radiation for digital subtraction radiography will be discussed.

  1. Status of NSLS-II Storage Ring Vacuum Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doom,L.; Hseuh,H.; Ferreira, M.

    2009-05-04

    National Synchrotron Light Source II (NSLS-II), being constructed at Brookhaven National Laboratory, is a 3-GeV, high-flux and high- brightness synchrotron radiation facility with a nominal current of 500 mA. The storage ring vacuum system will have extruded aluminium chambers with ante-chamber for photon fans and distributed NEG strip pumping. Discrete photon absorbers will be used to intercept the un-used bending magnet radiation. In-situ bakeout will be implemented to achieve fast conditioning during initial commissioning and after interventions.

  2. Morphology of methane hydrate host sediments

    USGS Publications Warehouse

    Jones, K.W.; Feng, H.; Tomov, S.; Winters, W.J.; Eaton, M.; Mahajan, D.

    2005-01-01

    The morphological features including porosity and grains of methane hydrate host sediments were investigated using synchrotron computed microtomography (CMT) technique. The sediment sample was obtained during Ocean Drilling Program Leg 164 on the Blake Ridge at water depth of 2278.5 m. The CMT experiment was performed at the Brookhaven National Synchrotron Light Source facility. The analysis gave ample porosity, specific surface area, mean particle size, and tortuosity. The method was found to be highly effective for the study of methane hydrate host sediments.

  3. Preliminary synchrotron analysis of lead in hair from a lead smelter worker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.R.; Kempson, I.M.; Naftel, S.J.

    2008-06-09

    Synchrotron X-ray fluorescence has been used to study the distribution of lead in a hair sample collected from a lead smelter worker. A mathematical model was used to imitate the transverse scan signal based on the analysis volume and concentration profiles. The results suggest that the Pb originates both from ingestion and environmental exposure, however direct deposition from the environment is the more important source of hair lead. The model could apply equally to any other analysis involving a thin cylindrical sample.

  4. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, George R.

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  5. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  6. Nuclear resonance reflectivity from a [57Fe/Cr]30 multilayer with the Synchrotron Mössbauer Source.

    PubMed

    Andreeva, Marina A; Baulin, Roman A; Chumakov, Aleksandr I; Rüffer, Rudolf; Smirnov, Gennadii V; Babanov, Yurii A; Devyaterikov, Denis I; Milyaev, Mikhail A; Ponomarev, Dmitrii A; Romashev, Lazar N; Ustinov, Vladimir V

    2018-03-01

    Mössbauer reflectivity spectra and nuclear resonance reflectivity (NRR) curves have been measured using the Synchrotron Mössbauer Source (SMS) for a [ 57 Fe/Cr] 30 periodic multilayer, characterized by the antiferromagnetic interlayer coupling between adjacent 57 Fe layers. Specific features of the Mössbauer reflectivity spectra measured with π-polarized radiation of the SMS near the critical angle and at the `magnetic' maximum on the NRR curve are analyzed. The variation of the ratio of lines in the Mössbauer reflectivity spectra and the change of the intensity of the `magnetic' maximum under an applied external field has been used to reveal the transformation of the magnetic alignment in the investigated multilayer.

  7. Operation of Negative Ion Sources at the Cooler Synchrotron COSY/Juelich

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebel, R.; Felden, O.; Maier, R.

    2011-09-26

    The Institute for Nuclear Physics at the Forschungszentrum Juelich is dedicated to fundamental research in the field of hadron, particle and nuclear physics. Main activities are the development of the High Energy Storage Ring for the Facility for Antiproton and Ion Research at Darmstadt and the operation and improvement of the cooler synchrotron COSY at Juelich. The injector, a cyclotron with polarized and unpolarized H{sup -} and D{sup -} sources, has exceeded 7000 hours availability per year, averaged over the last decade. Work in progress is the investigation of production, extraction and transport of the low energy 4.5 keV/u ionmore » beams. A brief overview of the activities is presented.« less

  8. The Tapered Hybrid Undulator (THUNDER) of the visible free-electron laser oscillator experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, K.E.; Quimby, D.C.; Slater, J.M.

    A 5 m tapered hybrid undulator (THUNDER) has been designed and built as part of the Boeing Aerospace Company and Spectra Technology, Inc. visible free-electron laser (FEL) oscillator experiment. The performance goals required of an undulator for a visible oscillator with large extraction are ambitious. They require the establishment of stringent magnetic field quality tolerances which impact design and fabrication techniques. The performance goals of THUNDER are presented. The tolerances resulting from the FEL interaction are contrasted and compared to those of a synchrotron radiation source. The design, fabrication, and field measurements are discussed. The performance of THUNDER serves asmore » a benchmark for future wiggler/undulator design for advanced FEL's and synchrotron radiation sources.« less

  9. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, Paul

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites asmore » well as contaminated sites around the United States and beyond.« less

  10. Low emittance lattice for the storage ring of the Turkish Light Source Facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Z.; Aksoy, A.

    2015-06-01

    The TAC (Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser (IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 GeV. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated. Supported by Turkish Republic Ministry of Development (DPT2006K120470)

  11. Implications of culture positivity in acute pancreatitis: does the source matter?

    PubMed

    Rao, Chalapathi; Bhasin, Deepak Kumar; Rana, Surinder Singh; Gupta, Rajesh; Gautam, Vikas; Singh, Kartar

    2013-05-01

    Sepsis is an important complication and cause of morbidity and mortality in acute pancreatitis (AP). The source of sepsis may be infected pancreatic and peripancreatic collections and/or necrosis or extrapancreatic including infections in the bloodstream or respiratory and urinary tracts. We studied the implications of the source of sepsis on various outcome parameters in AP like persistent organ failure (POF), length of hospital (LOH) stay, and mortality. A retrospective analysis of culture reports of AP patients was done, and the outcome parameters were recorded. Three hundred fifty-seven patients (229 M; age: 40.3 ± 14.04 years) of AP who had detailed culture reports were included. Eighty-four (23.5%) patients had pancreatic (or peripancreatic) source (group 1), 52 (14.6%) patients had other (extrapancreatic) sources (group 2), 20 (5.6%) patients were noted to have positive cultures from sources, which were both pancreatic and extrapancreatic (combined) sources (group 3), while 201 patients had sterile cultures. POF was seen in 147 (48%) patients (group 1: 67.8%; group 2: 65%; group 3: 90%; group 4: 34% [P < 0.001]). The mean LOH stay was 22.1 ± 20.26 days (group 1: 30.2 ± 20.64 days; group 2: 26.4 ± 26.82 days; group 3: 47.3 ± 32.60 days; group 4: 15.2 ± 11.34 days [P < 0.001]). Seventy (19.7%) patients succumbed to their illness (group 1 [22.9%]; group 2 [36.5%]; group 3 [40%]; group 4 [12%] [P < 0.001]). POF and LOH stay were more common in patients with combined pancreatic and extrapancreatic sources of sepsis. Mortality was significantly higher in patients with sepsis (groups 1, 2, 3) compared with sterile groups. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  12. IMPEDANCE MEASUREMENT OF VACUUM CHAMBER COMPONENTS FOR THE ADVANCE PHOTON SOURCE (APS) UPGRADE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangroula, M.; Lindberg, R.; Lill, R.

    2017-06-16

    The proposed Advance Photon Source Upgrade (APS-U) employs a multi-bend achromat (MBA) lattice to increase the photon brightness by two to three orders of magnitude. One of the main design challenges of the upgrade is to minimize rf heating and collective instabilities associated with the impedance of small-aperture vacuum components. As part of this effort, my research focuses on impedance measurement and simulation of various MBA vacuum components. Here, we present the summary of the impedance contributions for the APS-U and describe our planned impedance measurement technique, including some measurement results for the non-evaporative getter (NEG)-coated copper chamber and simulationmore » results for other critical components using a novel Goubau line (G-line) set up.« less

  13. Impedance measurement of vacuum chamber components for the Advance Photon Source(APS) Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangroula, M.; Lindberg, R.; Lill, R.

    2017-01-01

    The proposed Advance Photon Source Upgrade (APS-U) employs a multi-bend achromat (MBA) lattice to increase the photon brightness by two to three orders of magnitude. One of the main design challenges of the upgrade is to minimize rf heating and collective instabilities associated with the impedance of small-aperture vacuum components. As part of this effort, my research focuses on impedance measurement and simulation of various MBA vacuum components. Here, we present the summary of the impedance contributions for the APS-U and describe our planned impedance measurement technique, including some measurement results for the non-evaporative getter (NEG)-coated copper chamber and simulationmore » results for other critical components using a novel Goubau line (G-line) set up.« less

  14. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization.

    PubMed

    Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C; Patel, Tushita

    2015-11-01

    Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50-300 e-) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). In this study, imaging performance of a large area (29×23 cm2) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165-400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. The LFW mode shows better DQE at low air kerma (Ka<10 μGy) and should be used for DBT. At current DBT applications, air kerma (Ka∼10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165-400 μm in size can be resolved using a MGD range of 0.3-1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for microcalcifications was observed using the Dexela 2923 MAM CMOS APS x-ray imager at a lower MGD (2.0 mGy). The Dexela 2923 MAM CMOS APS x-ray imager is capable to achieve a high imaging performance at spatial frequencies up to 6.7 lp/mm. Microcalcifications of 165 μm are distinguishable based on reported data and their modeling results due to the small pixel pitch of 75 μm. At the same time, potential dose reduction is expected using the studied CMOS APS x-ray imager.

  15. OSSE Observations of Blazars

    DTIC Science & Technology

    1995-01-01

    factor of 10, with a factor of 4 increase in 4 hours reported on one occasion from EXOSAT observations ( Morini et al. 1986). The source also exhibited...Konigl, A. 1989, ApJ, 340, 162 Morini , M., Chiappetti, L., Maccagni, D., Maraschi, L., Molteni, D., Tanzi, E. G., Treves, A., & Wolter, A. 1986, ApJ

  16. VizieR Online Data Catalog: Taurus ultra-wide pairs (Joncour+, 2017)

    NASA Astrophysics Data System (ADS)

    Joncour, I.; Duchene, G.; Moraux, E.

    2017-05-01

    Although a recent catalog of Taurus members has been released including newly detected mid-infrared Wide-field Infrared Survey Explorer (WISE) sources (Esplin et al., 2014, Cat. J/ApJ/784/126), we adopted the catalog containing 352 Taurus members that offers a full census of members down to 0.02 Mȯ(Luhman et al., 2010, Cat. J/ApJS/186/111; Rebull et al., 2010, Cat. J/ApJS/186/259), which we supplemented with stellar multiplicity data. (3 data files).

  17. The mm-wave compact component of an AGN

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Vogel, Stuart; Baldi, Ranieri D.; Smith, Krista L.; Mushotzky, Richard F.

    2018-07-01

    mm-wave emission from active galactic nuclei (AGNs) may hold the key to understanding the physical origin of their radio cores. The correlation between radio/mm and X-ray luminosity may suggest a similar physical origin of the two sources. Since synchrotron self-absorption decreases with frequency, mm-waves probe smaller length-scales than cm-waves. We report on 100 GHz (3 mm) observations with the Combined Array for Research in Millimeter-wave Astronomy of 26 AGNs selected from the hard X-ray Swift/Burst Alert Telescope survey. 20/26 targets were detected at 100 GHz down to the 1 mJy (3σ) sensitivity, which corresponds to optically thick synchrotron source sizes of 10-4-10-3 pc. Most sources show a 100 GHz flux excess with respect to the spectral slope extrapolated from low frequencies. This mm spectral component likely originates from smaller scales than the few-GHz emission. The measured mm sources lie roughly around the Lmm (100 GHz) ˜10-4LX (2-10 keV) relation, similar to a few previously published X-ray selected sources, and hinting perhaps at a common coronal origin.

  18. The mm-wave compact component of AGN

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Vogel, Stuart; Baldi, Ranieri D.; Smith, Krista L.; Mushotzky, Richard F.

    2018-05-01

    mm-wave emission from Active Galactic Nuclei (AGN) may hold the key to understanding the physical origin of their radio cores. The correlation between radio/mm and X-ray luminosity may suggest a similar physical origin of the two sources. Since synchrotron self absorption decreases with frequency, mm-waves probe smaller length scales than cm-waves. We report on 100 GHz (3 mm) observations with CARMA of 26 AGNs selected from the hard X-ray Swift/BAT survey. 20/26 targets were detected at 100 GHz down to the 1 mJy (3σ) sensitivity, which corresponds to optically thick synchrotron source sizes of 10-4 - 10-3 pc. Most sources show a 100 GHz flux excess with respect to the spectral slope extrapolated from low frequencies. This mm spectral component likely originates from smaller scales than the few-GHz emission. The measured mm sources lie roughly around the Lmm (100 GHz) ˜10-4LX (2-10 keV) relation, similar to a few previously published X-ray selected sources, and hinting perhaps at a common coronal origin.

  19. Search for Nonthermal X-Rays from Supernova Remnant Shells

    NASA Astrophysics Data System (ADS)

    Petre, R.; Keohane, J.; Hwang, U.; Allen, G.; Gotthelf, E.

    The demonstration by ASCA that the nonthermal X-ray emission from the rim of SN1006 is synchrotron emission from TeV electrons, produced in the same environment responsible for cosmic ray protons and nuclei (Koyama et al. 1995, Nature 378, 255), has stimulated a search for nonthermal X-rays from other remnants. Nonthermal emission has subsequently been found to arise in the shells of at least two other remnants, Cas A and IC 443. In Cas A, a hard tail is detected using ASCA, XTE, and OSSE to energies exceeding 100 keV; the shape of the spectrum rules out all mechanisms except synchrotron radiation. In IC 443, the previously known hard emission has been shown using ASCA to be isolated to a small region along the rim of the remnant, where the shock is interacting most strongly with a molecular cloud. Nonthermal X-ray emission is thought to arise here by enhanced cosmic ray production associated with the shock/cloud interaction (Keohane et al. 1997, ApJ in press). We describe the properties of the nonthermal emission in SN1006, Cas A, and IC 443, and discuss the status of our search for nonthermal emission associated with the shocks of other Galactic and LMC SNR's.

  20. X-Ray Pulse Selector With 2 ns Lock-in Phase Setting And Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindenau, B.; Raebiger, J.; Polachowski, S.

    2004-05-12

    Selector devices, which are based on magnetically suspended, high speed triangular shutter rotors, have been designed and built in cooperation with ESRF, APS, and recently Spring-8 for time resolved studies with isolated x-ray pulses at white beam lines. The x-ray pulse selection is accomplished by means of a beam channel along one of the edges of the triangular rotor, which opens once per revolution. Entrance and exit apertures of the channel can be designed wedge shaped for variable tuning of the channel height between 0.1 mm to 0.9 mm. At the 1 kHz maximum operation frequency of a 220 mmmore » diameter disk with 190 mm channel length, the practicable open times of the channel are demonstrated to range down to 200 ns. The selector drive electronics is directly coupled to the storage ring RF clock for rotational phase control. It allows for continuous selector operation in phase locked mode to the temporal pulse structure of the synchrotron at 2 ns RMS stability. The phase angle between the pulse transmission period and the synchrotron bunch sequence can be adjusted with similar precision for X-ray pulse selection according to the experimental needs. ID09, Michael Wulff ; BioCARS 14-BM, Reinhard Pahl; BL40-XU, Shin-ichi Adachi.« less

  1. Synchronizing flash-melting in a diamond cell with synchrotron X ray diffraction (XRD)

    NASA Astrophysics Data System (ADS)

    Karandikar, Amol; Boehler, Reinhard; Meng, Yue; Rod, Eric; Shen, Guoyin

    2013-06-01

    The major challenges in measuring melting temperatures in laser heated diamond cells are sample instability, thermal runaway and chemical reactions. To circumvent these problems, we developed a ``flash heating'' method using a modulated CW fiber laser and fast X ray detection capability at APS (Pilatus 1M detector). As an example, Pt spheres of 5 micron diameter were loaded in a single crystal sapphire encapsulation in the diamond cell at 65 GPa and heated in a single flash heating event for 20 ms to reach a desired temperature. A CCD spectrometer and the Pilatus were synchronized to measure the temperature and the XRD signal, respectively, when the sample reached the thermal steady state. Each successive flash heating was done at a higher temperature. The integrated XRD pattern, collected during and after (300 K) each heating, showed no chemical reaction up to 3639 K, the highest temperature reached in the experiment. Pt111 and 200 peak intensity variation showed gradual recrystalization and complete diminishing at about 3600 K, indicating melting. Thus, synchronized flash heating with novel sample encapsulation circumvents previous notorious problems and enables accurate melting temperature measurement in the diamond cell using synchrotron XRD probe. Affiliation 2: Geowissenschaeften, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt a.M., Germany.

  2. Synchrotron characterization of nanograined UO 2 grain growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kun; Miao, Yinbin; Yun, Di

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructuremore » based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO 2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO 2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.« less

  3. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  4. Studies of LSO:Tb radio-luminescence properties using white beam hard X-ray synchrotron irradiation

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Pelliccia, D.; Douissard, P.-A.; Martin, T.; Couchaud, M.; Dupré, K.; Baumbach, T.

    A radio-luminescence set-up was installed at the synchrotron light source ANKA to characterise scintillators under the high X-ray photon flux density of white beam synchrotron radiation. The system allows for investigating the radio-luminescence spectrum of the material under study as well as analysing in situ changes of its scintillation behaviour (e.g. under heat load and/or intensive ionising radiation). In this work we applied the radio-luminescence set-up for investigating the radiation damage effects on the luminescence properties of a new kind of thin single crystal scintillator for high resolution X-ray imaging based on a layer of modified Lu2SiO5 grown by liquid phase epitaxy on a dedicated substrate within the framework of an EC project (SCINTAX).

  5. Synchrotron X-ray fluorescence analyses of stratospheric cosmic dust - New results for chondritic and low-nickel particles

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1990-01-01

    Trace element abundance determinations were performed using synchrotron X-ray fluorescence on nine particles collected from the stratosphere and classified as cosmic. Improvements to the Synchrotron Light Source allowed the detection of all elements between Cr and Mo, with the exceptions of Co and As, in our largest particle. The minor and trace element abundance patterns of three Ni-depleted particles were remarkably similar to those of extraterrestrial igneous rocks. Fe/Ni and Fe/Mn ratios suggest that one of these may be of lunar origin. All nine particles exhibited an enrichment in Br, ranging from 1.3 to 38 times the C1 concentration. Br concentrations were uncorrelated with particle size, as would be expected for a surface correlated component acquires from the stratosphere.

  6. Understanding the Differences in Molecular Conformation of Carbohydrate and Protein in Endosperm Tissues of Grains with Different Biodegradation Kinetics Using Advanced Synchrotron Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, P.; Block, H; Doiron, K

    Conventional 'wet' chemical analyses rely heavily on the use of harsh chemicals and derivatization, thereby altering native seed structures leaving them unable to detect any original inherent structures within an intact tissue sample. A synchrotron is a giant particle accelerator that turns electrons into light (million times brighter than sunlight) which can be used to study the structure of materials at the molecular level. Synchrotron radiation-based Fourier transform IR microspectroscopy (SR-FTIRM) has been developed as a rapid, direct, non-destructive and bioanalytical technique. This technique, taking advantage of the brightness of synchrotron light and a small effective source size, is capablemore » of exploring the molecular chemistry within the microstructures of a biological tissue without the destruction of inherent structures at ultraspatial resolutions within cellular dimensions. This is in contrast to traditional 'wet' chemical methods, which, during processing for analysis, often result in the destruction of the intrinsic structures of feeds. To date there has been very little application of this technique to the study of plant seed tissue in relation to nutrient utilization. The objective of this study was to use novel synchrotron radiation-based technology (SR-FTIRM) to identify the differences in the molecular chemistry and conformation of carbohydrate and protein in various plant seed endosperms within intact tissues at cellular and subcellular level from grains with different biodegradation kinetics. Barley grain (cv. Harrington) with a high rate (31.3%/h) and extent (78%), corn grain (cv. Pioneer) with a low rate (9.6%/h) and extent of (57%), and wheat grain (cv. AC Barrie) with an intermediate rate (23%/h) and extent (72%) of ruminal DM degradation were selected for evaluation. SR-FTIRM evaluations were performed at the National Synchrotron Light Source at the Brookhaven National Laboratory (Brookhaven, NY). These results suggest that SR-FTIRM plus the multivariate analyses can be used to identify spectral features associated with the molecular structure of endosperm from grains with different biodegradation kinetics, especially in relation to protein structure. The Novel synchrotron radiation-based bioanalytical technique provides a new approach for plant seed structural molecular studies at ultraspatial resolution and within intact tissue in relation to nutrient availability.« less

  7. A sparsity-based iterative algorithm for reconstruction of micro-CT images from highly undersampled projection datasets obtained with a synchrotron X-ray source

    NASA Astrophysics Data System (ADS)

    Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.

    2016-12-01

    Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.

  8. SESAME-A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2010-02-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research center in construction in Jordan. It will enable world class research by scientists from the region, reversing the brain drain. It will also build bridges between diverse societies, contributing to a culture of peace through international cooperation in science. The centerpiece is a synchrotron light source originating from BESSY I, a gift by Germany. The upgraded machine, a 2.5 GeV 3rd Generation Light Source (133m circumference, 26nm-rad emittance and 12 places for insertion devices), will provide light from infra-red to hard X-rays, offering excellent opportunities to train local scientists and attract those working abroad to return. The SESAME Council meets twice each year and presently has nine Members (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey). Members have responsibility for the project and provide the annual operations budget (1.5M US dollars in 2009, expected to rise to about 5M when operation starts in 2012-13). Jordan provided the site, building, and infrastructure. A staff of 20 is installing the 0.8 GeV BESSY I injection system. The facility will have the capacity to serve 30 or more experiments operating simultaneously. See www.sesame.org.jo )

  9. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  10. PTB’s radiometric scales for UV and VUV source calibration based on synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Klein, Roman; Kroth, Simone; Paustian, Wolfgang; Richter, Mathias; Thornagel, Reiner

    2018-06-01

    The radiant intensity of synchrotron radiation can be accurately calculated with classical electrodynamics. This primary realization of the spectral radiant intensity has been used by PTB at several electron storage rings which have been optimized to be operated as primary source standards for the calibration of transfer sources in the spectral range of UV and VUV for almost 30 years. The transfer sources are compared to the primary source standard by means of suitable wavelength-dispersive transfer stations. The spectral range covered by deuterium lamps, which represent transfer sources that are easy to handle, is of particular relevance in practice. Here, we report on developments in the realization and preservation of the radiometric scales for spectral radiant intensity and spectral radiance in the wavelength region from 116 nm to 400 nm, based on a set of deuterium reference lamps, over the last few decades. An inside view and recommendations on the operation of the D2 lamps used for the realization of the radiometric scale are presented. The data has been recently compiled to illustrate the chronological behaviour at various wavelengths. Moreover, an overview of the internal and external validation measurements and intercomparisons is given.

  11. X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzen, Julia; Physics Department and Institute for Medical Engineering, Technische Universitaet Muenchen, 85748 Garching; Donath, Tilman

    2011-11-15

    X-ray phase-contrast radiography and tomography enable to increase contrast for weakly absorbing materials. Recently, x-ray grating interferometers were developed that extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron sources to non-coherent conventional x-ray tube sources. Here, we present the first installation of a three grating x-ray interferometer at a low-coherence wiggler source at the beamline W2 (HARWI II) operated by the Helmholtz-Zentrum Geesthacht at the second-generation synchrotron storage ring DORIS (DESY, Hamburg, Germany). Using this type of the wiggler insertion device with a millimeter-sized source allows monochromatic phase-contrast imaging of centimeter sized objects withmore » high photon flux. Thus, biological and materials-science imaging applications can highly profit from this imaging modality. The specially designed grating interferometer currently works in the photon energy range from 22 to 30 keV, and the range will be increased by using adapted x-ray optical gratings. Our results of an energy-dependent visibility measurement in comparison to corresponding simulations demonstrate the performance of the new setup.« less

  12. Simultaneous Multiwavelength Observations of the Blazar 1ES 1959+650 at a Low TeV Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagliaferri, G.; Ghisellini, G.; Foschini, L.

    We present the results from a multiwavelength campaign on the TeV blazar 1ES 1959+650, performed in 2006 May. Data from the optical, UV, soft- and hard-X-ray, and very high energy (VHE) gamma-ray (E > 100 GeV) bands were obtained with the Suzaku and Swift satellites, the MAGIC telescope, and other ground-based facilities. The source spectral energy distribution (SED), derived from Suzaku and MAGIC observations at the end of 2006 May, shows the usual double hump shape, with the synchrotron peak at a higher flux level than the Compton peak. With respect to historical values, during our campaign the source exhibitedmore » a relatively high state in X-rays and optical, while in the VHE band it was at one of the lowest level so far recorded. We also monitored the source for flux spectral variability on a time window of 10 days in the optical-UV and X-ray bands and 7 days in the VHE band. The source varies more in the X-ray than in the optical band, with the 2-10 keV X-ray flux varying by a factor of {approx}2. The synchrotron peak is located in the X-ray band and moves to higher energies as the source gets brighter, with the X-ray fluxes above it varying more rapidly than the X-ray fluxes at lower energies. The variability behavior observed in the X-ray band cannot be produced by emitting regions varying independently and suggests instead some sort of 'standing shock' scenario. The overall SED is well represented by a homogeneous one-zone synchrotron inverse Compton emission model, from which we derive physical parameters that are typical of high-energy peaked blazars.« less

  13. MULTI-OBJECTIVE ONLINE OPTIMIZATION OF BEAM LIFETIME AT APS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng

    In this paper, online optimization of beam lifetime at the APS (Advanced Photon Source) storage ring is presented. A general genetic algorithm (GA) is developed and employed for some online optimizations in the APS storage ring. Sextupole magnets in 40 sectors of the APS storage ring are employed as variables for the online nonlinear beam dynamics optimization. The algorithm employs several optimization objectives and is designed to run with topup mode or beam current decay mode. Up to 50\\% improvement of beam lifetime is demonstrated, without affecting the transverse beam sizes and other relevant parameters. In some cases, the top-upmore » injection efficiency is also improved.« less

  14. Crab Cavity and Cryomodule Prototype Development for the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H; Ciovati, G; Clemens, W A

    2011-03-01

    We review the single-cell, superconducting crab cavity designs for the short-pulse x-ray (SPX) project at the Advanced Photon Source (APS). The 'on-cell' waveguide scheme is expected to have a more margin for the impedance budget of the APS storage ring, as well as offering a more compact design compared with the original design consisting of a low order mode damping waveguide on the beam pipe. We will report recent fabrication progress, cavity test performance on original and alternate prototypes, and concept designs and analysis for various cryomodule components.

  15. VizieR Online Data Catalog: KGS EoR0 Catalogue (Carroll+, 2016)

    NASA Astrophysics Data System (ADS)

    Carroll, P. A.; Line, J.; Morales, M. F.; Barry, N.; Beardsley, A. P.; Hazelton, B. J.; Jacobs, D. C.; Pober, J. C.; Sullivan, I. S.; Webster, R. L.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; de Oliveira-Costa, A.; Dillon, J. S.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, Hs.; Kratzenberg, E.; Lenc, E.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, S. K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Thyagarajan, N.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2018-01-01

    The MWA EoR0 field is centred at RA=0h and Dec=-27°, and was chosen because it has no bright complex sources in the primary field of view. The FWHM of the antenna beam is approximately 20°, but sources in the edges of the beam and first few side lobes are clearly visible and should be subtracted (Thyagarajan et al., 2015ApJ...804...14T, 2015ApJ...807L..28T; Pober et al., 2016ApJ...819....8P). For this catalogue we concentrate on identifying sources in the primary beam but go out to the 5 per cent power point (nearly first beam null, ~1400deg2). The data for this catalogue include 752min snapshot observations (112s consecutive integrations with 8s gaps) from the night of 2013 August 23. The observations were made at 182MHz with 31MHz bandwidth and cover 2.5h in total. This process for source finding, measurement, and classification has been termed KATALOGSS (KDD Astrometry, Trueness, and Apparent Luminosity of Galaxies in Snapshot Surveys; hereafter abbreviated to KGS). (1 data file).

  16. Third user workshop on high-power lasers at the Linac Coherent Light Source

    DOE PAGES

    Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan

    2016-03-24

    On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at themore » LCLS-Matter in Extreme Conditions (MEC) endstation.« less

  17. Crystal regularity with high-resolution synchrotron X-radiation diffraction imaging

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.

    1991-01-01

    New, high-resolution sources of X-radiation such as monochromatic synchrotron radiation beams with subarcsec divergence allow observation of regularities in a range of crystals with sufficient clarity for comprehensive analyses, whose results can deepen understanding of the nature of various crystal irregularities, their sources, and their effects on device performance. An account is presented of the results thus achievable with irregularities encountered in lattice orientation and strain, grain and subgrain boundaries, dislocations, domain boundaries, additional phases, and surface scratches. Significant achievements to date encompass the observation of critical anomalies in lead tin telluride, the reconciliation of disparate observations of GaAs, the determination of the performance effects of irregularities in mercuric iodide, and the characterization of the origins of crystal growth in bismuth silicon oxide.

  18. Identifying risk factors for progression to critical care admission and death among individuals with acute pancreatitis: a record linkage analysis of Scottish healthcare databases

    PubMed Central

    Mole, Damian J; Gungabissoon, Usha; Johnston, Philip; Cochrane, Lynda; Hopkins, Leanne; Wyper, Grant M A; Skouras, Christos; Dibben, Chris; Sullivan, Frank; Morris, Andrew; Ward, Hester J T; Lawton, Andrew M; Donnan, Peter T

    2016-01-01

    Objectives Acute pancreatitis (AP) can initiate systemic complications that require support in critical care (CC). Our objective was to use the unified national health record to define the epidemiology of AP in Scotland, with a specific focus on deterministic and prognostic factors for CC admission in AP. Setting Health boards in Scotland (n=4). Participants We included all individuals in a retrospective observational cohort with at least one episode of AP (ICD10 code K85) occurring in Scotland from 1 April 2009 to 31 March 2012. 3340 individuals were coded as AP. Methods Data from 16 sources, spanning general practice, community prescribing, Accident and Emergency attendances, hospital in-patient, CC and mortality registries, were linked by a unique patient identifier in a national safe haven. Logistic regression and gamma models were used to define independent predictive factors for severe AP (sAP) requiring CC admission or leading to death. Results 2053 individuals (61.5% (95% CI 59.8% to 63.2%)) met the definition for true AP (tAP). 368 patients (17.9% of tAP (95% CI 16.2% to 19.6%)) were admitted to CC. Predictors of sAP were pre-existing angina or hypertension, hypocalcaemia and age 30–39 years, if type 2 diabetes mellitus was present. The risk of sAP was lower in patients with multiple previous episodes of AP. In-hospital mortality in tAP was 5.0% (95% CI 4.1% to 5.9%) overall and 21.7% (95% CI 19.9% to 23.5%) in those with tAP necessitating CC admission. Conclusions National record-linkage analysis of routinely collected data constitutes a powerful resource to model CC admission and prognosticate death during AP. Mortality in patients with AP who require CC admission remains high. PMID:27311912

  19. Evolution of synchrotron-radiation-based Mössbauer absorption spectroscopy for various isotopes

    NASA Astrophysics Data System (ADS)

    Seto, Makoto; Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Hosokawa, Shuuich; Ishibashi, Hiroki; Mitsui, Takaya; Yoda, Yoshitaka; Mibu, Ko

    2017-11-01

    Synchrotron-radiation-based Mössbauer spectroscopy that yields absorption type Mössbauer spectra has been applied to various isotopes. This method enables the advanced measurement by using the excellent features of synchrotron radiation, such as Mössbauer spectroscopic measurement under high-pressures. Furthermore, energy selectivity of synchrotron radiation allows us to measure 40K Mössbauer spectra, of which observation is impossible by using ordinary radioactive sources because the first excited state of 40K is not populated by any radioactive parent nuclides. Moreover, this method has flexibility of the experimental setup that the measured sample can be used as a transmitter or a scatterer, depending on the sample conditions. To enhance the measurement efficiency of the spectroscopy, we developed a detection system in which a windowless avalanche photodiode (APD) detector is combined with a vacuum cryostat to detect internal conversion electrons adding to X-rays accompanied by nuclear de-excitation. In particular, by selecting the emission from the scatterer sample, depth selective synchrotron-radiation-based Mössbauer spectroscopy is possible. Furthermore, limitation of the time window in the delayed components enables us to obtain narrow linewidth in Mössbauer spectra. Measurement system that records velocity dependent time spectra and energy information simultaneously realizes the depth selective and narrow linewidth measurement.

  20. Observations of Distant Clusters

    NASA Technical Reports Server (NTRS)

    Donahue, Megan

    2004-01-01

    The is the proceedings and papers supported by the LTSA grant: Homer, D. J.\\& Donahue, M. 2003, in "The Emergence of Cosmic Structure": 13'h Astrophysics Conference Proceedings, Vol. 666,3 1 1-3 14, (AIP). Baumgartner, W. H., Loewenstein, M., Horner, D. J., Mushotzky, R. F. 2003, HEAD- AAS, 35.3503. Homer, D. J. , Donahue, M., Voit G. M. 2003, HEAD-AAS, 35.1309. Nowak, M. A., Smith, B., Donahue, M., Stocke, J. 2003, HEAD-AAS, 35.1316. Scott, D., Borys, C., Chapman, S. C., Donahue, M., Fahlman, G. G., Halpem, M. Newbury, P. 2002, AAS, 128.01. Jones, L. R. et al. 2002, A new era in cosmology, ASP Conference Proceedings, Vol. 283, p. 223 Donahue, M., Daly, R. A., Homer, D. J. 2003, ApJ, 584, 643, Constraints on the Cluster Environments and Hotspot magnetic field strengths for radio sources 3280 and 3254. Donahue, M., et al. 2003, ApJ, 598, 190. The mass, baryonic fraction, and x-ray temperature of the luminous, high-redshift cluster of galaxies MS045 1.6-0305 Perlman, E. S. et al. 2002, ApJS, 140, 256. Smith, B. J., Nowak, M., Donahue, M., Stocke, J. 2003, AJ, 126, 1763. Chandra Observations of the Interacting NGC44 10 Group of Galaxies. Postman, M., Lauer, T. R., Oegerle, W., Donahue, M. 2002, ApJ, 579, 93. The KPNO/deep-range cluster survey I. The catalog and space density of intermediate-redshift clusters. Molnar, S. M., Hughes, J. P., Donahue, M., Joy, M. 2002, ApJ, 573, L91, Chandra Observations of Unresolved X-Ray Sources around Two Clusters of Galaxies. Donahue, M., Mack, J., 2002 NewAR, 46, 155, HST NIcmos and WFPC2 observations of molecular hydrogen and dust around cooling flows. Koekemoer, A. M. et al. 2002 NewAR, 46, 149, Interactions between the A2597 central radio source and dense gas host galaxy. Donahue, M. et al. 2002 ApJ, 569,689, Distant cluster hunting II.

  1. Probing the self-assembled nanostructures of functional polymers with synchrotron grazing incidence X-ray scattering.

    PubMed

    Ree, Moonhor

    2014-05-01

    For advanced functional polymers such as biopolymers, biomimic polymers, brush polymers, star polymers, dendritic polymers, and block copolymers, information about their surface structures, morphologies, and atomic structures is essential for understanding their properties and investigating their potential applications. Grazing incidence X-ray scattering (GIXS) is established for the last 15 years as the most powerful, versatile, and nondestructive tool for determining these structural details when performed with the aid of an advanced third-generation synchrotron radiation source with high flux, high energy resolution, energy tunability, and small beam size. One particular merit of this technique is that GIXS data can be obtained facilely for material specimens of any size, type, or shape. However, GIXS data analysis requires an understanding of GIXS theory and of refraction and reflection effects, and for any given material specimen, the best methods for extracting the form factor and the structure factor from the data need to be established. GIXS theory is reviewed here from the perspective of practical GIXS measurements and quantitative data analysis. In addition, schemes are discussed for the detailed analysis of GIXS data for the various self-assembled nanostructures of functional homopolymers, brush, star, and dendritic polymers, and block copolymers. Moreover, enhancements to the GIXS technique are discussed that can significantly improve its structure analysis by using the new synchrotron radiation sources such as third-generation X-ray sources with picosecond pulses and partial coherence and fourth-generation X-ray laser sources with femtosecond pulses and full coherence. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Application of Synchrotron Microprobe Methods to Solid-Phase Speciation of Metals and Metalloids in House Dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Walker; H Jamieson; P Rasmussen

    2011-12-31

    Determination of the source and form of metals in house dust is important to those working to understand human and particularly childhood exposure to metals in residential environments. We report the development of a synchrotron microprobe technique for characterization of multiple metal hosts in house dust. We have applied X-ray fluorescence for chemical characterization and X-ray diffraction for crystal structure identification using microfocused synchrotron X-rays at a less than 10 {micro}m spot size. The technique has been evaluated by application to archived house dust samples containing elevated concentrations of Pb, Zn, and Ba in bedroom dust, and Pb and Asmore » in living room dust. The technique was also applied to a sample of soil from the corresponding garden to identify linkages between indoor and outdoor sources of metals. Paint pigments including white lead (hydrocerussite) and lithopone (wurtzite and barite) are the primary source of Pb, Zn, and Ba in bedroom dust, probably related to renovation activity in the home at the time of sampling. The much lower Pb content in the living room dust shows a relationship to the exterior soil and no specific evidence of Pb and Zn from the bedroom paint pigments. The technique was also successful at confirming the presence of chromated copper arsenate treated wood as a source of As in the living room dust. The results of the study have confirmed the utility of this approach in identifying specific metal forms within the dust.« less

  3. Putting tools in the toolbox: Development of a free, open-source toolbox for quantitative image analysis of porous media.

    NASA Astrophysics Data System (ADS)

    Iltis, G.; Caswell, T. A.; Dill, E.; Wilkins, S.; Lee, W. K.

    2014-12-01

    X-ray tomographic imaging of porous media has proven to be a valuable tool for investigating and characterizing the physical structure and state of both natural and synthetic porous materials, including glass bead packs, ceramics, soil and rock. Given that most synchrotron facilities have user programs which grant academic researchers access to facilities and x-ray imaging equipment free of charge, a key limitation or hindrance for small research groups interested in conducting x-ray imaging experiments is the financial cost associated with post-experiment data analysis. While the cost of high performance computing hardware continues to decrease, expenses associated with licensing commercial software packages for quantitative image analysis continue to increase, with current prices being as high as $24,000 USD, for a single user license. As construction of the Nation's newest synchrotron accelerator nears completion, a significant effort is being made here at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory (BNL), to provide an open-source, experiment-to-publication toolbox that reduces the financial and technical 'activation energy' required for performing sophisticated quantitative analysis of multidimensional porous media data sets, collected using cutting-edge x-ray imaging techniques. Implementation focuses on leveraging existing open-source projects and developing additional tools for quantitative analysis. We will present an overview of the software suite that is in development here at BNL including major design decisions, a demonstration of several test cases illustrating currently available quantitative tools for analysis and characterization of multidimensional porous media image data sets and plans for their future development.

  4. Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK

    NASA Astrophysics Data System (ADS)

    Konstantinova, O. Tanaka

    2017-03-01

    High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.

  5. Toward a fourth-generation x-ray source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monction, D. E.

    1999-05-19

    The field of synchrotron radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research that is possible with them. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the optical laser. Theoretical workmore » over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission (SASE) in flee-electron lasers. A major facility of this type based upon a superconducting linac could produce a cost-effective facility that spans wave-lengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotrons facilities, immense new scientific opportunities would result from fourth-generation sources.« less

  6. X-ray optics simulation and beamline design for the APS upgrade

    NASA Astrophysics Data System (ADS)

    Shi, Xianbo; Reininger, Ruben; Harder, Ross; Haeffner, Dean

    2017-08-01

    The upgrade of the Advanced Photon Source (APS) to a Multi-Bend Achromat (MBA) will increase the brightness of the APS by between two and three orders of magnitude. The APS upgrade (APS-U) project includes a list of feature beamlines that will take full advantage of the new machine. Many of the existing beamlines will be also upgraded to profit from this significant machine enhancement. Optics simulations are essential in the design and optimization of these new and existing beamlines. In this contribution, the simulation tools used and developed at APS, ranging from analytical to numerical methods, are summarized. Three general optical layouts are compared in terms of their coherence control and focusing capabilities. The concept of zoom optics, where two sets of focusing elements (e.g., CRLs and KB mirrors) are used to provide variable beam sizes at a fixed focal plane, is optimized analytically. The effects of figure errors on the vertical spot size and on the local coherence along the vertical direction of the optimized design are investigated.

  7. The 7BM beamline at the APS: a facility for time-resolved fluid dynamics measurements

    PubMed Central

    Kastengren, Alan; Powell, Christopher F.; Arms, Dohn; Dufresne, Eric M.; Gibson, Harold; Wang, Jin

    2012-01-01

    In recent years, X-ray radiography has been used to probe the internal structure of dense sprays with microsecond time resolution and a spatial resolution of 15 µm even in high-pressure environments. Recently, the 7BM beamline at the Advanced Photon Source (APS) has been commissioned to focus on the needs of X-ray spray radiography measurements. The spatial resolution and X-ray intensity at this beamline represent a significant improvement over previous time-resolved X-ray radiography measurements at the APS. PMID:22713903

  8. Time-resolved experiments in the frequency domain using synchrotron radiation (invited)

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Giusti, A. M.; Parasassi, T.; Ravagnan, G.; Sapora, O.

    1992-01-01

    PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.

  9. VUV-soft x-ray beamline for spectroscopy and calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, R.J.; Trela, W.J.; Southworth, S.H.

    1986-01-01

    We describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Roland circle instrument of the extended grasshopper design (ERG). A post monochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed.

  10. A new XUV optical end-station to characterize compact and flexible photonic devices using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Mazuritskiy, M. I.; Dabagov, S. B.; Hampai, D.; Lerer, A. M.; Izotova, E. A.; D'Elia, A.; Turchini, S.; Zema, N.; Zuccaro, F.; de Simone, M.; Javad Rezvani, S.; Coreno, M.

    2018-03-01

    In this contribution we present the new experimental end-station to characterize XUV diffractive optics, such as Micro Channel Plates (MCPs) and other polycapillary optics, presently under commission at the Elettra synchrotron radiation laboratory (Trieste, Italy). To show the opportunities offered by these new optical devices for 3rd and 4th generation radiation sources, in this work we present also some patterns collected at different energies of the primary XUV radiation transmitted by MCP optical devices working in the normal incidence geometry.

  11. Preclinical medical students’ understandings of academic and medical professionalism: visual analysis of mind maps

    PubMed Central

    Rees, Charlotte E

    2017-01-01

    Introduction Several studies have begun to explore medical students’ understandings of professionalism generally and medical professionalism specifically. Despite espoused relationships between academic (AP) and medical professionalism (MP), previous research has not yet investigated students’ conceptualisations of AP and MP and the relationships between the two. Objectives The current study, based on innovative visual analysis of mind maps, therefore aims to contribute to the developing literature on how professionalism is understood. Methods We performed a multilayered analysis of 98 mind maps from 262 first-year medical students, including analysing textual and graphical elements of AP, MP and the relationships between AP and MP. Results The most common textual attributes of AP were learning, lifestyle and personality, while attributes of MP were knowledge, ethics and patient-doctor relations. Images of books, academic caps and teachers were used most often to represent AP, while images of the stethoscope, doctor and red cross were used to symbolise MP. While AP-MP relations were sometimes indicated through co-occurring text, visual connections and higher-order visual metaphors, many students struggled to articulate the relationships between AP and MP. Conclusions While the mind maps’ textual attributes shared similarities with those found in previous research, suggesting the universality of some professionalism attributes, our study provides new insights into students’ conceptualisations of AP, MP and AP-MP relationships. We encourage medical educators to help students develop their understandings of AP, MP and AP-MP relationships, plus consider the feasibility and value of mind maps as a source of visual data for medical education research. PMID:28821520

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jingguang; Frenkel, Anatoly; Rodriguez, Jose

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, andmore » to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.« less

  13. Specific chemical and structural damage to proteins produced by synchrotron radiation.

    PubMed

    Weik, M; Ravelli, R B; Kryger, G; McSweeney, S; Raves, M L; Harel, M; Gros, P; Silman, I; Kroon, J; Sussman, J L

    2000-01-18

    Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance.

  14. Recent Advances and Applications in Synchrotron X-Ray Protein Footprinting for Protein Structure and Dynamics Elucidation.

    PubMed

    Gupta, Sayan; Feng, Jun; Chance, Mark; Ralston, Corie

    2016-01-01

    Synchrotron X-ray Footprinting is a powerful in situ hydroxyl radical labeling method for analysis of protein structure, interactions, folding and conformation change in solution. In this method, water is ionized by high flux density broad band synchrotron X-rays to produce a steady-state concentration of hydroxyl radicals, which then react with solvent accessible side-chains. The resulting stable modification products are analyzed by liquid chromatography coupled to mass spectrometry. A comparative reactivity rate between known and unknown states of a protein provides local as well as global information on structural changes, which is then used to develop structural models for protein function and dynamics. In this review we describe the XF-MS method, its unique capabilities and its recent technical advances at the Advanced Light Source. We provide a comparison of other hydroxyl radical and mass spectrometry based methods with XFMS. We also discuss some of the latest developments in its usage for studying bound water, transmembrane proteins and photosynthetic protein components, and the synergy of the method with other synchrotron based structural biology methods.

  15. VizieR Online Data Catalog: CANDELS multiwavelength catalog (Galametz+, 2013)

    NASA Astrophysics Data System (ADS)

    Galametz, A.; Grazian, A.; Fontana, A.; Ferguson, H. C.; Ashby, M. L. N.; Barro, G.; Castellano, M.; Dahlen, T.; Donley, J. L.; Faber, S. M.; Grogin, N.; Guo, Y.; Huang, K.-H.; Kocevski, D. D.; Koekemoer, A. M.; Lee, K.-S.; McGrath, E. J.; Peth, M.; Willner, S. P.; Almaini, O.; Cooper, M.; Cooray, A.; Conselice, C. J.; Dickinson, M.; Dunlop, J. S.; Fazio, G. G.; Foucaud, S.; Gardner, J. P.; Giavalisco, M.; Hathi, N. P.; Hartley, W. G.; Koo, D. C.; Lai, K.; de Mello, D. F.; McLure, R. J.; Lucas, R. A.; Paris, D.; Pentericci, L.; Santini, P.; Simpson, C.; Sommariva, V.; Targett, T.; Weiner, B. J.; Wuyts, S.; CANDELS Team

    2013-06-01

    The present multiwavelength catalog is based on public data in the CANDELS UDS field (J2000 position: 02:17:37.5-05:12:00) located within the original UDS field. It includes: * CANDELS HST/ACS (F606W, F814W) and HST/WFC3 (F125W, F160W); Grogin et al. 2011ApJS..197...35G, Koekemoer et al. 2011ApJS..197...36K. * CFHT U-band (UKIDSS; Almaini et al. in prep.), * SUBARU B, V, Rc, i', z' (SXDS; Furusawa et al. 2008, Cat. J/ApJS/176/1) * VLT/HAWK-I Y and Ks bands (HUGS; Fontana et al. in prep.) * UKIRT/WFCam J, H, K (UKIDSS DR8; Almaini et al. in prep.) * Spitzer/IRAC SEDS 3.6 and 4.5um (SEDS; Ashby et al. 2013ApJ...769...80A) * Spitzer/IRAC SpUDS 5.8, 8.0um (PI: J. Dunlop). The catalog is F160W-selected and contains 35932 sources over an area of 201.7 square arcmin and includes radio and X-ray detected sources and spectroscopic redshifts available for 210 sources. The full official CANDELS UDS catalog (which contains some extra columns including additional SExtractor parameters derived from the F160W image) can be found on the CANDELS website at: http://candels.ucolick.org/data_access/UDS.html (1 data file).

  16. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    PubMed

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  17. Broadband Spectral Modeling of the Extreme Gigahertz-peaked Spectrum Radio Source PKS B0008-421

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Gaensler, B. M.; Ekers, R. D.; Tingay, S. J.; Wayth, R. B.; Morgan, J.; Bernardi, G.; Bell, M. E.; Bhat, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Hurley-Walker, N.; Jacobs, D. C.; Johnston-Hollitt, M.; Kaplan, D. L.; Kudrayvtseva, N.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Srivani, K. S.; Subrahmanyan, R.; Udaya Shankar, N.; Webster, R. L.; Williams, A.; Williams, C. L.

    2015-08-01

    We present broadband observations and spectral modeling of PKS B0008-421 and identify it as an extreme gigahertz-peaked spectrum (GPS) source. PKS B0008-421 is characterized by the steepest known spectral slope below the turnover, close to the theoretical limit of synchrotron self-absorption, and the smallest known spectral width of any GPS source. Spectral coverage of the source spans from 0.118 to 22 GHz, which includes data from the Murchison Widefield Array and the wide bandpass receivers on the Australia Telescope Compact Array. We have implemented a Bayesian inference model fitting routine to fit the data with internal free-free absorption (FFA), single- and double-component FFA in an external homogeneous medium, FFA in an external inhomogeneous medium, or single- and double-component synchrotron self-absorption models, all with and without a high-frequency exponential break. We find that without the inclusion of a high-frequency break these models cannot accurately fit the data, with significant deviations above and below the peak in the radio spectrum. The addition of a high-frequency break provides acceptable spectral fits for the inhomogeneous FFA and double-component synchrotron self-absorption models, with the inhomogeneous FFA model statistically favored. The requirement of a high-frequency spectral break implies that the source has ceased injecting fresh particles. Additional support for the inhomogeneous FFA model as being responsible for the turnover in the spectrum is given by the consistency between the physical parameters derived from the model fit and the implications of the exponential spectral break, such as the necessity of the source being surrounded by a dense ambient medium to maintain the peak frequency near the gigahertz region. This implies that PKS B0008-421 should display an internal H i column density greater than 1020 cm-2. The discovery of PKS B0008-421 suggests that the next generation of low radio frequency surveys could reveal a large population of GPS sources that have ceased activity, and that a portion of the ultra-steep-spectrum source population could be composed of these GPS sources in a relic phase.

  18. Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension

    USDA-ARS?s Scientific Manuscript database

    We used two different Synchrotron-based micro-CT facilities (SLS: Swiss Light Source, Villigen, Switzerland, and ALS: Advanced Light Source, Berkeley, CA USA) to test the excision artifact described by Wheeler et al. (2013). Specifically, we examined the impact of cutting xylem under tension and und...

  19. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC. Design of a multi-cusp ion source for proton therapy

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Bing; Huang, Tao; Ouyang, Hua-Fu; Zhang, Hua-Shun; Gong, Ke-Yun

    2010-12-01

    The permanent magnets of the discharge chamber in a multi-cusp proton source are studied and designed. The three electrode extraction system is adopted and simulated. A method to extract different amounts of current while keeping the beam emittance unchanged is proposed.

  20. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  1. Development Status of Ion Source at J-PARC Linac Test Stand

    NASA Astrophysics Data System (ADS)

    Yamazaki, S.; Takagi, A.; Ikegami, K.; Ohkoshi, K.; Ueno, A.; Koizumi, I.; Oguri, H.

    The Japan Proton Accelerator Research Complex (J-PARC) linac power upgrade program is now in progress in parallel with user operation. To realize a nominal performance of 1 MW at 3 GeV Rapid Cycling Synchrotron and 0.75 MW at the Main Ring synchrotron, we need to upgrade the peak beam current (50 mA) of the linac. For the upgrade program, we are testing a new front-end system, which comprises a cesiated RF-driven H- ion source and a new radio -frequency quadrupole linac (RFQ). The H- ion source was developed to satisfy the J-PARC upgrade requirements of an H- ion-beam current of 60 mA and a lifetime of more than 50 days. On February 6, 2014, the first 50 mA H- beams were accelerated by the RFQ during a beam test. To demonstrate the performance of the ion source before its installation in the summer of 2014, we tested the long-term stability through continuous beam operation, which included estimating the lifetime of the RF antenna and evaluating the cesium consumption.

  2. APS 6BM-B Large Volume High Pressure Beamline: A Workhorse for Rock and Mineral Physics

    NASA Astrophysics Data System (ADS)

    Chen, H.; Whitaker, M. L.; Baldwin, K. J.; Huebsch, W. R.; Vaughan, M. T.; Weidner, D. J.

    2017-12-01

    With the inheritance of decades of technical innovations at the NSLS X17B2 Beamline, APS 6BM-B Beamline was established in 2015 and is a dedicated beamline for synchrotron-based large volume high pressure research in earth sciences, especially rock and mineral physics. Currently a 250-ton hydraulic press equipped with a D-DIA module is installed and a Rotational Drickamer Apparatus from Yale University is hosted every cycle, covering a pressure range from crust to lower mantle. 6BM-B operates in white beam mode with an effective energy range of 20-100 keV. Energy dispersive X-ray diffraction data is collected using a 10-element solid state Ge array detector arranged in a circular geometry to allow for the real time assessment of stress. Direct radiographic imaging using Prosillica CCD camera and scintillating YAG crystals yields sample strain and strain rate. In addition to applications in phase transitions, equation of states measurements, sound velocity measurements, this setup is ideal for studies of steady state and dynamic deformation process. In this presentation, technical features and strengths of 6BM-B will be discussed. Most recent progress and science highlights of our user community will be showcased.

  3. Laser drive development for the APS Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Lagrange, Thomas; Swift, Damian; Reed, Bryan; Bernier, Joel; Kumar, Mukul; Hawreliak, James; Eggert, Jon; Dixit, Sham; Collins, Gilbert

    2013-06-01

    The Dynamic Compression Sector (DCS) at the APS synchrotron offers unprecedented possibilities for x-ray diffraction and scattering measurements in-situ during dynamic loading, including single-shot data collection with x-ray energies high enough (tens of kV) to study high-Z samples in transmission as well as reflection. Dynamic loading induced by laser ablation is an important component of load generation, as the duration, strain rate, and pressure can be controlled via the energy, spot size, and pulse shape. Using radiation hydrodynamics simulations, validated by experiments at several laser facilities, we have investigated the relationship between irradiance history and pressure for ablative loads designed to induce shock and ramp loading in the nanosecond to microsecond range, and including free ablation and also ablation confined by a transparent substrate. We have investigated the effects of lateral release, which constrains the minimum diameter of the focal spot for a given drive duration. In this way, we are able to relate the desired drive conditions to the total laser energy needed, which dictates the laser technologies suitable for a given type of experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams.

    PubMed

    Botha, Sabine; Nass, Karol; Barends, Thomas R M; Kabsch, Wolfgang; Latz, Beatrice; Dworkowski, Florian; Foucar, Lutz; Panepucci, Ezequiel; Wang, Meitian; Shoeman, Robert L; Schlichting, Ilme; Doak, R Bruce

    2015-02-01

    Recent advances in synchrotron sources, beamline optics and detectors are driving a renaissance in room-temperature data collection. The underlying impetus is the recognition that conformational differences are observed in functionally important regions of structures determined using crystals kept at ambient as opposed to cryogenic temperature during data collection. In addition, room-temperature measurements enable time-resolved studies and eliminate the need to find suitable cryoprotectants. Since radiation damage limits the high-resolution data that can be obtained from a single crystal, especially at room temperature, data are typically collected in a serial fashion using a number of crystals to spread the total dose over the entire ensemble. Several approaches have been developed over the years to efficiently exchange crystals for room-temperature data collection. These include in situ collection in trays, chips and capillary mounts. Here, the use of a slowly flowing microscopic stream for crystal delivery is demonstrated, resulting in extremely high-throughput delivery of crystals into the X-ray beam. This free-stream technology, which was originally developed for serial femtosecond crystallography at X-ray free-electron lasers, is here adapted to serial crystallography at synchrotrons. By embedding the crystals in a high-viscosity carrier stream, high-resolution room-temperature studies can be conducted at atmospheric pressure using the unattenuated X-ray beam, thus permitting the analysis of small or weakly scattering crystals. The high-viscosity extrusion injector is described, as is its use to collect high-resolution serial data from native and heavy-atom-derivatized lysozyme crystals at the Swiss Light Source using less than half a milligram of protein crystals. The room-temperature serial data allow de novo structure determination. The crystal size used in this proof-of-principle experiment was dictated by the available flux density. However, upcoming developments in beamline optics, detectors and synchrotron sources will enable the use of true microcrystals. This high-throughput, high-dose-rate methodology provides a new route to investigating the structure and dynamics of macromolecules at ambient temperature.

  5. Multi-dimensional free-electron laser simulation codes : a comparison study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedron, S. G.; Chae, Y. C.; Dejus, R. J.

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  6. Multi-Dimensional Free-Electron Laser Simulation Codes: A Comparison Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  7. P alpha-chiral phosphorothioate analogues of bis(5'-adenosyl)tetraphosphate (Ap4A); their enzymatic synthesis and degradation.

    PubMed Central

    Lazewska, D; Guranowski, A

    1990-01-01

    Synthesis of Sp and Rp diastereomers of Ap4A alpha S has been characterized in two enzymatic systems, the lysyl-tRNA synthetase from Escherichia coli and the Ap4A alpha, beta-phosphorylase from Saccharomyces cerevisiae. The synthetase was able to use both (Sp)ATP alpha S and (Rp)ATP alpha S as acceptors of adenylate thus yielding corresponding monothioanalogues of Ap4A,(Sp) Ap4A alpha S and (Rp)Ap4A alpha S. No dithiophosphate analogue was formed. Relative synthetase velocities of the formation of Ap4A,(Sp) Ap4A alpha S and (Rp)Ap4A alpha S were 1:0.38:0.15, and the computed Km values for (Sp)ATP alpha S and (Rp)ATP alpha S were 0.48 and 1.34 mM, respectively. The yeast Ap4A phosphorylase synthesized (Sp)Ap4A alpha S and (Rp)Ap4A alpha S using adenosine 5'-phosphosulfate (APS) as source of adenylate. The adenylate was accepted by corresponding thioanalogues of ATP. In that system, relative velocities of Ap4A, (Sp)Ap4A alpha S and (Rp)Ap4A alpha S formation were 1:0.15:0.60. The two isomeric phosphorothioate analogues of Ap4A were tested as substrates for the following specific Ap4A-degrading enzymes: (asymmetrical) Ap4A hydrolase (EC 3.6.1.17) from yellow lupin (Lupinus luteus) seeds hydrolyzed each of the analogues to AMP and the corresponding isomer of ATP alpha S; (symmetrical) Ap4A hydrolase (EC 3.6.1.41) from E. coli produced ADP and the corresponding diastereomer of ADP alpha S; and Ap4A phosphorylase (EC 2.7.7.53) from S. cerevisiae cleaved the Rp isomer only at the unmodified end yielding ADP and (Rp)ATP alpha S whereas the Sp isomer was degraded non-specifically yielding a mixture of ADP, (Sp)ADP alpha S, ATP and (Sp)ATP alpha S. For all the Ap4A-degrading enzymes, the Rp isomer of Ap4A alpha S appeared to be a better substrate than its Sp counterpart; stereoselectivity of the three enzymes for the Ap4A alpha S diastereomers is 51, 6 and 2.5, respectively. Basic kinetic parameters of the degradation reactions are presented and structural requirements of the Ap4A-metabolizing enzymes with respect to the potential substrates modified at the Ap4A-P alpha are discussed. PMID:2172926

  8. Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata

    PubMed Central

    Sutherland, Kathryn Patterson; Shaban, Sameera; Joyner, Jessica L.; Porter, James W.; Lipp, Erin K.

    2011-01-01

    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival. PMID:21858132

  9. VizieR Online Data Catalog: z>~5 AGN in Chandra Deep Field-South (Weigel+, 2015)

    NASA Astrophysics Data System (ADS)

    Weigel, A. K.; Schawinski, K.; Treister, E.; Urry, C. M.; Koss, M.; Trakhtenbrot, B.

    2015-09-01

    The Chandra 4-Ms source catalogue by Xue et al. (2011, Cat. J/ApJS/195/10) is the starting point of this work. It contains 740 sources and provides counts and observed frame fluxes in the soft (0.5-2keV), hard (2-8keV) and full (0.5-8keV) band. All object IDs used in this work refer to the source numbers listed in the Xue et al. (2011, Cat. J/ApJS/195/10) Chandra 4-Ms catalogue. We make use of Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) data from the Great Observatories Origins Deep Survey South (GOODS-south) in the optical wavelength range. We use catalogues and images for filters F435W (B), F606W (V), F775W (i) and 850LP (z) from the second GOODS/ACS data release (v2.0; Giavalisco et al., 2004, Cat. II/261). We use Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) Wide Field Camera 3 (WFC3)/infrared data from the first data release (DR1, v1.0) for passbands F105W (Y), F125W (J) and F160W (H) (Grogin et al., 2011ApJS..197...35G; Koekemoer et al., 2011ApJS..197...36K). To determine which objects are red, dusty, low-redshift interlopers, we also include the 3.6 and 4.5 micron Spitzer Infrared Array Camera (IRAC) channels. We use SIMPLE image data from the DR1 (van Dokkum et al., 2005, Spitzer Proposal, 2005.20708) and the first version of the extended SIMPLE catalogue by Damen et al. (2011, Cat. J/ApJ/727/1). (6 data files).

  10. ROLES OF ADIPOCYTES AND FIBROBLASTS IN ACTIVATION OF THE ALTERNATIVE PATHWAY OF COMPLEMENT IN INFLAMMATORY ARTHRITIS IN MICE

    PubMed Central

    Arend, William P.; Mehta, Gaurav; Antonioli, Alexandra H.; Takahashi, Minoru; Takahashi, Kazue; Stahl, Gregory L.; Holers, V. Michael; Banda, Nirmal K.

    2013-01-01

    The complement system is involved in mediation of joint damage in rheumatoid arthritis, with evidence suggesting activation of both the classical and alternative pathways (AP). The AP is both necessary and sufficient to mediate collagen antibody-induced arthritis (CAIA), an experimental animal model of immune complex (IC)-induced joint disease. The AP in mice is dependent on MASP-1/3 cleavage of pro-factor D (pro-FD) into mature FD. The objectives of the present study were to determine the cells synthesizing MASP-1/3 and pro-FD in synovial tissue. CAIA was studied in wild-type C57BL/6 mice, and the localization of mRNA and protein for FD and MASP-1/3 in synovial adipose tissue (SAT) and fibroblast-like synoviocytes (FLS) was determined using various techniques, including laser capture micro-dissection (LCM). SAT was the sole source of mRNA for pro-FD. Cultured differentiated 3T3 adipocytes, a surrogate for SAT, produced pro-FD but no mature FD. FLS were the main source of MASP-1/3 mRNA and protein. Using cartilage micro-particles (CMP) coated with anti-collagen mAb and serum from MASP-1/3−/− mice as a source of factor B, pro-FD in 3T3 supernatants was cleaved into mature FD by MASP-1/3 in FLS supernatants. The mature FD was eluted from the CMP, and was not present in the supernatants from the incubation with CMP, indicating that cleavage of pro-FD into mature FD by MASP-1 occurred on the CMP. These results demonstrate that pathogenic activation of the AP may occur in the joint through IC adherent to cartilage and the local production of necessary AP proteins by adipocytes and FLS. PMID:23650618

  11. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansil, Arun

    2016-12-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspectsmore » of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frølich, S.; Leemreize, H.; Jakus, A.

    A model sample consisting of two different hydroxyapatite (hAp) powders was used as a bone phantom to investigate the extent to which X-ray diffraction tomography could map differences in hAp lattice constants and crystallite size. The diffraction data were collected at beamline 1-ID, the Advanced Photon Source, using monochromatic 65 keV X-radiation, a 25 × 25 µm pinhole beam and translation/rotation data collection. The diffraction pattern was reconstructed for each volume element (voxel) in the sample, and Rietveld refinement was used to determine the hAp lattice constants. The crystallite size for each voxel was also determined from the 00.2 hApmore » diffraction peak width. The results clearly show that differences between hAp powders could be measured with diffraction tomography.« less

  13. Alternate Lattice Design for Advanced Photon Source Multi-Bend Achromat Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng; Borland, Michael

    2015-01-01

    A 67-pm hybrid-seven-bend achromat (H7BA) lattice is proposed for a futureAdvanced Photon Source (APS)multibend- achromat (MBA) upgrade. This lattice requires use of a swap-out (on-axis) injection scheme. Alternate lattice design work has also been performed to achieve better beam dynamics performance than the nominal APS MBA lattice, in order to allow beam accumulation. One of such alternate H7BA lattice designs, which still targets a very low emittance of 76 pm, is discussed in this paper. With these lattices, existing APS injector complex can be employed without the requirement of a very high charge operation. Studies show that an emittance belowmore » 76 pm can be achieved with the employment of reverse bends in an alternate lattice. We discuss the predicted performance and requirements for these lattices and compare them to the nominal lattice.« less

  14. VizieR Online Data Catalog: Sample of Fermi Blazars (Chen+, 2016)

    NASA Astrophysics Data System (ADS)

    Chen, Y.-Y.; Zhang, X.; Xiong, D.-R.; Wang, S.-J.; Yu, X.-L.

    2016-04-01

    We tried to select a large number of blazars with reliable redshift, radio core and extended radio luminosity at 1.4GHz. Firstly, we considered the following samples of blazars to get the radio core luminosity and extended luminosity at 1.4GHz: Kharb et al. (2010, J/ApJ/710/764), Antonucci & Ulvestad (1985ApJ...294..158A), Cassaro et al. (1999A&AS..139..601C), Murphy et al. (1993MNRAS.264..298M), Landt & Bignall (2008MNRAS.391..967L), Caccianiga & Marcha (2004, Cat. J/MNRAS/348/973), Giroletti et al. (2004). We cross-correlated these samples with the Fermi LAT Third Source Catalog (3FGL), and we acquired the 3FGL spectral index and energy flux at 0.1-100GeV from clean sources in 3FGL (Fermi-LAT Collaboration 2015, J/ApJS/218/23) Using these catalogs, we compiled 201 Fermi blazars. (1 data file).

  15. VizieR Online Data Catalog: X-ray+Radio sources in XBootes (El Bouchefry, 2009)

    NASA Astrophysics Data System (ADS)

    El Bouchefry, K.

    2010-08-01

    The radio data are from the 2002 version of the FIRST VLA catalogue (Becker et al., 1995, See Cat. VIII/71), and it is derived from 1993 through 2002 observations. The X-ray data (Kenter et al. 2005, Cat. J/ApJS/161/9; Murray et al. 2005ApJS..161....1M) used in this paper are from the Chandra XBootes surveys. The XBootes catalogue contains ~3213 X-ray point sources and is publicly available through the National Optical Astronomy Observatory (NOAO) Deep Wide Field Survey (NDWFS) homepage (http://www.noao.edu/noao/noaodeep/XBootesPublic/index.html) The NDWFS is a deep multiband imaging (Bw, R, I, J, H, K) designed to study the formation and evolution of large-scale structures (Jannuzi et al., 1999, BAAS, 31, 1392; Brown et al., 2003ApJ...597..225B). (1 data file).

  16. Microangiography in Living Mice Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Yuan, Falei; Wang, Yongting; Guan, Yongjing; Lu, Haiyan; Xie, Bohua; Tang, Yaohui; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Yang, Guo-Yuan

    2010-07-01

    Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 μm/pixel. The optimal dose of contrast agent is 100 μl per injection and the injecting rate is 33 μl/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43±6.8 μm. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

  17. The time variability of Jupiter's synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bolton, Scott Jay

    1991-02-01

    The time variability of the Jovian synchrotron emission is investigated by analyzing radio observations of Jupiter at decimetric wavelengths. The observations are composed from two distinct sets of measurements addressing both short term (days to weeks) and long term (months to years) variability. The study of long term variations utilizes a set of measurements made several times each month with the NASA Deep Space Network (DNS) antennas operating at 2295 MHz (13.1 cm). The DSN data set, covering 1971 through 1985, is compared with a set of measurements of the solar wind from a number of Earth orbiting spacecraft. The analysis indicates a maximum correlation between the synchrotron emission and the solar wind ram pressure with a two year time lag. Physical mechanisms affecting the synchrotron emission are discussed with an emphasis on radial diffusion. Calculations are performed that suggest the correlation is consistent with inward adiabatic diffusion of solar wind particles driven by Brice's model of ionospheric neutral wind convection (Brice 1972). The implication is that the solar wind could be a source of particles of Jupiter's radiation belts. The investigation of short term variability focuses on a three year Jupiter observing program using the University of California's Hat Creek radio telescope operating at 1400 MHz (21 cm). Measurements are made every two days during the months surrounding opposition. Results from the three year program suggest short term variability near the 10-20 percent level but should be considered inconclusive due to scheduling and observational limitations. A discussion of magneto-spheric processes on short term timescales identifies wave-particle interactions as a candidate source. Further analysis finds that the short term variations could be related to whistler mode wave-particles interactions in the radiation belts associated with atmospheric lightning on Jupiter. However, theoretical calculations on wave particle interactions imply thought if whistler mode waves are to interact with the synchrotron emitting electrons.

  18. First Structural Steel Erected at NSLS-II

    ScienceCinema

    None

    2017-12-09

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  19. Beam position monitoring system at CESR

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Bergan, W. F.; Forster, M. J.; Meller, R. E.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Palmer, M. A.; Holtzapple, R. L.

    2017-09-01

    The Cornell Electron-positron Storage Ring (CESR) has been converted from a High Energy Physics electron-positron collider to operate as a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS) and to conduct accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Some of the specific topics that were targeted for the initial phase of operation of the storage ring in this mode, labeled CESRTA (CESR as a Test Accelerator), included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CESRTA occurred over a several year period and is described elsewhere. As a part of this conversion the CESR beam position monitoring (CBPM) system was completely upgraded to provide the needed instrumental capabilities for these studies. This paper describes the new CBPM system hardware, its function and representative measurements performed by the upgraded system.

  20. The penta-prism LTP: A long-trace-profiler with stationary optical head and moving penta prism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S.; Jark, W.; Takacs, P.Z.

    1995-03-01

    Metrology requirements for optical components for third-generation synchrotron sources are taxing the state of the art in manufacturing technology. We have investigated a number of error sources in a commercial figure measurement instrument, the Long-Trace-Profiler II, and have demonstrated that, with some simple modifications, we can significantly reduce the effect of error sources and improve the accuracy and reliability of the measurement. By keeping the optical head stationary and moving a penta prism along the translation stage, as in the original pencil-beam interferometer design of von Bieren, the stability of the optical system is greatly improved, and the remaining errormore » signals can be corrected by a simple reference beam subtraction. We illustrate the performance of the modified system by investigating the distortion produced by gravity on a typical synchrotron mirror and demonstrate the repeatability of the instrument despite relaxed tolerances on the translation stage.« less

  1. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use.

    PubMed

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  2. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  3. Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal

    2017-09-01

    For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.

  4. K-edge subtraction synchrotron X-ray imaging in bio-medical research.

    PubMed

    Thomlinson, W; Elleaume, H; Porra, L; Suortti, P

    2018-05-01

    High contrast in X-ray medical imaging, while maintaining acceptable radiation dose levels to the patient, has long been a goal. One of the most promising methods is that of K-edge subtraction imaging. This technique, first advanced as long ago as 1953 by B. Jacobson, uses the large difference in the absorption coefficient of elements at energies above and below the K-edge. Two images, one taken above the edge and one below the edge, are subtracted leaving, ideally, only the image of the distribution of the target element. This paper reviews the development of the KES techniques and technology as applied to bio-medical imaging from the early low-power tube sources of X-rays to the latest high-power synchrotron sources. Applications to coronary angiography, functional lung imaging and bone growth are highlighted. A vision of possible imaging with new compact sources is presented. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Multiwavelength observations of the blazar 1ES 1011+496 in Spring 2008

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Lotto, B.; de Oña Wilhelmi, E.; Delgado Mendez, C.; Di Pierro, F.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Elsaesser, D.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Eisenacher Glawion, D.; Godinović, N.; González Muñoz, A.; Guberman, D.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saito, T.; Satalecka, K.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; Lucarelli, F.; Pittori, C.; Vercellone, S.; Berdyugin, A.; Carini, M. T.; Lähteenmäki, A.; Pasanen, M.; Pease, A.; Sainio, J.; Tornikoski, M.; Walters, R.

    2016-07-01

    The BL Lac object 1ES 1011+496 was discovered at very high energy (VHE, E > 100GeV) γ-rays by Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) in Spring 2007. Before that the source was little studied in different wavelengths. Therefore, a multiwavelength (MWL) campaign was organized in Spring 2008. Along MAGIC, the MWL campaign included the Metsähovi Radio Observatory, Bell and Kungliga Vetenskapsakademien (KVA) optical telescopes and the Swift and AGILE satellites. MAGIC observations span from 2008 March to May for a total of 27.9 h, of which 19.4 h remained after quality cuts. The light curve showed no significant variability yielding an integral flux above 200 GeV of (1.3 ± 0.3) × 10-11 photons cm-2 s-1. The differential VHE spectrum could be described with a power-law function with a spectral index of 3.3 ± 0.4. Both results were similar to those obtained during the discovery. Swift X-ray Telescope observations revealed an X-ray flare, characterized by a harder-when-brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE γ-ray bands could be drawn. The contemporaneous spectral energy distribution shows a synchrotron-dominated source, unlike concluded in previous work based on non-simultaneous data, and is well described by a standard one-zone synchrotron self-Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.

  6. PREFACE: REXS 2013 - Workshop on Resonant Elastic X-ray Scattering in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Beutier, G.; Mazzoli, C.; Yakhou, F.; Brown, S. D.; Bombardi, A.; Collins, S. P.

    2014-05-01

    The aim of this workshop was to bring together experts in experimental and theoretical aspects of resonant elastic x-ray scattering, along with researchers who are new to the field, to discuss important recent results and the fundamentals of the technique. The meeting was a great success, with the first day dedicated to students and new researchers in the field, who received introductory lectures and tutorials. All conference delegates were invited either to make an oral presentation or to present a poster, accompanied by a short talk. The first two papers selected for the REXS13 proceedings (Grenier & Joly and Helliwell) give a basic background to the theory of REXS and applications across a wide range of scientific areas. The remainder of the papers report on some of the latest scientific results obtained by applying the REXS technique to contemporary problems in condensed matter, materials and x-ray physics. It is hoped that these proceedings provide a snapshot of the current status of a vibrant and diverse scientific technique that will be of value not just to those who attended the workshop but also to any other reader with an interest in the subject. Local Scientific Committee REXS13 International Scientific Advisory Committee M Altarelli, European XFEL, Germany F de Bergevin, European Synchrotron Radiation Facility, France J Garcia-Ruiz, Universidad de Zaragoza, Spain A I Goldman, Iowa State University, USA M Goldmann, Institut Nanosciences, France T Schulli, European Synchrotron Radiation Facility, France C R Natoli, Laboratori Nazionali de Frascati, Italy G Materlik, Diamond Light Source, UK L Paolasini, European Synchrotron Radiation Facility, France U Staub, Paul Scherrer Institut, Switzerland K Finkelstein, Cornell University, USA Y Murakami, Photon Factory, Japan REXS13 Local Scientific Committee G Beutier, CNRS Grenoble, France C Mazzoli, Politecnico di Milano, Italy F Yakhou, European Synchrotron Radiation Facility, France S D Brown, XMaS UK CRG, France A Bombardi, Diamond Light Source, UK S P Collins, Diamond Light Source, UK http://www.rexs2013.org/

  7. An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakeman, Michael S.

    Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical Free Electron Laser operating in the XUV and soft x-ray regimes.

  8. Rare earth element concentrations in geological and synthetic samples using synchrotron X-ray fluorescence analysis

    USGS Publications Warehouse

    Chen, J.R.; Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Rivers, M.L.; Sutton, S.R.; Cygan, G.L.; Grossman, J.N.; Reed, M.J.

    1993-01-01

    The concentrations of rare earth elements (REEs) in specific mineral grains from the Bayan Obo ore deposit and synthetic high-silica glass samples have been measured by synchrotron X-ray fluorescence (SXRF) analysis using excitation of the REE K lines between 33 and 63 keV. Because SXRF, a nondestructive analytical technique, has much lower minimum detection limits (MDLs) for REEs, it is an important device that extends the in situ analytical capability of electron probe microanalysis (EPMA). The distribution of trace amounts of REEs in common rock-forming minerals, as well as in REE minerals and minerals having minor quantities of REEs, can be analyzed with SXRF. Synchrotron radiation from a bending magnet and a wiggler source at the National Synchrotron Light Source, Brookhaven National Laboratory, was used to excite the REEs. MDLs of 6 ppm (La) to 26 ppm (Lu) for 3600 s in 60-??m-thick standard samples were obtained with a 25-??m diameter wiggler beam. The MDLs for the light REEs were a factor of 10-20 lower than the MDLs obtained with a bending magnet beam. The SXRF REE concentrations in mineral grains greater than 25 ??m compared favorably with measurements using EPMA. Because EPMA offered REE MDLs as low as several hundred ppm, the comparison was limited to the abundant light REEs (La, Ce, Pr, Nd). For trace values of medium and heavy REEs, the SXRF concentrations were in good agreement with measurements using instrumental neutron activation analysis (INAA), a bulk analysis technique. ?? 1993.

  9. A time dependent approach to model X-ray and γ-ray light curves of Mrk 421 observed during the flare in February 2010

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Sahayanathan, S.; Sinha, A.; Bhatt, N.; Tickoo, A. K.; Yadav, K. K.; Rannot, R. C.; Chandra, P.; Venugopal, K.; Marandi, P.; Kumar, N.; Goyal, H. C.; Goyal, A.; Agarwal, N. K.; Kothari, M.; Chanchalani, K.; Dhar, V. K.; Chouhan, N.; Bhat, C. K.; Koul, M. K.; Koul, R.

    2017-07-01

    Strong X-ray and γ-ray flares have been detected in February 2010 from the high synchrotron peaked blazar Mrk 421 (z = 0.031). With the motivation of understanding the physics involved in this flaring activity, we study the variability of the source in X-ray and γ-ray energy bands during the period February 10-23, 2010 (MJD 55237-55250). We use near simultaneous X-ray data collected by MAXI, Swift-XRT and γ-ray data collected by Fermi-LAT and TACTIC along with the optical V-band observations by SPOLat Steward Observatory. We observe that the variation in the one day averaged flux from the source during the flare is characterized by fast rise and slow decay. Besides, the TeV γ-ray flux shows a strong correlation with the X-ray flux, suggesting the former to be an outcome of synchrotron self Compton emission process. To model the observed X-ray and γ-ray light curves, we numerically solve the kinetic equation describing the evolution of particle distribution in the emission region. The injection of particle distribution into the emission region, from the putative acceleration region, is assumed to be a time dependent power law. The synchrotron and synchrotron self Compton emission from the evolving particle distribution in the emission region are used to reproduce the X-ray and γ-ray flares successfully. Our study suggests that the flaring activity of Mrk 421 can be an outcome of an efficient acceleration process associated with the increase in underlying non-thermal particle distribution.

  10. Sirepo: a web-based interface for physical optics simulations - its deployment and use at NSLS-II

    NASA Astrophysics Data System (ADS)

    Rakitin, Maksim S.; Chubar, Oleg; Moeller, Paul; Nagler, Robert; Bruhwiler, David L.

    2017-08-01

    "Sirepo" is an open source cloud-based software framework which provides a convenient and user-friendly web-interface for scientific codes such as Synchrotron Radiation Workshop (SRW) running on a local machine or a remote server side. SRW is a physical optics code allowing to simulate the synchrotron radiation from various insertion devices (undulators and wigglers) and bending magnets. Another feature of SRW is a support of high-accuracy simulation of fully- and partially-coherent radiation propagation through X-ray optical beamlines, facilitated by so-called "Virtual Beamline" module. In the present work, we will discuss the most important features of Sirepo/SRW interface with emphasis on their use for commissioning of beamlines and simulation of experiments at National Synchrotron Light Source II. In particular, "Flux through Finite Aperture" and "Intensity" reports, visualizing results of the corresponding SRW calculations, are being routinely used for commissioning of undulators and X-ray optical elements. Material properties of crystals, compound refractive lenses, and some other optical elements can be dynamically obtained for the desired photon energy from the databases publicly available at Argonne National Lab and at Lawrence Berkeley Lab. In collaboration with the Center for Functional Nanomaterials (CFN) of BNL, a library of samples for coherent scattering experiments has been implemented in SRW and the corresponding Sample optical element was added to Sirepo. Electron microscope images of artificially created nanoscale samples can be uploaded to Sirepo to simulate scattering patterns created by synchrotron radiation in different experimental schemes that can be realized at beamlines.

  11. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu; Konstantinidis, Anastasios C.

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterizedmore » and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for microcalcifications was observed using the Dexela 2923 MAM CMOS APS x-ray imager at a lower MGD (2.0 mGy). Conclusions: The Dexela 2923 MAM CMOS APS x-ray imager is capable to achieve a high imaging performance at spatial frequencies up to 6.7 lp/mm. Microcalcifications of 165 μm are distinguishable based on reported data and their modeling results due to the small pixel pitch of 75 μm. At the same time, potential dose reduction is expected using the studied CMOS APS x-ray imager.« less

  12. A 10 Day Period in IGR J16328-4726 from Swift/BAT Observations

    NASA Astrophysics Data System (ADS)

    Corbet, R. H. D.; Barthelmy, S. D.; Baumgartner, W. H.; Krimm, H. A.; Markwardt, C. B.; Skinner, G. K.; Tueller, J.

    2010-04-01

    IGR J16328-4726 is a little studied X-ray source. It is listed as a "blended" variable source in the 4th IBIS/ISGRI Catalog (Bird et al. 2010, ApJ Supp, 186, 1) but is not present in the Swift BAT 22 month all-sky survey (Tueller et al. 2010, ApJ Supp, 186, 378). Grupe et al. (2009, ATel #2075) report a flare detected with the Swift BAT which was followed up with Swift XRT observations. We have analyzed the Swift BAT 58 month survey (Baumgartner et al.

  13. Optimization of air gap for two-dimensional imaging system using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zeniya, Tsutomu; Takeda, Tohoru; Yu, Quanwen; Hyodo, Kazuyuki; Yuasa, Tetsuya; Aiyoshi, Yuji; Hiranaka, Yukio; Itai, Yuji; Akatsuka, Takao

    2000-11-01

    Since synchrotron radiation (SR) has several excellent properties such as high brilliance, broad continuous energy spectrum and small divergence, we can obtain x-ray images with high contrast and high spatial resolution by using of SR. In 2D imaging using SR, air gap method is very effective to reduce the scatter contamination. However, to use air gap method, the geometrical effect of finite source size of SR must be considered because spatial resolution of image is degraded by air gap. For 2D x-ray imaging with SR, x-ray mammography was chosen to examine the effect of air gap method. We theoretically discussed the optimization of air gap distance suing effective scatter point source model proposed by Muntz, and executed experiment with a newly manufactured monochromator with asymmetrical reflection and an imaging plate.

  14. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyubimov, Artem Y.; Stanford University, Stanford, CA 94305; Stanford University, Stanford, CA 94305

    A microfluidic platform has been developed for the capture and X-ray analysis of protein microcrystals, affording a means to improve the efficiency of XFEL and synchrotron experiments. X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressablemore » points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less

  15. Preclinical medical students' understandings of academic and medical professionalism: visual analysis of mind maps.

    PubMed

    Janczukowicz, Janusz; Rees, Charlotte E

    2017-08-18

    Several studies have begun to explore medical students' understandings of professionalism generally and medical professionalism specifically. Despite espoused relationships between academic (AP) and medical professionalism (MP), previous research has not yet investigated students' conceptualisations of AP and MP and the relationships between the two. The current study, based on innovative visual analysis of mind maps, therefore aims to contribute to the developing literature on how professionalism is understood. We performed a multilayered analysis of 98 mind maps from 262 first-year medical students, including analysing textual and graphical elements of AP, MP and the relationships between AP and MP. The most common textual attributes of AP were learning, lifestyle and personality, while attributes of MP were knowledge, ethics and patient-doctor relations. Images of books, academic caps and teachers were used most often to represent AP, while images of the stethoscope, doctor and red cross were used to symbolise MP. While AP-MP relations were sometimes indicated through co-occurring text, visual connections and higher-order visual metaphors, many students struggled to articulate the relationships between AP and MP. While the mind maps' textual attributes shared similarities with those found in previous research, suggesting the universality of some professionalism attributes, our study provides new insights into students' conceptualisations of AP, MP and AP-MP relationships. We encourage medical educators to help students develop their understandings of AP, MP and AP-MP relationships, plus consider the feasibility and value of mind maps as a source of visual data for medical education research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Double Compton and Cyclo-Synchrotron in Super-Eddington Discs, Magnetized Coronae, and Jets

    NASA Astrophysics Data System (ADS)

    McKinney, Jonathan C.; Chluba, Jens; Wielgus, Maciek; Narayan, Ramesh; Sadowski, Aleksander

    2017-05-01

    Black hole accretion discs accreting near the Eddington rate are dominated by bremsstrahlung cooling, but above the Eddington rate, the double Compton process can dominate in radiation-dominated regions, while the cyclo-synchrotron can dominate in strongly magnetized regions like a corona or a jet. We present an extension to the general relativistic radiation magnetohydrodynamic code harmrad to account for emission and absorption by thermal cyclo-synchrotron, double Compton, bremsstrahlung, low-temperature opal opacities, as well as Thomson and Compton scattering. The harmrad code and associated analysis and visualization codes have been made open-source and are publicly available at the github repository website. We approximate the radiation field as a Bose-Einstein distribution and evolve it using the radiation number-energy-momentum conservation equations in order to track photon hardening. We perform various simulations to study how these extensions affect the radiative properties of magnetically arrested discs accreting at Eddington to super-Eddington rates. We find that double Compton dominates bremsstrahlung in the disc within a radius of r ˜ 15rg (gravitational radii) at hundred times the Eddington accretion rate, and within smaller radii at lower accretion rates. Double Compton and cyclo-synchrotron regulate radiation and gas temperatures in the corona, while cyclo-synchrotron regulates temperatures in the jet. Interestingly, as the accretion rate drops to Eddington, an optically thin corona develops whose gas temperature of T ˜ 109K is ˜100 times higher than the disc's blackbody temperature. Our results show the importance of double Compton and synchrotron in super-Eddington discs, magnetized coronae and jets.

  17. Three Bright X-ray Sources in NGC 1313

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Petre, R.; Schlegel, E.

    1992-12-01

    Three bright X-ray sources were detected in a recent (April/May 1991) ROSAT PSPC observation of the nearby (D ~ 4.5 Mpc) face--on barred spiral galaxy NGC 1313. Two of the sources were at positions coincident with X-ray sources detected by Fabbiano & Trinchieri (ApJ 315, 1987) in a previous (Jan 1980) Einstein IPC observation. The position of the brightest Einstein source is near the center of NGC 1313, and the second Einstein source is ~ 7' south of the ``nuclear'' source, in the outskirts of the spiral arms. A third bright X-ray source was detected in the ROSAT observation ~ 7' southwest of the ``nuclear'' source. We present X-ray spectra and X-ray images for the three bright sources found in the ROSAT observation of NGC 1313, and compare with previous Einstein results. Spectral analysis of these sources require them to have very large soft X-ray luminosities ( ~ 10(40) erg s(-1) ) when compared with typical X-ray sources in our Galaxy. Feasible explanations for the X-ray emission are presented. The third X-ray source is positively identified with the recently discovered (Ryder et. al., ApJ 1992) peculiar type-II supernova 1978K.

  18. Integration of gene expression profiling of hypothalamic arcuate nucleus with genome-wide associations to discover functional variants associated with age at puberty in gilts

    USDA-ARS?s Scientific Manuscript database

    Age at puberty (AP) in gilts is a moderately heritable trait (h2 = 0.37) and the earliest indicator of sow reproductive longevity. Therefore, quantifying the pleiotropic sources that influence both AP and reproductive longevity is important in understanding the differences in sow fertility. In this ...

  19. A second-generation superconducting undulator cryostat for the APS

    NASA Astrophysics Data System (ADS)

    Fuerst, J.; Hasse, Q.; Ivanyushenkov, Y.; Kasa, M.; Shiroyanagi, Y.

    2017-12-01

    A second-generation cryocooler-based cryostat has been designed and built to support a new helically wound superconducting undulator (SCU) magnet for the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The design represents an evolution of existing SCU cryostats currently in operation in the APS storage ring. Value engineering and lessons learned have resulted in a smaller, cheaper, and simpler cryostat design compatible with existing planar magnets as well as the new helically wound device. We describe heat load and quench response results, design and operational details, and the “build-to-spec” procurement strategy.

  20. Noninterleaved round beam lattice for light sources

    NASA Astrophysics Data System (ADS)

    Agapov, Ilya; Brinkmann, Reinhard; Keil, Joachim; Wanzenberg, Rainer

    2018-05-01

    A conceptual design and performance of a round beam lattice for synchrotron light sources based on the phase space exchange principle and the noninterleaved sextupole distribution is presented. Optics design is performed for an approximately 30 pm emittance 6 GeV machine of 2300 m circumference which combines cells with and without straight sections for the insertion devices.

  1. A method to detect ultra high energy electrons using earth's magnetic field as a radiator

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.; Balasubrahmanyan, V. K.

    1983-01-01

    It is pointed out that the detection of electrons with energies exceeding a few TeV, which lose energy rapidly through synchrotron and inverse Compton processes, would provide valuable information on the distribution of sources and on the propagation of cosmic rays in the solar neighborhood. However, it would not be possible to measure the energy spectrum beyond a few TeV with any of the existing experimental techniques. The present investigation is, therefore concerned with the possibility of detecting electrons with energies exceeding a few TeV on the basis of the photons emitted through synchrotron radiation in the earth's magnetic field. Attention is given to the synchrotron radiation of electrons in the earth's magnetic field, detector response and energy estimation, and the characteristics of an ideal detector, capable of detecting photons with energies equal to or greater than 20 keV.

  2. OFF-AXIS THERMAL AND SYNCHROTRON EMISSION FOR SHORT GAMMA RAY BURST

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoyi

    2018-01-01

    We present light curves of photospheric and synchrotron emission from a relativistic jet propagating through the ejecta cloud of a neutron star merger. We use a moving-mesh relativistic hydrodynamics code with adaptive mesh refinement to compute the continuous evolution of jet over 13 orders of magnitude in radius from the scale of the central merger engine all the way through the late afterglow phase. As the jet propagates through the cloud it forms a hot cocoon surrounding the jet core. We find that the photospheric emission released by the hot cocoon is bright for on-axis observers and is detectable for off-axis observers at a wide range of observing angles for sufficiently close sources. As the jet and cocoon drive an external shock into the surrounding medium we compute synchrotron light curves and find bright emission for off-axis observers which differs from top-hat Blandford-McKee jets, especially for lower explosion energies.

  3. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging.

    PubMed

    Koerner, Lucas J; Gruner, Sol M

    2011-03-01

    Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 10(3) X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected.

  4. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging

    PubMed Central

    Koerner, Lucas J.; Gruner, Sol M.

    2011-01-01

    Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 103 X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected. PMID:21335901

  5. The Radio Synchrotron Background: Conference Summary and Report

    NASA Astrophysics Data System (ADS)

    Singal, J.; Haider, J.; Ajello, M.; Ballantyne, D. R.; Bunn, E.; Condon, J.; Dowell, J.; Fixsen, D.; Fornengo, N.; Harms, B.; Holder, G.; Jones, E.; Kellermann, K.; Kogut, A.; Linden, T.; Monsalve, R.; Mertsch, P.; Murphy, E.; Orlando, E.; Regis, M.; Scott, D.; Vernstrom, T.; Xu, L.

    2018-03-01

    We summarize the radio synchrotron background workshop that took place 2017 July 19–21 at the University of Richmond. This first scientific meeting dedicated to the topic was convened because current measurements of the diffuse radio monopole reveal a surface brightness that is several times higher than can be straightforwardly explained by known Galactic and extragalactic sources and processes, rendering it by far the least well understood photon background at present. It was the conclusion of a majority of the participants that the radio monopole level is at or near that reported by the ARCADE 2 experiment and inferred from several absolutely calibrated zero-level lower frequency radio measurements, and unanimously agreed that the production of this level of surface brightness, if confirmed, represents a major outstanding question in astrophysics. The workshop reached a consensus on the next priorities for investigations of the radio synchrotron background.

  6. Aladdin: Transforming science at SRC

    NASA Astrophysics Data System (ADS)

    Bisognano, J.; Bissen, M.; Green, M.; Jacobs, K.; Moore, C.; Olson, E.; Severson, M.; Wehlitz, R.

    2011-09-01

    The Synchrotron Radiation Center (SRC) is dedicated to enabling of innovative research using IR, ultraviolet, and soft X-ray synchrotron radiation. It delivers beam time with high reliability (99%) and continues to improve the Aladdin storage ring complex. A lower emittance tuning has been commissioned to support a microfocus capability. SRC successfully installed an APPLE II undulator providing elliptically polarized light with lattice compensation for flexible scanning. Installation of a new IR beamline at SRC is providing synchrotron chemical imaging with unprecedented structural and chemical information, simultaneously. In addition, SRC has established a strong education and outreach program to bring the knowledge and power of light source science to a wider national community. It is moving forward into the future by developing a new micro focus beamline producing a diffraction-limited focus of about 500 nm at 22 eV, proposing an additional diffraction-limited chemical imaging beamline, and advancing the Wisconsin Free Electron Laser (WiFEL) concept.

  7. Repeatability and reproducibility of intracellular molar concentration assessed by synchrotron-based x-ray fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merolle, L., E-mail: lucia.merolle@elettra.eu; Gianoncelli, A.; Malucelli, E., E-mail: emil.malucelli@unibo.it

    2016-01-28

    Elemental analysis of biological sample can give information about content and distribution of elements essential for human life or trace elements whose absence is the cause of abnormal biological function or development. However, biological systems contain an ensemble of cells with heterogeneous chemistry and elemental content; therefore, accurate characterization of samples with high cellular heterogeneity may only be achieved by analyzing single cells. Powerful methods in molecular biology are abundant, among them X-Ray microscopy based on synchrotron light source has gaining increasing attention thanks to its extremely sensitivity. However, reproducibility and repeatability of these measurements is one of the majormore » obstacles in achieving a statistical significance in single cells population analysis. In this study, we compared the elemental content of human colon adenocarcinoma cells obtained by three distinct accesses to synchrotron radiation light.« less

  8. A feasibility study of X-ray phase-contrast mammographic tomography at the Imaging and Medical beamline of the Australian Synchrotron.

    PubMed

    Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana

    2015-11-01

    Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.

  9. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  10. PROBING THE TRANSITION BETWEEN THE SYNCHROTRON AND INVERSE-COMPTON SPECTRAL COMPONENTS OF 1ES 1959+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bottacini, E.; Schady, P.; Rau, A.

    1ES 1959+650 is one of the most remarkable high-peaked BL Lacertae objects (HBL). In 2002, it exhibited a TeV {gamma}-ray flare without a similar brightening of the synchrotron component at lower energies. This orphan TeV flare remained a mystery. We present the results of a multifrequency campaign, triggered by the INTEGRAL IBIS detection of 1ES 1959+650. Our data range from the optical to hard X-ray energies, thus covering the synchrotron and inverse-Compton components simultaneously. We observed the source with INTEGRAL, the Swift X-Ray Telescope, and the UV-Optical Telescope, and nearly simultaneously with a ground-based optical telescope. The steep spectral componentmore » at X-ray energies is most likely due to synchrotron emission, while at soft {gamma}-ray energies the hard spectral index may be interpreted as the onset of the high-energy component of the blazar spectral energy distribution (SED). This is the first clear measurement of a concave X-ray-soft {gamma}-ray spectrum for an HBL. The SED can be well modeled with a leptonic synchrotron self-Compton model. When the SED is fitted this model requires a very hard electron spectral index of q {approx} 1.85, possibly indicating the relevance of second-order Fermi acceleration.« less

  11. Characterization of alkaline phosphatase activity in seminal plasma and in fresh and frozen-thawed stallion spermatozoa.

    PubMed

    Bucci, Diego; Giaretta, Elisa; Spinaci, Marcella; Rizzato, Giovanni; Isani, Gloria; Mislei, Beatrice; Mari, Gaetano; Tamanini, Carlo; Galeati, Giovanna

    2016-01-15

    Alkaline phosphatase (AP) has been studied in several situations to elucidate its role in reproductive biology of the male from different mammalian species; at present, its role in horse sperm physiology is not clear. The aim of the present work was to measure AP activity in seminal plasma and sperm extracts from freshly ejaculated as well as in frozen-thawed stallion spermatozoa and to verify whether relationship exists between AP activity and sperm quality parameters. Our data on 40 freshly ejaculated samples from 10 different stallions demonstrate that the main source of AP activity is seminal plasma, whereas sperm extracts contribution is very low. In addition, we found that AP activity at physiological pH (7.0) is significantly lower than that observed at pH 8.0, including the optimal AP pH (pH 10.0). Alkaline phosphatase did not exert any effect on sperm-oocyte interaction assessed by heterologous oocyte binding assay. Additionally, we observed a thermal stability of seminal plasma AP, concluding that it is similar to that of bone isoforms. Positive correlations were found between seminal plasma AP activity and sperm concentration, whereas a negative correlation was present between both spermatozoa extracts and seminal plasma AP activity and seminal plasma protein content. A significant decrease in sperm extract AP activity was found in frozen-thawed samples compared with freshly ejaculated ones (n = 21), concomitantly with the decrease in sperm quality parameters. The positive correlation between seminal plasma AP activity measured at pH 10 and viability of frozen-thawed spermatozoa suggests that seminal plasma AP activity could be used as an additional predictive parameter for stallion sperm freezability. In conclusion, we provide some insights into AP activity in both seminal plasma and sperm extracts and describe a decrease in AP after freezing and thawing. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Study of current-mode active pixel sensor circuits using amorphous InSnZnO thin-film transistor for 50-μm pixel-pitch indirect X-ray imagers

    NASA Astrophysics Data System (ADS)

    Cheng, Mao-Hsun; Zhao, Chumin; Kanicki, Jerzy

    2017-05-01

    Current-mode active pixel sensor (C-APS) circuits based on amorphous indium-tin-zinc-oxide thin-film transistors (a-ITZO TFTs) are proposed for indirect X-ray imagers. The proposed C-APS circuits include a combination of a hydrogenated amorphous silicon (a-Si:H) p+-i-n+ photodiode (PD) and a-ITZO TFTs. Source-output (SO) and drain-output (DO) C-APS are investigated and compared. Acceptable signal linearity and high gains are realized for SO C-APS. APS circuit characteristics including voltage gain, charge gain, signal linearity, charge-to-current conversion gain, electron-to-voltage conversion gain are evaluated. The impact of the a-ITZO TFT threshold voltage shifts on C-APS is also considered. A layout for a pixel pitch of 50 μm and an associated fabrication process are suggested. Data line loadings for 4k-resolution X-ray imagers are computed and their impact on circuit performances is taken into consideration. Noise analysis is performed, showing a total input-referred noise of 239 e-.

  13. Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification and exopolysaccharide characterization.

    PubMed

    Smitinont, T; Tansakul, C; Tanasupawat, S; Keeratipibul, S; Navarini, L; Bosco, M; Cescutti, P

    1999-10-15

    Lactic Acid Bacteria (LAB) isolated from various traditional Thai fermented foods were screened for exopolysaccharides (EPS) production. From 104 isolates, two rod-shaped and five coccal-shaped LAB were able to produce EPS from sucrose on solid media. However, only the cocci were capable of producing EPS in liquid media and these were identified as Pediococcus pentosaceus. Pediococcus pentosaceus strains AP-1 and AP-3 produced EPS in high yield. In liquid media containing sucrose as carbon source, the amount of EPS produced by AP-1 and AP-3 strains was 6.0 and 2.5 g/L, respectively. The isolated and purified EPSs were chemically characterized. On the basis of sugar composition, methylation analysis and nuclear magnetic resonance spectroscopy, both the EPSs were shown to belong to the same dextran class. In particular, both EPSs differed from linear dextran by branching through 3,6-di-Osubstituted alpha-D-glucopyranosyl residues. The EPS from P. pentosaceus AP-3 was characterized by a relatively higher degree of branching and by a higher molecular weight than that from P. pentosaceus AP-1.

  14. Magnetic measurements of the 12-pole trim magnets for the 200 MeV compact synchrotron XLS at the National Synchrotron Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnaswamy, J.; Kalsi, S.; Hsieh, H.

    1991-01-01

    Magnetic measurements performed on the 12-pole trim magnets is described including Hall probe measurements to verify symmetry of the field and, rotating coil measurements to map the multipoles. The rotating coil measurements were carried out using a HP Dynamic Signal Analyzer. Excited as a quadrupole the dominant error multipole is the 20th pole and excited as a sextrupole the dominant error multipole is the 18th pole. Reasonable agreement was found between the Hall probe measurements and the rotating coil measurements. 2 refs., 5 figs.

  15. NSLS-II beamline scattered gas bremsstrahlung radiation shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Razvan; Xia, Zhenghua, E-mail: xiazhenghuacn@hotmail.com; Job, Panakkal

    2016-07-27

    National Synchrotron Light Source II (NSLS-II) is a new state-of-the-art 3rd generation synchrotron. The NSLS-II facility is shielded up to 3 GeV electron beam energy at 500 mA. When the gas bremsstrahlung (GB) from the storage ring is scattered by the beamline components in the first optical enclosure (FOE), the scattered radiation will pose additional radiation hazard (bypassing primary GB collimators and stops) and challenge the FOE shielding. The scattered GB radiation hazard can be mitigated by supplementary shielding or with an exclusion zone downstream of the FOE.

  16. Synchrotron Photoionization Investigation of the Oxidation of Ethyl tert-Butyl Ether.

    PubMed

    Winfough, Matthew; Yao, Rong; Ng, Martin; Catani, Katherine; Meloni, Giovanni

    2017-02-23

    The oxidation of ethyl tert-butyl ether (ETBE), a widely used fuel oxygenated additive, is investigated using Cl atoms as initiators in the presence of oxygen. The reaction is carried out at 293, 550, and 700 K. Reaction products are probed by a multiplexed chemical kinetics photoionization mass spectrometer coupled with the synchrotron radiation produced at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory. Products are identified on the basis of mass-to-charge ratio, ionization energies, and shape of photoionization spectra. Reaction pathways are proposed together with detected primary products.

  17. Source identification of PM10, collected at a heavy-traffic roadside, by analyzing individual particles using synchrotron radiation.

    PubMed

    Yue, Weisheng; Li, Yan; Li, Xiaolin; Yu, Xiaohan; Deng, Biao; Liu, Jiangfeng; Wan, Tianmin; Zhang, Guilin; Huang, Yuying; He, Wei; Hua, Wei

    2004-09-01

    Synchrotron radiation microbeam X-ray fluorescence (micro-SXRF) was used to analyze individual aerosol particles collected at a height of 2 m above a heavy-traffic roadside in a heavy-industrial area of Shanghai. A pattern recognition technique, which took micro-SXRF spectra of single aerosol particles as its fingerprint, was used to identify the origins of the particles. The particles collected from the environmental monitoring site are mainly from metallurgic industry (26%), unleaded gasoline automobile exhaust (15%), coal combustion (10%), cement dust (10%) and motorcycle exhaust (8%).

  18. Catalytic Adventures in Space and Time Using High Energy X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, Mark A.; Di Michiel, Marco; Ferri, Davide

    2014-09-16

    Very high energy X-rays have long offered great promise in providing great insight into the inner workings of catalysts; insights that may complement the array of techniques available to researchers in catalysis either in the laboratory or at more conventional X-ray wavelengths. This contribution aims to critically assess the diverse possibilities now available in the high energy domain as a result of the maturation of third generation synchrotron facilities and to look forward to the potential that forthcoming developments in synchrotron source technology may offer the world of catalysis in the near future.

  19. Spectroscopic ellipsometry in vacuum ultraviolet spectral area

    NASA Astrophysics Data System (ADS)

    Fuchs, Detlef

    An ellipsometer is developed and built, which allows the direct spectroscopic evaluation of dielectric function of solid bodies in the energy area 5 to 35 eV. A linear polarized synchrotron radiation was used as light source. The Stokes parameters and the Mueller matrices were used for the mathematical modeling, which take into account the properties of the synchrotron light and the analyzer, which depend on the wavelength. The crystals of the semiconductor bindings GaAs, GaP, InP and ZnS were examined. Ellipsometric measurements and reflection spectra show a displacement of spectral structures towards lower photon energies after the storage.

  20. VizieR Online Data Catalog: The MIT-Green Bank 5GHz Survey (Bennett+, 1986-91)

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.; Lawrence, C. R.; Burke, B. F.; Hewitt, J. N.; Mahoney, J.

    2003-08-01

    The MIT-Green Bank 5GHz survey catalog was produced from four separate surveys with the National Radio Astronomy Observatory (NRAO) 91m transit telescope (Bennett et al., 1986ApJS...61....1B (MG1); Langston et al., 1990ApJS...72..621L (MG2); Griffith et al., 1990ApJS...74..129G (MG3); Griffith et al. 1991ApJS...75..801G (MG4)). The sky coverage of the various surveys is: 00h < RAB < 24h, -00d30'13" < DECB < +19d29'47" for MG1; 04h < RAJ < 21h, +17.0d < DECJ < +39d09' for MG2; 16h30m < RAB < 05h, +17d < DECB < +39d09' for MG3; and 15h30m < RAB < 02h30m, +37.00d < DECB < +50d58'48" for MG4; where RAB and DECB refer to B1950 coordinates, and RAJ and DECJ refer to J2000 coordinates. The catalog contains 20344 sources detected with a signal-to-noise ratio greater than 5 and 3836 possible detections (MG1) with a signal-to-noise ratio less than 5. Spectral indices are computed for MG1 sources also identified in the Texas 365MHz survey (Douglas et al. 1980), and for MG1-MG4 sources also identified in the NRAO 1400MHz Survey (Condon and Broderick 1985). (1 data file).

  1. VizieR Online Data Catalog: The MIT-Green Bank 5GHz Survey (Bennett+, 1986-91)

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.; Lawrence, C. R.; Burke, B. F.; Hewitt, J. N.; Mahoney, J.

    1999-04-01

    The MIT-Green Bank 5 GHz survey catalog was produced from four separate surveys with the National Radio Astronomy Observatory (NRAO) 91m transit telescope (Bennett et al., 1986ApJS...61....1B (MG1); Langston et al., 1990ApJS...72..621L (MG2); Griffith et al., 1990ApJS...74..129G (MG3); Griffith et al. 1991ApJS...75..801G (MG4)). The sky coverage of the various surveys is: 00h < RAB < 24h, -00d30'13" < DECB < +19d29'47" for MG1; 04h < RAJ < 21h, +17.0d < DECJ < +39d09' for MG2; 16h30m < RAB < 05h, +17d < DECB < +39d09' for MG3; and 15h30m < RAB < 02h30m, +37.00d < DECB < +50d58'48" for MG4; where RAB and DECB refer to B1950 coordinates, and RAJ and DECJ refer to J2000 coordinates. The catalog contains 20344 sources detected with a signal-to-noise ratio greater than 5 and 3836 possible detections (MG1) with a signal-to-noise ratio less than 5. Spectral indices are computed for MG1 sources also identified in the Texas 365 MHz survey (Douglas et al. 1980), and for MG1-MG4 sources also identified in the NRAO 1400 MHz Survey (Condon and Broderick 1985). (1 data file).

  2. Marginally fast cooling synchrotron models for prompt GRBs

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2018-05-01

    Previous studies have considered synchrotron as the emission mechanism for prompt gamma-ray bursts (GRBs). These works have shown that the electrons must cool on a time-scale comparable to the dynamic time at the source in order to satisfy spectral constraints while maintaining high radiative efficiency. We focus on conditions where synchrotron cooling is balanced by a continuous source of heating, and in which these constraints are naturally satisfied. Assuming that a majority of the electrons in the emitting region are contributing to the observed peak, we find that the energy per electron has to be E ≳ 20 GeV and that the Lorentz factor of the emitting material has to be very large 103 ≲ Γem ≲ 104, well in excess of the bulk Lorentz factor of the jet inferred from GRB afterglows. A number of independent constraints then indicate that the emitters must be moving relativistically, with Γ΄ ≈ 10, relative to the bulk frame of the jet and that the jet must be highly magnetized upstream of the emission region, σup ≳ 30. The emission radius is also strongly constrained in this model to R ≳ 1016 cm. These values are consistent with magnetic jet models where the dissipation is driven by magnetic reconnection that takes place far away from the base of the jet.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Peiyuan; Urry, C. Megan

    We investigate a sample of 622 blazars with measured fluxes at 12 wavebands across the radio-to-gamma-ray spectrum but without spectroscopic or photometric redshifts. This sample includes hundreds of sources with newly analyzed X-ray spectra reported here. From the synchrotron peak frequencies, estimated by fitting the broadband spectral energy distributions (SEDs), we find that the fraction of high-synchrotron-peaked blazars in these 622 sources is roughly the same as in larger samples of blazars that do have redshifts. We characterize the no-redshift blazars using their infrared colors, which lie in the distinct locus called the WISE blazar strip, then estimate their redshiftsmore » using a KNN regression based on the redshifts of the closest blazars in the WISE color–color plot. Finally, using randomly drawn values from plausible redshift distributions, we simulate the SEDs of these blazars and compare them to known blazar SEDs. Based on all these considerations, we conclude that blazars without redshift estimates are unlikely to be high-luminosity, high-synchrotron-peaked objects, which had been suggested in order to explain the “blazar sequence”—an observed trend of SED shape with luminosity—as a selection effect. Instead, the observed properties of no-redshift blazars are compatible with a causal connection between jet power and electron cooling, i.e., a true blazar sequence.« less

  4. 75 FR 6823 - Prevention of Significant Deterioration (PSD) and Nonattainment New Source Review (NSR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-11

    ...-AP73 Prevention of Significant Deterioration (PSD) and Nonattainment New Source Review (NSR... Review (NSR): Reconsideration of Fugitive Emissions'' (``Fugitive Emissions Rule''). The Fugitive... whether a physical or operation change results in a major modification only for sources in industries that...

  5. The Use of Amino Sugars by Bacillus subtilis: Presence of a Unique Operon for the Catabolism of Glucosamine

    PubMed Central

    Gaugué, Isabelle; Oberto, Jacques; Putzer, Harald; Plumbridge, Jacqueline

    2013-01-01

    B. subtilis grows more rapidly using the amino sugar glucosamine as carbon source, than with N-acetylglucosamine. Genes for the transport and metabolism of N-acetylglucosamine (nagP and nagAB) are found in all the sequenced Bacilli (except Anoxybacillus flavithermus). In B. subtilis there is an additional operon (gamAP) encoding second copies of genes for the transport and catabolism of glucosamine. We have developed a method to make multiple deletion mutations in B. subtilis employing an excisable spectinomycin resistance cassette. Using this method we have analysed the contribution of the different genes of the nag and gam operons for their role in utilization of glucosamine and N-acetylglucosamine. Faster growth on glucosamine is due to the presence of the gamAP operon, which is strongly induced by glucosamine. Although the gamA and nagB genes encode isozymes of GlcN6P deaminase, catabolism of N-acetylglucosamine relies mostly upon the gamA gene product. The genes for use of N-acetylglucosamine, nagAB and nagP, are repressed by YvoA (NagR), a GntR family regulator, whose gene is part of the nagAB yvoA(nagR) operon. The gamAP operon is repressed by YbgA, another GntR family repressor, whose gene is expressed divergently from gamAP. The nagAB yvoA synton is found throughout the Bacilli and most firmicutes. On the other hand the ybgA-gamAP synton, which includes the ybgB gene for a small protein of unknown provenance, is only found in B. subtilis (and a few very close relatives). The origin of ybgBA-gamAP grouping is unknown but synteny analysis suggests lateral transfer from an unidentified donor. The presence of gamAP has enabled B. subtilis to efficiently use glucosamine as carbon source. PMID:23667565

  6. System modeling of the Thirty Meter Telescope alignment and phasing system

    NASA Astrophysics Data System (ADS)

    Dekens, Frank G.; Seo, Byoung-Joon; Troy, Mitchell

    2014-08-01

    We have developed a system model using the System Modeling Language (SysML) for the Alignment and Phasing System (APS) on the Thirty Meter Telescope (TMT). APS is a Shack-Hartmann wave-front sensor that will be used to measure the alignment and phasing of the primary mirror segments, and the alignment of the secondary and tertiary mirrors. The APS system model contains the ow-down of the Level 1 TMT requirements to APS (Level 2) requirements, and from there to the APS sub-systems (Level 3) requirements. The model also contains the operating modes and scenarios for various activities, such as maintenance alignment, post-segment exchange alignment, and calibration activities. The requirements ow-down is captured in SysML requirements diagrams, and we describe the process of maintaining the DOORS database as the single-source-of-truth for requirements, while using the SysML model to capture the logic and notes associated with the ow-down. We also use the system model to capture any needed communications from APS to other TMT systems, and between the APS sub-systems. The operations are modeled using SysML activity diagrams, and will be used to specify the APS interface documents. The modeling tool can simulate the top level activities to produce sequence diagrams, which contain all the communications between the system and subsystem needed for that activity. By adding time estimates for the lowest level APS activities, a robust estimate for the total time on-sky that APS requires to align and phase the telescope can be obtained. This estimate will be used to verify that the time APS requires on-sky meets the Level 1 TMT requirements.

  7. Role of Synchrotron infra red microspectroscopy in studying epidermotropism of cutaneous T-cell lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Bedewi, A.; El Anany, G; El Mofty, M

    2010-01-01

    The molecular mechanisms of epidermotropism in mycosis fungoides (MF) are not well understood to date. The aim of this study was to differentiate between epidermal and dermal lymphocytes within the skin of MF patients. This study was done on 10 MF patients with a mean age of 50 years diagnosed clinically in the Department of Dermatology, Cairo University, Egypt. A 6 mm biopsy was taken from each patient in order to confirm the diagnosis. Skin biopsies were cut, put on low e-slides and then stained with H&E. Further examination with Synchrotron infrared (IR) microspectroscopy was done in National Synchrotron Lightmore » Source - Brookhaven National Laboratory, New York, USA. Immunophenotyping using antibodies CD3, CD4, CD8, CD20 and CD30 was also done. Statistical analysis was done by Student's t-test and cluster analysis. Both epidermal and dermal lymphocytes were clustered separately. Also, Amide I and RNA and DNA within the lymphocytes were significantly different between the epidermis and the dermis. The biochemical analysis of protein, RNA and DNA with Synchrotron IR microspectroscopy is a promising tool for studying epidermotropism in cutaneous T-cell lymphoma.« less

  8. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.; Hill, R. S.; Hinshaw, G.; Nolta, M. R.; Odegard, N.; Page, L.; Spergel, D. N.; Weiland, J. L.; Wright, E. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.

    2003-09-01

    The WMAP mission has mapped the full sky to determine the geometry, content, and evolution of the universe. Full-sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the cosmic microwave background (CMB) from foreground emission, including diffuse Galactic emission and Galactic and extragalactic point sources. We define masks that excise regions of high foreground emission, so CMB analyses can be carried out with minimal foreground contamination. We also present maps and spectra of the individual emission components, leading to an improved understanding of Galactic astrophysical processes. The effectiveness of template fits to remove foreground emission from the WMAP data is also examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We use a maximum entropy method to construct a model of the Galactic emission components. The observed total Galactic emission matches the model to less than 1%, and the individual model components are accurate to a few percent. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (βs~-2.5) near star-forming regions, especially in the plane, and steepest (βs~-3) in the halo. This is consistent with a picture of relativistic cosmic-ray electron generation in star-forming regions and diffusion and convection within the plane. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to βs<-3. The modeled thermal dust spectral index is also steep in the WMAP bands, with βd~2.2. Our model is driven to these conclusions by the low level of total foreground contamination at ~60 GHz. Microwave and Hα measurements of the ionized gas agree well with one another at about the expected levels. Spinning dust emission is limited to <~5% of the Ka-band foreground emission, assuming a thermal dust distribution with a cold neutral medium spectrum and a monotonically decreasing synchrotron spectrum. A catalog of 208 point sources is presented. The reliability of the catalog is 98%; i.e., we expect five of the 208 sources to be statistically spurious. The mean spectral index of the point sources is α~0 (β~-2). Derived source counts suggest a contribution to the anisotropy power from unresolved sources of (15.0+/-1.4)×10-3 μK2 sr at Q band and negligible levels at V band and W band. The Sunyaev-Zeldovich effect is shown to be a negligible ``contamination'' to the maps. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  9. VizieR Online Data Catalog: UV spectra of classical T Tauri stars (France+, 2014)

    NASA Astrophysics Data System (ADS)

    France, K.; Schindhelm, E.; Bergin, E. A.; Roueff, E.; Abgrall, H.

    2017-06-01

    We present 16 objects from the larger GTO + DAO T Tauri star samples described by Ardila et al. (2013ApJS..207....1A; focusing on the hot gas emission lines) and France et al. (2012, J/ApJ/756/171; focusing on the molecular circumstellar environment). Eleven of the 16 sources were observed as part of the DAO of Tau guest observing program (PID 11616; PI: G. Herczeg), four were part of the COS Guaranteed Time Observing program on protoplanetary disks (PIDs 11533 and 12036; PI: J. Green), and we have included archival STIS observations of the well-studied CTTS TW Hya (Herczeg et al. 2002ApJ...572..310H, 2004ApJ...607..369H), obtained through StarCAT (Ayres 2010, J/ApJS/187/149). The targets were selected by the availability of reconstructed Lyα spectra, as this emission line is a critical component to the intrinsic CTTS UV radiation field (Schindhelm et al. 2012ApJ...756L..23S) and has not been uniformly included in recent studies of the CTTS radiation field (e.g., Ingleby et al. 2011AJ....141..127I; Yang et al. 2012, J/ApJ/744/121). Most of the targets were observed with the medium-resolution FUV modes of COS (G130M and G160M; Green et al. 2012ApJ...744...60G). (2 data files).

  10. Berkeley Lab - Science Video Glossary

    Science.gov Websites

    source neutrino astronomy protein crystallography quantum dot supercomputing supernova synchrotron universe neutrino astronomy supernova Earth Science atmospheric aerosols bioremediation carbon cycle nanotechnology neutrino neutrino astronomy O, P petabytes petaflop computing photon plasma plasmon protein

  11. Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, Evgeny

    Evgeny Nazaretski, a physicist at Brookhaven Lab’s National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.

  12. Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering

    NASA Astrophysics Data System (ADS)

    Accardo, Angelo; Tirinato, Luca; Altamura, Davide; Sibillano, Teresa; Giannini, Cinzia; Riekel, Christian; di Fabrizio, Enzo

    2013-02-01

    Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates.Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34032e

  13. Status of the SAGA Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.

    The SAGA Light Source (SAGA-LS) is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring that is 75.6 m in circumference. The SAGA-LS has been stably providing synchrotron radiation to users since it first started user operation in February 2006. Along with the user operation, various machine improvements have been made over the past years, including upgrading the injector linac control system, replacing a septum magnet and constructing a beam diagnostic system. In addition to these improvements, insertion devices have been developed and installed. An APPLE-II type variable polarization undulator was installedmore » in 2008. To address the demand from users for high-flux hard x-rays, a superconducting 4 T class wiggler is being developed. An experimental setup for generating MeV photons by laser Compton scattering is being constructed for beam monitoring and future user experiments.« less

  14. Explosive vessel for coupling dynamic experiments to the X-ray beam at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Owens, Charles; Sanchez, Nathaniel; Sorensen, Christian; Jensen, Brian

    2017-06-01

    Recent experiments at the Advanced Photon Source have been successful in coupling gun systems to the synchrotron to take advantage of the advanced X-ray diagnostics available including X-ray diffraction and X-ray phase contrast imaging (PCI) to examine matter at extreme conditions. There are many experiments that require explosive loading capabilities, e.g. detonator and initiator dynamics, small angle X-ray scattering (SAXS), ejecta formation, and explosively driven flyer experiments. The current work highlights a new explosive vessel that was designed specifically for use at a synchrotron facility with requirements to confine up to 15 grams of explosives (TNT equivalent), couple the vessel to the X-ray beam line, and reliably position samples remotely. A description of the system and capability will be provided along with the results from qualification testing to bring the system into service (LA-UR-17-21381).

  15. X-ray resonant magnetic scattering ellipsometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Z.; Randall, K.J.; Gluskin, E.

    1996-09-01

    It is very difficult to characterize the polarization of a synchrotron radiation source in the soft and/or intermediate x-ray energy region particularly from 1 to 2 keV. Conventional multilayer mirror or single-crystal polarimeters do not work over this energy region because their throughput (the reflectivities combined with the phase shift) becomes insignificant. In this paper, we present a new ellipsometer scheme that is able to fully characterize the polarization of synchrotron radiation sources in this energy region. It is based on the dichroic x-ray resonant ferromagnetic scattering that yields information on both the polarization of the x-ray and the materialmore » (element specific) dielectric-constant tensor [C.-C. Kao {ital et} {ital al}., Phys. Rev. B {bold 50}, 9599 (1994)] due to the interband ferromagnetic Kerr effect [B.R. Cooper, Phys. Rev. A {bold 139}, 1504 (1965)]. {copyright} {ital 1996 American Institute of Physics.}« less

  16. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    PubMed Central

    Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; Pai, E. F.; Pearson, A. R.; Olson, J. S.; Anfinrud, P. A.; Ernst, O. P.; Dwayne Miller, R. J.

    2015-01-01

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs. PMID:26798825

  17. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography.

    PubMed

    Mueller, C; Marx, A; Epp, S W; Zhong, Y; Kuo, A; Balo, A R; Soman, J; Schotte, F; Lemke, H T; Owen, R L; Pai, E F; Pearson, A R; Olson, J S; Anfinrud, P A; Ernst, O P; Dwayne Miller, R J

    2015-09-01

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  18. 2WHSP: A multi-frequency selected catalogue of high energy and very high energy γ-ray blazars and blazar candidates

    NASA Astrophysics Data System (ADS)

    Chang, Y.-L.; Arsioli, B.; Giommi, P.; Padovani, P.

    2017-02-01

    Aims: High synchrotron peaked blazars (HSPs) dominate the γ-ray sky at energies higher than a few GeV; however, only a few hundred blazars of this type have been cataloged so far. In this paper we present the 2WHSP sample, the largest and most complete list of HSP blazars available to date, which is an expansion of the 1WHSP catalogue of γ-ray source candidates off the Galactic plane. Methods: We cross-matched a number of multi-wavelength surveys (in the radio, infrared and X-ray bands) and applied selection criteria based on the radio to IR and IR to X-ray spectral slopes. To ensure the selection of genuine HSPs, we examined the SED of each candidate and estimated the peak frequency of its synchrotron emission (νpeak) using the ASDC SED tool, including only sources with νpeak > 1015 Hz (equivalent to νpeak > 4 eV). Results: We have assembled the largest and most complete catalogue of HSP blazars to date, which includes 1691 sources. A number of population properties, such as infrared colours, synchrotron peak, redshift distributions, and γ-ray spectral properties have been used to characterise the sample and maximize completeness. We also derived the radio log N-log S distribution. This catalogue has already been used to provide seeds to discover new very high energy objects within Fermi-LAT data and to look for the counterparts of neutrino and ultra high energy cosmic ray sources, showing its potential for the identification of promising high-energy γ-ray sources and multi-messenger targets. Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A17

  19. APS deposition facility upgrades and future plans

    NASA Astrophysics Data System (ADS)

    Conley, Ray; Shi, Bing; Erdmann, Mark; Izzo, Scott; Assoufid, Lahsen; Goetze, Kurt; Mooney, Tim; Lauer, Kenneth

    2014-09-01

    The Advanced Photon Source (APS) has recently invested resources to upgrade or replace aging deposition systems with modern equipment. Of the three existing deposition systems, one will receive an upgrade, while two are being replaced. A design which adds a three-substrate planetary for the APS rotary deposition system is almost complete. The replacement for the APS large deposition system, dubbed the "Modular Deposition System", has been conceptually designed and is in the procurement process. Eight cathodes will sputter horizontally on mirrors up to 1.5 meters in length. This new instrument is designed to interface with ion-milling instruments and various metrology equipment for ion-beam figuring. A third linear machine, called the APS Profile Coating System, has two cathodes and is designed to accept substrates up to 200mm in length. While this machine is primarily intended for fabrication of figured KB mirrors using the profile-coating technique, it has also been used to produce multilayer monochromators for beamline use.

  20. Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doose, C.; Dejus, R.; Jaski, M.

    2017-06-01

    Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces tomore » gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.« less

  1. Far-infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Zhao, Jianbao; Billinghurst, Brant

    2017-06-01

    Far-infrared is a particularly useful technique for studies on lattice modes as they generally appear in the Far-infrared region. Far-infrared is also an important tool for gathering information on the electrical transport properties of metallic materials and the band gap of semiconductors. This poster will describe the horizontal microscope that has recently been built in the Far-infrared beamline at the Canadian Light Source Inc. (CLS). This microscope is specially designed for high-pressure Far-infrared absorbance and reflectance spectroscopic studies. The numerical aperture (0.5) and the long working distance (82.1 mm) in the microscope are good fits for Diamond Anvil Cell (DAC). The spectra are recorded using liquid helium cooled Si bolometer or Ge:Cu detector. The pressure in the DAC can be determined by using the fluorescence spectrometer available onsite. The Far-infrared beamline at CLS is a state-of-the-art synchrotron facility, offering significantly more brightness than conventional sources. Because of the high brightness of the synchrotron radiation, we can obtain the Far-infrared reflectance/absorbance spectra on the small samples with more throughput than with a conventional source. The Far-infrared beamline is open to users through peer review.

  2. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source.

    PubMed

    Gupta, Sayan; Celestre, Richard; Petzold, Christopher J; Chance, Mark R; Ralston, Corie

    2014-07-01

    X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale.

  3. The Bonn Electron Stretcher Accelerator ELSA: Past and future

    NASA Astrophysics Data System (ADS)

    Hillert, W.

    2006-05-01

    In 1953, it was decided to build a 500MeV electron synchrotron in Bonn. It came into operation 1958, being the first alternating gradient synchrotron in Europe. After five years of performing photoproduction experiments at this accelerator, a larger 2.5GeV electron synchrotron was built and set into operation in 1967. Both synchrotrons were running for particle physics experiments, until from 1982 to 1987 a third accelerator, the electron stretcher ring ELSA, was constructed and set up in a separate ring tunnel below the physics institute. ELSA came into operation in 1987, using the pulsed 2.5GeV synchrotron as pre-accelerator. ELSA serves either as storage ring producing synchrotron radiation, or as post-accelerator and pulse stretcher. Applying a slow extraction close to a third integer resonance, external electron beams with energies up to 3.5GeV and high duty factors are delivered to hadron physics experiments. Various photo- and electroproduction experiments, utilising the experimental set-ups PHOENICS, ELAN, SAPHIR, GDH and Crystal Barrel have been carried out. During the late 90's, a pulsed GaAs source of polarised electrons was constructed and set up at the accelerator. ELSA was upgraded in order to accelerate polarised electrons, compensating for depolarising resonances by applying the methods of fast tune jumping and harmonic closed orbit correction. With the experimental investigation of the GDH sum rule, the first experiment requiring a polarised beam and a polarised target was successfully performed at the accelerator. In the near future, the stretcher ring will be further upgraded to increase polarisation and current of the external electron beams. In addition, the aspects of an increase of the maximum energy to 5GeV using superconducting resonators will be investigated.

  4. A simple optical system delivering a tunable micrometer pink beam that can compensate for heat-induced deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reininger, Ruben; Liu, Zunping; Doumy, Gilles

    2015-06-09

    The radiation from an undulator reflected from one or more optical elements (usually termed `pink-beam') is used in photon-hungry experiments. The optical elements serve as a high-energy cutoff and for focusing purposes. One of the issues with this configuration is maintaining the focal spot dimension as the energy of the undulator is varied, since this changes the heat load absorbed by the first optical element. Finite-element analyses of the power absorbed by a side water-cooled mirror exposed to the radiation emitted by an undulator at the Advanced Photon Source (APS) and at the APS after the proposed upgrade (APSU) revealsmore » that the mirror deformation is very close to a convex cylinder creating a virtual source closer to the mirror than the undulator source. Here a simple optical system is described based on a Kirkpatrick–Baez pair which keeps the focus size to less than 2 µm (in the APSU case) with a working distance of 350 mm despite the heat-load-induced change in source distance. Detailed ray tracings at several photon energies for both the APS and APSU show that slightly decreasing the angle of incidence on the mirrors corrects the change in the `virtual' position of the source. The system delivers more than 70% of the first undulator harmonic with very low higher-orders contamination for energies between 5 and 10 keV.« less

  5. 1WHSP: An IR-based sample of ~1000 VHE γ -ray blazar candidates

    DOE PAGES

    Arsioli, B.; Fraga, B.; Giommi, P.; ...

    2015-06-23

    Context. Blazars are the dominant type of extragalactic sources at microwave and at γ-ray energies. In the most energetic part of the electromagnetic spectrum (E > ≳ 100 GeV) a large fraction of high Galactic latitude sources are blazars of the High Synchrotron Peaked (HSP) type, that is BL Lac objects with synchrotron power peaking in the UV or in the X-ray band. Building new large samples of HSP blazars is key to understand the properties of jets under extreme conditions, and to study the demographics and the peculiar cosmological evolution of these sources. Aims. HSP blazars are remarkably rare,more » with only a few hundreds of them expected to be above the sensitivity limits of currently available surveys, some of which include hundreds of millions of sources. To find these very uncommon objects, we have devised a method that combines ALLWISE survey data with multi-frequency selection criteria. Methods. The sample was defined starting from a primary list of infrared colour-colour selected sources from the ALLWISE all sky survey database, and applying further restrictions on IR-radio and IR-X-ray flux ratios. Using a polynomial fit to the multi-frequency data (radio to X-ray) we estimated synchrotron peak frequencies and fluxes of each object. Results. We assembled a sample including 992 sources, which is currently the largest existing list of confirmed and candidates HSP blazars. All objects are expected to radiate up to the highest γ-ray photon energies. In fact, 299 of these are confirmed emitters of GeV γ-ray photons (based on Fermi-LAT catalogues), and 36 have already been detected in the TeV band. The majority of sources in the sample are within reach of the upcoming Cherenkov Telescope Array (CTA), and many may be detectable even by the current generation of Cherenkov telescopes during flaring episodes. The sample includes 425 previously known blazars, 151 new identifications, and 416 HSP candidates (mostly faint sources) for which no optical spectra is available yet. The full 1WHSP catalogue is on-line at http://www.asdc.asi.it/1whsp/ providing a direct link to the SED building tool where multifrequency data for each source can be easily visualised.« less

  6. RAiSE II: resolved spectral evolution in radio AGN

    NASA Astrophysics Data System (ADS)

    Turner, Ross J.; Rogers, Jonathan G.; Shabala, Stanislav S.; Krause, Martin G. H.

    2018-01-01

    The active galactic nuclei (AGN) lobe radio luminosities modelled in hydrodynamical simulations and most analytical models do not address the redistribution of the electron energies due to adiabatic expansion, synchrotron radiation and inverse-Compton scattering of cosmic microwave background photons. We present a synchrotron emissivity model for resolved sources that includes a full treatment of the loss mechanisms spatially across the lobe, and apply it to a dynamical radio source model with known pressure and volume expansion rates. The bulk flow and dispersion of discrete electron packets is represented by tracer fields in hydrodynamical simulations; we show that the mixing of different aged electrons strongly affects the spectrum at each point of the radio map in high-powered Fanaroff & Riley type II (FR-II) sources. The inclusion of this mixing leads to a factor of a few discrepancy between the spectral age measured using impulsive injection models (e.g. JP model) and the dynamical age. The observable properties of radio sources are predicted to be strongly frequency dependent: FR-II lobes are expected to appear more elongated at higher frequencies, while jetted FR-I sources appear less extended. The emerging FR0 class of radio sources, comprising gigahertz peaked and compact steep spectrum sources, can potentially be explained by a population of low-powered FR-Is. The extended emission from such sources is shown to be undetectable for objects within a few orders of magnitude of the survey detection limit and to not contribute to the curvature of the radio spectral energy distribution.

  7. The radio sources CTA 21 and OF+247: The hot spots of radio galaxies

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.; Tyul'bashev, S. A.; Chernikov, P. A.

    2013-06-01

    The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ˜ 10-1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ˜ 10-3 G, and the density of relativistic electrons is n e ˜ 10-3 cm-3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, < E H > = < E e > ˜ 10-7-10-6 erg cm-3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.

  8. Laser Wakefield Accelerators: Next-Generation Light Sources

    DOE PAGES

    Albert, Felicie

    2018-01-01

    Here, a new breed of compact particle accelerators, capable of producing electron-beam energies in the GeV range, could soon bring some of the experimental power of synchrotrons and X-ray free-electron lasers to a tabletop near you.

  9. An Inside Look: NSLS-II Storage Ring

    ScienceCinema

    Fries, Gregory

    2018-06-12

    Look inside the storage ring of the National Synchrotron Light Source II, under construction at Brookhaven Lab. Exactly 843 magnets now encircle the ring. Their job will be to steer, stabilize, and store electrons racing around at near light speed.

  10. Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics

    ScienceCinema

    Nazaretski, Evgeny

    2018-06-13

    Evgeny Nazaretski, a physicist at Brookhaven Lab’s National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.

  11. Laser Wakefield Accelerators: Next-Generation Light Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie

    Here, a new breed of compact particle accelerators, capable of producing electron-beam energies in the GeV range, could soon bring some of the experimental power of synchrotrons and X-ray free-electron lasers to a tabletop near you.

  12. VERITAS Observations of Six Bright, Hard-Spectrum Fermi-LAT Blazars

    NASA Technical Reports Server (NTRS)

    E. Aliu; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Boettcher, M.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; hide

    2012-01-01

    We report on VERITAS very-high-energy (VHE; E >= 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey (SDSS) spectroscopic data. No VHE emission is detected during the observations of the six sources described here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and XRT data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. The SED built for each of the six blazars show a synchrotron peak bordering between the intermediate- and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission region.

  13. X-ray monochromators for high-power synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Hart, Michael

    1990-11-01

    Exact solutions to the problems of power flow from a line source of heat into a semicylinder and of uniform heat flow normal to a flat surface are discussed. These lead to bounds on feasible designs and the boundary layer problem can be placed in proper perspective. While finite element calculations are useful if the sample boundaries are predefined, they are much less help in establishing design principles. Previous work on hot beam X-ray crystal optics has emphasised the importance of coolant hydraulics and boundary layer heat transfer. Instead this paper emphasises the importance of the elastic response of crystals to thermal strainfields and the importance of maintaining the Darwin reflectivity. The conclusions of this design study are that the diffracting crystal region should be thin, but not very thin, similar in area to the hot beam footprint, part of a thin-walked buckling crystal box and remote from the support to which the crystal is rigidly clamped. Prototype 111 and 220 cooled silicon crystals tested at the National Synchrotron Light Source at Brookhaven have almost perfect rocking curves under a beam heat load of {1}/{3}kW.

  14. The isotropic radio background revisited

    NASA Astrophysics Data System (ADS)

    Fornengo, Nicolao; Lineros, Roberto A.; Regis, Marco; Taoso, Marco

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  15. VERITAS Observations of Six Bright, Hard-Spectrum Fermi-LAT Blazars

    DOE PAGES

    Aliu, E.; Archambault, S.; Arlen, T.; ...

    2012-10-25

    In this paper, we report on VERITAS very high energy (VHE; E ≥ 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey spectroscopic data. No VHE emission is detected during the observations of the six sources describedmore » here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and X-Ray Telescope data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. Finally, the SED built for each of the six blazars shows a synchrotron peak bordering between the intermediate- and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission regions.« less

  16. Micron Scale Mineralogy

    NASA Astrophysics Data System (ADS)

    Caldwell, W. A.; Tamura, N.; Celestre, R. S.; Padmore, H. A.; Patel, J. R.

    2002-12-01

    Although x-ray diffraction has been used for nearly a century as the mineralogist's definitive tool in determining crystalline structures, it has proved impossible to use this technique to spatially resolve the highly heterogeneous nature of many minerals at the mesoscopic level. Due to recent revolutions in the brightness of x-ray sources and in our ability to focus x-rays, we can now carry out conventional monochromatic rotation crystallography as well as Laue diffraction with sub-micron spatial resolution and produce maps of orientation, strain, mineral type, and even chemical speciation over tens of microns in a short amount of time. We have pioneered the development of these techniques at the 3rd generation synchrotron radiation source (Advanced Light Source) in Berkeley, and will describe their application to understanding the structure of a quartz-geode. Our results show the manner in which grain structure and texture change as a function of distance from the cavity wall and are compared with models of crystal growth in such systems. This example highlights the great utility of a synchrotron based x-ray micro-diffraction beamline and the possibilities it opens to the mineralogist.

  17. Redshift Properties of MASIV Sources

    DTIC Science & Technology

    2010-06-01

    34 (CBS, Marcha et a12001, Caccianiga et a12002a) is closest to MASIV however it also has weak (SS.GGH. -lmJy), but only optically bright (R::=;17.5...2001 ApJ, 546, 964 Lovell, J.E .. J, et a1. 2003 AJ, 126, 1699 Lovell, J.E.J, et a1. 2008 ApJ, 689, 108 Marcha , M.J.M, et a1. 2001 lvINRAS, 326, 1455

  18. Dynamic full-field infrared imaging with multiple synchrotron beams

    PubMed Central

    Stavitski, Eli; Smith, Randy J.; Bourassa, Megan W.; Acerbo, Alvin S.; Carr, G. L.; Miller, Lisa M.

    2013-01-01

    Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction limited spatial resolution can be achieved when an apertured, single pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multi-pixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multi-pixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines in order to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of two, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time. PMID:23458231

  19. Synchrotron Radiation Therapy from a Medical Physics point of view

    NASA Astrophysics Data System (ADS)

    Prezado, Y.; Adam, J. F.; Berkvens, P.; Martinez-Rovira, I.; Fois, G.; Thengumpallil, S.; Edouard, M.; Vautrin, M.; Deman, P.; Bräuer-Krisch, E.; Renier, M.; Elleaume, H.; Estève, F.; Bravin, A.

    2010-07-01

    Synchrotron radiation (SR) therapy is a promising alternative to treat brain tumors, whose management is limited due to the high morbidity of the surrounding healthy tissues. Several approaches are being explored by using SR at the European Synchrotron Radiation Facility (ESRF), where three techniques are under development Synchrotron Stereotactic Radiation Therapy (SSRT), Microbeam Radiation Therapy (MRT) and Minibeam Radiation Therapy (MBRT). The sucess of the preclinical studies on SSRT and MRT has paved the way to clinical trials currently in preparation at the ESRF. With this aim, different dosimetric aspects from both theoretical and experimental points of view have been assessed. In particular, the definition of safe irradiation protocols, the beam energy providing the best balance between tumor treatment and healthy tissue sparing in MRT and MBRT, the special dosimetric considerations for small field dosimetry, etc will be described. In addition, for the clinical trials, the definition of appropiate dosimetry protocols for patients according to the well established European Medical Physics recommendations will be discussed. Finally, the state of the art of the MBRT technical developments at the ESRF will be presented. In 2006 A. Dilmanian and collaborators proposed the use of thicker microbeams (0.36-0.68 mm). This new type of radiotherapy is the most recently implemented technique at the ESRF and it has been called MBRT. The main advantage of MBRT with respect to MRT is that it does not require high dose rates. Therefore it can be more easily applied and extended outside synchrotron sources in the future.

  20. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    DOE PAGES

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; ...

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along theirmore » trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO 2 and Gd 2Ti xZr 2–xO 7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.« less

Top