Sample records for source brightness estimation

  1. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, N.; Santhana Raman, P.; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness thatmore » is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.« less

  2. Brightness measurement of an electron impact gas ion source for proton beam writing applications.

    PubMed

    Liu, N; Xu, X; Pang, R; Raman, P Santhana; Khursheed, A; van Kan, J A

    2016-02-01

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.

  3. Intrinsic Brightness Temperatures of AGN Jets

    NASA Astrophysics Data System (ADS)

    Homan, D. C.; Kovalev, Y. Y.; Lister, M. L.; Ros, E.; Kellermann, K. I.; Cohen, M. H.; Vermeulen, R. C.; Zensus, J. A.; Kadler, M.

    2006-05-01

    We present a new method for studying the intrinsic brightness temperatures of the parsec-scale jet cores of active galactic nuclei (AGNs). Our method uses observed superluminal motions and observed brightness temperatures for a large sample of AGNs to constrain the characteristic intrinsic brightness temperature of the sample as a whole. To study changes in intrinsic brightness temperature, we assume that the Doppler factors of individual jets are constant in time, as justified by their relatively small changes in observed flux density. We find that in their median-low brightness temperature state, the sources in our sample have a narrow range of intrinsic brightness temperatures centered on a characteristic temperature, Tint~=3×1010 K, which is close to the value expected for equipartition, when the energy in the radiating particles equals the energy stored in the magnetic fields. However, in their maximum brightness state, we find that sources in our sample have a characteristic intrinsic brightness temperature greater than 2×1011 K, which is well in excess of the equipartition temperature. In this state, we estimate that the energy in radiating particles exceeds the energy in the magnetic field by a factor of ~105. We suggest that the excess of particle energy when sources are in their maximum brightness state is due to injection or acceleration of particles at the base of the jet. Our results suggest that the common method of estimating jet Doppler factors by using a single measurement of observed brightness temperature, the assumption of equipartition, or both may lead to large scatter or systematic errors in the derived values.

  4. Extreme Brightness Temperatures and Refractive Substructure in 3C273 with RadioAstron

    NASA Astrophysics Data System (ADS)

    Johnson, Michael D.; Kovalev, Yuri Y.; Gwinn, Carl R.; Gurvits, Leonid I.; Narayan, Ramesh; Macquart, Jean-Pierre; Jauncey, David L.; Voitsik, Peter A.; Anderson, James M.; Sokolovsky, Kirill V.; Lisakov, Mikhail M.

    2016-03-01

    Earth-space interferometry with RadioAstron provides the highest direct angular resolution ever achieved in astronomy at any wavelength. RadioAstron detections of the classic quasar 3C 273 on interferometric baselines up to 171,000 km suggest brightness temperatures exceeding expected limits from the “inverse-Compton catastrophe” by two orders of magnitude. We show that at 18 cm, these estimates most likely arise from refractive substructure introduced by scattering in the interstellar medium. We use the scattering properties to estimate an intrinsic brightness temperature of 7× {10}12 {{K}}, which is consistent with expected theoretical limits, but which is ˜15 times lower than estimates that neglect substructure. At 6.2 cm, the substructure influences the measured values appreciably but gives an estimated brightness temperature that is comparable to models that do not account for the substructure. At 1.35 {{cm}}, the substructure does not affect the extremely high inferred brightness temperatures, in excess of {10}13 {{K}}. We also demonstrate that for a source having a Gaussian surface brightness profile, a single long-baseline estimate of refractive substructure determines an absolute minimum brightness temperature, if the scattering properties along a given line of sight are known, and that this minimum accurately approximates the apparent brightness temperature over a wide range of total flux densities.

  5. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  6. Luminosity and astrometry of comets: A review

    NASA Technical Reports Server (NTRS)

    Roemer, E.

    1976-01-01

    Visual and photographic observations of the brightness of comets are reviewed including methods and sources of errors. Nuclear magnitude estimates are discussed and interpreted in relation to determination of appropriate exposure times for photographic observations. The importance of brightness ephemarides is emphasized.

  7. Beam Profile Studies for a One Eighth Betatron Wavelength Final Focusing Cell Following Phase Mixed Transport

    DTIC Science & Technology

    1988-10-26

    concentrated into this off- axis peak is then considered. Estimates of the source brightness ( extraction ion diode source current density divided by the square...radioactive contamination of the accelerator. One possible scheme for avoiding this problem is to use extraction geometry ion diodes to focus the ion beams...annular region. These results will be coupled to two simple models of extraction ion diodes to determihe the ion source brightness requirements. These

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandlakunta, P; Pham, R; Zhang, T

    Purpose: To develop and characterize a high brightness multiple-pixel thermionic emission x-ray (MPTEX) source. Methods: Multiple-pixel x-ray sources allow for designs of novel x-ray imaging techniques, such as fixed gantry CT, digital tomosynthesis, tetrahedron beam computed tomography, etc. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide coated cathodes. Oxide cathode is chosen as the electron source due to its high emission current density and low operating temperature. A MPTEX prototype has been developed which may contain up to 41 micro-rectangular oxide cathodes in 4 mm pixel spacing. Electronics hardware was developed for source controlmore » and switching. The cathode emission current was evaluated and x-ray measurements were performed to estimate the focal spot size. Results: The oxide cathodes were able to produce ∼110 mA cathode current in pulse mode which corresponds to an emission current density of 0.55 A/cm{sup 2}. The maximum kVp of the MPTEX prototype currently is limited to 100 kV due to the rating of high voltage feedthrough. Preliminary x-ray measurements estimated the focal spot size as 1.5 × 1.3 mm{sup 2}. Conclusion: A MPTEX source was developed with thermionic oxide coated cathodes and preliminary source characterization was successfully performed. The MPTEX source is able to produce an array of high brightness x-ray beams with a fast switching speed.« less

  9. All-sky brightness monitoring of light pollution with astronomical methods.

    PubMed

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  10. OBSERVATION OF TeV GAMMA RAYS FROM THE FERMI BRIGHT GALACTIC SOURCES WITH THE TIBET AIR SHOWER ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amenomori, M.; Bi, X. J.; Ding, L. K.

    2010-01-20

    Using the Tibet-III air shower array, we search for TeV {gamma}-rays from 27 potential Galactic sources in the early list of bright sources obtained by the Fermi Large Area Telescope at energies above 100 MeV. Among them, we observe seven sources instead of the expected 0.61 sources at a significance of 2{sigma} or more excess. The chance probability from Poisson statistics would be estimated to be 3.8 x 10{sup -6}. If the excess distribution observed by the Tibet-III array has a density gradient toward the Galactic plane, the expected number of sources may be enhanced in chance association. Then, themore » chance probability rises slightly, to 1.2 x 10{sup -5}, based on a simple Monte Carlo simulation. These low chance probabilities clearly show that the Fermi bright Galactic sources have statistically significant correlations with TeV {gamma}-ray excesses. We also find that all seven sources are associated with pulsars, and six of them are coincident with sources detected by the Milagro experiment at a significance of 3{sigma} or more at the representative energy of 35 TeV. The significance maps observed by the Tibet-III air shower array around the Fermi sources, which are coincident with the Milagro {>=}3{sigma} sources, are consistent with the Milagro observations. This is the first result of the northern sky survey of the Fermi bright Galactic sources in the TeV region.« less

  11. VizieR Online Data Catalog: FIR data of IR-bright dust-obscured galaxies (DOGs) (Toba+, 2017)

    NASA Astrophysics Data System (ADS)

    Toba, Y.; Nagao, T.; Wang, W.-H.; Matsuhara, H.; Akiyama, M.; Goto, T.; Koyama, Y.; Ohyama, Y.; Yamamura, I.

    2017-11-01

    We investigate the star-forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, (i-[22])AB>7.0. Combining an IR-bright DOG sample with the flux at 22μm>3.8mJy discovered by Toba & Nagao (2016ApJ...820...46T) with the IRAS faint source catalog version 2 and AKARI far-IR (FIR) all-sky survey bright source catalog version 2, we selected 109 DOGs with FIR data. For a subsample of seven IR-bright DOGs with spectroscopic redshifts (0.07

  12. Far-infrared Properties of Infrared-bright Dust-obscured Galaxies Selected with IRAS and AKARI Far-infrared All-sky Survey

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Nagao, Tohru; Wang, Wei-Hao; Matsuhara, Hideo; Akiyama, Masayuki; Goto, Tomotsugu; Koyama, Yusei; Ohyama, Youich; Yamamura, Issei

    2017-05-01

    We investigate the star-forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, {(I-[22])}{AB}> 7.0. Combining an IR-bright DOG sample with the flux at 22 μm > 3.8 mJy discovered by Toba & Nagao with the IRAS faint source catalog version 2 and AKARI far-IR (FIR) all-sky survey bright source catalog version 2, we selected 109 DOGs with FIR data. For a subsample of seven IR-bright DOGs with spectroscopic redshifts (0.07< z< 1.0) that were obtained from the literature, we estimated their IR luminosity, star formation rate (SFR), and stellar mass based on the spectral energy distribution fitting. We found that (1) the WISE 22 μm luminosity at the observed frame is a good indicator of IR luminosity for IR-bright DOGs and (2) the contribution of the active galactic nucleus to IR luminosity increases with IR luminosity. By comparing the stellar mass and SFR relation for our DOG sample and the literature, we found that most of the IR-bright DOGs lie significantly above the main sequence of star-forming galaxies at similar redshift, indicating that the majority of IRAS- or AKARI-detected IR-bright DOGs are starburst galaxies.

  13. Vela X: A plerion or part of a shell?

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    1998-03-01

    An analysis of the radio, optical, and X-ray observations of the supernova remnant (SNR) in Vela has led us to conclude that the radio source Vela X is part of the SNR shell. The high brightness of this radio source is assumed to be a result of the interaction of dome-shaped deformations (bubbles) on the SNR shell, which gives rise to bright radio filaments. The deformations could be produced by Richtmaier-Meshkov's instability, which develops during the impulsive acceleration of a shell of gas (swept up from the interstellar medium by the wind from a presupernova) by a shock wave (generated by a supernova explosion). The brightest radio filament and the X-ray jet extending along it are shown to be located in the region of interaction of two prominent bubbles on the SNR shell. We conclude that the X-ray jet, like Vela X, is part of the shell, and that it has its origin in the Mach reflection of two semispherical shock waves. Our estimate of the plasma temperature behind the front of the Mach wave matches the jet temperature. We also show that the large spread in the estimates of the spectral index for Vela X could be caused by the instrumental effect which arises during observations of extended radio sources with a nonuniform surface-brightness distribution.

  14. Luminosity and surface brightness distribution of K-band galaxies from the UKIDSS Large Area Survey

    NASA Astrophysics Data System (ADS)

    Smith, Anthony J.; Loveday, Jon; Cross, Nicholas J. G.

    2009-08-01

    We present luminosity and surface-brightness distributions of 40111 galaxies with K-band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K- and r-band magnitude, K-band surface brightness and K-band radius are included explicitly in the 1/Vmax estimate of the space density and luminosity function. The bivariate brightness distribution in K-band absolute magnitude and surface brightness is presented and found to display a clear luminosity-surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K-band luminosity function are found to be M* - 5 logh = -23.19 +/- 0.04,α = -0.81 +/- 0.04 and φ* = (0.0166 +/- 0.0008)h3Mpc-3, although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be j = (6.305 +/- 0.067) × 108LsolarhMpc-3. However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.

  15. Unveiling high redshift structures with Planck

    NASA Astrophysics Data System (ADS)

    Welikala, Niraj

    2012-07-01

    The Planck satellite, with its large wavelength coverage and all-sky survey, has a unique potential of systematically detecting the brightest and rarest submillimetre sources on the sky. We present an original method based on a combination of Planck and IRAS data which we use to select the most luminous submillimetre high-redshift (z>1-2) cold sources over the sky. The majority of these sources are either individual, strongly lensed galaxies, or represent the combined emission of several submillimetre galaxies within the large beam of Planck. The latter includes, in particular, rapidly growing galaxy groups and clusters. We demonstrate our selection method on the first 5 confirmations that include a newly discovered over-density of 5 submillimetre-bright sources which has been confirmed with Herschel/SPIRE observations and followed up with ground-based observations including VLT/XSHOOTER spectroscopy. Using Planck, we also unveil the nature of 107 high-redshift dusty, lensed submillimetre galaxies that have been previously observed over 940 square degrees by the South Pole Telescope (SPT). We stack these galaxies in the Planck maps, obtaining mean SEDs for both the bright (SPT flux F _{220 GHz} > 20 mJy) and faint (F _{220 GHz} < 20 mJy) galaxy populations. These SEDs and the derived mean redshifts suggest that the bright and faint sources belong to the same population of submillimetre galaxies. Stacking the lensed submillimetre galaxies in Planck also enables us to probe the z~1 environments around the foreground lenses and we obtain estimates of their clustering. Finally, we use the stacks to extrapolate SPT source counts to the Planck HFI frequencies, thereby estimating the contribution of the SPT sources at 220 GHz to the galaxy number counts at 353 and 545 GHz.

  16. Maximum current density and beam brightness achievable by laser-driven electron sources

    NASA Astrophysics Data System (ADS)

    Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.

    2014-02-01

    This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.

  17. A daytime measurement of the lunar contribution to the night sky brightness in LSST's ugrizy bands-initial results

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael; Stubbs, Christopher; Claver, Chuck

    2016-06-01

    We report measurements from which we determine the spatial structure of the lunar contribution to night sky brightness, taken at the LSST site on Cerro Pachon in Chile. We use an array of six photodiodes with filters that approximate the Large Synoptic Survey Telescope's u, g, r, i, z, and y bands. We use the sun as a proxy for the moon, and measure sky brightness as a function of zenith angle of the point on sky, zenith angle of the sun, and angular distance between the sun and the point on sky. We make a correction for the difference between the illumination spectrum of the sun and the moon. Since scattered sunlight totally dominates the daytime sky brightness, this technique allows us to cleanly determine the contribution to the (cloudless) night sky from backscattered moonlight, without contamination from other sources of night sky brightness. We estimate our uncertainty in the relative lunar night sky brightness vs. zenith and lunar angle to be between 0.3-0.7 mags depending on the passband. This information is useful in planning the optimal execution of the LSST survey, and perhaps for other astronomical observations as well. Although our primary objective is to map out the angular structure and spectrum of the scattered light from the atmosphere and particulates, we also make an estimate of the expected number of scattered lunar photons per pixel per second in LSST, and find values that are in overall agreement with previous estimates.

  18. SeaWiFS technical report series. Volume 31: Stray light in the SeaWiFS radiometer

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Barnes, Robert A.; Holmes, Alan W.; Esaias, Wayne E.

    1995-01-01

    Some of the measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will not be useful as ocean measurements. For the ocean data set, there are procedures in place to mask the SeaWiFS measurements of clouds and ice. Land measurements will also be masked using a geographic technique based on each measurment's latitude and longitude. Each of these masks involves a source of light much brighter than the ocean. Because of stray light in the SeaWiFS radiometer, light from these bright sources can contaminate ocean measurements located a variable number of pixels away from a bright source. In this document, the sources of stray light in the sensor are examined, and a method is developed for masking measurements near bright targets for stray light effects. In addition, a procedure is proposed for reducing the effects of stray light in the flight data from SeaWiFS. This correction can also reduce the number of pixels masked for stray light. Without these corrections, local area scenes must be masked 10 pixels before and after bright targets in the along-scan direction. The addition of these corrections reduces the along-scan masks to four pixels before and after bright sources. In the along-track direction, the flight data are not corrected, and are masked two pixels before and after. Laboratory measurements have shown that stray light within the instrument changes in a direct ratio to the intensity of the bright source. The measurements have also shown that none of the bands show peculiarities in their stray light response. In other words, the instrument's response is uniform from band to band. The along-scan correction is based on each band's response to a 1 pixel wide bright sources. Since these results are based solely on preflight laboratory measurements, their successful implementation requires compliance with two additional criteria. First, since SeaWiFS has a large data volume, the correction and masking procedures must be such that they can be converted into computationally fast algorithms. Second, they must be shown to operate properly on flight data. The laboratory results, and the corrections and masking procedures that derive from them, should be considered as zeroeth order estimates of the effects that will be found on orbit.

  19. AzTEC/ASTE 1.1 mm Deep Surveys: Number Counts and Clustering of Millimeter-bright Galaxies

    NASA Astrophysics Data System (ADS)

    Hatsukade, B.; Kohno, K.; Aretxaga, I.; Austermann, J. E.; Ezawa, H.; Hughes, D. H.; Ikarashi, S.; Iono, D.; Kawabe, R.; Matsuo, H.; Matsuura, S.; Nakanishi, K.; Oshima, T.; Perera, T.; Scott, K. S.; Shirahata, M.; Takeuchi, T. T.; Tamura, Y.; Tanaka, K.; Tosaki, T.; Wilson, G. W.; Yun, M. S.

    2010-10-01

    We present number counts and clustering properties of millimeter-bright galaxies uncovered by the AzTEC camera mounted on the Atacama Submillimeter Telescope Experiment (ASTE). We surveyed the AKARI Deep Field South (ADF-S), the Subaru/XMM Newton Deep Field (SXDF), and the SSA22 fields with an area of ~0.25 deg2 each with an rms noise level of ~0.4-1.0 mJy. We constructed differential and cumulative number counts, which provide currently the tightest constraints on the faint end. The integration of the best-fit number counts in the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which the number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with >=1 mJy using the best-fit number counts in the ADF-S and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z~2-3. The average mass of dark halos hosting bright 1.1 mm sources was calculated to be 1013-1014 Msolar. Comparison of correlation lengths of 1.1 mm sources with other populations and with a bias evolution model suggests that dark halos hosting bright 1.1 mm sources evolve into systems of clusters at present universe and the 1.1 mm sources residing the dark halos evolve into massive elliptical galaxies located in the center of clusters.

  20. Application of Reflected Global Navigation Satellite System (GNSS-R) Signals in the Estimation of Sea Roughness Effects in Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Voo, Justin K.; Garrison, James L.; Yueh, Simon H.; Grant, Michael S.; Fore, Alexander G.; Haase, Jennifer S.; Clauss, Bryan

    2010-01-01

    In February-March 2009 NASA JPL conducted an airborne field campaign using the Passive Active L-band System (PALS) and the Ku-band Polarimetric Scatterometer (PolSCAT) collecting measurements of brightness temperature and near surface wind speeds. Flights were conducted over a region of expected high-speed winds in the Atlantic Ocean, for the purposes of algorithm development for salinity retrievals. Wind speeds encountered were in the range of 5 to 25 m/s during the two weeks deployment. The NASA-Langley GPS delay-mapping receiver (DMR) was also flown to collect GPS signals reflected from the ocean surface and generate post-correlation power vs. delay measurements. This data was used to estimate ocean surface roughness and a strong correlation with brightness temperature was found. Initial results suggest that reflected GPS signals, using small low-power instruments, will provide an additional source of data for correcting brightness temperature measurements for the purpose of sea surface salinity retrievals.

  1. Microlensing optical depth towards the Galactic Bulge using bright sources from OGLE-II

    NASA Astrophysics Data System (ADS)

    Sumi, T.; Woźniak, P.; Udalski, A.; Szymański, M.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Zebruń, K.; Szewczyk, O.; Wyrzykowski, L.

    2004-12-01

    We present a measurement of the microlensing optical depth towards the Galactic Bulge by using bright stars as sources from the central 20 OGLE-II Galactic bulge fields covering a range of 0o

  2. Tracing early evolutionary stages of high-mass star formation with molecular lines

    NASA Astrophysics Data System (ADS)

    Marseille, M. G.; van der Tak, F. F. S.; Herpin, F.; Jacq, T.

    2010-11-01

    Context. Despite its major role in the evolution of the interstellar medium, the formation of high-mass stars (M ≥ 10 M_⊙) remains poorly understood. Two types of massive star cluster precursors, the so-called massive dense cores (MDCs), have been observed, which differ in terms of their mid-infrared brightness. The origin of this difference has not yet been established and may be the result of evolution, density, geometry differences, or a combination of these. Aims: We compare several molecular tracers of physical conditions (hot cores, shocks) observed in a sample of mid-IR weakly emitting MDCs with previous results obtained in a sample of exclusively mid-IR bright MDCs. We attempt to understand the differences between these two types of object. Methods: We present single-dish observations of HDO, H_218O, SO2, and CH3OH lines at λ = 1.3-3.5 mm. We study line profiles and estimate abundances of these molecules, and use a partial correlation method to search for trends in the results. Results: The detection rates of thermal emission lines are found to be very similar for both mid-IR quiet and bright objects. The abundances of H2O, HDO (10-13 to 10-9 in the cold outer envelopes), SO2 and CH3OH differ from source to source but independently of their mid-IR flux. In contrast, the methanol class I maser emission, a tracer of outflow shocks, is found to be strongly anti-correlated with the 12 μm source brightnesses. Conclusions: The enhancement of the methanol maser emission in mid-IR quiet MDCs may be indicative of a more embedded nature. Since total masses are similar between the two samples, we suggest that the matter distribution is spherical around mid-IR quiet sources but flattened around mid-IR bright ones. In contrast, water emission is associated with objects containing a hot molecular core, irrespective of their mid-IR brightness. These results indicate that the mid-IR brightness of MDCs is an indicator of their evolutionary stage.

  3. A portable inspection system to estimate direct glare of various LED modules

    NASA Astrophysics Data System (ADS)

    Chen, Po-Li; Liao, Chun-Hsiang; Li, Hung-Chung; Jou, Shyh-Jye; Chen, Han-Ting; Lin, Yu-Hsin; Tang, Yu-Hsiang; Peng, Wei-Jei; Kuo, Hui-Jean; Sun, Pei-Li; Lee, Tsung-Xian

    2015-07-01

    Glare is caused by both direct and indirect light sources and discomfort glare produces visual discomfort, annoyance, or loss in visual performance and visibility. Direct glare is caused by light sources in the field of view whereas reflected glare is caused by bright reflections from polished or glossy surfaces that are reflected toward an individual. To improve visual comfort of our living environment, a portable inspection system to estimate direct glare of various commercial LED modules with the range of color temperature from 3100 K to 5300 K was developed in this study. The system utilized HDR images to obtain the illumination distribution of LED modules and was first calibrated for brightness and chromaticity and corrected with flat field, dark-corner and curvature by the installed algorithm. The index of direct glare was then automatically estimated after image capturing, and the operator can recognize the performance of LED modules and the possible effects on human being once the index was out of expecting range. In the future, we expect that the quick-response smart inspection system can be applied in several new fields and market, such as home energy diagnostics, environmental lighting and UGR monitoring and popularize it in several new fields.

  4. Comparative analysis of numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.; Filimonov, Grigory A.; LeMaster, Daniel A.; Trippel, Matthew E.

    2017-07-01

    Computational efficiency and accuracy of wave-optics-based Monte-Carlo and brightness function numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence are evaluated. Simulation results are compared with theoretical estimates based on known analytical solutions for the modulation transfer function of an imaging system and the long-exposure image of a Gaussian-shaped incoherent light source. It is shown that the accuracy of both techniques is comparable over the wide range of path lengths and atmospheric turbulence conditions, whereas the brightness function technique is advantageous in terms of the computational speed.

  5. Determining the Intensity of a Point-Like Source Observed on the Background of AN Extended Source

    NASA Astrophysics Data System (ADS)

    Kornienko, Y. V.; Skuratovskiy, S. I.

    2014-12-01

    The problem of determining the time dependence of intensity of a point-like source in case of atmospheric blur is formulated and solved by using the Bayesian statistical approach. A pointlike source is supposed to be observed on the background of an extended source with constant in time though unknown brightness. The equation system for optimal statistical estimation of the sequence of intensity values in observation moments is obtained. The problem is particularly relevant for studying gravitational mirages which appear while observing a quasar through the gravitational field of a far galaxy.

  6. High brightness electrodeless Z-Pinch EUV source for mask inspection tools

    NASA Astrophysics Data System (ADS)

    Horne, Stephen F.; Partlow, Matthew J.; Gustafson, Deborah S.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2012-03-01

    Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 1995. The source is currently being used for metrology, mask inspection, and resist development. Energetiq's higher brightness source has been selected as the source for pre-production actinic mask inspection tools. This improved source enables the mask inspection tool suppliers to build prototype tools with capabilities of defect detection and review down to 16nm design rules. In this presentation we will present new source technology being developed at Energetiq to address the critical source brightness issue. The new technology will be shown to be capable of delivering brightness levels sufficient to meet the HVM requirements of AIMS and ABI and potentially API tools. The basis of the source technology is to use the stable pinch of the electrodeless light source and have a brightness of up to 100W/mm(carat)2-sr. We will explain the source design concepts, discuss the expected performance and present the modeling results for the new design.

  7. Improving distance estimates to nearby bright stars: Combining astrometric data from Hipparcos, Nano-JASMINE and Gaia

    NASA Astrophysics Data System (ADS)

    Michalik, Daniel; Lindegren, Lennart; Hobbs, David; Lammers, Uwe; Yamada, Yoshiyuki

    2013-02-01

    Starting in 2013, Gaia will deliver highly accurate astrometric data, which eventually will supersede most other stellar catalogues in accuracy and completeness. It is, however, limited to observations from magnitude 6 to 20 and will therefore not include the brightest stars. Nano-JASMINE, an ultrasmall Japanese astrometry satellite, will observe these bright stars, but with much lower accuracy. Hence, the Hipparcos catalogue from 1997 will likely remain the main source of accurate distances to bright nearby stars. We are investigating how this might be improved by optimally combining data from all three missions through a joint astrometric solution. This would take advantage of the unique features of each mission: the historic bright-star measurements of Hipparcos, the updated bright-star observations of Nano-JASMINE, and the very accurate reference frame of Gaia. The long temporal baseline between the missions provides additional benefits for the determination of proper motions and binary detection, which indirectly improve the parallax determination further. We present a quantitative analysis of the expected gains based on simulated data for all three missions.

  8. A BRIGHT SUBMILLIMETER SOURCE IN THE BULLET CLUSTER (1E0657-56) FIELD DETECTED WITH BLAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rex, Marie; Devlin, Mark J.; Dicker, Simon R.

    2009-09-20

    We present the 250, 350, and 500 {mu}m detection of bright submillimeter emission in the direction of the Bullet Cluster measured by the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST). The 500 {mu}m centroid is coincident with an AzTEC 1.1 mm point-source detection at a position close to the peak lensing magnification produced by the cluster. However, the 250 {mu}m and 350 {mu}m centroids are elongated and shifted toward the south with a differential shift between bands that cannot be explained by pointing uncertainties. We therefore conclude that the BLAST detection is likely contaminated by emission from foreground galaxies associated with themore » Bullet Cluster. The submillimeter redshift estimate based on 250-1100 {mu}m photometry at the position of the AzTEC source is z{sub phot} = 2.9{sup +0.6}{sub -0.3}, consistent with the infrared color redshift estimation of the most likely Infrared Array Camera counterpart. These flux densities indicate an apparent far-infrared (FIR) luminosity of L{sub FIR} = 2 x 10{sup 13} L {sub sun}. When the amplification due to the gravitational lensing of the cluster is removed, the intrinsic FIR luminosity of the source is found to be L{sub FIR} <= 10{sup 12} L{sub sun}, consistent with typical luminous infrared galaxies.« less

  9. Compact radio sources in the starburst galaxy M82 and the Sigma-D relation for supernova remnants

    NASA Technical Reports Server (NTRS)

    Huang, Z. P.; Thuan, T. X.; Chevalier, R. A.; Condon, J. J.; Yin, Q. F.

    1994-01-01

    We have obtained an 8.4 GHz Very Large Array (VLA) A-array map of the starburst galaxy M82 with a resolution Full Width at Half Maximum (FWHM) approximately 0.182 sec. About 50 compact radio sources in the central region of M82 were detected with a peak surface brightness approximately greater than 10(exp -17) W/Hz/sq m/sr. Comparison with previous observations shows that most sources are declining in flux. Three previously visible sources have faded into the background of our map (approximately less than 0.2 mJy/beam), while a few sources, including the second and third brightest radio sources in M82, may have increased slightly in flux over the last decade. No new radio supernova was found. The birth rate of the compact radio sources is estimated to be 0.11 + or - 0.05/yr. We attribute the population of such bright, small supernova remnants (SNRs) in M82 to the high pressure in the central region that can truncate the mass loss during a red supergiant phase or allow dense ionized clouds to be present. The compact radio sources obey a Sigma(radio surface brightness) - D(diameter) relation which is remarkably similar to that followed by supernova remnants in the Galaxy and the Magellanic Clouds and by two of the strongest known extragalactic radio supernovae: SN 1986J and SN 1979C. A least-squares fit to the SNR data gives: Sigma(sub 8.4 GHz) (W/Hz/sq m/sr) = 4.4 x 10(exp -16) D(sub pc)(exp -3.5 +/- 0.1) covering seven orders of magnitude in Sigma. Possible selection effects are discussed and a theoretical discussion of the correlation is presented.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemcov, M.; Cooray, A.; Bock, J.

    We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after removing detected sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitudemore » of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I{sub 250{mu}m}>0.69{sub -0.03}{sup +0.03}(stat.){sub -0.06}{sup +0.11}(sys.) MJy sr{sup -1}, with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.« less

  11. DETECTION OF AN ULTRA-BRIGHT SUBMILLIMETER GALAXY BEHIND THE SMALL MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo

    2013-09-10

    We report the discovery of a new ultra-bright submillimeter galaxy (SMG) behind the Small Magellanic Cloud (SMC). This SMG is detected as a 43.3 {+-} 8.4 mJy point source (MM J01071-7302, hereafter MMJ0107) in the 1.1 mm continuum survey of the SMC by AzTEC on the ASTE telescope. MMJ0107 is also detected in the radio (843 MHz), Herschel/SPIRE, Spitzer MIPS 24 {mu}m, all IRAC bands, Wide-field Infrared Survey Explorer, and near-infrared (J, H, K{sub S} ). We find an optical (U, B, V) source, which might be the lensing object, at a distance of 1.''4 from near-infrared and IRAC sources.more » Photometric redshift estimates for the SMG using representative spectral energy distribution templates show the redshifts of 1.4-3.9. We estimate total far-infrared luminosity of (0.3-2.2) Multiplication-Sign 10{sup 14} {mu}{sup -1} L{sub Sun} and a star formation rate of 5600-39, 000 {mu}{sup -1} M{sub Sun} yr{sup -1}, where {mu} is the gravitational magnification factor. This apparent extreme star formation activity is likely explained by a highly magnified gravitational lens system.« less

  12. HX-POL - A Balloon-Bourne Hard X-Ray Polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawczynski, H.; De Geronimo, G.; Garson, A., III, Martin, J.

    2009-12-09

    We report on the design and estimated performance of a balloon-borne hard X-ray polarimeter called HX-POL. The experiment uses a combination of Si and Cadmium Zinc Telluride detectors to measure the polarization of 50 keV-400 keV X-rays from cosmic sources through the dependence of the angular distribution of Compton scattered photons on the polarization direction. On a one-day balloon flight, HX-POL would allow us to measure the polarization of bright Crab-like sources for polarization degrees well below 10%. On a longer (15-30 day) flight from Australia or Antarctica, HX-POL would be be able to measure the polarization of bright galacticmore » X-ray sources down to polarization degrees of a few percent. Hard X-ray polarization measurements provide unique venues for the study of particle acceleration processes by compact objects and relativistic outflows. In this paper, we discuss the overall instrument design and performance. Furthermore, we present results from laboratory tests of the Si and CZT detectors.« less

  13. AzTEC/ASTE 1.1 mm Deep Surveys: Number Counts and Clustering of Millimeter-bright Galaxies

    NASA Astrophysics Data System (ADS)

    Hatsukade, B.

    2011-11-01

    We present results of a 1.1 mm deep survey of the AKARI Deep Field South (ADF-S) with AzTEC mounted on the Atacama Submillimetre Telescope Experiment (ASTE). We obtained a map of 0.25 deg2 area with an rms noise level of 0.32-0.71 mJy. This is one of the deepest and widest maps thus far at millimetre and submillimetre wavelengths. We uncovered 198 sources with a significance of 3.5-15.6σ, providing the largest catalog of 1.1 mm sources in a contiguous region. Most of the sources are not detected in the far-infrared bands of the AKARI satellite, suggesting that they are mostly at z ≥ 1.5 given the detection limits. We construct differential and cumulative number counts of the ADF-S, the Subaru/XMM Newton Deep Field (SXDF), and the SSA 22 field surveyed by AzTEC/ASTE, which provide currently the tightest constraints on the faint end. The integration of the differential number counts of the ADF-S find that the contribution of 1.1 mm sources with ≥1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with ≥1 mJy using the differential number counts and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z ~ 2-3. Clustering analyses of AzTEC sources in the ADF-S and the SXDF find that bright (>3 mJy) AzTEC sources are more strongly clustered than faint (< 3 mJy) AzTEC sources and the average mass of dark halos hosting bright AzTEC sources was calculated to be 1013-1014M⊙. Comparison of correlation length of AzTEC sources with other populations and with a bias evolution model suggests that dark halos hosting bright AzTEC sources evolve into systems of clusters at present universe and the AzTEC sources residing the dark halos evolve into massive elliptical galaxies located in the center of clusters.

  14. Coronal bright points at 6cm wavelength

    NASA Technical Reports Server (NTRS)

    Fu, Qijun; Kundu, M. R.; Schmahl, E. J.

    1988-01-01

    Results are presented from observations of bright points at a wavelength of 6-cm using the VLA with a spatial resolution of 1.2 arcsec. During two hours of observations, 44 sources were detected with brightness temperatures between 2000 and 30,000 K. Of these sources, 27 are associated with weak dark He 10830 A features at distances less than 40 arcsecs. Consideration is given to variations in the source parameters and the relationship between ephemeral regions and bright points.

  15. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S G; Barty, C P J; Betts, S M

    2003-07-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.

  16. Photometric Calibration of Consumer Video Cameras

    NASA Technical Reports Server (NTRS)

    Suggs, Robert; Swift, Wesley, Jr.

    2007-01-01

    Equipment and techniques have been developed to implement a method of photometric calibration of consumer video cameras for imaging of objects that are sufficiently narrow or sufficiently distant to be optically equivalent to point or line sources. Heretofore, it has been difficult to calibrate consumer video cameras, especially in cases of image saturation, because they exhibit nonlinear responses with dynamic ranges much smaller than those of scientific-grade video cameras. The present method not only takes this difficulty in stride but also makes it possible to extend effective dynamic ranges to several powers of ten beyond saturation levels. The method will likely be primarily useful in astronomical photometry. There are also potential commercial applications in medical and industrial imaging of point or line sources in the presence of saturation.This development was prompted by the need to measure brightnesses of debris in amateur video images of the breakup of the Space Shuttle Columbia. The purpose of these measurements is to use the brightness values to estimate relative masses of debris objects. In most of the images, the brightness of the main body of Columbia was found to exceed the dynamic ranges of the cameras. A similar problem arose a few years ago in the analysis of video images of Leonid meteors. The present method is a refined version of the calibration method developed to solve the Leonid calibration problem. In this method, one performs an endto- end calibration of the entire imaging system, including not only the imaging optics and imaging photodetector array but also analog tape recording and playback equipment (if used) and any frame grabber or other analog-to-digital converter (if used). To automatically incorporate the effects of nonlinearity and any other distortions into the calibration, the calibration images are processed in precisely the same manner as are the images of meteors, space-shuttle debris, or other objects that one seeks to analyze. The light source used to generate the calibration images is an artificial variable star comprising a Newtonian collimator illuminated by a light source modulated by a rotating variable neutral- density filter. This source acts as a point source, the brightness of which varies at a known rate. A video camera to be calibrated is aimed at this source. Fixed neutral-density filters are inserted in or removed from the light path as needed to make the video image of the source appear to fluctuate between dark and saturated bright. The resulting video-image data are analyzed by use of custom software that determines the integrated signal in each video frame and determines the system response curve (measured output signal versus input brightness). These determinations constitute the calibration, which is thereafter used in automatic, frame-by-frame processing of the data from the video images to be analyzed.

  17. The Herschel Bright Sources (HerBS): sample definition and SCUBA-2 observations

    NASA Astrophysics Data System (ADS)

    Bakx, Tom J. L. C.; Eales, S. A.; Negrello, M.; Smith, M. W. L.; Valiante, E.; Holland, W. S.; Baes, M.; Bourne, N.; Clements, D. L.; Dannerbauer, H.; De Zotti, G.; Dunne, L.; Dye, S.; Furlanetto, C.; Ivison, R. J.; Maddox, S.; Marchetti, L.; Michałowski, M. J.; Omont, A.; Oteo, I.; Wardlow, J. L.; van der Werf, P.; Yang, C.

    2018-01-01

    We present the Herschel Bright Sources (HerBS) sample, a sample of bright, high-redshift Herschel sources detected in the 616.4 deg2 Herschel Astrophysical Terahertz Large Area Survey. The HerBS sample contains 209 galaxies, selected with a 500 μm flux density greater than 80 mJy and an estimated redshift greater than 2. The sample consists of a combination of hyperluminous infrared galaxies and lensed ultraluminous infrared galaxies during the epoch of peak cosmic star formation. In this paper, we present Submillimetre Common-User Bolometer Array 2 (SCUBA-2) observations at 850 μm of 189 galaxies of the HerBS sample, 152 of these sources were detected. We fit a spectral template to the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) and 850 μm SCUBA-2 flux densities of 22 sources with spectroscopically determined redshifts, using a two-component modified blackbody spectrum as a template. We find a cold- and hot-dust temperature of 21.29_{-1.66}^{+1.35} and 45.80_{-3.48}^{+2.88} K, a cold-to-hot dust mass ratio of 26.62_{-6.74}^{+5.61} and a β of 1.83_{-0.28}^{+0.14}. The poor quality of the fit suggests that the sample of galaxies is too diverse to be explained by our simple model. Comparison of our sample to a galaxy evolution model indicates that the fraction of lenses are high. Out of the 152 SCUBA-2 detected galaxies, the model predicts 128.4 ± 2.1 of those galaxies to be lensed (84.5 per cent). The SPIRE 500 μm flux suggests that out of all 209 HerBS sources, we expect 158.1 ± 1.7 lensed sources, giving a total lensing fraction of 76 per cent.

  18. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source.

    PubMed

    Gazzano, O; Almeida, M P; Nowak, A K; Portalupi, S L; Lemaître, A; Sagnes, I; White, A G; Senellart, P

    2013-06-21

    We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.

  19. Apollo 15 contamination photography

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1972-01-01

    The problem of optical contamination in the form of particulates in the vicinity of a spacecraft has been a source of concern for any astronomical experiment that must be performed in sunlight. This concern prompted a photographic photometric experiment on Apollo 15 to measure the brightness of the residual contamination cloud as well as the cloud produced by dumping waste water overboard. An upper limit of 10 to the minus 12.3 power B (B designates the brightness of the solar disc) was placed on the residual cloud at a 90 deg sun angle, which is comparable to the zodiacal light. The brightness of the cloud produced by the waste dump was estimated to be 10 to the minus 9.2 power B. It was observed to decrease rapidly to 10 to the -11.6 power B in minutes, then fluctuate in brightness for at least 25 minutes as additional material left the spacecraft. The cloud was observed to consist of individually resolved particle tracks estimated to be particles ranging from millimeters to centimeters in diameter in addition to a background of unresolved particles with an average diameter of 10.5 microns. Most of the tracks proceeded in straight-line paths from the dump nozzle. Several tracks violated this direction, apparently having been scattered by collisions. A few tracks appeared to have definite curvatures, which are believed to be caused by charged particle interactions.

  20. The calibration of read-out-streak photometry in the XMM-Newton Optical Monitor and the construction of a bright-source catalogue

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Chan, N.; Breeveld, A. A.; Talavera, A.; Yershov, V.; Kennedy, T.; Kuin, N. P. M.; Hancock, B.; Smith, P. J.; Carter, M.

    2017-04-01

    The dynamic range of the XMM-Newton Optical Monitor (XMM-OM) is limited at the bright end by coincidence loss, the superposition of multiple photons in the individual frames recorded from its micro-channel-plate (MCP) intensified charge-coupled device (CCD) detector. One way to overcome this limitation is to use photons that arrive during the frame transfer of the CCD, forming vertical read-out streaks for bright sources. We calibrate these read-out streaks for photometry of bright sources observed with XMM-OM. The bright-source limit for read-out-streak photometry is set by the recharge time of the MCPs. For XMM-OM, we find that the MCP recharge time is 5.5 × 10-4 s. We determine that the effective bright limits for read-out-streak photometry with XMM-OM are approximately 1.5 mag brighter than the bright-source limits for normal aperture photometry in full-frame images. This translates into bright-source limits in Vega magnitudes of UVW2=7.1, UVM2=8.0, UVW1=9.4, U=10.5, B=11.5, V=10.2, and White=12.5 for data taken early in the mission. The limits brighten by up to 0.2 mag, depending on filter, over the course of the mission as the detector ages. The method is demonstrated by deriving UVW1 photometry for the symbiotic nova RR Telescopii, and the new photometry is used to constrain the e-folding time of its decaying ultraviolet (UV) emission. Using the read-out-streak method, we obtain photometry for 50 per cent of the missing UV source measurements in version 2.1 of the XMM-Newton Serendipitous UV Source Survey catalogue.

  1. The high brightness temperature of B0529+483 revealed by RadioAstron and implications for interstellar scattering

    NASA Astrophysics Data System (ADS)

    Pilipenko, S. V.; Kovalev, Y. Y.; Andrianov, A. S.; Bach, U.; Buttaccio, S.; Cassaro, P.; Cimò, G.; Edwards, P. G.; Gawroński, M. P.; Gurvits, L. I.; Hovatta, T.; Jauncey, D. L.; Johnson, M. D.; Kovalev, Yu A.; Kutkin, A. M.; Lisakov, M. M.; Melnikov, A. E.; Orlati, A.; Rudnitskiy, A. G.; Sokolovsky, K. V.; Stanghellini, C.; de Vicente, P.; Voitsik, P. A.; Wolak, P.; Zhekanis, G. V.

    2018-03-01

    The high brightness temperatures, Tb ≳ 1013 K, detected in several active galactic nuclei by RadioAstron space VLBI observations challenge theoretical limits. Refractive scattering by the interstellar medium may affect such measurements. We quantify the scattering properties and the sub-mas scale source parameters for the quasar B0529+483. Using RadioAstron correlated flux density measurements at 1.7, 4.8, and 22 GHz on projected baselines up to 240 000 km we find two characteristic angular scales in the quasar core, about 100 and 10 μas. Some indications of scattering substructure are found. Very high brightness temperatures, Tb ≥ 1013 K, are estimated at 4.8 and 22 GHz even taking into account the refractive scattering. Our findings suggest a clear dominance of the particle energy density over the magnetic field energy density in the core of this quasar.

  2. HIGH-RESOLUTION IMAGING OF THE ATLBS REGIONS: THE RADIO SOURCE COUNTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorat, K.; Subrahmanyan, R.; Saripalli, L.

    2013-01-01

    The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6'' angular resolution and 72 {mu}Jy beam{sup -1} rms noise. The images (centered at R.A. 00{sup h}35{sup m}00{sup s}, decl. -67 Degree-Sign 00'00'' and R.A. 00{sup h}59{sup m}17{sup s}, decl. -67 Degree-Sign 00'00'', J2000 epoch) cover 8.42 deg{sup 2} sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection thresholdmore » was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50''. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.« less

  3. An unusually strong Einstein ring in the radio source PKS1830 - 211

    NASA Technical Reports Server (NTRS)

    Jauncey, D. L.; Reynolds, J. E.; Tzioumis, A. K.; Murphy, D. W.; Preston, R. A.; Jones, D. L.; Meier, D. L.; Hoard, D. W.; Lobdell, E. T.; Skjerve, L.

    1991-01-01

    High-resolution radio images of PKS1830 - 211 are obtained to study the possibility that the double structure is a gravitationally lensed object. The VLBI observations, taken from interferometric radiotelescope networks, reveal an elliptical ring that connects two bright spots of similar composition. Because the lens and the lensed object are closely aligned, and because of the structure of the two spots, the source is concluded to be a radio Einstein ring. The source is found to be close to the galactic plane, and the lens and the lensed object are extragalactic. The source is also found to be unusually bright, suggesting that it is aligned with a bright background source or amplified by some mechanism related to a source that is not so bright.

  4. HST Imaging of the Brightest z ∼ 8–9 Galaxies from UltraVISTA: The Extreme Bright End of the UV Luminosity Function

    NASA Astrophysics Data System (ADS)

    Stefanon, Mauro; Labbé, Ivo; Bouwens, Rychard J.; Brammer, Gabriel B.; Oesch, Pascal; Franx, Marijn; Fynbo, Johan P. U.; Milvang-Jensen, Bo; Muzzin, Adam; Illingworth, Garth D.; Le Fèvre, Olivier; Caputi, Karina I.; Holwerda, Benne W.; McCracken, Henry J.; Smit, Renske; Magee, Dan

    2017-12-01

    We report on the discovery of three especially bright candidate {z}{phot}≳ 8 galaxies. Five sources were targeted for follow-up with the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3), selected from a larger sample of 16 bright (24.8≲ H≲ 25.5 mag) candidate z≳ 8 Lyman break galaxies (LBGs) identified over 1.6 degrees2 of the COSMOS/UltraVISTA field. These were selected as Y and J dropouts by leveraging the deep (Y-to-{K}{{S}}∼ 25.3{--}24.8 mag, 5σ ) NIR data from the UltraVISTA DR3 release, deep ground-based optical imaging from the CFHTLS and Suprime-Cam programs, and Spitzer/IRAC mosaics combining observations from the SMUVS and SPLASH programs. Through the refined spectral energy distributions, which now also include new HyperSuprimeCam g-, r-, i-, z-, and Y-band data, we confirm that 3/5 galaxies have robust {z}{phot}∼ 8.0{--}8.7, consistent with the initial selection. The remaining 2/5 galaxies have a nominal {z}{phot}∼ 2. However, with HST data alone, these objects have increased probability of being at z∼ 9. We measure mean UV continuum slopes β =-1.74+/- 0.35 for the three z∼ 8{--}9 galaxies, marginally bluer than similarly luminous z∼ 4{--}6 in CANDELS but consistent with previous measurements of similarly luminous galaxies at z∼ 7. The circularized effective radius for our brightest source is 0.9 ± 0.3 kpc, similar to previous measurements for a bright z∼ 11 galaxy and bright z∼ 7 galaxies. Finally, enlarging our sample to include the six brightest z∼ 8 LBGs identified over UltraVISTA (i.e., including three other sources from Labbé et al.) we estimate for the first time the volume density of galaxies at the extreme bright end ({M}{UV}∼ -22 mag) of the z∼ 8 UV luminosity function. Despite this exceptional result, the still large statistical uncertainties do not allow us to discriminate between a Schechter and a double-power-law form.

  5. (Almost) Dark Galaxies in the ALFALFA Survey: Isolated H I-bearing Ultra-diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Leisman, Lukas; Haynes, Martha P.; Janowiecki, Steven; Hallenbeck, Gregory; Józsa, Gyula; Giovanelli, Riccardo; Adams, Elizabeth A. K.; Bernal Neira, David; Cannon, John M.; Janesh, William F.; Rhode, Katherine L.; Salzer, John J.

    2017-06-01

    We present a sample of 115 very low optical surface brightness, highly extended, H I-rich galaxies carefully selected from the ALFALFA survey that have similar optical absolute magnitudes, surface brightnesses, and radii to recently discovered “ultra-diffuse” galaxies (UDGs). However, these systems are bluer and have more irregular morphologies than other UDGs, are isolated, and contain significant reservoirs of H I. We find that while these sources have normal star formation rates for H I-selected galaxies of similar stellar mass, they have very low star formation efficiencies. We further present deep optical and H I-synthesis follow-up imaging of three of these H I-bearing ultra-diffuse sources. We measure H I diameters extending to ˜40 kpc, but note that while all three sources have large H I diameters for their stellar mass, they are consistent with the H I mass-H I radius relation. We further analyze the H I velocity widths and rotation velocities for the unresolved and resolved sources, respectively, and find that the sources appear to inhabit halos of dwarf galaxies. We estimate spin parameters, and suggest that these sources may exist in high spin parameter halos, and as such may be potential H I-rich progenitors to the ultra-diffuse galaxies observed in cluster environments.

  6. The estimation of the propagation delay through the troposphere from microwave radiometer data. [very long base interferometry

    NASA Technical Reports Server (NTRS)

    Moran, J. M.; Rosen, B. R.

    1980-01-01

    The uncertainity in propagation delay estimates is due primarily to tropospheric water, the total amount and vertical distribution of which is variable. Because water vapor both delays and attenuates microwave signals, the propagation delay, or wet path length, can be estimated from the microwave brightness temperature near the 22.235 GHz transition of water vapor. The data from a total of 240 radiosonde launches taken simultaneously were analyzed. Estimates of brightness temperature at 19 and 22 GHz and wet path length were made from these data. The wet path length in the zenith direction could be estimated from the surface water vapor density to an accuracy of 5 cm for the summer data and 2 cm for winter data. Using the brightness temperatures, the wet path could be estimated to an accuracy of 0.3 cm. Two dual frequency radiometers were refurbished in order to test these techniques. These radiometers were capable of measuring the difference in the brightness temperature at 30 deg elevation angle and at the zenith to an accuracy of about 1 K. In August 1975, 45 radiosondes were launched over an 11 day period. Brightness temperature measurements were made simultaneously at 19 and 22 GHz with the radiometers. The rms error for the estimation of wet path length from surface meteorological parameters was 3.2 cm, and from the radiometer brightness temperatures, 1.5 cm.

  7. Super-Eight: The brightest z~8 Galaxies

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne; Bouwens, R.; Bradley, L.; Calvi, V.; Illingworth, G.; Labbe, I.; Magee, D.; Oesch, P.; Roberts-Borsani, G.; Smit, R.

    2016-08-01

    What are the properties of the most massive z~8 galaxies ('Super-Eights') and how luminous can these galaxies become at that epoch? Answering these questions is challenging due to the rarity of luminous z~8 galaxies and the large field-to-field variations in their volume densities. Indeed, the full wide-area CANDELS program only shows 3 z~8 galaxy candidates brighter than 25.5 mag and all of these candidates conspicuously lie in the same CANDELS field (EGS). One of our strongest new probes for particularly luminous z~8 galaxies are the WFC3 Pure-Parallel (PP) programs. Particularly intriguing are 8 bright z~8 candidates in these observations. These candidates have similar luminosities as the 3 brightest z~8 candidates from CANDELS (all spectroscopically confirmed). However, the uncertain contamination levels at extreme bright end of z~8 selection mean that follow-up observations are critical. We propose highly-efficient pointed HST and Spitzer/IRAC observations to determine if these candidates are indeed at z~8. We estimate that anywhere from 50 to 100% of the targeted sources will be confirmed to be at z~8 based on our results from CANDELS. The estimate is very uncertain due to very large cosmic variance in the CANDELS result and contamination from rare low-redshift sources. When combined with CANDELS, our observations would provide us the strongest current constraints on the volume density of bright, massive galaxies in the early Universe (serving as a guide to models of their build-up) and also provide valuable targets for future spectroscopy (e.g. with JWST), useful for probing the ionization state of the IGM.

  8. Super-Eight: The brightest z 8 Galaxies

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2016-10-01

    What are the properties of the most massive z 8 galaxies (Super-Eights) and how luminous can these galaxies become at that epoch? Answering these questions is challenging due to the rarity of luminous z 8 galaxies and the large field-to-field variations in their volume densities. Indeed, the full wide-area CANDELS program only shows 3 z 8 galaxy candidates brighter than 25.5 mag and all of these candidates conspicuously lie in the same CANDELS field (EGS). One of our strongest new probes for particularly luminous z 8 galaxies are the WFC3 Pure-Parallel (PP) programs. Particularly intriguing are 8 bright z 8 candidates in these observations. These candidates have similar luminosities as the 3 brightest z 8 candidates from CANDELS (all spectroscopically confirmed). However, the uncertain contamination levels at extreme bright end of z 8 selection mean that follow-up observations are critical. We propose highly-efficient pointed HST and Spitzer/IRAC observations to determine if these candidates are indeed at z 8. We estimate that anywhere from 50 to 100% of the targeted sources will be confirmed to be at z 8 based on our results from CANDELS. The estimate is very uncertain due to very large cosmic variance in the CANDELS result and contamination from rare low-redshift sources.When combined with CANDELS, our observations would provide us the strongest current constraints on the volume density of bright, massive galaxies in the early Universe (serving as a guide to models of their build-up) and also provide valuable targets for future spectroscopy (e.g. with JWST), useful for probing the ionization state of the IGM.

  9. Laser ion source for high brightness heavy ion beam

    DOE PAGES

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less

  10. High-resolution maps of Jupiter at five microns.

    NASA Technical Reports Server (NTRS)

    Keay, C. S. L.; Low, F. J.; Rieke, G. H.; Minton, R. B.

    1973-01-01

    The distribution of 5-micron radiation, emitted from a large number of discrete sources from Jupiter, was observed during the 1972 apparition. These sources are less bright than those observed by Westphal (1969). At least 50 discrete sources having brightness temperatures exceeding 227 K were revealed which were mainly located within three narrow-latitude bands. Strong correlation exists between the 5-micron brightness temperatures of Jovian features and their colors as recorded photographically.

  11. A Dust-scattering Halo of 4U 1630–47 Observed with Chandra and Swift: New Constraints on the Source Distance

    NASA Astrophysics Data System (ADS)

    Kalemci, E.; Maccarone, T. J.; Tomsick, J. A.

    2018-06-01

    We have observed the Galactic black hole transient 4U 1630‑47 during the decay of its 2016 outburst with Chandra and Swift to investigate the properties of the dust-scattering halo created by the source. The scattering halo shows a structure that includes a bright ring between 80″ and 240″ surrounding the source, and a continuous distribution beyond 250″. An analysis of the 12CO J = 1–0 map and spectrum in the line of sight to the source indicates that a molecular cloud with a radial velocity of ‑79 km s‑1 (denoted MC ‑79) is the main scattering body that creates the bright ring. We found additional clouds in the line of sight, calculated their kinematic distances, and resolved the well known “near” and “far” distance ambiguity for most of the clouds. At the favored far-distance estimate of MC ‑79, the modeling of the surface brightness profile results in a distance to 4U 1630‑47 of 11.5 ± 0.3 kpc. If MC ‑79 is at the near distance, then 4U 1630‑47 is at 4.7 ± 0.3 kpc. Future Chandra, Swift, and submillimeter radio observations not only can resolve this ambiguity, but also would provide information regarding properties of dust and the distribution of all molecular clouds along the line of sight. Using the results of this study we also discuss the nature of this source and the reasons for the observation of an anomalously low soft state during the 2010 decay.

  12. Deconvolution of post-adaptive optics images of faint circumstellar environments by means of the inexact Bregman procedure

    NASA Astrophysics Data System (ADS)

    Benfenati, A.; La Camera, A.; Carbillet, M.

    2016-02-01

    Aims: High-dynamic range images of astrophysical objects present some difficulties in their restoration because of the presence of very bright point-wise sources surrounded by faint and smooth structures. We propose a method that enables the restoration of this kind of images by taking these kinds of sources into account and, at the same time, improving the contrast enhancement in the final image. Moreover, the proposed approach can help to detect the position of the bright sources. Methods: The classical variational scheme in the presence of Poisson noise aims to find the minimum of a functional compound of the generalized Kullback-Leibler function and a regularization functional: the latter function is employed to preserve some characteristic in the restored image. The inexact Bregman procedure substitutes the regularization function with its inexact Bregman distance. This proposed scheme allows us to take under control the level of inexactness arising in the computed solution and permits us to employ an overestimation of the regularization parameter (which balances the trade-off between the Kullback-Leibler and the Bregman distance). This aspect is fundamental, since the estimation of this kind of parameter is very difficult in the presence of Poisson noise. Results: The inexact Bregman procedure is tested on a bright unresolved binary star with a faint circumstellar environment. When the sources' position is exactly known, this scheme provides us with very satisfactory results. In case of inexact knowledge of the sources' position, it can in addition give some useful information on the true positions. Finally, the inexact Bregman scheme can be also used when information about the binary star's position concerns a connected region instead of isolated pixels.

  13. Accelerator skyshine: Tyger, tyger, burning bright

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapleton, G.B.; O`Brien, K.; Thomas, R.H.

    1992-06-01

    Neutron skyshine is, in most cases, the dominant source of radiation exposure to the general public from operation of well-shielded, high-energy accelerators. To estimate this exposure, tabulated solutions of the transport of neutrons through the air are frequently used. In previous works on skyshine, these tabular data have been parameterized into simple empirical equations that are easy and fast to use but are limited to distances greater than a few hundred meters from the accelerator. Our current report has refined this earlier work by including more realistic assumptions of neutron differential energy spectrum and angular distribution. These improved calculations essentiallymore » endorse the earlier parameterizations but make possible reasonably accurate dose estimates much closer to the skyshine source than before.« less

  14. Three Bright X-ray Sources in NGC 1313

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Petre, R.; Schlegel, E.

    1992-12-01

    Three bright X-ray sources were detected in a recent (April/May 1991) ROSAT PSPC observation of the nearby (D ~ 4.5 Mpc) face--on barred spiral galaxy NGC 1313. Two of the sources were at positions coincident with X-ray sources detected by Fabbiano & Trinchieri (ApJ 315, 1987) in a previous (Jan 1980) Einstein IPC observation. The position of the brightest Einstein source is near the center of NGC 1313, and the second Einstein source is ~ 7' south of the ``nuclear'' source, in the outskirts of the spiral arms. A third bright X-ray source was detected in the ROSAT observation ~ 7' southwest of the ``nuclear'' source. We present X-ray spectra and X-ray images for the three bright sources found in the ROSAT observation of NGC 1313, and compare with previous Einstein results. Spectral analysis of these sources require them to have very large soft X-ray luminosities ( ~ 10(40) erg s(-1) ) when compared with typical X-ray sources in our Galaxy. Feasible explanations for the X-ray emission are presented. The third X-ray source is positively identified with the recently discovered (Ryder et. al., ApJ 1992) peculiar type-II supernova 1978K.

  15. Infrared upconversion for astronomical applications. [laser applications to astronomical spectroscopy of infrared spectra

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Ogilvie, K. W.

    1975-01-01

    The performance of an upconversion system is examined for observation of astronomical sources in the low to middle infrared spectral range. Theoretical values for the performance parameters of an upconversion system for astronomical observations are evaluated in view of the conversion efficiencies, spectral resolution, field of view, minimum detectable source brightness and source flux. Experimental results of blackbody measurements and molecular absorption spectrum measurements using a lithium niobate upconverter with an argon-ion laser as the pump are presented. Estimates of the expected optimum sensitivity of an upconversion device which may be built with the presently available components are given.

  16. Unidentified point sources in the IRAS minisurvey

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Soifer, B. T.; Neugebauer, G.; Beichman, C. A.; Aumann, H. H.; Clegg, P. E.; Gillett, F. C.; Habing, H. J.; Hauser, M. G.; Low, F. J.

    1984-01-01

    Nine bright, point-like 60 micron sources have been selected from the sample of 8709 sources in the IRAS minisurvey. These sources have no counterparts in a variety of catalogs of nonstellar objects. Four objects have no visible counterparts, while five have faint stellar objects visible in the error ellipse. These sources do not resemble objects previously known to be bright infrared sources.

  17. An Estimate of Changes in the Sun's Total Irradiance Caused by UV Irradiance Variations from 1874 to 1988

    NASA Technical Reports Server (NTRS)

    Lean, J.

    1990-01-01

    Enhanced emission from bright solar faculae is a source of significant variation in the sun's total irradiance. Relative to the emission from the quiet sun, facular emission is known to be considerably greater at UV wavelengths than at visible wavelengths. Determining the spectral dependence of facular emission is of interest for the physical insight this may provide to the origin of the sun's irradiance variations. It is also of interest because solar radiation at lambda less than 300 nm is almost totally absorbed in the Earth's atmosphere. Depending on the magnitude of the UV irradiance variations, changes in the sun's irradiance that penetrates to the Earth's surface may not be equivalent to total irradiance variations measured above the Earth's atmosphere. Using an empirical model of total irradiance variations which accounts separately for changes caused by bright faculae from those associated with dark sunspots, the contribution of UV irradiance variations to changes in the sun's total irradiance is estimated during solar cycles 12 to 21.

  18. Visual photometry: accuracy and precision

    NASA Astrophysics Data System (ADS)

    Whiting, Alan

    2018-01-01

    Visual photometry, estimation by eye of the brightness of stars, remains an important source of data even in the age of widespread precision instruments. However, the eye-brain system differs from electronic detectors and its results may be expected to differ in several respects. I examine a selection of well-observed variables from the AAVSO database to determine several internal characteristics of this data set. Visual estimates scatter around the fitted curves with a standard deviation of 0.14 to 0.34 magnitudes, most clustered in the 0.21-0.25 range. The variation of the scatter does not seem to correlate with color, type of variable, or depth or speed of variation of the star’s brightness. The scatter of an individual observer’s observations changes from star to star, in step with the overall scatter. The shape of the deviations from the fitted curve is non-Gaussian, with positive excess kurtosis (more outlying observations). These results have implications for use of visual data, as well as other citizen science efforts.

  19. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ {sub cr} ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs makemore » a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.« less

  20. An analysis of source structure effects in radio interferometry measurements

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1980-01-01

    To begin a study of structure effects, this report presents a theoretical framework, proposes an effective position approach to structure corrections based on brightness distribution measurements, and analyzes examples of analytical and measured brightness distributions. Other topics include the effect of the frequency dependence of a brightness distribution on bandwidth synthesis (BWS) delay, the determination of the absolute location of a measured brightness distribution, and structure effects in dual frequency calibration of charged particle delays. For the 10 measured distributions analyzed, it was found that the structure effect in BWS delay at X-band (3.6 cm) can reach 30 cm, but typically falls in the range of 0 to 5 cm. A trial limit equation that is dependent on visibility was successfully tested against the 10 measured brightness distributions (seven sources). If the validity of this particular equation for an upper limit can be established for nearly all sources, the structure effect in BWS delay could be greatly reduced without supplementary measurements of brightness distributions.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobulnicky, Henry A.; Alexander, Michael J.; Babler, Brian L.

    We characterize the completeness of point source lists from Spitzer Space Telescope surveys in the four Infrared Array Camera (IRAC) bandpasses, emphasizing the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) programs (GLIMPSE I, II, 3D, 360; Deep GLIMPSE) and their resulting point source Catalogs and Archives. The analysis separately addresses effects of incompleteness resulting from high diffuse background emission and incompleteness resulting from point source confusion (i.e., crowding). An artificial star addition and extraction analysis demonstrates that completeness is strongly dependent on local background brightness and structure, with high-surface-brightness regions suffering up to five magnitudes of reduced sensitivity to pointmore » sources. This effect is most pronounced at the IRAC 5.8 and 8.0 {mu}m bands where UV-excited polycyclic aromatic hydrocarbon emission produces bright, complex structures (photodissociation regions). With regard to diffuse background effects, we provide the completeness as a function of stellar magnitude and diffuse background level in graphical and tabular formats. These data are suitable for estimating completeness in the low-source-density limit in any of the four IRAC bands in GLIMPSE Catalogs and Archives and some other Spitzer IRAC programs that employ similar observational strategies and are processed by the GLIMPSE pipeline. By performing the same analysis on smoothed images we show that the point source incompleteness is primarily a consequence of structure in the diffuse background emission rather than photon noise. With regard to source confusion in the high-source-density regions of the Galactic Plane, we provide figures illustrating the 90% completeness levels as a function of point source density at each band. We caution that completeness of the GLIMPSE 360/Deep GLIMPSE Catalogs is suppressed relative to the corresponding Archives as a consequence of rejecting stars that lie in the point-spread function wings of saturated sources. This effect is minor in regions of low saturated star density, such as toward the Outer Galaxy; this effect is significant along sightlines having a high density of saturated sources, especially for Deep GLIMPSE and other programs observing closer to the Galactic center using 12 s or longer exposure times.« less

  2. Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 Coronagraphs

    NASA Technical Reports Server (NTRS)

    Frazin, Richard A.; Vasquez, Alberto M.; Thompson, William T.; Hewett, Russell J.; Lamy, Philippe; Llebaria, Antoine; Vourlidas, Angelos; Burkepile, Joan

    2012-01-01

    In order to assess the reliability and consistency of white-light coronagraph measurements, we report on quantitative comparisons between polarized brightness [pB] and total brightness [B] images taken by the following white-light coronagraphs: LASCO-C2 on SOHO, SECCHI-COR1 and -COR2 on STEREO, and the ground-based MLSO-Mk4. The data for this comparison were taken on 16 April 2007, when both STEREO spacecraft were within 3.1 deg. of Earth’s heliographic longitude, affording essentially the same view of the Sun for all of the instruments. Due to the difficulties of estimating stray-light backgrounds in COR1 and COR2, only Mk4 and C2 produce reliable coronal-hole values (but not at overlapping heights), and these cannot be validated without rocket flights or ground-based eclipse measurements. Generally, the agreement between all of the instruments’ pB values is within the uncertainties in bright streamer structures, implying that measurements of bright CMEs also should be trustworthy. Dominant sources of uncertainty and stray light are discussed, as is the design of future coronagraphs from the perspective of the experiences with these instruments.

  3. (Almost) Dark Galaxies in the ALFALFA Survey: Isolated H i-bearing Ultra-diffuse Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leisman, Lukas; Haynes, Martha P.; Giovanelli, Riccardo

    2017-06-20

    We present a sample of 115 very low optical surface brightness, highly extended, H i-rich galaxies carefully selected from the ALFALFA survey that have similar optical absolute magnitudes, surface brightnesses, and radii to recently discovered “ultra-diffuse” galaxies (UDGs). However, these systems are bluer and have more irregular morphologies than other UDGs, are isolated, and contain significant reservoirs of H i. We find that while these sources have normal star formation rates for H i-selected galaxies of similar stellar mass, they have very low star formation efficiencies. We further present deep optical and H i-synthesis follow-up imaging of three of thesemore » H i-bearing ultra-diffuse sources. We measure H i diameters extending to ∼40 kpc, but note that while all three sources have large H i diameters for their stellar mass, they are consistent with the H i mass–H i radius relation. We further analyze the H i velocity widths and rotation velocities for the unresolved and resolved sources, respectively, and find that the sources appear to inhabit halos of dwarf galaxies. We estimate spin parameters, and suggest that these sources may exist in high spin parameter halos, and as such may be potential H i-rich progenitors to the ultra-diffuse galaxies observed in cluster environments.« less

  4. Optimization of Compton Source Performance through Electron Beam Shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander; Yampolsky, Nikolai

    2016-09-26

    We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a waymore » so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.« less

  5. Infrared photometry of Nova Delphini 2013 (=V339 Del) in the first sixty days after its outburst

    NASA Astrophysics Data System (ADS)

    Taranova, O. G.; Tatarnikov, A. M.; Shenavrin, V. I.; Tatarnikova, A. A.

    2014-02-01

    The results of JHKLM photometry for Nova Delphini 2013 obtained in the first sixty days after its outburst are analyzed. Analysis of the energy distribution in a wide spectral range (0.36-5 µm) has shown that the source mimics the emission of normal supergiants of spectral types B5 and A0 for two dates near its optical brightness maximum, August 15.94 UT and August 16.86 UT, respectively. The distance to the nova has been estimated to be D ≈ 3 kpc. For these dates, the following parameters have been estimated: the source's bolometric fluxes ˜9 × 10-7 and ˜7.2 × 10-7 erg s-1 cm-2, luminosities L ≈ 2.5 × 105 L ⊙ and ≈2 × 105 L ⊙, and radii R ≈ 6.3 × 1012 and ≈1.2 × 1013 cm. The nova's expansion velocity near its optical brightness maximum was ˜700 km s-1. An infrared (IR) excess associated with the formation of a dust shell is shown to have appeared in the energy distribution one month after the optical brightness maximum. The parameters of the dust component have been estimated for two dates of observations, JD2456557.28 (September 21, 2013) and JD2456577.18 (October 11, 2013). For these dates, the dust shell parameters have been estimated: the color temperatures ≈1500 and ≈1200 K, radii ≈6.5 × 1013 and 1.7 × 1014 cm, luminosities ˜4 × 103 L ⊙ and ˜1.1 × 104 L ⊙, and the dust mass ˜1.6 × 1024 and ˜1025 g. The total mass of the material ejected in twenty days (gas + dust) could reach ˜1.1 × 10-6 M ⊙. The rate of dust supply to the nova shell was ˜8 × 10-8 M ⊙ yr-1. The expansion velocity of the dust shell was about 600 km s-1.

  6. Electron Source Brightness and Illumination Semi-Angle Distribution Measurement in a Transmission Electron Microscope.

    PubMed

    Börrnert, Felix; Renner, Julian; Kaiser, Ute

    2018-05-21

    The electron source brightness is an important parameter in an electron microscope. Reliable and easy brightness measurement routes are not easily found. A determination method for the illumination semi-angle distribution in transmission electron microscopy is even less well documented. Herein, we report a simple measurement route for both entities and demonstrate it on a state-of-the-art instrument. The reduced axial brightness of the FEI X-FEG with a monochromator was determined to be larger than 108 A/(m2 sr V).

  7. Sub-millimeter detected z ~ 2 radio-quiet QSOs. Accurate redshifts, black hole masses, and inflow/outflow velocities

    NASA Astrophysics Data System (ADS)

    Orellana, G.; Nagar, N. M.; Isaak, K. G.; Priddey, R.; Maiolino, R.; McMahon, R.; Marconi, A.; Oliva, E.

    2011-07-01

    Context. We present near-IR spectroscopy of a sample of luminous (MB - 27.5; Lbol > 1014 L⊙), sub-millimeter-detected, dusty (Md ~ 109 M⊙), radio-quiet quasi-stellar objects (QSOs) at z ~ 2. Aims: A primary aim is to provide a more accurate QSO redshift determination in order to trace kinematics and inflows/outflows in these sub-mm bright QSOs. Additionally, the Hα and continuum properties allow an estimation of the black hole mass and accretion rate, offering insights into the starburst-AGN connection in sub-mm bright QSOs. Methods: We measure the redshift, width, and luminosity of the Hα line, and the continuum luminosity near Hα. Relative velocity differences between Hα and rest-frame UV emission lines are used to study the presence and strength of outflows/inflows. Luminosities and line widths are used to estimate the black hole masses, bolometric luminosities, Eddington fractions, and accretion rates; these are compared to the star-formation-rate (SFR), estimated from the sub-mm derived far-infrared (FIR) luminosity. Finally our sub-mm-bright QSO sample is compared with other QSO samples at similar redshifts. Results: The Hα emission line was strongly detected in all sources. Two components - a very broad (≳5000 km s-1) Gaussian and an intermediate-width (≳1500 km s-1) Gaussian, were required to fit the Hα profile of all observed QSOs. Narrow (≲1000 km s-1) lines were not detected in the sample QSOs. The rest-frame UV emission lines in these sub-mm bright QSOs show larger than average blue-shifted velocities, potentially tracing strong - up to 3000 km s-1 - outflows in the broad line region. With the exception of the one QSO which shows exceptionally broad Hα lines, the black hole masses of the QSO sample are in the range log MBH = 9.0-9.7 and the Eddington fractions are between 0.5 and ~1. In black hole mass and accretion rate, this sub-mm bright QSO sample is indistinguishable from the Shemmer et al. (2004, ApJ, 614, 547) optically-bright QSO sample at z ~ 2; the latter is likely dominated by sub-mm dim QSOs. Previous authors have demonstrated a correlation, over six orders of magnitude, between SFR and accretion rate in active galaxies: the sub-mm bright QSOs lie at the upper extremes of both quantities and their SFR is an order of magnitude higher than that predicted from the correlation.

  8. Experimental Analysis of Pseudospark Sourced Electron Beam

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.

    2011-12-01

    The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.

  9. Weak-lensing shear estimates with general adaptive moments, and studies of bias by pixellation, PSF distortions, and noise

    NASA Astrophysics Data System (ADS)

    Simon, Patrick; Schneider, Peter

    2017-08-01

    In weak gravitational lensing, weighted quadrupole moments of the brightness profile in galaxy images are a common way to estimate gravitational shear. We have employed general adaptive moments (GLAM ) to study causes of shear bias on a fundamental level and for a practical definition of an image ellipticity. The GLAM ellipticity has useful properties for any chosen weight profile: the weighted ellipticity is identical to that of isophotes of elliptical images, and in absence of noise and pixellation it is always an unbiased estimator of reduced shear. We show that moment-based techniques, adaptive or unweighted, are similar to a model-based approach in the sense that they can be seen as imperfect fit of an elliptical profile to the image. Due to residuals in the fit, moment-based estimates of ellipticities are prone to underfitting bias when inferred from observed images. The estimation is fundamentally limited mainly by pixellation which destroys information on the original, pre-seeing image. We give an optimised estimator for the pre-seeing GLAM ellipticity and quantify its bias for noise-free images. To deal with images where pixel noise is prominent, we consider a Bayesian approach to infer GLAM ellipticity where, similar to the noise-free case, the ellipticity posterior can be inconsistent with the true ellipticity if we do not properly account for our ignorance about fit residuals. This underfitting bias, quantified in the paper, does not vary with the overall noise level but changes with the pre-seeing brightness profile and the correlation or heterogeneity of pixel noise over the image. Furthermore, when inferring a constant ellipticity or, more relevantly, constant shear from a source sample with a distribution of intrinsic properties (sizes, centroid positions, intrinsic shapes), an additional, now noise-dependent bias arises towards low signal-to-noise if incorrect prior densities for the intrinsic properties are used. We discuss the origin of this prior bias. With regard to a fully-Bayesian lensing analysis, we point out that passing tests with source samples subject to constant shear may not be sufficient for an analysis of sources with varying shear.

  10. Time-resolved brightness measurements by streaking

    NASA Astrophysics Data System (ADS)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  11. The nature of the companion star in Circinus X-1

    NASA Astrophysics Data System (ADS)

    Johnston, Helen M.; Soria, Roberto; Gibson, Joel

    2016-02-01

    We present optical spectra and images of the X-ray binary Circinus X-1. The optical light curve of Cir X-1 is strongly variable, changing in brightness by 1.2 mag in the space of four days. The shape of the light curve is consistent with that seen in the 1980s, when the X-ray and radio counterparts of the source were at least ten times as bright as they are currently. We detect strong, variable H α emission lines, consisting of multiple components which vary with orbital phase. We estimate the extinction to the source from the strength of the diffuse interstellar bands and the Balmer decrement; the two methods give AV = 7.6 ± 0.6 mag and AV > 9.1 mag, respectively. The optical light curve can be modelled as arising from irradiation of the companion star by the central X-ray source, where a low-temperature star fills its Roche lobe in an orbit of moderate eccentricity (e ˜ 0.4). We suggest that the companion star is overluminous and underdense, due to the impact of the supernova which occurred less than 5000 yr ago.

  12. The correlation between the total magnetic flux and the total jet power

    NASA Astrophysics Data System (ADS)

    Nokhrina, Elena E.

    2017-12-01

    Magnetic field threading a black hole ergosphere is believed to play the key role in both driving the powerful relativistic jets observed in active galactic nuclei and extracting the rotational energy from a black hole via Blandford-Znajek process. The magnitude of magnetic field and the magnetic flux in the vicinity of a central black hole is predicted by theoretical models. On the other hand, the magnetic field in a jet can be estimated through measurements of either the core shift effect or the brightness temperature. In both cases the obtained magnetic field is in the radiating domain, so its direct application to the calculation of the magnetic flux needs some theoretical assumptions. In this paper we address the issue of estimating the magnetic flux contained in a jet using the measurements of a core shift effect and of a brightness temperature for the jets, directed almost at the observer. The accurate account for the jet transversal structure allow us to express the magnetic flux through the observed values and an unknown rotation rate of magnetic surfaces. If we assume the sources are in a magnetically arrested disk state, the lower limit for the rotation rate can be obtained. On the other hand, the flux estimate may be tested against the total jet power predicted by the electromagnetic energy extraction model. The resultant expression for power depends logarithmically weakly on an unknown rotation rate. We show that the total jet power estimated through the magnetic flux is in good agreement with the observed power. We also obtain the extremely slow rotation rates, which may be an indication that the majority of the sources considered are not in the magnetically arrested disk state.

  13. Improved Satellite Estimation of Near-Surface Humidity Using Vertical Water Vapor Profile Information

    NASA Astrophysics Data System (ADS)

    Tomita, H.; Hihara, T.; Kubota, M.

    2018-01-01

    Near-surface air-specific humidity is a key variable in the estimation of air-sea latent heat flux and evaporation from the ocean surface. An accurate estimation over the global ocean is required for studies on global climate, air-sea interactions, and water cycles. Current remote sensing techniques are problematic and a major source of errors for flux and evaporation. Here we propose a new method to estimate surface humidity using satellite microwave radiometer instruments, based on a new finding about the relationship between multichannel brightness temperatures measured by satellite sensors, surface humidity, and vertical moisture structure. Satellite estimations using the new method were compared with in situ observations to evaluate this method, confirming that it could significantly improve satellite estimations with high impact on satellite estimation of latent heat flux. We recommend the adoption of this method for any satellite microwave radiometer observations.

  14. The JCMT Transient Survey: Stochastic and Secular Variability of Protostars and Disks In the Submillimeter Region Observed over 18 Months

    NASA Astrophysics Data System (ADS)

    Johnstone, Doug; Herczeg, Gregory J.; Mairs, Steve; Hatchell, Jennifer; Bower, Geoffrey C.; Kirk, Helen; Lane, James; Bell, Graham S.; Graves, Sarah; Aikawa, Yuri; Chen, Huei-Ru Vivien; Chen, Wen-Ping; Kang, Miju; Kang, Sung-Ju; Lee, Jeong-Eun; Morata, Oscar; Pon, Andy; Scicluna, Peter; Scholz, Aleks; Takahashi, Satoko; Yoo, Hyunju; The JCMT Transient Team

    2018-02-01

    We analyze results from the first 18 months of monthly submillimeter monitoring of eight star-forming regions in the JCMT Transient Survey. In our search for stochastic variability in 1643 bright peaks, only the previously identified source, EC 53, shows behavior well above the expected measurement uncertainty. Another four sources—two disks and two protostars—show moderately enhanced standard deviations in brightness, as expected for stochastic variables. For the two protostars, this apparent variability is the result of single epochs that are much brighter than the mean. In our search for secular brightness variations that are linear in time, we measure the fractional brightness change per year for 150 bright peaks, 50 of which are protostellar. The ensemble distribution of slopes is well fit by a normal distribution with σ ∼ 0.023. Most sources are not rapidly brightening or fading at submillimeter wavelengths. Comparison against time-randomized realizations shows that the width of the distribution is dominated by the uncertainty in the individual brightness measurements of the sources. A toy model for secular variability reveals that an underlying Gaussian distribution of linear fractional brightness change σ = 0.005 would be unobservable in the present sample, whereas an underlying distribution with σ = 0.02 is ruled out. Five protostellar sources, 10% of the protostellar sample, are found to have robust secular measures deviating from a constant flux. The sensitivity to secular brightness variations will improve significantly with a sample over a longer time duration, with an improvement by factor of two expected by the conclusion of our 36 month survey.

  15. A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute

    NASA Astrophysics Data System (ADS)

    Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.

    2014-08-01

    Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.

  16. Radio and gamma-ray properties of extragalactic jets from the TANAMI sample

    DOE PAGES

    Böck, M.; Kadler, M.; Müller, C.; ...

    2016-05-04

    The TANAMI program has been observing parsec-scale radio jets of southern (declination south of - 30°) γ-ray bright AGN, simultaneously with Fermi/LAT monitoring of their γ-ray emission, via high-resolution radio imaging with Very Long Baseline Interferometry techniques. In this paper, we present the radio and γ-rayproperties of the TANAMI sources based on one year of contemporaneous TANAMI and Fermi/LAT data. A large fraction (72%) of the TANAMI sample can be associated with bright γ-ray sources for this time range. Association rates differ for different optical classes with all BL Lacs, 76% of quasars, and just 17% of galaxies detected bymore » the LAT. Upper limits were established on the γ-ray flux from TANAMI sources not detected by LAT. This analysis led to the identification of three new Fermi sources whose detection was later confirmed. The γ-ray and radio luminosities are related by L γ ∝ L r 0.89±0.04. The brightness temperatures of the radio cores increase with the average γ-ray luminosity and the presence of brightness temperatures above the inverse Compton limit implies strong Doppler boosting in those sources. The undetected sources have lower γ/radio luminosity ratios and lower contemporaneous brightness temperatures. Finally, unless the Fermi/LAT-undetected blazars are much γ-ray-fainter than the Fermi/LAT-detected sources, their γ-ray luminosity should not be significantly lower than the upper limits calculated here.« less

  17. Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations

    DTIC Science & Technology

    2013-07-01

    Additionally, a physically consistent BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed... BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed photometric brightness and the attitudinal...source and the observer is ( ) VLVLH ˆˆˆˆˆ ++= (2) with angles α and β from N̂ and is used in many analytic BRDF models . There are many

  18. Extreme Ultraviolet Explorer Bright Source List

    NASA Technical Reports Server (NTRS)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  19. A New Bond Albedo for Performing Orbital Debris Brightness to Size Transformations

    NASA Technical Reports Server (NTRS)

    Mulrooney, Mark K.; Matney, Mark J.

    2008-01-01

    We have developed a technique for estimating the intrinsic size distribution of orbital debris objects via optical measurements alone. The process is predicated on the empirically observed power-law size distribution of debris (as indicated by radar RCS measurements) and the log-normal probability distribution of optical albedos as ascertained from phase (Lambertian) and range-corrected telescopic brightness measurements. Since the observed distribution of optical brightness is the product integral of the size distribution of the parent [debris] population with the albedo probability distribution, it is a straightforward matter to transform a given distribution of optical brightness back to a size distribution by the appropriate choice of a single albedo value. This is true because the integration of a powerlaw with a log-normal distribution (Fredholm Integral of the First Kind) yields a Gaussian-blurred power-law distribution with identical power-law exponent. Application of a single albedo to this distribution recovers a simple power-law [in size] which is linearly offset from the original distribution by a constant whose value depends on the choice of the albedo. Significantly, there exists a unique Bond albedo which, when applied to an observed brightness distribution, yields zero offset and therefore recovers the original size distribution. For physically realistic powerlaws of negative slope, the proper choice of albedo recovers the parent size distribution by compensating for the observational bias caused by the large number of small objects that appear anomalously large (bright) - and thereby skew the small population upward by rising above the detection threshold - and the lower number of large objects that appear anomalously small (dim). Based on this comprehensive analysis, a value of 0.13 should be applied to all orbital debris albedo-based brightness-to-size transformations regardless of data source. Its prima fascia genesis, derived and constructed from the current RCS to size conversion methodology (SiBAM Size-Based Estimation Model) and optical data reduction standards, assures consistency in application with the prior canonical value of 0.1. Herein we present the empirical and mathematical arguments for this approach and by example apply it to a comprehensive set of photometric data acquired via NASA's Liquid Mirror Telescopes during the 2000-2001 observing season.

  20. On meteor-generated infrasound. [propagation characteristics during entry into earth atmosphere

    NASA Technical Reports Server (NTRS)

    Revelle, D. O.

    1976-01-01

    The characteristics of generation and propagation of infrasonic pressure waves excited during meteor entry into the earth's atmosphere are studied. Existing line source blast wave theory is applied to infrasonic airwave data from four bright fire-balls. It is shown that the strong shock behavior of the blast wave is confined to a cylinderical region with a radius proportional to the product of the meteor Mach number and its diameter. A description of the wave form far from the source is provided. Infrasonic data reported elsewhere are analyzed. All the results should be considered as preliminary, and additional work is under way to refine the estimates obtained.

  1. Software for Photometric and Astrometric Reduction of Video Meteors

    NASA Astrophysics Data System (ADS)

    Atreya, Prakash; Christou, Apostolos

    2007-12-01

    SPARVM is a Software for Photometric and Astrometric Reduction of Video Meteors being developed at Armagh Observatory. It is written in Interactive Data Language (IDL) and is designed to run primarily under Linux platform. The basic features of the software will be derivation of light curves, estimation of angular velocity and radiant position for single station data. For double station data, calculation of 3D coordinates of meteors, velocity, brightness, and estimation of meteoroid's orbit including uncertainties. Currently, the software supports extraction of time and date from video frames, estimation of position of cameras (Azimuth, Altitude), finding stellar sources in video frames and transformation of coordinates from video, frames to Horizontal coordinate system (Azimuth, Altitude), and Equatorial coordinate system (RA, Dec).

  2. Effects of photon noise on speckle image reconstruction with the Knox-Thompson algorithm. [in astronomy

    NASA Technical Reports Server (NTRS)

    Nisenson, P.; Papaliolios, C.

    1983-01-01

    An analysis of the effects of photon noise on astronomical speckle image reconstruction using the Knox-Thompson algorithm is presented. It is shown that the quantities resulting from the speckle average arre biased, but that the biases are easily estimated and compensated. Calculations are also made of the convergence rate for the speckle average as a function of the source brightness. An illustration of the effects of photon noise on the image recovery process is included.

  3. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  4. Quasiperiodic oscillations in bright galactic-bulge X-ray sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.; Shibazaki, N.; Alpar, M. A.; Shaham, J.

    1985-01-01

    Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and Sco X-1. These sources are weakly magnetic neutron stars accreting from disks which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk causes oscillations in the X-ray flux with many of the properties observed.

  5. The extreme blazar AO 0235+164 as seen by extensive ground and space radio observations

    NASA Astrophysics Data System (ADS)

    Kutkin, A. M.; Pashchenko, I. N.; Lisakov, M. M.; Voytsik, P. A.; Sokolovsky, K. V.; Kovalev, Y. Y.; Lobanov, A. P.; Ipatov, A. V.; Aller, M. F.; Aller, H. D.; Lahteenmaki, A.; Tornikoski, M.; Gurvits, L. I.

    2018-04-01

    Clues to the physical conditions in radio cores of blazars come from measurements of brightness temperatures as well as effects produced by intrinsic opacity. We study the properties of the ultra-compact blazar AO 0235+164 with RadioAstron ground-space radio interferometer, multifrequency VLBA, EVN, and single-dish radio observations. We employ visibility modelling and image stacking for deriving structure and kinematics of the source, and use Gaussian process regression to find the relative multiband time delays of the flares. The multifrequency core size and time lags support prevailing synchrotron self-absorption. The intrinsic brightness temperature of the core derived from ground-based very long baseline interferometry (VLBI) is close to the equipartition regime value. In the same time, there is evidence for ultra-compact features of the size of less than 10 μas in the source, which might be responsible for the extreme apparent brightness temperatures of up to 1014 K as measured by RadioAstron. In 2007-2016 the VLBI components in the source at 43 GHz are found predominantly in two directions, suggesting a bend of the outflow from southern to northern direction. The apparent opening angle of the jet seen in the stacked image at 43 GHz is two times wider than that at 15 GHz, indicating a collimation of the flow within the central 1.5 mas. We estimate the Lorentz factor Γ = 14, the Doppler factor δ = 21, and the viewing angle θ = 1.7° of the apparent jet base, derive the gradients of magnetic field strength and electron density in the outflow, and the distance between jet apex and the core at each frequency.

  6. Fermi-LAT Bright Gamma-ray Detection of Nova ASASSN-18fv

    NASA Astrophysics Data System (ADS)

    Jean, P.; Cheung, C. C.; Ojha, R.; van Zyl, P.; Angioni, R.

    2018-04-01

    The Large Area Telescope (LAT), one of two instruments on the Fermi Gamma-ray Space Telescope, has observed bright gamma-ray emission from a source positionally consistent with the bright optical nova ASASSN-18fv (ATel #11454, #11456, #11460, #11467, #11508).

  7. Picosecond, tunable, high-brightness hard x-ray inverse Compton source at Duke storage ring

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.; Wu, Ying; Burnham, Bentley; Barnett, Genevieve A.; Madey, John M. J.

    1995-09-01

    We suggest a state-of-the art x-ray source using a compact electron storage ring with modest energy (less than 1 GeV) and a high power mm-wave as an undulator. A source of this type has x-ray energies and brightness comparable with third generation synchrotron light sources while it can be very compact and fit in a small university or industrial laboratory or hospital. We propose to operate an isochronous mm-wave FEL and a hard x-ray inverse Compton source at the Duke storage ring to test this concept. Resonant FEL conditions for the mm- wave will be provided by the off-axis interaction with an electromagnetic wave. A special optical resonator with holes for the e-beam is proposed for pumping a hard x-ray inverse Compton source with very high brightness. Simulation results of mm-wave FEL operation of the Duke storage ring are discussed. Expected performance of mm-wave FEL and hard x-ray inverse Compton source are presented.

  8. Deconvolution of squared velocity waveform as applied to the study of a noncoherent short-period radiator in the earthquake source

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Pavlov, V. M.

    1991-07-01

    We consider an inverse problem of determination of short-period (high-frequency) radiator in an extended earthquake source. This radiator is assumed to be noncoherent (i.e., random), it can be described by its power flux or brightness (which depends on time and location over the extended source). To decide about this radiator we try to use temporal intensity function (TIF) of a seismic waveform at a given receiver point. It is defined as (time-varying) mean elastic wave energy flux through unit area. We suggest estimating it empirically from the velocity seismogram by its squaring and smoothing. We refer to this function as “observed TIF”. We believe that one can represent TIF produced by an extended radiator and recorded at some receiver point in the earth as convolution of the two components: (1) “ideal” intensity function (ITIF) which would be recorded in the ideal nonscattering earth from the same radiator; and (2) intensity function which would be recorded in the real earth from unit point instant radiator (“intensity Green's function”, IGF). This representation enables us to attempt to estimate an ITIF of a large earthquake by inverse filtering or deconvolution of the observed TIF of this event, using the observed TIF of a small event (actually, fore-or aftershock) as the empirical IGF. Therefore, the effect of scattering is “stripped off”. Examples of the application of this procedure to real data are given. We also show that if one can determine far-field ITIF for enough rays, one can extract from them the information on space-time structure of the radiator (that is, of brightness function). We apply this theoretical approach to short-period P-wave records of the 1978 Miyagi-oki earthquake ( M=7.6). Spatial and temporal centroids of a short-period radiator are estimated.

  9. Planetary Nebulae in the UWISH2 survey

    NASA Astrophysics Data System (ADS)

    Gledhill, T. M.; Froebrich, D.; Campbell-White, J.; Jones, A. M.

    2018-06-01

    Near-infrared imaging in the 1 - 0 S(1) emission line of molecular hydrogen is able to detect planetary nebulae (PNe) that are hidden from optical emission line surveys. We present images of 307 objects from the UWISH2 survey of the northern Galactic Plane, and with the aid of mid-infrared colour diagnostics draw up a list of 291 PN candidates. The majority, 183, are new detections and 85 per cent of these are not present in H α surveys of the region. We find that more than half (54 per cent) of objects have a bipolar morphology and that some objects previously considered as elliptical or point-source in H α imaging, appear bipolar in UWISH2 images. By considering a small subset of objects for which physical radii are available from the H α surface brightness-radius relation, we find evidence that the H2 surface brightness remains roughly constant over a factor 20 range of radii from 0.03 to 0.6 pc, encompassing most of the visible lifetime of a PN. This leads to the H α surface brightness becoming comparable to that of H2 at large radius (>0.5 pc). By combining the number of UWISH2 PNe without H α detection with an estimate of the PN detection efficiency in H2 emission, we estimate that PN numbers from H α surveys may underestimate the true PN number by a factor between 1.5 and 2.5 within the UWISH2 survey area.

  10. Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Choudhury, B. J.

    1980-01-01

    A simple method of estimating moisture content (W) of a bare soil from the observed brightness temperature (T sub B) at 1.4 GHz is discussed. The method is based on a radiative transfer model calculation, which has been successfully used in the past to account for many observational results, with some modifications to take into account the effect of surface roughness. Besides the measured T sub B's, the three additional inputs required by the method are the effective soil thermodynamic temperature, the precise relation between W and the smooth field brightness temperature T sub B and a parameter specifying the surface roughness characteristics. The soil effective temperature can be readily measured and the procedures of estimating surface roughness parameter and obtaining the relation between W and smooth field brightness temperature are discussed in detail. Dual polarized radiometric measurements at an off-nadir incident angle are sufficient to estimate both surface roughness parameter and W, provided that the relation between W and smooth field brightness temperature at the same angle is known. The method of W estimate is demonstrated with two sets of experimental data, one from a controlled field experiment by a mobile tower and the other, from aircraft overflight. The results from both data sets are encouraging when the estimated W's are compared with the acquired ground truth of W's in the top 2 cm layer. An offset between the estimated and the measured W's exists in the results of the analyses, but that can be accounted for by the presently poor knowledge of the relationship between W and smooth field brightness temperature for various types of soils. An approach to quantify this relationship for different soils and thus improve the method of W estimate is suggested.

  11. Gradient shadow pattern reveals refractive index of liquid

    PubMed Central

    Kim, Wonkyoung; Kim, Dong Sung

    2016-01-01

    We propose a simple method that uses a gradient shadow pattern (GSP) to measure the refractive index nL of liquids. A light source generates a “dark-bright-dark” GSP when it is projected through through the back of a transparent, rectangular block with a cylindrical chamber that is filled with a liquid sample. We found that there is a linear relationship between nL and the proportion of the bright region in a GSP, which provides the basic principle of the proposed method. A wide range 1.33 ≤ nL ≤ 1.46 of liquids was measured in the single measurement setup with error <0.01. The proposed method is simple but robust to illuminating conditions, and does not require for any expensive or precise optical components, so we expect that it will be useful in many portable measurement systems that use nL to estimate attributes of liquid samples. PMID:27302603

  12. Gradient shadow pattern reveals refractive index of liquid.

    PubMed

    Kim, Wonkyoung; Kim, Dong Sung

    2016-06-15

    We propose a simple method that uses a gradient shadow pattern (GSP) to measure the refractive index nL of liquids. A light source generates a "dark-bright-dark" GSP when it is projected through through the back of a transparent, rectangular block with a cylindrical chamber that is filled with a liquid sample. We found that there is a linear relationship between nL and the proportion of the bright region in a GSP, which provides the basic principle of the proposed method. A wide range 1.33 ≤ nL ≤ 1.46 of liquids was measured in the single measurement setup with error <0.01. The proposed method is simple but robust to illuminating conditions, and does not require for any expensive or precise optical components, so we expect that it will be useful in many portable measurement systems that use nL to estimate attributes of liquid samples.

  13. VizieR Online Data Catalog: Reference Catalogue of Bright Galaxies (RC1; de Vaucouleurs+ 1964)

    NASA Astrophysics Data System (ADS)

    de Vaucouleurs, G.; de Vaucouleurs, A.

    1995-11-01

    The Reference Catalogue of Bright Galaxies lists for each entry the following information: NGC number, IC number, or A number; A, B, or C designation; B1950.0 positions, position at 100 year precession; galactic and supergalactic positions; revised morphological type and source; type and color class in Yerkes list 1 and 2; Hubble-Sandage type; revised Hubble type according to Holmberg; logarithm of mean major diameter (log D) and ratio of major to minor diameter (log R) and their weights; logarithm of major diameter; sources of the diameters; David Dunlap Observatory type and luminosity class; Harvard photographic apparent magnitude; weight of V, B-V(0), U-B(0); integrated magnitude B(0) and its weight in the B system; mean surface brightness in magnitude per square minute of arc and sources for the B magnitude; mean B surface brightness derived from corrected Harvard magnitude; the integrated color index in the standard B-V system; "intrinsic" color index; sources of B-V and/or U-B; integrated color in the standard U-B system; observed radial velocity in km/sec; radial velocity corrected for solar motion in km/sec; sources of radial velocities; solar motion correction; and direct photographic source. The catalog was created by concatenating four files side by side. (1 data file).

  14. Color constancy using bright-neutral pixels

    NASA Astrophysics Data System (ADS)

    Wang, Yanfang; Luo, Yupin

    2014-03-01

    An effective illuminant-estimation approach for color constancy is proposed. Bright and near-neutral pixels are selected to jointly represent the illuminant color and utilized for illuminant estimation. To assess the representing capability of pixels, bright-neutral strength (BNS) is proposed by combining pixel chroma and brightness. Accordingly, a certain percentage of pixels with the largest BNS is selected to be the representative set. For every input image, a proper percentage value is determined via an iterative strategy by seeking the optimal color-corrected image. To compare various color-corrected images of an input image, image color-cast degree (ICCD) is devised using means and standard deviations of RGB channels. Experimental evaluation on standard real-world datasets validates the effectiveness of the proposed approach.

  15. On the Nature of the mHz X-Ray QPOs from ULX M82 X-1: Evidence for Timing-Spectral (anti) Correlation

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1 we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its energy spectral power-law index. These quantities are known to correlate in stellar mass black holes (StMBHs) exhibiting Type-C QPOs (approx 0.2-15 Hz). The detection of such a correlation would strengthen the identification of its mHz QPOs as Type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of Type-C QPOs in StMBHs of known mass. We resolved the count rates of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling and identify observations in which M82 X-1 was at least as bright as source 5. Using only those observations, we detect QPOs in the frequency range of 36-210 mHz during which the energy spectral power-law index varied from 1.7-2.2. Interestingly, we find evidence for an anti-correlation (Pearsons correlation coefficient = -0.95) between the power-law index and the QPO centroid frequency. While such an anti-correlation is observed in StMBHs at high Type-C QPO frequencies (approx 5-15 Hz), the frequency range over which it holds in StMBHs is significantly smaller (factor of approx 1.5-3) than the QPO range reported here from M82 X-1 (factor of 6). However, it remains possible that contamination from source 5 can bias our result. Joint Chandra/XMM-Newton observations in the future can resolve this problem and confirm the timing-spectral anti-correlation reported here.

  16. Calculations of atmospheric transmittance in the 11 micrometer window for estimating skin temperature from VISSR infrared brightness temperatures

    NASA Technical Reports Server (NTRS)

    Chesters, D.

    1984-01-01

    An algorithm for calculating the atmospheric transmittance in the 10 to 20 micro m spectral band from a known temperature and dewpoint profile, and then using this transmittance to estimate the surface (skin) temperature from a VISSR observation in the 11 micro m window is presented. Parameterizations are drawn from the literature for computing the molecular absorption due to the water vapor continuum, water vapor lines, and carbon dioxide lines. The FORTRAN code is documented for this application, and the sensitivity of the derived skin temperature to variations in the model's parameters is calculated. The VISSR calibration uncertainties are identified as the largest potential source of error.

  17. Ultrashort high-brightness pulses from storage rings

    NASA Astrophysics Data System (ADS)

    Khan, Shaukat

    2017-09-01

    The brightness of short-wavelength radiation from accelerator-based sources can be increased by coherent emission in which the radiation intensity scales with the number of contributing electrons squared. This requires a microbunched longitudinal electron distribution, which is the case in free-electron lasers. The brightness of light sources based on electron storage rings was steadily improved, but could profit further from coherent emission. The modulation of the electron energy by a continuous-wave laser field may provide steady-state microbunching in the infrared regime. For shorter wavelengths, the energy modulation can be converted into a temporary density modulation by a dispersive chicane. One particular goal is coherent emission from a very short "slice" within an electron bunch in order to produce ultrashort radiation pulses with high brightness.

  18. Towards a table-top synchrotron based on supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Petersen, Christian R.; Moselund, Peter M.; Huot, Laurent; Hooper, Lucy; Bang, Ole

    2018-06-01

    Recently, high brightness and broadband supercontinuum (SC) sources reaching far into the infrared (IR) have emerged with the potential to rival traditional broadband sources of IR radiation. Here, the brightness of these IR SC sources is compared with that of synchrotron IR beamlines and SiC thermal emitters (Globars). It is found that SC sources can deliver a brightness that is 5-6 orders of magnitude higher than Globars and 1-2 orders of magnitude higher than typical IR beamlines, matching the beamlines at least out to 10.6 μm (940 cm-1). This means that these sources can now cover nearly all of the 800-5000 cm-1 spectrum (2-12.5 μm) which is frequently used in IR spectroscopy and microscopy. To demonstrate applicability, such an IR SC source was used for transmission spectroscopy of highly scattering filtration membranes from 3500 to 1300 cm-1, and transmission microscopy of colon tissue at 1538 cm-1.

  19. Portable, battery-operated, fluorescence field microscope for the developing world

    NASA Astrophysics Data System (ADS)

    Miller, Andrew R.; Davis, Gregory; Pierce, Mark; Oden, Z. Maria; Richards-Kortum, Rebecca

    2010-02-01

    In many areas of the world, current methods for diagnosis of infectious diseases such as malaria and tuberculosis involve microscopic evaluation of a patient specimen. Advances in fluorescence microscopy can improve diagnostic sensitivity and reduce time and expertise necessary to interpret diagnostic results. However, modern research-grade microscopes are neither available nor appropriate for use in many settings in the developing world. To address this need, we designed, fabricated, and tested a portable, battery-powered, bright field and fluorescence inverted field microscope, optimized for infrastructural constraints of the developing world. We characterized an initial prototype constructed with rapidprototyping techniques, which utilized low-cost, over-the-counter components such as a battery-powered LED flashlight as the light source. The microscope exhibited suitable spatial resolution (0.8 μm) in fluorescence mode to resolve M. tuberculosis bacilli. In bright field mode, malaria parasites were resolvable at 1000x magnification. The initial prototype cost 480 USD and we estimate that the microscope can be manufactured for 230 USD. While future studies are planned to evaluate ease-of-use and reliability, our current system serves as a proof of concept that combined fluorescence and bright field microscopy is possible in a low-cost and portable system.

  20. Progress in extremely high brightness LED-based light sources

    NASA Astrophysics Data System (ADS)

    Hoelen, Christoph; Antonis, Piet; de Boer, Dick; Koole, Rolf; Kadijk, Simon; Li, Yun; Vanbroekhoven, Vincent; Van De Voorde, Patrick

    2017-09-01

    Although the maximum brightness of LEDs has been increasing continuously during the past decade, their luminance is still far from what is required for multiple applications that still rely on the high brightness of discharge lamps. In particular for high brightness applications with limited étendue, e.g. front projection, only very modest luminance values in the beam can be achieved with LEDs compared to systems based on discharge lamps or lasers. With dedicated architectures, phosphor-converted green LEDs for projection may achieve luminance values up to 200-300 Mnit. In this paper we report on the progress made in the development of light engines based on an elongated luminescent concentrator pumped by blue LEDs. This concept has recently been introduced to the market as ColorSpark High Lumen Density LED technology. These sources outperform the maximum brightness of LEDs by multiple factors. In LED front projection, green LEDs are the main limiting factor. With our green modules, we now have achieved peak luminance values of 2 Gnit, enabling LED-based projection systems with over 4000 ANSI lm. Extension of this concept to yellow and red light sources is presented. The light source efficiency has been increased considerably, reaching 45-60 lm/W for green under practical application conditions. The module architecture, beam shaping, and performance characteristics are reviewed, as well as system aspects. The performance increase, spectral range extensions, beam-shaping flexibility, and cost reductions realized with the new module architecture enable a breakthrough in LED-based projection systems and in a wide variety of other high brightness applications.

  1. The Herschel-ATLAS: magnifications and physical sizes of 500-μm-selected strongly lensed galaxies

    NASA Astrophysics Data System (ADS)

    Enia, A.; Negrello, M.; Gurwell, M.; Dye, S.; Rodighiero, G.; Massardi, M.; De Zotti, G.; Franceschini, A.; Cooray, A.; van der Werf, P.; Birkinshaw, M.; Michałowski, M. J.; Oteo, I.

    2018-04-01

    We perform lens modelling and source reconstruction of Sub-millimetre Array (SMA) data for a sample of 12 strongly lensed galaxies selected at 500μm in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). A previous analysis of the same data set used a single Sérsic profile to model the light distribution of each background galaxy. Here we model the source brightness distribution with an adaptive pixel scale scheme, extended to work in the Fourier visibility space of interferometry. We also present new SMA observations for seven other candidate lensed galaxies from the H-ATLAS sample. Our derived lens model parameters are in general consistent with previous findings. However, our estimated magnification factors, ranging from 3 to 10, are lower. The discrepancies are observed in particular where the reconstructed source hints at the presence of multiple knots of emission. We define an effective radius of the reconstructed sources based on the area in the source plane where emission is detected above 5σ. We also fit the reconstructed source surface brightness with an elliptical Gaussian model. We derive a median value reff ˜ 1.77 kpc and a median Gaussian full width at half-maximum ˜1.47 kpc. After correction for magnification, our sources have intrinsic star formation rates (SFR) ˜ 900-3500 M⊙ yr-1, resulting in a median SFR surface density ΣSFR ˜ 132 M⊙ yr-1 kpc-2 (or ˜218 M⊙ yr-1 kpc-2 for the Gaussian fit). This is consistent with that observed for other star-forming galaxies at similar redshifts, and is significantly below the Eddington limit for a radiation pressure regulated starburst.

  2. Radio Identification of Millimeter-Bright Galaxies Detected in the AzTEC/ASTE Blank Field Survey

    NASA Astrophysics Data System (ADS)

    Hatsukade, Bunyo; Kohno, Kotaro; White, Glenn; Matsuura, Shuji; Hanami, Hitoshi; Shirahata, Mai; Nakanishi, Kouichiro; Hughes, David; Tamura, Yoichi; Iono, Daisuke; Wilson, Grant; Yun, Min

    2008-10-01

    We propose a deep 1.4-GHz imaging of millimeter-bright sources in the AzTEC/ASTE 1.1-mm blank field survey of AKARI Deep Field-South. The AzTEC/ASTE uncovered 37 sources, which are possibly at z > 2. We have obtained multi-wavelength data in this field, but the large beam size of AzTEC/ASTE (30 arcsec) prevents us from identifying counterparts. The aim of this proposal is to identify radio counterparts with higher-angular resolution. This enables us (i) To identifying optical/IR counterparts. It enables optical spectroscopy to determine precise redshifts, allowing us to derive SFRs, luminosity functions, clustering properties, mass of dark matter halos, etc. (ii) To constrain luminosity evolutions of SMGs by comparing of 1.4-GHz number counts (and luminosity functions) with luminosity evolution models. (iii) To estimate photometric redshifts from 1.4-GHz and 1.1-mm data using the radio-FIR flux correlation. In case of non-detection, we can put deep lower limits (3 sigma limit of z > 3). These information lead to the study of evolutionary history of SMGs, their relationship with other galaxy populations, contribution to the cosmic star formation history and the infrared background.

  3. HST Imaging of the (Almost) Dark ALFALFA Source AGC 229385

    NASA Astrophysics Data System (ADS)

    Brunker, Samantha; Salzer, John Joseph; McQuinn, Kristen B.; Janowiecki, Steven; Leisman, Luke; Rhode, Katherine L.; Adams, Elizabeth A.; Cannon, John M.; Giovanelli, Riccardo; Haynes, Martha P.

    2017-06-01

    We present deep HST imaging photometry of the extreme galaxy AGC 229385. This system was first discovered as an HI source in the ALFALFA all-sky HI survey. It was cataloged as an (almost) dark galaxy because it did not exhibit any obvious optical counterpart in the available wide-field survey data (e.g., SDSS). Deep optical imaging with the WIYN 3.5-m telescope revealed an ultra-low surface brightness stellar component located at the center of the HI detection. With a peak central surface brightness of 26.4 mag/sq. arcsec in g and very blue colors (g-r = -0.1), the stellar component to this gas-rich system is quite enigmatic. We have used our HST images to produce a deep CMD of the resolved stellar population present in AGC 229385. We clearly detect a red-giant branch and use it to infer a distance of 5.50 ± 0.23 Mpc. The CMD is dominated by older stars, contrary to expectations given the blue optical colors obtained from our ground-based photometry. Our new distance is substantially lower than earlier estimates, and shows that AGC 229385 is an extreme dwarf galaxy with one of the highest MHI/L ratios known.

  4. Constraining the Depth of Polar Ice Deposits and Evolution of Cold Traps on Mercury with Small Craters in Permanently Shadowed Regions

    NASA Technical Reports Server (NTRS)

    Deutsch, Ariel N.; Head, James W.; Neumann, Gregory A.; Chabot, Nancy L.

    2017-01-01

    Earth-based radar observations revealed highly reflective deposits at the poles of Mercury [e.g., 1], which collocate with permanently shadowed regions (PSRs) detected from both imagery and altimetry by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [e.g., 2]. MESSENGER also measured higher hydrogen concentrations at the north polar region, consistent with models for these deposits to be composed primarily of water ice [3]. Enigmatic to the characterization of ice deposits on Mercury is the thickness of these radar-bright features. A current minimum bound of several meters exists from the radar measurements, which show no drop in the radar cross section between 13- and 70-cm wavelength observations [4, 5]. A maximum thickness of 300 m is based on the lack of any statistically significant difference between the height of craters that host radar-bright deposits and those that do not [6]. More recently, this upper limit on the depth of a typical ice deposit has been lowered to approximately 150 m, in a study that found a mean excess thickness of 50 +/- 35 m of radar-bright deposits for 6 craters [7]. Refining such a constraint permits the derivation of a volumetric estimate of the total polar ice on Mercury, thus providing insight into possible sources of water ice on the planet. Here, we take a different approach to constrain the thickness of water-ice deposits. Permanently shadowed surfaces have been resolved in images acquired with the broadband filter on MESSENGER's wide-angle camera (WAC) using low levels of light scattered by crater walls and other topography [8]. These surfaces are not featureless and often host small craters (less than a few km in diameter). Here we utilize the presence of these small simple craters to constrain the thickness of the radar-bright ice deposits on Mercury. Specifically, we compare estimated depths made from depth-to-diameter ratios and depths from individual Mercury Laser Altimeter (MLA) tracks to constrain the fill of material of small craters that lie within the permanently shadowed, radar bright deposits of 7 north polar craters.

  5. The ASAS-SN Bright Supernova Catalog – II. 2015

    DOE PAGES

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.; ...

    2017-01-16

    Here, this paper presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalogue, we also present redshifts and near-ultraviolet through infrared magnitudes for all supernova host galaxies in both samples. Combined with our previous catalogue, this work comprises a complete catalogue of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is themore » second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less

  6. The ASAS-SN Bright Supernova Catalog – II. 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    Here, this paper presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalogue, we also present redshifts and near-ultraviolet through infrared magnitudes for all supernova host galaxies in both samples. Combined with our previous catalogue, this work comprises a complete catalogue of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is themore » second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less

  7. VizieR Online Data Catalog: XXL Survey: First results (Pierre+, 2016)

    NASA Astrophysics Data System (ADS)

    Pierre, M.; Pacaud, F.; Adami, C.; Alis, S.; Altieri, B.; Baran, B.; Benoist, C.; Birkinshaw, M.; Bongiorno, A.; Bremer, M. N.; Brusa, M.; Butler, A.; Ciliegi, P.; Chiappetti, L.; Clerc, N.; Corasaniti, P. S.; Coupon, J.; De Breuck, C.; Democles, J.; Desai, S.; Delhaize, J.; Devriendt, J.; Dubois, Y.; Eckert, D.; Elyiv, A.; Ettori, S.; Evrard, A.; Faccioli, L.; Farahi, A.; Ferrari, C.; Finet, F.; Fotopoulou, S.; Fourmanoit, N.; Gandhi, P.; Gastaldello, F.; Gastaud, R.; Georgantopoulos, I.; Giles, P.; Guennou, L.; Guglielmo, V.; Horellou, C.; Husband, K.; Huynh, M.; Iovino, A.; Kilbinger, M.; Koulouridis, E.; Lavoie, S.; Le Brun, A. M. C.; Lefevre, J. P.; Lidman, C.; Lieu, M.; Lin, C. A.; Mantz, A.; Maughan, B. J.; Maurogordato, S.; McCarthy, I. G.; McGee, S.; Melin, J. B.; Melnyk, O.; Menanteau, F.; Novak, M.; Paltani, S.; Plionis, M.; Poggianti, B. M.; Pomarede, D.; Pompei, E.; Ponman, T. J.; Ramos-Ceja, M. E.; Ranalli, P.; Rapetti, D.; Raychaudury, S.; Reiprich, T. H.; Rottgering, H.; Rozo, E.; Ryko, E.; Sadibekova, T.; Santos, J.; Sauvageot, J. L.; Schimd, C.; Sereno, M.; Smith, G. P.; Smolcic, V.; Snowden, S.; Spergel, D.; Stanford, S.; Surdej, J.; Valageas, P.; Valotti, A.; Valtchanov, I.; Vignali, C.; Willis, J.; Ziparo, F.

    2016-03-01

    Paper I. Scientific motivations - XMM-Newton observing plan. Follow-up observations and simulation programme. The table xxlpoint.dat is a list of all XMM survey-type observations (<=AO-10) in the XXL fields, providing the match between the internal naming and the ESA XXM log,the coordinates and useful exposure times of the XMM pointings, their quality and ancillary information. Paper II. The bright cluster sample: catalogue and luminosity function. Paper III. Luminosity-temperature relation of the bright cluster sample. Paper IV. Mass-temperature relation of the bright cluster sample. This article presents the XXL bright cluster sample, a subsample of 100 galaxy clusters selected from the full XXL catalogue by setting a lower limit of 3*10-14erg/cm2/s on the source flux within a 1' aperture. The selection function was estimated using a mixture of Monte Carlo simulations and analytical recipes that closely reproduce the source selection process. An extensive spectroscopic follow-up provided redshifts for 97 of the 100 clusters. We derived accurate X-ray parameters for all the sources. Scaling relations were self-consistently derived from the same sample in other publications of the series. On this basis, we study the number density, luminosity function, and spatial distribution of the sample. The bright cluster sample consists of systems with masses between M500=7*10+14 and 3*10+14Mȯ, mostly located between z=0.1 and 0.5. The observed sky density of clusters is slightly below the predictions from the WMAP9 model, and significantly below the prediction from the Planck 2015 cosmology. In general, within the current uncertainties of the cluster mass calibration, models with higher values of σ8 and/or ΩM appear more difficult to accommodate. We provide tight constraints on the cluster differential luminosity function and find no hint of evolution out to z~1. We also find strong evidence for the presence of large-scale structures in the XXL bright cluster sample and identify five new superclusters. We provide the XXL-100-GC catalogue (xxl100gc.dat), the master catalogue of the 100 brightest galaxy clusters from the XXL Survey. This catalogue summarizes all the information published on this sample by the XXL collaboration, which were initially distributed over several articles. It contains the sources positions, redshifts, fluxes and mass estimates published in Appendix D of paper II, combined with luminosities and temperatures from Table 1 of paper III, as well as gas masses from Table A.1 of paper XIII. Paper VI. The 1000 brightest X-ray point sources. We provide the XXL1000AGN catalogue (xxl1000a.dat), the first catalogue release of the XXL point source catalog, detected in the 2-10keV energy band. The catalogue contains the 1000 brightest sources, at the flux limit of F[2-10 keV]=4.8 10-14erg/s/cm2. We provide derived X-ray spectral parameters, and counterpart properties including four optical magnitudes, photometric and spectroscopic redshift estimates. We also provide the best photometric redshift class based on machine learning classification and the probability for a source to be a star or a photometric redshift outlier. Paper IX. Optical overdensity and radio continuum analysis of a supercluster at z=0.43. The table xxl_vla.dat contains the full source catalogue of all 155 radio sources detected with S/N>=6 in the Very Large Array 3GHz continuum survey of the XXL-North field. The observations covered the 0.7x0.7 square degrees subarea of the 25 square degree XXL-North field. The radio data has an angular resolution of 3.2x1.9 square arcsec and a mean rms of 20uJy per beam. There are 25 resolved sources, of which 8 are multicomponent objects. Paper XI. ATCA 2.1 GHz continuum observations. The table xxl_atca.dat contains the full source catalogue of all 1389 radio sources detected with S/N>=5 in the Australia Telescope Compact Array 2.1GHz continuum pilot survey of the XXL-South field. The observations covered the inner 6.5 square degrees of the 25 square degree XXL-South field. The radio data has an angular resolution of 4.7x4.2 square arcsec and a median rms of 50uJy per beam. There are 305 resolved sources, of which 77 are multicomponent objects. The table contains various observed parameters of the radio sources, such as position, peak flux density and signal-to-noise ratio. Paper XIV. AAOmega redshifts for the southern XXL field. We present a catalogue (xxlaaoz.dat) containing the redshifts of 3660 X-ray selected targets in the XXL southern field. The redshifts were obtained with the AAOmega spectrograph and 2dF fibre positioner on the Anglo-Australian Telescope. The catalogue contains 1515 broad line AGN, 528 stars, and redshifts for 41 out of the 49 brightest X-ray selected clusters in the XXL southern field. Paper XV. Evidence for dry merger driven BCG growth in XXL-100-GC X-ray clusters Given the availability of good quality multiband photometry together with photometric and spectroscopic redshifts to z<1, a simple set of criteria can be used to identify BCGs. For the present work, we define a BCG as: - the brightest galaxy in z-band, - within 0.5xr500 of the cluster X-ray centroid, - with a redshift that is consistent with that of the cluster as determined from all the redshifts available around the X-ray centroid. Our final sample (xxl100bc.dat) consists of 85 clusters, 45 of which are in the Northern field and 40 in the Southern field. (9 data files).

  8. S193 radiometer brightness temperature precision/accuracy for SL2 and SL3

    NASA Technical Reports Server (NTRS)

    Pounds, D. J.; Krishen, K.

    1975-01-01

    The precision and accuracy with which the S193 radiometer measured the brightness temperature of ground scenes is investigated. Estimates were derived from data collected during Skylab missions. Homogeneous ground sites were selected and S193 radiometer brightness temperature data analyzed. The precision was expressed as the standard deviation of the radiometer acquired brightness temperature. Precision was determined to be 2.40 K or better depending on mode and target temperature.

  9. Automated Adaptive Brightness in Wireless Capsule Endoscopy Using Image Segmentation and Sigmoid Function.

    PubMed

    Shrestha, Ravi; Mohammed, Shahed K; Hasan, Md Mehedi; Zhang, Xuechao; Wahid, Khan A

    2016-08-01

    Wireless capsule endoscopy (WCE) plays an important role in the diagnosis of gastrointestinal (GI) diseases by capturing images of human small intestine. Accurate diagnosis of endoscopic images depends heavily on the quality of captured images. Along with image and frame rate, brightness of the image is an important parameter that influences the image quality which leads to the design of an efficient illumination system. Such design involves the choice and placement of proper light source and its ability to illuminate GI surface with proper brightness. Light emitting diodes (LEDs) are normally used as sources where modulated pulses are used to control LED's brightness. In practice, instances like under- and over-illumination are very common in WCE, where the former provides dark images and the later provides bright images with high power consumption. In this paper, we propose a low-power and efficient illumination system that is based on an automated brightness algorithm. The scheme is adaptive in nature, i.e., the brightness level is controlled automatically in real-time while the images are being captured. The captured images are segmented into four equal regions and the brightness level of each region is calculated. Then an adaptive sigmoid function is used to find the optimized brightness level and accordingly a new value of duty cycle of the modulated pulse is generated to capture future images. The algorithm is fully implemented in a capsule prototype and tested with endoscopic images. Commercial capsules like Pillcam and Mirocam were also used in the experiment. The results show that the proposed algorithm works well in controlling the brightness level accordingly to the environmental condition, and as a result, good quality images are captured with an average of 40% brightness level that saves power consumption of the capsule.

  10. Use of LARS system for the quantitative determination of smoke plume lateral diffusion coefficients from ERTS images of Virginia

    NASA Technical Reports Server (NTRS)

    Blais, R. N.; Copeland, G. E.; Lerner, T. H.

    1975-01-01

    A technique for measuring smoke plume of large industrial sources observed by satellite using LARSYS is proposed. A Gaussian plume model is described, integrated in the vertical, and inverted to yield a form for the lateral diffusion coefficient, Ky. Given u, wind speed; y sub l, the horizontal distance of a line of constant brightness from the plume symmetry axis a distance x sub l, downstream from reference point at x=x sub 2, y=0, then K sub y = u ((y sub 1) to the 2nd power)/2 x sub 1 1n (x sub 2/x sub 1). The technique is applied to a plume from a power plant at Chester, Virginia, imaged August 31, 1973 by LANDSAT I. The plume bends slightly to the left 4.3 km from the source and estimates yield Ky of 28 sq m/sec near the source, and 19 sq m/sec beyond the bend. Maximum ground concentrations are estimated between 32 and 64 ug/cu m. Existing meteorological data would not explain such concentrations.

  11. The effect of precipitation on measuring sea surface salinity from space

    NASA Astrophysics Data System (ADS)

    Jin, Xuchen; Pan, Delu; He, Xianqiang; Wang, Difeng; Zhu, Qiankun; Gong, Fang

    2017-10-01

    The sea surface salinity (SSS) can be measured from space by using L-band (1.4 GHz) microwave radiometers. The L-band has been chosen for its sensitivity of brightness temperature to the change of salinity. However, SSS remote sensing is still challenging due to the low sensitivity of brightness temperature to SSS variation: for the vertical polarization, the sensitivity is about 0.4 to 0.8 K/psu with different incident angles and sea surface temperature; for horizontal polarization, the sensitivity is about 0.2 to 0.6 K/psu. It means that we have to make radiometric measurements with accuracy better than 1K even for the best sensitivity of brightness temperature to SSS. Therefore, in order to retrieve SSS, the measured brightness temperature at the top of atmosphere (TOA) needs to be corrected for many sources of error. One main geophysical source of error comes from atmosphere. Currently, the atmospheric effect at L-band is usually corrected by absorption and emission model, which estimate the radiation absorbed and emitted by atmosphere. However, the radiation scattered by precipitation is neglected in absorption and emission models, which might be significant under heavy precipitation. In this paper, a vector radiative transfer model for coupled atmosphere and ocean systems with a rough surface is developed to simulate the brightness temperature at the TOA under different precipitations. The model is based on the adding-doubling method, which includes oceanic emission and reflection, atmospheric absorption and scattering. For the ocean system with a rough surface, an empirical emission model established by Gabarro and the isotropic Cox-Munk wave model considering shadowing effect are used to simulate the emission and reflection of sea surface. For the atmospheric attenuation, it is divided into two parts: For the rain layer, a Marshall-Palmer distribution is used and the scattering properties of the hydrometeors are calculated by Mie theory (the scattering hydrometeors are assumed to be spherical). For the other atmosphere layers, which are assumed to be clear sky, Liebe's millimeter wave propagation model (MPM93) is used to calculate the absorption coefficients of oxygen, water vapor, and cloud droplets. To simulate the change of brightness temperature caused by different rain rate (0-50 mm/h), we assume a 26-layer precipitation structure corresponding to NCEP FNL data. Our radiative transfer simulations showed that the brightness temperature at TOA can be influenced significantly by the heavy precipitation, the results indicate that the atmospheric attenuation of L-band at incidence angle of 42.5° should be a positive bias, and when rain rate rise up to 50 mm/h, the brightness temperature increases are close to 0.6 K and 0.8 K for horizontally and vertically polarized brightness temperature, respectively. Thus, in the case of heavy precipitation, the current absorption and emission model is not accurate enough to correct atmospheric effect, and a radiative transfer model which considers the effect of radiation scattering should be used.

  12. PLEIADES: High Peak Brightness, Subpicosecond Thomson Hard-X-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuba, J; Anderson, S G; Barty, C J

    2003-12-15

    The Picosecond Laser-Electron Inter-Action for the Dynamic Evaluation of Structures (PLEIADES) facility, is a unique, novel, tunable (10-200 keV), ultrafast (ps-fs), hard x-ray source that greatly extends the parameter range reached by existing 3rd generation sources, both in terms of x-ray energy range, pulse duration, and peak brightness at high energies. First light was observed at 70 keV early in 2003, and the experimental data agrees with 3D codes developed at LLNL. The x-rays are generated by the interaction of a 50 fs Fourier-transform-limited laser pulse produced by the TW-class FALCON CPA laser and a highly focused, relativistic (20-100 MeV),more » high brightness (1 nC, 0.3-5 ps, 5 mm.mrad, 0.2% energy spread) photo-electron bunch. The resulting x-ray brightness is expected to exceed 10{sup 20} ph/mm{sup 2}/s/mrad{sup 2}/0.1% BW. The beam is well-collimated (10 mrad divergence over the full spectrum, 1 mrad for a single color), and the source is a unique tool for time-resolved dynamic measurements in matter, including high-Z materials.« less

  13. VizieR Online Data Catalog: XMM-Newton Bright Serendipitous Survey (Della Ceca+, 2004)

    NASA Astrophysics Data System (ADS)

    Della Ceca, R.; Maccacaro, T.; Caccianiga, A.; Severgnini, P.; Braito, V.; Barcons, X.; Carrera, F. J.; Watson, M. G.; Tedds, J. A.; Brunner, H.; Lehmann, I.; Page, M. J.; Lamer, G.; Schwope, A.

    2005-09-01

    We present here "The XMM-Newton Bright Serendipitous Survey", composed of two flux-limited samples: the XMM-Newton Bright Source Sample (BSS, hereafter) and the XMM-Newton "Hard" Bright Source Sample (HBSS, hereafter) having a flux limit of fX~7x10-14erg/cm2/s in the 0.5-4.5keV and 4.5-7.5keV energy band, respectively. After discussing the main goals of this project and the survey strategy, we present the basic data on a complete sample of 400 X-ray sources (389 of them belong to the BSS, 67 to the HBSS with 56 X-ray sources in common) derived from the analysis of 237 suitable XMM-Newton fields (211 for the HBSS). At the flux limit of the survey we cover a survey area of 28.10 (25.17 for the HBSS) sq. deg. The extragalactic number-flux relationships (in the 0.5-4.5keV and in the 4.5-7.5keV energy bands) are in good agreement with previous and new results making us confident about the correctness of data selection and analysis. (5 data files).

  14. Investigations of the emittance and brightness of ion beams from an electron beam ion source of the Dresden EBIS type.

    PubMed

    Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk

    2010-02-01

    We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.

  15. The Spectral Energy Distribution of Fermi bright blazars

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Agudo, I.; ...

    2010-05-13

    We have conducted a detailed investigation of the broadband spectral properties of the γ-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi γ-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/γ-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these γ-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log ν-log ν F ν representation, the typical broadband spectral signaturesmore » normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. Here, we have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, α ro, and optical to X-ray, α ox, spectral slopes) and from the γ-ray spectral index. Our data show that the synchrotron peak frequency (ν S peak) is positioned between 10 12.5 and 10 14.5 Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10 13 and 10 17 Hz in featureless BL Lacertae objects. We find that the γ-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter γ-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum γ-ray sources, the correlation between ν S peak and γ-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. Finally, this selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.« less

  16. The Spectral Energy Distribution of Fermi Bright Blazars

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Arkharov, A. A.; Axelsson, M.; Bach, U.; hide

    2010-01-01

    We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray /gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log v-log v Fv representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(sub ro) , and optical to X-ray, alpha(sub ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (v(sup S) (sub peak)) is positioned between 10(exp 12.5) and 10(exp 14) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(exp 13) and 10(exp 17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter gamma-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum gamma-ray sources, the correlation between v(sup S) (sub peak) and gamma-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.

  17. A high brightness source for nano-probe secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Smith, N. S.; Tesch, P. P.; Martin, N. P.; Kinion, D. E.

    2008-12-01

    The two most prevalent ion source technologies in the field of surface analysis and surface machining are the Duoplasmatron and the liquid metal ion source (LMIS). There have been many efforts in this area of research to develop an alternative source [ S.K. Guharay, J. Orloff, M. Wada, IEEE Trans. Plasma Sci. 33 (6) (2005) 1911; N.S. Smith, W.P. Skoczylas, S.M. Kellogg, D.E. Kinion, P.P. Tesch, O. Sutherland, A. Aanesland, R.W. Boswell, J. Vac. Sci. Technol. B 24 (6) (2006) 2902-2906] with the brightness of a LMIS and yet the ability to produce secondary ion yield enhancing species such as oxygen. However, to date a viable alternative has not been realized. The high brightness and small virtual source size of the LMIS are advantageous for forming high resolution probes but a significant disadvantage when beam currents in excess of 100 nA are required, due to the effects of spherical aberration from the optical column. At these higher currents a source with a high angular intensity is optimal and in fact the relatively moderate brightness of today's plasma ion sources prevail in this operating regime. Both the LMIS and Duoplasmatron suffer from a large axial energy spread resulting in further limitations when forming focused beams at the chromatic limit where the figure-of-merit is inversely proportional to the square of the energy spread. Also, both of these ion sources operate with a very limited range of ion species. This article reviews some of the latest developments and some future potential in this area of instrument development. Here we present an approach to source development that could lead to oxygen ion beam SIMS imaging with 10 nm resolution, using a 'broad area' RF gas phase ion source.

  18. Flux and Polarization Variability of OJ 287 during the Early 2016 Outburst

    NASA Astrophysics Data System (ADS)

    Rakshit, Suvendu; Stalin, C. S.; Muneer, S.; Neha, S.; Paliya, Vaidehi S.

    2017-02-01

    The gamma-ray blazar OJ 287 was in a high activity state during 2015 December-2016 February. Coinciding with this high brightness state, we observed this source for photometry on 40 nights in R-band and for polarimetry on nine epochs in UBV RI bands. During the period of our observations, the source brightness varied from 13.20 ± 0.04 mag to 14.98 ± 0.04 mag and the degree of polarization (P) fluctuated between 6.0% ± 0.3% and 28.3% ± 0.8% in R-band. Focusing on intranight optical variability (INOV), we find a duty cycle of about 71% using χ2-statistics, similar to that known for blazars. From INOV data, the shortest variability timescale is estimated to be 142 ± 38 minutes, yielding a lower limit of the observed Doppler factor δ0 = 1.17, the magnetic field strength B ≤ 3.8 G, and the size of the emitting region Rs < 2.28 × 1014 cm. On internight timescales, a significant anticorrelation between R-band flux and P is found. The observed P at U-band is generally larger than that observed at longer-wavelength bands, suggesting a wavelength-dependent polarization. Using V-band photometric and polarimetric data from Steward Observatory obtained during our monitoring period, we find a varied correlation between P and V-band brightness. While an anticorrelation is sometimes seen between P and V-band magnitude, no correlation is seen at other times, thereby suggesting the presence of more than one short-lived shock component in the jet of OJ 287.

  19. Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source.

    PubMed

    Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A

    2018-03-01

    We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Extragalactic counterparts to Einstein slew survey sources

    NASA Technical Reports Server (NTRS)

    Schachter, Jonathan F.; Elvis, Martin; Plummer, David; Remillard, Ron

    1992-01-01

    The Einstein slew survey consists of 819 bright X-ray sources, of which 636 (or 78 percent) are identified with counterparts in standard catalogs. The importance of bright X-ray surveys is stressed, and the slew survey is compared to the Rosat all sky survey. Statistical techniques for minimizing confusion in arcminute error circles in digitized data are discussed. The 238 slew survey active galactic nuclei, clusters, and BL Lacertae objects identified to date and their implications for logN-logS and source evolution studies are described.

  1. A Silicon-Chip Source of Bright Photon-Pair Comb

    DTIC Science & Technology

    2012-10-16

    A silicon -chip source of bright photon-pair comb Wei C. Jiang,1, ∗ Xiyuan Lu,2, ∗ Jidong Zhang,3 Oskar Painter,4 and Qiang Lin1, 3, † 1Institute of...efficient monolithic photon-pair source for on-chip application. Here we report a device on the silicon -on-insulator platform that utilizes dramatic cavity...enhanced four-wave mixing in a high-Q silicon microdisk resonator. The device is able to produce high-purity photon pairs in a comb fashion, with an

  2. Comparison of measured brightness temperatures from SMOS with modelled ones from ORCHIDEE and H-TESSEL over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Barella-Ortiz, Anaïs; Polcher, Jan; de Rosnay, Patricia; Piles, Maria; Gelati, Emiliano

    2017-01-01

    L-band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture (SSM) by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm which yields SSM estimates. The work exposed compares brightness temperatures measured by the SMOS mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The two modelled sets were estimated using a radiative transfer model and state variables from two land-surface models: (i) ORCHIDEE and (ii) H-TESSEL. The radiative transfer model used is the CMEM. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations at the moment. Further hypotheses are proposed and will be explored in a forthcoming paper. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies.

  3. Subjective time runs faster under the influence of bright rather than dim light conditions during the forenoon.

    PubMed

    Morita, Takeshi; Fukui, Tomoe; Morofushi, Masayo; Tokura, Hiromi

    2007-05-16

    The study investigated if 6 h morning bright light exposure, compared with dim light exposure, could influence time sense (range: 5-15 s). Eight women served as participants. The participant entered a bioclimatic chamber at 10:00 h on the day before the test day, where an ambient temperature and relative humidity were controlled at 25 degrees C and 60%RH. She sat quietly in a sofa in 50 lx until 22:00 h, retired at 22:00 h and then slept in total darkness. She rose at 07:00 h the following morning and again sat quietly in a sofa till 13:00 h, either in bright (2500 lx) or dim light (50 lx), the order of light intensities between the two occasions being randomized. The time-estimation test was performed from 13:00 to 13:10 h in 200 lx. The participant estimated the time that had elapsed between two buzzers, ranging over 5-15 s, and inputting the estimate into a computer. The test was carried out separately upon each individual. Results showed that the participants estimated higher durations of the given time intervals after previous exposure to 6 h of bright rather than dim light. The finding is discussed in terms of different load errors (difference between the actual core temperature and its thermoregulatory set-point) following 6-h exposure to bright or dim light in the morning.

  4. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    PubMed

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  5. Supernova 1986J Very Long Baseline Interferometry. II. The Evolution of the Shell and the Central Source

    NASA Astrophysics Data System (ADS)

    Bietenholz, M. F.; Bartel, N.; Rupen, M. P.

    2010-04-01

    We present new Very Long Baseline Interferometry (VLBI) images of supernova (SN) 1986J, taken at 5, 8.4, and 22 GHz between t = 22 and 25 yr after the explosion. The shell expands vpropt 0.69±0.03. We estimate the progenitor's mass-loss rate at (4-10) × 10-5 M sun yr-1 (for v w = 10 km s-1). Two bright spots are seen in the images. The first, in the northeast, is now fading. The second, very near the center of the projected shell and unique to SN 1986J, is still brightening relative to the shell, and now dominates the VLBI images. It is marginally resolved at 22 GHz (diameter ~0.3 mas; ~5 × 1016 cm at 10 Mpc). The integrated VLA spectrum of SN 1986J shows an inversion point and a high-frequency turnover, both progressing downward in frequency and due to the central bright spot. The optically thin spectral index of the central bright spot is indistinguishable from that of the shell. The small proper motion of 1500 ± 1500 km s-1 of the central bright spot is consistent with our previous interpretation of it as being associated with the expected black-hole or neutron-star remnant. Now, an alternate scenario seems also plausible, where the central bright spot, like the northeast one, results when the shock front impacts on a condensation within the circumstellar medium (CSM). The condensation would have to be so dense as to be opaque at cm wavelengths (~103× denser than the average corresponding CSM) and fortuitously close to the center of the projected shell. We include a movie of the evolution of SN 1986J at 5 GHz from t = 0 to 25 yr.

  6. Linear feature detection algorithm for astronomical surveys - II. Defocusing effects on meteor tracks

    NASA Astrophysics Data System (ADS)

    Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew; Ivezić, Željko

    2018-03-01

    Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor track and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.

  7. Just How Bright Is a Laser?

    ERIC Educational Resources Information Center

    Van Baak, David A.

    1995-01-01

    Attempts to quantify the subjective sensation of brightness of the spot projected by a helium-neon laser and compares this with conventional sources of light. Provides an exercise in using the blackbody radiation formulas. (JRH)

  8. INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT AGNs. I. THE RESULTS OF SINGLE-EPOCH MULTIFREQUENCY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Sung; Wajima, Kiyoaki; Algaba, Juan-Carlos

    2016-11-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-Ray Bright AGNs. We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of >6 × 10{sup −10} ph cm{sup −2} s{sup −1}. Single-epoch multifrequency VLBI observations of the target sources were conducted during a 24 hr session on 2013 November 19 and 20. All observed sources weremore » detected and imaged at all frequency bands, with or without a frequency phase transfer technique, which enabled the imaging of 12 faint sources at 129 GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure, with the VLBI core dominating the synchrotron emission on a milliarcsecond scale. CLEAN flux densities of the target sources are 0.43–28 Jy, 0.32–21 Jy, 0.18–11 Jy, and 0.35–8.0 Jy in the 22, 43, 86, and 129 GHz bands, respectively. Spectra of the target sources become steeper at higher frequency, with spectral index means of −0.40, −0.62, and −1.00 in the 22–43 GHz, 43–86 GHz and 86–129 GHz bands, respectively, implying that the target sources become optically thin at higher frequencies (e.g., 86–129 GHz).« less

  9. Volume-scalable high-brightness three-dimensional visible light source

    DOEpatents

    Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming

    2014-02-18

    A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

  10. Correcting STIS CCD Point-Source Spectra for CTE Loss

    NASA Technical Reports Server (NTRS)

    Goudfrooij, Paul; Bohlin, Ralph C.; Maiz-Apellaniz, Jesus

    2006-01-01

    We review the on-orbit spectroscopic observations that are being used to characterize the Charge Transfer Efficiency (CTE) of the STIS CCD in spectroscopic mode. We parameterize the CTE-related loss for spectrophotometry of point sources in terms of dependencies on the brightness of the source, the background level, the signal in the PSF outside the standard extraction box, and the time of observation. Primary constraints on our correction algorithm are provided by measurements of the CTE loss rates for simulated spectra (images of a tungsten lamp taken through slits oriented along the dispersion axis) combined with estimates of CTE losses for actual spectra of spectrophotometric standard stars in the first order CCD modes. For point-source spectra at the standard reference position at the CCD center, CTE losses as large as 30% are corrected to within approx.1% RMS after application of the algorithm presented here, rendering the Poisson noise associated with the source detection itself to be the dominant contributor to the total flux calibration uncertainty.

  11. Interstellar Broadening of Images in the Gravitational Lens Pks 1830-211

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Preston, R. A.; Murphy, D. W.; Jauncey, D. L.; Reynolds, J. E.; Tzioumis, A. K.; King, E. A.; McCulloch, P. M.; Lovell, J. E. J.; Costa, M. E.

    1996-01-01

    The remarkably strong radio gravitational lens PKS 1830-211 consists of a one arcsecond diameter Einstein ring with two bright compact (milliarcsecond) components located on opposite sides of the ring. We have obtained 22 GHz VLBA data on this source to determine the intrinsic angular sizes of the compact components. Previous VLBI observations at lower frequencies indicate that the brightness temperatures of these components are significantly lower than 10(exp 10) K (Jauncey, et al. 1991), less than is typical for compact synchrotron radio sources and less than is implied by the short timescales of flux density variations. A possible explanation is that interstellar scattering is broadening the apparent angular size of the source and thereby reducing the observed brightness temperature. Our VLBA data support this hypothesis. At 22 GHz the measured brightness temperature is at least 10(exp 11) K, and the deconvolved 2 size of the core in the southwest compact component is proportional to upsilon(sup -2) between 1.7 and 22 GHz. VLBI observations at still higher frequencies should be unaffected by interstellar scattering.

  12. The bright and choked gamma-ray burst contribution to the IceCube and ANTARES low-energy excess

    NASA Astrophysics Data System (ADS)

    Denton, Peter B.; Tamborra, Irene

    2018-04-01

    The increasing statistics of the high-energy neutrino flux observed by the IceCube Observatory points towards an excess of events above the atmospheric neutrino background in the 30–400 TeV energy range. Such an excess is compatible with the findings of the ANTARES Telescope and it would naturally imply the possibility that more than one source class contributes to the observed flux. Electromagnetically hidden sources have been invoked to interpret this excess of events at low energies. By adopting a unified model for the electromagnetically bright and choked gamma-ray bursts and taking into account particle acceleration at the internal and collimation shock radii, we discuss whether bright and choked bursts are viable candidates. Our findings suggest that, although producing a copious neutrino flux, choked and bright astrophysical jets cannot be the dominant sources of the excess of neutrino events. A fine tuning of the model parameters or distinct scenarios for choked jets should be invoked in order to explain the low-energy neutrino data of IceCube and ANTARES.

  13. OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, F V; Albert, F; Anderson, G G

    2010-05-18

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.« less

  14. Experimental realization of underdense plasma photocathode wakefield acceleration at FACET

    NASA Astrophysics Data System (ADS)

    Scherkl, Paul

    2017-10-01

    Novel electron beam sources from compact plasma accelerator concepts currently mature into the driving technology for next generation high-energy physics and light source facilities. Particularly electron beams of ultra-high brightness could pave the way for major advances for both scientific and commercial applications, but their generation remains tremendously challenging. The presentation outlines the experimental demonstration of the world's first bright electron beam source from spatiotemporally synchronized laser pulses injecting electrons into particle-driven plasma wakefields at FACET. Two distinctive types of operation - laser-triggered density downramp injection (``Plasma Torch'') and underdense plasma photocathode acceleration (``Trojan Horse'') - and their intermediate transitions are characterized and contrasted. Extensive particle-in-cell simulations substantiate the presentation of experimental results. In combination with novel techniques to minimize the beam energy spread, the acceleration scheme presented here promises ultra-high beam quality and brightness.

  15. T-REX: Thomson-Radiated Extreme X-rays Moving X-Ray Science into the ''Nuclear'' Applications Space with Thompson Scattered Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, C P; Hartemann, F V

    2004-09-21

    The scattering of laser photons from relativistic electrons (Thomson scattering) has been demonstrated to be a viable method for the production of ultrashort-duration pulses of tunable radiation in the 10-keV to 100-keV range. Photons in this range are capable of exciting or ionizing even the most tightly bound of atomic electrons. A wide variety of atomistic scale applications are possible. For example, Thomson x-ray sources have been constructed at LLNL (PLEIADES) and LBL as picosecond, stroboscopic probes of atomic-scale dynamics and at Vanderbilt University as element-specific tools for medical radiography and radiology. While these sources have demonstrated an attractive abilitymore » to simultaneously probe on an atomic spatial and temporal scale, they do not necessarily exploit the full potential of the Thomson scattering process to produce high-brightness, high-energy photons. In this white paper, we suggest that the peak brightness of Thomson sources can scale as fast as the 4th power of electron beam energy and that production via Thomson scattering of quasi-monochromatic, tunable radiation in the ''nuclear-range'' between 100-keV and several MeV is potentially a much more attractive application space for this process. Traditional sources in this regime are inherently ultra-broadband and decline rapidly in brightness as a function of photon energy. The output from dedicated, national-laboratory-scale, synchrotron facilities, e.g. APS, SPring8, ESRF etc., declines by more than 10 orders from 100 keV to 1 MeV. At 1 MeV, we conservatively estimate that Thomson-source, peak brightness can exceed that of APS (the best machine in the DOE complex) by more than 15 orders of magnitude. In much the same way that tunable lasers revolutionized atomic spectroscopy, this ''Peta-step'' advance in tunable, narrow-bandwidth, capability should enable entirely new fields of study and new, programmatically-interesting, applications such as: micrometer-spatial-resolution, MeV, flash radiography of dense, energetic systems (NIF, JASPER), precision, photo-nuclear absorption spectroscopy (DNT, PAT), non-destructive, resonant nuclear fluorescent imaging of special nuclear materials (NAI, DHS), dynamic, micro-crack failure analysis (aerospace industry, SSP) etc. Concepts are presented for new Thomson-Radiated Extreme X-ray (T-REX) sources at LLNL. These leverage LLNL's world-leading expertise in high-intensity lasers, high average power lasers, diffractive optics, Thomson-based x-ray source development, and advanced photoguns to produce tunable, quasi-monochromatic radiation from 50-keV to several MeV. Above {approx}100 keV, T-REX would be unique in the world with respect to BOTH peak x-ray brilliance AND average x-ray brilliance. This capability would naturally compliment the x-ray capability of large-scale, synchrotron facilities currently within the DoE complex by significantly extending the x-ray energy range over which, tunable, high-brightness applications could be pursued. It would do so at a small fraction of the cost of the purely, accelerator-based facilities. It is anticipated that T-REX could provide new opportunities for interaction of LLNL with the DoE Office of Science, DARPA, DHS etc. and would place LLNL clearly at the forefront of laser-based, x-ray generation world-wide.« less

  16. Optical correlators for automated rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1991-01-01

    The paper begins with a description of optical correlation. In this process, the propagation physics of coherent light is used to process images and extract information. The processed image is operated on as an area, rather than as a collection of points. An essentially instantaneous convolution is performed on that image to provide the sensory data. In this process, an image is sensed and encoded onto a coherent wavefront, and the propagation is arranged to create a bright spot of the image to match a model of the desired object. The brightness of the spot provides an indication of the degree of resemblance of the viewed image to the mode, and the location of the bright spot provides pointing information. The process can be utilized for AR&C to achieve the capability to identify objects among known reference types, estimate the object's location and orientation, and interact with the control system. System characteristics (speed, robustness, accuracy, small form factors) are adequate to meet most requirements. The correlator exploits the fact that Bosons and Fermions pass through each other. Since the image source is input as an electronic data set, conventional imagers can be used. In systems where the image is input directly, the correlating element must be at the sensing location.

  17. Comparison of the dust distributions in the innermost comae of comets-1P/Halley and 19P/Borrelly spacecraft observations

    USGS Publications Warehouse

    Ho, T.-M.; Thomas, N.; Boice, D.C.; Combi, M.; Soderblom, L.A.; Tenishev, V.

    2007-01-01

    We present a comparative study of the inner comae of comets 1P/Halley and 19P/Borrelly using data from the Halley Multicolour Camera (HMC) onboard Giotto and the Miniature Integrated Camera and Spectrometer onboard Deep Space 1 (DS1). We show that the dust brightness dependence as a function of radial distance is different for both comets. We suggest that optical depth or fragmentation effects dominate the brightness distribution at comet 1P/Halley whereas acceleration or non-point source geometry effects dominate at comet 19P/Borrelly. The nightside profiles of comet 19P/Borrelly suggest a continuing non-radial outflow from the nucleus out to several tens of kilometres. This modifies the observed dayside to nightside brightness ratio with distance and offers a further constraint on dust emission models. By setting up a linear system of equations to fit the dust intensity distribution, better fits could be obtained by incorporating acceleration into the equation of free-radial outflow. Finally, we estimate the dust production rate of 19P/Borrelly at the time of DS1 encounter as no higher than 324 kg/s based on comparisons with HMC intensity measurements. ?? 2007 Elsevier Ltd. All rights reserved.

  18. The HELLAS2XMM survey. XI. Unveiling the nature of X-ray bright optically normal galaxies

    NASA Astrophysics Data System (ADS)

    Civano, F.; Mignoli, M.; Comastri, A.; Vignali, C.; Fiore, F.; Pozzetti, L.; Brusa, M.; La Franca, F.; Matt, G.; Puccetti, S.; Cocchia, F.

    2007-12-01

    Aims:X-ray bright optically normal galaxies (XBONGs) constitute a small but significant fraction of hard X-ray selected sources in recent Chandra and XMM-Newton surveys. Even though several possibilities were proposed to explain why a relatively luminous hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the nature of XBONGs is still subject of debate. We aim to better understand their nature by means of a multiwavelength and morphological analysis of a small sample of these sources. Methods: Good-quality photometric near-infrared data (ISAAC/VLT) of four low-redshift (z = 0.1{-}0.3) XBONGs, selected from the HELLAS2XMM survey, have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique through the least-squares fitting program GALFIT. Results: The surface brightness decomposition allows us to reveal a nuclear point-like source, likely to be responsible for the X-ray emission, in two out of the four sources. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4π) at the nuclear source, combined with the low nuclear activity, may explain the lack of optical emission lines. The third XBONG is associated with an X-ray extended source and no nuclear excess is detected in the near infrared at the limits of our observations. The last source is associated to a close (d≤ 1 arcsec) double system and the fitting procedure cannot achieve a firm conclusion. Based on observations made at the European Southern Observatory, Paranal, Chile (ESO Programme ID 69.A-0554).

  19. A Parallel, High-Fidelity Radar Model

    DTIC Science & Technology

    2010-09-01

    THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 . TCMB is the temperature due to the cosmic microwave background ...per unit area, per unit frequency. In the microwave regime, this is usually given the name brightness temperature, . There are various sources...which contribute to the brightness temperature. They include external sources outside of the earth’s atmosphere (e.g. cosmic or galactic noise

  20. Exploring the blazar zone in high-energy flares of FSRQs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacciani, L.; Donnarumma, I.; Tavecchio, F.

    2014-07-20

    The gamma-ray emission offers a powerful diagnostic tool to probe jets and their surroundings in flat-spectrum radio quasars (FSRQs). In particular, sources emitting at high energies (>10 GeV) give us the strongest constraints. This motivates us to start a systematic study of flares with bright emission above 10 GeV, examining archival data of the Fermi-LAT gamma-ray telescope. At the same time, we began to trigger Target of Opportunity observations to the Swift observatory at the occurrence of high-energy flares, obtaining a wide coverage of the spectral energy distributions (SEDs) for several FSRQs during flares. Among others, we investigate the SEDmore » of a peculiar flare of 3C 454.3, showing a remarkably hard gamma-ray spectrum, quite different from the brightest flares of this source, and a bright flare of CTA 102. We modeled the SED in the framework of the one-zone leptonic model, using also archival optical spectroscopic data to derive the luminosity of the broad lines and thus estimate the disk luminosity, from which the structural parameters of the FSRQ nucleus can be inferred. The model allowed us to evaluate the magnetic field intensity in the blazar zone and to locate the emitting region of gamma-rays in the particular case in which gamma-ray spectra show neither absorption from the broad-line region (BLR) nor the Klein-Nishina curvature expected in leptonic models assuming the BLR as the source of seed photons for the External Compton scenario. For FSRQs bright above 10 GeV, we were able to identify short periods lasting less than one day characterized by a high rate of high-energy gamma-rays and hard gamma-ray spectra. We discussed the observed spectra and variability timescales in terms of injection and cooling of energetic particles, arguing that these flares could be triggered by magnetic reconnection events or turbulence in the flow.« less

  1. Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ran; Wu, Xue-Bing; Jiang, Linhua

    We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μ Jy beam{sup −1} and a total flux density of 88 ± 19 μ Jy. The position of themore » radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be T {sub B} = (1.6 ± 1.2) × 10{sup 7} K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.« less

  2. Energy and Emission Characteristics of a Short-Arc Xenon Flash Lamp Under "Saturated" Optical Brightness Conditions

    NASA Astrophysics Data System (ADS)

    Kamrukov, A. S.; Kireev, S. G.; Kozlov, N. P.; Shashkovskii, S. G.

    2017-09-01

    We present the results of a study of the electrical, energy, and spectral brightness characteristics of an experimental three-electrode high-pressure xenon flash lamp under conditions ensuring close to maximum possible spectral brightness for the xenon emission. We show that under saturated optical brightness conditions (brightness temperature in the visible region of the spectrum 30,000 K), emission of a pulsed discharge in xenon is quite different from the emission from an ideal blackbody: the maximum brightness temperatures are 24,000 K in the short-wavelength UV region and 19,000 K in the near IR range. The relative fraction of UV radiation in the emission spectrum of the lamp is >50%, which lets us consider such lamps as promising broadband sources of radiation with high spectral brightness for many important practical applications.

  3. A Broadband Microwave Radiometer Technique at X-band for Rain and Drop Size Distribution Estimation

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    2005-01-01

    Radiometric brightess temperatures below about 12 GHz provide accurate estimates of path attenuation through precipitation and cloud water. Multiple brightness temperature measurements at X-band frequencies can be used to estimate rainfall rate and parameters of the drop size distribution once correction for cloud water attenuation is made. Employing a stratiform storm model, calculations of the brightness temperatures at 9.5, 10 and 12 GHz are used to simulate estimates of path-averaged median mass diameter, number concentration and rainfall rate. The results indicate that reasonably accurate estimates of rainfall rate and information on the drop size distribution can be derived over ocean under low to moderate wind speed conditions.

  4. Digital image profilers for detecting faint sources which have bright companions

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham; Slavey, Robert

    1992-01-01

    For this program, an image profiling system was developed which offers the potential for detecting extremely faint optical sources that are located in close proximity to bright companions. The approach employed is novel in three respects. First, it does not require an optical system wherein extraordinary measures must be taken to minimize diffraction and scatter. Second, it does not require detectors possessing either extreme uniformity in sensitivity or extreme temporal stability. Finally, the system can readily be calibrated, or nulled, in space by testing against an unresolved singular stellar source.

  5. Double Bright Band Observations with High-Resolution Vertically Pointing Radar, Lidar, and Profiles

    NASA Technical Reports Server (NTRS)

    Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Michael

    2014-01-01

    On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.

  6. Double bright band observations with high-resolution vertically pointing radar, lidar, and profilers

    NASA Astrophysics Data System (ADS)

    Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Micheal

    2014-07-01

    On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.

  7. Generation of complete source samples from the Slew Survey

    NASA Technical Reports Server (NTRS)

    Schachter, Jonathan

    1992-01-01

    The Einstein Slew Survey consists of 819 bright X-ray sources, of which 636 (or 78 percent) are identified with counterparts in standard catalogs. We argue for the importance of bright X-ray surveys, and compare the slew results to the ROSAT all-sky survey. Also, we discuss statistical techniques for minimizing confusion in arcminute error circles in digitized data. We describe the 238 Slew Survey AGN, clusters, and BL Lac objects identified to date and their implications for logN-logS and source evolution studies. Also given is a catalog of 1075 sources detected in the Einstein Imaging Proportional Counter (IPC) Slew Survey of the X-ray sky. Five hundred fifty-four of these sources were not previously known as X-ray sources.

  8. Nebular Line Emission and Stellar Mass of Bright z 8 Galaxies "Super-Eights"

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne; Bouwens, Rychard; Trenti, Michele; Oesch, Pascal; Labbe, Ivo; Smit, Renske; Roberts-Borsani, Guido; Bernard, Stephanie; Bridge, Joanna

    2018-05-01

    Searches for the Lyman-alpha emission from the very first galaxies ionizing the Universe have proved to be extremely difficult with limited success beyond z 7 (<3% detections). However, a search of all CANDELS yielded four bright z 8 sources with associated strong Lyman-alpha lines, despite the Universe expected to be 70% neutral at this time. The key to their selection is an extremely red IRAC color ([3.6]-[4.5]> 0.5, Roberts-Borsani+ 2016), indicative of very strong nebular line emission. Do such extreme line emitting galaxies produce most of the photons to reionize the Universe? We propose to expand the sample of bright z 8 galaxies with reliable IRAC colors with seven more Y-band dropouts found with HST and confirmed through HST/Spitzer. The Spitzer observations will test how many of bright z 8 galaxies are IRAC-red and measure both their stellar mass and [OIII]+Hbeta line strength. Together with Keck/VLT spectroscopy, they will address these questions: I) Do all luminous z 8 galaxies show such red IRAC colors ([OIII] emission / hard spectra)? II) Is luminosity or a red IRAC color the dominant predictor for Lyman-alpha emission? III) Or are these sources found along exceptionally transparent sightlines into the early Universe? With 11 bright z 8 sources along different lines-of-sight, all prime targets for JWST, we will aim to determine which of the considered factors (luminosity, color, sight-line) drives the high Lyman-alpha prevalence (100%) and insight into the sources reionizing the Universe.

  9. The nature of solar brightness variations

    NASA Astrophysics Data System (ADS)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Cameron, R. H.; Yeo, K. L.; Schmutz, W. K.

    2017-09-01

    Determining the sources of solar brightness variations1,2, often referred to as solar noise3, is important because solar noise limits the detection of solar oscillations3, is one of the drivers of the Earth's climate system4,5 and is a prototype of stellar variability6,7—an important limiting factor for the detection of extrasolar planets. Here, we model the magnetic contribution to solar brightness variability using high-cadence8,9 observations from the Solar Dynamics Observatory (SDO) and the Spectral And Total Irradiance REconstruction (SATIRE)10,11 model. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface were computed with the Max Planck Institute for Solar System Research (MPS)/University of Chicago Radiative Magnetohydrodynamics (MURaM)12 code. We found that the surface magnetic field and granulation can together precisely explain solar noise (that is, solar variability excluding oscillations) on timescales from minutes to decades, accounting for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by the COnvection ROtation and planetary Transits (CoRoT)13 and Kepler14 missions uncovered brightness variations similar to that of the Sun, but with a much wider variety of patterns15. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated Transiting Exoplanet Survey Satellite16 and PLAnetary Transits and Oscillations of stars (PLATO)17 data.

  10. Imaging spectroscopy of solar radio burst fine structures.

    PubMed

    Kontar, E P; Yu, S; Kuznetsov, A A; Emslie, A G; Alcock, B; Jeffrey, N L S; Melnik, V N; Bian, N H; Subramanian, P

    2017-11-15

    Solar radio observations provide a unique diagnostic of the outer solar atmosphere. However, the inhomogeneous turbulent corona strongly affects the propagation of the emitted radio waves, so decoupling the intrinsic properties of the emitting source from the effects of radio wave propagation has long been a major challenge in solar physics. Here we report quantitative spatial and frequency characterization of solar radio burst fine structures observed with the Low Frequency Array, an instrument with high-time resolution that also permits imaging at scales much shorter than those corresponding to radio wave propagation in the corona. The observations demonstrate that radio wave propagation effects, and not the properties of the intrinsic emission source, dominate the observed spatial characteristics of radio burst images. These results permit more accurate estimates of source brightness temperatures, and open opportunities for quantitative study of the mechanisms that create the turbulent coronal medium through which the emitted radiation propagates.

  11. Bright focused ion beam sources based on laser-cooled atoms

    PubMed Central

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  12. Bright focused ion beam sources based on laser-cooled atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClelland, J. J.; Wilson, T. M.; Steele, A. V.

    2016-03-15

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of themore » industry standard Ga{sup +} liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.« less

  13. Evaluation of Sulfur Flow Emplacement on Io from Galileo Data and Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Greeley, Ronald; Lopes, Rosaly M. C.; Davies, Ashley G.

    2001-01-01

    Galileo images of bright lava flows surrounding Emakong Patera have bee0 analyzed and numerical modeling has been performed to assess whether these flows could have resulted from the emplacement of sulfur lavas on Io. Images from the solid-state imaging (SSI) camera show that these bright, white to yellow Emakong flows are up to 370 km long and contain dark, sinuous features that are interpreted to be lava conduits, -300-500 m wide and >lo0 km lorig. Neiu-Infrared Mapping S estimate of 344 K f 60 G131'C) within the Bmakong caldera. We suggest that these bright flows likely resulted from either sulfur lavas or silicate lavas that have undergone extensive cooling, pyroclastic mantling, and/or alteration with bright sulfurous materials. The Emakoag bright flows have estimated volume of -250-350 km', similar to some of the smaller Columbia River Basalt flows, If the Emakong flows did result from effusive sulfur eruptions, then they are orders of magnitude reater in volume than any terrestrial sulfur flows. Our numerical modeling capable of traveling tens to hundreds of kilometers, consistent with the predictions of Sagan. Our modeled flow distances are also consistent with the measured lengths of the Emakong channels and bright flows.

  14. Detection of a Very Bright Source Close to the LMC Supernova SN 1987A: Erratum

    NASA Astrophysics Data System (ADS)

    Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.

    1988-01-01

    In the Letter "Detection of a Very Bright Source Close to the LMC Supernova SN 1987A" by P. Nisenson, C. Papaliolios, M. Karovska, and R. Noyes (1987 Ap. J. [Letters], 320, L15), two of the figure labels for Figure 1 were inadvertently transposed in the production process. A corrected version of the figure appears as Plate L4. The Journal regrets the error.

  15. First refraction contrast imaging via Laser-Compton Scattering X-ray at KEK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaue, Kazuyuki; Aoki, Tatsuro; Washio, Masakazu

    2012-07-31

    Laser-Compton Scattering (LCS) is one of the most feasible techniques for high quality, high brightness, and compact X-ray source. High energy electron beam produced by accelerators scatters off the laser photon at a small spot. As a laser target, we have been developing a pulsedlaser storage cavity for increasing an X-ray flux. The X-ray flux was still inadequate that was 2.1 Multiplication-Sign 10{sup 5}/sec, however, we performed first refraction contrast imaging in order to evaluate the quality of LCS X-ray. Edge enhanced contrast imaging was achieved by changing the distance from sample to detector. The edge enhancement indicates that themore » LCS X-ray has small source size, i.e. high brightness. We believe that the result has demonstrated good feasibility of linac-based high brightness X-ray sources via laser-electron Compton scatterings.« less

  16. Bright and durable field emission source derived from refractory taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tipmore » end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.« less

  17. Ultra-bright pulsed electron beam with low longitudinal emittance

    DOEpatents

    Zolotorev, Max

    2010-07-13

    A high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography has been described. The source makes use of Cs atoms in an atomic beam. The source is cycled beginning with a laser pulse that excites a single Cs atom on average to a band of high-lying Rydberg nP states. The resulting valence electron Rydberg wave packet evolves in a nearly classical Kepler orbit. When the electron reaches apogee, an electric field pulse is applied that ionizes the atom and accelerates the electron away from its parent ion. The collection of electron wave packets thus generated in a series of cycles can occupy a phase volume near the quantum limit and it can possess very high brightness. Each wave packet can exhibit a considerable degree of coherence.

  18. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    NASA Astrophysics Data System (ADS)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  19. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source.

    PubMed

    Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  20. Infrared Luminosities and Dust Properties of z ≈ 2 Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Borys, C.; Desai, V.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Sheth, K.; Soifer, B. T.

    2009-11-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24 μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Boötes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ≈3 × 108 M sun. In comparison to other dusty z ~ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 × 1013 L sun versus 6 × 1012 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ~30 K) and lower inferred dust masses (3 × 108 M sun versus 3 × 109 M sun). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ~ 2 involves a submillimeter bright, cold-dust, and star-formation-dominated phase followed by a 24 μm bright, warm-dust and AGN-dominated phase.

  1. The effects of pure density evolution on the brightness distribution of cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Horack, J. M.; Emslie, A. G.; Hartmann, D. H.

    1995-01-01

    In this work, we explore the effects of burst rate density evolution on the observed brightness distribution of cosmological gamma-ray bursts. Although the brightness distribution of gamma-ray bursts observed by the BATSE experiment has been shown to be consistent with a nonevolving source population observed to redshifts of order unity, evolution of some form is likely to be present in the gamma-ray bursts. Additionally, nonevolving models place significant constraints on the range of observed burst luminosities, which are relaxed if evolution of the burst population is present. In this paper, three analytic forms of density evolution are examined. In general, forms of evolution with densities that increase monotonically with redshift require that the BATSE data correspond to bursts at larger redshifts, or to incorporate a wider range of burst luminosities, or both. Independent estimates of the maximum observed redshift in the BATSE data and/or the range of luminosity from which a large fraction of the observed bursts are drawn therefore allow for constraints to be placed on the amount of evolution that may be present in the burst population. Specifically, if recent measurements obtained from analysis of the BATSE duration distribution of the actual limiting redshift in the BATSE data at z(sub lim) = 2 are correct, the BATSE N(P) distribution in a Lambda = 0 universe is inconsistent at a level of approximately 3 alpha with nonevolving gamma-ray bursts and some form of evolution in the population is required. The sense of this required source evolution is to provide a higher density, larger luminosities, or both with increasing redshift.

  2. Orbital Effects on Mercury's Escaping Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Schmidt, Carl A.; Wilson, Jody K.; Baumgardner, Jeffrey; Mendillo, Michael

    2009-01-01

    We present results from coronagraphic imaging of Mercury's sodium tail over a 7 deg field of view. Several sets of observations made at the McDonald Observatory since May 2007 show a tail of neutral sodium atoms stretching more than 1000 Mercury radii (R(sub m)) in length, or a full degree of sky. However, no tail was observed extending beyond 120 R(sub m) during the January 2008 MESSENGER Fly-by period, or during a similar orbital phase of Mercury in July 2008. Large changes in Mercury's heliocentric radial velocity cause Doppler shifts about the Fraunhofer absorption features; the resultant change in solar flux and radiation pressure is the primary cause of the observed variation in tail brightness. Smaller fluctuations in brightness may exist due to changing source rates at the surface, but we have no explicit evidence for such changes in this data set. The effects of radiation pressure on Mercury's escaping atmosphere are investigated using seven observations spanning different orbital phases. Total escape rates of atmospheric sodium are estimated to be between 5 and 13 x 10(exp 23) atoms/s and show a correlation to radiation pressure. Candidate sources of Mercury's sodium exosphere include desorption by UV sunlight, thermal desorption, solar wind channeled along Mercury's magnetic field lines, and micro-meteor impacts. Wide-angle observations of the full extent of Mercury's sodium tail offer opportunities to enhance our understanding of the time histories of these source rates.

  3. ARC-1979-A79-7020

    NASA Image and Video Library

    1979-02-28

    Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost Galilean satellites and darkest of the four(but almost twice as bright as Earth's Moon). Mottled appearance from bright and dark patches. Bright spots seem like rayed or bright halved craters seen on our Moon. This face is always turned toward Jupiter. Photo taken through violet filter. Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.

  4. Stacked Denoising Autoencoders Applied to Star/Galaxy Classification

    NASA Astrophysics Data System (ADS)

    Qin, Hao-ran; Lin, Ji-ming; Wang, Jun-yi

    2017-04-01

    In recent years, the deep learning algorithm, with the characteristics of strong adaptability, high accuracy, and structural complexity, has become more and more popular, but it has not yet been used in astronomy. In order to solve the problem that the star/galaxy classification accuracy is high for the bright source set, but low for the faint source set of the Sloan Digital Sky Survey (SDSS) data, we introduced the new deep learning algorithm, namely the SDA (stacked denoising autoencoder) neural network and the dropout fine-tuning technique, which can greatly improve the robustness and antinoise performance. We randomly selected respectively the bright source sets and faint source sets from the SDSS DR12 and DR7 data with spectroscopic measurements, and made preprocessing on them. Then, we randomly selected respectively the training sets and testing sets without replacement from the bright source sets and faint source sets. At last, using these training sets we made the training to obtain the SDA models of the bright sources and faint sources in the SDSS DR7 and DR12, respectively. We compared the test result of the SDA model on the DR12 testing set with the test results of the Library for Support Vector Machines (LibSVM), J48 decision tree, Logistic Model Tree (LMT), Support Vector Machine (SVM), Logistic Regression, and Decision Stump algorithm, and compared the test result of the SDA model on the DR7 testing set with the test results of six kinds of decision trees. The experiments show that the SDA has a better classification accuracy than other machine learning algorithms for the faint source sets of DR7 and DR12. Especially, when the completeness function is used as the evaluation index, compared with the decision tree algorithms, the correctness rate of SDA has improved about 15% for the faint source set of SDSS-DR7.

  5. Eclipse studies of the dwarf nova EX Draconis

    NASA Astrophysics Data System (ADS)

    Baptista, R.; Catalán, M. S.; Costa, L.

    2000-08-01

    We report on V and R high-speed photometry of the dwarf nova EX Draconis (EX Dra) in quiescence and in outburst. The analysis of the outburst light curves indicates that the outbursts do not start in the outer disc regions. The disc expands during the rise to maximum and shrinks during decline and along the following quiescent period. The decrease in brightness at the later stages of the outburst is due to the fading of the light from the inner disc regions. At the end of two outbursts the system was seen to go through a phase of lower brightness, characterized by an out-of-eclipse level ~=15 per cent lower than the typical quiescent level and by the fairly symmetric eclipse of a compact source at disc centre with little evidence of a bright spot at disc rim. New eclipse timings were measured from the light curves taken in quiescence and a revised ephemeris was derived. The residuals with respect to the linear ephemeris are well described by a sinusoid of amplitude 1.2min and period ~=4yr and are possibly related to a solar-like magnetic activity cycle in the secondary star. Eclipse phases of the compact central source and of the bright spot were used to derive the geometry of the binary. By constraining the gas stream trajectory to pass through the observed position of the bright spot, we find q=0.72+/-0.06 and i85+3-2 degrees. The binary parameters were estimated by combining the measured mass ratio with the assumption that the secondary star obeys an empirical main-sequence mass-radius relation. We find M1=0.75+/-0.15Msolar and M2=0.54+/-0.10Msolar. The results indicate that the white dwarf at disc centre is surrounded by an extended and variable atmosphere or boundary layer of at least three times its radius and a temperature of T~=28000K. The fluxes at mid-eclipse yield an upper limit to the contribution of the secondary star and lead to a lower limit photometric parallax distance of D=290+/-80pc. The fluxes of the secondary star are well-matched by those of a M0+/-2 main-sequence star.

  6. THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trott, Cathryn M.; Wayth, Randall B.; Tingay, Steven J., E-mail: cathryn.trott@curtin.edu.au

    Precise subtraction of foreground sources is crucial for detecting and estimating 21 cm H I signals from the Epoch of Reionization (EoR). We quantify how imperfect point-source subtraction due to limitations of the measurement data set yields structured residual signal in the data set. We use the Cramer-Rao lower bound, as a metric for quantifying the precision with which a parameter may be measured, to estimate the residual signal in a visibility data set due to imperfect point-source subtraction. We then propagate these residuals into two metrics of interest for 21 cm EoR experiments-the angular power spectrum and two-dimensional powermore » spectrum-using a combination of full analytic covariant derivation, analytic variant derivation, and covariant Monte Carlo simulations. This methodology differs from previous work in two ways: (1) it uses information theory to set the point-source position error, rather than assuming a global rms error, and (2) it describes a method for propagating the errors analytically, thereby obtaining the full correlation structure of the power spectra. The methods are applied to two upcoming low-frequency instruments that are proposing to perform statistical EoR experiments: the Murchison Widefield Array and the Precision Array for Probing the Epoch of Reionization. In addition to the actual antenna configurations, we apply the methods to minimally redundant and maximally redundant configurations. We find that for peeling sources above 1 Jy, the amplitude of the residual signal, and its variance, will be smaller than the contribution from thermal noise for the observing parameters proposed for upcoming EoR experiments, and that optimal subtraction of bright point sources will not be a limiting factor for EoR parameter estimation. We then use the formalism to provide an ab initio analytic derivation motivating the 'wedge' feature in the two-dimensional power spectrum, complementing previous discussion in the literature.« less

  7. Linear feature detection algorithm for astronomical surveys – II. Defocusing effects on meteor tracks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew

    Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here in this paper, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor trackmore » and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.« less

  8. Linear feature detection algorithm for astronomical surveys – II. Defocusing effects on meteor tracks

    DOE PAGES

    Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew; ...

    2017-12-05

    Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here in this paper, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor trackmore » and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.« less

  9. ACCELERATION OF COMPACT RADIO JETS ON SUB-PARSEC SCALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Sung; Lobanov, Andrei P.; Krichbaum, Thomas P.

    2016-08-01

    Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of relativistic jets, and constrain models of jet formation in the inner jet region. We aim to observationally test such inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, themore » absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86 GHz. We derive the brightness temperature on sub-parsec scales in the rest frame of the compact radio sources. We find that the brightness temperature increases with increasing distance from the central engine, indicating that the intrinsic jet speed (the Lorentz factor) increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.« less

  10. Suzaku Observation of the transient black hole binary XTE J1752 223

    NASA Astrophysics Data System (ADS)

    Koyama, S.; Tashiro, M. S.; Terada, Y.; Seta, H.; Kubota, A.; Yamaoka, K.

    2010-12-01

    The black hole candidate XTE J1752-223 was discovered on October 23, 2009 with RXTE/PCA and was observed by several other satellites in X-ray band, including MAXI. MAXI succeeded in covering whole picture of the outburst from low/hard state to high/soft state, and to low/hard state again. (Nakahira et al. 2010). Triggered by MAXI team, Suzaku carried out a ToO observation XTE J1752-223 with the wide X-ray band instruments on February 24, 2010. As Reis et al. (2010) reported, the source flux exceeded 400 mCrab and the spectrum was described with MCD, power-law model and broadened iron line. In general, we have to carefully estimate the effect of event pileup at the CCD image peak of such a bright source to avoid that effect. We independently estimated the pileup affected region in particular, and found that the region within 2 arcmin from the image peak is likely to be affected by pileup at least. In this paper we show the result of pileup estimation and the effect for the X-ray spectrum with the larger discarding area, and also the accretion disk parameter based on the obtained spectra.

  11. The first Extreme Ultraviolet Explorer source catalog

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Lieu, R.; Lampton, M.; Lewis, J.; Wu, X.; Drake, J. J.; Malina, R. F.

    1994-01-01

    The Extreme Ultraviolet Explorer (EUVE) has conducted an all-sky survey to locate and identify point sources of emission in four extreme ultraviolet wavelength bands centered at approximately 100, 200, 400, and 600 A. A companion deep survey of a strip along half the ecliptic plane was simultaneously conducted. In this catalog we report the sources found in these surveys using rigorously defined criteria uniformly applied to the data set. These are the first surveys to be made in the three longer wavelength bands, and a substantial number of sources were detected in these bands. We present a number of statistical diagnostics of the surveys, including their source counts, their sensitivites, and their positional error distributions. We provide a separate list of those sources reported in the EUVE Bright Source List which did not meet our criteria for inclusion in our primary list. We also provide improved count rate and position estimates for a majority of these sources based on the improved methodology used in this paper. In total, this catalog lists a total of 410 point sources, of which 372 have plausible optical ultraviolet, or X-ray identifications, which are also listed.

  12. Multiwavelength Study of the Bright X-ray Source Population in the Interacting Galaxies NGC 5774/NGC 5775

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Saripalli, Lakshmi; Gandhi, Poshak; Foellmi, Cedric; Gutierrez, Carlos M.; Lopez-Corredoira, Martin

    2006-01-01

    The X-ray source population in the field of the interacting pair of galaxies NGC 5774/5775 is reported. A total of 49 discrete sources are detected, including 12 ultraluminous X-ray source candidates with lum inosities above 10(exp 39)erg/s in the 0.5 - 8.0 keV X-ray band. Several of these latter are transient X-ray sources that fall below detect ion levels in one of two X-ray observations spaced 15 months apart. X-ray source positions are mapped onto optical and radio images to sear ch for potential counterparts. Eleven sources have optically-bright c ounterparts. Optical colors are used to differentiate these sources, which are mostly located outside the optical extent of the interacting galaxies, as potential globular clusters (3 sources) and quasars (5) . Follow-up optical spectroscopy confirms two of the latter are background quasars.

  13. The periodic very young source EC 53 reached its maximum brightness

    NASA Astrophysics Data System (ADS)

    Giannini, T.; Antoniucci, S.; Lorenzetti, D.; Harutyunyan, A.; Licchelli, D.; Munari, U.

    2018-06-01

    In the framework of our EXor monitoring program dubbed EXORCISM (EXOR OptiCal and Infrared Systematic Monitoring - Antoniucci et al. 2013 PPVI, Lorenzetti et al. 2007 ApJ 665, 1182; Lorenzetti et al. 2009 ApJ 693, 1056), we observed the object EC53 recently signaled by Johnston et al. (ATel #11614) as a strongly embedded source showing a sub-mm luminosity burst, They also provide H- and K-band observations detecting this brightness increase also in the near-IR, in the scattered light by the nebula surrounding a compact source, invisible at those wavelengths.

  14. Human Engineering Design Criteria for Modern Control/Display Components and Standard Parts.

    DTIC Science & Technology

    1980-05-01

    to identify changes required to achieve the stated program objectives. The effort concentrated or the following factors: " Type and degree of change...greatest viewing angle) other than that actually forming the image ( nonimage brightness); i.e., I BR = n Contrast - The difference in brightness between...placement of the scope relative to the light source, through the use of a hood or shield; by optical coatings or filters over the light source; or by

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamps, T; Barday, R; Jankowiak, A

    In preparation for a high brightness, high average current electron source for the energy-recovery linac BERLinPro an all superconducting radio-frequency photoinjector is now in operation at Helmholtz-Zentrum Berlin. The aim of this experiment is beam demonstration with a high brightness electron source able to generate sub-ps pulse length electron bunches from a superconducting (SC) cathode film made of Pb coated on the backwall of a Nb SRF cavity. This paper describes the setup of the experiment and first results from beam measurements.

  16. Dynamic Optical Filtration

    NASA Technical Reports Server (NTRS)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  17. Dynamic optical filtration

    NASA Technical Reports Server (NTRS)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  18. Weighted image de-fogging using luminance dark prior

    NASA Astrophysics Data System (ADS)

    Kansal, Isha; Kasana, Singara Singh

    2017-10-01

    In this work, the weighted image de-fogging process based upon dark channel prior is modified by using luminance dark prior. Dark channel prior estimates the transmission by using three colour channels whereas luminance dark prior does the same by making use of only Y component of YUV colour space. For each pixel in a patch of ? size, the luminance dark prior uses ? pixels, rather than ? pixels used in DCP technique, which speeds up the de-fogging process. To estimate the transmission map, weighted approach based upon difference prior is used which mitigates halo artefacts at the time of transmission estimation. The major drawback of weighted technique is that it does not maintain the constancy of the transmission in a local patch even if there are no significant depth disruptions, due to which the de-fogged image looks over smooth and has low contrast. Apart from this, in some images, weighted transmission still carries less visible halo artefacts. Therefore, Gaussian filter is used to blur the estimated weighted transmission map which enhances the contrast of de-fogged images. In addition to this, a novel approach is proposed to remove the pixels belonging to bright light source(s) during the atmospheric light estimation process based upon histogram of YUV colour space. To show the effectiveness, the proposed technique is compared with existing techniques. This comparison shows that the proposed technique performs better than the existing techniques.

  19. Source structure errors in radio-interferometric clock synchronization for ten measured distributions

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1981-01-01

    The effects of source structure on radio interferometry measurements were investigated. The brightness distribution measurements for ten extragalactic sources were analyzed. Significant results are reported.

  20. Crop moisture estimation over the southern Great Plains with dual polarization 1.66 centimeter passive microwave data from Nimbus 7

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.; Harder, P. H., II; Wilke, G. D.; Huebner, G. L., Jr.

    1984-01-01

    Moisture content of snow-free, unfrozen soil is inferred using passive microwave brightness temperatures from the scanning multichannel microwave radiometer (SMMR) on Nimbus-7. Investigation is restricted to the two polarizations of the 1.66 cm wavelength sensor. Passive microwave estimates of soil moisture are of two basic categories; those based upon soil emissivity and those based upon the polarization of soil emission. The two methods are compared and contrasted through the investigation of 54 potential functions of polarized brightness temperatures and, in some cases, ground-based temperature measurements. Of these indices, three are selected for the estimated emissivity, the difference between polarized brightness temperatures, and the normalized polarization difference. Each of these indices is about equally effective for monitoring soil moisture. Using an antecedent precipitation index (API) as ground control data, temporal and spatial analyses show that emissivity data consistently give slightly better soil moisture estimates than depolarization data. The difference, however, is not statistically significant. It is concluded that polarization data alone can provide estimates of soil moisture in areas where the emissivity cannot be inferred due to nonavailability of surface temperature data.

  1. Photographer : JPL Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost Galilean satellites and darkest of the four(but almost twice as bright as Earth's Moon). Mottled appearance from bright and dark patches. Bright spots seem like rayed or bright halved craters seen on our Moon. This face is always turned toward Jupiter. Photo taken through violet filter. Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.

  2. Posterior uncertainty of GEOS-5 L-band radiative transfer model parameters and brightness temperatures after calibration with SMOS observations

    NASA Astrophysics Data System (ADS)

    De Lannoy, G. J.; Reichle, R. H.; Vrugt, J. A.

    2012-12-01

    Simulated L-band (1.4 GHz) brightness temperatures are very sensitive to the values of the parameters in the radiative transfer model (RTM). We assess the optimum RTM parameter values and their (posterior) uncertainty in the Goddard Earth Observing System (GEOS-5) land surface model using observations of multi-angular brightness temperature over North America from the Soil Moisture Ocean Salinity (SMOS) mission. Two different parameter estimation methods are being compared: (i) a particle swarm optimization (PSO) approach, and (ii) an MCMC simulation procedure using the differential evolution adaptive Metropolis (DREAM) algorithm. Our results demonstrate that both methods provide similar "optimal" parameter values. Yet, DREAM exhibits better convergence properties, resulting in a reduced spread of the posterior ensemble. The posterior parameter distributions derived with both methods are used for predictive uncertainty estimation of brightness temperature. This presentation will highlight our model-data synthesis framework and summarize our initial findings.

  3. Detection of significant cm to sub-mm band radio and  γ-ray correlated variability in Fermi bright blazars

    DOE PAGES

    Fuhrmann, L.; Larsson, S.; Chiang, J.; ...

    2014-05-12

    The exact location of the γ-ray emitting region in blazars is still controversial. In order to attack this problem we present first results of a cross-correlation analysis between radio (11 cm to 0.8 mm wavelength, F-GAMMA programme) and γ-ray (0.1–300 GeV) ~3.5 yr light curves of 54 Fermi-bright blazars. We perform a source stacking analysis and estimate significances and chance correlations using mixed source correlations. These results reveal: (i) the first highly significant multiband radio and γ-ray correlations (radio lagging γ rays) when averaging over the whole sample, (ii) average time delays (source frame: 76 ± 23 to 7 ±more » 9 d), systematically decreasing from cm to mm/sub-mm bands with a frequency dependence τr, γ(ν) ∝ ν -1, in good agreement with jet opacity dominated by synchrotron self-absorption, (iii) a bulk γ-ray production region typically located within/upstream of the 3 mm core region (τ3mm, γ = 12 ± 8 d), (iv) mean distances between the region of γ-ray peak emission and the radio ‘τ = 1 photosphere’ decreasing from 9.8 ± 3.0 pc (11 cm) to 0.9 ± 1.1 pc (2 mm) and 1.4 ± 0.8 pc (0.8 mm), (v) 3 mm/γ-ray correlations in nine individual sources at a significance level where one is expected by chance (probability: 4 × 10 -6), (vi) opacity and ‘time lag core shift’ estimates for quasar 3C 454.3 providing a lower limit for the distance of the bulk γ-ray production region from the supermassive black hole (SMBH) of ~0.8–1.6 pc, i.e. at the outer edge of the broad-line region (BLR) or beyond. A 3 mm τ = 1 surface at ~2–3 pc from the jet base (i.e. well outside the ‘canonical BLR’) finally suggests that BLR material extends to several parsec distances from the SMBH.« less

  4. Occator Bright Spots in 3-D

    NASA Image and Video Library

    2017-03-09

    This 3-D image, or anaglyph, shows the center of Occator Crater, the brightest area on dwarf planet Ceres, using data from NASA's Dawn mission. The bright central area, including a dome that is 0.25 miles (400 meters) high, is called Cerealia Facula. The secondary, scattered bright areas are called Vinalia Faculae. A 2017 study suggests that the central bright area is significantly younger than Occator Crater. Estimates put Cerealia Facula at 4 million years old, while Occator Crater is approximately 34 million years old. The reflective material that appears so bright in this image is made of carbonate salts, according to Dawn researchers. The Vinalia Faculae seem to be composed of carbonates mixed with dark material. http://photojournal.jpl.nasa.gov/catalog/PIA21398

  5. Next generation of Z* modelling tool for high intensity EUV and soft x-ray plasma sources simulations

    NASA Astrophysics Data System (ADS)

    Zakharov, S. V.; Zakharov, V. S.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Solomyannaya, A. D.; Berezin, A. V.; Vorontsov, A. S.; Markov, M. B.; Parot'kin, S. V.

    2011-04-01

    In the specifications for EUV sources, high EUV power at IF for lithography HVM and very high brightness for actinic mask and in-situ inspections are required. In practice, the non-equilibrium plasma dynamics and self-absorption of radiation limit the in-band radiance of the plasma and the usable radiation power of a conventional single unit EUV source. A new generation of the computational code Z* is currently developed under international collaboration in the frames of FP7 IAPP project FIRE for modelling of multi-physics phenomena in radiation plasma sources, particularly for EUVL. The radiation plasma dynamics, the spectral effects of self-absorption in LPP and DPP and resulting Conversion Efficiencies are considered. The generation of fast electrons, ions and neutrals is discussed. Conditions for the enhanced radiance of highly ionized plasma in the presence of fast electrons are evaluated. The modelling results are guiding a new generation of EUV sources being developed at Nano-UV, based on spatial/temporal multiplexing of individual high brightness units, to deliver the requisite brightness and power for both lithography HVM and actinic metrology applications.

  6. Evidence for a Population of High-Redshift Submillimeter Galaxies from Interferometric Imaging

    NASA Astrophysics Data System (ADS)

    Younger, Joshua D.; Fazio, Giovanni G.; Huang, Jia-Sheng; Yun, Min S.; Wilson, Grant W.; Ashby, Matthew L. N.; Gurwell, Mark A.; Lai, Kamson; Peck, Alison B.; Petitpas, Glen R.; Wilner, David J.; Iono, Daisuke; Kohno, Kotaro; Kawabe, Ryohei; Hughes, David H.; Aretxaga, Itziar; Webb, Tracy; Martínez-Sansigre, Alejo; Kim, Sungeun; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Lowenthal, James D.; Schinnerer, Eva; Smolčić, Vernesa

    2007-12-01

    We have used the Submillimeter Array to image a flux-limited sample of seven submillimeter galaxies, selected by the AzTEC camera on the JCMT at 1.1 mm, in the COSMOS field at 890 μm with ~2" resolution. All of the sources-two radio-bright and five radio-dim-are detected as single point sources at high significance (>6 σ), with positions accurate to ~0.2" that enable counterpart identification at other wavelengths observed with similarly high angular resolution. All seven have IRAC counterparts, but only two have secure counterparts in deep HST ACS imaging. As compared to the two radio-bright sources in the sample, and those in previous studies, the five radio-dim sources in the sample (1) have systematically higher submillimeter-to-radio flux ratios, (2) have lower IRAC 3.6-8.0 μm fluxes, and (3) are not detected at 24 μm. These properties, combined with size constraints at 890 μm (θ<~1.2''), suggest that the radio-dim submillimeter galaxies represent a population of very dusty starbursts, with physical scales similar to local ultraluminous infrared galaxies, with an average redshift higher than radio-bright sources.

  7. Optical flashes from internal pairs formed in gamma-ray burst afterglows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panaitescu, A.

    We develop a numerical formalism for calculating the distribution with energy of the (internal) pairs formed in a relativistic source from unscattered MeV–TeV photons. For gamma-ray burst (GRB) afterglows, this formalism is more suitable if the relativistic reverse shock that energizes the ejecta is the source of the GeV photons. The number of pairs formed is set by the source GeV output (calculated from the Fermi-LAT fluence), the unknown source Lorentz factor, and the unmeasured peak energy of the LAT spectral component. We show synchrotron and inverse-Compton light curves expected from pairs formed in the shocked medium and identify some criteria for testing a pair origin of GRB optical counterparts. Pairs formed in bright LAT afterglows with a Lorentz factor in the few hundreds may produce bright optical counterparts (more » $$R\\lt 10$$) lasting for up to one hundred seconds. As a result, the number of internal pairs formed from unscattered seed photons decreases very strongly with the source Lorentz factor, thus bright GRB optical counterparts cannot arise from internal pairs if the afterglow Lorentz factor is above several hundreds.« less

  8. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    NASA Astrophysics Data System (ADS)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  9. Optical flashes from internal pairs formed in gamma-ray burst afterglows

    DOE PAGES

    Panaitescu, A.

    2015-06-09

    We develop a numerical formalism for calculating the distribution with energy of the (internal) pairs formed in a relativistic source from unscattered MeV–TeV photons. For gamma-ray burst (GRB) afterglows, this formalism is more suitable if the relativistic reverse shock that energizes the ejecta is the source of the GeV photons. The number of pairs formed is set by the source GeV output (calculated from the Fermi-LAT fluence), the unknown source Lorentz factor, and the unmeasured peak energy of the LAT spectral component. We show synchrotron and inverse-Compton light curves expected from pairs formed in the shocked medium and identify some criteria for testing a pair origin of GRB optical counterparts. Pairs formed in bright LAT afterglows with a Lorentz factor in the few hundreds may produce bright optical counterparts (more » $$R\\lt 10$$) lasting for up to one hundred seconds. As a result, the number of internal pairs formed from unscattered seed photons decreases very strongly with the source Lorentz factor, thus bright GRB optical counterparts cannot arise from internal pairs if the afterglow Lorentz factor is above several hundreds.« less

  10. Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron. II. Observations of 3C 273 at minimum activity

    NASA Astrophysics Data System (ADS)

    Bruni, G.; Gómez, J. L.; Casadio, C.; Lobanov, A.; Kovalev, Y. Y.; Sokolovsky, K. V.; Lisakov, M. M.; Bach, U.; Marscher, A.; Jorstad, S.; Anderson, J. M.; Krichbaum, T. P.; Savolainen, T.; Vega-García, L.; Fuentes, A.; Zensus, J. A.; Alberdi, A.; Lee, S.-S.; Lu, R.-S.; Pérez-Torres, M.; Ros, E.

    2017-08-01

    Context. RadioAstron is a 10 m orbiting radio telescope mounted on the Spektr-R satellite, launched in 2011, performing Space Very Long Baseline Interferometry (SVLBI) observations supported by a global ground array of radio telescopes. With an apogee of 350 000 km, it is offering for the first time the possibility to perform μas-resolution imaging in the cm-band. Aims: The RadioAstron active galactic nuclei (AGN) polarization Key Science Project (KSP) aims at exploiting the unprecedented angular resolution provided by RadioAstron to study jet launching/collimation and magnetic-field configuration in AGN jets. The targets of our KSP are some of the most powerful blazars in the sky. Methods: We present observations at 22 GHz of 3C 273, performed in 2014, designed to reach a maximum baseline of approximately nine Earth diameters. Reaching an angular resolution of 0.3 mas, we study a particularly low-activity state of the source, and estimate the nuclear region brightness temperature, comparing with the extreme one detected one year before during the RadioAstron early science period. We also make use of the VLBA-BU-BLAZAR survey data, at 43 GHz, to study the kinematics of the jet in a 1.5-yr time window. Results: We find that the nuclear brightness temperature is two orders of magnitude lower than the exceptionally high value detected in 2013 with RadioAstron at the same frequency (1.4 × 1013 K, source-frame), and even one order of magnitude lower than the equipartition value. The kinematics analysis at 43 GHz shows that a new component was ejected 2 months after the 2013 epoch, visible also in our 22 GHz map presented here. Consequently this was located upstream of the core during the brightness temperature peak. Fermi-LAT observations for the period 2010-2014 do not show any γ-ray flare in conjunction with the passage of the new component by the core at 43 GHz. Conclusions: These observations confirm that the previously detected extreme brightness temperature in 3C 273, exceeding the inverse Compton limit, is a short-lived phenomenon caused by a temporary departure from equipartition. Thus, the availability of interferometric baselines capable of providing μas angular resolution does not systematically imply measured brightness temperatures over the known physical limits for astrophysical sources. The reduced image (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A111

  11. Rocket ultraviolet imagery of the Andromeda galaxy

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.; Heckathorn, H. M.

    1978-01-01

    Far-UV electrographic imagery of M31 is presented which was obtained during a sounding-rocket flight with an electrographic Schmidt camera sensitive in the wavelength range from 1230 to 2000 A. The resolution in the imagery is such that 50% of the energy from a point source is confined within a circle 40 arcsec in radius. Two conspicuous features are observed in the UV image of M31: one corresponding to a bright association (NGC 206) in the SW region of the disk and one centered on the galactic nucleus. Indications of the general spiral-arm structure are also evident. Absolute photometry and brightness distributions are obtained for the observed features, and both the central region and NGC 206 are shown to be diffuse sources. It is found that the brightness distribution of the central region is a flat ellipse with its major axis closely aligned with the major axis of the galaxy, which favors a source model consisting of young early-type stars close to the galactic plane and constitutes strong evidence against a nonthermal point source at the galactic center.

  12. Source brightness and useful beam current of carbon nanotubes and other very small emitters

    NASA Astrophysics Data System (ADS)

    Kruit, P.; Bezuijen, M.; Barth, J. E.

    2006-01-01

    The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.

  13. Technological Challenges to X-Ray FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I atmore » 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.« less

  14. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications.

    NASA Astrophysics Data System (ADS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce

    2015-06-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.

  15. Electronic imaging system and technique

    DOEpatents

    Bolstad, J.O.

    1984-06-12

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  16. Electronic imaging system and technique

    DOEpatents

    Bolstad, Jon O.

    1987-01-01

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  17. The GAMMA Ray Sky as Seen by Fermi: Opening a New Window on the High Energy Space Environment

    DTIC Science & Technology

    2009-01-01

    pulsars , stars whose repeating emissions can be used as ultra-precise chronometers. Measurement of gamma radiation provides unique insight...diffuse glow are a number of bright point sources, mostly gamma ray pulsars — rotating, magnetized neutron stars — as discussed below. The bright sources...important early discoveries of Fermi have been from objects in our galaxy. The LAT has discovered 12 new pulsars that seem to be visible only in gamma

  18. The 1997 Reference of Diffuse Night Sky Brightness

    NASA Technical Reports Server (NTRS)

    Leinert, C.; Bowyer, S.; Haikala, L. K.; Hanner, M. S.; Hauser, M. G.; Levasseur-Regourd, A. C.; Mann, I.; Mattila, K.; Reach, W. T.; Schlosser, W.; hide

    1997-01-01

    In the following we present material in tabular and graphical form, with the aim to allow the non specialist to obtain a realistic estimate of the diffuse night sky brightness over a wide range of wavelengths from the far UV longward of Ly to the far-infrared.

  19. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters, and the single scattering albedo. After this climatological calibration, the modeling system can provide L-band brightness temperatures with a global mean absolute bias of less than 10K against SMOS observations, across multiple incidence angles and for horizontal and vertical polarization. Third, seasonal and regional variations in the residual biases are addressed by estimating the vegetation optical depth through state augmentation during the assimilation of the L-band brightness temperatures. This strategy, tested here with SMOS data, is part of the baseline approach for the Level 4 Surface and Root Zone Soil Moisture data product from the planned Soil Moisture Active Passive (SMAP) satellite mission.

  20. Modulation of SSM/I microwave soil radiances by rainfall

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Fulton, Richard

    1992-01-01

    The feasibility of using SSM/I satellite data for estimating the soil moisture content was investigated by correlating the rainfall and soil moisture data with values of the SSM/I microwave brightness temperature obtained for the lower Great Plains in the United States during 1987. It was found that the areas of lowest brightness temperatures coincided with regions of bare soil which had received significant rainfall. The time-history plots of the brightness temperature and the antecedent precipitation index during an extremely large rain event indicated a slow recovery period (about 15 days) back to the dry soil state. However, regions covered with vegetation showed smaller temperature drops and much weaker correlation with rain events, questioning the feasibility of using SSM/I measurements for estimations of soil moisture in regions containing vegetation-covered soil.

  1. Low illumination color image enhancement based on improved Retinex

    NASA Astrophysics Data System (ADS)

    Liao, Shujing; Piao, Yan; Li, Bing

    2017-11-01

    Low illumination color image usually has the characteristics of low brightness, low contrast, detail blur and high salt and pepper noise, which greatly affected the later image recognition and information extraction. Therefore, in view of the degradation of night images, the improved algorithm of traditional Retinex. The specific approach is: First, the original RGB low illumination map is converted to the YUV color space (Y represents brightness, UV represents color), and the Y component is estimated by using the sampling acceleration guidance filter to estimate the background light; Then, the reflection component is calculated by the classical Retinex formula and the brightness enhancement ratio between original and enhanced is calculated. Finally, the color space conversion from YUV to RGB and the feedback enhancement of the UV color component are carried out.

  2. Three-dimensional spatial grouping affects estimates of the illuminant

    NASA Astrophysics Data System (ADS)

    Perkins, Kenneth R.; Schirillo, James A.

    2003-12-01

    The brightnesses (i.e., perceived luminance) of surfaces within a three-dimensional scene are contingent on both the luminances and the spatial arrangement of the surfaces. Observers viewed a CRT through a haploscope that presented simulated achromatic surfaces in three dimensions. They set a test patch to be ~33% more intense than a comparison patch to match the comparison patch in brightness, which is consistent with viewing a real scene with a simple lightning interpretation from which to estimate a different level of illumination in each depth plane. Randomly positioning each surface in either depth plane minimized any simple lighting interpretation, concomitantly reducing brightness differences to ~8.5%, although the immediate surrounds of the test and comparison patches continued to differ by a 5:1 luminance ratio.

  3. Multifrequency observations of a solar microwave burst with two-dimensional spatial resolution

    NASA Technical Reports Server (NTRS)

    Gary, Dale E.; Hurford, G. J.

    1990-01-01

    Frequency-agile interferometry observations using three baselines and the technique of frequency synthesis were used to obtain two-dimensional positions of multiple microwave sources at several frequency ranges in a solar flare. Source size and brightness temperature spectra were obtained near the peak of the burst. The size spectrum shows that the source size decreases rapidly with increasing frequency, but the brightness temperature spectrum can be well-fitted by gyrosynchrotron emission from a nonthermal distribution of electrons with power-law index of 4.8. The spatial structure of the burst showed several characteristics in common with primary/secondary bursts discussed by Nakajima et al. (1985). A source of coherent plasma emission at low frequencies is found near the secondary gyrosynchrotron source, associated with the leader spots of the active region.

  4. Nist Microwave Blackbody: The Design, Testing, and Verification of a Conical Brightness Temperature Source

    NASA Astrophysics Data System (ADS)

    Houtz, Derek Anderson

    Microwave radiometers allow remote sensing of earth and atmospheric temperatures from space, anytime, anywhere, through clouds, and in the dark. Data from microwave radiometers are high-impact operational inputs to weather forecasts, and are used to provide a vast array of climate data products including land and sea surface temperatures, soil moisture, ocean salinity, cloud precipitation and moisture height profiles, and even wind speed and direction, to name a few. Space-borne microwave radiometers have a major weakness when it comes to long-term climate trends due to their lack of traceability. Because there is no standard, or absolute reference, for microwave brightness temperature, nationally or internationally, individual instruments must each rely on their own internal calibration source to set an absolute reference to the fundamental unit of Kelvin. This causes each subsequent instrument to have a calibration offset and there is no 'true' reference. The work introduced in this thesis addresses this vacancy by proposing and introducing a NIST microwave brightness temperature source that may act as the primary reference. The NIST standard will allow pre-launch calibration of radiometers across a broad range of remote sensing pertinent frequencies between 18 GHz and 220 GHz. The blackbody will be capable of reaching temperatures ranging between liquid nitrogen boiling at approximately 77 K and warm-target temperature of 350 K. The brightness temperature of the source has associated standard uncertainty ranging as a function of frequency between 0.084 K and 0.111 K. The standard can be transferred to the calibration source in the instrument, providing traceability of all subsequent measurements back to the primary standard. The development of the NIST standard source involved predicting and measuring its brightness temperature, and minimizing the associated uncertainty of this quantity. Uniform and constant physical temperature along with well characterized and maximized emissivity are fundamental to a well characterized blackbody. The chosen geometry is a microwave absorber coated copper cone. Electromagnetic and thermal simulations are introduced to optimize the design. Experimental verifications of the simulated quantities confirm the predicted performance of the blackbody.

  5. X-ray source characterization of aluminum X-pinch plasmas driven by the 0. 5 TW LION accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, N.; Hammer, D.A.; Kalantar, D.H.

    1989-12-01

    Recent experiments at Cornell have been performed to investigate X-pinch plasmas as intense x-ray sources which might be used to pump resonant photoexcitation lasers. Crossed Al wires have been driven by up to 600 kA current for 40 ns. High density bright spots are observed at the crossing point(s). Various diagnostics were used to characterize the X-pinch plasmas as a function of initial mass loading for several specific wire configurations. The optimum mass loading for different ionization stages of Al, and the total x-ray energy yields, which are on the order of hundreds of Joules, were examined. Estimates of plasmamore » density, {similar to}10{sup 20} cm{sup {minus}3}, and temperature, about 400 eV, were obtained.« less

  6. Discovery of a bright microlensing event with planetary features towards the Taurus region: a super-Earth planet

    NASA Astrophysics Data System (ADS)

    Nucita, A. A.; Licchelli, D.; De Paolis, F.; Ingrosso, G.; Strafella, F.; Katysheva, N.; Shugarov, S.

    2018-05-01

    The transient event labelled as TCP J05074264+2447555 recently discovered towards the Taurus region was quickly recognized to be an ongoing microlensing event on a source located at distance of only 700-800 pc from Earth. Here, we show that observations with high sampling rate close to the time of maximum magnification revealed features that imply the presence of a binary lens system with very low-mass ratio components. We present a complete description of the binary lens system, which host an Earth-like planet with most likely mass of 9.2 ± 6.6 M⊕. Furthermore, the source estimated location and detailed Monte Carlo simulations allowed us to classify the event as due to the closest lens system, being at a distance of ≃380 pc and mass ≃0.25 M⊙.

  7. Improved mapping of radio sources from VLBI data by least-square fit

    NASA Technical Reports Server (NTRS)

    Rodemich, E. R.

    1985-01-01

    A method is described for producing improved mapping of radio sources from Very Long Base Interferometry (VLBI) data. The method described is more direct than existing Fourier methods, is often more accurate, and runs at least as fast. The visibility data is modeled here, as in existing methods, as a function of the unknown brightness distribution and the unknown antenna gains and phases. These unknowns are chosen so that the resulting function values are as near as possible to the observed values. If researchers use the radio mapping source deviation to measure the closeness of this fit to the observed values, they are led to the problem of minimizing a certain function of all the unknown parameters. This minimization problem cannot be solved directly, but it can be attacked by iterative methods which we show converge automatically to the minimum with no user intervention. The resulting brightness distribution will furnish the best fit to the data among all brightness distributions of given resolution.

  8. Cross-correlation of the X-ray background with nearby galaxies

    NASA Technical Reports Server (NTRS)

    Jahoda, Keith; Mushotzky, Richard F.; Boldt, Elihu; Lahav, Ofer

    1991-01-01

    The detection of a signal in the cross-correlation of the diffuse 2-10 keV HEAO 1 A-2 X-ray surface brightness with the galaxy surface density derived from diameter-limited samples from the Uppsala General Catalogue is reported. An ad hoc relationship between the X-ray flux and the galaxy counts is used to estimate the local X-ray volume emissivity at 2.8 + or - 1.0 x 10 to the 38th ergs/s/cu Mpc. This result implies that unevolved populations of X-ray sources correlated with present-epoch galaxies can contribute only 13 + or - 5 percent of the cosmic X-ray background.

  9. EQ-10 electrodeless Z-pinch EUV source for metrology applications

    NASA Astrophysics Data System (ADS)

    Gustafson, Deborah; Horne, Stephen F.; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-11-01

    With EUV Lithography systems shipping, the requirements for highly reliable EUV sources for mask inspection and resist outgassing are becoming better defined, and more urgent. The sources needed for metrology applications are very different than that needed for lithography; brightness (not power) is the key requirement. Suppliers for HVM EUV sources have all resources working on high power and have not entered the smaller market for metrology. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 19951. The source is currently being used for metrology, mask inspection, and resist development2-4. These applications require especially stable performance in both output power and plasma size and position. Over the last 6 years Energetiq has made many source modifications which have included better thermal management to increase the brightness and power of the source. We now have introduced a new source that will meet requirements of some of the mask metrology first generation tools; this source will be reviewed.

  10. Radial Distribution of X-Ray Point Sources Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hong, Jae Sub; van den Berg, Maureen; Grindlay, Jonathan E.; Laycock, Silas

    2009-11-01

    We present the log N-log S and spatial distributions of X-ray point sources in seven Galactic bulge (GB) fields within 4° from the Galactic center (GC). We compare the properties of 1159 X-ray point sources discovered in our deep (100 ks) Chandra observations of three low extinction Window fields near the GC with the X-ray sources in the other GB fields centered around Sgr B2, Sgr C, the Arches Cluster, and Sgr A* using Chandra archival data. To reduce the systematic errors induced by the uncertain X-ray spectra of the sources coupled with field-and-distance-dependent extinction, we classify the X-ray sources using quantile analysis and estimate their fluxes accordingly. The result indicates that the GB X-ray population is highly concentrated at the center, more heavily than the stellar distribution models. It extends out to more than 1fdg4 from the GC, and the projected density follows an empirical radial relation inversely proportional to the offset from the GC. We also compare the total X-ray and infrared surface brightness using the Chandra and Spitzer observations of the regions. The radial distribution of the total infrared surface brightness from the 3.6 band μm images appears to resemble the radial distribution of the X-ray point sources better than that predicted by the stellar distribution models. Assuming a simple power-law model for the X-ray spectra, the closer to the GC the intrinsically harder the X-ray spectra appear, but adding an iron emission line at 6.7 keV in the model allows the spectra of the GB X-ray sources to be largely consistent across the region. This implies that the majority of these GB X-ray sources can be of the same or similar type. Their X-ray luminosity and spectral properties support the idea that the most likely candidate is magnetic cataclysmic variables (CVs), primarily intermediate polars (IPs). Their observed number density is also consistent with the majority being IPs, provided the relative CV to star density in the GB is not smaller than the value in the local solar neighborhood.

  11. Interpreting The Unresolved Intensity Of Cosmologically Redshifted Line Radiation

    NASA Technical Reports Server (NTRS)

    Switzer, E. R.; Chang, T.-C.; Masui, K. W.; Pen, U.-L.; Voytek, T. C.

    2016-01-01

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically approximately 10(sup 2)-10(Sup 3) times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of fore-grounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest.

  12. Spectroscopy of the extreme ultraviolet dayglow at 6.5A resolution - Atomic and ionic emissions between 530 and 1240A

    NASA Technical Reports Server (NTRS)

    Gentieu, E. P.; Feldman, P. D.; Meier, R. R.

    1979-01-01

    EUV spectra (530-1500A) of the day airglow in up, down and horizontal aspect orientations have been obtained with 6.5A resolution and a limiting sensitivity of 5R from a rocket experiment. Below 834A the spectrum is rich in previously unobserved OII transitions connecting with 4S(0), 2D(0), and 2P(0) states. Recent broad-band photometric observations of geocoronal HeI 584A emission in terms of the newly observed OII emissions are shown. The OI 989A and OI 1304A emissions exhibit similar dependence on altitude and viewing geometry with the OI 989A brightness 1/15 that of OI 1340. Emission at 1026A is identified as geocoronal HI Lyman beta rather than OI multiplet emission and observed intensities agree well with model estimates. An unexpectedly high NI 1200/NI 1134A brightness ratio is evidence of a significant contribution from photodissociative excitation of N2 to the NI 1200A source function.

  13. Search for very high energy γ radiation from the radio bright region DR4 of the SNR G78.2+2.1.

    NASA Astrophysics Data System (ADS)

    Prosch, C.; Feigl, E.; Plaga, R.; Arqueros, F.; Cortina, J.; Fernandez, J.; Fernandez, P.; Fonseca, V.; Funk, B.; Gonzalez, J. C.; Haustein, V.; Heinzelmann, G.; Karle, A.; Krawczynski, H.; Krennrich, F.; Kuehn, M.; Lindner, A.; Lorenz, E.; Magnussen, N.; Martinez, S.; Matheis, V.; Merck, M.; Meyer, H.; Mirzoyan, R.; Moeller, H.; Moralejo, A.; Mueller, N.; Padilla, L.; Prahl, J.; Rhode, W.; Samorski, M.; Sanchez, J. A.; Sander, H.; Schmele, D.; Stamm, W.; Wahl, H.; Westerhoff, S.; Wiebel-Sooth, B.; Willmer, M.

    1996-10-01

    Data from the HEGRA air shower array are used to set an upper limit on the emission of γ-radiation above 25(18)TeV from the direction of the radio bright region DR4 within the SNR G78.2+2.1 of 2.5(7.1)x10^-13^cm^-2^/s. The shock front of SNR G78.2+2.1 probably recently overtook the molecular cloud Cong 8 which then acts as a target for the cosmic rays produced within the SNR, thus leading to the expectation of enhanced γ-radiation. Using a model of Drury, Aharonian and Voelk which assumes that SNRs are the sources of galactic cosmic rays via first order Fermi acceleration, we calculated a theoretical prediction for the γ-ray flux from the DR4 region and compared it with our experimental flux limit. Our `best estimate' value for the predicted flux lies a factor of about 18 above the upper limit for γ-ray energies above 25TeV. Possible reasons for this discrepancy are discussed.

  14. Groundbased Observations of [C I] 9850A Emission from Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Doane, N. E.; Oliversen, R. J.; Scherb, F.; Morgenthaler, J. P.; Roesler, F. L.; Woodward, R. C.; Harris, W. M.; Hilton, G. M.

    1999-05-01

    High spectral resolution observations of Comet Hale-Bopp [C I] 9850A emission were obtained at the NSO McMath-Pierce main telescope on 13 nights during 1997 March 9 to 10 and April 7 to 19. Spectra with good signal-to-noise were obtained using a dual- etalon 50mm Fabry-Perot spectrometer (R 40,000) with a 6 arcmin field of view. The comet was observed over a 0.92-1.00 AU range of heliocentric distances. Most observations were centered on the comet nucleus where the surface brightness ranged from about 70 to 170 Rayleighs. Several observations were also centered approximately 5 arcmin sunward and tailward of the comet nucleus. The sunward [C I] emission was fainter than the tailward emission. Assuming that CO photodissociation is the source of cometary C(1D) (and neglecting quenching), for a surface brightness of 120 Rayleighs, we estimate a (lower limit) CO production rate of about 2x10(30) per sec. These [C I] observationsare the first extensive set reported for this cometary emission line.

  15. First Results from the Herschel and ALMA Spectroscopic Surveys of the SMC: The Relationship between [C II]-bright Gas and CO-bright Gas at Low Metallicity

    NASA Astrophysics Data System (ADS)

    Jameson, Katherine E.; Bolatto, Alberto D.; Wolfire, Mark; Warren, Steven R.; Herrera-Camus, Rodrigo; Croxall, Kevin; Pellegrini, Eric; Smith, John-David; Rubio, Monica; Indebetouw, Remy; Israel, Frank P.; Meixner, Margaret; Roman-Duval, Julia; van Loon, Jacco Th.; Muller, Erik; Verdugo, Celia; Zinnecker, Hans; Okada, Yoko

    2018-02-01

    The Small Magellanic Cloud (SMC) provides the only laboratory to study the structure of molecular gas at high resolution and low metallicity. We present results from the Herschel Spectroscopic Survey of the SMC (HS3), which mapped the key far-IR cooling lines [C II], [O I], [N II], and [O III] in five star-forming regions, and new ALMA 7 m array maps of {}12{CO} and {}13{CO} (2-1) with coverage overlapping four of the five HS3 regions. We detect [C II] and [O I] throughout all of the regions mapped. The data allow us to compare the structure of the molecular clouds and surrounding photodissociation regions using {}13{CO}, {}12{CO}, [C II], and [O I] emission at ≲ 10\\prime\\prime (< 3 pc) scales. We estimate {A}V using far-IR thermal continuum emission from dust and find that the CO/[C II] ratios reach the Milky Way value at high {A}V in the centers of the clouds and fall to ∼ 1/5{--}1/10× the Milky Way value in the outskirts, indicating the presence of translucent molecular gas not traced by bright {}12{CO} emission. We estimate the amount of molecular gas traced by bright [C II] emission at low {A}V and bright {}12{CO} emission at high {A}V. We find that most of the molecular gas is at low {A}V and traced by bright [C II] emission, but that faint {}12{CO} emission appears to extend to where we estimate that the {{{H}}}2-to-H I transition occurs. By converting our {{{H}}}2 gas estimates to a CO-to-{{{H}}}2 conversion factor (X CO), we show that X CO is primarily a function of {A}V, consistent with simulations and models of low-metallicity molecular clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. New Evidence for a Black Hole in the Compact Binary Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.

  17. Compact laser accelerators for X-ray phase-contrast imaging

    PubMed Central

    Najmudin, Z.; Kneip, S.; Bloom, M. S.; Mangles, S. P. D.; Chekhlov, O.; Dangor, A. E.; Döpp, A.; Ertel, K.; Hawkes, S. J.; Holloway, J.; Hooker, C. J.; Jiang, J.; Lopes, N. C.; Nakamura, H.; Norreys, P. A.; Rajeev, P. P.; Russo, C.; Streeter, M. J. V.; Symes, D. R.; Wing, M.

    2014-01-01

    Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10–100 keV range. PMID:24470414

  18. Long-term variability in bright hard X-ray sources: 5+ years of BATSE data

    NASA Technical Reports Server (NTRS)

    Robinson, C. R.; Harmon, B. A.; McCollough, M. L.; Paciesas, W. S.; Sahi, M.; Scott, D. M.; Wilson, C. A.; Zhang, S. N.; Deal, K. J.

    1997-01-01

    The operation of the Compton Gamma Ray Observatory (CGRO)/burst and transient source experiment (BATSE) continues to provide data for inclusion into a data base for the analysis of long term variability in bright, hard X-ray sources. The all-sky capability of BATSE provides up to 30 flux measurements/day for each source. The long baseline and the various rising and setting occultation flux measurements allow searches for periodic and quasi-periodic signals with periods of between several hours to hundreds of days to be conducted. The preliminary results from an analysis of the hard X-ray variability in 24 of the brightest BATSE sources are presented. Power density spectra are computed for each source and profiles are presented of the hard X-ray orbital modulations in some X-ray binaries, together with amplitude modulations and variations in outburst durations and intensities in recurrent X-ray transients.

  19. A quantitative analysis of TIMS data obtained on the Learjet 23 at various altitudes

    NASA Technical Reports Server (NTRS)

    Jaggi, S.

    1992-01-01

    A series of Thermal Infrared Multispectral Scanner (TIMS) data acquisition flights were conducted on the NASA Learjet 23 at different altitudes over a test site. The objective was to monitor the performance of the TIMS (its estimation of the brightness temperatures of the ground scene) with increasing altitude. The results do not show any significant correlation between the brightness temperatures and the altitude. The analysis indicates that the estimation of the temperatures is a function of the accuracy of the atmospheric correction used for each altitude.

  20. An XMM-Newton Observation of 4U1755-33 in Quiescence: Evidence for a Fossil X-Ray Jet

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; White, Nicholas E.

    2003-01-01

    We report an XMM-Newton observation of the Low mass X-ray Binary (LMXB) and black hole candidate 4U1755-33. This source had been a bright persistent source for at least 25 yrs, but in 1995 entered an extended quiescent phase. 4U1755-33 was not detected with an upper limit to the 2-10 keV luminosity of 5 x 10(exp 31) d(sup 2) (sub 4kpc) ergs per second (where d(sub 4kpc) is the distance in units of 4 kpc) - consistent with the luminosity of other black hole candidates in a quiescent state. An unexpected result is the discovery of a narrow 7 arc min long X-ray jet centered on the position of 4Ul755-33. The spectrum of the jet is similar to that of jets observed from other galactic and extragalactic sources, and may have been ejected from 4Ul755-33 when it was bright. Jets are a feature of accreting black holes, and the detection of a fossil jet provides additional evidence supporting the black hole candidacy of 4U1755-33. The spectral properties of three bright serendipitous sources in the field are reported and it is suggested these are background active galactic nuclei sources.

  1. Light Pollution | CTIO

    Science.gov Websites

    important product so far is Cinzano et al.'s 'First World Atlas of the Artificial Night-Sky Brightness reduction of a factor of two in artificial night-sky brightness will extend the current lifetime of any again reached. A pragmatic, more pessimistic estimate of 7%/annum growth in artificial light pollution

  2. HI-bearing Ultra Diffuse Galaxies in the ALFALFA Survey

    NASA Astrophysics Data System (ADS)

    Leisman, Lukas; Janowiecki, Steven; Jones, Michael G.; ALFALFA Almost Darks Team

    2018-01-01

    The Arecibo Legacy Fast ALFA (Arecibo L-band Feed Array) extragalactic HI survey, with over 30,000 high significance extragalactic sources, is well positioned to locate gas-bearing, low surface brightness sources missed by optical detection algorithms. We investigate the nature of a population of HI-bearing sources in ALFALFA with properties similar to "ultra-diffuse" galaxies (UDGs): galaxies with stellar masses of dwarf galaxies, but radii of L* galaxies. These "HI-bearing ultra-diffuse" sources (HUDS) constitute a small, but pertinent, fraction of the dwarf-mass galaxies in ALFALFA. They are bluer and have more irregular morphologies than the optically-selected UDGs found in clusters, and they appear to be gas-rich for their stellar mass, indicating low star formation efficiency. To illuminate potential explanations for the extreme properties of these sources we explore their environments and estimate their halo properties. We conclude that environmental mechanism are unlikely the cause of HUDS' properties, as they exist in environments equivalent to that of the other ALFALFA sources of similar HI-masses, however, we do find some suggestion that these HUDS may reside in high spin parameter halos, a potential explanation for their "ultra-diffuse" nature.

  3. High-resolution SMA imaging of bright submillimetre sources from the SCUBA-2 Cosmology Legacy Survey

    NASA Astrophysics Data System (ADS)

    Hill, Ryley; Chapman, Scott C.; Scott, Douglas; Petitpas, Glen; Smail, Ian; Chapin, Edward L.; Gurwell, Mark A.; Perry, Ryan; Blain, Andrew W.; Bremer, Malcolm N.; Chen, Chian-Chou; Dunlop, James S.; Farrah, Duncan; Fazio, Giovanni G.; Geach, James E.; Howson, Paul; Ivison, R. J.; Lacaille, Kevin; Michałowski, Michał J.; Simpson, James M.; Swinbank, A. M.; van der Werf, Paul P.; Wilner, David J.

    2018-06-01

    We have used the Submillimeter Array (SMA) at 860 μm to observe the brightest sources in the Submillimeter Common User Bolometer Array-2 (SCUBA-2) Cosmology Legacy Survey (S2CLS). The goal of this survey is to exploit the large field of the S2CLS along with the resolution and sensitivity of the SMA to construct a large sample of these rare sources and to study their statistical properties. We have targeted 70 of the brightest single-dish SCUBA-2 850 μm sources down to S850 ≈ 8 mJy, achieving an average synthesized beam of 2.4 arcsec and an average rms of σ860 = 1.5 mJy beam-1 in our primary beam-corrected maps. We searched our SMA maps for 4σ peaks, corresponding to S860 ≳ 6 mJy sources, and detected 62, galaxies, including three pairs. We include in our study 35 archival observations, bringing our sample size to 105 bright single-dish submillimetre sources with interferometric follow-up. We compute the cumulative and differential number counts, finding them to overlap with previous single-dish survey number counts within the uncertainties, although our cumulative number count is systematically lower than the parent S2CLS cumulative number count by 14 ± 6 per cent between 11 and 15 mJy. We estimate the probability that a ≳10 mJy single-dish submillimetre source resolves into two or more galaxies with similar flux densities to be less than 15 per cent. Assuming the remaining 85 per cent of the targets are ultraluminous starburst galaxies between z = 2 and 3, we find a likely volume density of ≳400 M⊙ yr-1 sources to be {˜ } 3^{+0.7}_{-0.6} {× } 10^{-7} Mpc-3. We show that the descendants of these galaxies could be ≳4 × 1011 M⊙ local quiescent galaxies, and that about 10 per cent of their total stellar mass would have formed during these short bursts of star formation.

  4. The Brera Multiscale Wavelet ROSAT HRI Source Catalog. II. Application to the HRI and First Results

    NASA Astrophysics Data System (ADS)

    Campana, Sergio; Lazzati, Davide; Panzera, Maria Rosa; Tagliaferri, Gianpiero

    1999-10-01

    The wavelet detection algorithm (WDA) described in the accompanying paper by Lazzati et al. is suited to a fast and efficient analysis of images taken with the High-Resolution Imager (HRI) instrument on board the ROSAT satellite. An extensive testing is carried out on the detection pipeline: HRI fields with different exposure times are simulated and analyzed in the same fashion as the real data. Positions are recovered with errors of a few arcseconds, whereas fluxes are within a factor of 2 from their input values in more than 90% of the cases in the deepest images. Unlike the ``sliding-box'' detection algorithms, the WDA also provides a reliable description of the source extension, allowing for a complete search of, e.g., supernova remnants or clusters of galaxies in the HRI fields. A completeness analysis on simulated fields shows that for the deepest exposures considered (~120 ks) a limiting flux of ~3×10-15 ergs s-1 cm-2 can be reached over the entire field of view. We test the algorithm on real HRI fields selected for their crowding and/or the presence of extended or bright sources (e.g., clusters of galaxies and stars, supernova remnants). We show that our algorithm compares favorably with other X-ray detection algorithms, such as XIMAGE and EXSAS. Analysis with the WDA of the large set of HRI data will allow us to survey ~400 deg2 down to a limiting flux of ~10-13 ergs s-1 cm-2, and ~0.3 deg2 down to ~3×10-15 ergs s-1 cm-2. A complete catalog will result from our analysis, consisting of the Brera Multiscale Wavelet Bright Source Catalog (BMW-BSC), with sources detected with a significance of >~4.5 σ, and the Faint Source Catalog (BMW-FSC), with sources at >~3.5 σ. A conservative estimate based on the extragalactic log N-log S indicates that at least 16,000 sources will be revealed in the complete analysis of the entire HRI data set.

  5. Photonic crystal microchip laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, D.; Koliadenko, V.; Purlys, V.; Peckus, M.; Taranenko, V.; Staliunas, K.

    2017-02-01

    The microchip lasers, being sources of coherent light, suffer from one serious drawback: low spatial quality of the beam, strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here we propose that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. We experimentally show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by factor of 2, and thus increase the brightness of radiation by a factor of 4. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial high brightness radiation.

  6. Photonic Crystal Microchip Laser.

    PubMed

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-29

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M 2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial quality high brightness radiation.

  7. Cosmic gamma-ray bursts from BATSE - Another great debate

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; The, Lih-Sin; Clayton, Donald D.; Schnepf, Neil G.; Linder, Eric V.

    1992-01-01

    The BATSE detectors aboard Compton Observatory record about one cosmic gamma-ray burst (GRB) per day. Preliminary data analysis shows a highly isotropic sky map and a nonuniform brightness distribution. Anisotropies expected from a Galactic neutron star population, the most frequently considered source model, did not emerge from the data. Taken at face value, the data seem to suggest a heliocentric solution of the GRB puzzle. The observed isotropy can be achieved if sources are either very near or extragalactic. Pop I neutron stars in the disk do not simultaneously fit sky and brightness distributions. A possibility are sources in an extended Galactic halo with scale length large enough to avoid strong anisotropies due to the solar offset from the Galactic center. If GRBs are located in an extended halo we ask whether the neutron star paradigm can survive. We show that the recently discovered high velocity radio pulsars may provide a natural source population for GRBs. If these pulsars formed in the halo, as suggested by the radio data, the possibility arises that GRBs and high velocity pulsars are two related phenomena that provide observational evidence of the dark Galactic corona. We also discuss cosmological redshift constraints that follow from the observed brightness distribution.

  8. Using the Chandra Source-Finding Algorithm to Automatically Identify Solar X-ray Bright Points

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Tennant, A.; Cirtain, J. M.

    2009-01-01

    This poster details a technique of bright point identification that is used to find sources in Chandra X-ray data. The algorithm, part of a program called LEXTRCT, searches for regions of a given size that are above a minimum signal to noise ratio. The algorithm allows selected pixels to be excluded from the source-finding, thus allowing exclusion of saturated pixels (from flares and/or active regions). For Chandra data the noise is determined by photon counting statistics, whereas solar telescopes typically integrate a flux. Thus the calculated signal-to-noise ratio is incorrect, but we find we can scale the number to get reasonable results. For example, Nakakubo and Hara (1998) find 297 bright points in a September 11, 1996 Yohkoh image; with judicious selection of signal-to-noise ratio, our algorithm finds 300 sources. To further assess the efficacy of the algorithm, we analyze a SOHO/EIT image (195 Angstroms) and compare results with those published in the literature (McIntosh and Gurman, 2005). Finally, we analyze three sets of data from Hinode, representing different parts of the decline to minimum of the solar cycle.

  9. Arbitrarily shaped high-coherence electron bunches from cold atoms

    NASA Astrophysics Data System (ADS)

    McCulloch, A. J.; Sheludko, D. V.; Saliba, S. D.; Bell, S. C.; Junker, M.; Nugent, K. A.; Scholten, R. E.

    2011-10-01

    Ultrafast electron diffractive imaging of nanoscale objects such as biological molecules and defects in solid-state devices provides crucial information on structure and dynamic processes: for example, determination of the form and function of membrane proteins, vital for many key goals in modern biological science, including rational drug design. High brightness and high coherence are required to achieve the necessary spatial and temporal resolution, but have been limited by the thermal nature of conventional electron sources and by divergence due to repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that, if the electrons are shaped into ellipsoidal bunches with uniform density, the Coulomb explosion can be reversed using conventional optics, to deliver the maximum possible brightness at the target. Here we demonstrate arbitrary and real-time control of the shape of cold electron bunches extracted from laser-cooled atoms. The ability to dynamically shape the electron source itself and to observe this shape in the propagated electron bunch provides a remarkable experimental demonstration of the intrinsically high spatial coherence of a cold-atom electron source, and the potential for alleviation of electron-source brightness limitations due to Coulomb explosion.

  10. European VLBI network observations of fourteen GHz-peaked-spectrum radio sources at 5 GHz

    NASA Astrophysics Data System (ADS)

    Xiang, L.; Reynolds, C.; Strom, R. G.; Dallacasa, D.

    2006-08-01

    We present the results of EVN polarization observations of fourteen GHz-Peaked-Spectrum (GPS) radio sources at 5 GHz. These sources were selected from bright GPS source samples and we aimed at finding Compact Symmetric Objects (CSOs). We have obtained full polarization 5 GHz VLBI observations of 14 sources providing information on their source structure and spectral indices. The results show that two core-jet sources 1433-040 and DA193, out of 14 GPS sources, exhibit integrated fractional polarizations of 3.6% and 1.0% respectively. The other 12 sources have no clear detection of pc-scale polarization. The results confirm that the GPS sources generally have very low polarization at 5 GHz. The sources 1133+432, 1824+271 and 2121-014 are confirmed as CSOs. Three new CSOs 0914+114, 1518+046 and 2322-040 (tentative) have been classified on the basis of 5 GHz images and spectral indices. The sources 1333+589, 1751+278 and 2323+790 can be classified either as compact doubles, and then they are likely CSO candidates or core-jet sources; further observations are needed for an appropriate classification; 0554-026, 1433-040 and 1509+054 are core-jet sources. In addition, we estimate that a component in the jet of quasar DA193 has superluminal motion of 3.3±0.6 h-1 c in 5.5 years.

  11. PePSS - A portable sky scanner for measuring extremely low night-sky brightness

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Kómar, Ladislav; Kundracik, František

    2018-05-01

    A new portable sky scanner designed for low-light-level detection at night is developed and employed in night sky brightness measurements in a rural region. The fast readout, adjustable sensitivity and linear response guaranteed in 5-6 orders of magnitude makes the device well suited for narrow-band photometry in both dark areas and bright urban and suburban environments. Quasi-monochromatic night-sky brightness data are advantageous in the accurate characterization of spectral power distribution of scattered and emitted light and, also allows for the possibility to retrieve light output patterns from whole-city light sources. The sky scanner can operate in both night and day regimes, taking advantage of the complementarity of both radiance data types. Due to its inherent very high sensitivity the photomultiplier tube could be used in night sky radiometry, while the spectrometer-equipped system component capable of detecting elevated intensities is used in daylight monitoring. Daylight is a source of information on atmospheric optical properties that in turn are necessary in processing night sky radiances. We believe that the sky scanner has the potential to revolutionize night-sky monitoring systems.

  12. Ocular hazards of light

    NASA Technical Reports Server (NTRS)

    Sliney, David H.

    1994-01-01

    The eye is protected against bright light by the natural aversion response to viewing bright light sources. The aversion response normally protects the eye against injury from viewing bright light sources such as the sun, arc lamps and welding arcs, since this aversion limits the duration of exposure to a fraction of a second (about 0.25 s). The principal retinal hazard resulting from viewing bright light sources is photoretinitis, e.g., solar retinitis with an accompanying scotoma which results from staring at the sun. Solar retinitis was once referred to as 'eclipse blindness' and associated 'retinal burn'. Only in recent years has it become clear that photoretinitis results from a photochemical injury mechanism following exposure of the retina to shorter wavelengths in the visible spectrum, i.e., violet and blue light. Prior to conclusive animal experiments at that time, it was thought to be a thermal injury mechanism. However, it has been shown conclusively that an intense exposure to short-wavelength light (hereafter referred to as 'blue light') can cause retinal injury. The product of the dose-rate and the exposure duration always must result in the same exposure dose (in joules-per-square centimeter at the retina) to produce a threshold injury. Blue-light retinal injury (photoretinitis) can result from viewing either an extremely bright light for a short time, or a less bright light for longer exposure periods. This characteristic of photochemical injury mechanisms is termed reciprocity and helps to distinguish these effects from thermal burns, where heat conduction requires a very intense exposure within seconds to cause a retinal coagulation otherwise, surrounding tissue conducts the heat away from the retinal image. Injury thresholds for acute injury in experimental animals for both corneal and retinal effects have been corroborated for the human eye from accident data. Occupational safety limits for exposure to UVR and bright light are based upon this knowledge. As with any photochemical injury mechanism must consider the action spectrum, which describes the relative effectiveness of different wavelengths in causing a photobiological effect. The action spectrum for photochemical retinal injury peaks at approximately 440 nm.

  13. Interpretation of the Arcade 2 Absolute Sky Brightness Measurement

    NASA Technical Reports Server (NTRS)

    Seiffert, M.; Fixsen, D. J.; Kogut, A.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Singal, J.; Villela, T.; Wollack, E.; hide

    2011-01-01

    We use absolutely calibrated data between 3 and 90 GHz from the 2006 balloon flight of the ARCADE 2 instrument, along with previous measurements at other frequencies to constrain models of extragalactic emission. Such emission is a combination of the cosmic microwave background (CMB) monopole, Galactic foreground emission, the integrated contribution of radio emission from external galaxies, any spectral distortions present in the CMB, and any other extragalactic source. After removal of estimates of foreground emission from our own Galaxy, and an estimated contribution of external galaxies, we present fits to a combination of the flat-spectrum CMB and potential spectral distortions in the CMB. We find 217 upper limits to CMB spectral distortions of u < 6x10(exp -4) and [Y(sub ff)] < 1x10(exp -4). We also find a significant detection of a residual signal beyond that, which can be explained by the CMB plus the integrated radio emission from galaxies estimated from existing surveys. This residual signal may be due to an underestimated galactic foreground contribution, an unaccounted for contribution of a background of radio sources, or some combination of both. The residual signal is consistent with emission in the form of a power law with amplitUde 18.4 +/- 2.1 K at 0.31 GHz and a spectral index of -2.57 +/- 0.05.

  14. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z approx 2 DUST-OBSCURED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.

    We present SHARC-II 350 mum imaging of twelve 24 mum bright (F{sub 24m}u{sub m} > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 mum imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 mum flux density. The 350 mum upper limits for the 8 non-detected DOGsmore » are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T{sub dust} > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of approx3 x 10{sup 8} M{sub sun}. In comparison to other dusty z approx 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10{sup 13} L{sub sun} versus 6 x 10{sup 12} L{sub sun} for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus approx30 K) and lower inferred dust masses (3 x 10{sup 8} M{sub sun} versus 3 x 10{sup 9} M{sub sun}). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 mum bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z approx 2 involves a submillimeter bright, cold-dust, and star-formation-dominated phase followed by a 24 mum bright, warm-dust and AGN-dominated phase.« less

  15. The XXL Survey. II. The bright cluster sample: catalogue and luminosity function

    NASA Astrophysics Data System (ADS)

    Pacaud, F.; Clerc, N.; Giles, P. A.; Adami, C.; Sadibekova, T.; Pierre, M.; Maughan, B. J.; Lieu, M.; Le Fèvre, J. P.; Alis, S.; Altieri, B.; Ardila, F.; Baldry, I.; Benoist, C.; Birkinshaw, M.; Chiappetti, L.; Démoclès, J.; Eckert, D.; Evrard, A. E.; Faccioli, L.; Gastaldello, F.; Guennou, L.; Horellou, C.; Iovino, A.; Koulouridis, E.; Le Brun, V.; Lidman, C.; Liske, J.; Maurogordato, S.; Menanteau, F.; Owers, M.; Poggianti, B.; Pomarède, D.; Pompei, E.; Ponman, T. J.; Rapetti, D.; Reiprich, T. H.; Smith, G. P.; Tuffs, R.; Valageas, P.; Valtchanov, I.; Willis, J. P.; Ziparo, F.

    2016-06-01

    Context. The XXL Survey is the largest survey carried out by the XMM-Newton satellite and covers a total area of 50 square degrees distributed over two fields. It primarily aims at investigating the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. The survey will ultimately uncover several hundreds of galaxy clusters out to a redshift of ~2 at a sensitivity of ~10-14 erg s-1 cm-2 in the [0.5-2] keV band. Aims: This article presents the XXL bright cluster sample, a subsample of 100 galaxy clusters selected from the full XXL catalogue by setting a lower limit of 3 × 10-14 erg s-1 cm-2 on the source flux within a 1' aperture. Methods: The selection function was estimated using a mixture of Monte Carlo simulations and analytical recipes that closely reproduce the source selection process. An extensive spectroscopic follow-up provided redshifts for 97 of the 100 clusters. We derived accurate X-ray parameters for all the sources. Scaling relations were self-consistently derived from the same sample in other publications of the series. On this basis, we study the number density, luminosity function, and spatial distribution of the sample. Results: The bright cluster sample consists of systems with masses between M500 = 7 × 1013 and 3 × 1014 M⊙, mostly located between z = 0.1 and 0.5. The observed sky density of clusters is slightly below the predictions from the WMAP9 model, and significantly below the prediction from the Planck 2015 cosmology. In general, within the current uncertainties of the cluster mass calibration, models with higher values of σ8 and/or ΩM appear more difficult to accommodate. We provide tight constraints on the cluster differential luminosity function and find no hint of evolution out to z ~ 1. We also find strong evidence for the presence of large-scale structures in the XXL bright cluster sample and identify five new superclusters. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories under programme ID 089.A-0666 and LP191.A-0268.The Master Catalogue is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A2

  16. Evidence for Radiative Recombination of O+ Ions as a Significant Source of O 844.6 nm Emission Excitation

    NASA Astrophysics Data System (ADS)

    Waldrop, L.; Kerr, R. B.; Huang, Y.

    2018-04-01

    Photoelectron (PE) impact on ground-state O(3P) atoms is well known as a major source of twilight 844.6 nm emission in the midlatitude thermosphere. Knowledge of the PE flux can be used to infer thermospheric oxygen density, [O], from photometric measurements of 844.6 nm airglow, provided that PE impact is the dominant process generating the observed emission. During several spring observational campaigns at Arecibo Observatory, however, we have observed significant 844.6 nm emission throughout the night, which is unlikely to arise from PE impact excitation which requires solar illumination of either the local or geomagnetically conjugate thermosphere. Here we show that radiative recombination (RR) of O+ ions is likely responsible for the observed nighttime emission, based on model predictions of electron and O+ ion density and temperature by the Incoherent Scatter Radar Ionosphere Model. The calculated emission brightness produced by O + RR exhibits good agreement with the airglow data, in that both decay approximately monotonically throughout the night at similar rates. We conclude that the conventional assumption of a pure PE impact source is most likely to be invalid during dusk twilight, when RR-generated emission is most significant. Estimation of [O] from measurements of 844.6 nm emission demands isolation of the PE impact source via coincident estimation of the RR source, and the effective cross section for RR-generated emission is found here to be consistent with optically thin conditions.

  17. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade.

    PubMed

    Kolmogorov, A; Atoian, G; Davydenko, V; Ivanov, A; Ritter, J; Stupishin, N; Zelenski, A

    2014-02-01

    The RHIC polarized H(-) ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  18. Cruise ships as a source of avian mortality during fall migration

    USGS Publications Warehouse

    Bocetti, Carol I.

    2011-01-01

    Avian mortality during fall migration has been studied at many anthropogenic structures, most of which share the common feature of bright lighting. An additional, unstudied source of avian mortality during fall migration is recreational cruise ships that are brightly lit throughout the night. I documented a single mortality event of eight Common Yellowthroats (Geothlypis trichas) on one ship during part of one night in fall 2003, but suggest this is a more wide-spread phenomenon. The advertised number of ship-nights for 50 cruise ships in the Caribbean Sea during fall migration in 2003 was 2,981. This may pose a significant, additional, anthropogenic source of mortality that warrants further investigation, particularly because impacts could be minimized if this source of avian mortality is recognized. ?? 2011 by the Wilson Ornithological Society.

  19. The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs

    NASA Technical Reports Server (NTRS)

    Hammer, Derek; Kleijn, Gijs Verdoes; Hoyos, Carlos; Den Brok, Mark; Balcells, Marc; Ferguson, Henry C.; Goudfrooij, Paul; Carter, David; Guzman, Rafael; Peletier, Reynier F.; hide

    2010-01-01

    The Coma cluster, Abell 1656, was the target of a HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially-completed survey still covers approximately 50% of the core high density region in Coma. Observations were performed for twenty-five fields with a total coverage area of 274 aremin(sup 2), and extend over a wide range of cluster-centric radii (approximately 1.75 Mpe or 1 deg). The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the south-west region of the cluster. In this paper we present SEXTRACTOR source catalogs generated from the processed images, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for 76,000 objects that consist of roughly equal numbers of extended galaxies and unresolved objects. Approximately two-thirds of all detections are brighter than F814W=26.5 mag (AB), which corresponds to the 10sigma, point-source detection limit. We estimate that Coma members are 5-10% of the source detections, including a large population of compact objects (primarily GCs, but also cEs and UCDs), and a wide variety of extended galaxies from cD galaxies to dwarf low surface brightness galaxies. The initial data release for the HST-ACS Coma Treasury program was made available to the public in August 2008. The images and catalogs described in this study relate to our second data release.

  20. OT2_eegami_6: SPIRE Snapshot Survey II: Using SPT/CODEX Massive Clusters as Powerful Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Egami, E.

    2011-09-01

    On the extragalactic side, one of the most remarkable results coming out of Herschel is the discovery of extremely bright (>100 mJy in the SPIRE bands) gravitationally lensed galaxies. The great sensitivity and mapping speed of SPIRE have enabled us to find these rare extraordinary objects. What is truly exciting about these bright lensed galaxies is that they enable a variety of detailed multi-wavelength follow-up observations, shedding new light on the physical properties of these high-redshift sources. In this regard, our OT1 program, "SPIRE Snapshot Survey of Massive Galaxy Clusters" turned out to be a great success. After imaging ~50 galaxies out of 279 in the program, we have already found two spectacularly bright lensed galaxies, one of which is at a redshift of 4.69. This type of cluster-lensed sources are not only bright but also spatially stretched over a large scale, so ALMA (or NOEMA in the north) is likely to be able to study them at the level of individual GMCs. Such studies will open up a new frontier in the study of high-redshift galaxies. Here, we propose to extend this highly efficient and effective survey of gravitationally lensed galaxies to another 353 clusters carefully chosen from the SPT and CODEX cluster samples. These samples contain newly discovered high-redshift (z>0.3) massive (>3-4e14 Msun) clusters, which can be used as powerful gravitational lenses to magnify sources at high redshift. With the OT1 and OT2 surveys together, we expect to find ~20 highly magnified SPIRE sources with exceptional brightnesses (assuming a discovery rate of ~1/30). Such a unique sample of extraordinary objects will enable a variety of follow-up sciences, and will therefore remain as a great legacy of the Herschel mission for years to come.

  1. Spatial Model of Sky Brightness Magnitude in Langkawi Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Redzuan Tahar, Mohammad; Kamarudin, Farahana; Umar, Roslan; Khairul Amri Kamarudin, Mohd; Sabri, Nor Hazmin; Ahmad, Karzaman; Rahim, Sobri Abdul; Sharul Aikal Baharim, Mohd

    2017-03-01

    Sky brightness is an essential topic in the field of astronomy, especially for optical astronomical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manufactured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec{}-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × {10}-4{cd} {{{m}}}-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.

  2. Quantitative Measurements of Daytime Near Infrared Sky Brightness at the AEOS 3.6 m Telescope

    DTIC Science & Technology

    2014-09-01

    photometric filters. In the case of the 1250 nm filter, the quoted results reflect the brightness that would be seen through a standard 2MASS J filter [9...brightness per unit wavelength through the broader 2MASS filter with 162 nm bandpass. Given the known colors of the star, we estimate this error to be...Megeath, S. T. “Spectral irradiance calibration in the infrared. XIV. The absolute calibration of 2MASS ,” Astron. J., 126, 1090–1096 (2003) [10] Jim

  3. The decay of coronal loops brightened by flares and transients

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.

    1978-01-01

    Observations of X-ray emitting loops derived from Skylab S-054 photographs, and combined with temperature and brightness estimates from Solrad data, are used to determine brightness decay times resulting from various coronal energy loss mechanisms. Conductive losses are found to be more rapid than radiative losses. Attention is given to the role of geometrical inhibition of conduction as a possible mechanism of brightness decay. Soft X-ray observations are consistent with the continuation of the 'evaporation' driven by thermal conduction late into the decay phase of the event.

  4. Sources of background light on space based laser communications links

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas C.

    2018-05-01

    We discuss the sources and levels of background light that should be expected on space based laser communication (lasercom) crosslinks and uplinks, as well as on downlinks to ground stations. The analyses are valid for both Earth orbiting satellites and inter-planetary links. Fundamental equations are derived suitable for first order system engineering analyses of potential lasercom systems. These divide sources of background light into two general categories: extended sources which fill the field of view of a receiver's optics, and point sources which cannot be resolved by the optics. Specific sources of background light are discussed, and expected power levels are estimated. For uplinks, reflected sunlight and blackbody radiation from the Earth dominates. For crosslinks, depending on specific link geometry, sources of background light may include the Sun in the field of view (FOV), reflected sunlight and blackbody radiation from planets and other bodies in the solar system, individual bright stars in the FOV, the amalgam of dim stars in the FOV, zodiacal light, and reflected sunlight off of the transmitting spacecraft. For downlinks, all of these potentially come into play, and the effects of the atmosphere, including turbulence, scattering, and absorption contribute as well. Methods for accounting for each of these are presented. Specific examples are presented to illustrate the relative contributions of each source for various link geometries.

  5. Absolute detector-based spectrally tunable radiant source using digital micromirror device and supercontinuum fiber laser.

    PubMed

    Li, Zhigang; Wang, Xiaoxu; Zheng, Yuquan; Li, Futian

    2017-06-10

    High-accuracy absolute detector-based spectroradiometric calibration techniques traceable to cryogenic absolute radiometers have made progress rapidly in recent decades under the impetus of atmospheric quantitative spectral remote sensing. A high brightness spectrally tunable radiant source using a supercontinuum fiber laser and a digital micromirror device (DMD) has been developed to meet demands of spectroradiometric calibrations for ground-based, aeronautics-based, and aerospace-based remote sensing instruments and spectral simulations of natural scenes such as the sun and atmosphere. Using a supercontinuum fiber laser as a radiant source, the spectral radiance of the spectrally tunable radiant source is 20 times higher than the spectrally tunable radiant source using conventional radiant sources such as tungsten halogen lamps, xenon lamps, or LED lamps, and the stability is better than ±0.3%/h. Using a DMD, the spectrally tunable radiant source possesses two working modes. In narrow-band modes, it is calibrated by an absolute detector, and in broad-band modes, it can calibrate for remote sensing instrument. The uncertainty of the spectral radiance of the spectrally tunable radiant source is estimated at less than 1.87% at 350 nm to 0.85% at 750 nm, and compared to only standard lamp-based calibration, a greater improvement is gained.

  6. Planetary science: A 5-micron-bright spot on Titan: Evidence for surface diversity

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Turtle, E.P.; McEwen, A.S.; Lorenz, R.D.; Janssen, M.; Schaller, E.L.; Brown, M.E.; Buratti, B.J.; Sotin, Christophe; Griffith, C.; Clark, R.; Perry, J.; Fussner, S.; Barbara, J.; West, R.; Elachi, C.; Bouchez, A.H.; Roe, H.G.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Nicholson, P.D.; Sicardy, B.

    2005-01-01

    Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80??W and 20??S. This area is bright in reflected tight at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.

  7. A 5-micron-bright spot on Titan: evidence for surface diversity.

    PubMed

    Barnes, Jason W; Brown, Robert H; Turtle, Elizabeth P; McEwen, Alfred S; Lorenz, Ralph D; Janssen, Michael; Schaller, Emily L; Brown, Michael E; Buratti, Bonnie J; Sotin, Christophe; Griffith, Caitlin; Clark, Roger; Perry, Jason; Fussner, Stephanie; Barbara, John; West, Richard; Elachi, Charles; Bouchez, Antonin H; Roe, Henry G; Baines, Kevin H; Bellucci, Giancarlo; Bibring, Jean-Pierre; Capaccioni, Fabrizio; Cerroni, Priscilla; Combes, Michel; Coradini, Angioletta; Cruikshank, Dale P; Drossart, Pierre; Formisano, Vittorio; Jaumann, Ralf; Langevin, Yves; Matson, Dennis L; McCord, Thomas B; Nicholson, Phillip D; Sicardy, Bruno

    2005-10-07

    Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80 degrees W and 20 degrees S. This area is bright in reflected light at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.

  8. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon-Golcher, Edwin

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm 2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum valuesmore » for a K + beam of ~90 mA/cm 2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm +) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (ε n ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.« less

  9. RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Cloutier, Ryan; Brittain, Sean

    2015-12-01

    We report Gemini Planet Imager H-band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 Myr old early-type star recently confirmed to host a thermal infrared (IR) bright (super-)Jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal IR-bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission plausibly originates from an unresolved point source. The point-source component of HD 100546 b has extremely red IR colors compared to field brown dwarfs, qualitatively similar to youngmore » cloudy super-Jovian planets; however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point-source-like peak at r{sub proj} ∼ 14 AU, located just interior to or at the inner disk wall consistent with being a <10–20 M{sub J} candidate second protoplanet—“HD 100546 c”—and lying within a weakly polarized region of the disk but along an extension of the thermal IR-bright spiral arm. Alternatively, it is equally plausible that this feature is a weakly polarized but locally bright region of the inner disk wall. Astrometric monitoring of this feature over the next 2 years and emission line measurements could confirm its status as a protoplanet, rotating disk hot spot that is possibly a signpost of a protoplanet, or a stationary emission source from within the disk.« less

  10. Resolving the HD 100546 Protoplanetary System with the Gemini Planet Imager: Evidence for Multiple Forming, Accreting Planets

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Cloutier, Ryan; Brittain, Sean; Grady, Carol; Burrows, Adam; Muto, Takayuki; Kenyon, Scott J.; Kuchner, Marc J.

    2015-12-01

    We report Gemini Planet Imager H-band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 Myr old early-type star recently confirmed to host a thermal infrared (IR) bright (super-)Jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal IR-bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission plausibly originates from an unresolved point source. The point-source component of HD 100546 b has extremely red IR colors compared to field brown dwarfs, qualitatively similar to young cloudy super-Jovian planets; however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point-source-like peak at rproj ˜ 14 AU, located just interior to or at the inner disk wall consistent with being a <10-20 MJ candidate second protoplanet—“HD 100546 c”—and lying within a weakly polarized region of the disk but along an extension of the thermal IR-bright spiral arm. Alternatively, it is equally plausible that this feature is a weakly polarized but locally bright region of the inner disk wall. Astrometric monitoring of this feature over the next 2 years and emission line measurements could confirm its status as a protoplanet, rotating disk hot spot that is possibly a signpost of a protoplanet, or a stationary emission source from within the disk.

  11. The Renovation and Future Capabilities of the Thacher Observatory

    NASA Astrophysics Data System (ADS)

    O'Neill, Katie; Osuna, Natalie; Edwards, Nick; Klink, Douglas; Swift, Jonathan; Vyhnal, Chris; Meyer, Kurt

    2016-01-01

    The Thacher School is in the process of renovating the campus observatory with a new meter class telescope and full automation capabilities for the purpose of scientific research and education. New equipment on site has provided a preliminary site characterization including seeing and V-band sky brightness measurements. These data, along with commissioning data from the MINERVA project (which uses comparable hardware) are used to estimate the capabilities of the observatory once renovation is complete. Our V-band limiting magnitude is expected to be better than 21.3 for a one minute integration time, and we estimate that milli-magnitude precision photometry will be possible for a V=14.5 point source over approximately 5 min timescales. The quick response, autonomous operation, and multi-band photometric capabilities of the renovated observatory will make it a powerful follow-up science facility for exoplanets, eclipsing binaries, near-Earth objects, stellar variability, and supernovae.

  12. Ultra-High Resolution Observations Of Selected Blazars

    NASA Astrophysics Data System (ADS)

    Hodgson, Jeffrey A.

    2015-01-01

    Active Galactic Nuclei are the luminous centres of active galaxies that produce powerful relativistic jets from central super massive black holes (SMBH). When these jets are oriented towards the observer's line-of-sight, they become very bright, very variable and very energetic. These sources are known as blazars and Very Long Baseline Interferometry (VLBI) provides a direct means of observing into the heart of these objects. VLBI performed at 3 mm with the Global mm-VLBI Array (GMVA) and 7 mm VLBI performed with the Very Long Baseline Array (VLBA), allows some of the highest angular resolution images of blazars to be produced. In this thesis, we present the first results of an ongoing monitoring program of blazars known to emit at γ-ray energies. The physical processes that produce these jets and the γ-ray emission are still not well known. The jets are thought to be produced by converting gravitational energy around the black hole into relativistic particles that are accelerated away at near the speed of light. However, the exact mechanisms for this and the role that magnetic fields play is not fully clear. Similarly, γ-rays have been long known to have been emitted from blazars and that their production is often related to the up-scattering of synchrotron radiation from the jet. However, the origin of seed photons for the up-scattering (either from within the jet itself or from an external photon field) and the location of the γ-ray emission regions has remained inconclusive. In this thesis, we aim to describe the likely location of γ-ray emission in jets, the physical structure of blazar jets, the location of the VLBI features relative to the origin of the jet and the nature of the magnetic field, both of the VLBI scale jet and in the region where the jet is produced. We present five sources that have been monitored at 3 mm using the GMVA from 2008 until 2012. These sources have been analysed with near-in-time 7 mm maps from the Very Long Baseline Array (VLBA), γ-ray light curves from the Fermi/LAT space telescope and cm to mm-wave total-intensity light curves. In one source, OJ 287, the source has additionally been analysed with monthly imaging at 7 mm with the VLBA and near-in-time 2 cm VLBI maps. We use these resources to analyse high angular resolution structural and spectral changes and see if they correlate with flaring (both radio and γ-ray) activity and with VLBI component ejections. By spectrally decomposing sources, we can determine the spatially resolved magnetic field structure in the jets at the highest yet performed resolutions and at frequencies that are near or above the turnover frequency for synchrotron self-absorption (SSA). We compute the magnetic field estimates from SSA theory and by assuming equipartition between magnetic fields and relativistic particle energies. All sources analysed exhibit downstream quasi-stationary features which sometimes exhibit higher brightness temperatures and flux density variability than the VLBI "core", which we interpret as being recollimation or oblique shocks. We find that γ-ray flaring, mm-wave radio flaring and changes in opacity from optically thick to optically thin, is in many cases consistent with component ejections past both the VLBI "core" and these quasi-stationary downstream features. We find decreasing apparent brightness temperatures and Doppler factors as a function of increased "core" separation, which is interpreted as consistent with a slowly accelerating jet over the de-projected inner ˜10-20 pc. Assuming equipartition between magnetic energy and relativistic particle energy, the magnetic field strengths within the jets at these scales are, on average, between B ˜ 0.3 - 0.9 G, with the highest strengths found within the VLBI "core". From the observed gradient in magnetic field strengths, we can place the mmwave "core" ˜1-3 pc downstream of the base of the jet. Additionally, we estimate the the magnetic field is Bapex ˜ 3000 - 18000 G at the base of the jet. We computed theoretical estimates based on jet production under magnetically arrested disks (MAD) and find our estimates to be consistent. In the BL Lac source OJ 287, we included monthly 7 mm and near-in-time 2 cm VLBA maps to provide full kinematics and increased spectral coverage. Following a previously reported radical change in inner-jet PA of ˜100° we find unusually discrepant PAs compared with the previous jet direction, that follow very different trajectories. The source exhibits a downstream quasi-stationary feature that at times has higher brightness temperatures than the "core". The source also exhibited a large change in apparent component speeds as compared with previous epochs, which we propose could be due to changes in jet pressure causing changes in the location of downstream recollimation or oblique shocks and hence their line-of-sight viewing angle. The addition of 2 cm VLBA data allows for a comparison of magnetic fields derived from SSA and equipartition. The magnetic field estimates are consistent within 20%, with BSSA ≥ 1.6 G and Bequi ≥ 1.2 G in the "core" and BSSA ≤ 0.4 G and Bequi ≤ 0.3 G in the stationary feature. Gamma-ray emission appears to originate in the "core" and the stationary feature. The decrease in magnetic field strengths places the mmwave "core' downstream of the jet base by ≤6 pc and likely outside of the broad line region (BLR). This, combined with the results in other sources are consistent with γ-rays being produced in the vicinity of the VLBI "core" of in further downstream stationary features, which are likely over a parsec downstream of the central black hole, favouring the scenario of photons being up-scattered within the relativistic jet.

  13. Calculation of Cardiac Kinetic Energy Index from PET images.

    PubMed

    Sims, John; Oliveira, Marco Antônio; Meneghetti, José Claudio; Gutierrez, Marco Antônio

    2015-01-01

    Cardiac function can be assessed from displacement measurements in imaging modalities from nuclear medicine Using positron emission tomography (PET) image sequences with Rubidium-82, we propose and estimate the total Kinetic Energy Index (KEf) obtained from the velocity field, which was calculated using 3D optical flow(OF) methods applied over the temporal image sequence. However, it was found that the brightness of the image varied unexpectedly between frames, violating the constant brightness assumption of the OF method and causing large errors in estimating the velocity field. Therefore total brightness was equalized across image frames and the adjusted configuration tested with rest perfusion images acquired from individuals with normal (n=30) and low (n=33) cardiac function. For these images KEf was calculated as 0.5731±0.0899 and 0.3812±0.1146 for individuals with normal and low cardiac function respectively. The ability of KEf to properly classify patients into the two groups was tested with a ROC analysis, with area under the curve estimated as 0.906. To our knowledge this is the first time that KEf has been applied to PET images.

  14. Ultrabright continuously tunable terahertz-wave generation at room temperature

    PubMed Central

    Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki

    2014-01-01

    The hottest frequency region in terms of research currently lies in the ‘frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm2, brightness temperature of ~1018 K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~1016 K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region. PMID:24898269

  15. Ultrabright continuously tunable terahertz-wave generation at room temperature.

    PubMed

    Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki

    2014-06-05

    The hottest frequency region in terms of research currently lies in the 'frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm(2), brightness temperature of ~10(18) K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~10(16) K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region.

  16. A 20 GHz bright sample for δ > 72° - II. Multifrequency follow-up

    NASA Astrophysics Data System (ADS)

    Ricci, R.; Righini, S.; Verma, R.; Prandoni, I.; Carretti, E.; Mack, K.-H.; Massardi, M.; Procopio, P.; Zanichelli, A.; Gregorini, L.; Mantovani, F.; Gawroński, M. P.; Peel, M. W.

    2013-11-01

    We present follow-up observations at 5, 8 and 30 GHz of the K-band Northern Wide Survey (KNoWS) 20 GHz Bright Sample, performed with the 32-m Medicina radio telescope and the 32-m Toruń radio telescope. The KNoWS sources were selected in the Northern Polar Cap (δ > 72°) and have a flux density limit S20 GHz = 115 mJy. We include NRAO-VLA Sky Survey 1.4 GHz measurements to derive the source radio spectra between 1.4 and 30 GHz. Based on optical identifications, 68 per cent of the sources are quasars and 27 per cent are radio galaxies. A redshift measurement is available for 58 per cent of the sources. The radio spectral properties of the different source populations are found to be in agreement with those of other high-frequency-selected samples.

  17. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone

    PubMed Central

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Symes, D. R.; Mangles, S. P. D.; Najmudin, Z.

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  18. Texture feature extraction based on a uniformity estimation method for local brightness and structure in chest CT images.

    PubMed

    Peng, Shao-Hu; Kim, Deok-Hwan; Lee, Seok-Lyong; Lim, Myung-Kwan

    2010-01-01

    Texture feature is one of most important feature analysis methods in the computer-aided diagnosis (CAD) systems for disease diagnosis. In this paper, we propose a Uniformity Estimation Method (UEM) for local brightness and structure to detect the pathological change in the chest CT images. Based on the characteristics of the chest CT images, we extract texture features by proposing an extension of rotation invariant LBP (ELBP(riu4)) and the gradient orientation difference so as to represent a uniform pattern of the brightness and structure in the image. The utilization of the ELBP(riu4) and the gradient orientation difference allows us to extract rotation invariant texture features in multiple directions. Beyond this, we propose to employ the integral image technique to speed up the texture feature computation of the spatial gray level dependent method (SGLDM). Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. [The Performance Analysis for Lighting Sources in Highway Tunnel Based on Visual Function].

    PubMed

    Yang, Yong; Han, Wen-yuan; Yan, Ming; Jiang, Hai-feng; Zhu, Li-wei

    2015-10-01

    Under the condition of mesopic vision, the spectral luminous efficiency function is shown as a series of curves. Its peak wavelength and intensity are affected by light spectrum, background brightness and other aspects. The impact of light source to lighting visibility could not be carried out via a single optical parametric characterization. The reaction time of visual cognition is regard as evaluating indexes in this experiment. Under the condition of different speed and luminous environment, testing visual cognition based on vision function method. The light sources include high pressure sodium, electrodeless fluorescent lamp and white LED with three kinds of color temperature (the range of color temperature is from 1 958 to 5 537 K). The background brightness value is used for basic section of highway tunnel illumination and general outdoor illumination, its range is between 1 and 5 cd x m(-)2. All values are in the scope of mesopic vision. Test results show that: under the same condition of speed and luminance, the reaction time of visual cognition that corresponding to high color temperature of light source is shorter than it corresponding to low color temperature; the reaction time corresponding to visual target in high speed is shorter than it in low speed. At the end moment, however, the visual angle of target in observer's visual field that corresponding to low speed was larger than it corresponding to high speed. Based on MOVE model, calculating the equivalent luminance of human mesopic vision, which is on condition of different emission spectrum and background brightness that formed by test lighting sources. Compared with photopic vision result, the standard deviation (CV) of time-reaction curve corresponding to equivalent brightness of mesopic vision is smaller. Under the condition of mesopic vision, the discrepancy between equivalent brightness of different lighting source and photopic vision, that is one of the main reasons for causing the discrepancy of visual recognition. The emission spectrum peak of GaN chip is approximate to the wave length peak of efficiency function in photopic vision. The lighting visual effect of write LED in high color temperature is better than it in low color temperature and electrodeless fluorescent lamp. The lighting visual effect of high pressure sodium is weak. Because of its peak value is around the Na+ characteristic spectra.

  20. South-Tibetan partially molten batholiths: geophysical characterization and petrological assessment of their origin

    NASA Astrophysics Data System (ADS)

    Hetényi, G.; Pistone, M.; Nabelek, P. I.; Baumgartner, L. P.

    2017-12-01

    Zones of partial melt in the middle crust of Lhasa Block, Southern Tibet, have been geophysically observed as seismically reflective "bright spots" in the past 20 years. These batholiths bear important relevance for geodynamics as they serve as the principal observation at depth supporting channel-flow models in the Himalaya-Tibet orogen. Here we assess the spatial abundance of and partial melt volume fraction within these crustal batholiths, and establish lower and upper estimate bounds using a joint geophysical-petrological approach.Geophysical imaging constrains the abundance of partial melt zones to 5.6 km3 per surface-km2 on average (minimum: 3.1 km3/km2, maximum: 7.6 km3/km2 over the mapped area). Physical properties detected by field geophysics and interpreted by laboratory measurements constrain the amount of partial melt to be between 5 and 26 percent.We evaluate the compatibility of these estimates with petrological modeling based on geotherms, crustal bulk rock compositions and water contents consistent with the Lhasa Block. These simulations determine: (a) the physico-chemical conditions of melt generation at the base of the Tibetan crust and its transport and emplacement in the middle crust; (b) the melt percentage produced at the source, transported and emplaced to form the observed "bright spots". Two main mechanisms are considered: (1) melting induced by fluids produced during mineral dehydration reactions in the underthrusting Indian lower crust; (2) dehydration-melting reactions caused by heating within the Tibetan crust. We find that both mechanisms demonstrate first-order match in explaining the formation of the partially molten "bright spots". Thermal modelling shows that the Lhasa Block batholiths have only small amounts of melt and only for geologically short times (<4.5 Myr), if not continuously fed. This, together with their small size compared to the Tibetan Plateau, suggests that these partially molten zones are ephemeral and local features of the geodynamic evolution. Their transience excludes both long-distance and long-lasting channel flow transport in Tibet.

  1. Clusters in Formation - The Case of 3C61.1 and A Luminous AGN in a Merging Cluster

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph

    2017-09-01

    We propose a Chandra investigation of the serendipitously detected cluster, X-CLASS 1835, that hosts the classical FRII radio source 3C61.1 as well as a radiatively efficient, X-ray bright AGN. The cluster exhibits a prominent surface brightness edge which suggests a merger and/or a major AGN outburst. The radio emission from 3C61.1 shows interaction with the hot cluster plasma. We will characterize the merger/outburst by measuring the properties of the surface brightness edge, study the interaction of the FRII radio source (its hotspots, jet, and cocoon) with the ICM, measure spectra of 3C61.1 (nucleus and hotspots) and the AGN to explore their physical properties, and measure the PV work from any detected cavities around 3C61.1 to compare to the radio power.

  2. Photonic Crystal Microchip Laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  3. Photonic Crystal Microchip Laser

    PubMed Central

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-01-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066

  4. IUE detection of bursts of H Ly-alpha emission from Saturn

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Moos, H. W.; Atreya, S. K.; Lane, A. L.

    1981-01-01

    A new investigation is reported of the potential sources of Ly-alpha emission in a series of observations of the Saturnian system carried out between January and July 1980 using the short wavelength spectrograph of the IUE Observatory. It is noted that north-south maps of the Ly-alpha emission across the planet disk show pronounced spatial asymmetries in emission brightness. These asymmetries vary to a marked extent on a time scale of days and are interpreted as bursts of Ly-alpha emission of as much as 1 kR brightness averaged over a 6 x 10 arcsec area, above a constant planetary emission level of 700-800 R. In fact, the Ly-alpha emission peaks manifest themselves as essentially point source features in these data; it is pointed out that if the emitting region is smaller than the 6 x 10 arcsec instrumental resolution, the surface brightness must be proportionally higher.

  5. Suzaku and Chandra observations of CIZA J1700.8-3144, a cluster of galaxies in the Zone of Avoidance

    NASA Astrophysics Data System (ADS)

    Mori, Hideyuki; Maeda, Yoshitomo; Ueda, Yoshihiro; Nakazawa, Kazuhiro; Tawara, Yuzuru

    2017-02-01

    We present the Chandra and Suzaku observations of 1RXS J170047.8-314442, located towards the Galactic bulge, to reveal a wide-band (0.3-10 keV) X-ray morphology and spectrum of this source. With the Chandra observation, no point source was found at the position of 1RXS J170047.8-314442. Instead, we revealed the presence of diffuse X-ray emission, via the wide-band X-ray image obtained from the Suzaku XIS. Although the X-ray emission had a nearly circular shape with a spatial extent of ˜3{^'.}5, the surface brightness profile was not axisymmetric; a bright spot-like emission was found at ˜ 1' away in the northwestern direction from the center. The radial profile of the surface brightness, except for this spot-like emission, was reproduced with a single β-model; β and the core radius were found to be 1.02 and 1{^'.}51, respectively. The X-ray spectrum of the diffuse emission showed an emission line at ˜6 keV, indicating an origin of a thermal plasma. The spectrum was well explained with an absorbed, optically-thin thermal plasma model with a temperature of 6.2 keV and a redshift parameter of z = 0.14 ± 0.01. Hence, the X-ray emission was considered to arise from the hot gas associated with a cluster of galaxies. Our spectroscopic result confirmed the optical identification of 1RXS J170047.8-314442 by Kocevski et al. (2007, ApJ, 662, 224): CIZA J1700.8-3144, a member of the cluster catalogue in the Zone of Avoidance. The estimated bolometric X-ray luminosity of 5.9 × 1044 erg s-1 was among the lowest with this temperature, suggesting that this cluster is far from relaxed.

  6. Calculation of gyrosynchrotron radiation brightness temperature for outer bright loop of ICME

    NASA Astrophysics Data System (ADS)

    Sun, Weiying; Wu, Ji; Wang, C. B.; Wang, S.

    :Solar polar orbit radio telescope (SPORT) is proposed to detect the high density plasma clouds of outer bright loop of ICMEs from solar orbit with large inclination. Of particular interest is following the propagation of the plasma clouds with remote sensor in radio wavelength band. Gyrosynchrotron emission is a main radio radiation mechanism of the plasma clouds and can provide information of interplanetary magnetic field. In this paper, we statistically analyze the electron density, electron temperature and magnetic field of background solar wind in time of quiet sun and ICMEs propagation. We also estimate the fluctuation range of the electron density, electron temperature and magnetic field of outer bright loop of ICMEs. Moreover, we calculate and analyze the emission brightness temperature and degree of polarization on the basis of the study of gyrosynchrotron emission, absorption and polarization characteristics as the optical depth is less than or equal to 1.

  7. Atmospheric transformation of solar radiation reflected from the ocean

    NASA Technical Reports Server (NTRS)

    Malkevich, M. S.; Istomina, L. G.; Hovis, W. A., Jr.

    1977-01-01

    Airborne measurements of the brightness spectrum of the Atlantic Ocean in the wavelength region from 0.4 to 0.7 micron are analyzed. These measurements were made over a tropical region of the Atlantic from an aircraft at heights of 0.3 and 10.5 km during the TROPEX-72 experiment. The results are used to estimate the contribution of the atmosphere to the overall brightness of the ocean-atmosphere system. It is concluded that: (1) the atmosphere decreases the absolute brightness of the ocean by a factor of 5 to 10 and also strongly affects the spectral behavior of solar radiation reflected from the ocean surface; (2) the atmospheric contribution to overall brightness may vary considerably under real conditions; (3) finely dispersed particles and Rayleigh scattering affect the spectral distribution of solar radiation; and (4) the spectral composition of ocean-atmosphere brightness may be completely governed by the atmosphere.

  8. A case study on large-scale dynamical influence on bright band using cloud radar during the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Jha, Ambuj K.; Kalapureddy, M. C. R.; Devisetty, Hari Krishna; Deshpande, Sachin M.; Pandithurai, G.

    2018-02-01

    The present study is a first of its kind attempt in exploring the physical features (e.g., height, width, intensity, duration) of tropical Indian bright band using a Ka-band cloud radar under the influence of large-scale cyclonic circulation and attempts to explain the abrupt changes in bright band features, viz., rise in the bright band height by 430 m and deepening of the bright band by about 300 m observed at around 14:00 UTC on Sep 14, 2016, synoptically as well as locally. The study extends the utility of cloud radar to understand how the bright band features are associated with light precipitation, ranging from 0 to 1.5 mm/h. Our analysis of the precipitation event of Sep 14-15, 2016 shows that the bright band above (below) 3.7 km, thickness less (more) than 300 m can potentially lead to light drizzle of 0-0.25 mm/h (drizzle/light rain) at the surface. It is also seen that the cloud radar may be suitable for bright band study within light drizzle limits than under higher rain conditions. Further, the study illustrates that the bright band features can be determined using the polarimetric capability of the cloud radar. It is shown that an LDR value of - 22 dB can be associated with the top height of bright band in the Ka-band observations which is useful in the extraction of the bright band top height and its width. This study is useful for understanding the bright band phenomenon and could be potentially useful in establishing the bright band-surface rain relationship through the perspective of a cloud radar, which would be helpful to enhance the cloud radar-based quantitative estimates of precipitation.

  9. Evaluations of carbon nanotube field emitters for electron microscopy

    NASA Astrophysics Data System (ADS)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  10. Bright Stuff on Ceres = Sulfates and Carbonates on CI Chondrites

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Chan, Queenie H. S.; Gounelle, Matthieu; Fries, Marc

    2016-01-01

    Recent reports of the DAWN spacecraft's observations of the surface of Ceres indicate that there are bright areas, which can be explained by large amounts of the Mg sulfate hexahydrate (MgSO4•6(H2O)), although the identification appears tenuous. There are preliminary indications that water is being evolved from these bright areas, and some have inferred that these might be sites of contemporary hydro-volcanism. A heat source for such modern activity is not obvious, given the small size of Ceres, lack of any tidal forces from nearby giant planets, probable age and presumed bulk composition. We contend that observations of chondritic materials in the lab shed light on the nature of the bright spots on Ceres

  11. Improved Satellite-based Photosysnthetically Active Radiation (PAR) for Air Quality Studies

    NASA Astrophysics Data System (ADS)

    Pour Biazar, A.; McNider, R. T.; Cohan, D. S.; White, A.; Zhang, R.; Dornblaser, B.; Doty, K.; Wu, Y.; Estes, M. J.

    2015-12-01

    One of the challenges in understanding the air quality over forested regions has been the uncertainties in estimating the biogenic hydrocarbon emissions. Biogenic volatile organic compounds, BVOCs, play a critical role in atmospheric chemistry, particularly in ozone and particulate matter (PM) formation. In southeastern United States, BVOCs (mostly as isoprene) are the dominant summertime source of reactive hydrocarbon. Despite significant efforts in improving BVOC estimates, the errors in emission inventories remain a concern. Since BVOC emissions are particularly sensitive to the available photosynthetically active radiation (PAR), model errors in PAR result in large errors in emission estimates. Thus, utilization of satellite observations to estimate PAR can help in reducing emission uncertainties. Satellite-based PAR estimates rely on the technique used to derive insolation from satellite visible brightness measurements. In this study we evaluate several insolation products against surface pyranometer observations and offer a bias correction to generate a more accurate PAR product. The improved PAR product is then used in biogenic emission estimates. The improved biogenic emission estimates are compared to the emission inventories over Texas and used in air quality simulation over the period of August-September 2013 (NASA's Discover-AQ field campaign). A series of sensitivity simulations will be performed and evaluated against Discover-AQ observations to test the impact of satellite-derived PAR on air quality simulations.

  12. Raman beam combining for laser brightness enhancement

    DOEpatents

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  13. Personal projection with Ujoy technology

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Mackens, Uwe; Pekarski, Pavel; Ritz, Arnd; S'heeren, Griet; Verbeek, Will

    2007-02-01

    Personal projection is a new way to use projectors for gaming, entertainment or photo projection. The requirements for this new category have been defined based on market research with focus groups. A screen brightness of 200-300lm out of compact and affordable devices is a must. In order to reach this performance a very bright light source is at least as important as for professional projectors. The new 50W Ujoy lamp system with 1mm arc enables efficient projection systems. Lower cooling requirements, the potential for battery operation and the low voltage input makes it the ideal source for this new category of projectors.

  14. Advanced Compton scattering light source R&D at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, F; Anderson, S G; Anderson, G

    2010-02-16

    We report the design and current status of a monoenergetic laser-based Compton scattering 0.5-2.5 MeV {gamma}-ray source. Previous nuclear resonance fluorescence results and future linac and laser developments for the source are presented. At MeV photon energies relevant for nuclear processes, Compton scattering light sources are attractive because of their relative compactness and improved brightness above 100 keV, compared to typical 4th generation synchrotrons. Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable Mono-Energetic Gamma-Ray (MEGa-Ray) light sources based on Compton scattering between a high-brightness, relativistic electron beam and a highmore » intensity laser pulse produced via chirped-pulse amplification (CPA). A new precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. Based on the success of the previous Thomson-Radiated Extreme X-rays (T-REX) Compton scattering source at LLNL, the source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. After a brief presentation of successful nuclear resonance fluorescence (NRF) experiments done with T-REX, the new source design, key parameters, and current status are presented.« less

  15. Source Plane Reconstruction of the Bright Lensed Galaxy RCSGA 032727-132609

    NASA Technical Reports Server (NTRS)

    Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Wuyts, Eva; Koester, Benjamin P.; Bayliss, Matthew B.; Barrientos, L. Felipe

    2011-01-01

    We present new HST/WFC3 imaging data of RCS2 032727-132609, a bright lensed galaxy at z=1.7 that is magnified and stretched by the lensing cluster RCS2 032727-132623. Using this new high-resolution imaging, we modify our previous lens model (which was based on ground-based data) to fully understand the lensing geometry, and use it to reconstruct the lensed galaxy in the source plane. This giant arc represents a unique opportunity to peer into 100-pc scale structures in a high redshift galaxy. This new source reconstruction will be crucial for a future analysis of the spatially-resolved rest-UV and rest-optical spectra of the brightest parts of the arc.

  16. High resolution energy-angle correlation measurement of hard x rays from laser-Thomson backscattering.

    PubMed

    Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U

    2013-09-13

    Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.

  17. The Drop of the Coherence of the Lower Kilohertz Quasi-periodic Brightness Variations is Also Observed in XTE J1701-462

    NASA Astrophysics Data System (ADS)

    Barret, D.; Bachetti, M.; Miller, M. Coleman

    2011-02-01

    We investigate the quality factor and root mean square (rms) amplitude of the lower kilohertz quasi-periodic brightness variations (kHz QPOs) from XTE J1701-462, a unique X-ray source which was observed in both the so-called Z and atoll states. Correcting for the frequency drift of the QPO, we show that, as in all sources for which such a correction can be applied, the quality factor and rms amplitude drops sharply above a critical frequency. For XTE J1701-462, this frequency is estimated to be ~800 Hz, where the quality factor reaches a maximum of ~200 (e.g., a value consistent with the one observed from more classical systems, such as 4U 1636-536). Such a drop has been interpreted as the signature of the innermost stable circular orbit, and that interpretation is consistent with the observations we report here. The kHz QPOs in the Z state are much less coherent and lower amplitude than they are in the atoll state. We argue that the change of the QPO properties between the two source states is related to the change of the scale height of the accretion disk; a prediction of the toy model proposed by Barret et al. As a by-product of our analysis, we also increased the significance of the upper kHz QPO detected in the atoll phase up to 4.8σ (single trial significance) and show that the frequency separation (266.5 ± 13.1 Hz) is comparable with the one measured from simultaneous twin QPOs in the Z phase.

  18. Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE

    NASA Astrophysics Data System (ADS)

    Galbany, Lluís; Collett, Thomas E.; Méndez-Abreu, Jairo; Sánchez, Sebastián F.; Anderson, Joseph P.; Kuncarayakti, Hanindyo

    2018-06-01

    2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2″ to the north-east and 1″ to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1."45±0."04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reff ˜ 9″"). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18% ± 8 % within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.

  19. SELFI: an object-based, Bayesian method for faint emission line source detection in MUSE deep field data cubes

    NASA Astrophysics Data System (ADS)

    Meillier, Céline; Chatelain, Florent; Michel, Olivier; Bacon, Roland; Piqueras, Laure; Bacher, Raphael; Ayasso, Hacheme

    2016-04-01

    We present SELFI, the Source Emission Line FInder, a new Bayesian method optimized for detection of faint galaxies in Multi Unit Spectroscopic Explorer (MUSE) deep fields. MUSE is the new panoramic integral field spectrograph at the Very Large Telescope (VLT) that has unique capabilities for spectroscopic investigation of the deep sky. It has provided data cubes with 324 million voxels over a single 1 arcmin2 field of view. To address the challenge of faint-galaxy detection in these large data cubes, we developed a new method that processes 3D data either for modeling or for estimation and extraction of source configurations. This object-based approach yields a natural sparse representation of the sources in massive data fields, such as MUSE data cubes. In the Bayesian framework, the parameters that describe the observed sources are considered random variables. The Bayesian model leads to a general and robust algorithm where the parameters are estimated in a fully data-driven way. This detection algorithm was applied to the MUSE observation of Hubble Deep Field-South. With 27 h total integration time, these observations provide a catalog of 189 sources of various categories and with secured redshift. The algorithm retrieved 91% of the galaxies with only 9% false detection. This method also allowed the discovery of three new Lyα emitters and one [OII] emitter, all without any Hubble Space Telescope counterpart. We analyzed the reasons for failure for some targets, and found that the most important limitation of the method is when faint sources are located in the vicinity of bright spatially resolved galaxies that cannot be approximated by the Sérsic elliptical profile. The software and its documentation are available on the MUSE science web service (muse-vlt.eu/science).

  20. The Physics and Applications of High Brightness Electron Beams

    NASA Astrophysics Data System (ADS)

    Palumbo, Luigi; Rosenzweig, J.; Serafini, Luca

    2007-09-01

    Plenary sessions. RF deflector based sub-Ps beam diagnostics: application to FEL and advanced accelerators / D. Alesini. Production of fermtosecond pulses and micron beam spots for high brightness electron beam applications / S.G. Anderson ... [et al.]. Wakefields of sub-picosecond electron bunches / K.L.F. Bane. Diamond secondary emitter / I. Ben-Zvi ... [et al.]. Parametric optimization for an X-ray free electron laser with a laser wiggler / R. Bonifacio, N. Piovella and M.M. Cola. Needle cathodes for high-brightness beams / C.H. Boulware ... [et al.]. Non linear evolution of short pulses in FEL cascaded undulators and the FEL harmonic cascade / L. Giannessi and P. Musumeci. High brightness laser induced multi-meV electron/proton sources / D. Giulietti ... [et al.]. Emittance limitation of a conditioned beam in a strong focusing FEL undulator / Z. Huang, G. Stupakov and S. Reiche. Scaled models: space-charge dominated electron storage rings / R.A. Kishek ... [et al.]. High brightness beam applications: energy recovered linacs / G.A. Krafft. Maximizing brightness in photoinjectors / C. Limborg-Deprey and H. Tomizawa. Ultracold electron sources / O.J. Luiten ... [et al.]. Scaling laws of structure-based optical accelerators / A. Mizrahi, V. Karagodsky and L. Schächter. High brightness beams-applications to free-electron lasers / S. Reiche. Conception of photo-injectors for the CTF3 experiment / R. Roux. Superconducting RF photoinjectors: an overview / J. Sekutowicz. Status and perspectives of photo injector developments for high brightness beams / F. Stephan. Results from the UCLA/FNLP underdense plasma lens experiment / M.C. Thompson ... [et al.]. Medical application of multi-beam compton scattering monochromatic tunable hard X-ray source / M. Uesaka ... [et al.]. Design of a 2 kA, 30 fs RF-photoinjector for waterbag compression / S.B. Van Der Geer, O.J. Luiten and M.J. De Loos. Proposal for a high-brightness pulsed electron source / M. Zolotorev ... [et al.]. -- Working Group 1. Summary of working group 1 on electron sources / M. Ferrario and G. Gatti. Design and RF measurements of an X-band accelerating structure for the SPARC project / D. Alesini ... [et al.]. Mitigation of RF gun breakdown by removal of tuning rods in high field regions / A.M. Cook... [et al.]. Measurements of quantum efficiency of Mg films produced by pulsed laser ablation deposition for application to bright electron sources / G. Gatti ... [et al.]. The S-band 1.6 cell RF gun correlated energy spread dependence on Pi and 0 mode relative amplitude / F. Schmerge ... [et al.]. RF gun photo-emission model for metal cathodes including time dependent emission / J.F. Schmerge ... [et al.]. Superconducting photocathodes / J. Smedley ... [et al.]. -- Working Group 2. Summary of Working Group 2: diagnostics and beam manipulation / G. Travish. Observation of coherent edge radiation emitted by a 100 Femtosecond compressed electron beam / G. Andonian, M, Dunning, E. Hemsing, J. B. Rosenzweig ... [et al.]. PARMELA simulations for PITZ: first machine studies and interpretation of measurements / M. Boscolo ... [et al.]. The LCLS single-shot relative bunch length monitor system / M.P. Dunning ... [et al.]. Beam shaping and permanent magnet quadrupole focusing with applications to the plasma wakefield accelerator / R.J. England ... [et al.]. Commissioning of the SPARC movable emittance meter and its first operation at PITZ / D. Filippetto... [et al.]. Experimental testing of dynamically optimized photoelectron beams / J.B. Rosenzweig ... [et al.]. Synchronization between the laser and electron beam in a photocathode RF gun / A. Sakumi ... [et al.]. Method of bunch radiation photochronography with 10 Femtosecond and less resolution / A. Tron and I. Merinov -- Working Group 3. New challenges in theory and modeling-summary for working group 3. L. Giannessi. Resonant modes in a 1.6 cells RF gun / M. Ferrario and C. Ronsivalle. Emittance degradation due to wake fields in a high brightness photoinjector / M. Ferrario, V. Fusco, M. Migliorati and L. Palumbo. Simulations of coherent synchroton radiation effects in electron machines / M. Migliorati, A, Schiavi and G. Dattoli. QFEL: A numerical code for multi-dimensional simulation of free electron lasers in the quantum regime / A. Schiavi ... [et al.]. First simulations results on laser pulse jitter and microbunching instability at Saprxino / M. Boscolo ... [et al.]. -- Working Group 4. Working group 4 summary: applications of high brightness beams to advanced accelerators and light sources / M. Uesaka and A. Rossi. Study of transverse effects in the production of X-rays with free-electron laser based on an optical ondulator / A. Bacci ... [et al.]. Channeling projects at LNF: from crystal undulators to capillary waveguides / S.B. Dabagov ... [et al.]. Mono-Energetic electron generation and plasma diagnosis experiments in a laser plasma cathode / K. Kinoshita ... [et al.]. A high-density electron beam and quad-scan measurements at Pleiades Thompson X-ray source / J.K. Lim ... [et al.]. Laser pulse circulation system for compact monochromatic tunable hard X-ray source / H. Ogino ... [et al.]. Limits on production of narrow band photons from inverse compton scattering / J. Rosenzweig and O. Williams. Preliminary results from the UCLA/SLAC ultra-high gradient Cerenkov wakefield accelerator experiment / M.C. Thompson ... [et al.]. Status of the polarized nonlinear inverse compton scattering experiment at UCLA / O. Williams... [et al.]. Coupling laser power into a slab-symmetric accelerator structure / R.B. Yoder and J.B. Rosenzweig.

  1. NO TIME FOR DEAD TIME: TIMING ANALYSIS OF BRIGHT BLACK HOLE BINARIES WITH NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachetti, Matteo; Barret, Didier; Harrison, Fiona A.

    Timing of high-count-rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count rates rather than for timing analysis of bright objects. The instrumental dead time per event is relatively long (∼2.5 msec) and varies event-to-event by a few percent. The most obvious effect is a distortion of the white noise level in the power density spectrum (PDS) that cannot be easily modeled with standard techniques due to the variable nature of the dead time. In this paper, we show that it is possible to exploitmore » the presence of two completely independent focal planes and use the cospectrum, the real part of the cross PDS, to obtain a good proxy of the white-noise-subtracted PDS. Thereafter, one can use a Monte Carlo approach to estimate the remaining effects of dead time, namely, a frequency-dependent modulation of the variance and a frequency-independent drop of the sensitivity to variability. In this way, most of the standard timing analysis can be performed, albeit with a sacrifice in signal-to-noise ratio relative to what would be achieved using more standard techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339–4, Cyg X-1, and GRS 1915+105.« less

  2. Helmet-mounted pilot night vision systems: Human factors issues

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.; Brickner, Michael S.

    1989-01-01

    Helmet-mounted displays of infrared imagery (forward-looking infrared (FLIR)) allow helicopter pilots to perform low level missions at night and in low visibility. However, pilots experience high visual and cognitive workload during these missions, and their performance capabilities may be reduced. Human factors problems inherent in existing systems stem from three primary sources: the nature of thermal imagery; the characteristics of specific FLIR systems; and the difficulty of using FLIR system for flying and/or visually acquiring and tracking objects in the environment. The pilot night vision system (PNVS) in the Apache AH-64 provides a monochrome, 30 by 40 deg helmet-mounted display of infrared imagery. Thermal imagery is inferior to television imagery in both resolution and contrast ratio. Gray shades represent temperatures differences rather than brightness variability, and images undergo significant changes over time. The limited field of view, displacement of the sensor from the pilot's eye position, and monocular presentation of a bright FLIR image (while the other eye remains dark-adapted) are all potential sources of disorientation, limitations in depth and distance estimation, sensations of apparent motion, and difficulties in target and obstacle detection. Insufficient information about human perceptual and performance limitations restrains the ability of human factors specialists to provide significantly improved specifications, training programs, or alternative designs. Additional research is required to determine the most critical problem areas and to propose solutions that consider the human as well as the development of technology.

  3. An X-ray survey of variable radio bright quasars

    NASA Technical Reports Server (NTRS)

    Henriksen, M. J.; Marshall, F. E.; Mushotzky, R. F.

    1984-01-01

    A sample consisting primarily of radio bright quasars was observed in X-rays with the Einstein Observatory for times ranging from 1500 to 5000 seconds. Detected sources had luminosities ranging from 0.2 to 41.0 x 10 to the 45th power ergs/sec in the 0.5 to 4.5 keV band. Three of the fourteen objects which were reobserved showed flux increases greater than a factor of two on a time scale greater than six months. No variability was detected during the individual observations. The optical and X-ray luminosities are correlated, which suggests a common origin. However, the relationship (L sub x is approximately L sub op to the (.89 + or - .15)) found for historic radio variables may be significantly different than that reported for other radio bright sources. Some of the observed X-ray fluxes were substantially below the predicted self-Compton flux, assuming incoherent synchrotron emission and using VLBI results to constrain the size of the emission region, which suggests relativistic expansion in these sources. Normal CIV emission in two of the sources with an overpredicted Compton component suggests that although they, like BL Lac objects, have highly relativistic material apparently moving at small angle to the line of sight, they have a smaller fraction of the continuum component in the beam.

  4. Demonstrating the Likely Neutron Star Nature of Five M31 Globular Cluster Sources with Swift-NuSTAR Spectroscopy

    NASA Technical Reports Server (NTRS)

    Maccarone, Thomas J.; Yukita, Mihoko; Hornschemeier, Ann; Lehmer, Bret D.; Antoniou, Vallia; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas; Boyd, Padi; Kennea, Jamie; hide

    2016-01-01

    We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disc winds in older work that predict which systems will be persistent and which will be transient.

  5. Demonstrating the likely neutron star nature of five M31 globular cluster sources with Swift-NuSTAR spectroscopy

    NASA Astrophysics Data System (ADS)

    Maccarone, Thomas J.; Yukita, Mihoko; Hornschemeier, Ann; Lehmer, Bret D.; Antoniou, Vallia; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas; Boyd, Padi; Kennea, Jamie; Page, Kim L.; Eracleous, Mike; Williams, Benjamin F.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2016-06-01

    We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (I.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disc winds in older work that predict which systems will be persistent and which will be transient.

  6. Seismic characterization of the Chelyabinsk meteor's terminal explosion

    NASA Astrophysics Data System (ADS)

    González, Álvaro; Heimann, Sebastian; Wang, Rongjiang; Cesca, Simone; Dahm, Torsten

    2014-05-01

    On February 15th, 2013, an exceptionally large meteor in the region of Chelyabinsk, Russia, produced a powerful shock wave which caused unprecedented damage to people and property, the strongest atmospheric infrasound signal ever recorded, and remarkable ground motion. Here we describe and model the resulting Rayleigh waves, recorded at broadband seismic stations at distances from ~230 to ~4,100 km. Our full-waveform modeling uses a seismogram simulation code specifically tailored to consider wave propagation in the atmosphere and solid Earth, and the coupling at the interface between them. An isotropic point-like airburst reproduces very well the available seismic observations, without requiring a more complex explanation, such as a moving source. The measured seismic shaking was generated by direct coupling of the atmospheric shock wave to the ground, and then it propagated outwards faster than the atmospheric shock wave itself, at up to 3.9 km/s. The best-fitting airburst location (61.22° E, 54.88° N) is SW of Chelyabinsk city, exactly at the terminal part of the meteor's trajectory, just after it experienced a dramatic flare, with apparent brightness larger than the Sun's. We estimated the meteor's ground path from published trajectory data, eyewitness observations, and detailed satellite imagery of the exact location where a major meteorite fragment landed, in the frozen Lake Chebarkul (60.32074° E, 54.95966° N). Fixing the source origin time allowed us calculating that the explosion took place in the stratosphere, at an altitude of 22.5 ± 1.5 km. This value is lower than the reported altitude of peak brightness (about 29.5 km), but more consistent with the observations of shock wave travel times. Such results highlight the importance of terminal energy release down to lower altitude. We analyzed a surveillance video recorded inside a factory (61.347° E, 54.902° N) at Korkino, a locality close to the airburst. It shows a time delay of 87.5 seconds between the peak meteor brightness and the powerful shock wave arrival. The calculated atmospheric travel time of the shock wave from the preferred airburst source to the factory site would be ~88 seconds. Thus, this video validates our most likely location for the terminal explosion. Finally, our best estimate of the equivalent moment magnitude of the airburst is 3.60. This value implies that the Chelyabinsk meteor is the second largest ever seismically recorded, only surpassed by the 1908 Tunguska event. *** Publication: *** Sebastian Heimann, Álvaro González, Rongjiang Wang, Simone Cesca & Torsten Dahm (2013): Seismic characterization of the Chelyabinsk meteor's terminal explosion. Seismological Research Letters, 84, 1021-1025.

  7. Monitoring of the Y2K Outburst of Cyg X-3 with BeppoSAX

    NASA Astrophysics Data System (ADS)

    Palazzi, E.; dal Fiume, D.; Amati, L.; del Sordo, S.; Frontera, F.; Masetti, N.; Orlandini, M.; Santangelo, A.; Segreto, A.

    2001-09-01

    The latest outburst of Cyg X-3, occurred during year 2000, was extensively monitored with the BeppoSAX satellite, which observed the source 6 times at different brightness levels. We here report on these observations, in which the X-ray spectrum appears very complex and strongly evolving as the brightness of the object changes.

  8. Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, F.; Filippetto, D.; Johnson, M.

    The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R & D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wavemore » successfully demonstrated in the past few years the targeted brightness and reliability. Nonetheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. Here, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.« less

  9. Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology

    DOE PAGES

    Sannibale, F.; Filippetto, D.; Johnson, M.; ...

    2017-11-27

    The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R & D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wavemore » successfully demonstrated in the past few years the targeted brightness and reliability. Nonetheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. Here, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.« less

  10. The bright-star masks for the HSC-SSP survey

    NASA Astrophysics Data System (ADS)

    Coupon, Jean; Czakon, Nicole; Bosch, James; Komiyama, Yutaka; Medezinski, Elinor; Miyazaki, Satoshi; Oguri, Masamune

    2018-01-01

    We present the procedure to build and validate the bright-star masks for the Hyper-Suprime-Cam Strategic Subaru Proposal (HSC-SSP) survey. To identify and mask the saturated stars in the full HSC-SSP footprint, we rely on the Gaia and Tycho-2 star catalogues. We first assemble a pure star catalogue down to GGaia < 18 after removing ˜1.5% of sources that appear extended in the Sloan Digital Sky Survey (SDSS). We perform visual inspection on the early data from the S16A internal release of HSC-SSP, finding that our star catalogue is 99.2% pure down to GGaia < 18. Second, we build the mask regions in an automated way using stacked detected source measurements around bright stars binned per GGaia magnitude. Finally, we validate those masks by visual inspection and comparison with the literature of galaxy number counts and angular two-point correlation functions. This version (Arcturus) supersedes the previous version (Sirius) used in the S16A internal and DR1 public releases. We publicly release the full masks and tools to flag objects in the entire footprint of the planned HSC-SSP observations at "ftp://obsftp.unige.ch/pub/coupon/brightStarMasks/HSC-SSP/".

  11. Two- and 4-hour bright-light exposures differentially effect sleepiness and performance the subsequent night.

    PubMed

    Thessing, V C; Anch, A M; Muehlbach, M J; Schweitzer, P K; Walsh, J K

    1994-03-01

    The effect of two durations of bright light upon sleepiness and performance during typical night shift hours was assessed. Thirty normal, healthy young adults participated in a 2-night protocol. On the 1st night subjects were exposed to bright or dim light beginning at 2400 hours, under one of the following three conditions: bright light for 4 hours, dim light for 2 hours followed by bright light for 2 hours or dim light for 4 hours. Following light exposure, subjects remained awake until 0800 hours in a dimly lit room and slept in the laboratory between 0800 and 1600 hours, during which time sleep was estimated with actigraphy. Throughout the 2nd night, the multiple sleep latency test (MSLT), simulated assembly line task (SALT) performance, and subjective sleepiness were recorded. The single, 4-hour exposure to bright light was found to significantly increase MSLT scores and improve SALT performance during the early morning hours on the night following bright-light exposure. No significant effects were noted with a 2-hour exposure. The most likely explanation for these findings is a phase delay in the circadian rhythm of sleepiness-alertness.

  12. Landcover Based Optimal Deconvolution of PALS L-band Microwave Brightness Temperature

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh S.; Crosson, William L.; Laymon, Charles A.; Njoku, Eni G.

    2004-01-01

    An optimal de-convolution (ODC) technique has been developed to estimate microwave brightness temperatures of agricultural fields using microwave radiometer observations. The technique is applied to airborne measurements taken by the Passive and Active L and S band (PALS) sensor in Iowa during Soil Moisture Experiments in 2002 (SMEX02). Agricultural fields in the study area were predominantly soybeans and corn. The brightness temperatures of corn and soybeans were observed to be significantly different because of large differences in vegetation biomass. PALS observations have significant over-sampling; observations were made about 100 m apart and the sensor footprint extends to about 400 m. Conventionally, observations of this type are averaged to produce smooth spatial data fields of brightness temperatures. However, the conventional approach is in contrast to reality in which the brightness temperatures are in fact strongly dependent on landcover, which is characterized by sharp boundaries. In this study, we mathematically de-convolve the observations into brightness temperature at the field scale (500-800m) using the sensor antenna response function. The result is more accurate spatial representation of field-scale brightness temperatures, which may in turn lead to more accurate soil moisture retrieval.

  13. Brightness masking is modulated by disparity structure.

    PubMed

    Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E

    2015-05-01

    The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Pavel E.; Klopf, John M.

    Frequency domain measurements with Martin-Puplett interferometer is one of a few techniques capable of bunch length measurements at the level of ~ 100 fs. As the bunch length becomes shorter, it is important to know and be able to measure the limitations of the instrument in terms of shortest measurable bunch length. In this paper we describe an experiment using a blackbody source with the modified Martin-Puplett interferometer that is routine- ly used for bunch length measurements at the JLab FEL, as a way to estimate the shortest, measurable bunch length. The limitation comes from high frequency cut-off of themore » wire-grid polarizer currently used and is estimated to be 50 fs RMS. The measurements are made with the same Golay cell detector that is used for beam measure- ments. We demonstrate that, even though the blackbody source is many orders of magnitude less bright than the coherent transition or synchrotron radiation, it can be used for the measurements and gives a very good signal to noise ratio in combination with lock-in detection. We also compare the measurements made in air and in vacuum to characterize the very strong effect of the atmospheric absorption.« less

  15. Evidence for Diverse Optical Emission from Gamma-Ray Burst Sources

    NASA Astrophysics Data System (ADS)

    Pedersen, H.; Jaunsen, A. O.; Grav, T.; Østensen, R.; Andersen, M. I.; Wold, M.; Kristen, H.; Broeils, A.; Näslund, M.; Fransson, C.; Lacy, M.; Castro-Tirado, A. J.; Gorosabel, J.; Rodríguez Espinosa, J. M.; Pérez, A. M.; Wolf, C.; Fockenbrock, R.; Hjorth, J.; Muhli, P.; Hakala, P.; Piro, L.; Feroci, M.; Costa, E.; Nicastro, L.; Palazzi, E.; Frontera, F.; Monaldi, L.; Heise, J.

    1998-03-01

    Optical Transients from gamma-ray burst sources, in addition to offering a distance determination, convey important information about the physics of the emission mechanism, and perhaps also about the underlying energy source. As the gamma-ray phenomenon is extremely diverse, with timescales spanning several orders of magnitude, some diversity in optical counterpart signatures appears plausible. We have studied the optical transient that accompanied the gamma-ray burst of 1997 May 8, GRB 970508. Observations conducted at the 2.5 m Nordic Optical Telescope (NOT) and the 2.2 m telescope at the German-Spanish Calar Alto observatory (CAHA) cover the time interval starting 3 hr 5 minutes to 96 days after the high-energy event. This brackets all other published observations, including radio. When analyzed in conjunction with optical data from other observatories, evidence emerges for a composite light curve. The first interval, from 3 to 8 hr after the event, was characterized by a constant or slowly declining brightness. At a later moment, the brightness started increasing rapidly, and reached a maximum approximately 40 hr after the GRB. From that moment, the GRB brightness decayed approximately as a power law of index -1.21. The last observation, after 96 days, mR = 24.28 +/- 0.10, is brighter than the extrapolated power law, and hints that a constant component, mR = 25.50 +/- 0.40, is present. The optical transient is unresolved (FWHM 0.83") at the faintest magnitude level. The brightness of the optical transient, its duration, and the general shape of the light curve set this source apart from the single other optical transient known, that of the 1997 February 28 event.

  16. The JCMT Transient Survey: Data Reduction and Calibration Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mairs, Steve; Lane, James; Johnstone, Doug

    Though there has been a significant amount of work investigating the early stages of low-mass star formation in recent years, the evolution of the mass assembly rate onto the central protostar remains largely unconstrained. Examining in depth the variation in this rate is critical to understanding the physics of star formation. Instabilities in the outer and inner circumstellar disk can lead to episodic outbursts. Observing these brightness variations at infrared or submillimeter wavelengths constrains the current accretion models. The JCMT Transient Survey is a three-year project dedicated to studying the continuum variability of deeply embedded protostars in eight nearby star-formingmore » regions at a one-month cadence. We use the SCUBA-2 instrument to simultaneously observe these regions at wavelengths of 450 and 850 μ m. In this paper, we present the data reduction techniques, image alignment procedures, and relative flux calibration methods for 850 μ m data. We compare the properties and locations of bright, compact emission sources fitted with Gaussians over time. Doing so, we achieve a spatial alignment of better than 1″ between the repeated observations and an uncertainty of 2%–3% in the relative peak brightness of significant, localized emission. This combination of imaging performance is unprecedented in ground-based, single-dish submillimeter observations. Finally, we identify a few sources that show possible and confirmed brightness variations. These sources will be closely monitored and presented in further detail in additional studies throughout the duration of the survey.« less

  17. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  18. A weighted least squares approach to retrieve aerosol layer height over bright surfaces applied to GOME-2 measurements of the oxygen A band for forest fire cases over Europe

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; Pepijn Veefkind, J.; de Graaf, Martin; Sneep, Maarten; Stammes, Piet; de Haan, Johan F.; Sanders, Abram F. J.; Apituley, Arnoud; Tuinder, Olaf; Levelt, Pieternel F.

    2018-06-01

    This paper presents a weighted least squares approach to retrieve aerosol layer height from top-of-atmosphere reflectance measurements in the oxygen A band (758-770 nm) over bright surfaces. A property of the measurement error covariance matrix is discussed, due to which photons travelling from the surface are given a higher preference over photons that scatter back from the aerosol layer. This is a potential source of biases in the estimation of aerosol properties over land, which can be mitigated by revisiting the design of the measurement error covariance matrix. The alternative proposed in this paper, which we call the dynamic scaling method, introduces a scene-dependent and wavelength-dependent modification in the measurement signal-to-noise ratio in order to influence this matrix. This method is generally applicable to other retrieval algorithms using weighted least squares. To test this method, synthetic experiments are done in addition to application to GOME-2A and GOME-2B measurements of the oxygen A band over the August 2010 Russian wildfires and the October 2017 Portugal wildfire plume over western Europe.

  19. Ultrahigh 6D-brightness electron beams for the light sources of the next generation

    NASA Astrophysics Data System (ADS)

    Habib, Fahim; Manahan, Grace G.; Scherkl, Paul; Heinemann, Thomas; Sheng, Z. M.; Bruhwiler, D. L.; Cary, J. R.; Rosenzweig, J. B.; Hidding, Bernhard

    2017-10-01

    The plasma photocathode mechanism (aka Trojan Horse) enables a path towards electron beams with nm-level normalized emittance and kA range peak currents, hence ultrahigh 5D-brightness. This ultrahigh 5D-brightness beams hold great prospects to realize laboratory scale free-electron-lasers. However, the GV/m-accelerating gradient in plasma accelerators leads to substantial energy chirp and spread. The large energy spread is a major show-stopper towards key application such as the free-electron-laser. Here we present a novel method for energy chirp compensation which takes advantage of tailored beam loading due to a second ``escort'' bunch released via plasma photocathode. The escort bunch reverses the accelerating field locally at the trapping position of the ultrahigh 5D-brightness beam. This induces a counter-clockwise rotation within the longitudinal phase space and allows to compensate the chirp completely. Analytical scaling predicts energy spread values below 0.01 percentage level. Ultrahigh 5D-brightness combined with minimized energy spread opens a path towards witness beams with unprecedented ultrahigh 6D-brightness.

  20. Surface Soil Moisture Estimates Across China Based on Multi-satellite Observations and A Soil Moisture Model

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Yang, Tao; Ye, Jinyin; Li, Zhijia; Yu, Zhongbo

    2017-04-01

    Soil moisture is a key variable that regulates exchanges of water and energy between land surface and atmosphere. Soil moisture retrievals based on microwave satellite remote sensing have made it possible to estimate global surface (up to about 10 cm in depth) soil moisture routinely. Although there are many satellites operating, including NASA's Soil Moisture Acitive Passive mission (SMAP), ESA's Soil Moisture and Ocean Salinity mission (SMOS), JAXA's Advanced Microwave Scanning Radiometer 2 mission (AMSR2), and China's Fengyun (FY) missions, key differences exist between different satellite-based soil moisture products. In this study, we applied a single-channel soil moisture retrieval model forced by multiple sources of satellite brightness temperature observations to estimate consistent daily surface soil moisture across China at a spatial resolution of 25 km. By utilizing observations from multiple satellites, we are able to estimate daily soil moisture across the whole domain of China. We further developed a daily soil moisture accounting model and applied it to downscale the 25-km satellite-based soil moisture to 5 km. By comparing our estimated soil moisture with observations from a dense observation network implemented in Anhui Province, China, our estimated soil moisture results show a reasonably good agreement with the observations (RMSE < 0.1 and r > 0.8).

  1. ALMA observation of high-z extreme star-forming environments discovered by Planck/Herschel

    NASA Astrophysics Data System (ADS)

    Kneissl, R.

    2015-05-01

    The Comic Microwave Background satellite Planck with its High Frequency Instrument has surveyed the mm/sub-mm sky in six frequency channels from 100 to 900 GHz. A sample of 228 cold sources of the Cosmic Infrared Background was observed in follow-up with Herschel SPIRE. The majority of sources appear to be over-densities of star-forming galaxies matching the size of high-z proto-cluster regions, while a 3% fraction are individual bright, lensed galaxies. A large observing program is underway with the aim of resolving the regions into the constituent members of the Planck sources. First ALMA data have been received on one Planck/Herschel proto-cluster candidate, showing the expected large over-abundance of bright mm/sub-mm sources within the cluster region. ALMA long baseline data of the brightest lensed galaxy in the sample with > 1 Jy at 350 μm are also forthcoming.

  2. Time Projection Chamber Polarimeters for X-ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Hill, Joanne; Black, Kevin; Jahoda, Keith

    2015-04-01

    Time Projection Chamber (TPC) based X-ray polarimeters achieve the sensitivity required for practical and scientifically significant astronomical observations, both galactic and extragalactic, with a combination of high analyzing power and good quantum efficiency. TPC polarimeters at the focus of an X-ray telescope have low background and large collecting areas providing the ability to measure the polarization properties of faint persistent sources. TPCs based on drifting negative ions rather than electrons permit large detector collecting areas with minimal readout electronics enabling wide field of view polarimeters for observing unpredictable, bright transient sources such as gamma-ray bursts. We described here the design and expected performance of two different TPC polarimeters proposed for small explorer missions: The PRAXyS (Polarimetry of Relativistic X-ray Sources) X-ray Polarimeter Instrument, optimized for observations of faint persistent sources and the POET (Polarimetry of Energetic Transients) Low Energy Polarimeter, designed to detect and measure bright transients. also NASA/GSFC.

  3. Parametric emittance measurements of electron beams produced by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Barber, S. K.; van Tilborg, J.; Schroeder, C. B.; Lehe, R.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Nakamura, K.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2018-05-01

    Laser plasma accelerators (LPA) offer an exciting possibility to deliver high energy, high brightness electrons beams in drastically smaller distance scales than is typical for conventional accelerators. As such, LPAs draw considerable attention as potential drivers for next generation light sources and for a compact linear collider. In order to asses the viability of an LPA source for a particular application, the brightness of the source should be properly characterized. In this paper, we present charge dependent transverse emittance measurements of LPA sources using both ionization injection and shock induced density down ramp injection, with the latter delivering smaller transverse emittances by a factor of two when controlling for charge density. The single shot emittance method is described in detail with a discussion on limitations related to second order transport effects. The direct role of space charge is explored through a series of simulations and found to be consistent with experimental observations.

  4. Microlensing as a possible probe of event-horizon structure in quasars

    NASA Astrophysics Data System (ADS)

    Tomozeiu, Mihai; Mohammed, Irshad; Rabold, Manuel; Saha, Prasenjit; Wambsganss, Joachim

    2018-04-01

    In quasars which are lensed by galaxies, the point-like images sometimes show sharp and uncorrelated brightness variations (microlensing). These brightness changes are associated with the innermost region of the quasar passing through a complicated pattern of caustics produced by the stars in the lensing galaxy. In this paper, we study whether the universal properties of optical caustics could enable extraction of shape information about the central engine of quasars. We present a toy model with a crescent-shaped source crossing a fold caustic. The silhouette of a black hole over an accretion disc tends to produce roughly crescent sources. When a crescent-shaped source crosses a fold caustic, the resulting light curve is noticeably different from the case of a circular luminosity profile or Gaussian source. With good enough monitoring data, the crescent parameters, apart from one degeneracy, can be recovered.

  5. High-intensity polarized H- ion source for the RHIC SPIN physics

    NASA Astrophysics Data System (ADS)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Kolmogorov, A.; Davydenko, V.

    2017-08-01

    A novel polarization technique had been successfully implemented for the RHIC polarized H- ion source upgrade to higher intensity and polarization. In this technique a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gas ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically-pumped Rb vapour. The use of high-brightness primary beam and large cross-sections of charge-exchange cross-sections resulted in production of high intensity H- ion beam of 85% polarization. High beam brightness and polarization resulted in 75% polarization at 23 GeV out of AGS and 60-65% beam polarization at 100-250 GeV colliding beams in RHIC. The status of un-polarized magnetron type (Cs-vapour loaded) BNL source is also discussed.

  6. Microlensing as a Possible Probe of Event-Horizon Structure in Quasars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomozeiu, Mihai; Mohammed, Irshad; Rabold, Manuel

    In quasars which are lensed by galaxies, the point-like images sometimes show sharp and uncorrelated brightness variations (microlensing). These brightness changes are associated with the innermost region of the quasar passing through a complicated pattern of caustics produced by the stars in the lensing galaxy. In this paper, we study whether the universal properties of optical caustics could enable extraction of shape information about the central engine of quasars. We present a toy model with a crescent-shaped source crossing a fold caustic. The silhouette of a black hole over an accretion disk tends to produce roughly crescent sources. When amore » crescent-shaped source crosses a fold caustic, the resulting light curve is noticeably different from the case of a circular luminosity profile or Gaussian source. With good enough monitoring data, the crescent parameters, apart from one degeneracy, can be recovered.« less

  7. Microlensing as a Possible Probe of Event-Horizon Structure in Quasars

    DOE PAGES

    Tomozeiu, Mihai; Mohammed, Irshad; Rabold, Manuel; ...

    2017-12-08

    In quasars which are lensed by galaxies, the point-like images sometimes show sharp and uncorrelated brightness variations (microlensing). These brightness changes are associated with the innermost region of the quasar passing through a complicated pattern of caustics produced by the stars in the lensing galaxy. In this paper, we study whether the universal properties of optical caustics could enable extraction of shape information about the central engine of quasars. We present a toy model with a crescent-shaped source crossing a fold caustic. The silhouette of a black hole over an accretion disk tends to produce roughly crescent sources. When amore » crescent-shaped source crosses a fold caustic, the resulting light curve is noticeably different from the case of a circular luminosity profile or Gaussian source. With good enough monitoring data, the crescent parameters, apart from one degeneracy, can be recovered.« less

  8. ANTARES constrains a blazar origin of two IceCube PeV neutrino events

    NASA Astrophysics Data System (ADS)

    ANTARES Collaboration; Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; De Rosa, G.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Enzenhöfer, A.; Escoffier, S.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Gracia-Ruiz, R.; Graf, K.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kulikovskiy, V.; Lahmann, R.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; de Wolf, E.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.; TANAMI Collaboration; Krauß, F.; Kadler, M.; Mannheim, K.; Schulz, R.; Trüstedt, J.; Wilms, J.; Ojha, R.; Ros, E.; Baumgartner, W.; Beuchert, T.; Blanchard, J.; Bürkel, C.; Carpenter, B.; Edwards, P. G.; Eisenacher Glawion, D.; Elsässer, D.; Fritsch, U.; Gehrels, N.; Gräfe, C.; Großberger, C.; Hase, H.; Horiuchi, S.; Kappes, A.; Kreikenbohm, A.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Litzinger, E.; Lovell, J. E. J.; Müller, C.; Phillips, C.; Plötz, C.; Quick, J.; Steinbring, T.; Stevens, J.; Thompson, D. J.; Tzioumis, A. K.

    2015-04-01

    Context. The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. Aims: We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope. Methods: The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons - and hence their neutrino progenitors - from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A maximum-likelihood approach, using the reconstructed energies and arrival directions of through-going muons, is used to identify events with properties consistent with a blazar origin. Results: Both blazars predicted to be the most neutrino-bright in the TANAMI sample (1653-329 and 1714-336) have a signal flux fitted by the likelihood analysis corresponding to approximately one event. This observation is consistent with the blazar-origin hypothesis of the IceCube event IC 14 for a broad range of blazar spectra, although an atmospheric origin cannot be excluded. No ANTARES events are observed from any of the other four blazars, including the three associated with IceCube event IC20. This excludes at a 90% confidence level the possibility that this event was produced by these blazars unless the neutrino spectrum is flatter than -2.4. Figures 2, 3 and Appendix A are available in electronic form at http://www.aanda.org

  9. Lord of the Rings - Return of the King: Swift-XRT observations of dust scattering rings around V404 Cygni

    NASA Astrophysics Data System (ADS)

    Beardmore, A. P.; Willingale, R.; Kuulkers, E.; Altamirano, D.; Motta, S. E.; Osborne, J. P.; Page, K. L.; Sivakoff, G. R.

    2016-10-01

    On 2015 June 15, the black hole X-ray binary V404 Cygni went into outburst, exhibiting extreme X-ray variability which culminated in a final flare on June 26. Over the following days, the Swift-X-ray Telescope detected a series of bright rings, comprising five main components that expanded and faded with time, caused by X-rays scattered from the otherwise unobservable dust layers in the interstellar medium in the direction of the source. Simple geometrical modelling of the rings' angular evolution reveals that they have a common temporal origin, coincident with the final, brightest flare seen by INTEGRAL's JEM X-1, which reached a 3-10 keV flux of ˜25 Crab. The high quality of the data allows the dust properties and density distribution along the line of sight to the source to be estimated. Using the Rayleigh-Gans approximation for the dust scattering cross-section and a power-law distribution of grain sizes a, ∝ a-q, the average dust emission is well modelled by q = 3.90^{+0.09}_{-0.08} and maximum grain size of a_+ = 0.147^{+0.024}_{-0.004} { μ m}, though significant variations in q are seen between the rings. The recovered dust density distribution shows five peaks associated with the dense sheets responsible for the rings at distances ranging from 1.19 to 2.13 kpc, with thicknesses of ˜40-80 pc and a maximum density occurring at the location of the nearest sheet. We find a dust column density of Ndust ≈ (2.0-2.5) × 1011 cm-2, consistent with the optical extinction to the source. Comparison of the inner rings' azimuthal X-ray evolution with archival Wide-field Infrared Survey Explorer mid-IR data suggests that the second most distant ring follows the general IR emission trend, which increases in brightness towards the Galactic north side of the source.

  10. Radio thermal sounding of natural environments

    NASA Astrophysics Data System (ADS)

    Gauss, Martin; Lomukhin, Yuriy

    2017-11-01

    At the moment, methods of sounding a status of soil, plant, forest and aquatic environments using radiometry and radar methods are intensively used. The main source of information using radar sounding is the back reflection ratio. The radiometric method is used for detection of the brightness temperature. In this paper, a communication between the back reflection ratio and the brightness temperature is described. This communication is proportional.

  11. iPTF report of bright transients

    NASA Astrophysics Data System (ADS)

    Cannella, Chris; Kuesters, Daniel; Ferretti, Raphael; Blagorodnova, Nadejda; Adams, Scott; Kupfer, Thomas; Neill, James D.; Walters, Richard; Yan, Lin; Kulkarni, Shri

    2017-02-01

    The intermediate Palomar Transient Factory (iPTF; ATel #4807) reports the following bright ( Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R), and RB5 (Wozniak et al. 2013AAS...22143105W).

  12. First Year Wilkinson Microwave Anisotropy Probe(WMAP)Observations: The Angular Power Spectrum

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Spergel, D. N.; Verde, L.; Hill, R. S.; Meyer, S. S.; Barnes, C.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.

    2003-01-01

    We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking approximately 700 known bright sources from the maps, we estimate residual sources contribute approximately 3500 mu sq Kappa at 41 GHz, and approximately 130 mu sq Kappa at 94 GHz, to the power spectrum [iota(iota + 1)C(sub iota)/2pi] at iota = 1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to iota approximately 350. The spectrum clearly exhibits a first acoustic peak at iota = 220 and a second acoustic peak at iota approximately 540, and it provides strong support for adiabatic initial conditions. Researchers have analyzed the CT(sup Epsilon) power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by approximately 30% on degree angular scales, due to secondary scattering.

  13. Near-infrared scattering as a dust diagnostic

    NASA Astrophysics Data System (ADS)

    Saajasto, Mika; Juvela, Mika; Malinen, Johanna

    2018-06-01

    Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or "cloudshine", can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared "coreshine" and observations of dust emission at longer wavelengths. Aims: We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods: We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 μm. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results: The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of ±10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution γ by up to 30% and the estimated strength of the radiation field KISRF by up to 60%. The maximum grain size Amax and γ are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by 20% and the exponent of the size distribution by 15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average Amax, γ 25%, and the deviation between the estimated and correct values ΔQ < 15%. For the TMC-1N observations, a maximum grain size Amax > 1.5μm and a size distribution with γ > 4.0 have high probability. The mass weighted average grain size is ⟨am⟩ = 0.113μm. Conclusions: We show that scattered infrared light can be used to derive meaningful limits for the dust parameters. However, errors in the surface brightness data can result in considerable uncertainties on the derived parameters.

  14. Performance of the K+ ion diode in the 2 MV injector for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.

    2002-02-01

    Heavy ion beam inertial fusion driver concepts depend on the availability and performance of high-brightness high-current ion sources. Surface ionization sources have relatively low current density but high brightness because of the low temperature of the emitted ions. We have measured the beam profiles at the exit of the injector diode, and compared the measured profiles with EGUN and WARP-3D predictions. Spherical aberrations are significant in this large aspect ratio diode. We discuss the measured and calculated beam size and beam profiles, the effect of aberrations, quality of vacuum, and secondary electron distributions on the beam profile.

  15. Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses

    PubMed Central

    Tu, Haohua; Lægsgaard, Jesper; Zhang, Rui; Tong, Shi; Liu, Yuan; Boppart, Stephen A.

    2013-01-01

    We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good efficiency (~7%). The converted band has a large pulse energy (~1 nJ), high spectral brightness (~1 mW/nm), and broad Gaussian-like spectrum compressible to clean transform-limited ~17 fs pulses. The corresponding coherent fiber sources open up portable applications of optical parametric oscillators and dual-output synchronized ultrafast lasers. PMID:24104233

  16. Low-mass X-ray binary MAXI J1421-613 observed by MAXI GSC and Swift XRT

    NASA Astrophysics Data System (ADS)

    Serino, Motoko; Shidatsu, Megumi; Ueda, Yoshihiro; Matsuoka, Masaru; Negoro, Hitoshi; Yamaoka, Kazutaka; Kennea, Jamie A.; Fukushima, Kosuke; Nagayama, Takahiro

    2015-04-01

    Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC (Gas Slit Camera) and the Swift XRT (X-Ray Telescope) follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is ≈ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm-2 s-1. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in the 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) these, the outburst observed with MAXI may have occurred after a quiescence of 30-40 years.

  17. Analysis of Saturn's Thermal Emission at 2.2-cm Wavelength: Spatial Distribution of Ammonia Vapor

    NASA Technical Reports Server (NTRS)

    Laraia, A. L.; Ingersoll, A. P.; Janssen, Michael A.; Gulkis, Samuel; Oyafuso, Fabiano A.; Allison, Michael D.

    2013-01-01

    This work focuses on determining the latitudinal structure of ammonia vapor in Saturn's cloud layer near 1.5 bars using the brightness temperature maps derived from the Cassini RADAR (Elachi et al., 2004) instrument, which works in a passive mode to measure thermal emission from Saturn at 2.2-cm wavelength. We perform an analysis of five brightness temperature maps that span epochs from 2005 to 2011, which are presented in a companion paper by Janssen et al. (2013a, this issue). The brightness temperature maps are representative of the spatial distribution of ammonia vapor, since ammonia gas is the only effective opacity source in Saturn's atmosphere at 2.2-cm wavelength. Relatively high brightness temperatures indicate relatively low ammonia relative humidity (RH), and vice versa. We compare the observed brightness temperatures to brightness temperatures computed using the Juno atmospheric microwave radiative transfer (JAMRT) program which includes both the means to calculate a tropospheric atmosphere model for Saturn and the means to carry out radiative transfer calculations at microwave frequencies. The reference atmosphere to which we compare has a 3x solar deep mixing ratio of ammonia (we use 1.352x10(exp -4) for the solar mixing ratio of ammonia vapor relative to H2; see Atreya, 2010) and is fully saturated above its cloud base. The maps are comprised of residual brightness temperatures-observed brightness temperature minus the model brightness temperature of the saturated atmosphere.

  18. Imfit: A Fast, Flexible Program for Astronomical Image Fitting

    NASA Astrophysics Data System (ADS)

    Erwin, Peter

    2014-08-01

    Imift is an open-source astronomical image-fitting program specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. Its object-oriented design allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with Imfit include Sersic, exponential, and Gaussian galaxy decompositions along with Core-Sersic and broken-exponential profiles, elliptical rings, and three components that perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or the Cash statistic; the latter is particularly appropriate for cases of Poisson data in the low-count regime. The C++ source code for Imfit is available under the GNU Public License.

  19. The isotropic radio background revisited

    NASA Astrophysics Data System (ADS)

    Fornengo, Nicolao; Lineros, Roberto A.; Regis, Marco; Taoso, Marco

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  20. Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source.

    PubMed

    Loredo, J C; Broome, M A; Hilaire, P; Gazzano, O; Sagnes, I; Lemaitre, A; Almeida, M P; Senellart, P; White, A G

    2017-03-31

    A boson-sampling device is a quantum machine expected to perform tasks intractable for a classical computer, yet requiring minimal nonclassical resources as compared to full-scale quantum computers. Photonic implementations to date employed sources based on inefficient processes that only simulate heralded single-photon statistics when strongly reducing emission probabilities. Boson sampling with only single-photon input has thus never been realized. Here, we report on a boson-sampling device operated with a bright solid-state source of single-photon Fock states with high photon-number purity: the emission from an efficient and deterministic quantum dot-micropillar system is demultiplexed into three partially indistinguishable single photons, with a single-photon purity 1-g^{(2)}(0) of 0.990±0.001, interfering in a linear optics network. Our demultiplexed source is between 1 and 2 orders of magnitude more efficient than current heralded multiphoton sources based on spontaneous parametric down-conversion, allowing us to complete the boson-sampling experiment faster than previous equivalent implementations.

  1. The infrared counterpart of GX 13 + 1

    NASA Technical Reports Server (NTRS)

    Garcia, M. R.; Grindlay, J. E.; Bailyn, C. D.; Pipher, J. L.; Shure, M. A.; Woodward, C. E.

    1992-01-01

    A bright (K = 12) IR source is discovered which is likely the counterpart to the bright galactic-bulge X-ray source GX 13 + 1. Observations with the MMT IR photometer and the Rochester IR Array camera at the IRTF allow determination of the source position to about 0.7 arcsec, allow the IR colors to be measured, and show no variability on a 1-yr timescale. Four possible sources for the IR emission are considered and it is most likely due to a K-giant secondary. The discovery of a late-type giant secondary in GX 13 + 1 is contrary to the expectation that low-mass X-ray binaries which show quasi-periodic oscillations (QPO) have giant companions, while those which do not show QPO (like GX 13 + 1) have dwarf secondaries. The relation between the size of the scattered X-ray halo and the Av inferred from the IR observations is compared to that found in other X-ray sources.

  2. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, Fred; /LLNL, Livermore; Albert, Felicie

    2012-06-25

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less

  3. Evolution of separate screening soliton pairs in a biased series photorefractive crystal circuit.

    PubMed

    Liu, Jinsong; Hao, Zhonghua

    2002-06-01

    This paper presents calculations for an idea in photorefractive spatial soliton, namely, screening solitons form in a biased series photorefractive crystal circuit consisting of two photorefractive crystals connected electronically by electrode leads in a chain with a voltage source. A system of two coupled equations is derived under appropriate conditions for two-beam propagation in the crystal circuit. The possibility of obtaining steady-state bright and dark screening soliton solutions is investigated in one dimension and, the existence of dark-dark, bright-dark, and bright-bright separate screening soliton pairs in such a circuit is proved. The numerical results show that the two solitons in a soliton pair can affect each other by the light-induced current and their coupling can affect their spatial profiles, dynamical evolutions, stabilities, and self-deflection. Under the limit in which the optical wave has a spatial extent much less than the width of the crystal, only the dark soliton can affect the other soliton by the light-induced current, but the bright soliton cannot. For a bright-dark or dark-dark soliton pair, the dark soliton in a weak input intensity can be obtained for a larger nonlinearity than for a stronger input intensity. For a bright-dark soliton pair, increasing the input intensity of the dark soliton can increase the bending angle of the bright soliton. Some potential applications are discussed.

  4. SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann

    2011-01-01

    Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS ancillary data) were used to correct for surface temperature effects and to derive microwave emissivity. ECMWF data were also used for precipitation forecasts, presence of snow, and frozen ground. Vegetation options are described below. One year of soil moisture observations from a set of four watersheds in the U.S. were used to evaluate four different retrieval methodologies: (1) SMOS soil moisture estimates (version 400), (2) SeA soil moisture estimates using the SMOS/SMAP data with SMOS estimated vegetation optical depth, which is part of the SMOS level 2 product, (3) SeA soil moisture estimates using the SMOS/SMAP data and the MODIS-based vegetation climatology data, and (4) SeA soil moisture estimates using the SMOS/SMAP data and actual MODIS observations. The use of SMOS real-world global microwave observations and the analyses described here will help in the development and selection of different land surface parameters and ancillary observations needed for the SMAP soil moisture algorithms. These investigations will greatly improve the quality and reliability of this SMAP product at launch.

  5. The ultraviolet-bright stars of Omega Centauri, M3, and M13

    NASA Technical Reports Server (NTRS)

    Landsman, Wayne B.; O'Connell, Robert W.; Whitney, Jonathan H.; Bohlin, Ralph C.; Hill, Robert S.; Maran, Stephen P.; Parise, Ronald A.; Roberts, Morton S.; Smith, Andrew A.; Stecher, Theodore P.

    1992-01-01

    Two new UV-bright stars detected within 2 arcmin of the center of Omega Cen are spectroscopically investigated with the short-wavelength spectrograph of the IUE. The IUE spectra of the UV-bright stars UIT-1 and UIT-2 in the core of Omega Cen superficially resemble those of Population I mid-B stars. The absorption lines of the core UV-bright stars are significantly weaker than in Population I stars, consistent with their membership in the cluster. Synthetic spectra calculated from low-metallicity Kurucz model stellar atmospheres are compared with the spectra. These objects are insufficiently luminous to be classical hydrogen-burning post-AGB stars. They may be evolved hot horizontal branch stars which have been brightened by more than 3 mag since leaving the zero-age horizontal branch. It is inferred from the spectra and luminosity of the core UV-bright stars that similar objects could provide the source of the UV light in elliptical galaxies.

  6. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2017-12-09

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  7. Comet brightness parameters: Definition, determination, and correlations

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.; Morris, C. S.

    1976-01-01

    The power-law definition of comet brightness is reviewed and possible systematic influences are discussed that can affect the derivation of m sub o and n values from visual magnitude estimates. A rationale for the Bobrovnikoff aperture correction method is given and it is demonstrated that the Beyer extrafocal method leads to large systematic effects which if uncorrected by an instrumental relationship result in values significantly higher than those derived according to the Bobrovnikoff guidelines. A series of visual brightness parameter sets are presented which have been reduced to the same photometric system. Recommendations are given to insure that future observations are reduced to the same system.

  8. Influence of synchrotron self-absorption on 21-cm experiments

    NASA Astrophysics Data System (ADS)

    Zheng, Qian; Wu, Xiang-Ping; Gu, Jun-Hua; Wang, Jingying; Xu, Haiguang

    2012-08-01

    The presence of spectral curvature resulting from the synchrotron self-absorption of extragalactic radio sources could break down the spectral smoothness feature. This leads to the premise that the bright radio foreground can be successfully removed in 21-cm experiments that search for the epoch of reionization (EoR). We present a quantitative estimate of the effect of the spectral curvature resulting from the synchrotron self-absorption of extragalactic radio sources on the measurement of the angular power spectrum of the low-frequency sky. We incorporate a phenomenological model, which is characterized by the fraction (f) of radio sources with turnover frequencies in the range of 100-1000 MHz and by a broken power law for the spectral transition around the turnover frequencies νm, into simulated radio sources over a small sky area of 10° × 10°. We compare statistically the changes in their residual maps with and without the inclusion of the synchrotron self-absorption of extragalactic radio sources after the bright sources of S150 MHz ≥100 mJy are excised. Furthermore, the best-fitting polynomials in the frequency domain on each pixel are subtracted. It has been shown that the effect of synchrotron self-absorption on the detection of the EoR depends sensitively on the spectral profiles of the radio sources around the turnover frequencies νm. A hard transition model, described by the broken power law with the turnover of spectral index at νm, would leave pronounced imprints on the residual background and would therefore cause serious confusion with the cosmic EoR signal. However, the spectral signatures on the angular power spectrum of the extragalactic foreground, generated by a soft transition model in which the rising and falling power laws of the spectral distribution around νm are connected through a smooth transition spanning ≥200 MHz in a characteristic width, can be fitted and consequently subtracted by the use of polynomials to an acceptable degree (δT < 1 mK). As this latter scenario seems to be favoured in both theoretical expectations and radio spectral observations, we conclude that the contamination of extragalactic radio sources by synchrotron self-absorption in 21-cm experiments is probably very minor.

  9. Single-crystal phosphors for high-brightness white LEDs/LDs

    NASA Astrophysics Data System (ADS)

    Víllora, Encarnación G.; Arjoca, Stelian; Inomata, Daisuke; Shimamura, Kiyoshi

    2016-03-01

    White light-emitting diodes (wLEDs) are the new environmental friendly sources for general lighting purposes. For applications requiring a high-brightness, current wLEDs present overheating problems, which drastically decrease their emission efficiency, color quality and lifetime. This work gives an overview of the recent investigations on single-crystal phosphors (SCPs), which are proposed as novel alternative to conventional ceramic powder phosphors (CPPs). This totally new approach takes advantage of the superior properties of single-crystals in comparison with ceramic materials. SCPs exhibit an outstanding conversion efficiency and thermal stability up to 300°C. Furthermore, compared with encapsulated CPPs, SCPs possess a superior thermal conductivity, so that generated heat can be released efficiently. The conjunction of all these characteristics results in a low temperature rise of SCPs even under high blue irradiances, where conventional CPPs are overheated or even burned. Therefore, SCPs represent the ideal, long-demanded all-inorganic phosphors for high-brightness white light sources, especially those involving the use of high-density laser-diode beams.

  10. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror

    PubMed Central

    Chen, Zi-Yu; Pukhov, Alexander

    2016-01-01

    Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser–plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser–plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047

  11. VizieR Online Data Catalog: Gamma-ray bright blazars spectrophotometry (Williamson+, 2014)

    NASA Astrophysics Data System (ADS)

    Williamson, K. E.; Jorstad, S. G.; Marscher, A. P.; Larionov, V. M.; Smith, P. S.; Agudo, I.; Arkharov, A. A.; Blinov, D. A.; Casadio, C.; Efimova, N. V.; Gomez, J. L.; Hagen-Thorn, V. A.; Joshi, M.; Konstantinova, T. S.; Kopatskaya, E. N.; Larionova, E. G.; Larionova, L. V.; Malmrose, M. P.; McHardy, I. M.; Molina, S. N.; Morozova, D. A.; Schmidt, G. D.; Taylor, B. W.; Troitsky, I. S.

    2017-03-01

    Since 2007, we have been collecting multi-waveband fluxes, polarization measurements, and radio images of blazars to provide the data for understanding the physics of the jets (see, e.g., Marscher 2012, arXiv:1201.5402). This study includes 28 of the original 30 objects selected for the monitoring campaign, confirmed as γ-ray sources by EGRET (Energetic γ-Ray Experiment Telescope) on the Compton Gamma Ray Observatory, have an R-band brightness exceeding 18 mag (bright enough for optical polarization measurements at a 1-2 m class optical telescope without needing excessive amounts of telescope time), exceed 0.5 Jy at 43 GHz, and have a declination accessible to the collaboration's observatories (> - 30°). Three additional BL Lacs (1055+018, 1308+326, and 1749+096) and two FSRQs (3C345 and 3C446) included in this analysis were among those added when they were detected as γ-ray sources by the Fermi LAT (Abdo et al. 2009, J/ApJ/700/597). (4 data files).

  12. Detectability of Boulders on Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Miller, Kevin J.; Taylor, Patrick A.; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.

    2014-11-01

    Boulders are seen on spacecraft images of near-Earth asteroids Eros and Itokawa. Radar images often show bright pixels or groups of pixels that travel consistently across the surface as the object rotates, which may be indicative of similar boulders on other near-Earth asteroids. Examples of these bright pixels were found on radar observations of 2005 YU55 and 2006 VV2 (Benner et al. 2014). Nolan et al. (2013) also identify one large possible boulder on the surface of Bennu, target of the OSIRIS-REx sample return mission. We explore the detectability of boulders by adding synthetic features on asteroid models, and then simulating radar images. These synthetic features were added using BLENDER ver. 2.70, a free open-source 3-D animation suite. Starting with the shape model for Bennu (diameter ~500 m), spherical 'boulders' of 10 m, 20 m, and 40 m diameter were placed at latitudes between 0 and 90 deg. Simulated radar observations of these models indicated that spherical boulders smaller than 10 m may not be visible in observations but that larger ones should be readily seen. Boulders near the sub-Earth point can be hidden in the bright region near the leading edge, but as the asteroid's rotation moves them towards the terminator, they become visible again, with no significant dependence on the latitude of the boulder. These simulations suggest that we should detect large boulders under most circumstances in high-quality radar images, and we have a good estimate of the occurrence of such features on near-Earth objects. Results of these simulations will be presented.

  13. Spatio-temporal pattern of eco-environmental parameters in Jharia coalfield, India

    NASA Astrophysics Data System (ADS)

    Saini, V.; Gupta, R. P.; Arora, M. K.

    2015-10-01

    Jharia coal-field holds unequivocal importance in the Indian context as it is the only source of prime coking coal in the country. The coalfield is also known for its infamous coal mine fires which have been burning since last more than a century. Haphazard mining over a century has led to eco-environmental changes to a large extent such as changes in vegetation distribution and widespread development of surface and subsurface fires. This article includes the spatiotemporal study of remote sensing derived eco-environmental parameters like vegetation index (NDVI), tasseled cap transformation (TCT) and temperature distribution in fire areas. In order to have an estimate of the temporal variations of NDVI over the years, a study has been carried out on two subsets of the Jharia coalfield using Landsat images of 1972 (MSS), 1992 (TM), 1999 (ETM+) and 2013 (OLI). To assess the changes in brightness and greenness over the year s, difference images have been calculated using the 1992 (TM) and 2013 (OLI) images. Radiance images derived from thermal bands have been used to calculate at-sensor brightness temperature over a 23 year period from 1991 to 2013. It has been observed that during the years 1972 to 2013, moderate to dense vegetation has decreased drastically due to the intense mining going on in the area. TCT images show the areas that have undergone changes in both brightness and greenness from 1992 to 2013. Surface temperature data obtained shows a constant increase from 1991 to 2013 apparently due to coal fires. The utility of remote sensing data in such EIA studies has been emphasized.

  14. The mechanical design and simulation of a scaled H⁻ Penning ion source.

    PubMed

    Rutter, T; Faircloth, D; Turner, D; Lawrie, S

    2016-02-01

    The existing ISIS Penning H(-) source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  15. The mechanical design and simulation of a scaled H- Penning ion source

    NASA Astrophysics Data System (ADS)

    Rutter, T.; Faircloth, D.; Turner, D.; Lawrie, S.

    2016-02-01

    The existing ISIS Penning H- source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  16. Quick Solar Outburst

    NASA Image and Video Library

    2017-10-23

    A small eruption blew a bright, disjointed stream of plasma into space (Oct. 18, 2017). The source of the blast was just out of sight beyond the edge of the sun. Images from SOHO's coronagraph instruments show a bright loop of material heading away from the sun near this same area. The video, taken in extreme ultraviolet light, covers just two hours of activity. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22050

  17. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.

  18. NEAR-IR IMAGING POLARIMETRY TOWARD A BRIGHT-RIMMED CLOUD: MAGNETIC FIELD IN SFO 74

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusune, Takayoshi; Sugitani, Koji; Miao, Jingqi

    2015-01-01

    We have made near-infrared (JHK {sub s}) imaging polarimetry of a bright-rimmed cloud (SFO 74). The polarization vector maps clearly show that the magnetic field in the layer just behind the bright rim is running along the rim, quite different from its ambient magnetic field. The direction of the magnetic field just behind the tip rim is almost perpendicular to that of the incident UV radiation, and the magnetic field configuration appears to be symmetric as a whole with respect to the cloud symmetry axis. We estimated the column and number densities in the two regions (just inside and farmore » inside the tip rim) and then derived the magnetic field strength, applying the Chandrasekhar-Fermi method. The estimated magnetic field strength just inside the tip rim, ∼90 μG, is stronger than that far inside, ∼30 μG. This suggests that the magnetic field strength just inside the tip rim is enhanced by the UV-radiation-induced shock. The shock increases the density within the top layer around the tip and thus increases the strength of the magnetic field. The magnetic pressure seems to be comparable to the turbulent one just inside the tip rim, implying a significant contribution of the magnetic field to the total internal pressure. The mass-to-flux ratio was estimated to be close to the critical value just inside the tip rim. We speculate that the flat-topped bright rim of SFO 74 could be formed by the magnetic field effect.« less

  19. Seeing Red and Shooting Blanks: Study of Red Quasars and Blank X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Elvis, Martin

    2005-01-01

    A major paper describing the technique and providing a list of 'blanks' was published in the Astrophysical Journal (abstract below). The results revealed a fascinating trove of novel X-ray sources: high redshift clusters of galaxies found efficiently; X-ray absorbed, optically clean AGN, which may be the bright prototypes of Chandra Deep Survey sources; and several with a still unknown nature. Recent XMM-Newton results confirm the existence of this class of X-ray source with much refined positions. During the first year of this project we have made a major discovery. The second 'blanks' X-ray source observed with Chandra was found to be extended. Using Chandra data and ground-based R and K band imaging we estimated this to be a high redshift cluster of galaxies with z approx. 0.85. Spectroscopy agrees with this estimate (z=0.89). This success shows that our method of hunting down 'blank' field X-ray sources is a highly efficient method of finding the otherwise elusive high redshift clusters. With extensive follow-up we should be able to use 'blanks' to make cosmological tests. The paper is now in press in the Astrophysical Journal (abstract below.) The other Chandra source is point-like, showing that there are a variety of 'blank' source types. Other follow-up observations with XMM-Newton, and (newly approved in cycle 2) with Chandra are eagerly awaited. A follow-up paper uses a large amount of supporting data for the remaining blanks. A combination of ROSAT, Chandra and ground based data convincingly identified one of the blanks as a Ultra-luminous X-ray source (ULX) in a spiral galaxy (abstract below). This program resulted in 3 refereed papers in major journals, 4 conference proceedings and a significant fraction of the PhD thesis of Dr. Ilaria Cagnoni. Details of the publications are given.

  20. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  1. Looking at the world with your ears: how do we get the size of an object from its sound?

    PubMed

    Grassi, Massimo; Pastore, Massimiliano; Lemaitre, Guillaume

    2013-05-01

    Identifying the properties of on-going events by the sound they produce is crucial for our interaction with the environment when visual information is not available. Here, we investigated the ability of listeners to estimate the size of an object (a ball) dropped on a plate with ecological listening conditions (balls were dropped in real time) and response methods (listeners estimate ball-size by drawing a disk). Previous studies had shown that listeners can veridically estimate the size of objects by the sound they produce, but it is yet unclear which acoustical index listeners use to produce their estimates. In particular, it is unclear whether listeners listen to amplitude (related to loudness) or frequency (related to the sound's brightness) domain cue to produce their estimates. In the current study, in order to understand which cue is used by the listener to recover the size of the object, we manipulated the sound source event in such a way that frequency and amplitude cues provided contrasting size-information (balls were dropped from various heights). Results showed that listeners' estimations were accurate regardless of the experimental manipulations performed in the experiments. In addition, results suggest that listeners were likely integrating frequency and amplitude acoustical cues in order to produce their estimate and although these cues were often providing contrasting size-information. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Record productions establish RF-driven sources as the standard for generating high-duty-factor, high-current H- beams for accelerators (Winner of the ICIS 2017 Brightness Award)

    NASA Astrophysics Data System (ADS)

    Stockli, Martin P.; Welton, Robert F.; Han, Baoxi

    2018-05-01

    The Spallation Neutron Source operates reliably at 1.2 MW and will gradually ramp to 1.4 MW. This paper briefly recalls some of the struggles when the unprecedented project was started and ramped to 1 MW over a 3½ year period. This was challenging, especially for the H- ion source and the low-energy beam transport system, which make up the H- injector. It took several more years to push the H- injector to the 1.4 MW requirements, and even longer to reach close to 100% injector availability. An additional breakthrough was the carefully staged, successful extension of the H- source service cycle so that disruptive source changes became rare events. More than 7 A.h of extracted H- ions have been demonstrated with a single source without maintenance, more than twice the single-source quantity of ions produced by any other high-current H- accelerator facility. Achieving the 1.4 MW requirements with close to 100% availability and record-breaking source service cycles were the basis for the 2017 Brightness Award.

  3. The distribution of infrared point sources in nearby elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Gogoi, Rupjyoti; Shalima, P.; Misra, Ranjeev

    2018-02-01

    Infrared (IR) point sources as observed by Spitzer, in nearby early-type galaxies should either be bright sources in the galaxy such as globular clusters, or they may be background sources such as AGNs. These objects are often counterparts of sources in other wavebands such as optical and X-rays and the IR information provides crucial information regarding their nature. However, many of the IR sources may be background objects and it is important to identify them or at least quantify the level of background contamination. Moreover, the distribution of these IR point sources in flux, distance from the centre and colour would be useful in understanding their origin. Archival Spitzer IRAC images provide a unique opportunity for such a study and here we present the results of such an analysis for four nearby galaxies, NGC 1399, NGC 2768, NGC 4365 and NGC 4649. We estimate the background contamination using several blank fields. Our results suggest that IR colours can be effectively used to differentiate between sources in the galaxy and background ones. In particular we find that sources having AGN like colours are indeed consistent with being background AGNs. For sources with non AGN like colours we compute the distribution of flux and normalised distance from the centre which is found to be of a power-law form. Although our sample size is small, the power-law index for the galaxies are different indicating perhaps that the galaxy environment may be playing a part in their origin and nature.

  4. An Estimation of the Gamma-Ray Burst Afterglow Apparent Optical Brightness Distribution Function

    NASA Astrophysics Data System (ADS)

    Akerlof, Carl W.; Swan, Heather F.

    2007-12-01

    By using recent publicly available observational data obtained in conjunction with the NASA Swift gamma-ray burst (GRB) mission and a novel data analysis technique, we have been able to make some rough estimates of the GRB afterglow apparent optical brightness distribution function. The results suggest that 71% of all burst afterglows have optical magnitudes with mR<22.1 at 1000 s after the burst onset, the dimmest detected object in the data sample. There is a strong indication that the apparent optical magnitude distribution function peaks at mR~19.5. Such estimates may prove useful in guiding future plans to improve GRB counterpart observation programs. The employed numerical techniques might find application in a variety of other data analysis problems in which the intrinsic distributions must be inferred from a heterogeneous sample.

  5. Chandra Observation of the WAT Radio Source/ICM Interaction in Abell 623

    NASA Astrophysics Data System (ADS)

    Anand, Gagandeep; Blanton, Elizabeth L.; Randall, Scott W.; Paterno-Mahler, Rachel; Douglass, Edmund

    2017-01-01

    Galaxy clusters are important objects for studying the physics of the intracluster medium (ICM), galaxy formation and evolution, and cosmological parameters. Clusters containing wide-angle tail (WAT) radio sources are particularly valuable for studies of the interaction between these sources and the surrounding ICM. These sources are thought to form when the ram pressure from the ICM caused by the relative motion between the host radio galaxy and the cluster bends the radio lobes into a distinct wide-angle morphology. We present our results from the analysis of a Chandra observation of the nearby WAT hosting galaxy cluster Abell 623. A clear decrement in X-ray emission is coincident with the southern radio lobe, consistent with being a cavity carved out by the radio source. We present profiles of surface brightness, temperature, density, and pressure and find evidence for a possible shock. Based on the X-ray pressure in the vicinity of the radio lobes and assumptions about the content of the lobes, we estimate the relative ICM velocity required to bend the lobes into the observed angle. We also present spectral model fits to the overall diffuse cluster emission and see no strong signature for a cool core. The sum of the evidence indicates that Abell 623 may be undergoing a large scale cluster-cluster merger.

  6. A highly embedded protostar in SFO 18: IRAS 05417+0907

    NASA Astrophysics Data System (ADS)

    Saha, Piyali; Gopinathan, Maheswar; Puravankara, Manoj; Sharma, Neha; Soam, Archana

    2018-04-01

    Bright-rimmed clouds, located at the periphery of relatively evolved HIT regions, are considered to be the sites of star formation possibly triggered by the implosion caused due to the ionizing radiation from nearby massive stars. SFO 18 is one such region showing a bright-rim on the side facing the 0-type star, A Ori. A point source, IRAS 05417+0907, is detected towards the high density region of the cloud. A molecular outflow has been found to be associated with the source. The outflow is directed towards a Herbig-Haro object, HH 175. From the Spitzer and WISE observations, we show evidence of a physical connection between the molecular outflow, IRAS 05417+0907 and the HH object. The spectral energy distribution constructed using multi-wavelength data shows that the point source is most likely a highly embedded protostar.

  7. An analytic treatment of gravitational microlensing for sources of finite size at large optical depths

    NASA Technical Reports Server (NTRS)

    Deguchi, Shuji; Watson, William D.

    1988-01-01

    Statistical methods are developed for gravitational lensing in order to obtain analytic expressions for the average surface brightness that include the effects of microlensing by stellar (or other compact) masses within the lensing galaxy. The primary advance here is in utilizing a Markoff technique to obtain expressions that are valid for sources of finite size when the surface density of mass in the lensing galaxy is large. The finite size of the source is probably the key consideration for the occurrence of microlensing by individual stars. For the intensity from a particular location, the parameter which governs the importance of microlensing is determined. Statistical methods are also formulated to assess the time variation of the surface brightness due to the random motion of the masses that cause the microlensing.

  8. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    NASA Astrophysics Data System (ADS)

    Richter, Friedrich; Drusch, Matthias; Kaleschke, Lars; Maaß, Nina; Tian-Kunze, Xiangshan; Mecklenburg, Susanne

    2018-03-01

    Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity) have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  9. The bright unidentified γ-ray source 1FGL J1227.9–4852: Can it be associated with a low-mass X-ray binary? [The bright unidentified γ-ray source 1FGL J1227.9–4852: Can it be associated with an LMXB?

    DOE PAGES

    Hill, A. B.; Szostek, A.; Corbel, S.; ...

    2011-07-08

    We present an analysis of high energy (HE; 0.1–300 GeV) γ-ray observations of 1FGL J1227.9–4852 with the Fermi Gamma-ray Space Telescope, follow-up radio observations with the Australia Telescope Compact Array, Giant Metrewave Radio Telescope and Parkes radio telescopes of the same field and follow-up optical observations with the ESO VLT. We also examine archival XMM– Newton and INTEGRAL X-ray observations of the region around this source. The γ-ray spectrum of 1FGL J1227.9–4852 is best fitted with an exponentially cut-off power law, reminiscent of the population of pulsars observed by Fermi. A previously unknown, compact radio source within the 99.7 permore » cent error circle of 1FGL J1227.9–4852 is discovered and has a morphology consistent either with an AGN core/jet structure or with two roughly symmetric lobes of a distant radio galaxy. A single bright X-ray source XSS J12270–4859, a low-mass X-ray binary, also lies within the 1FGL J1227.9–4852 error circle and we report the first detection of radio emission from this source. The potential association of 1FGL J1227.9–4852 with each of these counterparts is discussed. Based upon the available data we find the association of the γ-ray source to the compact double radio source unlikely and suggest that XSS J12270–4859 is a more likely counterpart to the new HE source. As a result, we propose that XSS J12270–4859 may be a millisecond binary pulsar and draw comparisons with PSR J1023+0038.« less

  10. Pyroclastic Deposits in the Floor-fractured Crater Alphonsus

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Donaldson-Hanna, Kerri L.; Pieters, Carle M.; Moriarty, Daniel P.; Greenhagen, Benjamin T.; Bennett, Kristen A.; Kramer, Georgiana Y.; Paige, David A.

    2013-01-01

    Alphonsus, the 118 km diameter floor-fractured crater, is located immediately east of Mare Nubium. Eleven pyroclastic deposits have been identified on the crater's floor. Early telescopic spectra suggest that the floor of Alphonsus is noritic, and that the pyroclastic deposits contain mixtures of floor material and a juvenile component including basaltic glass. Head and Wilson contend that Nubium lavas intruded the breccia zone beneath Alphonsus, forming dikes and fractures on the crater floor. In this model, the magma ascended to the level of the mare but cooled underground, and a portion broke thru to the surface in vulcanian (explosive) eruptions. Alternatively, the erupted material could be from a source unrelated to the mare, in the style of regional pyroclastic deposits. High-resolution images and spectroscopy from the Moon Mineralogy Mapper (M3), Diviner Lunar Radiometer, and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (NAC) provide data to test these formation models. Spectra from M3 confirm that the crater floor is primarily composed of noritic material, and that the Nubium lavas are basaltic. Spectra from the three largest pyroclastic deposits in Alphonsus are consistent with a minor low- Ca pyroxene component in a glass-rich matrix. The centers of the 2 micron absorption bands have wavelengths too short to be of the same origin as the Nubium basalts. Diviner Christiansen feature (CF) values were used to estimate FeO abundances for the crater floor, Nubium soil, and pyroclastic deposits. The estimated abundance for the crater floor (7.5 +/- 1.4 wt.%) is within the range of FeO values for Apollo norite samples. However, the estimated FeO abundance for Nubium soil (13.4 +/- 1.4 wt.%) is lower than those measured in most mare samples. The difference may reflect contamination of the mare soil by highland ejecta. The Diviner-derived FeO abundance for the western pyroclastic deposit is 13.8 +/- 3.3 wt.%. This is lower than the values for mare soil samples, but within the range of analyzed pyroclastic glasses. The NAC images of the pyroclastic vents highlight their bright wall materials. The M3 spectra of the southeastern vent indicate that this bright material is noritic, likely crater floor material exposed by explosive eruption. These observations address the hypothesis that Nubium lavas intruded the fracture network beneath Alphonsus, leading to localized vulcanian-style eruptions. This model implies that the eruption products should be dominated by crystalline basalt fragments similar in elemental composition and mineralogy to mare lavas. The bright noritic material exposed in the vent walls is consistent with explosive eruptions. The estimated FeO abundances for the pyroclastic deposits are too low to be consistent with FeO abundances measured in mare basalts, but are within the range of pyroclastic glass samples. The visible- to near-infrared (VIS-NIR) spectra of the pyroclastic deposits and Nubium soils are significantly different, suggesting that the pyroclastics are unrelated to the mare basalts. The pyroclastic spectra are consistent with Fe-bearing glass plus small amounts of noritic wall rock. Similar glassy materials dominate regional pyroclastic deposits, suggesting a deep source for the pyroclastics observed in Alphonsus.

  11. Elemental and Molecular Relative Abundances in the Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Kober, G. V.; Gull, T. R.; Nielsen, K.; Bruhweiler, F.; Verner, K.; Stahl, O.; Weis, K.; Bomans, D.

    2006-01-01

    We are measuring relative elemental abundances for the ejecta in the line of sight from Eta Carinae using high dispersion spectroscopy with the HST/STIS and the VLT/UVES. While multiple velocity components have been identified, we focus on the -513 and -146 km/s components originating from the Homunculus and the Little Homunculus. Complicating factors are the complex nebular structures in the immediate vicinity of the bright, massive star: the very bright emission structures, Weigelt blobs B, C and D, the broad, clumpy structures of the extended wind apparently not photoionized by Eta Car B, and general scattered starlight from the extended wind and the dusty core of the circumstellar material. We have used the 3050 to 3160A region of overlap between STIS and UVES to intercompare equivalent widths of absorption lines to estimate the 'contributing factor', namely the amount of light originating from the star compared to nebular structures. While the extracted STIS spectra are from 0.1" wide aperture, the UVES spectra are limited by the 1" seeing conditions. Curiously we find that the scattering contribution in the UVES spectra changes with time, apparently with orbital phase of the 5.54-year period. This indicates that the dust may be modified by changes in the central source with phase. The noticeable drop in scattered light appears to occur about 1.7 years (phase 0.35) after the spectroscopic minimum. Relative abundances of iron peak elements and some molecules will be estimated. Observations in this study were accomplished with HST through STSci and with VLT through ESO and funded under STIS GTO resources.

  12. Detection of a very bright source close to the LMC supernova SN 1987A

    NASA Technical Reports Server (NTRS)

    Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.

    1987-01-01

    High angular resolution observations of the supernova in the Large Magellanic Cloud, SN 1987A, have revealed a bright source separated from the SN by approximately 60 mas with a magnitude difference of 2.7 at 656 nm (H-alpha). Speckle imaging techniques were applied to data recorded with the CfA two-dimensional photon counting detector on the CTIO 4 m telescope on March 25 and April 2 to allow measurements in H-alpha on both nights and at 533 nm and 450 nm on the second night. The nature of this object is as yet unknown, though it is almost certainly a phenomenon related to the SN.

  13. Efficient optical cloud removal technique for earth observation based on MOEMs device

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Noell, Wilfried

    2017-11-01

    In Earth Observation instruments, observation of scenes including bright sources leads to an important degradation of the recorded signal. We propose a new concept to remove dynamically the bright sources and then obtain a field of view with an optically enhanced Signal-to-Noise Ratio (SNR). Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. MOEMS-based programmable slit masks will permit the straylight control in future Earth Observation instruments. Experimental demonstration of this concept has been conducted on a dedicated bench. This successful first demonstration shows the high potential of this new concept in future spectro-imager for Earth Observation.

  14. Major Solar Flare

    NASA Image and Video Library

    2017-09-11

    A large sunspot was the source of a powerful solar flare (an X 9.3) and a coronal mass ejection (Sept. 6, 2017). The flare was the largest solar flare of the last decade. For one thing, it created a strong shortwave radio blackout over Europe, Africa and the Atlantic Ocean. Sunspot 2673 has been also the source of several other smaller to medium-sized solar flares over the past few days. Data from the SOHO spacecraft shows the large cloud of particles blasting into space just after the flare. Note: the bright vertical line and the other rays with barred lines are aberrations in our instruments caused by the bright flash of the flare. https://photojournal.jpl.nasa.gov/catalog/PIA21949

  15. Photometry in the dark: time dependent visibility of low intensity light sources.

    PubMed

    Poelman, Dirk; Smet, Philippe F

    2010-12-06

    This paper aims at describing the perceived brightness of persistent luminescent materials for emergency signage. In case of emergency, typically, a fully light adapted person is left in the dark, except for the emergency sign. The available photometric models cannot describe visibility of such light source, as they do not consider the slow dark adaptation of the human eye. The model proposed here fully takes into account the shift from photopic to scotopic vision, the related shift in spectral sensitivity and the dark adaptation. The resulting metric is a 'visibility index' and preliminary tests show that it more realistically describes the perceived brightness of persistent luminescent materials than the common photometric standards.

  16. Cyclotron Line in Solar Microwave Radiation by Radio Telescope RATAN-600 Observations of the Solar Active Region NOAA 12182

    NASA Astrophysics Data System (ADS)

    Peterova, N. G.; Topchilo, N. A.

    2017-12-01

    This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  17. The mechanical design and simulation of a scaled H{sup −} Penning ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutter, T., E-mail: theo.rutter@stfc.ac.uk; Faircloth, D.; Turner, D.

    2016-02-15

    The existing ISIS Penning H{sup −} source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  18. VERTICAL BEAM SIZE CONTROL IN TLS AND TPS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KUO, C.C.; CHEN, J.R.; CHOU, P.J.

    2006-06-26

    Vertical beam size control is an important issue in the light source operations. The horizontal-vertical betatron coupling and vertical dispersion were measured and corrected to small values in the TLS 1.5 GeV storage ring. Estimated beam sizes are compared with the measured values. By employing an effective transverse damping system, the vertical beam blow-up due to transverse coherent instabilities, such as the fast-ion beam instability, was suppressed. As a result, the light source is very stable. In NSRRC we are designing an ultra low emittance 3-GeV storage ring and its designed vertical beam size could be as small as amore » few microns. The ground and mechanic vibration effects, and coherent instabilities could spoil the expected photon brightness due to blow-up of the vertical beam size if not well taken care of. The contributions of these effects to vertical beam size increase will be evaluated and the counter measures to minimize them will be proposed and reported in this paper.« less

  19. Current situation of development of petroleum substituting energies (USA)

    NASA Astrophysics Data System (ADS)

    1993-03-01

    Trends in development of petroleum substituting energies in the U.S.A. are described. Among non-fossil fuel based energies currently available, nuclear power generation (7%), biomass power generation (4%), and hydraulic power generation (3%) account for a large part. The future for the nuclear energy is opaque. Biomasses are anticipated to be the largest regenerative energy source. Solar energy was regarded to be a future energy source, but its cost effect is not still good. While geothermal power generation produces 0.1% of the entire energy, its future is bright. Ocean energies of all types of form such as sea water thermal energy conversion and wave energy were not treated as a substituting energy in the U.S.A. Multi-fuel vehicles using gasoline, methanol, and ethanol are estimated to account for 25% of vehicle operations in the U.S.A. by 2000. Electric vehicles for practical use would be a hybrid type combining electric motors and gasoline engines.

  20. Photometric Redshifts for the Large-Area Stripe 82X Multiwavelength Survey

    NASA Astrophysics Data System (ADS)

    Tasnim Ananna, Tonima; Salvato, Mara; Urry, C. Megan; LaMassa, Stephanie M.; STRIPE 82X

    2016-06-01

    The Stripe 82X survey currently includes 6000 X-ray sources in 31.3 square degrees of XMM-Newton and Chandra X-ray coverage, most of which are AGN. Using a maximum-likelihood approach, we identified optical and infrared counterparts in the SDSS, VHS K-band and WISE W1-band catalogs. 1200 objects which had different best associations in different catalogs were checked by eye. Our most recent paper provided the multiwavelength catalogs for this sample. More than 1000 counterparts have spectroscopic redshifts, either from SDSS spectroscopy or our own follow-up program. Using the extensive multiwavelength data in this field, we provide photometric redshift estimates for most of the remaining sources, which are 80-90% accurate according to the training set. Our sample has a large number of candidates that are very faint in optical and bright in IR. We expect a large fraction of these objects to be the obscured AGN sample we need to complete the census on black hole growth at a range of redshifts.

  1. A bright attosecond x-ray pulse train generation in a double-laser-driven cone target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Li-Xiang; Yu, Tong-Pu, E-mail: tongpu@nudt.edu.cn; Shao, Fu-Qiu

    By using full three-dimensional particle-in-cell and Monte Carlo simulations, we investigate the generation of a high-brightness attosecond x-ray pulse train in a double-laser-driven cone target. The scheme makes use of two lasers: the first high-intensity laser with a laser peak intensity 1.37 × 10{sup 20 }W/cm{sup 2} irradiates the cone and produces overdense attosecond electron bunches; the second counterpropagating weakly relativistic laser with a laser peak intensity 4.932 × 10{sup 17 }W/cm{sup 2} interacts with the produced electron bunches and a bright x-ray pulse train is generated by Thomson backscattering of the second laser off the attosecond electron bunches. It is shown that the photon fluxmore » rises by 5 times using the cone target as compared with a normal channel. Meanwhile, the x-ray peak brightness increases significantly from 1.4 × 10{sup 21}/(s mm{sup 2} mrad{sup 2} 0.1 keV) to 6.0 × 10{sup 21}/(s mm{sup 2} mrad{sup 2} 0.1 keV), which is much higher than that of the Thomson x-ray source generated from traditional accelerators. We also discuss the influence of the laser and target parameters on the x-ray pulse properties. This compact bright x-ray source may have diverse applications, e.g., the study of electric dynamics and harmonics emission in the atomic scale.« less

  2. Extremely Low Passive Microwave Brightness Temperatures Due to Thunderstorms

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.

    2015-01-01

    Extreme events by their nature fall outside the bounds of routine experience. With imperfect or ambiguous measuring systems, it is appropriate to question whether an unusual measurement represents an extreme event or is the result of instrument errors or other sources of noise. About three weeks after the Tropical Rainfall Measuring Mission (TRMM) satellite began collecting data in Dec 1997, a thunderstorm was observed over northern Argentina with 85 GHz brightness temperatures below 50 K and 37 GHz brightness temperatures below 70 K (Zipser et al. 2006). These values are well below what had previously been observed from satellite sensors with lower resolution. The 37 GHz brightness temperatures are also well below those measured by TRMM for any other storm in the subsequent 16 years. Without corroborating evidence, it would be natural to suspect a problem with the instrument, or perhaps an irregularity with the platform during the first weeks of the satellite mission. Automated quality control flags or other procedures in retrieval algorithms could treat these measurements as errors, because they fall outside the expected bounds. But the TRMM satellite also carries a radar and a lightning sensor, both confirming the presence of an intense thunderstorm. The radar recorded 40+ dBZ reflectivity up to about 19 km altitude. More than 200 lightning flashes per minute were recorded. That same storm's 19 GHz brightness temperatures below 150 K would normally be interpreted as the result of a low-emissivity water surface (e.g., a lake, or flood waters) if not for the simultaneous measurements of such intense convection. This paper will examine records from TRMM and related satellite sensors including SSMI, AMSR-E, and the new GMI to find the strongest signatures resulting from thunderstorms, and distinguishing those from sources of noise. The lowest brightness temperatures resulting from thunderstorms as seen by TRMM have been in Argentina in November and December. For SSMI sensors carried on five DMSP satellites examined so far, the lowest thunderstorm-related brightness temperatures have been from Argentina in November - December and from Minnesota in June-July. The Minnesota cases were associated with spotter reports of large hail, significant severe wind, and tornadoes. Those locations have the record-holders for each satellite. The lowest AMSR-E 36.5 GHz brightness temperatures associated with deep convection have been in Argentina; the lowest 89.0 GHz brightness temperatures were from Typhoon Bolaven in the Philippine Sea. This paper will show examples of cases with the lowest brightness temperatures, and map the locations of these and other storms with brightness temperatures nearly as low. The study is largely motivated by the new GMI sensor on the Global Precipitation Mission core satellite, launched in February 2014, with its high resolution expected to reveal unprecedented low brightness temperatures when extreme events are encountered.

  3. Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Illing, R. M. E.; Hundhausen, A. J.

    1986-01-01

    The coronal mass ejection of August 18, 1980 is analyzed using images from the coronagraph on the Solar Maximum Mission (SMM) satellite. The event occurred at the site of a large coronal helmet streamer and evolved into the three-part structure of a bright frontal shell, followed by a relatively dark space surrounding a bright filamentary core as seen in many mass ejections of the SMM epoch. The bright core can be identified as material from a prominence whose eruption was observed from the ground. The mass of the frontal shell is equal to that of the coronal helmet streamer, indicating that the shell is the coronal material previously in the helmet streamer, displaced and set into motion by the erupting prominence and surrounding cavity. The mass ejected in the bright core (or prominences) is estimated to be 50 percent larger than the 'coronal' material in the front loop.

  4. Integration of SMAP and SMOS L-Band Observations

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Chan, Steven; Colliander, Andreas; Kerr, Yaan

    2017-01-01

    Soil Moisture Active Passive (SMAP) mission and the ESA Soil Moisture and Ocean Salinity (SMOS) missions provide brightness temperature and soil moisture estimates every 2-3 days. SMAP brightness temperature observations were compared with SMOS observations at 40 Degrees incidence angle. The brightness temperatures from the two missions are not consistent and have a bias of about 2.7K over land with respect to each other. SMAP and SMOS missions use different retrieval algorithms and ancillary datasets which result in further inconsistencies between the soil moisture products. The reprocessed constant-angle SMOS brightness temperatures were used in the SMAP soil moisture retrieval algorithm to develop a consistent multi-satellite product. The integrated product will have an increased global revisit frequency (1 day) and period of record that would be unattainable by either one of the satellites alone. Results from the development and validation of the integrated product will be presented.

  5. Brightness analysis of an electron beam with a complex profile

    NASA Astrophysics Data System (ADS)

    Maesaka, Hirokazu; Hara, Toru; Togawa, Kazuaki; Inagaki, Takahiro; Tanaka, Hitoshi

    2018-05-01

    We propose a novel analysis method to obtain the core bright part of an electron beam with a complex phase-space profile. This method is beneficial to evaluate the performance of simulation data of a linear accelerator (linac), such as an x-ray free electron laser (XFEL) machine, since the phase-space distribution of a linac electron beam is not simple, compared to a Gaussian beam in a synchrotron. In this analysis, the brightness of undulator radiation is calculated and the core of an electron beam is determined by maximizing the brightness. We successfully extracted core electrons from a complex beam profile of XFEL simulation data, which was not expressed by a set of slice parameters. FEL simulations showed that the FEL intensity was well remained even after extracting the core part. Consequently, the FEL performance can be estimated by this analysis without time-consuming FEL simulations.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, Lyle; Manin, Julien; Eagle, Ethan

    A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.

  7. Nonlinear Brightness Optimization in Compton Scattering

    DOE PAGES

    Hartemann, Fred V.; Wu, Sheldon S. Q.

    2013-07-26

    In Compton scattering light sources, a laser pulse is scattered by a relativistic electron beam to generate tunable x and gamma rays. Because of the inhomogeneous nature of the incident radiation, the relativistic Lorentz boost of the electrons is modulated by the ponderomotive force during the interaction, leading to intrinsic spectral broadening and brightness limitations. We discuss these effects, along with an optimization strategy to properly balance the laser bandwidth, diffraction, and nonlinear ponderomotive force.

  8. Forward Global Photometric Calibration of the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Burke, D. L.; Rykoff, E. S.; Allam, S.; Annis, J.; Bechtol, K.; Bernstein, G. M.; Drlica-Wagner, A.; Finley, D. A.; Gruendl, R. A.; James, D. J.; Kent, S.; Kessler, R.; Kuhlmann, S.; Lasker, J.; Li, T. S.; Scolnic, D.; Smith, J.; Tucker, D. L.; Wester, W.; Yanny, B.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; García-Bellido, J.; Gruen, D.; Gutierrez, G.; Honscheid, K.; Kuehn, K.; Kuropatkin, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.; DES Collaboration

    2018-01-01

    Many scientific goals for the Dark Energy Survey (DES) require the calibration of optical/NIR broadband b = grizY photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a “Forward Global Calibration Method (FGCM)” for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broadband survey imaging itself and models of the instrument and atmosphere to estimate the spatial and time dependences of the passbands of individual DES survey exposures. “Standard” passbands that are typical of the passbands encountered during the survey are chosen. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude {m}b{std} in the standard system. This “chromatic correction” to the standard system is necessary to achieve subpercent calibrations and in particular, to resolve ambiguity between the broadband brightness of a source and the shape of its SED. The FGCM achieves a reproducible and stable photometric calibration of standard magnitudes {m}b{std} of stellar sources over the multiyear Y3A1 data sample with residual random calibration errors of σ =6{--}7 {mmag} per exposure. The accuracy of the calibration is uniform across the 5000 {\\deg }2 DES footprint to within σ =7 {mmag}. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than 5 {mmag} for main-sequence stars with 0.5< g-i< 3.0.

  9. Aperture Fever and the Quality of AAVSO Visual Estimates: mu Cephei as an Example

    NASA Astrophysics Data System (ADS)

    Turner, D. G.

    2014-06-01

    (Abstract only) At the limits of human vision the eye can reach precisions of 10% or better in brightness estimates for stars. So why did the quality of AAVSO visual estimates suddenly drop to 50% or worse for many stars following World War II? Possibly it is a consequence of viewing variable stars through ever-larger aperture instruments than was the case previously, a time when many variables were observed without optical aid. An example is provided by the bright red supergiant variable mu Cephei, a star that has the potential to be a calibrating object for the extragalactic distance scale if its low-amplitude brightness variations are better defined. It appears to be a member of the open cluster Trumpler 37, so its distance and luminosity can be established provided one can pinpoint the amount of interstellar extinction between us and it. mu Cep appears to be a double-mode pulsator, as suggested previously in the literature, but with periods of roughly 700 and 1,000 days it is unexciting to observe and its red color presents a variety of calibration problems. Improving quality control for such variable stars is an issue important not only to the AAVSO, but also to science in general.

  10. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling.

    PubMed

    Han, J W; Van Leeuwen, G M; Mizushina, S; Van de Kamer, J B; Maruyama, K; Sugiura, T; Azzopardi, D V; Edwards, A D

    2001-07-01

    In this study we present a design for a multi-frequency microwave radiometer aimed at prolonged monitoring of deep brain temperature in newborn infants and suitable for use during hypothermic neural rescue therapy. We identify appropriate hardware to measure brightness temperature and evaluate the accuracy of the measurements. We describe a method to estimate the tissue temperature distribution from measured brightness temperatures which uses the results of numerical simulations of the tissue temperature as well as the propagation of the microwaves in a realistic detailed three-dimensional infant head model. The temperature retrieval method is then used to evaluate how the statistical fluctuations in the measured brightness temperatures limit the confidence interval for the estimated temperature: for an 18 degrees C temperature differential between cooled surface and deep brain we found a standard error in the estimated central brain temperature of 0.75 degrees C. Evaluation of the systematic errors arising from inaccuracies in model parameters showed that realistic deviations in tissue parameters have little impact compared to uncertainty in the thickness of the bolus between the receiving antenna and the infant's head or in the skull thickness. This highlights the need to pay particular attention to these latter parameters in future practical implementation of the technique.

  11. SHIELD: FITGALAXY -- A Software Package for Automatic Aperture Photometry of Extended Sources

    NASA Astrophysics Data System (ADS)

    Marshall, Melissa

    2013-01-01

    Determining the parameters of extended sources, such as galaxies, is a common but time-consuming task. Finding a photometric aperture that encompasses the majority of the flux of a source and identifying and excluding contaminating objects is often done by hand - a lengthy and difficult to reproduce process. To make extracting information from large data sets both quick and repeatable, I have developed a program called FITGALAXY, written in IDL. This program uses minimal user input to automatically fit an aperture to, and perform aperture and surface photometry on, an extended source. FITGALAXY also automatically traces the outlines of surface brightness thresholds and creates surface brightness profiles, which can then be used to determine the radial properties of a source. Finally, the program performs automatic masking of contaminating sources. Masks and apertures can be applied to multiple images (regardless of the WCS solution or plate scale) in order to accurately measure the same source at different wavelengths. I present the fluxes, as measured by the program, of a selection of galaxies from the Local Volume Legacy Survey. I then compare these results with the fluxes given by Dale et al. (2009) in order to assess the accuracy of FITGALAXY.

  12. Xenon gas field ion source from a single-atom tip

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  13. Enchanced methods of hydrophilized CdSe quantum dots synthesis

    NASA Astrophysics Data System (ADS)

    Potapkin, D. V.; Zharkova, I. S.; Goryacheva, I. Y.

    2015-03-01

    Quantum dots are bright and stable fluorescence signal sources, but for most of applications they need an additional hydrophilization step. Unfortunately, most of existing approaches lead to QD's fluorescence quenching, so there is a need for additional enhancing of hydrophilized QD's brightness like UV irradiation, which can be used both on water insoluble QD's with oleic acid ligands (in toluene) and on hydrophilized QD's covered with UV-stable polymer (in aqueous solution). For synthesis of bright water-soluble fluorescent labels CdSe/CdS/ZnS colloidal quantum dots were covered with PAMAM dendrimer and irradiated with UV lamp in quartz cuvettes for 3 hours at the room temperature and then compared with control sample.

  14. Nova-like cataclysmic variable TT Arietis. QPO behaviour coming back from positive superhumps

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Andronov, I. L.; Cha, S. M.; Chinarova, L. L.; Yoon, J. N.

    2009-03-01

    Aims: We study the variability of the nova-like cataclysmic variable TT Ari, on time-scales of between minutes and months. Methods: The observations in the filter R were obtained at the 40-cm telescope of the Chungbuk National University (Korea), 51 observational runs cover 226 h. The table of individual observations is available electronically. In our analysis, we applied several methods: periodogram, wavelet, and scalegram analysis. Results: TT Ari remained in a “negative superhump” state after its return from the “positive superhump” state, which lasted for 8 years. The ephemeris for 12 of the best pronounced minima is T_min=BJD 2 453 747.0700(47)+0.132322(53)E. The phases of minima may reach 0.2, which reflects the non-eclipse nature of these minima. The quasi-periodic oscillations (QPO) are present with a mean “period” of 21.6 min and mean semi-amplitude of 36 mmag. This value is consistent with the range 15-25 min reported for previous “negative superhump” states and does not support the hypothesis of secular decrease in the QPO period. Either the period, or the semi-amplitude show significant night-to-night variations. According to the position at the two-parameter diagrams (i.e. diagrams of pairs of parameters: time, mean brightness of the system, brightness of the source of QPO, amplitude, and timescale of the QPOs), the interval of observations was divided into 5 parts, showing different characteristics: 1) the “pre-outburst” stage; 2) the “rise to outburst”; 3) “top of the outbursts”; 4) “post-outburst QPO” state; and 5) “slow brightening”. The the QPO source was significantly brighter during the 10-day outburst, than during the preceding interval. However, after the outburst, the large brightness of the QPO source still existed for about 30 days, producing the stage “4”. The diagram for m_QPO(bar{m}) exhibits two groups in the brightness range 10fm6-10fm8, which correspond to larger and smaller amplitudes of the QPO. For the group “5” only, statistically significant correlations were found, for which, with increasing mean brightness, the period, amplitude, and brightness of the of QPO source also increase. The mean brightness at the “negative superhump state” varies within 10fm3-11fm2, so the system is brighter than at the “positive superhump” (11fm3), therefore the “negative superhump” phenomenon may be interpreted by a larger accretion rate. The system is an excellent laboratory for studying processes resulting in variations on timescales of between seconds and decades and needs further monitoring at various states of activity. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/496/765

  15. MAXI J1820+070 has optical period of 3.4 hours

    NASA Astrophysics Data System (ADS)

    Richmond, Michael

    2018-05-01

    I have observed the transient source MAXI J1820+070 in the optical since 2018 March 24. In the past two weeks, the source has started to show long-term variations in brightness of amplitude approximately 0.03 - 0.10 magnitude.

  16. Exotic X-ray Sources from Intermediate Energy Electron Beams

    NASA Astrophysics Data System (ADS)

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J. L.; Lancaster, G.

    2003-08-01

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, "novel" x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic "structure" of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR).

  17. Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source

    PubMed Central

    2017-01-01

    Integrated single-photon sources with high photon-extraction efficiency are key building blocks for applications in the field of quantum communications. We report on a bright single-photon source realized by on-chip integration of a deterministic quantum dot microlens with a 3D-printed multilens micro-objective. The device concept benefits from a sophisticated combination of in situ 3D electron-beam lithography to realize the quantum dot microlens and 3D femtosecond direct laser writing for creation of the micro-objective. In this way, we obtain a high-quality quantum device with broadband photon-extraction efficiency of (40 ± 4)% and high suppression of multiphoton emission events with g(2)(τ = 0) < 0.02. Our results highlight the opportunities that arise from tailoring the optical properties of quantum emitters using integrated optics with high potential for the further development of plug-and-play fiber-coupled single-photon sources. PMID:28670600

  18. High duty cycle inverse Compton scattering X-ray source

    DOE PAGES

    Ovodenko, A.; Agustsson, R.; Babzien, M.; ...

    2016-12-22

    Inverse Compton Scattering (ICS) is an emerging compact X-ray source technology, where the small source size and high spectral brightness are of interest for multitude of applications. However, to satisfy the practical flux requirements, a high-repetition-rate ICS system needs to be developed. To this end, this article reports the experimental demonstration of a high peak brightness ICS source operating in a burst mode at 40 MHz. A pulse train interaction has been achieved by recirculating a picosecond CO 2 laser pulse inside an active optical cavity synchronized to the electron beam. The pulse train ICS performance has been characterized atmore » 5- and 15- pulses per train and compared to a single pulse operation under the same operating conditions. Lastly, with the observed near-linear X-ray photon yield gain due to recirculation, as well as noticeably higher operational reliability, the burst-mode ICS offers a great potential for practical scalability towards high duty cycles.« less

  19. A non cool-core 4.6-keV cluster around the bright nearby radio galaxy PKS B1416-493

    NASA Astrophysics Data System (ADS)

    Worrall, D. M.; Birkinshaw, M.

    2017-05-01

    We present new X-ray (Chandra) and radio (ATCA) observations of the z = 0.09 radio galaxy PKS B1416-493, a member of the southern equivalent of the 3CRR sample. We find the source to be embedded in a previously unrecognized bright kT = 4.6-keV non cool-core cluster. The discovery of new clusters of such high temperature and luminosity within z = 0.1 is rare. The radio source was chosen for observation based on its intermediate FR I/II morphology. We identify a cavity coincident with the northeast lobe, and excess counts associated with the southwest lobe that we interpret as inverse-Compton X-ray emission. The jet power, at 5.3 × 1044 erg s-1, when weighted by radio source density, supports suggestions that radio sources of intermediate morphology and radio power may dominate radio-galaxy heating in the local Universe.

  20. Quasi-integrable non-linear Schrödinger models, infinite towers of exactly conserved charges and bright solitons

    NASA Astrophysics Data System (ADS)

    Blas, H.; do Bonfim, A. C. R.; Vilela, A. M.

    2017-05-01

    Deformations of the focusing non-linear Schrödinger model (NLS) are considered in the context of the quasi-integrability concept. We strengthen the results of JHEP 09 (2012) 103 for bright soliton collisions. We addressed the focusing NLS as a complement to the one in JHEP 03 (2016) 005 , in which the modified defocusing NLS models with dark solitons were shown to exhibit an infinite tower of exactly conserved charges. We show, by means of analytical and numerical methods, that for certain two-bright-soliton solutions, in which the modulus and phase of the complex modified NLS field exhibit even parities under a space-reflection symmetry, the first four and the sequence of even order charges are exactly conserved during the scattering process of the solitons. We perform extensive numerical simulations and consider the bright solitons with deformed potential V=2η /2+\\upepsilon{({|ψ |}^2)}^{2+\\upepsilon},\\upepsilon \\in \\mathbb{R},η <0 . However, for two-soliton field components without definite parity we also show numerically the vanishing of the first non-trivial anomaly and the exact conservation of the relevant charge. So, the parity symmetry seems to be a sufficient but not a necessary condition for the existence of the infinite tower of conserved charges. The model supports elastic scattering of solitons for a wide range of values of the amplitudes and velocities and the set { η, ɛ}. Since the NLS equation is ubiquitous, our results may find potential applications in several areas of non-linear science.

  1. Fourth Generation Light Sources

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    1997-05-01

    Concepts and designs are now being developed at laboratories around the world for light sources with performance levels that exceed present sources, including the very powerful and successful third generation synchrotron radiation sources that have come on line in the past few years. Workshops (M. Cornacchia and H. Winick (eds), Workshop on Fourth Generation Light Sources, Feb. 24-27, 1992, SSRL Report 92/02) (J.-L. Laclare (ed), ICFA Workshop on Fourth Generation Light Sources, Jan. 22-25, 1996, ESRF Report) have been held to review directions for future sources. A main thrust is to increase the brightness and coherence of the radiation using storage rings with lower electron-beam emittance or free-electron lasers (FELs). In the infra-red part of the spectrum very high brightness and coherence is already provided by FEL user facilities driven by linacs and storage rings. It now appears possible to extend FEL operation to the VUV, soft X-ray and even hard X-ray spectral range, to wavelengths down to the angstrom range, using high energy linacs equipped with high-brightness rf photoinjectors and bunch-length compressors. R&D to develop such sources is in progress at BNL, DESY, KEK, SLAC and other laboratories. In the absence of mirrors to form optical cavities, short wavelengths are reached in FEL systems in which a high peak current, low-emittance electron beam becomes bunch-density modulated at the optical wavelength in a single pass through a long undulator by self-amplified spontaneous emission (SASE); i.e.; startup from noise. A proposal to use the last kilometer of the three kilometer SLAC linac (the first two kilometers will be used for injection to the PEP II B-Factory) to provide 15 GeV electron beams to reach 1.5 Angstroms by SASE in a 100 m long undulator is in preparation.

  2. The ISOPHOT far-infrared serendipity north ecliptic pole minisurvey

    NASA Astrophysics Data System (ADS)

    Stickel, M.; Bogun, S.; Lemke, D.; Klaas, U.; Toth, L. V.; Herbstmeier, U.; Richter, G.; Assendorp, R.; Laureijs, R.; Kessler, M. F.; Burgdorf, M.; Beichman, C. A.; Rowan-Robinson, M.; Efstathiou, A.

    1998-08-01

    The ISOPHOT Serendipity Survey fills the otherwise unused slew time between ISO's fine pointings with measurements in an unexplored wavelength regime near 200 microns. In order to test point source extraction software, the completeness of the detected objects as well as the astrophysical content we investigate a 100 sq degr field near the North ecliptic pole, dubbed ISOPHOT Serendipity Minisurvey field. A total of 21 IRAS point sources were detected on the Serendipity slews crossing the field. 19 of these objects are galaxies, one is a planetary nebula and one is an empty field without a bright optical counterpart. The detection completeness is better than 90% for IRAS sources brighter than 2 Jy at 100 microns and better than 80% for sources brighter than 1.5 Jy. The source detection frequency is about 1 per 40degr slew length, in agreement with previous estimations based on galaxy number counts. After the end of the ISO mission, about 4000 point sources are expected to be found in the Serendipity slews. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA. Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) are MPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena, Imperial College London

  3. Understanding Bright 13 keV Kr K-shell X-ray Sources at the NIF

    NASA Astrophysics Data System (ADS)

    May, M. J.; Colvin, J. D.; Kemp, G. E.; Fournier, K. B.; Scott, H.; Patel, M.; Barrios, Widmann; Widmann, K.

    2015-11-01

    High x-ray conversion efficiency (CE) K-shell Kr sources are being investigated for High Energy Density experiments. These sources are 4.1 mm in diameter 4.4 mm tall hollow epoxy tubes having a 40 μm thick wall holding either 1.2 or 1.5 atm of Kr gas. The CE of K-shell Kr is dependent upon the peak electron temperature in the radiating plasma. In the NIF experiments, the available energy heats the source to Te = 6-7 keV, well below the temperature of Te ~25 keV needed to optimize the Kr CE. The CE is a steep function of the peak electron temperature. A spatially averaged electron temperature can be estimated from measured He(α) and Ly(α) line ratios. Some disagreement has been observed in the simulated and measured line ratios for some of these K-shell sources. Disagreements have been observed between the simulated and measured line ratios for some of these K-shell sources. To help understand this issue, Kr gas pipes have been shot with 3 ω light at ?750 kJ at ~210, ~140 TW and ~120 TW power levels with 3.7, 5.2 and 6.7 ns pulses, respectively. The power and pulse length scaling of the measured CE and K-shell line ratios and their comparison to simulations will be discussed. This work was performed under the auspic

  4. Simultaneous Assimilation of AMSR-E Brightness Temperature and MODIS LST to Improve Soil Moisture with Dual Ensemble Kalman Smoother

    NASA Astrophysics Data System (ADS)

    Huang, Chunlin; Chen, Weijin; Wang, Weizhen; Gu, Juan

    2017-04-01

    Uncertainties in model parameters can easily cause systematic differences between model states and observations from ground or satellites, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this paper, a novel soil moisture assimilation scheme is developed to simultaneously assimilate AMSR-E brightness temperature (TB) and MODIS Land Surface Temperature (LST), which can correct model bias by simultaneously updating model states and parameters with dual ensemble Kalman filter (DEnKS). The Common Land Model (CoLM) and a Q-h Radiative Transfer Model (RTM) are adopted as model operator and observation operator, respectively. The assimilation experiment is conducted in Naqu, Tibet Plateau, from May 31 to September 27, 2011. Compared with in-situ measurements, the accuracy of soil moisture estimation is tremendously improved in terms of a variety of scales. The updated soil temperature by assimilating MODIS LST as input of RTM can reduce the differences between the simulated and observed brightness temperatures to a certain degree, which helps to improve the estimation of soil moisture and model parameters. The updated parameters show large discrepancy with the default ones and the former effectively reduces the states bias of CoLM. Results demonstrate the potential of assimilating both microwave TB and MODIS LST to improve the estimation of soil moisture and related parameters. Furthermore, this study also indicates that the developed scheme is an effective soil moisture downscaling approach for coarse-scale microwave TB.

  5. Using Simplistic Shape/Surface Models to Predict Brightness in Estimation Filters

    NASA Astrophysics Data System (ADS)

    Wetterer, C.; Sheppard, D.; Hunt, B.

    The prerequisite for using brightness (radiometric flux intensity) measurements in an estimation filter is to have a measurement function that accurately predicts a space objects brightness for variations in the parameters of interest. These parameters include changes in attitude and articulations of particular components (e.g. solar panel east-west offsets to direct sun-tracking). Typically, shape models and bidirectional reflectance distribution functions are combined to provide this forward light curve modeling capability. To achieve precise orbit predictions with the inclusion of shape/surface dependent forces such as radiation pressure, relatively complex and sophisticated modeling is required. Unfortunately, increasing the complexity of the models makes it difficult to estimate all those parameters simultaneously because changes in light curve features can now be explained by variations in a number of different properties. The classic example of this is the connection between the albedo and the area of a surface. If, however, the desire is to extract information about a single and specific parameter or feature from the light curve, a simple shape/surface model could be used. This paper details an example of this where a complex model is used to create simulated light curves, and then a simple model is used in an estimation filter to extract out a particular feature of interest. In order for this to be successful, however, the simple model must be first constructed using training data where the feature of interest is known or at least known to be constant.

  6. An Ultraviolet and Near-Infrared View of NGC 4214: A Starbursting Core Embedded in a Low Surface Brightness Disk

    NASA Astrophysics Data System (ADS)

    Fanelli, Michael N.; Waller, William W.; Smith, Denise A.; Freedman, Wendy L.; Madore, Barry; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Bohlin, Ralph; Smith, Andrew M.; Stecher, Theodore P.

    1997-05-01

    During the Astro-2 Spacelab mission in 1995 March, the Ultraviolet Imaging Telescope (UIT) obtained far-UV (λ = 1500 Å) imagery of the nearby Sm/Im galaxy NGC 4214. The UIT images have a spatial resolution of ~3" and a limiting surface brightness, μ1500 > 25 mag arcsec-2, permitting detailed investigation of the intensity and spatial distribution of the young, high-mass stellar component. These data provide the first far-UV imagery covering the full spatial extent of NGC 4214. Comparison with a corresponding I-band image reveals the presence of a starbursting core embedded in an extensive low surface brightness disk. In the far-UV (FUV), NGC 4214 is resolved into several components: a luminous, central knot; an inner region (r <~ 2.5 kpc) with ~15 resolved sources embedded in bright, diffuse emission; and a population of fainter knots extending to the edge of the optically defined disk (r ~ 5 kpc). The FUV light, which traces recent massive star formation, is observed to be more centrally concentrated than the I-band light, which traces the global stellar population. The FUV radial light profile is remarkably well represented by an R1/4 law, providing evidence that the centrally concentrated massive star formation in NGC 4214 is the result of an interaction, possibly a tidal encounter, with a dwarf companion(s). The brightest FUV source produces ~8% of the global FUV luminosity. This unresolved source, corresponding to the Wolf-Rayet knot described by Sargent & Filippenko, is located at the center of the FUV light distribution, giving NGC 4214 an active galactic nucleus-like morphology. Another strong source is present in the I band, located 19" west, 10" north of the central starburst knot, with no FUV counterpart. The I-band source may be the previously unrecognized nucleus of NGC 4214 or an evolved star cluster with an age greater than ~200 Myr. The global star formation rate derived from the total FUV flux is consistent with rates derived using data at other wavelengths and lends support to the scenario of roughly constant star formation during the last few hundred million years at a level significantly enhanced relative to the lifetime averaged star formation rate. The hybrid disk/starburst-irregular morphology evident in NGC 4214 emphasizes the danger of classifying galaxies based on their high surface brightness components at any particular wavelength.

  7. Three millisecond pulsars in FERMI LAT unassociated bright sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ransom, S. M.; Ray, P. S.; Camilo, F.

    2010-12-23

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. Here, we report the discovery of three radio and γ-ray millisecond pulsars (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind γ-ray pulsation searches. They seem to be relatively normal, nearby (≤2 kpc) MSPs. These observations, in combination with the Fermi detection of γ-rays from other known radio MSPs, imply that most, ifmore » not all, radio MSPs are efficient γ-ray producers. The γ-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Finally, their soft X-ray luminosities of ~10 30-10 31 erg s –1 are typical of the rare radio MSPs seen in X-rays.« less

  8. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    NASA Technical Reports Server (NTRS)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; hide

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<= 2 kpc) MSPs. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  9. Extreme Thunderstorms as Seen by Satellite

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.

    2014-01-01

    Extreme events by their nature fall outside the bounds of routine experience. With imperfect or ambiguous measuring systems, it is appropriate to question whether an unusual measurement represents an extreme event or is the result of instrument errors or other sources of noise. About three weeks after the Tropical Rainfall Measuring Mission (TRMM) satellite began collecting data in Dec 1997, a thunderstorm was observed over northern Argentina with 85 GHz brightness temperatures below 50 K and 37 GHz brightness temperatures below 70 K (Zipser et al. 2006). These values are well below what had previously been observed from satellite sensors with lower resolution. The 37 GHz brightness temperatures are also well below those measured by TRMM for any other storm in the subsequent 16 years. Without corroborating evidence, it would be natural to suspect a problem with the instrument, or perhaps an irregularity with the platform during the first weeks of the satellite mission. But the TRMM satellite also carries a radar and a lightning sensor, both confirming the presence of an intense thunderstorm. The radar recorded 40+ dBZ (decibels relative to Z) reflectivity up to about 19 km altitude. More than 200 lightning flashes per minute were recorded. That same storm's 19 GHz brightness temperatures below 150 K would normally be interpreted as the result of a low-emissivity water surface (e.g., a lake, or flood waters) if not for the simultaneous measurements of such intense convection. This paper will examine records from TRMM and related satellite sensors including SSMI and AMSR-E to find the strongest signatures resulting from thunderstorms, and distinguishing those from sources of noise. The lowest brightness temperatures resulting from thunderstorms as seen by TRMM have been in Argentina in November and December. For SSMI sensors carried on five DMSP satellites examined so far, the lowest thunderstorm-related brightness temperatures have been from Argentina in November - December and from Minnesota in June-July. The Minnesota cases were associated with spotter reports of large hail, significant severe wind, and tornadoes. Those locations have the record holders for each satellite. This paper will show examples of cases with the lowest brightness temperatures, and map the locations of these and other storms with brightness temperatures nearly as low. Higher resolution data from the field program MC3E and possibly from IPHEX will be considered for context.

  10. Variable Shadow Screens for Imaging Optical Devices

    NASA Technical Reports Server (NTRS)

    Lu, Ed; Chretien, Jean L.

    2004-01-01

    Variable shadow screens have been proposed for reducing the apparent brightnesses of very bright light sources relative to other sources within the fields of view of diverse imaging optical devices, including video and film cameras and optical devices for imaging directly into the human eye. In other words, variable shadow screens would increase the effective dynamic ranges of such devices. Traditionally, imaging sensors are protected against excessive brightness by use of dark filters and/or reduction of iris diameters. These traditional means do not increase dynamic range; they reduce the ability to view or image dimmer features of an image because they reduce the brightness of all parts of an image by the same factor. On the other hand, a variable shadow screen would darken only the excessively bright parts of an image. For example, dim objects in a field of view that included the setting Sun or bright headlights could be seen more readily in a picture taken through a variable shadow screen than in a picture of the same scene taken through a dark filter or a narrowed iris. The figure depicts one of many potential variations of the basic concept of the variable shadow screen. The shadow screen would be a normally transparent liquid-crystal matrix placed in front of a focal-plane array of photodetectors in a charge-coupled-device video camera. The shadow screen would be placed far enough from the focal plane so as not to disrupt the focal-plane image to an unacceptable degree, yet close enough so that the out-of-focus shadows cast by the screen would still be effective in darkening the brightest parts of the image. The image detected by the photodetector array itself would be used as feedback to drive the variable shadow screen: The video output of the camera would be processed by suitable analog and/or digital electronic circuitry to generate a negative partial version of the image to be impressed on the shadow screen. The parts of the shadow screen in front of those parts of the image with brightness below a specified threshold would be left transparent; the parts of the shadow screen in front of those parts of the image where the brightness exceeded the threshold would be darkened by an amount that would increase with the excess above the threshold.

  11. Genetic basis and fitness correlates of dynamic carotenoid-based ornamental coloration in male and female common kestrels Falco tinnunculus.

    PubMed

    Vergara, P; Fargallo, J A; Martínez-Padilla, J

    2015-01-01

    Knowledge of the genetic basis of sexual ornaments is essential to understand their evolution through sexual selection. Although carotenoid-based ornaments have been instrumental in the study of sexual selection, given the inability of animals to synthesize carotenoids de novo, they are generally assumed to be influenced solely by environmental variation. However, very few studies have directly estimated the role of genes and the environment in shaping variation in carotenoid-based traits. Using long-term individual-based data, we here explore the evolutionary potential of a dynamic, carotenoid-based ornament (namely skin coloration), in male and female common kestrels. We first estimate the amount of genetic variation underlying variation in hue, chroma and brightness. After correcting for sex differences, the chroma of the orange-yellow eye ring coloration was significantly heritable (h2±SE=0.40±0.17), whereas neither hue (h2=0) nor brightness (h2=0.02) was heritable. Second, we estimate the strength and shape of selection acting upon chromatic (hue and chroma) and achromatic (brightness) variation and show positive and negative directional selection on female but not male chroma and hue, respectively, whereas brightness was unrelated to fitness in both sexes. This suggests that different components of carotenoid-based signals traits may show different evolutionary dynamics. Overall, we show that carotenoid-based coloration is a complex and multifaceted trait. If we are to gain a better understanding of the processes responsible for the generation and maintenance of variation in carotenoid-based coloration, these complexities need to be taken into account. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  12. High-frequency predictions for number counts and spectral properties of extragalactic radio sources. New evidence of a break at mm wavelengths in spectra of bright blazar sources

    NASA Astrophysics Data System (ADS)

    Tucci, M.; Toffolatti, L.; de Zotti, G.; Martínez-González, E.

    2011-09-01

    We present models to predict high-frequency counts of extragalactic radio sources using physically grounded recipes to describe the complex spectral behaviour of blazars that dominate the mm-wave counts at bright flux densities. We show that simple power-law spectra are ruled out by high-frequency (ν ≥ 100 GHz) data. These data also strongly constrain models featuring the spectral breaks predicted by classical physical models for the synchrotron emission produced in jets of blazars. A model dealing with blazars as a single population is, at best, only marginally consistent with data coming from current surveys at high radio frequencies. Our most successful model assumes different distributions of break frequencies, νM, for BL Lacs and flat-spectrum radio quasars (FSRQs). The former objects have substantially higher values of νM, implying that the synchrotron emission comes from more compact regions; therefore, a substantial increase of the BL Lac fraction at high radio frequencies and at bright flux densities is predicted. Remarkably, our best model is able to give a very good fit to all the observed data on number counts and on distributions of spectral indices of extragalactic radio sources at frequencies above 5 and up to 220 GHz. Predictions for the forthcoming sub-mm blazar counts from Planck, at the highest HFI frequencies, and from Herschel surveys are also presented. Appendices are available in electronic form at http://www.aanda.org

  13. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly appealing for estimates close to the volcano emission source. Near the source the cloud optical thickness is expected to be large enough to induce saturation effects at the infrared sensor receiver thus vanishing the brightness temperature difference methods for the ash cloud identification. In the light of the introduction above, some case studies at Eyjafjallajökull 2010 (Iceland), Etna (Italy) and Calbuco (Cile), on 5-10 May 2010, 23rd Nov., 2013 and 23 Apr., 2015, respectively, are analysed in terms of source parameter estimates (manly the cloud top and mass flax rate) from ground based microwave weather radar (9.6 GHz) and satellite Low Earth Orbit microwave radiometers (50 - 183 GH). A special highlight will be given to the advantages and limitations of microwave-related products with respect to more conventional tools.

  14. Final Report on DTRA Basic Research Project #BRCALL08-Per3-C-2-0006 "High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, Jeffrey D.

    This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies,more » the spectral energy range where current x-ray sources are weak. All project goals were met.« less

  15. Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, J.

    2015-04-01

    The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution.

  16. Positron Beam Characteristics at NEPOMUC Upgrade

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Reiner, M.; Schreckenbach, K.; Vohburger, S.; Weber, J.; Zimnik, S.

    2014-04-01

    In 2012, the new neutron induced positron source NEPOMUC upgrade was put into operation at FRMII. Major changes have been made to the source which consists of a neutron-γ-converter out of Cd and a Pt foil structure for electron positron pair production and positron moderation. The new design leads to an improvement of both intensity and brightness of the mono-energetic positron beam. In addition, the application of highly enriched 113Cd as neutron-γ-converter extends the lifetime of the positron source to 25 years. A new switching and remoderation device has been installed in order to allow toggling from the high-intensity primary beam to a brightness enhanced remoderated positron beam. At present, an intensity of more than 109 moderated positrons per second is achieved at NEPOMUC upgrade. The main characteristics are presented which comprise positron yield and beam profile of both the primary and the remoderated positron beam.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less

  18. Interferometric Constraints on Surface Brightness Asymmetries in Long-Period Variable Stars: A Threat to Accurate Gaia Parallaxes

    NASA Astrophysics Data System (ADS)

    Sacuto, S.; Jorissen, A.; Cruzalèbes, P.; Pasquato, E.; Chiavassa, A.; Spang, A.; Rabbia, Y.; Chesneau, O.

    2011-09-01

    A monitoring of surface brightness asymmetries in evolved giants and supergiants is necessary to estimate the threat that they represent to accurate Gaia parallaxes. Closure-phase measurements obtained with AMBER/VISA in a 3-telescope configuration are fitted by a simple model to constrain the photocenter displacement. The results for the C-type star TX Psc show a large deviation of the photocenter displacement that could bias the Gaia parallax.

  19. Brightness temperature - obtaining the physical properties of a non-equipartition plasma

    NASA Astrophysics Data System (ADS)

    Nokhrina, E. E.

    2017-06-01

    The limit on the intrinsic brightness temperature, attributed to `Compton catastrophe', has been established being 1012 K. Somewhat lower limit of the order of 1011.5 K is implied if we assume that the radiating plasma is in equipartition with the magnetic field - the idea that explained why the observed cores of active galactic nuclei (AGNs) sustained the limit lower than the `Compton catastrophe'. Recent observations with unprecedented high resolution by the RadioAstron have revealed systematic exceed in the observed brightness temperature. We propose means of estimating the degree of the non-equipartition regime in AGN cores. Coupled with the core-shift measurements, the method allows us to independently estimate the magnetic field strength and the particle number density at the core. We show that the ratio of magnetic energy to radiating plasma energy is of the order of 10-5, which means the flow in the core is dominated by the particle energy. We show that the magnetic field obtained by the brightness temperature measurements may be underestimated. We propose for the relativistic jets with small viewing angles the non-uniform magnetohydrodynamic model and obtain the expression for the magnetic field amplitude about two orders higher than that for the uniform model. These magnetic field amplitudes are consistent with the limiting magnetic field suggested by the `magnetically arrested disc' model.

  20. Continued observations of the H Ly alpha emission from Uranus

    NASA Technical Reports Server (NTRS)

    Clarke, J.; Durrance, S.; Moos, W.; Murthy, J.; Atreya, S.; Barnes, A.; Mihalov, J.; Belcher, J.; Festou, M.; Imhoff, C.

    1986-01-01

    Observations of Uranus obtained over four years with the IUE Observatory supports the initial identification of a bright H Ly alpha flux which varies independently of the solar H Ly alpha flux, implying a largely self-excited emission. An average brightness of 1400 Rayleighs is derived, and limits for the possible contribution by reflected solar H Ly alpha emission, estimated to be about 200 Rayleighs, suggest that the remaining self-excited emission is produced by an aurora. Based on comparison with solar wind measurements obtained in the vicinity of Uranus by Voyager 2 and Pioneer 11, no evidence for correlation between the solar wind density and the H Ly alpha brightness is found. The upper limit to H2 emission gives a lower limit to the ratio of H Ly alpha/H2 emissions of about 2.4, suggesting that the precipitating particles may be significantly less energetic on Uranus than those responsible for the aurora on Jupiter. The average power in precipitating particles is estimated to be of the order of 10 to the 12th W.

  1. Towards a Table-Top Laser Driven XUV/X-Ray Source

    DTIC Science & Technology

    2015-08-27

    irradiated with intense ultra-short laser pulses. Bright monochromatic x- rays and broadband XUV emissions...as   evidenced  in  nature  by  the  sun,  stars,  and   gamma   ray  bursters.  In  laboratory  conditions,   bright...N.   Nerush,   I.   Yu.   Kostyukov,   B.   F.   Shen,   and   K.   U.   Akli;   "Energy partition,   gamma   ray

  2. The nu sub 9 fundamental of ethane - Integrated intensity and band absorption measurements with application to the atmospheres of the major planets

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Cess, R. D.; Bangaru, B. R. P.

    1974-01-01

    Measurements of the absolute intensity and integrated band absorption have been performed for the nu sub 9 fundamental band of ethane. The intensity is found to be about 34 per sq cm per atm at STP, and this is significantly higher than previous estimates. It is shown that a Gaussian profile provides an empirical representation of the apparent spectral absorption coefficient. Employing this empirical profile, a simple expression is derived for the integrated band absorption, which is in excellent agreement with experimental values. The band model is then employed to investigate the possible role of ethane as a source of thermal infrared opacity within the atmospheres of Jupiter and Saturn, and to interpret qualitatively observed brightness temperatures for Saturn.

  3. TeV Gamma Rays From Galactic Center Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Cholis, Ilias; Linden, Tim

    Measurements of the nearby pulsars Geminga and B0656+14 by the HAWC and Milagro telescopes have revealed the presence of bright TeV-emitting halos surrounding these objects. If young and middle-aged pulsars near the Galactic Center transfer a similar fraction of their energy into TeV photons, then these sources could dominate the emission that is observed by HESS and other ground-based telescopes from the innermost ~10^2 parsecs of the Milky Way. In particular, both the spectral shape and the angular extent of this emission is consistent with TeV halos produced by a population of pulsars. The overall flux of this emission requiresmore » a birth rate of ~100-1000 neutron stars per Myr near the Galactic Center, in good agreement with recent estimates.« less

  4. Hires and beyond

    NASA Technical Reports Server (NTRS)

    Fowler, John W.; Aumann, H. H.

    1994-01-01

    The High-Resolution image construction program (HiRes) used at IPAC is based on the Maximum Correlation Method. After HiRes intensity images are constructed from IRAS data, additional images are needed to aid in scientific interpretation. Some of the images that are available for this purpose show the fitting noise, estimates of the achieved resolution, and detector track maps. Two methods have been developed for creating color maps without discarding any more spatial information than absolutely necessary: the 'cross-band simulation' and 'prior-knowledge' methods. These maps are demonstrated using the survey observations of a 2 x 2 degree field centered on M31. Prior knowledge may also be used to achieve super-resolution and to suppress ringing around bright point sources observed against background emission. Tools to suppress noise spikes and for accelerating convergence are also described.

  5. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2003-01-22

    This Chandra X-ray observatory image of M83 shows numerous point-like neutron stars and black hole x-ray sources scattered throughout the disk of this spiral galaxy. The bright nuclear region of the galaxy glows prominently due to a burst of star formation that is estimated to have begun about 20 million years ago in the galaxy's time frame. The nuclear region, enveloped by a 7 million degree Celsius gas cloud of carbon, neon, magnesium, silicon, and sulfur atoms, contains a much higher concentration of neutron stars and black holes than the rest of the galaxy. Hot gas with a slightly lower temperature of 4 million degrees observed along the spiral arms of the galaxy suggests that star formation in this region may be occurring at a more sedate rate.

  6. Investigating Mercury's South Polar Deposits: Arecibo Radar Observations and High-Resolution Determination of Illumination Conditions

    NASA Astrophysics Data System (ADS)

    Chabot, Nancy L.; Shread, Evangela E.; Harmon, John K.

    2018-02-01

    There is strong evidence that Mercury's polar deposits are water ice hosted in permanently shadowed regions. In this study, we present new Arecibo radar observations of Mercury's south pole, which reveal numerous radar-bright deposits and substantially increase the radar imaging coverage. We also use images from MESSENGER's full mission to determine the illumination conditions of Mercury's south polar region at the same spatial resolution as the north polar region, enabling comparisons between the two poles. The area of radar-bright deposits in Mercury's south is roughly double that found in the north, consistent with the larger permanently shadowed area in the older, cratered terrain at the south relative to the younger smooth plains at the north. Radar-bright features are strongly associated with regions of permanent shadow at both poles, consistent with water ice being the dominant component of the deposits. However, both of Mercury's polar regions show that roughly 50% of permanently shadowed regions lack radar-bright deposits, despite some of these locations having thermal environments that are conducive to the presence of water ice. The observed uneven distribution of water ice among Mercury's polar cold traps may suggest that the source of Mercury's water ice was not a steady, regular process but rather that the source was an episodic event, such as a recent, large impact on the innermost planet.

  7. PEP as a synchrotron radiation source (invited)

    NASA Astrophysics Data System (ADS)

    Bienenstock, A.; Brown, G.; Wiedemann, H.; Winick, H.

    1989-07-01

    The 16-GeV storage ring PEP has characteristics which enable it to operate in modes with very low emittance and to accommodate very long undulators, producing synchrotron radiation at x-ray wavelengths with extremely high brightness and coherent power. Two beamlines, each illuminated by a 2-m long, 77-mm period undulator magnet, are now operational and others are planned. In parasitic operation during colliding-beam runs at 14.5 GeV, these beamlines provide photons above 10 keV with a peak brightness of about 1016 photons/(s mm2 mrad2 ) within a 0.1% bandwidth. In low-emittance tests at 7.1 GeV, horizontal emittances of about 5 nm rad were measured, which is about the same as that planned for the new third-generation x-ray sources. With a current of 15 mA at 7.1 GeV, the present undulators deliver photon beams from 2.7 to 14 keV with a peak brightness of about 1017 . Higher performance levels are expected with the implementation of longer undulators and shorter period undulators. In the longer term, because of its large circumference and long straight sections, PEP could be further developed to achieve even higher performance levels with an emittance below 1 nm rad, very long undulators and picosecond bunches, resulting in one to two orders of magnitude higher brightness and coherent power.

  8. Morphology and Dynamics of Jets of Comet 67P Churyumov-Gerasimenko: Early Phase Development

    NASA Astrophysics Data System (ADS)

    Lin, Zhong-Yi; Ip, Wing-Huen; Lai, Ian-Lin; Lee, Jui-Chi; Pajola, Maurizio; Lara, Luisa; Gutierrez, Pedro; Rodrigo, Rafael; Bodewits, Dennis; A'Hearn, Mike; Vincent, Jean-Baptiste; Agarwal, Jessica; Keller, Uwe; Mottola, Stefano; Bertini, Ivano; Lowry, Stephen; Rozek, Agata; Liao, Ying; Rosetta Osiris Coi Team

    2015-04-01

    The scientific camera, OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System), onboard the Rosetta spacecraft comprises a Narrow Angle Camera (NAC) for nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field of dust and gas coma investigations. The dynamical behavior of jets in the dust coma continuously monitored by using dust filters from the arrival at the comet (August 2014) throughout the mapping phase (Oct. 2014) is described here. The analysis will cover the study of the time variability of jets, the source regions of these jets, the excess brightness of jets relative to the averaged coma brightness, and the brightness distribution of dust jets along the projected distance. The jets detected between August and September originated mostly from the neck region (Hapi). Morphological changes appeared over a time scale of several days in September. The brightness slope of the dust jets is much steeper than the background coma. This might be related to the sublimation or fragmentation of the emitted dust grains. Inter-comparison with results from other experiments will be necessary to understand the difference between the dust emitted from Hapi and those from the head and the body of the nucleus surface. The physical properties of the Hapi jets will be compared to dust jets (and their source regions) to emerge as comet 67P moves around the perihelion.

  9. Estimation of surface temperature in remote pollution measurement experiments

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1978-01-01

    A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.

  10. Foreground Characterization for the Murchison Widefield Array Using the Jansky Very Large Array

    NASA Astrophysics Data System (ADS)

    Busch, Michael P.; Bowman, Judd D.; Kittiwisit, Piyanat; Jacobs, Danny

    2016-01-01

    One of the most compelling questions in astrophysics today is how the process of galaxy formation unfolded during the Epoch of Reionization (EoR). A new generation of radio telescopes, including the Murchison Widefield Array (MWA) and others, are attempting to capture the redshifted 21cm signal from neutral hydrogen during the EoR. Mapping the reionization of the intergalactic medium (IGM) is one of the core objectives of 21 cm observatories. A pressing concern of these observations is the bright foreground sources in the telescope's sidelobes outside the primary beam of the MWA. These sources, including AGN, radio galaxies and local Galactic sources, are numerous and difficult to deal with. These foreground contaminants are five orders of magnitude brighter than the redshifted 21 cm emission expected from the IGM during the EoR. The Jansky Very Large Array (JVLA) in New Mexico can provide sensitive characterization of these sources in the MWA's northern sidelobe. We observed 100 bright radio sources using the JVLA in P-band and characterized these sources by extracting the spectral fits and fluxes for each source. By creating a foreground model for these data, the MWA will be able to better subtract these sources from future EoR measurements. We report the current status of the creation of the foreground model.

  11. Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery

    NASA Astrophysics Data System (ADS)

    Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn

    1986-09-01

    During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.

  12. Investigation of fundamental limits to beam brightness available from photoinjectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazarov, Ivan

    2015-07-09

    The goal of this project was investigation of fundamental limits to beam brightness available from photoinjectors. This basic research in accelerator physics spanned over 5 years aiming to extend the fundamental understanding of high average current, low emittance sources of relativistic electrons based on photoemission guns, a necessary prerequisite for a new generation of coherent X-ray synchrotron radiation facilities based on continuous duty superconducting linacs. The program focused on two areas critical to making advances in the electron source performance: 1) the physics of photocathodes for the production of low emittance electrons and 2) control of space charge forces inmore » the immediate vicinity to the cathode via 3D laser pulse shaping.« less

  13. Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver

    NASA Astrophysics Data System (ADS)

    Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-10-01

    Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.

  14. Energy Recovery Linacs for Light Source Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the statusmore » of worldwide programs and discuss the technology challenges to provide such beams for photon production.« less

  15. [C II] 158 μm EMISSION AS A STAR FORMATION TRACER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera-Camus, R.; Bolatto, A. D.; Wolfire, M. G.

    2015-02-10

    The [C II] 157.74 μm transition is the dominant coolant of the neutral interstellar gas, and has great potential as a star formation rate (SFR) tracer. Using the Herschel KINGFISH sample of 46 nearby galaxies, we investigate the relation of [C II] surface brightness and luminosity with SFR. We conclude that [C II] can be used for measurements of SFR on both global and kiloparsec scales in normal star-forming galaxies in the absence of strong active galactic nuclei (AGNs). The uncertainty of the Σ{sub [C} {sub II]} – Σ{sub SFR} calibration is ±0.21 dex. The main source of scatter in themore » correlation is associated with regions that exhibit warm IR colors, and we provide an adjustment based on IR color that reduces the scatter. We show that the color-adjusted Σ{sub [C} {sub II]} – Σ{sub SFR} correlation is valid over almost five orders of magnitude in Σ{sub SFR}, holding for both normal star-forming galaxies and non-AGN luminous infrared galaxies. Using [C II] luminosity instead of surface brightness to estimate SFR suffers from worse systematics, frequently underpredicting SFR in luminous infrared galaxies even after IR color adjustment (although this depends on the SFR measure employed). We suspect that surface brightness relations are better behaved than the luminosity relations because the former are more closely related to the local far-UV field strength, most likely the main parameter controlling the efficiency of the conversion of far-UV radiation into gas heating. A simple model based on Starburst99 population-synthesis code to connect SFR to [C II] finds that heating efficiencies are 1%-3% in normal galaxies.« less

  16. A bright lensed galaxy at z = 5.4 with strong Lyα emission

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Clément, Benjamin; Mainali, Ramesh; Stark, Daniel P.; Gronke, Max; Dijkstra, Mark; Fan, Xiaohui; Bian, Fuyan; Frye, Brenda; Jiang, Linhua; Kneib, Jean-Paul; Limousin, Marceau; Walth, Gregory

    2018-05-01

    We present a detailed study of a unusually bright, lensed galaxy at z = 5.424 discovered within the CFHTLS imaging survey. With an observed flux of iAB = 23.0, J141446.82+544631.9 is one of the brightest galaxies known at z > 5. It is characterized by strong Lyα emission, reaching a peak in (observed) flux density of >10-16 erg s-1 cm-2 Å-1. A deep optical spectrum from the LBT places strong constraints on N V and C IV emission, disfavouring an AGN source for the emission. However, a detection of the N IV] λ1486 emission line indicates a hard ionizing continuum, possibly from hot, massive stars. Resolved imaging from HST deblends the galaxy from a foreground interloper; these observations include narrowband imaging of the Lyα emission, which is marginally resolved on ˜few kpc scales and has EW0 ˜ 260Å. The Lyα emission extends over ˜2000 km s-1 and is broadly consistent with expanding shell models. SED fitting that includes Spitzer/IRAC photometry suggests a complex star formation history that include both a recent burst and an evolved population. J1414+5446 lies 30″ from the centre of a known lensing cluster in the CFHTLS; combined with the foreground contribution this leads to a highly uncertain estimate for the lensing magnification in the range 5 ≲ μ ≲ 25. Because of its unusual brightness J1414+5446 affords unique opportunities for detailed study of an individual galaxy near the epoch of reionization and a preview of what can be expected from upcoming wide-area surveys that will yield hundreds of similar objects.

  17. The Coronal Analysis of SHocks and Waves (CASHeW) framework

    NASA Astrophysics Data System (ADS)

    Kozarev, Kamen A.; Davey, Alisdair; Kendrick, Alexander; Hammer, Michael; Keith, Celeste

    2017-11-01

    Coronal bright fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed (mostly in extreme ultraviolet (EUV) light) as transient bright fronts of finite width, propagating away from the eruption source location. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between waves in the low corona and coronal mass ejection (CME)-driven shocks. EUV imaging with the atmospheric imaging assembly instrument on the solar dynamics observatory has proven particularly useful for detecting large-scale short-lived CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the coronal analysis of shocks and waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the interactive data language. In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.

  18. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  19. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6

    PubMed Central

    Decarli, R.; Walter, F.; Venemans, B.P.; Bañados, E.; Bertoldi, F.; Carilli, C.; Fan, X.; Farina, E.P.; Mazzucchelli, C.; Riechers, D.; Rix, H.-W.; Strauss, M.A.; Wang, R.; Yang, Y.

    2017-01-01

    The existence of massive (1011 Msun) elliptical galaxies by redshift z~4[1,2,3] (when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star formation rates SFR>100 Msun/yr at z>6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star formation rates are more than an order of magnitude lower[4]. The only known examples of very high rate galaxies at z>6 are, with only one exception[5], quasar host galaxies[6,7,8,9], i.e. galaxies that host an accreting supermassive (~109 Msun) black hole that likely affects the host properties. Here we report observations of the [CII] 158 μm line in 4 galaxies that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. Based upon the [CII] measurements, we estimate star formation rates of >100 Msun/yr. These sources are similar to the quasar hosts in [CII] brightness, line width and implied dynamical masses, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift[10,11,12]. We find such close companions in 4 out of 25 z>6 quasars surveyed, a fraction that needs to be accounted for in simulations[13,14]. If representative of the bright end of the [CII] luminosity function, they can account for the population of massive elliptical galaxies at z~4 in terms of cosmic space density. PMID:28541326

  20. The ASAS-SN bright supernova catalogue – I. 2013–2014

    DOE PAGES

    Holoien, T. W. -S.; Stanek, K. Z.; Kochanek, C. S.; ...

    2016-09-12

    We present basic statistics for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during its first year-and-a-half of operations, spanning 2013 and 2014. We also present the same information for all other bright (m V ≤ 17), spectroscopically confirmed supernovae discovered from 2014 May 1 through the end of 2014, providing a comparison to the ASAS-SN sample starting from the point where ASAS-SN became operational in both hemispheres. In addition, we present collected redshifts and near-UV through IR magnitudes, where available, for all host galaxies of the bright supernovae in both samples. This work represents a comprehensivemore » catalogue of bright supernovae and their hosts from multiple professional and amateur sources, allowing for population studies that were not previously possible because the all-sky emphasis of ASAS-SN redresses many previously existing biases. In particular, ASAS-SN systematically finds bright supernovae closer to the centres of host galaxies than either other professional surveys or amateurs, a remarkable result given ASAS-SN's poorer angular resolution. In conclusion, this is the first of a series of yearly papers on bright supernovae and their hosts that will be released by the ASAS-SN team.« less

  1. ULTRA STEEP SPECTRUM RADIO SOURCES IN THE LOCKMAN HOLE: SERVS IDENTIFICATIONS AND REDSHIFT DISTRIBUTION AT THE FAINTEST RADIO FLUXES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonso, J.; Bizzocchi, L.; Grossi, M.

    2011-12-20

    Ultra steep spectrum (USS) radio sources have been successfully used to select powerful radio sources at high redshifts (z {approx}> 2). Typically restricted to large-sky surveys and relatively bright radio flux densities, it has gradually become possible to extend the USS search to sub-mJy levels, thanks to the recent appearance of sensitive low-frequency radio facilities. Here a first detailed analysis of the nature of the faintest USS sources is presented. By using Giant Metrewave Radio Telescope and Very Large Array radio observations of the Lockman Hole at 610 MHz and 1.4 GHz, a sample of 58 USS sources, with 610more » MHz integrated fluxes above 100 {mu}Jy, is assembled. Deep infrared data at 3.6 and 4.5 {mu}m from the Spitzer Extragalactic Representative Volume Survey (SERVS) are used to reliably identify counterparts for 48 (83%) of these sources, showing an average total magnitude of [3.6]{sub AB} = 19.8 mag. Spectroscopic redshifts for 14 USS sources, together with photometric redshift estimates, improved by the use of the deep SERVS data, for a further 19 objects, show redshifts ranging from z = 0.1 to z = 2.8, peaking at z {approx} 0.6 and tailing off at high redshifts. The remaining 25 USS sources, with no redshift estimate, include the faintest [3.6] magnitudes, with 10 sources undetected at 3.6 and 4.5 {mu}m (typically [3.6] {approx}> 22-23 mag from local measurements), which suggests the likely existence of higher redshifts among the sub-mJy USS population. The comparison with the Square Kilometre Array Design Studies Simulated Skies models indicates that Fanaroff-Riley type I radio sources and radio-quiet active galactic nuclei may constitute the bulk of the faintest USS population, and raises the possibility that the high efficiency of the USS technique for the selection of high-redshift sources remains even at the sub-mJy level.« less

  2. Properties of an H I-selected galaxy sample

    NASA Technical Reports Server (NTRS)

    Szomoru, Arpad; Guhathakurta, Puragra; Van Gorkom, Jacqueline H.; Knapen, Johan H.; Weinberg, David H.; Fruchter, Andrew S.

    1994-01-01

    We analyze the properties of a sample of galaxies identified in a 21cm, H I-line survey of selected areas in the Perseus-Pisces supercluster and its foreground void. Twelve fields were observed in the supercluster, five of them (target fields) centered on optically bright galaxies, and the other seven (blank fields) selected to contain no bright galaxies within 45 min. of their centers. We detected nine previously uncatalogued, gas-rich galaxies, six of them in the target fields. We also detected H I from seven previously catalogued galaxies in these fields. Observations in the void covered the same volume as the 12 supercluster fields at the same H I-mass sensitivity, but no objects were detected. Combining out H I data with optical broadband and H alpha imaging, we conclude that the properties of H I-selected galaxies do not differ substantially from those of late-type galaxies found in optical surveys. In particular, the galaxies in our sample do not appear to be unusually faint for their H I mass, or for their circular velocity. We find tentative evidence for a connection between optical surface brightness and degree of isolation, in the sense that low surface brightness galaxies tend to be more isolated. The previously catalogued, optically bright galaxies in our survey volume dominate the total H I mass density and cross section; the uncatalogued galaxies contribute only approximately 19 percent of the mass and approximately 12 percent of the cross section. Thus, existing estimates of the density and cross section of neutral hydrogen, most of which are based on optically selected galaxy samples, are probably accurate. Such estimates can be used to compare the nearby universe to the high-redshift universe probed by quasar absorption lines.

  3. On the Long-Term Stability of Microwave Radiometers Using Noise Diodes for Calibration

    NASA Technical Reports Server (NTRS)

    Brown, Shannon T.; Desai, Shailen; Lu, Wenwen; Tanner, Alan B.

    2007-01-01

    Results are presented from the long-term monitoring and calibration of the National Aeronautics and Space Administration Jason Microwave Radiometer (JMR) on the Jason-1 ocean altimetry satellite and the ground-based Advanced Water Vapor Radiometers (AWVRs) developed for the Cassini Gravity Wave Experiment. Both radiometers retrieve the wet tropospheric path delay (PD) of the atmosphere and use internal noise diodes (NDs) for gain calibration. The JMR is the first radiometer to be flown in space that uses NDs for calibration. External calibration techniques are used to derive a time series of ND brightness for both instruments that is greater than four years. For the JMR, an optimal estimator is used to find the set of calibration coefficients that minimize the root-mean-square difference between the JMR brightness temperatures and the on-Earth hot and cold references. For the AWVR, continuous tip curves are used to derive the ND brightness. For the JMR and AWVR, both of which contain three redundant NDs per channel, it was observed that some NDs were very stable, whereas others experienced jumps and drifts in their effective brightness. Over the four-year time period, the ND stability ranged from 0.2% to 3% among the diodes for both instruments. The presented recalibration methodology demonstrates that long-term calibration stability can be achieved with frequent recalibration of the diodes using external calibration techniques. The JMR PD drift compared to ground truth over the four years since the launch was reduced from 3.9 to - 0.01 mm/year with the recalibrated ND time series. The JMR brightness temperature calibration stability is estimated to be 0.25 K over ten days.

  4. Validation of MODIS-derived bidirectional reflectivity retrieval algorithm in mid-infrared channel with field measurements.

    PubMed

    Tang, Bo-Hui; Wu, Hua-; Li, Zhao-Liang; Nerry, Françoise

    2012-07-30

    This work addressed the validation of the MODIS-derived bidirectional reflectivity retrieval algorithm in mid-infrared (MIR) channel, proposed by Tang and Li [Int. J. Remote Sens. 29, 4907 (2008)], with ground-measured data, which were collected from a field campaign that took place in June 2004 at the ONERA (Office National d'Etudes et de Recherches Aérospatiales) center of Fauga-Mauzac, on the PIRRENE (Programme Interdisciplinaire de Recherche sur la Radiométrie en Environnement Extérieur) experiment site [Opt. Express 15, 12464 (2007)]. The leaving-surface spectral radiances measured by a BOMEM (MR250 Series) Fourier transform interferometer were used to calculate the ground brightness temperatures with the combination of the inversion of the Planck function and the spectral response functions of MODIS channels 22 and 23, and then to estimate the ground brightness temperature without the contribution of the solar direct beam and the bidirectional reflectivity by using Tang and Li's proposed algorithm. On the other hand, the simultaneously measured atmospheric profiles were used to obtain the atmospheric parameters and then to calculate the ground brightness temperature without the contribution of the solar direct beam, based on the atmospheric radiative transfer equation in the MIR region. Comparison of those two kinds of brightness temperature obtained by two different methods indicated that the Root Mean Square Error (RMSE) between the brightness temperatures estimated respectively using Tang and Li's algorithm and the atmospheric radiative transfer equation is 1.94 K. In addition, comparison of the hemispherical-directional reflectances derived by Tang and Li's algorithm with those obtained from the field measurements showed that the RMSE is 0.011, which indicates that Tang and Li's algorithm is feasible to retrieve the bidirectional reflectivity in MIR channel from MODIS data.

  5. A New Sky Brightness Monitor

    NASA Astrophysics Data System (ADS)

    Crawford, David L.; McKenna, D.

    2006-12-01

    A good estimate of sky brightness and its variations throughout the night, the months, and even the years is an essential bit of knowledge both for good observing and especially as a tool in efforts to minimize sky brightness through local action. Hence a stable and accurate monitor can be a valuable and necessary tool. We have developed such a monitor, with the financial help of Vatican Observatory and Walker Management. The device is now undergoing its Beta test in preparation for production. It is simple, accurate, well calibrated, and automatic, sending its data directly to IDA over the internet via E-mail . Approximately 50 such monitors will be ready soon for deployment worldwide including most major observatories. Those interested in having one should enquire of IDA about details.

  6. Global VLBI Observations of Weak Extragalactic Radio Sources: Imaging Candidates to Align the VLBI and Gaia Frames

    NASA Technical Reports Server (NTRS)

    Bourda, Geraldine; Collioud, Arnaud; Charlot, Patrick; Porcas, Richard; Garrington, Simon

    2010-01-01

    The space astrometry mission Gaia will construct a dense optical QSO-based celestial reference frame. For consistency between optical and radio positions, it will be important to align the Gaia and VLBI frames (International Celestial Reference Frame) with the highest accuracy. In this respect, it is found that only 10% of the ICRF sources are suitable to establish this link (70 sources), either because most of the ICRF sources are not bright enough at optical wavelengths or because they show extended radio emission which precludes reaching the highest astrometric accuracy. In order to improve the situation, we initiated a multi-step VLBI observational project, dedicated to finding additional suitable radio sources for aligning the two frames. The sample consists of about 450 optically-bright radio sources, typically 20 times weaker than the ICRF sources, which have been selected by cross-correlating optical and radio catalogs. The initial observations, aimed at checking whether these sources are detectable with VLBI, and conducted with the European VLBI Network (EVN) in 2007, showed an excellent 90% detection rate. This paper reports on global VLBI observations carried out in March 2008 to image 105 from the 398 previously detected sources. All sources were successfully imaged, revealing compact VLBI structure for about half of them, which is very promising for the future.

  7. HST Observations of the Luminous IRAS Source FSC10214+4724: A Gravitationally Lensed Infrared Quasar

    NASA Technical Reports Server (NTRS)

    Eisenhardt, P. R.; Armus, L.; Hogg, D. W.; Soifer, B. T.; Neugebauer, G.; Werner, M. W.

    1995-01-01

    Hubble Space Telescope (HST) data taken of the IRAS source FSC 10214+4724 suggest that the object has been gravitationally lensed by a galaxy in the foreground and that this lensing may be magnifying the apparent brightness by roughly 100 times.

  8. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  9. Fermi Large Area Telescope observations of the supernova remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Yang, Rui-zhi; Zhang, Xiao; Yuan, Qiang; Liu, Siming

    2014-07-01

    Context. HESS J1731-347 has been identified as one of the few TeV-bright shell-type supernova remnants (SNRs). These remnants are dominated by nonthermal emission, and the nature of TeV emission has been continuously debated for nearly a decade. Aims: We carry out the detailed modeling of the radio to γ-ray spectrum of HESS J1731-347 to constrain the magnetic field and energetic particles sources, which we compare with those of the other TeV-bright shell-type SNRs explored before. Methods: Four years of data from Fermi Large Area Telescope (LAT) observations for regions around this remnant are analyzed, leading to no detection correlated with the source discovered in the TeV band. The Markov chain Monte Carlo method is used to constrain parameters of one-zone models for the overall emission spectrum. Results: Based on the 99.9% upper limits of fluxes in the GeV range, one-zone hadronic models with an energetic proton spectral slope greater than 1.8 can be ruled out, which favors a leptonic origin for the γ-ray emission, making this remnant a sibling of the brightest TeV SNR RX J1713.7-3946, the Vela Junior SNR RX J0852.0-4622, and RCW 86. The best-fit leptonic model has an electron spectral slope of 1.8 and a magnetic field of ~30 μG, which is at least a factor of 2 higher than those of RX J1713.7-3946 and RX J0852.0-4622, posing a challenge to the distance estimate and/or the energy equipartition between energetic electrons and the magnetic field of this source. A measurement of the shock speed will address this challenge and has implications on the magnetic field evolution and electron acceleration driven by shocks of SNRs.

  10. Andromeda’s Parachute: A Bright Quadruply Lensed Quasar at z = 2.377

    NASA Astrophysics Data System (ADS)

    Rubin, Kate H. R.; O’Meara, John M.; Cooksey, Kathy L.; Matuszewski, Mateusz; Rizzi, Luca; Doppmann, Greg; Kwok, Shui; Martin, D. Christopher; Moore, Anna M.; Morrissey, Patrick; Neill, James D.

    2018-06-01

    We present Keck Cosmic Web Imager spectroscopy of the four putative images of the lensed quasar candidate J014710+463040 recently discovered by Berghea et al. The data verify the source as a quadruply lensed, broad absorption-line quasar having {z}{{S}}=2.377 +/- 0.007. We detect intervening absorption in the Fe II λλ2586, 2600, Mg II λλ2796, 2803, and/or C IV λλ1548, 1550 transitions in eight foreground systems, three of which have redshifts consistent with the photometric-redshift estimate reported for the lensing galaxy (z L ≈ 0.57). The source images probe these absorbers over transverse physical scales of ≈0.3–22 kpc, permitting assessment of the variation in metal-line equivalent width {W}{{r}} as a function of sight-line separation. We measure differences in {W}{{r},2796} of <40% across most of the sight-line pairs subtending 8–22 kpc, suggestive of a high degree of spatial coherence for the Mg II-absorbing material. {W}{{r},2600} varies by >50% over the same scales across the majority of sight-line pairs, while C IV absorption exhibits a wide range in {W}{{r},1548} differences of ≈5%–80% within transverse distances of ≲3 kpc. These spatial variations are consistent with those measured in intervening absorbers detected toward lensed quasars drawn from the literature, in which {W}{{r},2796} and {W}{{r},1548} vary by ≤20% in 35 ± 7% and 47 ± 6% of sight lines separated by <10 kpc, respectively. J014710+463040 is one of only a handful of z > 2 quadruply lensed systems for which all four source images are very bright (r = 15.4–17.7 mag) and are easily separated in ground-based seeing conditions. As such, it is an ideal candidate for higher-resolution spectroscopy probing the spatial variation in the kinematic structure and physical state of intervening absorbers.

  11. Analysis of a high brightness photo electron beam with self field and wake field effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    High brightness sources are the basic ingredients in the new accelerator developments such as Free-Electron Laser experiments. The effects of the interactions between the highly charged particles and the fields in the accelerating structure, e.g. R.F., Space charge and Wake fields can be detrimental to the beam and the experiments. We present and discuss the formulation used, some simulation and results for the Brookhaven National Laboratory high brightness beam that illustrates effects of the accelerating field, space charge forces (e.g. due to self field of the bunch), and the wake field (e.g. arising from the interaction of the cavity surfacemore » and the self field of the bunch).« less

  12. Evaluation and Analysis of SEASAT-A Scanning Multichannel Microwave Radiometer (SSMR) Antenna Pattern Correction (APC) Algorithm. Sub-task 4: Interim Mode T Sub B Versus Cross and Nominal Mode T Sub B

    NASA Technical Reports Server (NTRS)

    Kitzis, J. L.; Kitzis, S. N.

    1979-01-01

    The brightness temperature data produced by the SMMR Antenna Pattern Correction algorithm are evaluated. The evaluation consists of: (1) a direct comparison of the outputs of the interim, cross, and nominal APC modes; (2) a refinement of the previously determined cos beta estimates; and (3) a comparison of the world brightness temperature (T sub B) map with actual SMMR measurements.

  13. R&D100: LED Pulser

    ScienceCinema

    Pickett, Lyle; Manin, Julien; Eagle, Ethan

    2018-06-12

    A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.

  14. A brightness exceeding simulated Langmuir limit

    NASA Astrophysics Data System (ADS)

    Nakasuji, Mamoru

    2013-08-01

    When an excitation of the first lens determines a beam is parallel beam, a brightness that is 100 times higher than Langmuir limit is measured experimentally, where Langmuir limits are estimated using a simulated axial cathode current density which is simulated based on a measured emission current. The measured brightness is comparable to Langmuir limit, when the lens excitation is such that an image position is slightly shorter than a lens position. Previously measured values of brightness for cathode apical radii of curvature 20, 60, 120, 240, and 480 μm were 8.7, 5.3, 3.3, 2.4, and 3.9 times higher than their corresponding Langmuir limits, respectively, in this experiment, the lens excitation was such that the lens and the image positions were 180 mm and 400 mm, respectively. From these measured brightness for three different lens excitation conditions, it is concluded that the brightness depends on the first lens excitation. For the electron gun operated in a space charge limited condition, some of the electrons emitted from the cathode are returned to the cathode without having crossed a virtual cathode. Therefore, method that assumes a Langmuir limit defining method using a Maxwellian distribution of electron velocities may need to be revised. For the condition in which the values of the exceeding the Langmuir limit are measured, the simulated trajectories of electrons that are emitted from the cathode do not cross the optical axis at the crossover, thus the law of sines may not be valid for high brightness electron beam systems.

  15. Searching for Terrain Softening near Mercury's North Pole

    NASA Technical Reports Server (NTRS)

    Cobian, P. S.; Vilas, F.; Lederer, S. M.; Barlow, N. G.

    2004-01-01

    In 1999, following the initial discovery of radar bright craters near both poles of Mercury measured the depth-todiameter (d/D) ratios of 170 impact craters in Mariner 10 images covering four different regions on Mercury s surface. Rapid softening of crater structure, indicated by lower d/D ratios, could indicate the possibility of subsurface water ice in Mercury's terrain originating from an internal source in the planet. Their study included 3 specific radar bright craters suggested to contain ice. They concluded that no terrain softening was apparent, and a rapidly emplaced exogenic water source was the most likely source for the proposed ice in these craters. Recent radar observations of the Mercurian North pole have pinpointed many additional radar bright areas with a resolution 10x better than previous radar measurements, and which correlate with craters imaged by Mariner 10. These craters are correlated with regions that are permanently shaded from direct sunlight, and are consistent with observations of clean water ice. We have expanded the initial study by Barlow et al. to include d/D measurements of 12 craters newly identified as radar bright at latitudes poleward of +80o. The radar reflectivity resemblances to Mars south polar cap and echoes from three icy Galilean satellites suggest that these craters too may have polar ice on Mercury. The effect of subsurface H20 on impact craters is a decrease in its d/D ratio, and softening of crater rims over a period of time. The study of Barlow et al., focused on determining the d/D ratios of 170 impact craters in the Borealis (north polar), Tolstoj (equatorial), Kuiper (equatorial), and Bach (south polar) quadrangles. This work focuses on the newly discovered radar bright craters, investigating their d/D ratios as an expansion of the earlier work..We compare our results to the statistical results from Barlow et al. here. With the upcoming Messenger spacecraft mission to Mercury, this is an especially timely study whose result could potentially help the Messenger team as they develop a mission strategy.

  16. Evidence for Precursors of the Coronal Hole Jets in Solar Bright Points

    NASA Astrophysics Data System (ADS)

    Bagashvili, Salome R.; Shergelashvili, Bidzina M.; Japaridze, Darejan R.; Kukhianidze, Vasil; Poedts, Stefaan; Zaqarashvili, Teimuraz V.; Khodachenko, Maxim L.; De Causmaecker, Patrick

    2018-03-01

    A set of 23 observations of coronal jet events that occurred in coronal bright points has been analyzed. The focus was on the temporal evolution of the mean brightness before and during coronal jet events. In the absolute majority of the cases either single or recurrent coronal jets (CJs) were preceded by slight precursor disturbances observed in the mean intensity curves. The key conclusion is that we were able to detect quasi-periodical oscillations with characteristic periods from sub-minute up to 3–4 minute values in the bright point brightness that precedes the jets. Our basic claim is that along with the conventionally accepted scenario of bright-point evolution through new magnetic flux emergence and its reconnection with the initial structure of the bright point and the coronal hole, certain magnetohydrodynamic (MHD) oscillatory and wavelike motions can be excited and these can take an important place in the observed dynamics. These quasi-oscillatory phenomena might play the role of links between different epochs of the coronal jet ignition and evolution. They can be an indication of the MHD wave excitation processes due to the system entropy variations, density variations, or shear flows. It is very likely a sharp outflow velocity transverse gradients at the edges between the open and closed field line regions. We suppose that magnetic reconnections can be the source of MHD waves due to impulsive generation or rapid temperature variations, and shear flow driven nonmodel MHD wave evolution (self-heating and/or overreflection mechanisms).

  17. Investigating source confusion in PMN J1603-4904

    NASA Astrophysics Data System (ADS)

    Krauß, F.; Kreter, M.; Müller, C.; Markowitz, A.; Böck, M.; Burnett, T.; Dauser, T.; Kadler, M.; Kreikenbohm, A.; Ojha, R.; Wilms, J.

    2018-02-01

    PMN J1603-4904 is a likely member of the rare class of γ-ray emitting young radio galaxies. Only one other source, PKS 1718-649, has been confirmed so far. These objects, which may transition into larger radio galaxies, are a stepping stone to understanding AGN evolution. It is not completely clear how these young galaxies, seen edge-on, can produce high-energy γ rays. PMN J1603-4904 has been detected by TANAMI Very Long Baseline Interferometry (VLBI) observations and has been followed-up with multiwavelength observations. A Fermi Gamma-ray Space Telescope Large Area Telescope (Fermi-LAT) γ-ray source has been associated with this young galaxy in the LAT catalogs. We have obtained Chandra observations of the source to consider the possibility of source confusion due to the relatively large positional uncertainty of Fermi-LAT. The goal was to investigate the possibility of other X-ray bright sources in the vicinity of PMN J1603-4904 that could be counterparts to the γ-ray emission. With Chandra/ACIS, we find no other sources in the uncertainty ellipse of Fermi-LAT data, which includes an improved localization analysis of eight years of data. We further study the X-ray fluxes and spectra. We conclude that PMN J1603-4904 is indeed the second confirmed γ-ray bright young radio galaxy.

  18. Characterization of the X-ray coherence properties of an undulator beamline at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Guangxu; Highland, Matthew J.; Thompson, Carol

    In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory tomore » obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator ('pink beam') agree well with those calculated for the source, those measured with the monochromator were a factor of three to six lower than the source, primarily because of vertical divergence introduced by the monochromator. As a result, the methods described herein should be widely applicable for measuring the X-ray coherence properties of synchrotron beamlines.« less

  19. Characterization of the X-ray coherence properties of an undulator beamline at the Advanced Photon Source

    DOE PAGES

    Ju, Guangxu; Highland, Matthew J.; Thompson, Carol; ...

    2018-06-13

    In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory tomore » obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator ('pink beam') agree well with those calculated for the source, those measured with the monochromator were a factor of three to six lower than the source, primarily because of vertical divergence introduced by the monochromator. As a result, the methods described herein should be widely applicable for measuring the X-ray coherence properties of synchrotron beamlines.« less

  20. High-Brightness Lasers with Spectral Beam Combining on Silicon

    NASA Astrophysics Data System (ADS)

    Stanton, Eric John

    Modern implementations of absorption spectroscopy and infrared-countermeasures demand advanced performance and integration of high-brightness lasers, especially in the molecular fingerprint spectral region. These applications, along with others in communication, remote-sensing, and medicine, benefit from the light source comprising a multitude of frequencies. To realize this technology, a single multi-spectral optical beam of near-diffraction-limited divergence is created by combining the outputs from an array of laser sources. Full integration of such a laser is possible with direct bonding of several epitaxially-grown chips to a single silicon (Si) substrate. In this platform, an array of lasers is defined with each gain material, creating a densely spaced set of wavelengths similar to wavelength division multiplexing used in communications. Scaling the brightness of a laser typically involves increasing the active volume to produce more output power. In the direction transverse to the light propagation, larger geometries compromise the beam quality. Lengthening the cavity provides only limited scaling of the output power due to the internal losses. Individual integrated lasers have low brightness due to combination of thermal effects and high optical intensities. With heterogeneous integration, many lasers can be spectrally combined on a single integrated chip to scale brightness in a compact platform. Recent demonstrations of 2.0-microm diode and 4.8-microm quantum cascade lasers on Si have extended this heterogeneous platform beyond the telecommunications band to the mid-infrared. In this work, low-loss beam combining elements spanning the visible to the mid-infrared are developed and a high-brightness multi-spectral laser is demonstrated in the range of 4.6-4.7-microm wavelengths. An architecture is presented where light is combined in multiple stages: first within the gain-bandwidth of each laser material and then coarsely between each spectral band to a single output waveguide. All components are demonstrated on a common material platform with a Si substrate, which lends feasibility to the complete system integration. Particular attention is focused on improving the efficiency of arrayed waveguide gratings (AWGs), used in the dense wavelength combining stage. This requires development of a refined characterization technique involving AWGs in a ring-resonator configuration to reduce measurement uncertainty. New levels of low-loss are achieved for visible, near-infrared, and mid-infrared multiplexing devices. Also, a multi-spectral laser in the mid-infrared is demonstrated by integrating an array of quantum cascade lasers and an AWG with Si waveguides. The output power and spectra are measured, demonstrating efficient beam combining and power scaling. Thus, a bright laser source in the mid-infrared has been demonstrated, along with an architecture and the components for incorporating visible and near-infrared optical bands.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, C J

    A renaissance in nuclear physics is occurring around the world because of a new kind of incredibly bright, gamma-ray light source that can be created with short pulse lasers and energetic electron beams. These highly Mono-Energetic Gamma-ray (MEGa-ray) sources produce narrow, laser-like beams of incoherent, tunable gamma-rays and are enabling access and manipulation of the nucleus of the atom with photons or so called 'Nuclear Photonics'. Just as in the early days of the laser when photon manipulation of the valence electron structure of the atom became possible and enabling to new applications and science, nuclear photonics with laser-based gamma-raymore » sources promises both to open up wide areas of practical isotope-related, materials applications and to enable new discovery-class nuclear science. In the United States, the development of high brightness and high flux MEGa-ray sources is being actively pursued at the Lawrence Livermore National Laboratory in Livermore (LLNL), California near San Francisco. The LLNL work aims to create by 2013 a machine that will advance the state of the art with respect to source the peak brightness by 6 orders of magnitude. This machine will create beams of 1 to 2.3 MeV photons with color purity matching that of common lasers. In Europe a similar but higher photon energy gamma source has been included as part of the core capability that will be established at the Extreme Light Infrastructure Nuclear Physics (ELI-NP) facility in Magurele, Romania outside of Bucharest. This machine is expected to have an end point gamma energy in the range of 13 MeV. The machine will be co-located with two world-class, 10 Petawatt laser systems thus allowing combined intense-laser and gamma-ray interaction experiments. Such capability will be unique in the world. In this talk, Dr. Chris Barty from LLNL will review the state of the art with respect to MEGa-ray source design, construction and experiments and will describe both the ongoing projects around the world as well some of the exciting applications that these machines will enable. The optimized interaction of short-duration, pulsed lasers with relativistic electron beams (inverse laser-Compton scattering) is the key to unrivaled MeV-scale photon source monochromaticity, pulse brightness and flux. In the MeV spectral range, such Mono-Energetic Gamma-ray (MEGa-ray) sources can have many orders of magnitude higher peak brilliance than even the world's largest synchrotrons. They can efficiently perturb and excite the isotope-specific resonant structure of the nucleus in a manner similar to resonant laser excitation of the valence electron structure of the atom.« less

  2. Characterisation of a candidate dual AGN

    NASA Astrophysics Data System (ADS)

    Lena, D.; Panizo-Espinar, G.; Jonker, P. G.; Torres, M.; Heida, M.

    2018-05-01

    We present Chandra and optical observations of a candidate dual AGN discovered serendipitously while searching for recoiling black holes via a cross-correlation between the serendipitous XMM source catalog (2XMMi) and SDSS-DR7 galaxies with a separation no larger than ten times the sum of their Petrosian radii. The system has a stellar mass ratio M1/M2 ≈ 0.7. One of the galaxies (Source 1) shows clear evidence for AGN activity in the form of hard X-ray emission and optical emission-line diagnostics typical of AGN ionisation. The nucleus of the other galaxy (Source 2) has a soft X-ray spectrum, bluer colours, and optical emission line ratios dominated by stellar photoionisation with a "composite" signature, which might indicate the presence of a weak AGN. When plotted on a diagram with X-ray luminosity vs [OIII] luminosity both nuclei fall within the locus defined by local Seyfert galaxies. From the optical spectrum we estimate the electron densities finding n1 < 27 e- cm-3 and n2 ≈ 200 e- cm-3. From a 2D decomposition of the surface brightness distribution we infer that both galaxies host rotationally supported bulges (Sersic index <1). While the active nature of Source 1 can be established with confidence, whether the nucleus of Source 2 is active remains a matter of debate. Evidence that a faint AGN might reside in its nucleus is, however, tantalising.

  3. Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality.

    PubMed

    Jöns, Klaus D; Schweickert, Lucas; Versteegh, Marijn A M; Dalacu, Dan; Poole, Philip J; Gulinatti, Angelo; Giudice, Andrea; Zwiller, Val; Reimer, Michael E

    2017-05-10

    Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has proven elusive. Here, we show a bright photonic nanostructure generating polarization-entangled photon pairs that strongly violates Bell's inequality. A highly symmetric InAsP quantum dot generating entangled photons is encapsulated in a tapered nanowire waveguide to ensure directional emission and efficient light extraction. We collect ~200 kHz entangled photon pairs at the first lens under 80 MHz pulsed excitation, which is a 20 times enhancement as compared to a bare quantum dot without a photonic nanostructure. The performed Bell test using the Clauser-Horne-Shimony-Holt inequality reveals a clear violation (S CHSH  > 2) by up to 9.3 standard deviations. By using a novel quasi-resonant excitation scheme at the wurtzite InP nanowire resonance to reduce multi-photon emission, the entanglement fidelity (F = 0.817 ± 0.002) is further enhanced without temporal post-selection, allowing for the violation of Bell's inequality in the rectilinear-circular basis by 25 standard deviations. Our results on nanowire-based quantum light sources highlight their potential application in secure data communication utilizing measurement-device-independent quantum key distribution and quantum repeater protocols.

  4. Interferometric Monitoring of Gamma-Ray Bright AGNs: S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jee Won; Lee, Sang-Sung; Hodgson, Jeffrey A.

    We present the results of very long baseline interferometry (VLBI) observations of gamma-ray bright blazar S5 0716+714 using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, as part of the Interferometric Monitoring of Gamma-ray Bright active galactic nuclei (iMOGABA) KVN key science program. Observations were conducted in 29 sessions from 2013 January 16 to 2016 March 1, with the source being detected and imaged at all available frequencies. In all epochs, the source was compact on the milliarcsecond scale, yielding a compact VLBI core dominating the synchrotron emission on these scales. Based on themore » multiwavelength data between 15 GHz (Owens Valley Radio Observatory) and 230 GHz (Submillimeter Array), we found that the source shows multiple prominent enhancements of the flux density at the centimeter (cm) and millimeter (mm) wavelengths, with mm enhancements leading cm enhancements by −16 ± 8 days. The turnover frequency was found to vary between 21 and 69 GHz during our observations. By assuming a synchrotron self-absorption model for the relativistic jet emission in S5 0716+714, we found the magnetic field strength in the mas emission region to be ≤5 mG during the observing period, yielding a weighted mean of 1.0 ± 0.6 mG for higher turnover frequencies (e.g., >45 GHz).« less

  5. The effects of correlated noise in phased-array observations of radio sources

    NASA Technical Reports Server (NTRS)

    Dewey, Rachel J.

    1994-01-01

    Arrays of radio telescopes are now routinely used to provide increased signal-to-noise when observing faint point sources. However, calculation of the achievable sensitivity is complicated if there are sources in the field of view other than the target source. These additional sources not only increase the system temperatures of the individual antennas, but may also contribute significant 'correlated noise' to the effective system temperature of the array. This problem has been of particular interest in the context of tracking spacecraft in the vicinity of radio-bright planets (e.g., Galileo at Jupiter), but it has broader astronomical relevance as well. This paper presents a general formulation of the problem, for the case of a point-like target source in the presence of an additional radio source of arbitrary brightness distribution. We re-derive the well known result that, in the absence of any background sources, a phased array of N indentical antennas is a factor of N more sensitive than a single antenna. We also show that an unphased array of N identical antennas is, on average, no more sensitive than a single antenna if the signals from the individual antennas are combined prior to detection. In the case where a background source is present we show that the effects of correlated noise are highly geometry dependent, and for some astronomical observations may cause significant fluctuations in the array's effective system temperature.

  6. Rotation of the optical polarization angle associated with the 2008 γ-ray flare of blazar W Comae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorcia, Marco; Benítez, Erika; Cabrera, José I.

    2014-10-10

    An R-band photopolarimetric variability analysis of the TeV bright blazar W Comae between 2008 February 28 and 2013 May 17 is presented. The source showed a gradual tendency to decrease its mean flux level with a total change of 3 mJy. A maximum and minimum brightness states in the R band of 14.25 ± 0.04 and 16.52 ± 0.1 mag, respectively, were observed, corresponding to a maximum variation of ΔF = 5.40 mJy. We estimated a minimum variability timescale of Δt = 3.3 days. A maximum polarization degree P = 33.8% ± 1.6%, with a maximum variation of ΔP =more » 33.2%, was found. One of our main results is the detection of a large rotation of the polarization angle from 78° to 315° (Δθ ∼ 237°) that coincides in time with the γ-ray flare observed in 2008 June. This result indicates that both optical and γ-ray emission regions could be co-spatial. During this flare, a correlation between the R-band flux and polarization degree was found with a correlation coefficient of r {sub F} {sub –} {sub p} = 0.93 ± 0.11. From the Stokes parameters, we infer the existence of two optically thin synchrotron components that contribute to the polarized flux. One of them is stable with a constant polarization degree of 11%. Assuming a shock-in jet model during the 2008 flare, we estimated a maximum Doppler factor δ {sub D} ∼ 27 and a minimum of δ {sub D} ∼ 16; a minimum viewing angle of the jet ∼2.°0; and a magnetic field B ∼ 0.12 G.« less

  7. Discovery of VHE emission towards the Carina arm region with the H.E.S.S. telescope array: HESS J1018-589

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöh, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khélifi, B.; Klochkov, D.; Klużniak, D.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-05-01

    The Carina arm region, containing the supernova remnant SNR G284.3-1.8, the high-energy (HE; E > 100 MeV) binary 1FGL J1018.6-5856 and the energetic pulsar PSR J1016-5857 and its nebula, has been observed with the H.E.S.S. telescope array. The observational coverage of the region in very-high-energy (VHE; E > 0.1 TeV) γ-rays benefits from deep exposure (40 h) of the neighboring open cluster Westerlund 2. The observations have revealed a new extended region of VHE γ-ray emission. The new VHE source HESS J1018-589 shows a bright, point-like emission region positionally coincident with SNR G284.3-1.8 and 1FGL J1018.6-5856 and a diffuse extension towards the direction of PSR J1016-5857. A soft (Γ = 2.7 ± 0.5stat)photon index, with a differential flux at 1 TeV of N0 = (4.2 ± 1.1) × 10-13 TeV-1 cm-2 s-1 is found for the point-like source, whereas the total emission region including the diffuse emission region is well fit by a power-law function with spectral index Γ = 2.9 ± 0.4stat and differential flux at 1 TeV of N0 = (6.8 ± 1.6) × 10-13 TeV-1 cm-2 s-1. This H.E.S.S. detection motivated follow-up X-ray observations with the XMM-Newton satellite to investigate the origin of the VHE emission. The analysis of the XMM-Newton data resulted in the discovery of a bright, non-thermal point-like source (XMMU J101855.4-58564) with a photon index of Γ = 1.65 ± 0.08 in the center of SNR G284.3-1.8, and a thermal, extended emission region coincident with its bright northern filament. The characteristics of this thermal emission are used to estimate the plasma density in the region as n ≈ 0.5 cm-3 (2.9 kpc/d)2. The position of XMMU J101855.4-58564 is compatible with the position reported by the Fermi-LAT collaboration for the binary system 1FGL J1018.6-5856 and the variable Swift XRT source identified with it. The new X-ray data are used alongside archival multi-wavelength data to investigate the relationship between the VHE γ-ray emission from HESS J1018-589 and the various potential counterparts in the Carina arm region.

  8. X-ray and optical observations of four polars

    NASA Astrophysics Data System (ADS)

    Worpel, H.; Schwope, A. D.; Granzer, T.; Reinsch, K.; Schwarz, R.; Traulsen, I.

    2016-08-01

    Aims: We investigate the temporal and spectral behaviour of four polar cataclysmic variables from the infrared to X-ray regimes, refine our knowledge of the physical parameters of these systems at different accretion rates, and search for a possible excess of soft X-ray photons. Methods: We obtained and analysed four XMM-Newton X-ray observations of three of the sources, two of them discovered with the SDSS and one in the RASS. The X-ray data were complemented by optical photometric and spectroscopic observations and, for two sources, archival Swift observations. Results: SDSSJ032855.00+052254.2 was X-ray bright in two XMM-Newton and two Swift observations, and shows transitions from high and low accretion states on a timescale of a few months. The source shows no significant soft excess. We measured the magnetic field strength at the main accreting pole to be 39 MG and the inclination to be 45° ≤ I ≤ 77°, and we refined the long-term ephemeris. SDSSJ133309.20+143706.9 was X-ray faint. We measured a faint phase X-ray flux and plasma temperature for this source, which seems to spend almost all of its time accreting at a low level. Its inclination is less than about 76°. 1RXSJ173006.4+033813 was X-ray bright in the XMM-Newton observation. Its spectrum contained a modest soft blackbody component, not luminous enough to be considered a significant soft excess. We inferred a magnetic field strength at the main accreting pole of 20 to 25 MG, and that the inclination is less than 77° and probably less than 63°. V808 Aur, also known as CSS081231:J071126+440405, was X-ray faint in the Swift observation, but there is nonetheless strong evidence for bright and faint phases in X-rays and perhaps in UV. Residual X-ray flux from the faint phase is difficult to explain by thermal emission from the white dwarf surface, or by accretion onto the second pole. We present a revised distance estimate of 250 pc. Conclusions: The three systems we were able to study in detail appear to be normal polars with luminosities and magnetic field strengths typical for this class of accreting binary. None of the four systems studied shows the strong soft excess thought commonplace in polars prior to the XMM-Newton era. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  9. Triggered star-formation in the bright rimmed globule IC1396A

    NASA Astrophysics Data System (ADS)

    Patel, Nimesh A.; Sicilia-Aguilar, Aurora; Goldsmith, Paul

    2015-01-01

    IC1396 is a well known HII region and molecular cloud complex surrounding the Trumpler 37 cluster of OB stars in the Cepheus OB2 association. The dense, elephant trunk shaped globules in this region typically show bright rims facing the central exciting O6 star HD~206267. This region, at a distance of 870 pc, is an excellent astrophysical laboratory for studying the feedback effects of massive stars on neighboring molecular clouds. Triggered star formation occurs when dense cores (which would otherwise remain stable) are compressed and made unstable by the sustained energy input from the OB association. Observationally it remains challenging to prove whether the onset of star-formation in such globules is triggered or spontaneous.Using the Submillimeter Array (SMA), we observed IC1396 globule A (Pottasch 1958 nomenclature), targeting four newly discovered protostars from recent Herschel PACS observations. Here we present 230 GHz molecular line (CO, 13CO, C18O, N2D+ and H2CO) and continuum results for the source IC1396A-PACS-1 (Sicilia-Aguilar et al. 2014). This is a Class 0 source very close to the edge of the ionization front and Herschel observations show this to be a most promisingcase of triggered star-formation. The SMA 230 GHz continuum source has a flux density of 280 mJy. We estimate a dust mass of about 0.1 Msun in this source which appears very compact in our 5" beam. CO, 13CO and C18O emission is largely resolved out by the interferometer and will require combined imaging with single-dish observations. (We have a parallel ongoing study being carried out with the IRAM 30m telescope). SMA N2D+ emission peaks on the continuum sourceand is partially resolved. H2CO emission appears to avoid the peak of continuum and N2D+, suggesting depletion. Both the morphology and kinematics in H2CO emission are indicative of internal disturbance, away from the PDR region into the globule.

  10. Ceres' darkest secret and its putative exosphere

    NASA Astrophysics Data System (ADS)

    Schorghofer, N.; Mazarico, E.; Platz, T.; Schroeder, S.; Byrne, S.; Carsenty, U.; Combe, J. P.; Ermakov, A.; McFadden, L. A.; Prettyman, T. H.; Preusker, F.; Raymond, C. A.; Russell, C. T.

    2016-12-01

    Craters near Ceres' rotational poles can be shadowed year-round and trap volatiles. The persistently shadowed regions (PSRs) have been mapped in the northern hemisphere in two ways: by illumination modeling based on the topography and by stacking of images acquired near summer solstice. Scattered light reveals bright crater floor deposits (BCFDs) in a few PSRs. The lack of BCFDs in most PSRs can in part be explained by changes in Ceres' obliquity (axis tilt). At least one BCFD is illuminated and spectroscopically identified as H2O ice; this deposit is exceptionally bright and unusual morphologically. The BCFDs are likely water ice, either delivered through the exosphere or exposed ground ice. The remarkably shallow depths at which water ice is encountered on Ceres, on a global scale, imply that only a small amount of H2O was supplied to its water exosphere from this endogenic source. Ice that accumulated in the PSRs is hence easily dominated by other sources. The lack of optically thick ice deposits in most PSRs provides an upper bound on the exogenic delivery of water to Ceres, estimated as <109 kg since the most recent obliquity maximum 14 kyr ago. Water molecules are only barely gravitationally bound to Ceres at thermal speeds, but heavier species can be long-lived in the exosphere due to the low photo-destruction rates. Nevertheless, there is no observational evidence of other exospheric species yet. These results are based on observations by the FC (Framing Camera), VIR (Visible and Infrared Spectrometer), GRaND (Gamma-Ray and Neutron Spectrometer), and Gravity Science investigation of the Dawn spacecraft, which continues to advance our understanding not only of Ceres but of processes relevant to other Solar System bodies as well.

  11. SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg{sup 2} of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal ofmore » these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m {sup ⋆}). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.« less

  12. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    DOE PAGES

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; ...

    2016-11-01

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less

  13. SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.

    Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less

  14. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    NASA Astrophysics Data System (ADS)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  15. SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  16. On correct evaluation techniques of brightness enhancement effect measurement data

    NASA Astrophysics Data System (ADS)

    Kukačka, Leoš; Dupuis, Pascal; Motomura, Hideki; Rozkovec, Jiří; Kolář, Milan; Zissis, Georges; Jinno, Masafumi

    2017-11-01

    This paper aims to establish confidence intervals of the quantification of brightness enhancement effects resulting from the use of pulsing bright light. It is found that the methods used so far may yield significant bias in the published results, overestimating or underestimating the enhancement effect. The authors propose to use a linear algebra method called the total least squares. Upon an example dataset, it is shown that this method does not yield biased results. The statistical significance of the results is also computed. It is concluded over an observation set that the currently used linear algebra methods present many patterns of noise sensitivity. Changing algorithm details leads to inconsistent results. It is thus recommended to use the method with the lowest noise sensitivity. Moreover, it is shown that this method also permits one to obtain an estimate of the confidence interval. This paper neither aims to publish results about a particular experiment nor to draw any particular conclusion about existence or nonexistence of the brightness enhancement effect.

  17. A Multi-Wavelength Study of the X-Ray Sources in the NGC 5018

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Wu, Kinwah; Saripalli, Lakshmi

    2004-01-01

    The E3 giant elliptical galaxy NGC-5018 was observed with the cxo X-ray Observatory's Advanced CCD Imaging Spectrometer for 30-h on 14 April 2001. Results of analysis of these X-ray data as well as of complementary optical, infrared, and radio data are reported. Seven X-ray point sources, including the nucleus, were detected. If they are intrinsic to NGC-5018, then all six non-nuclear sources have luminosities exceeding 10(exp 39)-ergl in the 0.5-8.0-keV energy band; placing them in the class of Ultra- luminous X-ray sources. Comparison of X-ray source positions to archival Hubble Space Telescope/Wide Field Planetary Camera 2 (hst/WFPC2) images reveal four of the six non-nuclear sources are spatially--coincident with bright, M$(sub V)LA -8.6 mag, objects. These four objects have optical magnitudes and (V-I) colors consistent with globular clusters in NGC-5018. However, one of these objects was observed to vary by siml mag in both V and I between observations taken 28 July 1997 and 04 Feb 1999 indicating this source is a background active galactic nucleus (AGN). The nature of the other three optically-bright objects cannot be determined from the available optical data but all have X-ray-to-optical flux ratios consistent with background AGNs. Strong, unpolarized, radio emission has been detected from another of the optically-bright counterparts. It displays an inverted radio spectrum and is the most absorbed of the seven sources in the X-ray band. It, too, is most readily explained as a background AGN, though alternative explanations cannot be ruled out. Extended X-ray emission is detected within a siml5 arcsec radius of the galaxy center at a luminosity of sim lO(exp 40)-ergl in the X-ray band. Its thermal X-ray spectrum (kT sim0.4-keV) and its spatial coincidence with strong H(alpha) emission are consistent with a hot gas origin. The nucleus itself is a weak X-ray source, LA-5 times 10(exp 39)-ergl, but displays a radio spectrum typical of AGN.

  18. Seeing Red and Shooting Blanks: A Study of Red Quasars And Blank Field X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Elvis, Martin

    2003-01-01

    The primary source catalog of 'blanks' (bright ROSAT sources with no optical counterparts) has been published in the Astrophysical Journal. The first follow-up paper has also been published. This paper used a combination of ROSAT, Chandra and ground based data to convincingly identify one of the blanks as a Ultra-luminous X-ray source (ULX) in a spiral galaxy. A paper detailing optical and near-IR imaging observations of the remaining sources is underway.

  19. Bright X-ray arcs and the emergence of solar magnetic flux

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Broussard, R. M.

    1977-01-01

    The Skylab S-056 and S-082A experiments and ground-based magnetograms have been used to study the role of bright X-ray arcs and the emergence of solar magnetic flux in the McMath region 12476. The S-056 X-ray images show a system of one or sometimes two bright arcs within a diffuse emitting region. The arcs seem to directly connect regions of opposite magnetic polarity in the photosphere. Magnetograms suggest the possible emergence of a magnetic flux. The width of the main arc is approximately 6 arcsec when most clearly defined, and the length is approximately 30-50 arcsec. Although the arc system is observed to vary in brightness over a period exceeding 24 hours, it remains fixed in orientation. The temperature of the main arc is approximately 3 x 10 to the 6th K. It is suggested that merging magnetic fields may provide the primary energy source, perhaps accompanied by resistive heating from a force-free current.

  20. Light pollution from the ground, the air and the space

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, A.; Zamorano, J.; Gómez Castaño, J.; Aubé, M.; Bará, S.; Gallego, J.; Kyba, C. C. M.; Lombraña, D.; Nievas, M.; Pascual, S.; Tapia, C.

    2015-05-01

    The sky brightness is one of the things that most harms astronomical observation, near cities and on mountain observatories. Currently there are several initiatives to control light pollution, but the sky brightness measurements are usually local. To exercise adequate control of light pollution is necessary measurements of light pollution sources and their relation to the spatiotemporal variation of the sky brightness. We use various approaches: data taken ashore with photometers SQM and relate emissions and detected with VIIRS and DMSP satellites. We also use multispectral data taken from the International Space Station to distinguish different types of lamps that contribute to light pollution. Finally we used a spectrograph SAND for temporal analysis of the evolution of the contribution of the lights in the sky brightness of a big city like Madrid. Also we have performed a citizen science program to classify the night time images taken from the ISS (Sánchez de Miguel et al. 2014, A&G, 55, 4, 36).

  1. Derivation of the Energy and Flux Morphology in an Aurora Observed at Midlatitude Using Multispectral Imaging

    NASA Astrophysics Data System (ADS)

    Aryal, Saurav; Finn, Susanna C.; Hewawasam, Kuravi; Maguire, Ryan; Geddes, George; Cook, Timothy; Martel, Jason; Baumgardner, Jeffrey L.; Chakrabarti, Supriya

    2018-05-01

    Energies and fluxes of precipitating electrons in an aurora over Lowell, MA on 22-23 June 2015 were derived based on simultaneous, high-resolution (≈ 0.02 nm) brightness measurements of N2+ (427.8 nm, blue line), OI (557.7 nm, green line), and OI (630.0 nm, red line) emissions. The electron energies and energy fluxes as a function of time and look direction were derived by nonlinear minimization of model predictions with respect to the measurements. Three different methods were compared; in the first two methods, we constrained the modeled brightnesses and brightness ratios, respectively, with measurements to simultaneously derive energies and fluxes. Then we used a hybrid method where we constrained the individual modeled brightness ratios with measurements to derive energies and then constrained modeled brightnesses with measurements to derive fluxes. Derived energy, assuming Maxwellian distribution, during this storm ranged from 109 to 262 eV and the total energy flux ranged from 0.8 to 2.2 ergs·cm-2·s-1. This approach provides a way to estimate energies and energy fluxes of the precipitating electrons using simultaneous multispectral measurements.

  2. Observation of spatial and temporal variations in X-ray bright point emergence patterns. [at solar surface

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Vaiana, G. S.

    1976-01-01

    Observations of X-ray bright points (XBP) over a six-month interval in 1973 show significant variations in both the number density of XBP as a function of heliographic longitude and in the full-sun average number of XBP from one rotation to the next. The observed increases in XBP emergence are estimated to be equivalent to several large active regions emerging per day for several months. The number of XBP emerging at high latitudes varies in phase with the low-latitude variation and reaches a maximum approximately simultaneous with a major outbreak of active regions. The quantity of magnetic flux emerging in the form of XBP at high latitudes alone is estimated to be as large as the contribution from all active regions.

  3. PN-CCD camera for XMM: performance of high time resolution/bright source operating modes

    NASA Astrophysics Data System (ADS)

    Kendziorra, Eckhard; Bihler, Edgar; Grubmiller, Willy; Kretschmar, Baerbel; Kuster, Markus; Pflueger, Bernhard; Staubert, Ruediger; Braeuninger, Heinrich W.; Briel, Ulrich G.; Meidinger, Norbert; Pfeffermann, Elmar; Reppin, Claus; Stoetter, Diana; Strueder, Lothar; Holl, Peter; Kemmer, Josef; Soltau, Heike; von Zanthier, Christoph

    1997-10-01

    The pn-CCD camera is developed as one of the focal plane instruments for the European photon imaging camera (EPIC) on board the x-ray multi mirror (XMM) mission to be launched in 1999. The detector consists of four quadrants of three pn-CCDs each, which are integrated on one silicon wafer. Each CCD has 200 by 64 pixels (150 micrometer by 150 micrometers) with 280 micrometers depletion depth. One CCD of a quadrant is read out at a time, while the four quadrants can be processed independently of each other. In standard imaging mode the CCDs are read out sequentially every 70 ms. Observations of point sources brighter than 1 mCrab will be effected by photon pile- up. However, special operating modes can be used to observe bright sources up to 150 mCrab in timing mode with 30 microseconds time resolution and very bright sources up to several crab in burst mode with 7 microseconds time resolution. We have tested one quadrant of the EPIC pn-CCD camera at line energies from 0.52 keV to 17.4 keV at the long beam test facility Panter in the focus of the qualification mirror module for XMM. In order to test the time resolution of the system, a mechanical chopper was used to periodically modulate the beam intensity. Pulse periods down to 0.7 ms were generated. This paper describes the performance of the pn-CCD detector in timing and burst readout modes with special emphasis on energy and time resolution.

  4. Energy-Saving Tunnel Illumination System Based on LED's Intelligent Control

    NASA Astrophysics Data System (ADS)

    Guo, Shanshan; Gu, Hanting; Wu, Lan; Jiang, Shuixiu

    2011-02-01

    At present there is a lot of electric energy wastage in tunnel illumination, whose design is based on the maximum brightness outside and the maximum vehicle speed all year round. LED's energy consumption is low, and the control of its brightness is simple and effective. It can be quickly adjusted between 0-100% of its maximum brightness, and will not affect the service life. Therefore, using LED as tunnel's illumination source, we can achieve a good energy saving effect. According to real-time data acquisition of vehicle speed, traffic flow and brightness outside the tunnel, the auto real-time control of tunnel illumination can be achieved. And the system regulated the LED luminance by means of combination of LED power module and intelligent control module. The tunnel information was detected by inspection equipments, which included luminometer, vehicle detector, and received by RTU(Remote Terminal Unit), then synchronously transmitted to PC. After data processing, RTU emitted the dimming signal to the LED driver to adjust the brightness of LED. Despite the relatively high cost of high-power LED lights, the enormous energy-saving effect and the well-behaved controllability is beyond compare to other lighting devices.

  5. Estimating the spin axis orientation of the Echostar-2 box-wing geosynchronous satellite

    NASA Astrophysics Data System (ADS)

    Earl, Michael A.; Somers, Philip W.; Kabin, Konstantin; Bédard, Donald; Wade, Gregg A.

    2018-04-01

    For the first time, the spin axis orientation of an inactive box-wing geosynchronous satellite has been estimated from ground-based optical photometric observations of Echostar-2's specular reflections. Recent photometric light curves obtained of Echostar-2 over four years suggest that unusually bright and brief specular reflections were occurring twice within an observed spin period. These bright and brief specular reflections suggested two satellite surfaces with surface normals separated by approximately 180°. The geometry between the satellite, the Sun, and the observing location at the time of each of the brightest observed reflections, was used to estimate Echostar-2's equatorial spin axis orientation coordinates. When considering prograde and retrograde rotation, Echostar-2's spin axis orientation was estimated to have been located within 30° of either equatorial coordinate pole. Echostar-2's spin axis was observed to have moved approximately 180° in right ascension, within a time span of six months, suggesting a roughly one year spin axis precession period about the satellite's angular momentum vector.

  6. The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    NASA Technical Reports Server (NTRS)

    Marriage, T. A.; Juin, J. B.; Lin, Y. T.; Marsden, D.; Nolta, M. R.; Partridge, B.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; hide

    2011-01-01

    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (> 50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between .5, 20, and 148 GHz with median spectral indices of alp[ha (sub 5-20) = -0.07 +/- 0.06, alpha (sub 20-148) -0.39 +/- 0.04, and alpha (sub 5-148) = -0.20 +/- 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C(sup Sync) = (2.8 +/- 0.3) x 1O (exp-6) micro K(exp 2).

  7. Multi-epoch VLBA Imaging of 20 New TeV Blazars: Apparent Jet Speeds

    NASA Astrophysics Data System (ADS)

    Piner, B. Glenn; Edwards, Philip G.

    2018-01-01

    We present 88 multi-epoch Very Long Baseline Array (VLBA) images (most at an observing frequency of 8 GHz) of 20 TeV blazars, all of the high-frequency-peaked BL Lac (HBL) class, that have not been previously studied at multiple epochs on the parsec scale. From these 20 sources, we analyze the apparent speeds of 43 jet components that are all detected at four or more epochs. As has been found for other TeV HBLs, the apparent speeds of these components are relatively slow. About two-thirds of the components have an apparent speed that is consistent (within 2σ) with no motion, and some of these components may be stationary patterns whose apparent speed does not relate to the underlying bulk flow speed. In addition, a superluminal tail to the apparent speed distribution of the TeV HBLs is detected for the first time, with eight components in seven sources having a 2σ lower limit on the apparent speed exceeding 1c. We combine the data from these 20 sources with an additional 18 sources from the literature to analyze the complete apparent speed distribution of all 38 TeV HBLs that have been studied with very long baseline interferometry at multiple epochs. The highest 2σ apparent speed lower limit considering all sources is 3.6c. This suggests that bulk Lorentz factors of up to about 4, but probably not much higher, exist in the parsec-scale radio-emitting regions of these sources, consistent with estimates obtained in the radio by other means such as brightness temperatures. This can be reconciled with the high Lorentz factors estimated from the high-energy data if the jet has velocity structures consisting of different emission regions with different Lorentz factors. In particular, we analyze the current apparent speed data for the TeV HBLs in the context of a model with a fast central spine and a slower outer layer.

  8. Optical monitoring of BL Lac object S5 0716+714 and FSRQ 3C 273 from 2000 to 2014

    NASA Astrophysics Data System (ADS)

    Yuan, Yu-Hai; Fan, Jun-hui; Tao, Jun; Qian, Bo-Chen; Costantin, Denise; Xiao, Hu-Bing; Pei, Zhi-Yuan; Lin, Chao

    2017-09-01

    Context. Using the 1.56 m telescope at the Shanghai Observatory (ShAO), China, we monitored two sources, BL Lac object S5 0716+714 and flat spectrum radio quasar (FSRQ) 3C 273. For S5 0716+714, we report 4969 sets of CCD (Charge-coupled Device) photometrical optical observations (1369 for V band, 1861 for R band and 1739 for I band) in the monitoring time from Dec. 4, 2000 to Apr. 5, 2014. For 3C 273, we report 460 observations (138 for V band, 146 for R band and 176 for I band) in the monitoring time from Mar. 28, 2006 to Apr. 9, 2014. Aims: The observations provide us with a large amount of data to analyze the short-term and long-term optical variabilities. Based on the variable timescales, we can estimate the central black hole mass and the Doppler factor. An abundance of multi-band observations can help us to analyze the relations between the brightness and spectrum. Methods: We use Gaussian fitting to analyze the intra-day light curves and obtain the intra-day variability (IDV) timescales. We use the discrete correlation function (DCF) method and Jurkevich method to analyze the quasi-periodic variability. Based on the VRI observations, we use the linear fitting to analyze the relations between brightness and spectrum. Results: The two sources both show IDV properties for S5 0716+714. The timescales are in the range from 17.3 min to 4.82 h; for 3C 273, the timescale is ΔT = 35.6 min. Based on the periodic analysis methods, we find the periods PV = 24.24 ± 1.09 days, PR = 24.12 ± 0.76 days, PI = 24.82 ± 0.73 days for S5 0716+714, and P = 12.99 ± 0.72, 21.76 ± 1.45 yr for 3C 273. The two sources displayed the "bluer-when-brighter" spectral evolution properties. Conclusions: S5 0716+714 and 3C 273 are frequently studied objects. The violent optical variability and IDV may come from the jet. Gaussian fitting can be used to analyze IDVs. The relations between brightness (flux density) and spectrum are strongly influenced by the frequency. A table of the individual photometry measurements is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A43

  9. Dosimetry for ultraviolet radiation exposure of the eye

    NASA Astrophysics Data System (ADS)

    Sliney, David H.

    1994-07-01

    The eye is exposed daily to UVR from skylight and ground reflections when outdoors in sunlight. Additional exposure occurs daily from artificial sources such as fluorescent lamps. Some workers, notably welders, are exposed to industrial sources of UVR. The geometry of exposure critically influences the actual UVR dose to the cornea and lens. When exposed to bright light, squinting reduces UVR exposure. the optical properties of the eye and behavioral responses to bright light both contribute to limiting actual UVR exposure. The actual daily dos of UVR is considerably less than what many previous investigators have assumed. The geometrical, as well as temporal and spectral, aspects of ocular dosimetry will be reviewed in order to allow participants a better insight into the practical impact of many laboratory studies of UVR effects upon ocular tissues.

  10. On the Feasibility of Very-Low-Density Pure Metal Foams as Bright High-Energy X-ray Sources

    NASA Astrophysics Data System (ADS)

    Colvin, Jeffrey; Felter, Thomas

    2003-10-01

    We have used the Busquet approximation (M. Busquet, Phys. Fluids B 5(11), 4191 (1993)) to explore calculationally what the possible x-ray conversion efficiencies into the K-band would be from irradiating very-low-density pure metal foams with tens of kilojoules of 1/3-micron laser light. We will discuss the advantages of pure metal foams as bright high-energy x-ray sources, and some results of this calculational study. We will also present our ideas for how to fabricate pure metal foams with densities of a few milligrams per cubic centimeter. This work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  11. A map of the day-night contrast of the extrasolar planet HD 189733b.

    PubMed

    Knutson, Heather A; Charbonneau, David; Allen, Lori E; Fortney, Jonathan J; Agol, Eric; Cowan, Nicolas B; Showman, Adam P; Cooper, Curtis S; Megeath, S Thomas

    2007-05-10

    'Hot Jupiter' extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 au is the average Sun-Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet's surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a 'map' of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 +/- 33 K and a maximum brightness temperature of 1,212 +/- 11 K at a wavelength of 8 mum, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16 +/- 6 degrees before opposition, corresponding to a hotspot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than predicted, which may indicate a slightly eccentric orbit.

  12. Identifications of Einstein Slew Survey sources

    NASA Technical Reports Server (NTRS)

    Schachter, Jonathan F.; Elvis, Martin S.; Plummer, David; Fabbiano, G.

    1992-01-01

    The status of identifications of the Einstien Slew Survey, a bright soft x-ray catalog with 550 new x-ray sources, is discussed. Possible counterparts were found for greater than 95 percent of the Slew Survey based on positional coincidences and color-color diagnostics. The survey will be fully identified via upcoming radio and optical observations.

  13. Limits to the lunar atmosphere

    NASA Astrophysics Data System (ADS)

    Morgan, T. H.; Shemansky, D. E.

    1991-02-01

    Apollo UV spectrometer experiment set limits on the density of oxygen of less than 500/cu cm, and the Apollo Lunar Atmospheric Composition Experiment data imply a value less than 50/cu cm above the subsolar point. These limits are surprisingly small relative to the measured value for sodium. A simple consideration of sources and sinks predicts significantly greater densities of oxygen. It is possible but doubtful that the Apollo measurements occurred during an epoch in which source rates were small. A preferential loss process for oxygen on the darkside of the moon is considered in which ionization by electron capture in surface collisions leads to escape through acceleration in the local electric field. Cold trapping in permanently shadowed regions as a net sink is considered and discounted, but the episodic nature of cometary insertion may allow formation of ice layers which act as a stabilized source of OH. On the basis of an assumed meteoroid impact source, a possible emission brightness of 50 R in the OH(A - X)(0,0) band above the lunar bright limb is predicted.

  14. Limits to the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Shemansky, D. E.

    1991-01-01

    Apollo UV spectrometer experiment set limits on the density of oxygen of less than 500/cu cm, and the Apollo Lunar Atmospheric Composition Experiment data imply a value less than 50/cu cm above the subsolar point. These limits are surprisingly small relative to the measured value for sodium. A simple consideration of sources and sinks predicts significantly greater densities of oxygen. It is possible but doubtful that the Apollo measurements occurred during an epoch in which source rates were small. A preferential loss process for oxygen on the darkside of the moon is considered in which ionization by electron capture in surface collisions leads to escape through acceleration in the local electric field. Cold trapping in permanently shadowed regions as a net sink is considered and discounted, but the episodic nature of cometary insertion may allow formation of ice layers which act as a stabilized source of OH. On the basis of an assumed meteoroid impact source, a possible emission brightness of 50 R in the OH(A - X)(0,0) band above the lunar bright limb is predicted.

  15. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  16. Gabor Deconvolution as Preliminary Method to Reduce Pitfall in Deeper Target Seismic Data

    NASA Astrophysics Data System (ADS)

    Oktariena, M.; Triyoso, W.

    2018-03-01

    Anelastic attenuation process during seismic wave propagation is the trigger of seismic non-stationary characteristic. An absorption and a scattering of energy are causing the seismic energy loss as the depth increasing. A series of thin reservoir layers found in the study area is located within Talang Akar Fm. Level, showing an indication of interpretation pitfall due to attenuation effect commonly occurred in deeper level seismic data. Attenuation effect greatly influences the seismic images of deeper target level, creating pitfalls in several aspect. Seismic amplitude in deeper target level often could not represent its real subsurface character due to a low amplitude value or a chaotic event nearing the Basement. Frequency wise, the decaying could be seen as the frequency content diminishing in deeper target. Meanwhile, seismic amplitude is the simple tool to point out Direct Hydrocarbon Indicator (DHI) in preliminary Geophysical study before a further advanced interpretation method applied. A quick-look of Post-Stack Seismic Data shows the reservoir associated with a bright spot DHI while another bigger bright spot body detected in the North East area near the field edge. A horizon slice confirms a possibility that the other bright spot zone has smaller delineation; an interpretation pitfall commonly occurs in deeper level of seismic. We evaluates this pitfall by applying Gabor Deconvolution to address the attenuation problem. Gabor Deconvolution forms a Partition of Unity to factorize the trace into smaller convolution window that could be processed as stationary packets. Gabor Deconvolution estimates both the magnitudes of source signature alongside its attenuation function. The enhanced seismic shows a better imaging in the pitfall area that previously detected as a vast bright spot zone. When the enhanced seismic is used for further advanced reprocessing process, the Seismic Impedance and Vp/Vs Ratio slices show a better reservoir delineation, in which the pitfall area is reduced and some morphed as background lithology. Gabor Deconvolution removes the attenuation by performing Gabor Domain spectral division, which in extension also reduces interpretation pitfall in deeper target seismic.

  17. Beyond 31 mag arcsec-2: The Frontier of Low Surface Brightness Imaging with the Largest Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio; Fliri, Jüergen

    2016-06-01

    The detection of structures in the sky with optical surface brightnesses fainter than 30 mag arcsec-2 (3σ in 10 × 10 arcsec boxes; r-band) has remained elusive in current photometric deep surveys. Here we show how present-day telescopes of 10 m class can provide broadband imaging 1.5-2 mag deeper than most previous results within a reasonable amount of time (I.e., <10 hr on-source integration). In particular, we illustrate the ability of the 10.4 m Gran Telescopio de Canarias telescope to produce imaging with a limiting surface brightness of 31.5 mag arcsec-2 (3σ in 10 × 10 arcsec boxes; r-band) using 8.1 hr on source. We apply this power to explore the stellar halo of the galaxy UGC 00180, a galaxy analogous to M31 located at ˜150 Mpc, by obtaining a radial profile of surface brightness down to μ r ˜ 33 mag arcsec-2. This depth is similar to that obtained using the star-counts techniques for Local Group galaxies, but is achieved at a distance where this technique is unfeasible. We find that the mass of the stellar halo of this galaxy is ˜4 × 109 M ⊙, I.e., (3 ± 1)% of the total stellar mass of the whole system. This amount of mass in the stellar halo is in agreement with current theoretical expectations for galaxies of this kind.

  18. BRIGHTNESS AND FLUCTUATION OF THE MID-INFRARED SKY FROM AKARI OBSERVATIONS TOWARD THE NORTH ECLIPTIC POLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyo, Jeonghyun; Jeong, Woong-Seob; Matsumoto, Toshio

    2012-12-01

    We present the smoothness of the mid-infrared sky from observations by the Japanese infrared astronomical satellite AKARI. AKARI monitored the north ecliptic pole (NEP) during its cold phase with nine wave bands covering from 2.4 to 24 {mu}m, out of which six mid-infrared bands were used in this study. We applied power-spectrum analysis to the images in order to search for the fluctuation of the sky brightness. Observed fluctuation is explained by fluctuation of photon noise, shot noise of faint sources, and Galactic cirrus. The fluctuations at a few arcminutes scales at short mid-infrared wavelengths (7, 9, and 11 {mu}m)more » are largely caused by the diffuse Galactic light of the interstellar dust cirrus. At long mid-infrared wavelengths (15, 18, and 24 {mu}m), photon noise is the dominant source of fluctuation over the scale from arcseconds to a few arcminutes. The residual fluctuation amplitude at 200'' after removing these contributions is at most 1.04 {+-} 0.23 nW m{sup -2} sr{sup -1} or 0.05% of the brightness at 24 {mu}m and at least 0.47 {+-} 0.14 nW m{sup -2} sr{sup -1} or 0.02% at 18 {mu}m. We conclude that the upper limit of the fluctuation in the zodiacal light toward the NEP is 0.03% of the sky brightness, taking 2{sigma} error into account.« less

  19. Investigating Mercury’s South Polar Deposits: Arecibo Radar Observations and High-resolution Determination of Illumination Conditions

    PubMed Central

    Chabot, Nancy L.; Shread, Evangela E.; Harmon, John K.

    2018-01-01

    There is strong evidence that Mercury’s polar deposits are water ice hosted in permanently shadowed regions. In this study, we present new Arecibo radar observations of Mercury’s south pole, which reveal numerous radar-bright deposits and substantially increase the radar imaging coverage. We also use images from MESSENGER’s full mission to determine the illumination conditions of Mercury’s south polar region at the same spatial resolution as the north polar region, enabling comparisons between the two poles. The area of radar-bright deposits in Mercury’s south is roughly double that found in the north, consistent with the larger permanently shadowed area in the older, cratered terrain at the south relative to the younger smooth plains at the north. Radar-bright features are strongly associated with regions of permanent shadow at both poles, consistent with water ice being the dominant component of the deposits. However, both of Mercury’s polar regions show that roughly 50% of permanently shadowed regions lack radar-bright deposits, despite some of these locations having thermal environments that are conducive to the presence of water ice. The observed uneven distribution of water ice among Mercury’s polar cold traps may suggest that the source of Mercury’s water ice was not a steady, regular process but rather that the source was an episodic event, such as a recent, large impact on the innermost planet. PMID:29552436

  20. AVO Analysis of a Shallow Gas Accumulation in the Marmara Sea

    NASA Astrophysics Data System (ADS)

    Er, M.; Dondurur, D.; Çifçi, G.

    2012-04-01

    In recent years, Amplitude versus Offset-AVO analysis is widely used in determination and classification of gas anomalies from wide-offset seismic data. Bright spots which are among the significant factors in determining the hydrocarbon accumulations, can also be determined sucessfully using AVO analysis. A bright spot anomaly were identified on the multi-channel seismic data collected by R/V K. Piri Reis research vessel in the Marmara Sea in 2008. On prestack seismic data, the associated AVO anomalies are clearly identified on the supergathers. Near- and far-offset stack sections are plotted to show the amplitudes changes at different offsets and the bright amplitudes were observed on the far-offset stack. AVO analysis was applied to the observed bright spot anomaly following the standart data processing steps. The analysis includes the preparation of Intercept, Gradient and Fluid Factor sections of AVO attribues. Top and base boundaries of gas bearing sediment were shown by intercept - gradient crossplot method. 1D modelling was also performed to show AVO classes and models were compared with the analysis results. It is interpreted that the bright spot anomaly arises from a shallow gas accumulation. In addition, the gas saturation from P-wave velocity was also estimated by the analysis. AVO analysis indicated Class 3 and Class 4 AVO anomalies observed on the bright spot anomaly.

  1. Design of 150W, 105-μm, 0.22NA, fiber coupled laser diode module by ZEMAX

    NASA Astrophysics Data System (ADS)

    Qi, Yunfei; Zhao, Pengfei; Chen, Qing; Wu, Yulong; Chen, Yongqi; Zou, Yonggang; Lin, Xuechun

    2016-10-01

    We represent a design of a high brightness, fiber coupled diode laser module based on 16 single emitters at 915nm. The module can produce more than 150 Watts output power from a standard fiber with core diameter of 105μm and numerical aperture (NA) of 0.22. To achieve a high power and high brightness laser beam, the spatial beam combination and polarization beam combination are used to combine output of 16 single emitters into a single beam, and then an aspheric lens is used to couple the combined beam into an optical fiber. The simulation show that the total coupling efficiency is more than 95% and the highest brightness is estimated to be 11MW/ (cm2*sr).

  2. Technology to Establish a Factory for High QE Alkali Antimonide Photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheiss, Thomas

    2015-11-16

    Intense electron beams are key to a large number of scientific endeavors, including electron cooling of hadron beams, electron-positron colliders, secondary-particle beams such as photons and positrons, sub-picosecond ultrafast electron diffraction (UED), and new high gradient accelerators that use electron-driven plasmas. The last decade has seen a considerable interest in pursuit and realization of novel light sources such as Free Electron Lasers [1] and Energy Recovery Linacs [2] that promise to deliver unprecedented quality x-ray beams. Many applications for high-intensity electron beams have arisen in recent years in high-energy physics, nuclear physics and energy sciences, such as recent designs formore » an electron-hadron collider at CERN (LHeC) [3], and beam coolers for hadron beams at LHC and eRHIC [4,5]. Photoinjectors are used at the majority of high-brightness electron linacs today, due to their efficiency, timing structure flexibility and ability to produce high power, high brightness beams. The performance of light source machines is strongly related to the brightness of the electron beam used for generating the x-rays. The brightness of the electron beam itself is mainly limited by the physical processes by which electrons are generated. For laser based photoemission sources this limit is ultimately related to the properties of photocathodes [6]. Most facilities are required to expend significant manpower and money to achieve a workable, albeit often non-ideal, compromise photocathode solution. If entirely fabricated in-house, the photocathode growth process itself is laborious and not always reproducible: it involves the human element while requiring close adherence to recipes and extremely strict control of deposition parameters. Lack of growth reliability and as a consequence, slow adoption of viable photoemitter types, can be partly attributed to the absence of any centralized facility or commercial entity to routinely provide high peak current capable, low emittance, visible-light sensitive photocathodes to the myriad of source systems in use and under development. Successful adoption of photocathodes requires strict adherence to proper fabrication, operation, and maintenance methodologies, necessitating specialized knowledge and skills. Key issues include the choice of photoemitter material, development of a more streamlined growth process to minimize human operator uncertainties, accommodation of varying photoemitter substrate materials and geometries, efficient transport and insertion mechanisms preserving the photo-yield, and properly conveyed photoemitter operational and maintenance methodologies. AES, in collaboration with Cornell University in a Phase I STTR, developed an on-demand industrialized growth and centralized delivery system for high-brightness photocathodes focused upon the alkali antimonide photoemitters. To the end user, future photoemitter sourcing will become as simple as other readily available consumables, rather than a research project requiring large investments in time and personnel.« less

  3. ROSAT observations of the luminous X-ray sources in M51

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Elmegreen, D.; Elmegreen, B.; Forman, W.; Jones, C.; Flanagan, K.

    1995-01-01

    Our analysis of a 24 ks ROSAT Position Sensitive Proprtional Counter (PSPC) image of the interacting galaxies NGC 5194 (M51) and NGC 5195 shows that X-ray emission is distributed across the whole of NGC 5194. In addition to the diffuse emission and a bright nuclear region, eight individual sources were detected with 0.2-2.2 keV luminosities from 5 to 29 x 10(exp 38) ergs/s, more than 10 times higher than typical bright Galactic X-ray sources. The energy distribution of the luminous sources can be characterized by bremsstrahlung spectra with temperatures around 1 keV and low-energy absorption exceeding that expected from our Galaxy. Two sources lie in an inner spiral arm, while five lie along the outer edges of the outer spiral arms. Four sources (R1, R2, R4, R6) lie in or near regions of recent star formation as indicated by H II regions or CO emission from molecular clouds. However, for three of the X-ray sources which fall on the outer edge of the spiral arms (R3, R7, and R8), there is little or no associated CO or H alpha emission. We discuss the origin of the luminous X-ray sources as possibly arising from either massive black holes in binary star systems, supernova remnants, or hot gas associated with star forming regions.

  4. A statistical examination of Nimbus 7 SMMR data and remote sensing of sea surface temperature, liquid water content in the atmosphere and surfaces wind speed

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Wang, I.; Chang, A. T. C.; Gloersen, P.

    1982-01-01

    Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) brightness temperature measurements over the global oceans have been examined with the help of statistical and empirical techniques. Such analyses show that zonal averages of brightness temperature measured by SMMR, over the oceans, on a large scale are primarily influenced by the water vapor in the atmosphere. Liquid water in the clouds and rain, which has a much smaller spatial and temporal scale, contributes substantially to the variability of the SMMR measurements within the latitudinal zones. The surface wind not only increases the surface emissivity but through its interactions with the atmosphere produces correlations, in the SMMR brightness temperature data, that have significant meteorological implications. It is found that a simple meteorological model can explain the general characteristics of the SMMR data. With the help of this model methods to infer over the global oceans, the surface temperature, liquid water content in the atmosphere, and surface wind speed are developed. Monthly mean estimates of the sea surface temperature and surface winds are compared with the ship measurements. Estimates of liquid water content in the atmosphere are consistent with earlier satellite measurements.

  5. Compact Groups analysis using weak gravitational lensing II: CFHT Stripe 82 data

    NASA Astrophysics Data System (ADS)

    Chalela, Martín; Gonzalez, Elizabeth Johana; Makler, Martín; Lambas, Diego García; Pereira, Maria E. S.; O'mill, Ana; Shan, HuanYuan

    2018-06-01

    In this work we present a lensing study of Compact Groups (CGs) using data obtained from the high quality Canada-France-Hawaii Telescope Stripe 82 Survey. Using stacking techniques we obtain the average density contrast profile. We analyse the lensing signal dependence on the groups surface brightness and morphological content, for CGs in the redshift range z = 0.2 - 0.4. We obtain a larger lensing signal for CGs with higher surface brightness, probably due to their lower contamination by interlopers. Also, we find a strong dependence of the lensing signal on the group concentration parameter, with the most concentrated quintile showing a significant lensing signal, consistent with an isothermal sphere with σV = 336 ± 28 km/s and a NFW profile with R200 = 0.60 ± 0.05 h_{70}^{-1}Mpc. We also compare lensing results with dynamical estimates finding a good agreement with lensing determinations for CGs with higher surface brightness and higher concentration indexes. On the other hand, CGs that are more contaminated by interlopers show larger dynamical dispersions, since interlopers bias dynamical estimates to larger values, although the lensing signal is weakened.

  6. Coma cluster ultradiffuse galaxies are not standard radio galaxies

    NASA Astrophysics Data System (ADS)

    Struble, Mitchell F.

    2018-02-01

    Matching members in the Coma cluster catalogue of ultradiffuse galaxies (UDGs) from SUBARU imaging with a very deep radio continuum survey source catalogue of the cluster using the Karl G. Jansky Very Large Array (VLA) within a rectangular region of ∼1.19 deg2 centred on the cluster core reveals matches consistent with random. An overlapping set of 470 UDGs and 696 VLA radio sources in this rectangular area finds 33 matches within a separation of 25 arcsec; dividing the sample into bins with separations bounded by 5, 10, 20 and 25 arcsec finds 1, 4, 17 and 11 matches. An analytical model estimate, based on the Poisson probability distribution, of the number of randomly expected matches within these same separation bounds is 1.7, 4.9, 19.4 and 14.2, each, respectively, consistent with the 95 per cent Poisson confidence intervals of the observed values. Dividing the data into five clustercentric annuli of 0.1° and into the four separation bins, finds the same result. This random match of UDGs with VLA sources implies that UDGs are not radio galaxies by the standard definition. Those VLA sources having integrated flux >1 mJy at 1.4 GHz in Miller, Hornschemeier and Mobasher without SDSS galaxy matches are consistent with the known surface density of background radio sources. We briefly explore the possibility that some unresolved VLA sources near UDGs could be young, compact, bright, supernova remnants of Type Ia events, possibly in the intracluster volume.

  7. Physical retrieval of precipitation water contents from Special Sensor Microwave/Imager (SSM/I) data. Part 2: Retrieval method and applications (report version)

    NASA Technical Reports Server (NTRS)

    Olson, William S.

    1990-01-01

    A physical retrieval method for estimating precipitating water distributions and other geophysical parameters based upon measurements from the DMSP-F8 SSM/I is developed. Three unique features of the retrieval method are (1) sensor antenna patterns are explicitly included to accommodate varying channel resolution; (2) precipitation-brightness temperature relationships are quantified using the cloud ensemble/radiative parameterization; and (3) spatial constraints are imposed for certain background parameters, such as humidity, which vary more slowly in the horizontal than the cloud and precipitation water contents. The general framework of the method will facilitate the incorporation of measurements from the SSMJT, SSM/T-2 and geostationary infrared measurements, as well as information from conventional sources (e.g., radiosondes) or numerical forecast model fields.

  8. Bright Merger-nova Emission Powered by Magnetic Wind from a Newborn Black Hole

    NASA Astrophysics Data System (ADS)

    Ma, Shuai-Bing; Lei, Wei-Hua; Gao, He; Xie, Wei; Chen, Wei; Zhang, Bing; Wang, Ding-Xiong

    2018-01-01

    Mergers of neutron star–neutron star (NS–NS) or neutron star–black hole (NS–BH) binaries are candidate sources of gravitational waves (GWs). At least a fraction of the merger remnants should be a stellar mass BH with sub-relativistic ejecta. A collimated jet is launched via the Blandford–Znajek mechanism from the central BH to trigger a short gamma-ray burst (sGRB). At the same time, a near-isotropic wind may be driven by the Blandford–Payne mechanism (BP). In previous work, additional energy injection to the ejecta from the BP mechanism was ignored, and radioactive decay has long been thought to be the main source of the kilonova energy. In this Letter, we propose that the wind driven by the BP mechanism from the newborn BH’s disk can heat up and push the ejecta during the prompt emission phase or even at late times when there is fall-back accretion. Such a BP-powered merger-nova could be bright in the optical band even for a low-luminosity sGRB. The detection of a GW merger event with a BH clearly identified as a remnant, accompanied by a bright merger-nova, would provide robust confirmation of our model.

  9. Automated detection of very Low Surface Brightness galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Prole, D. J.; Davies, J. I.; Keenan, O. C.; Davies, L. J. M.

    2018-04-01

    We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, DeepScan, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 degree2 portion of the Next-Generation Virgo Survey (NGVS) data to reveal 53 low surface brightness galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with 26.0 ≤ ⟨μe⟩ ≤ 28.5 and 19 ≤ mg ≤ 21, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of 106.3 ± 0.5M⊙ assuming cluster membership. After using ProFit to fit Sérsic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepine, Sebastien; Bergeron, P.; Lanning, Howard H., E-mail: lepine@amnh.org

    We present spectroscopic observations confirming the identification of hot white dwarfs among UV-bright sources from the Sandage Two-color Survey of the Galactic Plane and listed in the Lanning (Lan) catalog of such sources. A subsample of 213 UV-bright Lan sources have been identified as candidate white dwarfs based on the detection of a significant proper motion. Spectroscopic observations of 46 candidates with the KPNO 2.1 m telescope confirm 30 sources to be hydrogen white dwarfs with subtypes in the DA1-DA6 range, and with one of the stars (Lan 161) having an unresolved M dwarf as a companion. Five more sourcesmore » are confirmed to be helium white dwarfs, with subtypes from DB3 to DB6. One source (Lan 364) is identified as a DZ 3 white dwarf, with strong lines of calcium. Three more stars are found to have featureless spectra (to within detection limits) and are thus classified as DC white dwarfs. In addition, three sources are found to be hot subdwarfs: Lan 20 and Lan 480 are classified as sdOB, and Lan 432 is classified sdB. The remaining four objects are found to be field F star interlopers. Physical parameters of the DA and DB white dwarfs are derived from model fits.« less

  11. Real-time Recovery Efficiencies and Performance of the Palomar Transient Factory’s Transient Discovery Pipeline

    NASA Astrophysics Data System (ADS)

    Frohmaier, C.; Sullivan, M.; Nugent, P. E.; Goldstein, D. A.; DeRose, J.

    2017-05-01

    We present the transient source detection efficiencies of the Palomar Transient Factory (PTF), parameterizing the number of transients that PTF found versus the number of similar transients that occurred over the same period in the survey search area but were missed. PTF was an optical sky survey carried out with the Palomar 48 inch telescope over 2009-2012, observing more than 8000 square degrees of sky with cadences of between one and five days, locating around 50,000 non-moving transient sources, and spectroscopically confirming around 1900 supernovae. We assess the effectiveness with which PTF detected transient sources, by inserting ≃ 7 million artificial point sources into real PTF data. We then study the efficiency with which the PTF real-time pipeline recovered these sources as a function of the source magnitude, host galaxy surface brightness, and various observing conditions (using proxies for seeing, sky brightness, and transparency). The product of this study is a multi-dimensional recovery efficiency grid appropriate for the range of observing conditions that PTF experienced and that can then be used for studies of the rates, environments, and luminosity functions of different transient types using detailed Monte Carlo simulations. We illustrate the technique using the observationally well-understood class of type Ia supernovae.

  12. Generation of High Brightness X-rays with the PLEIADES Thomson X-ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W J; Anderson, S G; Barty, C P J

    2003-05-28

    The use of short laser pulses to generate high peak intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. PLEIADES (Picosecond Laser Electron InterAction for Dynamic Evaluation of Structures) is a next generation Thomson scattering x-ray source being developed at Lawrence Livermore National Laboratory (LLNL). Ultra-fast picosecond x-rays (10-200 keV) are generated by colliding an energetic electron beam (20-100 MeV) with a high intensity, sub-ps, 800 nm laser pulse. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm2/mrad2. Simulationsmore » of the electron beam production, transport, and final focus are presented. Electron beam measurements, including emittance and final focus spot size are also presented and compared to simulation results. Measurements of x-ray production are also reported and compared to theoretical calculations.« less

  13. Proposed US Contributions to LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen

    2013-01-01

    Proposed US Enhancements include:Tantalum X -ray collimator, Additional ground station, Large Observatory for X-Ray Timing (LOFT) instrument team participation, US science support center & data archive, and Science enabled by US hardware. High-Z material with excellent stopping power. Fabricated using a combination of laser micromachining and chemical etching. Known technology capable of producing high-aspect ratio holes and large open fractions. Reduces LOFT LAD background by a factor of 3. Telemetry formats for LOFT based upon RXTE/EDS experience. Ground system software and strategies for WFM based upon RXTE/ASM automated pipeline software. MSFC engineering trade studies supporting the Ta collimator. Burst alert triggers based upon Fermi/GBM and HETE-2. Science Enhancements Enabled by US Hardware include: Tantalum collimator: Reduces background by factor of 3. Improves sensitivity to faint sources such as AGN. Eliminates contamination by bright/variable sources. outside the LAD field of view. US Ground Station: Enables continuous telemetry of all events from the WFM. Allows LAD to observe very bright >500 mCrab sources with full event resolution.

  14. Advances in X-ray optics: From metrology characterization to wavefront sensing-based optimization of active optics

    DOE PAGES

    Cocco, Daniele; Idir, Mourad; Morton, Daniel; ...

    2018-03-20

    Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less

  15. Advances in X-ray optics: From metrology characterization to wavefront sensing-based optimization of active optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocco, Daniele; Idir, Mourad; Morton, Daniel

    Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less

  16. Images in the rocket ultraviolet - Young clusters in H II regions of M83

    NASA Technical Reports Server (NTRS)

    Bohlin, Ralph C.; Cornett, Robert H.; Hill, Jesse K.; Stecher, Theodore P.

    1990-01-01

    UV images of M83 at 1540 and 2360 A reveal 18 compact sources that are associated with H II regions. E(B - V) values were estimated individually from the observed UV and optical colors and the Galactic UV extinction curve, using theoretical flux distributions. The dereddened colors are consistent with ages up to 3 x 10 to the 6th yr. A maximum possible age of 6.5 x 10 to the 6th yr is obtained assuming foreground reddening only. The distribution of observed colors is consistent with the Galactic reddening curve but not with enhanced far-UV extinction, as in the LMC 30 Dor curve. The H-alpha fluxes suggest either that dust within the H II regions absorbs up to 70 percent of the Lyman continuum radiation or that a similar fraction of the H-alpha flux is below the surface brightness detection limit. Cluster mass estimates depend on the range of stellar masses present but are probably in the range 10,000-100,000 solar masses.

  17. Emittance and lifetime measurement with damping wigglers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G. M.; Shaftan, T., E-mail: shaftan@bnl.gov; Cheng, W. X.

    National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects inmore » the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.« less

  18. Experimental Verification of Bayesian Planet Detection Algorithms with a Shaped Pupil Coronagraph

    NASA Astrophysics Data System (ADS)

    Savransky, D.; Groff, T. D.; Kasdin, N. J.

    2010-10-01

    We evaluate the feasibility of applying Bayesian detection techniques to discovering exoplanets using high contrast laboratory data with simulated planetary signals. Background images are generated at the Princeton High Contrast Imaging Lab (HCIL), with a coronagraphic system utilizing a shaped pupil and two deformable mirrors (DMs) in series. Estimates of the electric field at the science camera are used to correct for quasi-static speckle and produce symmetric high contrast dark regions in the image plane. Planetary signals are added in software, or via a physical star-planet simulator which adds a second off-axis point source before the coronagraph with a beam recombiner, calibrated to a fixed contrast level relative to the source. We produce a variety of images, with varying integration times and simulated planetary brightness. We then apply automated detection algorithms such as matched filtering to attempt to extract the planetary signals. This allows us to evaluate the efficiency of these techniques in detecting planets in a high noise regime and eliminating false positives, as well as to test existing algorithms for calculating the required integration times for these techniques to be applicable.

  19. The collective emission of electromagnetic waves from astrophysical jets - Luminosity gaps, BL Lacertae objects, and efficient energy transport

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Borovsky, Joseph E.; Benford, Gregory; Eilek, Jean A.

    1988-01-01

    A model of the inner portions of astrophysical jets is constructed in which a relativistic electron beam is injected from the central engine into the jet plasma. This beam drives electrostatic plasma wave turbulence, which leads to the collective emission of electromagnetic waves. The emitted waves are beamed in the direction of the jet axis, so that end-on viewing of the jet yields an extremely bright source (BL Lacertae object). The relativistic electron beam may also drive long-wavelength electromagnetic plasma instabilities (firehose and Kelvin-Helmholtz) that jumble the jet magnetic field lines. After a sufficient distance from the core source, these instabilities will cause the beamed emission to point in random directions and the jet emission can then be observed from any direction relative to the jet axis. This combination of effects may lead to the gap turn-on of astrophysical jets. The collective emission model leads to different estimates for energy transport and the interpretation of radio spectra than the conventional incoherent synchrotron theory.

  20. Bright-light effects on cognitive performance in elderly persons working simulated night shifts: psychological well-being as a mediator?

    PubMed

    Kretschmer, Veronika; Schmidt, Klaus-Helmut; Griefahn, Barbara

    2013-11-01

    The present study examined whether the relationship between light exposure and cognitive functioning is mediated by psychological well-being in elderly persons working night shifts. The role of psychological well-being has been neglected so far in the relationship between bright light and cognitive performance. Sleepiness and mood were applied as indicators of psychological well-being. Cognitive functioning was examined in terms of concentration, working memory, and divided attention. A total of thirty-two test persons worked in three consecutive simulated night shifts, 16 under bright light (3,000 lux) and 16 under room light (300 lux). Concentration, working memory, and divided attention were measured by computerised tasks. The hypothesised mediators were recorded by questionnaires. Mediation analyses were conducted for estimating direct, total, and indirect effects in simple mediation models. Results indicate that sleepiness and mood did not function as mediators in the prediction of concentration, working memory, and/or divided attention by light exposure. Sleepiness led to an underestimation of the positive bright-light effect on concentration performance. Mood showed only a random effect due to the positive bright-light effect on working memory. Sleepiness and mood could completely be excluded as mediators in the relationship between light exposure and cognitive functioning. This study underlines that psychological well-being of elderly persons is not a critical component in the treatment of bright light on cognitive performance in the night shift workplace. In summary, it becomes evident that bright light has a strong direct and independent effect on cognitive performance, particularly on working memory and concentration.

Top