Sample records for source code developed

  1. Practices in Code Discoverability: Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, A.; Teuben, P.; Nemiroff, R. J.; Shamir, L.

    2012-09-01

    Here we describe the Astrophysics Source Code Library (ASCL), which takes an active approach to sharing astrophysics source code. ASCL's editor seeks out both new and old peer-reviewed papers that describe methods or experiments that involve the development or use of source code, and adds entries for the found codes to the library. This approach ensures that source codes are added without requiring authors to actively submit them, resulting in a comprehensive listing that covers a significant number of the astrophysics source codes used in peer-reviewed studies. The ASCL now has over 340 codes in it and continues to grow. In 2011, the ASCL has on average added 19 codes per month. An advisory committee has been established to provide input and guide the development and expansion of the new site, and a marketing plan has been developed and is being executed. All ASCL source codes have been used to generate results published in or submitted to a refereed journal and are freely available either via a download site or from an identified source. This paper provides the history and description of the ASCL. It lists the requirements for including codes, examines the advantages of the ASCL, and outlines some of its future plans.

  2. The Astrophysics Source Code Library: An Update

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Nemiroff, R. J.; Shamir, L.; Teuben, P. J.

    2012-01-01

    The Astrophysics Source Code Library (ASCL), founded in 1999, takes an active approach to sharing astrophysical source code. ASCL's editor seeks out both new and old peer-reviewed papers that describe methods or experiments that involve the development or use of source code, and adds entries for the found codes to the library. This approach ensures that source codes are added without requiring authors to actively submit them, resulting in a comprehensive listing that covers a significant number of the astrophysics source codes used in peer-reviewed studies. The ASCL moved to a new location in 2010, and has over 300 codes in it and continues to grow. In 2011, the ASCL (http://asterisk.apod.com/viewforum.php?f=35) has on average added 19 new codes per month; we encourage scientists to submit their codes for inclusion. An advisory committee has been established to provide input and guide the development and expansion of its new site, and a marketing plan has been developed and is being executed. All ASCL source codes have been used to generate results published in or submitted to a refereed journal and are freely available either via a download site or from an identified source. This presentation covers the history of the ASCL and examines the current state and benefits of the ASCL, the means of and requirements for including codes, and outlines its future plans.

  3. Open-Source Development of the Petascale Reactive Flow and Transport Code PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Hammond, G. E.; Andre, B.; Bisht, G.; Johnson, T.; Karra, S.; Lichtner, P. C.; Mills, R. T.

    2013-12-01

    Open-source software development has become increasingly popular in recent years. Open-source encourages collaborative and transparent software development and promotes unlimited free redistribution of source code to the public. Open-source development is good for science as it reveals implementation details that are critical to scientific reproducibility, but generally excluded from journal publications. In addition, research funds that would have been spent on licensing fees can be redirected to code development that benefits more scientists. In 2006, the developers of PFLOTRAN open-sourced their code under the U.S. Department of Energy SciDAC-II program. Since that time, the code has gained popularity among code developers and users from around the world seeking to employ PFLOTRAN to simulate thermal, hydraulic, mechanical and biogeochemical processes in the Earth's surface/subsurface environment. PFLOTRAN is a massively-parallel subsurface reactive multiphase flow and transport simulator designed from the ground up to run efficiently on computing platforms ranging from the laptop to leadership-class supercomputers, all from a single code base. The code employs domain decomposition for parallelism and is founded upon the well-established and open-source parallel PETSc and HDF5 frameworks. PFLOTRAN leverages modern Fortran (i.e. Fortran 2003-2008) in its extensible object-oriented design. The use of this progressive, yet domain-friendly programming language has greatly facilitated collaboration in the code's software development. Over the past year, PFLOTRAN's top-level data structures were refactored as Fortran classes (i.e. extendible derived types) to improve the flexibility of the code, ease the addition of new process models, and enable coupling to external simulators. For instance, PFLOTRAN has been coupled to the parallel electrical resistivity tomography code E4D to enable hydrogeophysical inversion while the same code base can be used as a third-party library to provide hydrologic flow, energy transport, and biogeochemical capability to the community land model, CLM, part of the open-source community earth system model (CESM) for climate. In this presentation, the advantages and disadvantages of open source software development in support of geoscience research at government laboratories, universities, and the private sector are discussed. Since the code is open-source (i.e. it's transparent and readily available to competitors), the PFLOTRAN team's development strategy within a competitive research environment is presented. Finally, the developers discuss their approach to object-oriented programming and the leveraging of modern Fortran in support of collaborative geoscience research as the Fortran standard evolves among compiler vendors.

  4. Facilitating Internet-Scale Code Retrieval

    ERIC Educational Resources Information Center

    Bajracharya, Sushil Krishna

    2010-01-01

    Internet-Scale code retrieval deals with the representation, storage, and access of relevant source code from a large amount of source code available on the Internet. Internet-Scale code retrieval systems support common emerging practices among software developers related to finding and reusing source code. In this dissertation we focus on some…

  5. The Particle Accelerator Simulation Code PyORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M

    2015-01-01

    The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT ismore » an open source code accessible to the public through the Google Open Source Projects Hosting service.« less

  6. Joint source-channel coding for motion-compensated DCT-based SNR scalable video.

    PubMed

    Kondi, Lisimachos P; Ishtiaq, Faisal; Katsaggelos, Aggelos K

    2002-01-01

    In this paper, we develop an approach toward joint source-channel coding for motion-compensated DCT-based scalable video coding and transmission. A framework for the optimal selection of the source and channel coding rates over all scalable layers is presented such that the overall distortion is minimized. The algorithm utilizes universal rate distortion characteristics which are obtained experimentally and show the sensitivity of the source encoder and decoder to channel errors. The proposed algorithm allocates the available bit rate between scalable layers and, within each layer, between source and channel coding. We present the results of this rate allocation algorithm for video transmission over a wireless channel using the H.263 Version 2 signal-to-noise ratio (SNR) scalable codec for source coding and rate-compatible punctured convolutional (RCPC) codes for channel coding. We discuss the performance of the algorithm with respect to the channel conditions, coding methodologies, layer rates, and number of layers.

  7. Streamlined Genome Sequence Compression using Distributed Source Coding

    PubMed Central

    Wang, Shuang; Jiang, Xiaoqian; Chen, Feng; Cui, Lijuan; Cheng, Samuel

    2014-01-01

    We aim at developing a streamlined genome sequence compression algorithm to support alternative miniaturized sequencing devices, which have limited communication, storage, and computation power. Existing techniques that require heavy client (encoder side) cannot be applied. To tackle this challenge, we carefully examined distributed source coding theory and developed a customized reference-based genome compression protocol to meet the low-complexity need at the client side. Based on the variation between source and reference, our protocol will pick adaptively either syndrome coding or hash coding to compress subsequences of changing code length. Our experimental results showed promising performance of the proposed method when compared with the state-of-the-art algorithm (GRS). PMID:25520552

  8. Operational rate-distortion performance for joint source and channel coding of images.

    PubMed

    Ruf, M J; Modestino, J W

    1999-01-01

    This paper describes a methodology for evaluating the operational rate-distortion behavior of combined source and channel coding schemes with particular application to images. In particular, we demonstrate use of the operational rate-distortion function to obtain the optimum tradeoff between source coding accuracy and channel error protection under the constraint of a fixed transmission bandwidth for the investigated transmission schemes. Furthermore, we develop information-theoretic bounds on performance for specific source and channel coding systems and demonstrate that our combined source-channel coding methodology applied to different schemes results in operational rate-distortion performance which closely approach these theoretical limits. We concentrate specifically on a wavelet-based subband source coding scheme and the use of binary rate-compatible punctured convolutional (RCPC) codes for transmission over the additive white Gaussian noise (AWGN) channel. Explicit results for real-world images demonstrate the efficacy of this approach.

  9. Aeroacoustic Prediction Codes

    NASA Technical Reports Server (NTRS)

    Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)

    2000-01-01

    This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor-noise correlation model was developed from engine acoustic test results. This work provided several insights on potential approaches to reducing aircraft engine noise. Code development is described in this report, and those insights are discussed.

  10. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  11. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  12. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  13. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar data produced for...

  14. Approaches in highly parameterized inversion - PEST++, a Parameter ESTimation code optimized for large environmental models

    USGS Publications Warehouse

    Welter, David E.; Doherty, John E.; Hunt, Randall J.; Muffels, Christopher T.; Tonkin, Matthew J.; Schreuder, Willem A.

    2012-01-01

    An object-oriented parameter estimation code was developed to incorporate benefits of object-oriented programming techniques for solving large parameter estimation modeling problems. The code is written in C++ and is a formulation and expansion of the algorithms included in PEST, a widely used parameter estimation code written in Fortran. The new code is called PEST++ and is designed to lower the barriers of entry for users and developers while providing efficient algorithms that can accommodate large, highly parameterized problems. This effort has focused on (1) implementing the most popular features of PEST in a fashion that is easy for novice or experienced modelers to use and (2) creating a software design that is easy to extend; that is, this effort provides a documented object-oriented framework designed from the ground up to be modular and extensible. In addition, all PEST++ source code and its associated libraries, as well as the general run manager source code, have been integrated in the Microsoft Visual Studio® 2010 integrated development environment. The PEST++ code is designed to provide a foundation for an open-source development environment capable of producing robust and efficient parameter estimation tools for the environmental modeling community into the future.

  15. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  16. Methodology of decreasing software complexity using ontology

    NASA Astrophysics Data System (ADS)

    DÄ browska-Kubik, Katarzyna

    2015-09-01

    In this paper a model of web application`s source code, based on the OSD ontology (Ontology for Software Development), is proposed. This model is applied to implementation and maintenance phase of software development process through the DevOntoCreator tool [5]. The aim of this solution is decreasing software complexity of that source code, using many different maintenance techniques, like creation of documentation, elimination dead code, cloned code or bugs, which were known before [1][2]. Due to this approach saving on software maintenance costs of web applications will be possible.

  17. Automated Concurrent Blackboard System Generation in C++

    NASA Technical Reports Server (NTRS)

    Kaplan, J. A.; McManus, J. W.; Bynum, W. L.

    1999-01-01

    In his 1992 Ph.D. thesis, "Design and Analysis Techniques for Concurrent Blackboard Systems", John McManus defined several performance metrics for concurrent blackboard systems and developed a suite of tools for creating and analyzing such systems. These tools allow a user to analyze a concurrent blackboard system design and predict the performance of the system before any code is written. The design can be modified until simulated performance is satisfactory. Then, the code generator can be invoked to generate automatically all of the code required for the concurrent blackboard system except for the code implementing the functionality of each knowledge source. We have completed the port of the source code generator and a simulator for a concurrent blackboard system. The source code generator generates the necessary C++ source code to implement the concurrent blackboard system using Parallel Virtual Machine (PVM) running on a heterogeneous network of UNIX(trademark) workstations. The concurrent blackboard simulator uses the blackboard specification file to predict the performance of the concurrent blackboard design. The only part of the source code for the concurrent blackboard system that the user must supply is the code implementing the functionality of the knowledge sources.

  18. Entropy-Based Bounds On Redundancies Of Huffman Codes

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J.

    1992-01-01

    Report presents extension of theory of redundancy of binary prefix code of Huffman type which includes derivation of variety of bounds expressed in terms of entropy of source and size of alphabet. Recent developments yielded bounds on redundancy of Huffman code in terms of probabilities of various components in source alphabet. In practice, redundancies of optimal prefix codes often closer to 0 than to 1.

  19. Adaptive distributed source coding.

    PubMed

    Varodayan, David; Lin, Yao-Chung; Girod, Bernd

    2012-05-01

    We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.

  20. Coding conventions and principles for a National Land-Change Modeling Framework

    USGS Publications Warehouse

    Donato, David I.

    2017-07-14

    This report establishes specific rules for writing computer source code for use with the National Land-Change Modeling Framework (NLCMF). These specific rules consist of conventions and principles for writing code primarily in the C and C++ programming languages. Collectively, these coding conventions and coding principles create an NLCMF programming style. In addition to detailed naming conventions, this report provides general coding conventions and principles intended to facilitate the development of high-performance software implemented with code that is extensible, flexible, and interoperable. Conventions for developing modular code are explained in general terms and also enabled and demonstrated through the appended templates for C++ base source-code and header files. The NLCMF limited-extern approach to module structure, code inclusion, and cross-module access to data is both explained in the text and then illustrated through the module templates. Advice on the use of global variables is provided.

  1. On the optimality of code options for a universal noiseless coder

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Rice, Robert F.; Miller, Warner

    1991-01-01

    A universal noiseless coding structure was developed that provides efficient performance over an extremely broad range of source entropy. This is accomplished by adaptively selecting the best of several easily implemented variable length coding algorithms. Custom VLSI coder and decoder modules capable of processing over 20 million samples per second are currently under development. The first of the code options used in this module development is shown to be equivalent to a class of Huffman code under the Humblet condition, other options are shown to be equivalent to the Huffman codes of a modified Laplacian symbol set, at specified symbol entropy values. Simulation results are obtained on actual aerial imagery, and they confirm the optimality of the scheme. On sources having Gaussian or Poisson distributions, coder performance is also projected through analysis and simulation.

  2. Utilization of recently developed codes for high power Brayton and Rankine cycle power systems

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.

  3. Practices in source code sharing in astrophysics

    NASA Astrophysics Data System (ADS)

    Shamir, Lior; Wallin, John F.; Allen, Alice; Berriman, Bruce; Teuben, Peter; Nemiroff, Robert J.; Mink, Jessica; Hanisch, Robert J.; DuPrie, Kimberly

    2013-02-01

    While software and algorithms have become increasingly important in astronomy, the majority of authors who publish computational astronomy research do not share the source code they develop, making it difficult to replicate and reuse the work. In this paper we discuss the importance of sharing scientific source code with the entire astrophysics community, and propose that journals require authors to make their code publicly available when a paper is published. That is, we suggest that a paper that involves a computer program not be accepted for publication unless the source code becomes publicly available. The adoption of such a policy by editors, editorial boards, and reviewers will improve the ability to replicate scientific results, and will also make computational astronomy methods more available to other researchers who wish to apply them to their data.

  4. The Astrophysics Source Code Library by the numbers

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Teuben, Peter; Berriman, G. Bruce; DuPrie, Kimberly; Mink, Jessica; Nemiroff, Robert; Ryan, PW; Schmidt, Judy; Shamir, Lior; Shortridge, Keith; Wallin, John; Warmels, Rein

    2018-01-01

    The Astrophysics Source Code Library (ASCL, ascl.net) was founded in 1999 by Robert Nemiroff and John Wallin. ASCL editors seek both new and old peer-reviewed papers that describe methods or experiments that involve the development or use of source code, and add entries for the found codes to the library. Software authors can submit their codes to the ASCL as well. This ensures a comprehensive listing covering a significant number of the astrophysics source codes used in peer-reviewed studies. The ASCL is indexed by both NASA’s Astrophysics Data System (ADS) and Web of Science, making software used in research more discoverable. This presentation covers the growth in the ASCL’s number of entries, the number of citations to its entries, and in which journals those citations appear. It also discusses what changes have been made to the ASCL recently, and what its plans are for the future.

  5. Java Source Code Analysis for API Migration to Embedded Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, Victor; McCoy, James A.; Guerrero, Jonathan

    Embedded systems form an integral part of our technological infrastructure and oftentimes play a complex and critical role within larger systems. From the perspective of reliability, security, and safety, strong arguments can be made favoring the use of Java over C in such systems. In part, this argument is based on the assumption that suitable subsets of Java’s APIs and extension libraries are available to embedded software developers. In practice, a number of Java-based embedded processors do not support the full features of the JVM. For such processors, source code migration is a mechanism by which key abstractions offered bymore » APIs and extension libraries can made available to embedded software developers. The analysis required for Java source code-level library migration is based on the ability to correctly resolve element references to their corresponding element declarations. A key challenge in this setting is how to perform analysis for incomplete source-code bases (e.g., subsets of libraries) from which types and packages have been omitted. This article formalizes an approach that can be used to extend code bases targeted for migration in such a manner that the threats associated the analysis of incomplete code bases are eliminated.« less

  6. Particle model of a cylindrical inductively coupled ion source

    NASA Astrophysics Data System (ADS)

    Ippolito, N. D.; Taccogna, F.; Minelli, P.; Cavenago, M.; Veltri, P.

    2017-08-01

    In spite of the wide use of RF sources, a complete understanding of the mechanisms regulating the RF-coupling of the plasma is still lacking so self-consistent simulations of the involved physics are highly desirable. For this reason we are developing a 2.5D fully kinetic Particle-In-Cell Monte-Carlo-Collision (PIC-MCC) model of a cylindrical ICP-RF source, keeping the time step of the simulation small enough to resolve the plasma frequency scale. The grid cell dimension is now about seven times larger than the average Debye length, because of the large computational demand of the code. It will be scaled down in the next phase of the development of the code. The filling gas is Xenon, in order to minimize the time lost by the MCC collision module in the first stage of development of the code. The results presented here are preliminary, with the code already showing a good robustness. The final goal will be the modeling of the NIO1 (Negative Ion Optimization phase 1) source, operating in Padua at Consorzio RFX.

  7. Bayesian Atmospheric Radiative Transfer (BART)Thermochemical Equilibrium Abundance (TEA) Code and Application to WASP-43b

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, Matthew O.; Cubillos, Patricio E.; Stemm, Madison; Foster, Andrew

    2014-11-01

    We present a new, open-source, Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. TEA uses the Gibbs-free-energy minimization method with an iterative Lagrangian optimization scheme. It initializes the radiative-transfer calculation in our Bayesian Atmospheric Radiative Transfer (BART) code. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. The code is tested against the original method developed by White at al. (1958), the analytic method developed by Burrows and Sharp (1999), and the Newton-Raphson method implemented in the open-source Chemical Equilibrium with Applications (CEA) code. TEA is written in Python and is available to the community via the open-source development site GitHub.com. We also present BART applied to eclipse depths of WASP-43b exoplanet, constraining atmospheric thermal and chemical parameters. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  8. A new software for deformation source optimization, the Bayesian Earthquake Analysis Tool (BEAT)

    NASA Astrophysics Data System (ADS)

    Vasyura-Bathke, H.; Dutta, R.; Jonsson, S.; Mai, P. M.

    2017-12-01

    Modern studies of crustal deformation and the related source estimation, including magmatic and tectonic sources, increasingly use non-linear optimization strategies to estimate geometric and/or kinematic source parameters and often consider both jointly, geodetic and seismic data. Bayesian inference is increasingly being used for estimating posterior distributions of deformation source model parameters, given measured/estimated/assumed data and model uncertainties. For instance, some studies consider uncertainties of a layered medium and propagate these into source parameter uncertainties, while others use informative priors to reduce the model parameter space. In addition, innovative sampling algorithms have been developed to efficiently explore the high-dimensional parameter spaces. Compared to earlier studies, these improvements have resulted in overall more robust source model parameter estimates that include uncertainties. However, the computational burden of these methods is high and estimation codes are rarely made available along with the published results. Even if the codes are accessible, it is usually challenging to assemble them into a single optimization framework as they are typically coded in different programing languages. Therefore, further progress and future applications of these methods/codes are hampered, while reproducibility and validation of results has become essentially impossible. In the spirit of providing open-access and modular codes to facilitate progress and reproducible research in deformation source estimations, we undertook the effort of developing BEAT, a python package that comprises all the above-mentioned features in one single programing environment. The package builds on the pyrocko seismological toolbox (www.pyrocko.org), and uses the pymc3 module for Bayesian statistical model fitting. BEAT is an open-source package (https://github.com/hvasbath/beat), and we encourage and solicit contributions to the project. Here, we present our strategy for developing BEAT and show application examples; especially the effect of including the model prediction uncertainty of the velocity model in following source optimizations: full moment tensor, Mogi source, moderate strike-slip earth-quake.

  9. A graphically oriented specification language for automatic code generation. GRASP/Ada: A Graphical Representation of Algorithms, Structure, and Processes for Ada, phase 1

    NASA Technical Reports Server (NTRS)

    Cross, James H., II; Morrison, Kelly I.; May, Charles H., Jr.; Waddel, Kathryn C.

    1989-01-01

    The first phase of a three-phase effort to develop a new graphically oriented specification language which will facilitate the reverse engineering of Ada source code into graphical representations (GRs) as well as the automatic generation of Ada source code is described. A simplified view of the three phases of Graphical Representations for Algorithms, Structure, and Processes for Ada (GRASP/Ada) with respect to three basic classes of GRs is presented. Phase 1 concentrated on the derivation of an algorithmic diagram, the control structure diagram (CSD) (CRO88a) from Ada source code or Ada PDL. Phase 2 includes the generation of architectural and system level diagrams such as structure charts and data flow diagrams and should result in a requirements specification for a graphically oriented language able to support automatic code generation. Phase 3 will concentrate on the development of a prototype to demonstrate the feasibility of this new specification language.

  10. Particle-in-cell code library for numerical simulation of the ECR source plasma

    NASA Astrophysics Data System (ADS)

    Shirkov, G.; Alexandrov, V.; Preisendorf, V.; Shevtsov, V.; Filippov, A.; Komissarov, R.; Mironov, V.; Shirkova, E.; Strekalovsky, O.; Tokareva, N.; Tuzikov, A.; Vatulin, V.; Vasina, E.; Fomin, V.; Anisimov, A.; Veselov, R.; Golubev, A.; Grushin, S.; Povyshev, V.; Sadovoi, A.; Donskoi, E.; Nakagawa, T.; Yano, Y.

    2003-05-01

    The project ;Numerical simulation and optimization of ion accumulation and production in multicharged ion sources; is funded by the International Science and Technology Center (ISTC). A summary of recent project development and the first version of a computer code library for simulation of electron-cyclotron resonance (ECR) source plasmas based on the particle-in-cell method are presented.

  11. Implementation issues in source coding

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Yun-Chung; Hadenfeldt, A. C.

    1989-01-01

    An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated.

  12. Constructing graph models for software system development and analysis

    NASA Astrophysics Data System (ADS)

    Pogrebnoy, Andrey V.

    2017-01-01

    We propose a concept for creating the instrumentation for functional and structural decisions rationale during the software system (SS) development. We propose to develop SS simultaneously on two models - functional (FM) and structural (SM). FM is a source code of the SS. Adequate representation of the FM in the form of a graph model (GM) is made automatically and called SM. The problem of creating and visualizing GM is considered from the point of applying it as a uniform platform for the adequate representation of the SS source code. We propose three levels of GM detailing: GM1 - for visual analysis of the source code and for SS version control, GM2 - for resources optimization and analysis of connections between SS components, GM3 - for analysis of the SS functioning in dynamics. The paper includes examples of constructing all levels of GM.

  13. FEDEF: A High Level Architecture Federate Development Framework

    DTIC Science & Technology

    2010-09-01

    require code changes for operability between HLA specifications. Configuration of federate requirements such as publications, subscriptions, time ... management , and management protocol should occur outside of federate source code, allowing for federate reusability without code modification and re

  14. Review of particle-in-cell modeling for the extraction region of large negative hydrogen ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Wünderlich, D.; Mochalskyy, S.; Montellano, I. M.; Revel, A.

    2018-05-01

    Particle-in-cell (PIC) codes are used since the early 1960s for calculating self-consistently the motion of charged particles in plasmas, taking into account external electric and magnetic fields as well as the fields created by the particles itself. Due to the used very small time steps (in the order of the inverse plasma frequency) and mesh size, the computational requirements can be very high and they drastically increase with increasing plasma density and size of the calculation domain. Thus, usually small computational domains and/or reduced dimensionality are used. In the last years, the available central processing unit (CPU) power strongly increased. Together with a massive parallelization of the codes, it is now possible to describe in 3D the extraction of charged particles from a plasma, using calculation domains with an edge length of several centimeters, consisting of one extraction aperture, the plasma in direct vicinity of the aperture, and a part of the extraction system. Large negative hydrogen or deuterium ion sources are essential parts of the neutral beam injection (NBI) system in future fusion devices like the international fusion experiment ITER and the demonstration reactor (DEMO). For ITER NBI RF driven sources with a source area of 0.9 × 1.9 m2 and 1280 extraction apertures will be used. The extraction of negative ions is accompanied by the co-extraction of electrons which are deflected onto an electron dump. Typically, the maximum negative extracted ion current is limited by the amount and the temporal instability of the co-extracted electrons, especially for operation in deuterium. Different PIC codes are available for the extraction region of large driven negative ion sources for fusion. Additionally, some effort is ongoing in developing codes that describe in a simplified manner (coarser mesh or reduced dimensionality) the plasma of the whole ion source. The presentation first gives a brief overview of the current status of the ion source development for ITER NBI and of the PIC method. Different PIC codes for the extraction region are introduced as well as the coupling to codes describing the whole source (PIC codes or fluid codes). Presented and discussed are different physical and numerical aspects of applying PIC codes to negative hydrogen ion sources for fusion as well as selected code results. The main focus of future calculations will be the meniscus formation and identifying measures for reducing the co-extracted electrons, in particular for deuterium operation. The recent results of the 3D PIC code ONIX (calculation domain: one extraction aperture and its vicinity) for the ITER prototype source (1/8 size of the ITER NBI source) are presented.

  15. Power Balance and Impurity Studies in TCS

    NASA Astrophysics Data System (ADS)

    Grossnickle, J. A.; Pietrzyk, Z. A.; Vlases, G. C.

    2003-10-01

    A "zero-dimension" power balance model was developed based on measurements of absorbed power, radiated power, absolute D_α, temperature, and density for the TCS device. Radiation was determined to be the dominant source of power loss for medium to high density plasmas. The total radiated power was strongly correlated with the Oxygen line radiation. This suggests Oxygen is the dominant radiating species, which was confirmed by doping studies. These also extrapolate to a Carbon content below 1.5%. Determining the source of the impurities is an important question that must be answered for the TCS upgrade. Preliminary indications are that the primary sources of Oxygen are the stainless steel end cones. A Ti gettering system is being installed to reduce this Oxygen source. A field line code has been developed for use in tracking where open field lines terminate on the walls. Output from this code is also used to generate grids for an impurity tracking code.

  16. Computer Simulation of the VASIMR Engine

    NASA Technical Reports Server (NTRS)

    Garrison, David

    2005-01-01

    The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code for simulation of the VASIMR engine. This code is designed be easy to modify and use. We achieve this using the Cactus framework, a system originally developed for research in numerical relativity. Since its release, Cactus has become an extremely powerful and flexible open source framework. The development of the code will be done in stages, starting with a basic fluid dynamic simulation and working towards a more complex MHD code. Once developed, this code can be used by students and researchers in order to further test and improve the VASIMR engine.

  17. Evaluation and utilization of beam simulation codes for the SNS ion source and low energy beam transport developmenta)

    NASA Astrophysics Data System (ADS)

    Han, B. X.; Welton, R. F.; Stockli, M. P.; Luciano, N. P.; Carmichael, J. R.

    2008-02-01

    Beam simulation codes PBGUNS, SIMION, and LORENTZ-3D were evaluated by modeling the well-diagnosed SNS base line ion source and low energy beam transport (LEBT) system. Then, an investigation was conducted using these codes to assist our ion source and LEBT development effort which is directed at meeting the SNS operational and also the power-upgrade project goals. A high-efficiency H- extraction system as well as magnetic and electrostatic LEBT configurations capable of transporting up to 100mA is studied using these simulation tools.

  18. Open-source framework for documentation of scientific software written on MATLAB-compatible programming languages

    NASA Astrophysics Data System (ADS)

    Konnik, Mikhail V.; Welsh, James

    2012-09-01

    Numerical simulators for adaptive optics systems have become an essential tool for the research and development of the future advanced astronomical instruments. However, growing software code of the numerical simulator makes it difficult to continue to support the code itself. The problem of adequate documentation of the astronomical software for adaptive optics simulators may complicate the development since the documentation must contain up-to-date schemes and mathematical descriptions implemented in the software code. Although most modern programming environments like MATLAB or Octave have in-built documentation abilities, they are often insufficient for the description of a typical adaptive optics simulator code. This paper describes a general cross-platform framework for the documentation of scientific software using open-source tools such as LATEX, mercurial, Doxygen, and Perl. Using the Perl script that translates M-files MATLAB comments into C-like, one can use Doxygen to generate and update the documentation for the scientific source code. The documentation generated by this framework contains the current code description with mathematical formulas, images, and bibliographical references. A detailed description of the framework components is presented as well as the guidelines for the framework deployment. Examples of the code documentation for the scripts and functions of a MATLAB-based adaptive optics simulator are provided.

  19. Computational techniques in gamma-ray skyshine analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, D.L.

    1988-12-01

    Two computer codes were developed to analyze gamma-ray skyshine, the scattering of gamma photons by air molecules. A review of previous gamma-ray skyshine studies discusses several Monte Carlo codes, programs using a single-scatter model, and the MicroSkyshine program for microcomputers. A benchmark gamma-ray skyshine experiment performed at Kansas State University is also described. A single-scatter numerical model was presented which traces photons from the source to their first scatter, then applies a buildup factor along a direct path from the scattering point to a detector. The FORTRAN code SKY, developed with this model before the present study, was modified tomore » use Gauss quadrature, recent photon attenuation data and a more accurate buildup approximation. The resulting code, SILOGP, computes response from a point photon source on the axis of a silo, with and without concrete shielding over the opening. Another program, WALLGP, was developed using the same model to compute response from a point gamma source behind a perfectly absorbing wall, with and without shielding overhead. 29 refs., 48 figs., 13 tabs.« less

  20. Using the Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Teuben, P. J.; Berriman, G. B.; DuPrie, K.; Hanisch, R. J.; Mink, J. D.; Nemiroff, R. J.; Shamir, L.; Wallin, J. F.

    2013-01-01

    The Astrophysics Source Code Library (ASCL) is a free on-line registry of source codes that are of interest to astrophysicists; with over 500 codes, it is the largest collection of scientist-written astrophysics programs in existence. All ASCL source codes have been used to generate results published in or submitted to a refereed journal and are available either via a download site or from an identified source. An advisory committee formed in 2011 provides input and guides the development and expansion of the ASCL, and since January 2012, all accepted ASCL entries are indexed by ADS. Though software is increasingly important for the advancement of science in astrophysics, these methods are still often hidden from view or difficult to find. The ASCL (ascl.net/) seeks to improve the transparency and reproducibility of research by making these vital methods discoverable, and to provide recognition and incentive to those who write and release programs useful for astrophysics research. This poster provides a description of the ASCL, an update on recent additions, and the changes in the astrophysics community we are starting to see because of the ASCL.

  1. Code CUGEL: A code to unfold Ge(Li) spectrometer polyenergetic gamma photon experimental distributions

    NASA Technical Reports Server (NTRS)

    Steyn, J. J.; Born, U.

    1970-01-01

    A FORTRAN code was developed for the Univac 1108 digital computer to unfold lithium-drifted germanium semiconductor spectrometers, polyenergetic gamma photon experimental distributions. It was designed to analyze the combination continuous and monoenergetic gamma radiation field of radioisotope volumetric sources. The code generates the detector system response matrix function and applies it to monoenergetic spectral components discretely and to the continuum iteratively. It corrects for system drift, source decay, background, and detection efficiency. Results are presented in digital form for differential and integrated photon number and energy distributions, and for exposure dose.

  2. Syndrome-source-coding and its universal generalization. [error correcting codes for data compression

    NASA Technical Reports Server (NTRS)

    Ancheta, T. C., Jr.

    1976-01-01

    A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A 'universal' generalization of syndrome-source-coding is formulated which provides robustly effective distortionless coding of source ensembles. Two examples are given, comparing the performance of noiseless universal syndrome-source-coding to (1) run-length coding and (2) Lynch-Davisson-Schalkwijk-Cover universal coding for an ensemble of binary memoryless sources.

  3. The HYPE Open Source Community

    NASA Astrophysics Data System (ADS)

    Strömbäck, L.; Pers, C.; Isberg, K.; Nyström, K.; Arheimer, B.

    2013-12-01

    The Hydrological Predictions for the Environment (HYPE) model is a dynamic, semi-distributed, process-based, integrated catchment model. It uses well-known hydrological and nutrient transport concepts and can be applied for both small and large scale assessments of water resources and status. In the model, the landscape is divided into classes according to soil type, vegetation and altitude. The soil representation is stratified and can be divided in up to three layers. Water and substances are routed through the same flow paths and storages (snow, soil, groundwater, streams, rivers, lakes) considering turn-over and transformation on the way towards the sea. HYPE has been successfully used in many hydrological applications at SMHI. For Europe, we currently have three different models; The S-HYPE model for Sweden; The BALT-HYPE model for the Baltic Sea; and the E-HYPE model for the whole Europe. These models simulate hydrological conditions and nutrients for their respective areas and are used for characterization, forecasts, and scenario analyses. Model data can be downloaded from hypeweb.smhi.se. In addition, we provide models for the Arctic region, the Arab (Middle East and Northern Africa) region, India, the Niger River basin, the La Plata Basin. This demonstrates the applicability of the HYPE model for large scale modeling in different regions of the world. An important goal with our work is to make our data and tools available as open data and services. For this aim we created the HYPE Open Source Community (OSC) that makes the source code of HYPE available for anyone interested in further development of HYPE. The HYPE OSC (hype.sourceforge.net) is an open source initiative under the Lesser GNU Public License taken by SMHI to strengthen international collaboration in hydrological modeling and hydrological data production. The hypothesis is that more brains and more testing will result in better models and better code. The code is transparent and can be changed and learnt from. New versions of the main code are delivered frequently. HYPE OSC is open to everyone interested in hydrology, hydrological modeling and code development - e.g. scientists, authorities, and consultancies. By joining the HYPE OSC you get access a state-of-the-art operational hydrological model. The HYPE source code is designed to efficiently handle large scale modeling for forecast, hindcast and climate applications. The code is under constant development to improve the hydrological processes, efficiency and readability. In the beginning of 2013 we released a version with new and better modularization based on hydrological processes. This will make the code easier to understand and further develop for a new user. An important challenge in this process is to produce code that is easy for anyone to understand and work with, but still maintain the properties that make the code efficient enough for large scale applications. Input from the HYPE Open Source Community is an important source for future improvements of the HYPE model. Therefore, by joining the community you become an active part of the development, get access to the latest features and can influence future versions of the model.

  4. Hypersonic simulations using open-source CFD and DSMC solvers

    NASA Astrophysics Data System (ADS)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  5. Some practical universal noiseless coding techniques

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1979-01-01

    Some practical adaptive techniques for the efficient noiseless coding of a broad class of such data sources are developed and analyzed. Algorithms are designed for coding discrete memoryless sources which have a known symbol probability ordering but unknown probability values. A general applicability of these algorithms to solving practical problems is obtained because most real data sources can be simply transformed into this form by appropriate preprocessing. These algorithms have exhibited performance only slightly above all entropy values when applied to real data with stationary characteristics over the measurement span. Performance considerably under a measured average data entropy may be observed when data characteristics are changing over the measurement span.

  6. A Clustering-Based Approach to Enriching Code Foraging Environment.

    PubMed

    Niu, Nan; Jin, Xiaoyu; Niu, Zhendong; Cheng, Jing-Ru C; Li, Ling; Kataev, Mikhail Yu

    2016-09-01

    Developers often spend valuable time navigating and seeking relevant code in software maintenance. Currently, there is a lack of theoretical foundations to guide tool design and evaluation to best shape the code base to developers. This paper contributes a unified code navigation theory in light of the optimal food-foraging principles. We further develop a novel framework for automatically assessing the foraging mechanisms in the context of program investigation. We use the framework to examine to what extent the clustering of software entities affects code foraging. Our quantitative analysis of long-lived open-source projects suggests that clustering enriches the software environment and improves foraging efficiency. Our qualitative inquiry reveals concrete insights into real developer's behavior. Our research opens the avenue toward building a new set of ecologically valid code navigation tools.

  7. PlasmaPy: beginning a community developed Python package for plasma physics

    NASA Astrophysics Data System (ADS)

    Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration

    2016-10-01

    In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.

  8. Leveraging Code Comments to Improve Software Reliability

    ERIC Educational Resources Information Center

    Tan, Lin

    2009-01-01

    Commenting source code has long been a common practice in software development. This thesis, consisting of three pieces of work, made novel use of the code comments written in natural language to improve software reliability. Our solution combines Natural Language Processing (NLP), Machine Learning, Statistics, and Program Analysis techniques to…

  9. Multi-Region Boundary Element Analysis for Coupled Thermal-Fracturing Processes in Geomaterials

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Kim, Hyung-Mok; Park, Eui-Seob; Kim, Taek-Kon; Wuttke, Manfred W.; Rinne, Mikael; Backers, Tobias; Stephansson, Ove

    2013-01-01

    This paper describes a boundary element code development on coupled thermal-mechanical processes of rock fracture propagation. The code development was based on the fracture mechanics code FRACOD that has previously been developed by Shen and Stephansson (Int J Eng Fracture Mech 47:177-189, 1993) and FRACOM (A fracture propagation code—FRACOD, User's manual. FRACOM Ltd. 2002) and simulates complex fracture propagation in rocks governed by both tensile and shear mechanisms. For the coupled thermal-fracturing analysis, an indirect boundary element method, namely the fictitious heat source method, was implemented in FRACOD to simulate the temperature change and thermal stresses in rocks. This indirect method is particularly suitable for the thermal-fracturing coupling in FRACOD where the displacement discontinuity method is used for mechanical simulation. The coupled code was also extended to simulate multiple region problems in which rock mass, concrete linings and insulation layers with different thermal and mechanical properties were present. Both verification and application cases were presented where a point heat source in a 2D infinite medium and a pilot LNG underground cavern were solved and studied using the coupled code. Good agreement was observed between the simulation results, analytical solutions and in situ measurements which validates an applicability of the developed coupled code.

  10. PlasmaPy: initial development of a Python package for plasma physics

    NASA Astrophysics Data System (ADS)

    Murphy, Nicholas; Leonard, Andrew J.; Stańczak, Dominik; Haggerty, Colby C.; Parashar, Tulasi N.; Huang, Yu-Min; PlasmaPy Community

    2017-10-01

    We report on initial development of PlasmaPy: an open source community-driven Python package for plasma physics. PlasmaPy seeks to provide core functionality that is needed for the formation of a fully open source Python ecosystem for plasma physics. PlasmaPy prioritizes code readability, consistency, and maintainability while using best practices for scientific computing such as version control, continuous integration testing, embedding documentation in code, and code review. We discuss our current and planned capabilities, including features presently under development. The development roadmap includes features such as fluid and particle simulation capabilities, a Grad-Shafranov solver, a dispersion relation solver, atomic data retrieval methods, and tools to analyze simulations and experiments. We describe several ways to contribute to PlasmaPy. PlasmaPy has a code of conduct and is being developed under a BSD license, with a version 0.1 release planned for 2018. The success of PlasmaPy depends on active community involvement, so anyone interested in contributing to this project should contact the authors. This work was partially supported by the U.S. Department of Energy.

  11. Computer-based coding of free-text job descriptions to efficiently identify occupations in epidemiological studies

    PubMed Central

    Russ, Daniel E.; Ho, Kwan-Yuet; Colt, Joanne S.; Armenti, Karla R.; Baris, Dalsu; Chow, Wong-Ho; Davis, Faith; Johnson, Alison; Purdue, Mark P.; Karagas, Margaret R.; Schwartz, Kendra; Schwenn, Molly; Silverman, Debra T.; Johnson, Calvin A.; Friesen, Melissa C.

    2016-01-01

    Background Mapping job titles to standardized occupation classification (SOC) codes is an important step in identifying occupational risk factors in epidemiologic studies. Because manual coding is time-consuming and has moderate reliability, we developed an algorithm called SOCcer (Standardized Occupation Coding for Computer-assisted Epidemiologic Research) to assign SOC-2010 codes based on free-text job description components. Methods Job title and task-based classifiers were developed by comparing job descriptions to multiple sources linking job and task descriptions to SOC codes. An industry-based classifier was developed based on the SOC prevalence within an industry. These classifiers were used in a logistic model trained using 14,983 jobs with expert-assigned SOC codes to obtain empirical weights for an algorithm that scored each SOC/job description. We assigned the highest scoring SOC code to each job. SOCcer was validated in two occupational data sources by comparing SOC codes obtained from SOCcer to expert assigned SOC codes and lead exposure estimates obtained by linking SOC codes to a job-exposure matrix. Results For 11,991 case-control study jobs, SOCcer-assigned codes agreed with 44.5% and 76.3% of manually assigned codes at the 6- and 2-digit level, respectively. Agreement increased with the score, providing a mechanism to identify assignments needing review. Good agreement was observed between lead estimates based on SOCcer and manual SOC assignments (kappa: 0.6–0.8). Poorer performance was observed for inspection job descriptions, which included abbreviations and worksite-specific terminology. Conclusions Although some manual coding will remain necessary, using SOCcer may improve the efficiency of incorporating occupation into large-scale epidemiologic studies. PMID:27102331

  12. Locking Down the Software Development Environment

    DTIC Science & Technology

    2014-12-01

    OpenSSL code [13]. The OpenSSL software is, as the name implies, open source, a result of many developers coding beginning in 1998 using the C...programming language to build crypto services. OpenSSL is used widely both on the Internet and in firmware [13], further delaying the ability of many

  13. Development of authentication code for multi-access optical code division multiplexing based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.

    2018-05-01

    One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.

  14. Transparent ICD and DRG coding using information technology: linking and associating information sources with the eXtensible Markup Language.

    PubMed

    Hoelzer, Simon; Schweiger, Ralf K; Dudeck, Joachim

    2003-01-01

    With the introduction of ICD-10 as the standard for diagnostics, it becomes necessary to develop an electronic representation of its complete content, inherent semantics, and coding rules. The authors' design relates to the current efforts by the CEN/TC 251 to establish a European standard for hierarchical classification systems in health care. The authors have developed an electronic representation of ICD-10 with the eXtensible Markup Language (XML) that facilitates integration into current information systems and coding software, taking different languages and versions into account. In this context, XML provides a complete processing framework of related technologies and standard tools that helps develop interoperable applications. XML provides semantic markup. It allows domain-specific definition of tags and hierarchical document structure. The idea of linking and thus combining information from different sources is a valuable feature of XML. In addition, XML topic maps are used to describe relationships between different sources, or "semantically associated" parts of these sources. The issue of achieving a standardized medical vocabulary becomes more and more important with the stepwise implementation of diagnostically related groups, for example. The aim of the authors' work is to provide a transparent and open infrastructure that can be used to support clinical coding and to develop further software applications. The authors are assuming that a comprehensive representation of the content, structure, inherent semantics, and layout of medical classification systems can be achieved through a document-oriented approach.

  15. Transparent ICD and DRG Coding Using Information Technology: Linking and Associating Information Sources with the eXtensible Markup Language

    PubMed Central

    Hoelzer, Simon; Schweiger, Ralf K.; Dudeck, Joachim

    2003-01-01

    With the introduction of ICD-10 as the standard for diagnostics, it becomes necessary to develop an electronic representation of its complete content, inherent semantics, and coding rules. The authors' design relates to the current efforts by the CEN/TC 251 to establish a European standard for hierarchical classification systems in health care. The authors have developed an electronic representation of ICD-10 with the eXtensible Markup Language (XML) that facilitates integration into current information systems and coding software, taking different languages and versions into account. In this context, XML provides a complete processing framework of related technologies and standard tools that helps develop interoperable applications. XML provides semantic markup. It allows domain-specific definition of tags and hierarchical document structure. The idea of linking and thus combining information from different sources is a valuable feature of XML. In addition, XML topic maps are used to describe relationships between different sources, or “semantically associated” parts of these sources. The issue of achieving a standardized medical vocabulary becomes more and more important with the stepwise implementation of diagnostically related groups, for example. The aim of the authors' work is to provide a transparent and open infrastructure that can be used to support clinical coding and to develop further software applications. The authors are assuming that a comprehensive representation of the content, structure, inherent semantics, and layout of medical classification systems can be achieved through a document-oriented approach. PMID:12807813

  16. Chaste: An Open Source C++ Library for Computational Physiology and Biology

    PubMed Central

    Mirams, Gary R.; Arthurs, Christopher J.; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Corrias, Alberto; Davit, Yohan; Dunn, Sara-Jane; Fletcher, Alexander G.; Harvey, Daniel G.; Marsh, Megan E.; Osborne, James M.; Pathmanathan, Pras; Pitt-Francis, Joe; Southern, James; Zemzemi, Nejib; Gavaghan, David J.

    2013-01-01

    Chaste — Cancer, Heart And Soft Tissue Environment — is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to ‘re-invent the wheel’ with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials. PMID:23516352

  17. U.S. Seismic Design Maps Web Application

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Fee, J.

    2015-12-01

    The application computes earthquake ground motion design parameters compatible with the International Building Code and other seismic design provisions. It is the primary method for design engineers to obtain ground motion parameters for multiple building codes across the country. When designing new buildings and other structures, engineers around the country use the application. Users specify the design code of interest, location, and other parameters to obtain necessary ground motion information consisting of a high-level executive summary as well as detailed information including maps, data, and graphs. Results are formatted such that they can be directly included in a final engineering report. In addition to single-site analysis, the application supports a batch mode for simultaneous consideration of multiple locations. Finally, an application programming interface (API) is available which allows other application developers to integrate this application's results into larger applications for additional processing. Development on the application has proceeded in an iterative manner working with engineers through email, meetings, and workshops. Each iteration provided new features, improved performance, and usability enhancements. This development approach positioned the application to be integral to the structural design process and is now used to produce over 1800 reports daily. Recent efforts have enhanced the application to be a data-driven, mobile-first, responsive web application. Development is ongoing, and source code has recently been published into the open-source community on GitHub. Open-sourcing the code facilitates improved incorporation of user feedback to add new features ensuring the application's continued success.

  18. Syndrome source coding and its universal generalization

    NASA Technical Reports Server (NTRS)

    Ancheta, T. C., Jr.

    1975-01-01

    A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A universal generalization of syndrome-source-coding is formulated which provides robustly-effective, distortionless, coding of source ensembles.

  19. Insights Gained from Forensic Analysis with MELCOR of the Fukushima-Daiichi Accidents.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Nathan C.; Gauntt, Randall O.

    Since the accidents at Fukushima-Daiichi, Sandia National Laboratories has been modeling these accident scenarios using the severe accident analysis code, MELCOR. MELCOR is a widely used computer code developed at Sandia National Laboratories since ~1982 for the U.S. Nuclear Regulatory Commission. Insights from the modeling of these accidents is being used to better inform future code development and potentially improved accident management. To date, our necessity to better capture in-vessel thermal-hydraulic and ex-vessel melt coolability and concrete interactions has led to the implementation of new models. The most recent analyses, presented in this paper, have been in support of themore » of the Organization for Economic Cooperation and Development Nuclear Energy Agency’s (OECD/NEA) Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) Project. The goal of this project is to accurately capture the source term from all three releases and then model the atmospheric dispersion. In order to do this, a forensic approach is being used in which available plant data and release timings is being used to inform the modeled MELCOR accident scenario. For example, containment failures, core slumping events and lower head failure timings are all enforced parameters in these analyses. This approach is fundamentally different from a blind code assessment analysis often used in standard problem exercises. The timings of these events are informed by representative spikes or decreases in plant data. The combination of improvements to the MELCOR source code resulting from analysis previous accident analysis and this forensic approach has allowed Sandia to generate representative and plausible source terms for all three accidents at Fukushima Daiichi out to three weeks after the accident to capture both early and late releases. In particular, using the source terms developed by MELCOR, the MACCS software code, which models atmospheric dispersion and deposition, we are able to reasonably capture the deposition of radionuclides to the northwest of the reactor site.« less

  20. Effect of the diffusion parameters on the observed γ-ray spectrum of sources and their contribution to the local all-electron spectrum: The EDGE code

    NASA Astrophysics Data System (ADS)

    López-Coto, R.; Hahn, J.; BenZvi, S.; Dingus, B.; Hinton, J.; Nisa, M. U.; Parsons, R. D.; Greus, F. Salesa; Zhang, H.; Zhou, H.

    2018-11-01

    The positron excess measured by PAMELA and AMS can only be explained if there is one or several sources injecting them. Moreover, at the highest energies, it requires the presence of nearby ( ∼ hundreds of parsecs) and middle age (maximum of ∼ hundreds of kyr) sources. Pulsars, as factories of electrons and positrons, are one of the proposed candidates to explain the origin of this excess. To calculate the contribution of these sources to the electron and positron flux at the Earth, we developed EDGE (Electron Diffusion and Gamma rays to the Earth), a code to treat the propagation of electrons and compute their diffusion from a central source with a flexible injection spectrum. Using this code, we can derive the source's gamma-ray spectrum, spatial extension, the all-electron density in space, the electron and positron flux reaching the Earth and the positron fraction measured at the Earth. We present in this paper the foundations of the code and study how different parameters affect the gamma-ray spectrum of a source and the electron flux measured at the Earth. We also studied the effect of several approximations usually performed in these studies. This code has been used to derive the results of the positron flux measured at the Earth in [1].

  1. Optimal bit allocation for hybrid scalable/multiple-description video transmission over wireless channels

    NASA Astrophysics Data System (ADS)

    Jubran, Mohammad K.; Bansal, Manu; Kondi, Lisimachos P.

    2006-01-01

    In this paper, we consider the problem of optimal bit allocation for wireless video transmission over fading channels. We use a newly developed hybrid scalable/multiple-description codec that combines the functionality of both scalable and multiple-description codecs. It produces a base layer and multiple-description enhancement layers. Any of the enhancement layers can be decoded (in a non-hierarchical manner) with the base layer to improve the reconstructed video quality. Two different channel coding schemes (Rate-Compatible Punctured Convolutional (RCPC)/Cyclic Redundancy Check (CRC) coding and, product code Reed Solomon (RS)+RCPC/CRC coding) are used for unequal error protection of the layered bitstream. Optimal allocation of the bitrate between source and channel coding is performed for discrete sets of source coding rates and channel coding rates. Experimental results are presented for a wide range of channel conditions. Also, comparisons with classical scalable coding show the effectiveness of using hybrid scalable/multiple-description coding for wireless transmission.

  2. Conversion of HSPF Legacy Model to a Platform-Independent, Open-Source Language

    NASA Astrophysics Data System (ADS)

    Heaphy, R. T.; Burke, M. P.; Love, J. T.

    2015-12-01

    Since its initial development over 30 years ago, the Hydrologic Simulation Program - FORTAN (HSPF) model has been used worldwide to support water quality planning and management. In the United States, HSPF receives widespread endorsement as a regulatory tool at all levels of government and is a core component of the EPA's Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) system, which was developed to support nationwide Total Maximum Daily Load (TMDL) analysis. However, the model's legacy code and data management systems have limitations in their ability to integrate with modern software, hardware, and leverage parallel computing, which have left voids in optimization, pre-, and post-processing tools. Advances in technology and our scientific understanding of environmental processes that have occurred over the last 30 years mandate that upgrades be made to HSPF to allow it to evolve and continue to be a premiere tool for water resource planners. This work aims to mitigate the challenges currently facing HSPF through two primary tasks: (1) convert code to a modern widely accepted, open-source, high-performance computing (hpc) code; and (2) convert model input and output files to modern widely accepted, open-source, data model, library, and binary file format. Python was chosen as the new language for the code conversion. It is an interpreted, object-oriented, hpc code with dynamic semantics that has become one of the most popular open-source languages. While python code execution can be slow compared to compiled, statically typed programming languages, such as C and FORTRAN, the integration of Numba (a just-in-time specializing compiler) has allowed this challenge to be overcome. For the legacy model data management conversion, HDF5 was chosen to store the model input and output. The code conversion for HSPF's hydrologic and hydraulic modules has been completed. The converted code has been tested against HSPF's suite of "test" runs and shown good agreement and similar execution times while using the Numba compiler. Continued verification of the accuracy of the converted code against more complex legacy applications and improvement upon execution times by incorporating an intelligent network change detection tool is currently underway, and preliminary results will be presented.

  3. Technology Infusion of CodeSonar into the Space Network Ground Segment

    NASA Technical Reports Server (NTRS)

    Benson, Markland J.

    2009-01-01

    This slide presentation reviews the applicability of CodeSonar to the Space Network software. CodeSonar is a commercial off the shelf system that analyzes programs written in C, C++ or Ada for defects in the code. Software engineers use CodeSonar results as an input to the existing source code inspection process. The study is focused on large scale software developed using formal processes. The systems studied are mission critical in nature but some use commodity computer systems.

  4. On the optimality of a universal noiseless coder

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Rice, Robert F.; Miller, Warner H.

    1993-01-01

    Rice developed a universal noiseless coding structure that provides efficient performance over an extremely broad range of source entropy. This is accomplished by adaptively selecting the best of several easily implemented variable length coding algorithms. Variations of such noiseless coders have been used in many NASA applications. Custom VLSI coder and decoder modules capable of processing over 50 million samples per second have been fabricated and tested. In this study, the first of the code options used in this module development is shown to be equivalent to a class of Huffman code under the Humblet condition, for source symbol sets having a Laplacian distribution. Except for the default option, other options are shown to be equivalent to the Huffman codes of a modified Laplacian symbol set, at specified symbol entropy values. Simulation results are obtained on actual aerial imagery over a wide entropy range, and they confirm the optimality of the scheme. Comparison with other known techniques are performed on several widely used images and the results further validate the coder's optimality.

  5. An Assessment of Some Design Constraints on Heat Production of a 3D Conceptual EGS Model Using an Open-Source Geothermal Reservoir Simulation Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yidong Xia; Mitch Plummer; Robert Podgorney

    2016-02-01

    Performance of heat production process over a 30-year period is assessed in a conceptual EGS model with a geothermal gradient of 65K per km depth in the reservoir. Water is circulated through a pair of parallel wells connected by a set of single large wing fractures. The results indicate that the desirable output electric power rate and lifespan could be obtained under suitable material properties and system parameters. A sensitivity analysis on some design constraints and operation parameters indicates that 1) the fracture horizontal spacing has profound effect on the long-term performance of heat production, 2) the downward deviation anglemore » for the parallel doublet wells may help overcome the difficulty of vertical drilling to reach a favorable production temperature, and 3) the thermal energy production rate and lifespan has close dependence on water mass flow rate. The results also indicate that the heat production can be improved when the horizontal fracture spacing, well deviation angle, and production flow rate are under reasonable conditions. To conduct the reservoir modeling and simulations, an open-source, finite element based, fully implicit, fully coupled hydrothermal code, namely FALCON, has been developed and used in this work. Compared with most other existing codes that are either closed-source or commercially available in this area, this new open-source code has demonstrated a code development strategy that aims to provide an unparalleled easiness for user-customization and multi-physics coupling. Test results have shown that the FALCON code is able to complete the long-term tests efficiently and accurately, thanks to the state-of-the-art nonlinear and linear solver algorithms implemented in the code.« less

  6. Support for Debugging Automatically Parallelized Programs

    NASA Technical Reports Server (NTRS)

    Hood, Robert; Jost, Gabriele

    2001-01-01

    This viewgraph presentation provides information on support sources available for the automatic parallelization of computer program. CAPTools, a support tool developed at the University of Greenwich, transforms, with user guidance, existing sequential Fortran code into parallel message passing code. Comparison routines are then run for debugging purposes, in essence, ensuring that the code transformation was accurate.

  7. Open source posturography.

    PubMed

    Rey-Martinez, Jorge; Pérez-Fernández, Nicolás

    2016-12-01

    The proposed validation goal of 0.9 in intra-class correlation coefficient was reached with the results of this study. With the obtained results we consider that the developed software (RombergLab) is a validated balance assessment software. The reliability of this software is dependent of the used force platform technical specifications. Develop and validate a posturography software and share its source code in open source terms. Prospective non-randomized validation study: 20 consecutive adults underwent two balance assessment tests, six condition posturography was performed using a clinical approved software and force platform and the same conditions were measured using the new developed open source software using a low cost force platform. Intra-class correlation index of the sway area obtained from the center of pressure variations in both devices for the six conditions was the main variable used for validation. Excellent concordance between RombergLab and clinical approved force platform was obtained (intra-class correlation coefficient =0.94). A Bland and Altman graphic concordance plot was also obtained. The source code used to develop RombergLab was published in open source terms.

  8. OpenFOAM: Open source CFD in research and industry

    NASA Astrophysics Data System (ADS)

    Jasak, Hrvoje

    2009-12-01

    The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.

  9. Methods for Coding Tobacco-Related Twitter Data: A Systematic Review

    PubMed Central

    Unger, Jennifer B; Cruz, Tess Boley; Chu, Kar-Hai

    2017-01-01

    Background As Twitter has grown in popularity to 313 million monthly active users, researchers have increasingly been using it as a data source for tobacco-related research. Objective The objective of this systematic review was to assess the methodological approaches of categorically coded tobacco Twitter data and make recommendations for future studies. Methods Data sources included PsycINFO, Web of Science, PubMed, ABI/INFORM, Communication Source, and Tobacco Regulatory Science. Searches were limited to peer-reviewed journals and conference proceedings in English from January 2006 to July 2016. The initial search identified 274 articles using a Twitter keyword and a tobacco keyword. One coder reviewed all abstracts and identified 27 articles that met the following inclusion criteria: (1) original research, (2) focused on tobacco or a tobacco product, (3) analyzed Twitter data, and (4) coded Twitter data categorically. One coder extracted data collection and coding methods. Results E-cigarettes were the most common type of Twitter data analyzed, followed by specific tobacco campaigns. The most prevalent data sources were Gnip and Twitter’s Streaming application programming interface (API). The primary methods of coding were hand-coding and machine learning. The studies predominantly coded for relevance, sentiment, theme, user or account, and location of user. Conclusions Standards for data collection and coding should be developed to be able to more easily compare and replicate tobacco-related Twitter results. Additional recommendations include the following: sample Twitter’s databases multiple times, make a distinction between message attitude and emotional tone for sentiment, code images and URLs, and analyze user profiles. Being relatively novel and widely used among adolescents and black and Hispanic individuals, Twitter could provide a rich source of tobacco surveillance data among vulnerable populations. PMID:28363883

  10. The SAMI2 Open Source Project

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Joyce, G.

    2001-05-01

    In the past decade, the Open Source Model for software development has gained popularity and has had numerous major achievements: emacs, Linux, the Gimp, and Python, to name a few. The basic idea is to provide the source code of the model or application, a tutorial on its use, and a feedback mechanism with the community so that the model can be tested, improved, and archived. Given the success of the Open Source Model, we believe it may prove valuable in the development of scientific research codes. With this in mind, we are `Open Sourcing' the low to mid-latitude ionospheric model that has recently been developed at the Naval Research Laboratory: SAMI2 (Sami2 is Another Model of the Ionosphere). The model is comprehensive and uses modern numerical techniques. The structure and design of SAMI2 make it relatively easy to understand and modify: the numerical algorithms are simple and direct, and the code is reasonably well-written. Furthermore, SAMI2 is designed to run on personal computers; prohibitive computational resources are not necessary, thereby making the model accessible and usable by virtually all researchers. For these reasons, SAMI2 is an excellent candidate to explore and test the open source modeling paradigm in space physics research. We will discuss various topics associated with this project. Research supported by the Office of Naval Research.

  11. Advanced turboprop noise prediction: Development of a code at NASA Langley based on recent theoretical results

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, M. H.; Padula, S. L.

    1986-01-01

    The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.

  12. Removing a barrier to computer-based outbreak and disease surveillance--the RODS Open Source Project.

    PubMed

    Espino, Jeremy U; Wagner, M; Szczepaniak, C; Tsui, F C; Su, H; Olszewski, R; Liu, Z; Chapman, W; Zeng, X; Ma, L; Lu, Z; Dara, J

    2004-09-24

    Computer-based outbreak and disease surveillance requires high-quality software that is well-supported and affordable. Developing software in an open-source framework, which entails free distribution and use of software and continuous, community-based software development, can produce software with such characteristics, and can do so rapidly. The objective of the Real-Time Outbreak and Disease Surveillance (RODS) Open Source Project is to accelerate the deployment of computer-based outbreak and disease surveillance systems by writing software and catalyzing the formation of a community of users, developers, consultants, and scientists who support its use. The University of Pittsburgh seeded the Open Source Project by releasing the RODS software under the GNU General Public License. An infrastructure was created, consisting of a website, mailing lists for developers and users, designated software developers, and shared code-development tools. These resources are intended to encourage growth of the Open Source Project community. Progress is measured by assessing website usage, number of software downloads, number of inquiries, number of system deployments, and number of new features or modules added to the code base. During September--November 2003, users generated 5,370 page views of the project website, 59 software downloads, 20 inquiries, one new deployment, and addition of four features. Thus far, health departments and companies have been more interested in using the software as is than in customizing or developing new features. The RODS laboratory anticipates that after initial installation has been completed, health departments and companies will begin to customize the software and contribute their enhancements to the public code base.

  13. PFLOTRAN-RepoTREND Source Term Comparison Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Jennifer M.

    Code inter-comparison studies are useful exercises to verify and benchmark independently developed software to ensure proper function, especially when the software is used to model high-consequence systems which cannot be physically tested in a fully representative environment. This summary describes the results of the first portion of the code inter-comparison between PFLOTRAN and RepoTREND, which compares the radionuclide source term used in a typical performance assessment.

  14. SAP- FORTRAN STATIC SOURCE CODE ANALYZER PROGRAM (IBM VERSION)

    NASA Technical Reports Server (NTRS)

    Manteufel, R.

    1994-01-01

    The FORTRAN Static Source Code Analyzer program, SAP, was developed to automatically gather statistics on the occurrences of statements and structures within a FORTRAN program and to provide for the reporting of those statistics. Provisions have been made for weighting each statistic and to provide an overall figure of complexity. Statistics, as well as figures of complexity, are gathered on a module by module basis. Overall summed statistics are also accumulated for the complete input source file. SAP accepts as input syntactically correct FORTRAN source code written in the FORTRAN 77 standard language. In addition, code written using features in the following languages is also accepted: VAX-11 FORTRAN, IBM S/360 FORTRAN IV Level H Extended; and Structured FORTRAN. The SAP program utilizes two external files in its analysis procedure. A keyword file allows flexibility in classifying statements and in marking a statement as either executable or non-executable. A statistical weight file allows the user to assign weights to all output statistics, thus allowing the user flexibility in defining the figure of complexity. The SAP program is written in FORTRAN IV for batch execution and has been implemented on a DEC VAX series computer under VMS and on an IBM 370 series computer under MVS. The SAP program was developed in 1978 and last updated in 1985.

  15. SAP- FORTRAN STATIC SOURCE CODE ANALYZER PROGRAM (DEC VAX VERSION)

    NASA Technical Reports Server (NTRS)

    Merwarth, P. D.

    1994-01-01

    The FORTRAN Static Source Code Analyzer program, SAP, was developed to automatically gather statistics on the occurrences of statements and structures within a FORTRAN program and to provide for the reporting of those statistics. Provisions have been made for weighting each statistic and to provide an overall figure of complexity. Statistics, as well as figures of complexity, are gathered on a module by module basis. Overall summed statistics are also accumulated for the complete input source file. SAP accepts as input syntactically correct FORTRAN source code written in the FORTRAN 77 standard language. In addition, code written using features in the following languages is also accepted: VAX-11 FORTRAN, IBM S/360 FORTRAN IV Level H Extended; and Structured FORTRAN. The SAP program utilizes two external files in its analysis procedure. A keyword file allows flexibility in classifying statements and in marking a statement as either executable or non-executable. A statistical weight file allows the user to assign weights to all output statistics, thus allowing the user flexibility in defining the figure of complexity. The SAP program is written in FORTRAN IV for batch execution and has been implemented on a DEC VAX series computer under VMS and on an IBM 370 series computer under MVS. The SAP program was developed in 1978 and last updated in 1985.

  16. Multi-channel photon counting DOT system based on digital lock-in detection technique

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Zhao, Huijuan; Wang, Zhichao; Hou, Shaohua; Gao, Feng

    2011-02-01

    Relying on deeper penetration of light in the tissue, Diffuse Optical Tomography (DOT) achieves organ-level tomography diagnosis, which can provide information on anatomical and physiological features. DOT has been widely used in imaging of breast, neonatal cerebral oxygen status and blood oxygen kinetics observed by its non-invasive, security and other advantages. Continuous wave DOT image reconstruction algorithms need the measurement of the surface distribution of the output photon flow inspired by more than one driving source, which means that source coding is necessary. The most currently used source coding in DOT is time-division multiplexing (TDM) technology, which utilizes the optical switch to switch light into optical fiber of different locations. However, in case of large amounts of the source locations or using the multi-wavelength, the measurement time with TDM and the measurement interval between different locations within the same measurement period will therefore become too long to capture the dynamic changes in real-time. In this paper, a frequency division multiplexing source coding technology is developed, which uses light sources modulated by sine waves with different frequencies incident to the imaging chamber simultaneously. Signal corresponding to an individual source is obtained from the mixed output light using digital phase-locked detection technology at the detection end. A digital lock-in detection circuit for photon counting measurement system is implemented on a FPGA development platform. A dual-channel DOT photon counting experimental system is preliminary established, including the two continuous lasers, photon counting detectors, digital lock-in detection control circuit, and codes to control the hardware and display the results. A series of experimental measurements are taken to validate the feasibility of the system. This method developed in this paper greatly accelerates the DOT system measurement, and can also obtain the multiple measurements in different source-detector locations.

  17. Open-Source as a strategy for operational software - the case of Enki

    NASA Astrophysics Data System (ADS)

    Kolberg, Sjur; Bruland, Oddbjørn

    2014-05-01

    Since 2002, SINTEF Energy has been developing what is now known as the Enki modelling system. This development has been financed by Norway's largest hydropower producer Statkraft, motivated by a desire for distributed hydrological models in operational use. As the owner of the source code, Statkraft has recently decided on Open Source as a strategy for further development, and for migration from an R&D context to operational use. A current cooperation project is currently carried out between SINTEF Energy, 7 large Norwegian hydropower producers including Statkraft, three universities and one software company. Of course, the most immediate task is that of software maturing. A more important challenge, however, is one of gaining experience within the operational hydropower industry. A transition from lumped to distributed models is likely to also require revision of measurement program, calibration strategy, use of GIS and modern data sources like weather radar and satellite imagery. On the other hand, map based visualisations enable a richer information exchange between hydrologic forecasters and power market traders. The operating context of a distributed hydrology model within hydropower planning is far from settled. Being both a modelling framework and a library of plugin-routines to build models from, Enki supports the flexibility needed in this situation. Recent development has separated the core from the user interface, paving the way for a scripting API, cross-platform compilation, and front-end programs serving different degrees of flexibility, robustness and security. The open source strategy invites anyone to use Enki and to develop and contribute new modules. Once tested, the same modules are available for the operational versions of the program. A core challenge is to offer rigid testing procedures and mechanisms to reject routines in an operational setting, without limiting the experimentation with new modules. The Open Source strategy also has implications for building and maintaining competence around the source code and the advanced hydrological and statistical routines in Enki. Originally developed by hydrologists, the Enki code is now approaching a state where maintenance requires a background in professional software development. Without the advantage of proprietary source code, both hydrologic improvements and software maintenance depend on donations or development support on a case-to-case basis, a situation well known within the open source community. It remains to see whether these mechanisms suffice to keep Enki at the maintenance level required by the hydropower sector. ENKI is available from www.opensource-enki.org.

  18. Oak Ridge Spallation Neutron Source (ORSNS) target station design integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamy, T.; Booth, R.; Cleaves, J.

    1996-06-01

    The conceptual design for a 1- to 3-MW short pulse spallation source with a liquid mercury target has been started recently. The design tools and methods being developed to define requirements, integrate the work, and provide early cost guidance will be presented with a summary of the current target station design status. The initial design point was selected with performance and cost estimate projections by a systems code. This code was developed recently using cost estimates from the Brookhaven Pulsed Spallation Neutron Source study and experience from the Advanced Neutron Source Project`s conceptual design. It will be updated and improvedmore » as the design develops. Performance was characterized by a simplified figure of merit based on a ratio of neutron production to costs. A work breakdown structure was developed, with simplified systems diagrams used to define interfaces and system responsibilities. A risk assessment method was used to identify potential problems, to identify required research and development (R&D), and to aid contingency development. Preliminary 3-D models of the target station are being used to develop remote maintenance concepts and to estimate costs.« less

  19. Study of an External Neutron Source for an Accelerator-Driven System using the PHITS Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugawara, Takanori; Iwasaki, Tomohiko; Chiba, Takashi

    A code system for the Accelerator Driven System (ADS) has been under development for analyzing dynamic behaviors of a subcritical core coupled with an accelerator. This code system named DSE (Dynamics calculation code system for a Subcritical system with an External neutron source) consists of an accelerator part and a reactor part. The accelerator part employs a database, which is calculated by using PHITS, for investigating the effect related to the accelerator such as the changes of beam energy, beam diameter, void generation, and target level. This analysis method using the database may introduce some errors into dynamics calculations sincemore » the neutron source data derived from the database has some errors in fitting or interpolating procedures. In this study, the effects of various events are investigated to confirm that the method based on the database is appropriate.« less

  20. The Need for Vendor Source Code at NAS. Revised

    NASA Technical Reports Server (NTRS)

    Carter, Russell; Acheson, Steve; Blaylock, Bruce; Brock, David; Cardo, Nick; Ciotti, Bob; Poston, Alan; Wong, Parkson; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    The Numerical Aerodynamic Simulation (NAS) Facility has a long standing practice of maintaining buildable source code for installed hardware. There are two reasons for this: NAS's designated pathfinding role, and the need to maintain a smoothly running operational capacity given the widely diversified nature of the vendor installations. NAS has a need to maintain support capabilities when vendors are not able; diagnose and remedy hardware or software problems where applicable; and to support ongoing system software development activities whether or not the relevant vendors feel support is justified. This note provides an informal history of these activities at NAS, and brings together the general principles that drive the requirement that systems integrated into the NAS environment run binaries built from source code, onsite.

  1. A new Bayesian Earthquake Analysis Tool (BEAT)

    NASA Astrophysics Data System (ADS)

    Vasyura-Bathke, Hannes; Dutta, Rishabh; Jónsson, Sigurjón; Mai, Martin

    2017-04-01

    Modern earthquake source estimation studies increasingly use non-linear optimization strategies to estimate kinematic rupture parameters, often considering geodetic and seismic data jointly. However, the optimization process is complex and consists of several steps that need to be followed in the earthquake parameter estimation procedure. These include pre-describing or modeling the fault geometry, calculating the Green's Functions (often assuming a layered elastic half-space), and estimating the distributed final slip and possibly other kinematic source parameters. Recently, Bayesian inference has become popular for estimating posterior distributions of earthquake source model parameters given measured/estimated/assumed data and model uncertainties. For instance, some research groups consider uncertainties of the layered medium and propagate these to the source parameter uncertainties. Other groups make use of informative priors to reduce the model parameter space. In addition, innovative sampling algorithms have been developed that efficiently explore the often high-dimensional parameter spaces. Compared to earlier studies, these improvements have resulted in overall more robust source model parameter estimates that include uncertainties. However, the computational demands of these methods are high and estimation codes are rarely distributed along with the published results. Even if codes are made available, it is often difficult to assemble them into a single optimization framework as they are typically coded in different programing languages. Therefore, further progress and future applications of these methods/codes are hampered, while reproducibility and validation of results has become essentially impossible. In the spirit of providing open-access and modular codes to facilitate progress and reproducible research in earthquake source estimations, we undertook the effort of producing BEAT, a python package that comprises all the above-mentioned features in one single programing environment. The package is build on top of the pyrocko seismological toolbox (www.pyrocko.org) and makes use of the pymc3 module for Bayesian statistical model fitting. BEAT is an open-source package (https://github.com/hvasbath/beat) and we encourage and solicit contributions to the project. In this contribution, we present our strategy for developing BEAT, show application examples, and discuss future developments.

  2. Software Certification - Coding, Code, and Coders

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  3. NPTFit: A Code Package for Non-Poissonian Template Fitting

    NASA Astrophysics Data System (ADS)

    Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.

    2017-06-01

    We present NPTFit, an open-source code package, written in Python and Cython, for performing non-Poissonian template fits (NPTFs). The NPTF is a recently developed statistical procedure for characterizing the contribution of unresolved point sources (PSs) to astrophysical data sets. The NPTF was first applied to Fermi gamma-ray data to provide evidence that the excess of ˜GeV gamma-rays observed in the inner regions of the Milky Way likely arises from a population of sub-threshold point sources, and the NPTF has since found additional applications studying sub-threshold extragalactic sources at high Galactic latitudes. The NPTF generalizes traditional astrophysical template fits to allow for the ability to search for populations of unresolved PSs that may follow a given spatial distribution. NPTFit builds upon the framework of the fluctuation analyses developed in X-ray astronomy, thus it likely has applications beyond those demonstrated with gamma-ray data. The NPTFit package utilizes novel computational methods to perform the NPTF efficiently. The code is available at http://github.com/bsafdi/NPTFit and up-to-date and extensive documentation may be found at http://nptfit.readthedocs.io.

  4. Continuous integration and quality control for scientific software

    NASA Astrophysics Data System (ADS)

    Neidhardt, A.; Ettl, M.; Brisken, W.; Dassing, R.

    2013-08-01

    Modern software has to be stable, portable, fast and reliable. This is going to be also more and more important for scientific software. But this requires a sophisticated way to inspect, check and evaluate the quality of source code with a suitable, automated infrastructure. A centralized server with a software repository and a version control system is one essential part, to manage the code basis and to control the different development versions. While each project can be compiled separately, the whole code basis can also be compiled with one central “Makefile”. This is used to create automated, nightly builds. Additionally all sources are inspected automatically with static code analysis and inspection tools, which check well-none error situations, memory and resource leaks, performance issues, or style issues. In combination with an automatic documentation generator it is possible to create the developer documentation directly from the code and the inline comments. All reports and generated information are presented as HTML page on a Web server. Because this environment increased the stability and quality of the software of the Geodetic Observatory Wettzell tremendously, it is now also available for scientific communities. One regular customer is already the developer group of the DiFX software correlator project.

  5. Nurturing reliable and robust open-source scientific software

    NASA Astrophysics Data System (ADS)

    Uieda, L.; Wessel, P.

    2017-12-01

    Scientific results are increasingly the product of software. The reproducibility and validity of published results cannot be ensured without access to the source code of the software used to produce them. Therefore, the code itself is a fundamental part of the methodology and must be published along with the results. With such a reliance on software, it is troubling that most scientists do not receive formal training in software development. Tools such as version control, continuous integration, and automated testing are routinely used in industry to ensure the correctness and robustness of software. However, many scientist do not even know of their existence (although efforts like Software Carpentry are having an impact on this issue; software-carpentry.org). Publishing the source code is only the first step in creating an open-source project. For a project to grow it must provide documentation, participation guidelines, and a welcoming environment for new contributors. Expanding the project community is often more challenging than the technical aspects of software development. Maintainers must invest time to enforce the rules of the project and to onboard new members, which can be difficult to justify in the context of the "publish or perish" mentality. This problem will continue as long as software contributions are not recognized as valid scholarship by hiring and tenure committees. Furthermore, there are still unsolved problems in providing attribution for software contributions. Many journals and metrics of academic productivity do not recognize citations to sources other than traditional publications. Thus, some authors choose to publish an article about the software and use it as a citation marker. One issue with this approach is that updating the reference to include new contributors involves writing and publishing a new article. A better approach would be to cite a permanent archive of individual versions of the source code in services such as Zenodo (zenodo.org). However, citations to these sources are not always recognized when computing citation metrics. In summary, the widespread development of reliable and robust open-source software relies on the creation of formal training programs in software development best practices and the recognition of software as a valid form of scholarship.

  6. Scalable video transmission over Rayleigh fading channels using LDPC codes

    NASA Astrophysics Data System (ADS)

    Bansal, Manu; Kondi, Lisimachos P.

    2005-03-01

    In this paper, we investigate an important problem of efficiently utilizing the available resources for video transmission over wireless channels while maintaining a good decoded video quality and resilience to channel impairments. Our system consists of the video codec based on 3-D set partitioning in hierarchical trees (3-D SPIHT) algorithm and employs two different schemes using low-density parity check (LDPC) codes for channel error protection. The first method uses the serial concatenation of the constant-rate LDPC code and rate-compatible punctured convolutional (RCPC) codes. Cyclic redundancy check (CRC) is used to detect transmission errors. In the other scheme, we use the product code structure consisting of a constant rate LDPC/CRC code across the rows of the `blocks' of source data and an erasure-correction systematic Reed-Solomon (RS) code as the column code. In both the schemes introduced here, we use fixed-length source packets protected with unequal forward error correction coding ensuring a strictly decreasing protection across the bitstream. A Rayleigh flat-fading channel with additive white Gaussian noise (AWGN) is modeled for the transmission. The rate-distortion optimization algorithm is developed and carried out for the selection of source coding and channel coding rates using Lagrangian optimization. The experimental results demonstrate the effectiveness of this system under different wireless channel conditions and both the proposed methods (LDPC+RCPC/CRC and RS+LDPC/CRC) outperform the more conventional schemes such as those employing RCPC/CRC.

  7. Using National Drug Codes and drug knowledge bases to organize prescription records from multiple sources.

    PubMed

    Simonaitis, Linas; McDonald, Clement J

    2009-10-01

    The utility of National Drug Codes (NDCs) and drug knowledge bases (DKBs) in the organization of prescription records from multiple sources was studied. The master files of most pharmacy systems include NDCs and local codes to identify the products they dispense. We obtained a large sample of prescription records from seven different sources. These records carried a national product code or a local code that could be translated into a national product code via their formulary master. We obtained mapping tables from five DKBs. We measured the degree to which the DKB mapping tables covered the national product codes carried in or associated with the sample of prescription records. Considering the total prescription volume, DKBs covered 93.0-99.8% of the product codes from three outpatient sources and 77.4-97.0% of the product codes from four inpatient sources. Among the in-patient sources, invented codes explained 36-94% of the noncoverage. Outpatient pharmacy sources rarely invented codes, which comprised only 0.11-0.21% of their total prescription volume, compared with inpatient pharmacy sources for which invented codes comprised 1.7-7.4% of their prescription volume. The distribution of prescribed products was highly skewed, with 1.4-4.4% of codes accounting for 50% of the message volume and 10.7-34.5% accounting for 90% of the message volume. DKBs cover the product codes used by outpatient sources sufficiently well to permit automatic mapping. Changes in policies and standards could increase coverage of product codes used by inpatient sources.

  8. OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media

    NASA Astrophysics Data System (ADS)

    Maeda, Takuto; Takemura, Shunsuke; Furumura, Takashi

    2017-07-01

    We have developed an open-source software package, Open-source Seismic Wave Propagation Code (OpenSWPC), for parallel numerical simulations of seismic wave propagation in 3D and 2D (P-SV and SH) viscoelastic media based on the finite difference method in local-to-regional scales. This code is equipped with a frequency-independent attenuation model based on the generalized Zener body and an efficient perfectly matched layer for absorbing boundary condition. A hybrid-style programming using OpenMP and the Message Passing Interface (MPI) is adopted for efficient parallel computation. OpenSWPC has wide applicability for seismological studies and great portability to allowing excellent performance from PC clusters to supercomputers. Without modifying the code, users can conduct seismic wave propagation simulations using their own velocity structure models and the necessary source representations by specifying them in an input parameter file. The code has various modes for different types of velocity structure model input and different source representations such as single force, moment tensor and plane-wave incidence, which can easily be selected via the input parameters. Widely used binary data formats, the Network Common Data Form (NetCDF) and the Seismic Analysis Code (SAC) are adopted for the input of the heterogeneous structure model and the outputs of the simulation results, so users can easily handle the input/output datasets. All codes are written in Fortran 2003 and are available with detailed documents in a public repository.[Figure not available: see fulltext.

  9. Development of MCNPX-ESUT computer code for simulation of neutron/gamma pulse height distribution

    NASA Astrophysics Data System (ADS)

    Abolfazl Hosseini, Seyed; Vosoughi, Naser; Zangian, Mehdi

    2015-05-01

    In this paper, the development of the MCNPX-ESUT (MCNPX-Energy Engineering of Sharif University of Technology) computer code for simulation of neutron/gamma pulse height distribution is reported. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry in mixed neutron/gamma fields, this type of detectors is selected for simulation in the present study. The proposed algorithm for simulation includes four main steps. The first step is the modeling of the neutron/gamma particle transport and their interactions with the materials in the environment and detector volume. In the second step, the number of scintillation photons due to charged particles such as electrons, alphas, protons and carbon nuclei in the scintillator material is calculated. In the third step, the transport of scintillation photons in the scintillator and lightguide is simulated. Finally, the resolution corresponding to the experiment is considered in the last step of the simulation. Unlike the similar computer codes like SCINFUL, NRESP7 and PHRESP, the developed computer code is applicable to both neutron and gamma sources. Hence, the discrimination of neutron and gamma in the mixed fields may be performed using the MCNPX-ESUT computer code. The main feature of MCNPX-ESUT computer code is that the neutron/gamma pulse height simulation may be performed without needing any sort of post processing. In the present study, the pulse height distributions due to a monoenergetic neutron/gamma source in NE-213 detector using MCNPX-ESUT computer code is simulated. The simulated neutron pulse height distributions are validated through comparing with experimental data (Gohil et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664 (2012) 304-309.) and the results obtained from similar computer codes like SCINFUL, NRESP7 and Geant4. The simulated gamma pulse height distribution for a 137Cs source is also compared with the experimental data.

  10. GRASP/Ada 95: Reverse Engineering Tools for Ada

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1996-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped an algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD), and a new visualization for a fine-grained complexity metric called the Complexity Profile Graph (CPG). By synchronizing the CSD and the CPG, the CSD view of control structure, nesting, and source code is directly linked to the corresponding visualization of statement level complexity in the CPG. GRASP has been integrated with GNAT, the GNU Ada 95 Translator to provide a comprehensive graphical user interface and development environment for Ada 95. The user may view, edit, print, and compile source code as a CSD with no discernible addition to storage or computational overhead. The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada 95 source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. The current update has focused on the design and implementation of a new Motif compliant user interface, and a new CSD generator consisting of a tagger and renderer. The Complexity Profile Graph (CPG) is based on a set of functions that describes the context, content, and the scaling for complexity on a statement by statement basis. When combined graphicafly, the result is a composite profile of complexity for the program unit. Ongoing research includes the development and refinement of the associated functions, and the development of the CPG generator prototype. The current Version 5.0 prototype provides the capability for the user to generate CSDs and CPGs from Ada 95 source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application. This report provides an overview of the GRASP/Ada project with an emphasis on the current update.

  11. Computer-based coding of free-text job descriptions to efficiently identify occupations in epidemiological studies.

    PubMed

    Russ, Daniel E; Ho, Kwan-Yuet; Colt, Joanne S; Armenti, Karla R; Baris, Dalsu; Chow, Wong-Ho; Davis, Faith; Johnson, Alison; Purdue, Mark P; Karagas, Margaret R; Schwartz, Kendra; Schwenn, Molly; Silverman, Debra T; Johnson, Calvin A; Friesen, Melissa C

    2016-06-01

    Mapping job titles to standardised occupation classification (SOC) codes is an important step in identifying occupational risk factors in epidemiological studies. Because manual coding is time-consuming and has moderate reliability, we developed an algorithm called SOCcer (Standardized Occupation Coding for Computer-assisted Epidemiologic Research) to assign SOC-2010 codes based on free-text job description components. Job title and task-based classifiers were developed by comparing job descriptions to multiple sources linking job and task descriptions to SOC codes. An industry-based classifier was developed based on the SOC prevalence within an industry. These classifiers were used in a logistic model trained using 14 983 jobs with expert-assigned SOC codes to obtain empirical weights for an algorithm that scored each SOC/job description. We assigned the highest scoring SOC code to each job. SOCcer was validated in 2 occupational data sources by comparing SOC codes obtained from SOCcer to expert assigned SOC codes and lead exposure estimates obtained by linking SOC codes to a job-exposure matrix. For 11 991 case-control study jobs, SOCcer-assigned codes agreed with 44.5% and 76.3% of manually assigned codes at the 6-digit and 2-digit level, respectively. Agreement increased with the score, providing a mechanism to identify assignments needing review. Good agreement was observed between lead estimates based on SOCcer and manual SOC assignments (κ 0.6-0.8). Poorer performance was observed for inspection job descriptions, which included abbreviations and worksite-specific terminology. Although some manual coding will remain necessary, using SOCcer may improve the efficiency of incorporating occupation into large-scale epidemiological studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Adaptive variable-length coding for efficient compression of spacecraft television data.

    NASA Technical Reports Server (NTRS)

    Rice, R. F.; Plaunt, J. R.

    1971-01-01

    An adaptive variable length coding system is presented. Although developed primarily for the proposed Grand Tour missions, many features of this system clearly indicate a much wider applicability. Using sample to sample prediction, the coding system produces output rates within 0.25 bit/picture element (pixel) of the one-dimensional difference entropy for entropy values ranging from 0 to 8 bit/pixel. This is accomplished without the necessity of storing any code words. Performance improvements of 0.5 bit/pixel can be simply achieved by utilizing previous line correlation. A Basic Compressor, using concatenated codes, adapts to rapid changes in source statistics by automatically selecting one of three codes to use for each block of 21 pixels. The system adapts to less frequent, but more dramatic, changes in source statistics by adjusting the mode in which the Basic Compressor operates on a line-to-line basis. Furthermore, the compression system is independent of the quantization requirements of the pulse-code modulation system.

  13. Observations and Thermochemical Calculations for Hot-Jupiter Atmospheres

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver; Cubillos, Patricio; Stemm, Madison

    2015-01-01

    I present Spitzer eclipse observations for WASP-14b and WASP-43b, an open source tool for thermochemical equilibrium calculations, and components of an open source tool for atmospheric parameter retrieval from spectroscopic data. WASP-14b is a planet that receives high irradiation from its host star, yet, although theory does not predict it, the planet hosts a thermal inversion. The WASP-43b eclipses have signal-to-noise ratios of ~25, one of the largest among exoplanets. To assess these planets' atmospheric composition and thermal structure, we developed an open-source Bayesian Atmospheric Radiative Transfer (BART) code. My dissertation tasks included developing a Thermochemical Equilibrium Abundances (TEA) code, implementing the eclipse geometry calculation in BART's radiative transfer module, and generating parameterized pressure and temperature profiles so the radiative-transfer module can be driven by the statistical module.To initialize the radiative-transfer calculation in BART, TEA calculates the equilibrium abundances of gaseous molecular species at a given temperature and pressure. It uses the Gibbs-free-energy minimization method with an iterative Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. The code is tested against the original method developed by White at al. (1958), the analytic method developed by Burrows and Sharp (1999), and the Newton-Raphson method implemented in the open-source Chemical Equilibrium with Applications (CEA) code. TEA, written in Python, is modular, documented, and available to the community via the open-source development site GitHub.com.Support for this work was provided by NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX12AL83H, by NASA through an award issued by JPL/Caltech, and through the Science Mission Directorate's Planetary Atmospheres Program, grant NNX12AI69G.

  14. Plasma separation process. Betacell (BCELL) code, user's manual

    NASA Astrophysics Data System (ADS)

    Taherzadeh, M.

    1987-11-01

    The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the Plasma Separation Program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation and source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison.

  15. A VHDL Interface for Altera Design Files

    DTIC Science & Technology

    1990-01-01

    this requirement dictated that all prototype products developed during this research would have to mirror standard VHDL code . In fact, the final... product would have to meet the 20 syntactic and semantic requirements of standard VHDL . The coding style used to create the transformation program was the...Transformed Decoder File ....................... 47 C. Supplemental VHDL Package Source Code ........... 54 Altpk.vhd .................................... 54 D

  16. Open Source Software Development Experiences on the Students' Resumes: Do They Count?--Insights from the Employers' Perspectives

    ERIC Educational Resources Information Center

    Long, Ju

    2009-01-01

    Open Source Software (OSS) is a major force in today's Information Technology (IT) landscape. Companies are increasingly using OSS in mission-critical applications. The transparency of the OSS technology itself with openly available source codes makes it ideal for students to participate in the OSS project development. OSS can provide unique…

  17. Status report on the development of a tubular electron beam ion source

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Becker, R.; Liljeby, L.; Rensfelt, K.-G.; Beebe, E. N.; Pikin, A. I.

    2004-05-01

    The theoretical estimations and numerical simulations of tubular electron beams in both beam and reflex mode of source operation as well as the off-axis ion extraction from a tubular electron beam ion source (TEBIS) are presented. Numerical simulations have been done with the use of the IGUN and OPERA-3D codes. Numerical simulations with IGUN code show that the effective electron current can reach more than 100 A with a beam current density of about 300-400 A/cm2 and the electron energy in the region of several KeV with a corresponding increase of the ion output. Off-axis ion extraction from the TEBIS, being the nonaxially symmetric problem, was simulated with OPERA-3D (SCALA) code. The conceptual design and main parameters of new tubular sources which are under consideration at JINR, MSL, and BNL are based on these simulations.

  18. Implementation of the Regulatory Authority Information System in Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carson, S.D.; Schetnan, R.; Hasan, A.

    2006-07-01

    As part of the implementation of a bar-code-based system to track radioactive sealed sources (RSS) in Egypt, the Regulatory Authority Information System Personal Digital Assistant (RAIS PDA) Application was developed to extend the functionality of the International Atomic Energy Agency's (IAEA's) RAIS database by allowing users to download RSS data from the database to a portable PDA equipped with a bar-code scanner. [1, 4] The system allows users in the field to verify radioactive sealed source data, gather radioactive sealed source audit information, and upload that data to the RAIS database. This paper describes the development of the RAIS PDAmore » Application, its features, and how it will be implemented in Egypt. (authors)« less

  19. Seismic Analysis Code (SAC): Development, porting, and maintenance within a legacy code base

    NASA Astrophysics Data System (ADS)

    Savage, B.; Snoke, J. A.

    2017-12-01

    The Seismic Analysis Code (SAC) is the result of toil of many developers over almost a 40-year history. Initially a Fortran-based code, it has undergone major transitions in underlying bit size from 16 to 32, in the 1980s, and 32 to 64 in 2009; as well as a change in language from Fortran to C in the late 1990s. Maintenance of SAC, the program and its associated libraries, have tracked changes in hardware and operating systems including the advent of Linux in the early 1990, the emergence and demise of Sun/Solaris, variants of OSX processors (PowerPC and x86), and Windows (Cygwin). Traces of these systems are still visible in source code and associated comments. A major concern while improving and maintaining a routinely used, legacy code is a fear of introducing bugs or inadvertently removing favorite features of long-time users. Prior to 2004, SAC was maintained and distributed by LLNL (Lawrence Livermore National Lab). In that year, the license was transferred from LLNL to IRIS (Incorporated Research Institutions for Seismology), but the license is not open source. However, there have been thousands of downloads a year of the package, either source code or binaries for specific system. Starting in 2004, the co-authors have maintained the SAC package for IRIS. In our updates, we fixed bugs, incorporated newly introduced seismic analysis procedures (such as EVALRESP), added new, accessible features (plotting and parsing), and improved the documentation (now in HTML and PDF formats). Moreover, we have added modern software engineering practices to the development of SAC including use of recent source control systems, high-level tests, and scripted, virtualized environments for rapid testing and building. Finally, a "sac-help" listserv (administered by IRIS) was setup for SAC-related issues and is the primary avenue for users seeking advice and reporting bugs. Attempts are always made to respond to issues and bugs in a timely fashion. For the past thirty-plus years, SAC files contained a fixed-length header. Time and distance-related values are stored in single precision, which has become a problem with the increase in desired precision for data compared to thirty years ago. A future goal is to address this precision problem, but in a backward compatible manner. We would also like to transition SAC to a more open source license.

  20. Regular Topologies for Gigabit Wide-Area Networks: Congestion Avoidance Testbed Experiments. Volume 3

    NASA Technical Reports Server (NTRS)

    Denny, Barbara A.; McKenney, Paul E., Sr.; Lee, Danny

    1994-01-01

    This document is Volume 3 of the final technical report on the work performed by SRI International (SRI) on SRI Project 8600. The document includes source listings for all software developed by SRI under this effort. Since some of our work involved the use of ST-II and the Sun Microsystems, Inc. (Sun) High-Speed Serial Interface (HSI/S) driver, we have included some of the source developed by LBL and BBN as well. In most cases, our decision to include source developed by other contractors depended on whether it was necessary to modify the original code. If we have modified the software in any way, it is included in this document. In the case of the Traffic Generator (TG), however, we have included all the ST-II software, even though BBN performed the integration, because the ST-II software is part of the standard TG release. It is important to note that all the code developed by other contractors is in the public domain, so that all software developed under this effort can be re-created from the source included here.

  1. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.

    PubMed

    Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M

    2009-09-30

    QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

  2. Self-consistent modeling of electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lécot, C.

    2004-05-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally.

  3. MDSplus quality improvement project

    DOE PAGES

    Fredian, Thomas W.; Stillerman, Joshua; Manduchi, Gabriele; ...

    2016-05-31

    MDSplus is a data acquisition and analysis system used worldwide predominantly in the fusion research community. Development began 29 years ago on the OpenVMS operating system. Since that time there have been many new features added and the code has been ported to many different operating systems. There have been contributions to the MDSplus development from the fusion community in the way of feature suggestions, feature implementations, documentation and porting to different operating systems. The bulk of the development and support of MDSplus, however, has been provided by a relatively small core developer group of three or four members. Givenmore » the size of the development team and the large number of users much more effort was focused on providing new features for the community than on keeping the underlying code and documentation up to date with the evolving software development standards. To ensure that MDSplus will continue to provide the needs of the community in the future, the MDSplus development team along with other members of the MDSplus user community has commenced on a major quality improvement project. The planned improvements include changes to software build scripts to better use GNU Autoconf and Automake tools, refactoring many of the source code modules using new language features available in modern compilers, using GNU MinGW-w64 to create MS Windows distributions, migrating to a more modern source code management system, improvement of source documentation as well as improvements to the www.mdsplus.org web site documentation and layout, and the addition of more comprehensive test suites to apply to MDSplus code builds prior to releasing installation kits to the community. This paper should lead to a much more robust product and establish a framework to maintain stability as more enhancements and features are added. Finally, this paper will describe these efforts that are either in progress or planned for the near future.« less

  4. A CFD/CSD Interaction Methodology for Aircraft Wings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Manoj K.

    1997-01-01

    With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).

  5. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Charley; Kamboj, Sunita; Wang, Cheng

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook.more » The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.« less

  6. ASTROPOP: ASTROnomical Polarimetry and Photometry pipeline

    NASA Astrophysics Data System (ADS)

    Campagnolo, Julio C. N.

    2018-05-01

    AstroPoP reduces almost any CCD photometry and image polarimetry data. For photometry reduction, the code performs source finding, aperture and PSF photometry, astrometry calibration using different automated and non-automated methods and automated source identification and magnitude calibration based on online and local catalogs. For polarimetry, the code resolves linear and circular Stokes parameters produced by image beam splitter or polarizer polarimeters. In addition to the modular functions, ready-to-use pipelines based in configuration files and header keys are also provided with the code. AstroPOP was initially developed to reduce the IAGPOL polarimeter data installed at Observatório Pico dos Dias (Brazil).

  7. Methods for Coding Tobacco-Related Twitter Data: A Systematic Review.

    PubMed

    Lienemann, Brianna A; Unger, Jennifer B; Cruz, Tess Boley; Chu, Kar-Hai

    2017-03-31

    As Twitter has grown in popularity to 313 million monthly active users, researchers have increasingly been using it as a data source for tobacco-related research. The objective of this systematic review was to assess the methodological approaches of categorically coded tobacco Twitter data and make recommendations for future studies. Data sources included PsycINFO, Web of Science, PubMed, ABI/INFORM, Communication Source, and Tobacco Regulatory Science. Searches were limited to peer-reviewed journals and conference proceedings in English from January 2006 to July 2016. The initial search identified 274 articles using a Twitter keyword and a tobacco keyword. One coder reviewed all abstracts and identified 27 articles that met the following inclusion criteria: (1) original research, (2) focused on tobacco or a tobacco product, (3) analyzed Twitter data, and (4) coded Twitter data categorically. One coder extracted data collection and coding methods. E-cigarettes were the most common type of Twitter data analyzed, followed by specific tobacco campaigns. The most prevalent data sources were Gnip and Twitter's Streaming application programming interface (API). The primary methods of coding were hand-coding and machine learning. The studies predominantly coded for relevance, sentiment, theme, user or account, and location of user. Standards for data collection and coding should be developed to be able to more easily compare and replicate tobacco-related Twitter results. Additional recommendations include the following: sample Twitter's databases multiple times, make a distinction between message attitude and emotional tone for sentiment, code images and URLs, and analyze user profiles. Being relatively novel and widely used among adolescents and black and Hispanic individuals, Twitter could provide a rich source of tobacco surveillance data among vulnerable populations. ©Brianna A Lienemann, Jennifer B Unger, Tess Boley Cruz, Kar-Hai Chu. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 31.03.2017.

  8. ANEMOS: A computer code to estimate air concentrations and ground deposition rates for atmospheric nuclides emitted from multiple operating sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C.W.; Sjoreen, A.L.; Begovich, C.L.

    This code estimates concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operating Sources. ANEMOS is one component of an integrated Computerized Radiological Risk Investigation System (CRRIS) developed for the US Environmental Protection Agency (EPA) for use in performing radiological assessments and in developing radiation standards. The concentrations and deposition rates calculated by ANEMOS are used in subsequent portions of the CRRIS for estimating doses and risks to man. The calculations made in ANEMOS are based on the use of a straight-line Gaussian plume atmospheric dispersion model with both dry and wet deposition parameter options. Themore » code will accommodate a ground-level or elevated point and area source or windblown source. Adjustments may be made during the calculations for surface roughness, building wake effects, terrain height, wind speed at the height of release, the variation in plume rise as a function of downwind distance, and the in-growth and decay of daughter products in the plume as it travels downwind. ANEMOS can also accommodate multiple particle sizes and clearance classes, and it may be used to calculate the dose from a finite plume of gamma-ray-emitting radionuclides passing overhead. The output of this code is presented for 16 sectors of a circular grid. ANEMOS can calculate both the sector-average concentrations and deposition rates at a given set of downwind distances in each sector and the average of these quantities over an area within each sector bounded by two successive downwind distances. ANEMOS is designed to be used primarily for continuous, long-term radionuclide releases. This report describes the models used in the code, their computer implementation, the uncertainty associated with their use, and the use of ANEMOS in conjunction with other codes in the CRRIS. A listing of the code is included in Appendix C.« less

  9. Sustaining Open Source Communities through Hackathons - An Example from the ASPECT Community

    NASA Astrophysics Data System (ADS)

    Heister, T.; Hwang, L.; Bangerth, W.; Kellogg, L. H.

    2016-12-01

    The ecosystem surrounding a successful scientific open source software package combines both social and technical aspects. Much thought has been given to the technology side of writing sustainable software for large infrastructure projects and software libraries, but less about building the human capacity to perpetuate scientific software used in computational modeling. One effective format for building capacity is regular multi-day hackathons. Scientific hackathons bring together a group of science domain users and scientific software contributors to make progress on a specific software package. Innovation comes through the chance to work with established and new collaborations. Especially in the domain sciences with small communities, hackathons give geographically distributed scientists an opportunity to connect face-to-face. They foster lively discussions amongst scientists with different expertise, promote new collaborations, and increase transparency in both the technical and scientific aspects of code development. ASPECT is an open source, parallel, extensible finite element code to simulate thermal convection, that began development in 2011 under the Computational Infrastructure for Geodynamics. ASPECT hackathons for the past 3 years have grown the number of authors to >50, training new code maintainers in the process. Hackathons begin with leaders establishing project-specific conventions for development, demonstrating the workflow for code contributions, and reviewing relevant technical skills. Each hackathon expands the developer community. Over 20 scientists add >6,000 lines of code during the >1 week event. Participants grow comfortable contributing to the repository and over half continue to contribute afterwards. A high return rate of participants ensures continuity and stability of the group as well as mentoring for novice members. We hope to build other software communities on this model, but anticipate each to bring their own unique challenges.

  10. ALPHACAL: A new user-friendly tool for the calibration of alpha-particle sources.

    PubMed

    Timón, A Fernández; Vargas, M Jurado; Gallardo, P Álvarez; Sánchez-Oro, J; Peralta, L

    2018-05-01

    In this work, we present and describe the program ALPHACAL, specifically developed for the calibration of alpha-particle sources. It is therefore more user-friendly and less time-consuming than multipurpose codes developed for a wide range of applications. The program is based on the recently developed code AlfaMC, which simulates specifically the transport of alpha particles. Both cylindrical and point sources mounted on the surface of polished backings can be simulated, as is the convention in experimental measurements of alpha-particle sources. In addition to the efficiency calculation and determination of the backscattering coefficient, some additional tools are available to the user, like the visualization of energy spectrum, use of energy cut-off or low-energy tail corrections. ALPHACAL has been implemented in C++ language using QT library, so it is available for Windows, MacOs and Linux platforms. It is free and can be provided under request to the authors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Thermal Neutron Imaging Using A New Pad-Based Position Sensitive Neutron Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dioszegi I.; Vanier P.E.; Salwen C.

    2016-10-29

    Thermal neutrons (with mean energy of 25 meV) have a scattering mean free path of about 20 m in air. Therefore it is feasible to find localized thermal neutron sources up to ~30 m standoff distance using thermal neutron imaging. Coded aperture thermal neutron imaging was developed in our laboratory in the nineties, using He-3 filled wire chambers. Recently a new generation of coded-aperture neutron imagers has been developed. In the new design the ionization chamber has anode and cathode planes, where the anode is composed of an array of individual pads. The charge is collected on each of themore » individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The high sensitivity of the ASICs allows unity gain operation mode. The new design has several advantages for field deployable imaging applications, compared to the previous generation of wire-grid based neutron detectors. Among these are the rugged design, lighter weight and use of non-flammable stopping gas. For standoff localization of thermalized neutron sources a low resolution (11x11 pixel) coded aperture mask has been fabricated. Using the new larger area detector and the coarse resolution mask we performed several standoff experiments using moderated californium and plutonium sources at Idaho National Laboratory. In this paper we will report on the development and performance of the new pad-based neutron camera, and present long range coded-aperture images of various thermalized neutron sources.« less

  12. Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code

    NASA Astrophysics Data System (ADS)

    Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.

    2015-12-01

    WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be presented. These simulations highlight the code features included in the latest release of WEC-Sim (v1.2), including: wave directionality, nonlinear hydrostatics and hydrodynamics, user-defined wave elevation time-series, state space radiation, and WEC-Sim compatibility with BEMIO (open source AQWA/WAMI/NEMOH coefficient parser).

  13. MetaJC++: A flexible and automatic program transformation technique using meta framework

    NASA Astrophysics Data System (ADS)

    Beevi, Nadera S.; Reghu, M.; Chitraprasad, D.; Vinodchandra, S. S.

    2014-09-01

    Compiler is a tool to translate abstract code containing natural language terms to machine code. Meta compilers are available to compile more than one languages. We have developed a meta framework intends to combine two dissimilar programming languages, namely C++ and Java to provide a flexible object oriented programming platform for the user. Suitable constructs from both the languages have been combined, thereby forming a new and stronger Meta-Language. The framework is developed using the compiler writing tools, Flex and Yacc to design the front end of the compiler. The lexer and parser have been developed to accommodate the complete keyword set and syntax set of both the languages. Two intermediate representations have been used in between the translation of the source program to machine code. Abstract Syntax Tree has been used as a high level intermediate representation that preserves the hierarchical properties of the source program. A new machine-independent stack-based byte-code has also been devised to act as a low level intermediate representation. The byte-code is essentially organised into an output class file that can be used to produce an interpreted output. The results especially in the spheres of providing C++ concepts in Java have given an insight regarding the potential strong features of the resultant meta-language.

  14. Jet Measurements for Development of Jet Noise Prediction Tools

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2006-01-01

    The primary focus of my presentation is the development of the jet noise prediction code JeNo with most examples coming from the experimental work that drove the theoretical development and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as input. The output is source distributions and spectral directivity.

  15. NPTFit: A Code Package for Non-Poissonian Template Fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R., E-mail: smsharma@princeton.edu, E-mail: nrodd@mit.edu, E-mail: bsafdi@mit.edu

    We present NPTFit, an open-source code package, written in Python and Cython, for performing non-Poissonian template fits (NPTFs). The NPTF is a recently developed statistical procedure for characterizing the contribution of unresolved point sources (PSs) to astrophysical data sets. The NPTF was first applied to Fermi gamma-ray data to provide evidence that the excess of ∼GeV gamma-rays observed in the inner regions of the Milky Way likely arises from a population of sub-threshold point sources, and the NPTF has since found additional applications studying sub-threshold extragalactic sources at high Galactic latitudes. The NPTF generalizes traditional astrophysical template fits to allowmore » for the ability to search for populations of unresolved PSs that may follow a given spatial distribution. NPTFit builds upon the framework of the fluctuation analyses developed in X-ray astronomy, thus it likely has applications beyond those demonstrated with gamma-ray data. The NPTFit package utilizes novel computational methods to perform the NPTF efficiently. The code is available at http://github.com/bsafdi/NPTFit and up-to-date and extensive documentation may be found at http://nptfit.readthedocs.io.« less

  16. Main functions, recent updates, and applications of Synchrotron Radiation Workshop code

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Rakitin, Maksim; Chen-Wiegart, Yu-Chen Karen; Chu, Yong S.; Fluerasu, Andrei; Hidas, Dean; Wiegart, Lutz

    2017-08-01

    The paper presents an overview of the main functions and new application examples of the "Synchrotron Radiation Workshop" (SRW) code. SRW supports high-accuracy calculations of different types of synchrotron radiation, and simulations of propagation of fully-coherent radiation wavefronts, partially-coherent radiation from a finite-emittance electron beam of a storage ring source, and time-/frequency-dependent radiation pulses of a free-electron laser, through X-ray optical elements of a beamline. An extended library of physical-optics "propagators" for different types of reflective, refractive and diffractive X-ray optics with its typical imperfections, implemented in SRW, enable simulation of practically any X-ray beamline in a modern light source facility. The high accuracy of calculation methods used in SRW allows for multiple applications of this code, not only in the area of development of instruments and beamlines for new light source facilities, but also in areas such as electron beam diagnostics, commissioning and performance benchmarking of insertion devices and individual X-ray optical elements of beamlines. Applications of SRW in these areas, facilitating development and advanced commissioning of beamlines at the National Synchrotron Light Source II (NSLS-II), are described.

  17. Authorship Attribution of Source Code

    ERIC Educational Resources Information Center

    Tennyson, Matthew F.

    2013-01-01

    Authorship attribution of source code is the task of deciding who wrote a program, given its source code. Applications include software forensics, plagiarism detection, and determining software ownership. A number of methods for the authorship attribution of source code have been presented in the past. A review of those existing methods is…

  18. CACTI: free, open-source software for the sequential coding of behavioral interactions.

    PubMed

    Glynn, Lisa H; Hallgren, Kevin A; Houck, Jon M; Moyers, Theresa B

    2012-01-01

    The sequential analysis of client and clinician speech in psychotherapy sessions can help to identify and characterize potential mechanisms of treatment and behavior change. Previous studies required coding systems that were time-consuming, expensive, and error-prone. Existing software can be expensive and inflexible, and furthermore, no single package allows for pre-parsing, sequential coding, and assignment of global ratings. We developed a free, open-source, and adaptable program to meet these needs: The CASAA Application for Coding Treatment Interactions (CACTI). Without transcripts, CACTI facilitates the real-time sequential coding of behavioral interactions using WAV-format audio files. Most elements of the interface are user-modifiable through a simple XML file, and can be further adapted using Java through the terms of the GNU Public License. Coding with this software yields interrater reliabilities comparable to previous methods, but at greatly reduced time and expense. CACTI is a flexible research tool that can simplify psychotherapy process research, and has the potential to contribute to the improvement of treatment content and delivery.

  19. A Cloud-based, Open-Source, Command-and-Control Software Paradigm for Space Situational Awareness (SSA)

    NASA Astrophysics Data System (ADS)

    Melton, R.; Thomas, J.

    With the rapid growth in the number of space actors, there has been a marked increase in the complexity and diversity of software systems utilized to support SSA target tracking, indication, warning, and collision avoidance. Historically, most SSA software has been constructed with "closed" proprietary code, which limits interoperability, inhibits the code transparency that some SSA customers need to develop domain expertise, and prevents the rapid injection of innovative concepts into these systems. Open-source aerospace software, a rapidly emerging, alternative trend in code development, is based on open collaboration, which has the potential to bring greater transparency, interoperability, flexibility, and reduced development costs. Open-source software is easily adaptable, geared to rapidly changing mission needs, and can generally be delivered at lower costs to meet mission requirements. This paper outlines Ball's COSMOS C2 system, a fully open-source, web-enabled, command-and-control software architecture which provides several unique capabilities to move the current legacy SSA software paradigm to an open source model that effectively enables pre- and post-launch asset command and control. Among the unique characteristics of COSMOS is the ease with which it can integrate with diverse hardware. This characteristic enables COSMOS to serve as the command-and-control platform for the full life-cycle development of SSA assets, from board test, to box test, to system integration and test, to on-orbit operations. The use of a modern scripting language, Ruby, also permits automated procedures to provide highly complex decision making for the tasking of SSA assets based on both telemetry data and data received from outside sources. Detailed logging enables quick anomaly detection and resolution. Integrated real-time and offline data graphing renders the visualization of the both ground and on-orbit assets simple and straightforward.

  20. CREPT-MCNP code for efficiency calibration of HPGe detectors with the representative point method.

    PubMed

    Saegusa, Jun

    2008-01-01

    The representative point method for the efficiency calibration of volume samples has been previously proposed. For smoothly implementing the method, a calculation code named CREPT-MCNP has been developed. The code estimates the position of a representative point which is intrinsic to each shape of volume sample. The self-absorption correction factors are also given to make correction on the efficiencies measured at the representative point with a standard point source. Features of the CREPT-MCNP code are presented.

  1. Digital Controller For Emergency Beacon

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1990-01-01

    Prototype digital controller intended for use in 406-MHz emergency beacon. Undergoing development according to international specifications, 406-MHz emergency beacon system includes satellites providing worldwide monitoring of beacons, with Doppler tracking to locate each beacon within 5 km. Controller turns beacon on and off and generates binary codes identifying source (e.g., ship, aircraft, person, or vehicle on land). Codes transmitted by phase modulation. Knowing code, monitor attempts to communicate with user, monitor uses code information to dispatch rescue team appropriate to type and locations of carrier.

  2. Fast Model Generalized Pseudopotential Theory Interatomic Potential Routine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-03-18

    MGPT is an unclassified source code for the fast evaluation and application of quantum-based MGPT interatomic potentials for mrtals. The present version of MGPT has been developed entirely at LLNL, but is specifically designed for implementation in the open-source molecular0dynamics code LAMMPS maintained by Sandia National Laboratories. Using MGPT in LAMMPS, with separate input potential data, one can perform large-scale atomistic simulations of the structural, thermodynamic, defeat and mechanical properties of transition metals with quantum-mechanical realism.

  3. Time Resolved Phonon Spectroscopy, Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goett, Johnny; Zhu, Brian

    TRPS code was developed for the project "Time Resolved Phonon Spectroscopy". Routines contained in this piece of software were specially created to model phonon generation and tracking within materials that interact with ionizing radiation, particularly applicable to the modeling of cryogenic radiation detectors for dark matter and neutrino research. These routines were created to link seamlessly with the open source Geant4 framework for the modeling of radiation transport in matter, with the explicit intent of open sourcing them for eventual integration into that code base.

  4. Schroedinger’s code: Source code availability and transparency in astrophysics

    NASA Astrophysics Data System (ADS)

    Ryan, PW; Allen, Alice; Teuben, Peter

    2018-01-01

    Astronomers use software for their research, but how many of the codes they use are available as source code? We examined a sample of 166 papers from 2015 for clearly identified software use, then searched for source code for the software packages mentioned in these research papers. We categorized the software to indicate whether source code is available for download and whether there are restrictions to accessing it, and if source code was not available, whether some other form of the software, such as a binary, was. Over 40% of the source code for the software used in our sample was not available for download.As URLs have often been used as proxy citations for software, we also extracted URLs from one journal’s 2015 research articles, removed those from certain long-term, reliable domains, and tested the remainder to determine what percentage of these URLs were still accessible in September and October, 2017.

  5. Maintaining Quality and Confidence in Open-Source, Evolving Software: Lessons Learned with PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Hammond, G. E.

    2017-12-01

    Software evolution in an open-source framework poses a major challenge to a geoscientific simulator, but when properly managed, the pay-off can be enormous for both the developers and the community at large. Developers must juggle implementing new scientific process models, adopting increasingly efficient numerical methods and programming paradigms, changing funding sources (or total lack of funding), while also ensuring that legacy code remains functional and reported bugs are fixed in a timely manner. With robust software engineering and a plan for long-term maintenance, a simulator can evolve over time incorporating and leveraging many advances in the computational and domain sciences. In this positive light, what practices in software engineering and code maintenance can be employed within open-source development to maximize the positive aspects of software evolution and community contributions while minimizing its negative side effects? This presentation will discusses steps taken in the development of PFLOTRAN (www.pflotran.org), an open source, massively parallel subsurface simulator for multiphase, multicomponent, and multiscale reactive flow and transport processes in porous media. As PFLOTRAN's user base and development team continues to grow, it has become increasingly important to implement strategies which ensure sustainable software development while maintaining software quality and community confidence. In this presentation, we will share our experiences and "lessons learned" within the context of our open-source development framework and community engagement efforts. Topics discussed will include how we've leveraged both standard software engineering principles, such as coding standards, version control, and automated testing, as well unique advantages of object-oriented design in process model coupling, to ensure software quality and confidence. We will also be prepared to discuss the major challenges faced by most open-source software teams, such as on-boarding new developers or one-time contributions, dealing with competitors or lookie-loos, and other downsides of complete transparency, as well as our approach to community engagement, including a user group email list, hosting short courses and workshops for new users, and maintaining a website. SAND2017-8174A

  6. DYNA3D Code Practices and Developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L.; Zywicz, E.; Raboin, P.

    2000-04-21

    DYNA3D is an explicit, finite element code developed to solve high rate dynamic simulations for problems of interest to the engineering mechanics community. The DYNA3D code has been under continuous development since 1976[1] by the Methods Development Group in the Mechanical Engineering Department of Lawrence Livermore National Laboratory. The pace of code development activities has substantially increased in the past five years, growing from one to between four and six code developers. This has necessitated the use of software tools such as CVS (Concurrent Versions System) to help manage multiple version updates. While on-line documentation with an Adobe PDF manualmore » helps to communicate software developments, periodically a summary document describing recent changes and improvements in DYNA3D software is needed. The first part of this report describes issues surrounding software versions and source control. The remainder of this report details the major capability improvements since the last publicly released version of DYNA3D in 1996. Not included here are the many hundreds of bug corrections and minor enhancements, nor the development in DYNA3D between the manual release in 1993[2] and the public code release in 1996.« less

  7. 22 CFR 228.03 - Identification of principal geographic code numbers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Identification of principal geographic code numbers. 228.03 Section 228.03 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT RULES ON SOURCE, ORIGIN AND NATIONALITY FOR COMMODITIES AND SERVICES FINANCED BY USAID Definitions and Scope of This Part...

  8. Plasma Separation Process: Betacell (BCELL) code: User's manual. [Bipolar barrier junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taherzadeh, M.

    1987-11-13

    The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the plasma separation program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation andmore » source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison. 16 refs.« less

  9. Monitor Network Traffic with Packet Capture (pcap) on an Android Device

    DTIC Science & Technology

    2015-09-01

    administrative privileges . Under the current design Android development requirement, an Android Graphical User Interface (GUI) application cannot directly...build an Android application to monitor network traffic using open source packet capture (pcap) libraries. 15. SUBJECT TERMS ELIDe, Android , pcap 16...Building Application with Native Codes 5 8.1 Calling Native Codes Using JNI 5 8.2 Calling Native Codes from an Android Application 8 9. Retrieve Live

  10. Predicting Attack-Prone Components with Source Code Static Analyzers

    DTIC Science & Technology

    2009-05-01

    models to determine if additional metrics are required to increase the accuracy of the model: non-security SCSA warnings, code churn and size, the count...code churn and size, the count of faults found manually during development, and the measure of coupling between components. The dependent variable...is the count of vulnerabilities reported by testing and those found in the field. We evaluated our model on three commercial telecommunications

  11. Open Source and These United States

    DTIC Science & Technology

    1999-04-01

    the ability of all participants to freely access the source code and keep abreast of progress. There can be no information hoarding on an open source... developed in this way depends upon ready and reliable communications. Just as the internet has increased the ability of people to exchange information...investment is maximized through long use and reuse. This process results in systems which harnesses the collaborative abilities of its user developers

  12. MELCOR/CONTAIN LMR Implementation Report-Progress FY15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphries, Larry L.; Louie, David L.Y.

    2016-01-01

    This report describes the progress of the CONTAIN-LMR sodium physics and chemistry models to be implemented in to MELCOR 2.1. It also describes the progress to implement these models into CONT AIN 2 as well. In the past two years, the implementation included the addition of sodium equations of state and sodium properties from two different sources. The first source is based on the previous work done by Idaho National Laborat ory by modifying MELCOR to include liquid lithium equation of state as a working fluid to mode l the nuclear fusion safety research. The second source uses properties generatedmore » for the SIMMER code. Testing and results from this implementation of sodium pr operties are given. In addition, the CONTAIN-LMR code was derived from an early version of C ONTAIN code. Many physical models that were developed sin ce this early version of CONTAIN are not captured by this early code version. Therefore, CONTAIN 2 is being updated with the sodium models in CONTAIN-LMR in or der to facilitate verification of these models with the MELCOR code. Although CONTAIN 2, which represents the latest development of CONTAIN, now contains ma ny of the sodium specific models, this work is not complete due to challenges from the lower cell architecture in CONTAIN 2, which is different from CONTAIN- LMR. This implementation should be completed in the coming year, while sodi um models from C ONTAIN-LMR are being integrated into MELCOR. For testing, CONTAIN decks have been developed for verification and validation use. In terms of implementing the sodium m odels into MELCOR, a separate sodium model branch was created for this document . Because of massive development in the main stream MELCOR 2.1 code and the require ment to merge the latest code version into this branch, the integration of the s odium models were re-directed to implement the sodium chemistry models first. This change led to delays of the actual implementation. For aid in the future implementation of sodium models, a new sodium chemistry package was created. Thus reporting for the implementation of the sodium chemistry is discussed in this report.« less

  13. Infrastructure for Multiphysics Software Integration in High Performance Computing-Aided Science and Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Michael T.; Safdari, Masoud; Kress, Jessica E.

    The project described in this report constructed and exercised an innovative multiphysics coupling toolkit called the Illinois Rocstar MultiPhysics Application Coupling Toolkit (IMPACT). IMPACT is an open source, flexible, natively parallel infrastructure for coupling multiple uniphysics simulation codes into multiphysics computational systems. IMPACT works with codes written in several high-performance-computing (HPC) programming languages, and is designed from the beginning for HPC multiphysics code development. It is designed to be minimally invasive to the individual physics codes being integrated, and has few requirements on those physics codes for integration. The goal of IMPACT is to provide the support needed to enablemore » coupling existing tools together in unique and innovative ways to produce powerful new multiphysics technologies without extensive modification and rewrite of the physics packages being integrated. There are three major outcomes from this project: 1) construction, testing, application, and open-source release of the IMPACT infrastructure, 2) production of example open-source multiphysics tools using IMPACT, and 3) identification and engagement of interested organizations in the tools and applications resulting from the project. This last outcome represents the incipient development of a user community and application echosystem being built using IMPACT. Multiphysics coupling standardization can only come from organizations working together to define needs and processes that span the space of necessary multiphysics outcomes, which Illinois Rocstar plans to continue driving toward. The IMPACT system, including source code, documentation, and test problems are all now available through the public gitHUB.org system to anyone interested in multiphysics code coupling. Many of the basic documents explaining use and architecture of IMPACT are also attached as appendices to this document. Online HTML documentation is available through the gitHUB site. There are over 100 unit tests provided that run through the Illinois Rocstar Application Development (IRAD) lightweight testing infrastructure that is also supplied along with IMPACT. The package as a whole provides an excellent base for developing high-quality multiphysics applications using modern software development practices. To facilitate understanding how to utilize IMPACT effectively, two multiphysics systems have been developed and are available open-source through gitHUB. The simpler of the two systems, named ElmerFoamFSI in the repository, is a multiphysics, fluid-structure-interaction (FSI) coupling of the solid mechanics package Elmer with a fluid dynamics module from OpenFOAM. This coupling illustrates how to combine software packages that are unrelated by either author or architecture and combine them into a robust, parallel multiphysics system. A more complex multiphysics tool is the Illinois Rocstar Rocstar Multiphysics code that was rebuilt during the project around IMPACT. Rocstar Multiphysics was already an HPC multiphysics tool, but now that it has been rearchitected around IMPACT, it can be readily expanded to capture new and different physics in the future. In fact, during this project, the Elmer and OpenFOAM tools were also coupled into Rocstar Multiphysics and demonstrated. The full Rocstar Multiphysics codebase is also available on gitHUB, and licensed for any organization to use as they wish. Finally, the new IMPACT product is already being used in several multiphysics code coupling projects for the Air Force, NASA and the Missile Defense Agency, and initial work on expansion of the IMPACT-enabled Rocstar Multiphysics has begun in support of a commercial company. These initiatives promise to expand the interest and reach of IMPACT and Rocstar Multiphysics, ultimately leading to the envisioned standardization and consortium of users that was one of the goals of this project.« less

  14. Binary encoding of multiplexed images in mixed noise.

    PubMed

    Lalush, David S

    2008-09-01

    Binary coding of multiplexed signals and images has been studied in the context of spectroscopy with models of either purely constant or purely proportional noise, and has been shown to result in improved noise performance under certain conditions. We consider the case of mixed noise in an imaging system consisting of multiple individually-controllable sources (X-ray or near-infrared, for example) shining on a single detector. We develop a mathematical model for the noise in such a system and show that the noise is dependent on the properties of the binary coding matrix and on the average number of sources used for each code. Each binary matrix has a characteristic linear relationship between the ratio of proportional-to-constant noise and the noise level in the decoded image. We introduce a criterion for noise level, which is minimized via a genetic algorithm search. The search procedure results in the discovery of matrices that outperform the Hadamard S-matrices at certain levels of mixed noise. Simulation of a seven-source radiography system demonstrates that the noise model predicts trends and rank order of performance in regions of nonuniform images and in a simple tomosynthesis reconstruction. We conclude that the model developed provides a simple framework for analysis, discovery, and optimization of binary coding patterns used in multiplexed imaging systems.

  15. Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frambati, S.; Frignani, M.

    2012-07-01

    We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less

  16. Duct flow nonuniformities for Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A three-duct Space Shuttle Main Engine (SSME) Hot Gas Manifold geometry code was developed for use. The methodology of the program is described, recommendations on its implementation made, and an input guide, input deck listing, and a source code listing provided. The code listing is strewn with an abundance of comments to assist the user in following its development and logic. A working source deck will be provided. A thorough analysis was made of the proper boundary conditions and chemistry kinetics necessary for an accurate computational analysis of the flow environment in the SSME fuel side preburner chamber during the initial startup transient. Pertinent results were presented to facilitate incorporation of these findings into an appropriate CFD code. The computation must be a turbulent computation, since the flow field turbulent mixing will have a profound effect on the chemistry. Because of the additional equations demanded by the chemistry model it is recommended that for expediency a simple algebraic mixing length model be adopted. Performing this computation for all or selected time intervals of the startup time will require an abundance of computer CPU time regardless of the specific CFD code selected.

  17. Development of a 3D numerical code to calculate the trajectories of the blow off electrons emitted by a vacuum surface discharge: Application to the study of the electromagnetic interference induced on a spacecraft

    NASA Astrophysics Data System (ADS)

    Froger, Etienne

    1993-05-01

    A description of the electromagnetic behavior of a satellite subjected to an electric discharge is given using a specially developed numerical code. One of the particularities of vacuum discharges, obtained by irradiation of polymers, is the intense emission of electrons into the spacecraft environment. Electromagnetic radiation, associated with the trajectories of the particles around the spacecraft, is considered as the main source of the interference observed. In the absence of accurate orbital data and realistic ground tests, the assessment of these effects requires numerical simulation of the interaction between this electron source and the spacecraft. This is done by the GEODE particle code which is applied to characteristic configurations in order to estimate the spacecraft response to a discharge, which is simulated from a vacuum discharge model designed in laboratory. The spacecraft response to a current injection is simulated by the ALICE numerical three dimensional code. The comparison between discharge and injection effects, from the results given by the two codes, illustrates the representativity of electromagnetic susceptibility tests and the main parameters for their definition.

  18. Utilities for master source code distribution: MAX and Friends

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1988-01-01

    MAX is a program for the manipulation of FORTRAN master source code (MSC). This is a technique by which one maintains one and only one master copy of a FORTRAN program under a program developing system, which for MAX is assumed to be VAX/VMS. The master copy is not intended to be directly compiled. Instead it must be pre-processed by MAX to produce compilable instances. These instances may correspond to different code versions (for example, double precision versus single precision), different machines (for example, IBM, CDC, Cray) or different operating systems (i.e., VAX/VMS versus VAX/UNIX). The advantage os using a master source is more pronounced in complex application programs that are developed and maintained over many years and are to be transported and executed on several computer environments. The version lag problem that plagues many such programs is avoided by this approach. MAX is complemented by several auxiliary programs that perform nonessential functions. The ensemble is collectively known as MAX and Friends. All of these programs, including MAX, are executed as foreign VAX/VMS commands and can easily be hidden in customized VMS command procedures.

  19. An Evolving Worldview: Making Open Source Easy

    NASA Technical Reports Server (NTRS)

    Rice, Zachary

    2017-01-01

    NASA Worldview is an interactive interface for browsing full-resolution, global satellite imagery. Worldview supports an open data policy so that academia, private industries and the general public can use NASA's satellite data to address Earth science related issues. Worldview was open sourced in 2014. By shifting to an open source approach, the Worldview application has evolved to better serve end-users. Project developers are able to have discussions with end-users and community developers to understand issues and develop new features. New developers are able to track upcoming features, collaborate on them and make their own contributions. Getting new developers to contribute to the project has been one of the most important and difficult aspects of open sourcing Worldview. A focus has been made on making the installation of Worldview simple to reduce the initial learning curve and make contributing code easy. One way we have addressed this is through a simplified setup process. Our setup documentation includes a set of prerequisites and a set of straight forward commands to clone, configure, install and run. This presentation will emphasis our focus to simplify and standardize Worldview's open source code so more people are able to contribute. The more people who contribute, the better the application will become over time.

  20. Measuring Diagnoses: ICD Code Accuracy

    PubMed Central

    O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M

    2005-01-01

    Objective To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. Data Sources/Study Setting The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. Study Design/Methods We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Principle Findings Main error sources along the “patient trajectory” include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the “paper trail” include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. Conclusions By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways. PMID:16178999

  1. Electron transport model of dielectric charging

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Hwang, H. C.; Lin, D. L.; Pine, V. W.

    1979-01-01

    A computer code (SCCPOEM) was assembled to describe the charging of dielectrics due to irradiation by electrons. The primary purpose for developing the code was to make available a convenient tool for studying the internal fields and charge densities in electron-irradiated dielectrics. The code, which is based on the primary electron transport code POEM, is applicable to arbitrary dielectrics, source spectra, and current time histories. The code calculations are illustrated by a series of semianalytical solutions. Calculations to date suggest that the front face electric field is insufficient to cause breakdown, but that bulk breakdown fields can easily be exceeded.

  2. Mobile, hybrid Compton/coded aperture imaging for detection, identification and localization of gamma-ray sources at stand-off distances

    NASA Astrophysics Data System (ADS)

    Tornga, Shawn R.

    The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as localization capability. Utilizing imaging information will show signal-to-noise gains over spectroscopic algorithms alone.

  3. Framework GRASP: routine library for optimize processing of aerosol remote sensing observation

    NASA Astrophysics Data System (ADS)

    Fuertes, David; Torres, Benjamin; Dubovik, Oleg; Litvinov, Pavel; Lapyonok, Tatyana; Ducos, Fabrice; Aspetsberger, Michael; Federspiel, Christian

    The present the development of a Framework for the Generalized Retrieval of Aerosol and Surface Properties (GRASP) developed by Dubovik et al., (2011). The framework is a source code project that attempts to strengthen the value of the GRASP inversion algorithm by transforming it into a library that will be used later for a group of customized application modules. The functions of the independent modules include the managing of the configuration of the code execution, as well as preparation of the input and output. The framework provides a number of advantages in utilization of the code. First, it implements loading data to the core of the scientific code directly from memory without passing through intermediary files on disk. Second, the framework allows consecutive use of the inversion code without the re-initiation of the core routine when new input is received. These features are essential for optimizing performance of the data production in processing of large observation sets, such as satellite images by the GRASP. Furthermore, the framework is a very convenient tool for further development, because this open-source platform is easily extended for implementing new features. For example, it could accommodate loading of raw data directly onto the inversion code from a specific instrument not included in default settings of the software. Finally, it will be demonstrated that from the user point of view, the framework provides a flexible, powerful and informative configuration system.

  4. A Comprehensive review on the open source hackable text editor-ATOM

    NASA Astrophysics Data System (ADS)

    Sumangali, K.; Borra, Lokesh; Suraj Mishra, Amol

    2017-11-01

    This document represents a comprehensive study of “Atom”, one of the best open-source code editors available with many features built-in to support multitude of programming environments and to provide a more productive toolset for developers.

  5. Augmenting Traditional Static Analysis With Commonly Available Metadata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Devin

    Developers and security analysts have been using static analysis for a long time to analyze programs for defects and vulnerabilities with some success. Generally a static analysis tool is run on the source code for a given program, flagging areas of code that need to be further inspected by a human analyst. These areas may be obvious bugs like potential bu er over flows, information leakage flaws, or the use of uninitialized variables. These tools tend to work fairly well - every year they find many important bugs. These tools are more impressive considering the fact that they only examinemore » the source code, which may be very complex. Now consider the amount of data available that these tools do not analyze. There are many pieces of information that would prove invaluable for finding bugs in code, things such as a history of bug reports, a history of all changes to the code, information about committers, etc. By leveraging all this additional data, it is possible to nd more bugs with less user interaction, as well as track useful metrics such as number and type of defects injected by committer. This dissertation provides a method for leveraging development metadata to find bugs that would otherwise be difficult to find using standard static analysis tools. We showcase two case studies that demonstrate the ability to find 0day vulnerabilities in large and small software projects by finding new vulnerabilities in the cpython and Roundup open source projects.« less

  6. EO/IR scene generation open source initiative for real-time hardware-in-the-loop and all-digital simulation

    NASA Astrophysics Data System (ADS)

    Morris, Joseph W.; Lowry, Mac; Boren, Brett; Towers, James B.; Trimble, Darian E.; Bunfield, Dennis H.

    2011-06-01

    The US Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) and the Redstone Test Center (RTC) has formed the Scene Generation Development Center (SGDC) to support the Department of Defense (DoD) open source EO/IR Scene Generation initiative for real-time hardware-in-the-loop and all-digital simulation. Various branches of the DoD have invested significant resources in the development of advanced scene and target signature generation codes. The SGDC goal is to maintain unlimited government rights and controlled access to government open source scene generation and signature codes. In addition, the SGDC provides development support to a multi-service community of test and evaluation (T&E) users, developers, and integrators in a collaborative environment. The SGDC has leveraged the DoD Defense Information Systems Agency (DISA) ProjectForge (https://Project.Forge.mil) which provides a collaborative development and distribution environment for the DoD community. The SGDC will develop and maintain several codes for tactical and strategic simulation, such as the Joint Signature Image Generator (JSIG), the Multi-spectral Advanced Volumetric Real-time Imaging Compositor (MAVRIC), and Office of the Secretary of Defense (OSD) Test and Evaluation Science and Technology (T&E/S&T) thermal modeling and atmospherics packages, such as EOView, CHARM, and STAR. Other utility packages included are the ContinuumCore for real-time messaging and data management and IGStudio for run-time visualization and scenario generation.

  7. Coordinated design of coding and modulation systems

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1976-01-01

    Work on partial unit memory codes continued; it was shown that for a given virtual state complexity, the maximum free distance over the class of all convolutional codes is achieved within the class of unit memory codes. The effect of phase-lock loop (PLL) tracking error on coding system performance was studied by using the channel cut-off rate as the measure of quality of a modulation system. Optimum modulation signal sets for a non-white Gaussian channel considered an heuristic selection rule based on a water-filling argument. The use of error correcting codes to perform data compression by the technique of syndrome source coding was researched and a weight-and-error-locations scheme was developed that is closely related to LDSC coding.

  8. Final Report A Multi-Language Environment For Programmable Code Optimization and Empirical Tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Qing; Whaley, Richard Clint; Qasem, Apan

    This report summarizes our effort and results of building an integrated optimization environment to effectively combine the programmable control and the empirical tuning of source-to-source compiler optimizations within the framework of multiple existing languages, specifically C, C++, and Fortran. The environment contains two main components: the ROSE analysis engine, which is based on the ROSE C/C++/Fortran2003 source-to-source compiler developed by Co-PI Dr.Quinlan et. al at DOE/LLNL, and the POET transformation engine, which is based on an interpreted program transformation language developed by Dr. Yi at University of Texas at San Antonio (UTSA). The ROSE analysis engine performs advanced compiler analysis,more » identifies profitable code transformations, and then produces output in POET, a language designed to provide programmable control of compiler optimizations to application developers and to support the parameterization of architecture-sensitive optimizations so that their configurations can be empirically tuned later. This POET output can then be ported to different machines together with the user application, where a POET-based search engine empirically reconfigures the parameterized optimizations until satisfactory performance is found. Computational specialists can write POET scripts to directly control the optimization of their code. Application developers can interact with ROSE to obtain optimization feedback as well as provide domain-specific knowledge and high-level optimization strategies. The optimization environment is expected to support different levels of automation and programmer intervention, from fully-automated tuning to semi-automated development and to manual programmable control.« less

  9. Computational Infrastructure for Geodynamics (CIG)

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to leverage and develop long-term strategic partnerships with open source development efforts within the larger thrusts of scientific computing and geoinformatics. These strategic partnerships are essential as the frontier has moved into multi-scale and multi-physics problems in which many investigators now want to use simulation software for data interpretation, data assimilation, and hypothesis testing.

  10. Some practical universal noiseless coding techniques, part 3, module PSl14,K+

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.

    1991-01-01

    The algorithmic definitions, performance characterizations, and application notes for a high-performance adaptive noiseless coding module are provided. Subsets of these algorithms are currently under development in custom very large scale integration (VLSI) at three NASA centers. The generality of coding algorithms recently reported is extended. The module incorporates a powerful adaptive noiseless coder for Standard Data Sources (i.e., sources whose symbols can be represented by uncorrelated non-negative integers, where smaller integers are more likely than the larger ones). Coders can be specified to provide performance close to the data entropy over any desired dynamic range (of entropy) above 0.75 bit/sample. This is accomplished by adaptively choosing the best of many efficient variable-length coding options to use on each short block of data (e.g., 16 samples) All code options used for entropies above 1.5 bits/sample are 'Huffman Equivalent', but they require no table lookups to implement. The coding can be performed directly on data that have been preprocessed to exhibit the characteristics of a standard source. Alternatively, a built-in predictive preprocessor can be used where applicable. This built-in preprocessor includes the familiar 1-D predictor followed by a function that maps the prediction error sequences into the desired standard form. Additionally, an external prediction can be substituted if desired. A broad range of issues dealing with the interface between the coding module and the data systems it might serve are further addressed. These issues include: multidimensional prediction, archival access, sensor noise, rate control, code rate improvements outside the module, and the optimality of certain internal code options.

  11. Spectral-Element Seismic Wave Propagation Codes for both Forward Modeling in Complex Media and Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.

    2015-12-01

    We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.

  12. Continuation of research into language concepts for the mission support environment: Source code

    NASA Technical Reports Server (NTRS)

    Barton, Timothy J.; Ratner, Jeremiah M.

    1991-01-01

    Research into language concepts for the Mission Control Center is presented. A computer code for source codes is presented. The file contains the routines which allow source code files to be created and compiled. The build process assumes that all elements and the COMP exist in the current directory. The build process places as much code generation as possible on the preprocessor as possible. A summary is given of the source files as used and/or manipulated by the build routine.

  13. Automated real-time software development

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  14. Migration of Hazardous Substances through Soil. Part 4. Development of a Serial Batch Extraction Method and Application to the Accelerated Testing of Seven Industrial Wastes

    DTIC Science & Technology

    1987-09-01

    Evaluation Commnand &_. ADMASS Coly, 1W~., and ZIP Code ) 7b. ADDRESS (C01y, State, wid ZIP Code ) Dugwiay, Utahi 84022-5000 Aberdeen Proving Ground...Aency_________________________ 9L AoOMS(CRY, 0to, and ZIP Code ) 10. SOURCE OF FUNDING NUMBERS Hazardous Waste Environmental RLsearch Lab PROGRAM PROJECT TASK...CLASSIFICATION 0 UNO.ASSIFIEDAIJNLIMITED 0l SAME AS RPT. 03 OTIC USERS UNCLA.SSIFIED 22a. RAWE OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code ) I

  15. The Lewis heat pipe code with application to SP-100 GES heat pipes

    NASA Astrophysics Data System (ADS)

    Baker, Karl W.; Tower, Leonard K.

    The NASA Lewis Research Center has a thermal management program supporting SP-100 goals, which includes heat pipe radiator development. As a part of the program Lewis has elected to prepare an in-house heat pipe code tailored to the needs of its SP-100 staff to supplement codes from other sources. The latter, designed to meet the needs of the originating organizations, were deemed not entirely appropriate for use at Lewis. However, a review of their features proved most beneficial in the design of the Lewis code.

  16. GRASP/Ada (Graphical Representations of Algorithms, Structures, and Processes for Ada): The development of a program analysis environment for Ada. Reverse engineering tools for Ada, task 1, phase 2

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1990-01-01

    The study, formulation, and generation of structures for Ada (GRASP/Ada) are discussed in this second phase report of a three phase effort. Various graphical representations that can be extracted or generated from source code are described and categorized with focus on reverse engineering. The overall goal is to provide the foundation for a CASE (computer-aided software design) environment in which reverse engineering and forward engineering (development) are tightly coupled. Emphasis is on a subset of architectural diagrams that can be generated automatically from source code with the control structure diagram (CSD) included for completeness.

  17. Improved neutron activation prediction code system development

    NASA Technical Reports Server (NTRS)

    Saqui, R. M.

    1971-01-01

    Two integrated neutron activation prediction code systems have been developed by modifying and integrating existing computer programs to perform the necessary computations to determine neutron induced activation gamma ray doses and dose rates in complex geometries. Each of the two systems is comprised of three computational modules. The first program module computes the spatial and energy distribution of the neutron flux from an input source and prepares input data for the second program which performs the reaction rate, decay chain and activation gamma source calculations. A third module then accepts input prepared by the second program to compute the cumulative gamma doses and/or dose rates at specified detector locations in complex, three-dimensional geometries.

  18. Measuring diagnoses: ICD code accuracy.

    PubMed

    O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M

    2005-10-01

    To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Main error sources along the "patient trajectory" include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the "paper trail" include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways.

  19. Personalized reminiscence therapy M-health application for patients living with dementia: Innovating using open source code repository.

    PubMed

    Zhang, Melvyn W B; Ho, Roger C M

    2017-01-01

    Dementia is known to be an illness which brings forth marked disability amongst the elderly individuals. At times, patients living with dementia do also experience non-cognitive symptoms, and these symptoms include that of hallucinations, delusional beliefs as well as emotional liability, sexualized behaviours and aggression. According to the National Institute of Clinical Excellence (NICE) guidelines, non-pharmacological techniques are typically the first-line option prior to the consideration of adjuvant pharmacological options. Reminiscence and music therapy are thus viable options. Lazar et al. [3] previously performed a systematic review with regards to the utilization of technology to delivery reminiscence based therapy to individuals who are living with dementia and has highlighted that technology does have benefits in the delivery of reminiscence therapy. However, to date, there has been a paucity of M-health innovations in this area. In addition, most of the current innovations are not personalized for each of the person living with Dementia. Prior research has highlighted the utility for open source repository in bioinformatics study. The authors hoped to explain how they managed to tap upon and make use of open source repository in the development of a personalized M-health reminiscence therapy innovation for patients living with dementia. The availability of open source code repository has changed the way healthcare professionals and developers develop smartphone applications today. Conventionally, a long iterative process is needed in the development of native application, mainly because of the need for native programming and coding, especially so if the application needs to have interactive features or features that could be personalized. Such repository enables the rapid and cost effective development of application. Moreover, developers are also able to further innovate, as less time is spend in the iterative process.

  20. RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, S.L.; Miller, L.A.; Monroe, D.K.

    1998-04-01

    This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in themore » quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.« less

  1. OPAL: An Open-Source MPI-IO Library over Cray XT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Weikuan; Vetter, Jeffrey S; Canon, Richard Shane

    Parallel IO over Cray XT is supported by a vendor-supplied MPI-IO package. This package contains a proprietary ADIO implementation built on top of the sysio library. While it is reasonable to maintain a stable code base for application scientists' convenience, it is also very important to the system developers and researchers to analyze and assess the effectiveness of parallel IO software, and accordingly, tune and optimize the MPI-IO implementation. A proprietary parallel IO code base relinquishes such flexibilities. On the other hand, a generic UFS-based MPI-IO implementation is typically used on many Linux-based platforms. We have developed an open-source MPI-IOmore » package over Lustre, referred to as OPAL (OPportunistic and Adaptive MPI-IO Library over Lustre). OPAL provides a single source-code base for MPI-IO over Lustre on Cray XT and Linux platforms. Compared to Cray implementation, OPAL provides a number of good features, including arbitrary specification of striping patterns and Lustre-stripe aligned file domain partitioning. This paper presents the performance comparisons between OPAL and Cray's proprietary implementation. Our evaluation demonstrates that OPAL achieves the performance comparable to the Cray implementation. We also exemplify the benefits of an open source package in revealing the underpinning of the parallel IO performance.« less

  2. The Fast Scattering Code (FSC): Validation Studies and Program Guidelines

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Dunn, Mark H.

    2011-01-01

    The Fast Scattering Code (FSC) is a frequency domain noise prediction program developed at the NASA Langley Research Center (LaRC) to simulate the acoustic field produced by the interaction of known, time harmonic incident sound with bodies of arbitrary shape and surface impedance immersed in a potential flow. The code uses the equivalent source method (ESM) to solve an exterior 3-D Helmholtz boundary value problem (BVP) by expanding the scattered acoustic pressure field into a series of point sources distributed on a fictitious surface placed inside the actual scatterer. This work provides additional code validation studies and illustrates the range of code parameters that produce accurate results with minimal computational costs. Systematic noise prediction studies are presented in which monopole generated incident sound is scattered by simple geometric shapes - spheres (acoustically hard and soft surfaces), oblate spheroids, flat disk, and flat plates with various edge topologies. Comparisons between FSC simulations and analytical results and experimental data are presented.

  3. Energy spectra unfolding of fast neutron sources using the group method of data handling and decision tree algorithms

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Abolfazl; Afrakoti, Iman Esmaili Paeen

    2017-04-01

    Accurate unfolding of the energy spectrum of a neutron source gives important information about unknown neutron sources. The obtained information is useful in many areas like nuclear safeguards, nuclear nonproliferation, and homeland security. In the present study, the energy spectrum of a poly-energetic fast neutron source is reconstructed using the developed computational codes based on the Group Method of Data Handling (GMDH) and Decision Tree (DT) algorithms. The neutron pulse height distribution (neutron response function) in the considered NE-213 liquid organic scintillator has been simulated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). The developed computational codes based on the GMDH and DT algorithms use some data for training, testing and validation steps. In order to prepare the required data, 4000 randomly generated energy spectra distributed over 52 bins are used. The randomly generated energy spectra and the simulated neutron pulse height distributions by MCNPX-ESUT for each energy spectrum are used as the output and input data. Since there is no need to solve the inverse problem with an ill-conditioned response matrix, the unfolded energy spectrum has the highest accuracy. The 241Am-9Be and 252Cf neutron sources are used in the validation step of the calculation. The unfolded energy spectra for the used fast neutron sources have an excellent agreement with the reference ones. Also, the accuracy of the unfolded energy spectra obtained using the GMDH is slightly better than those obtained from the DT. The results obtained in the present study have good accuracy in comparison with the previously published paper based on the logsig and tansig transfer functions.

  4. Synchrotron Radiation Workshop (SRW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar, O.; Elleaume, P.

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, softmore » and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  5. Sources of financial pressure and up coding behavior in French public hospitals.

    PubMed

    Georgescu, Irène; Hartmann, Frank G H

    2013-05-01

    Drawing upon role theory and the literature concerning unintended consequences of financial pressure, this study investigates the effects of health care decision pressure from the hospital's administration and from the professional peer group on physician's inclination to engage in up coding. We explore two kinds of up coding, information-related and action-related, and develop hypothesis that connect these kinds of data manipulation to the sources of pressure via the intermediate effect of role conflict. Qualitative data from initial interviews with physicians and subsequent questionnaire evidence from 578 physicians in 14 French hospitals suggest that the source of pressure is a relevant predictor of physicians' inclination to engage in data-manipulation. We further find that this effect is partly explained by the extent to which these pressures create role conflict. Given the concern about up coding in treatment-based reimbursement systems worldwide, our analysis adds to understanding how the design of the hospital's management control system may enhance this undesired type of behavior. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Applying a Service-Oriented Architecture to Operational Flight Program Development

    DTIC Science & Technology

    2007-09-01

    using two Java 2 Enterprise Edition (J2EE) Web servers. The weapon models were accessed using a SUN Microsystems Java Web Services Development Pack...Oriented Architectures 22 CROSSTALK The Journal of Defense Software Engineering September 2007 tion, and Spring/ Hibernate to provide the data access...tion since a major coding effort was avoided. The majority of the effort was tweaking pre-existing Java source code and editing of eXtensible Markup

  7. Challenges to implementation of the WHO Global Code of Practice on International Recruitment of Health Personnel: the case of Sudan.

    PubMed

    Abuagla, Ayat; Badr, Elsheikh

    2016-06-30

    The WHO Global Code of Practice on the International Recruitment of Health Personnel (hereafter the WHO Code) was adopted by the World Health Assembly in 2010 as a voluntary instrument to address challenges of health worker migration worldwide. To ascertain its relevance and effectiveness, the implementation of the WHO Code needs to be assessed based on country experience; hence, this case study on Sudan. This qualitative study depended mainly on documentary sources in addition to key informant interviews. Experiences of the authors has informed the analysis. Migration of Sudanese health workers represents a major health system challenge. Over half of Sudanese physicians practice abroad and new trends are showing involvement of other professions and increased feminization. Traditional destinations include Gulf States, especially Saudi Arabia and Libya, as well as the United Kingdom and the Republic of Ireland. Low salaries, poor work environment, and a lack of adequate professional development are the leading push factors. Massive emigration of skilled health workers has jeopardized coverage and quality of healthcare and health professional education. Poor evidence, lack of a national policy, and active recruitment in addition to labour market problems were barriers for effective migration management in Sudan. Response of destination countries in relation to cooperative arrangements with Sudan as a source country has always been suboptimal, demonstrating less attention to solidarity and ethical dimensions. The WHO Code boosted Sudan's efforts to address health worker migration and health workforce development in general. Improving migration evidence, fostering a national dialogue, and promoting bilateral agreements in addition to catalysing health worker retention strategies are some of the benefits accrued. There are, however, limitations in publicity of the WHO Code and its incorporation into national laws and regulatory frameworks for ethical recruitment. The outlook is bleak for Sudan unless the country designs and implements a robust national policy for migration management and unless prospects for source-destination country collaboration improve within a more sound version of the WHO Code. The WHO Code catalysed some vital steps in managing migration and strengthening the national health workforce in Sudan. Nevertheless, the country has not utilized the full potential of this instrument. Revisions of the WHO Code would benefit much from lessons of its application in the context of developing countries such as Sudan.

  8. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    NASA Astrophysics Data System (ADS)

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha; Kalinkin, Alexander A.

    2017-02-01

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, which is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,'bottom-up' and 'top-down', are illustrated. Preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.

  9. CACTI: Free, Open-Source Software for the Sequential Coding of Behavioral Interactions

    PubMed Central

    Glynn, Lisa H.; Hallgren, Kevin A.; Houck, Jon M.; Moyers, Theresa B.

    2012-01-01

    The sequential analysis of client and clinician speech in psychotherapy sessions can help to identify and characterize potential mechanisms of treatment and behavior change. Previous studies required coding systems that were time-consuming, expensive, and error-prone. Existing software can be expensive and inflexible, and furthermore, no single package allows for pre-parsing, sequential coding, and assignment of global ratings. We developed a free, open-source, and adaptable program to meet these needs: The CASAA Application for Coding Treatment Interactions (CACTI). Without transcripts, CACTI facilitates the real-time sequential coding of behavioral interactions using WAV-format audio files. Most elements of the interface are user-modifiable through a simple XML file, and can be further adapted using Java through the terms of the GNU Public License. Coding with this software yields interrater reliabilities comparable to previous methods, but at greatly reduced time and expense. CACTI is a flexible research tool that can simplify psychotherapy process research, and has the potential to contribute to the improvement of treatment content and delivery. PMID:22815713

  10. Applang - A DSL for specification of mobile applications for android platform based on textX

    NASA Astrophysics Data System (ADS)

    Kosanović, Milan; Dejanović, Igor; Milosavljević, Gordana

    2016-06-01

    Mobile platforms become a ubiquitous part of our daily lives thus making more pressure to software developers to develop more applications faster and with the support for different mobile operating systems. To foster the faster development of mobile services and applications and to support various mobile operating systems a new software development approaches must be undertaken. Domain-Specific Languages (DSL) are a viable approach that promise to solve a problem of target platform diversity as well as to facilitate rapid application development and shorter time-to-market. This paper presents Applang, a DSL for the specification of mobile applications for the Android platform, based on textX meta-language. The application is described using Applang DSL and the source code for a target platform is automatically generated by the provided code generator. The same application defined using single Applang source can be transformed to various targets with little or no manual modifications.

  11. An Evolving Worldview: Making Open Source Easy

    NASA Astrophysics Data System (ADS)

    Rice, Z.

    2017-12-01

    NASA Worldview is an interactive interface for browsing full-resolution, global satellite imagery. Worldview supports an open data policy so that academia, private industries and the general public can use NASA's satellite data to address Earth science related issues. Worldview was open sourced in 2014. By shifting to an open source approach, the Worldview application has evolved to better serve end-users. Project developers are able to have discussions with end-users and community developers to understand issues and develop new features. Community developers are able to track upcoming features, collaborate on them and make their own contributions. Developers who discover issues are able to address those issues and submit a fix. This reduces the time it takes for a project developer to reproduce an issue or develop a new feature. Getting new developers to contribute to the project has been one of the most important and difficult aspects of open sourcing Worldview. After witnessing potential outside contributors struggle, a focus has been made on making the installation of Worldview simple to reduce the initial learning curve and make contributing code easy. One way we have addressed this is through a simplified setup process. Our setup documentation includes a set of prerequisites and a set of straightforward commands to clone, configure, install and run. This presentation will emphasize our focus to simplify and standardize Worldview's open source code so that more people are able to contribute. The more people who contribute, the better the application will become over time.

  12. Support for Systematic Code Reviews with the SCRUB Tool

    NASA Technical Reports Server (NTRS)

    Holzmann, Gerald J.

    2010-01-01

    SCRUB is a code review tool that supports both large, team-based software development efforts (e.g., for mission software) as well as individual tasks. The tool was developed at JPL to support a new, streamlined code review process that combines human-generated review reports with program-generated review reports from a customizable range of state-of-the-art source code analyzers. The leading commercial tools include Codesonar, Coverity, and Klocwork, each of which can achieve a reasonably low rate of false-positives in the warnings that they generate. The time required to analyze code with these tools can vary greatly. In each case, however, the tools produce results that would be difficult to realize with human code inspections alone. There is little overlap in the results produced by the different analyzers, and each analyzer used generally increases the effectiveness of the overall effort. The SCRUB tool allows all reports to be accessed through a single, uniform interface (see figure) that facilitates brows ing code and reports. Improvements over existing software include significant simplification, and leveraging of a range of commercial, static source code analyzers in a single, uniform framework. The tool runs as a small stand-alone application, avoiding the security problems related to tools based on Web browsers. A developer or reviewer, for instance, must have already obtained access rights to a code base before that code can be browsed and reviewed with the SCRUB tool. The tool cannot open any files or folders to which the user does not already have access. This means that the tool does not need to enforce or administer any additional security policies. The analysis results presented through the SCRUB tool s user interface are always computed off-line, given that, especially for larger projects, this computation can take longer than appropriate for interactive tool use. The recommended code review process that is supported by the SCRUB tool consists of three phases: Code Review, Developer Response, and Closeout Resolution. In the Code Review phase, all tool-based analysis reports are generated, and specific comments from expert code reviewers are entered into the SCRUB tool. In the second phase, Developer Response, the developer is asked to respond to each comment and tool-report that was produced, either agreeing or disagreeing to provide a fix that addresses the issue that was raised. In the third phase, Closeout Resolution, all disagreements are discussed in a meeting of all parties involved, and a resolution is made for all disagreements. The first two phases generally take one week each, and the third phase is concluded in a single closeout meeting.

  13. Development of a computer code to calculate the distribution of radionuclides within the human body by the biokinetic models of the ICRP.

    PubMed

    Matsumoto, Masaki; Yamanaka, Tsuneyasu; Hayakawa, Nobuhiro; Iwai, Satoshi; Sugiura, Nobuyuki

    2015-03-01

    This paper describes the Basic Radionuclide vAlue for Internal Dosimetry (BRAID) code, which was developed to calculate the time-dependent activity distribution in each organ and tissue characterised by the biokinetic compartmental models provided by the International Commission on Radiological Protection (ICRP). Translocation from one compartment to the next is taken to be governed by first-order kinetics, which is formulated by the first-order differential equations. In the source program of this code, the conservation equations are solved for the mass balance that describes the transfer of a radionuclide between compartments. This code is applicable to the evaluation of the radioactivity of nuclides in an organ or tissue without modification of the source program. It is also possible to handle easily the cases of the revision of the biokinetic model or the application of a uniquely defined model by a user, because this code is designed so that all information on the biokinetic model structure is imported from an input file. The sample calculations are performed with the ICRP model, and the results are compared with the analytic solutions using simple models. It is suggested that this code provides sufficient result for the dose estimation and interpretation of monitoring data. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. The role of open-source software in innovation and standardization in radiology.

    PubMed

    Erickson, Bradley J; Langer, Steve; Nagy, Paul

    2005-11-01

    The use of open-source software (OSS), in which developers release the source code to applications they have developed, is popular in the software industry. This is done to allow others to modify and improve software (which may or may not be shared back to the community) and to allow others to learn from the software. Radiology was an early participant in this model, supporting OSS that implemented the ACR-National Electrical Manufacturers Association (now Digital Imaging and Communications in Medicine) standard for medical image communications. In radiology and in other fields, OSS has promoted innovation and the adoption of standards. Popular OSS is of high quality because access to source code allows many people to identify and resolve errors. Open-source software is analogous to the peer-review scientific process: one must be able to see and reproduce results to understand and promote what is shared. The authors emphasize that support for OSS need not threaten vendors; most vendors embrace and benefit from standards. Open-source development does not replace vendors but more clearly defines their roles, typically focusing on areas in which proprietary differentiators benefit customers and on professional services such as implementation planning and service. Continued support for OSS is essential for the success of our field.

  15. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  16. Coupled Hydrodynamic and Wave Propagation Modeling for the Source Physics Experiment: Study of Rg Wave Sources for SPE and DAG series.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Delorey, A.; Rougier, E.; Knight, E. E.; Steedman, D. W.; Bradley, C. R.

    2017-12-01

    This presentation reports numerical modeling efforts to improve knowledge of the processes that affect seismic wave generation and propagation from underground explosions, with a focus on Rg waves. The numerical model is based on the coupling of hydrodynamic simulation codes (Abaqus, CASH and HOSS), with a 3D full waveform propagation code, SPECFEM3D. Validation datasets are provided by the Source Physics Experiment (SPE) which is a series of highly instrumented chemical explosions at the Nevada National Security Site with yields from 100kg to 5000kg. A first series of explosions in a granite emplacement has just been completed and a second series in alluvium emplacement is planned for 2018. The long-term goal of this research is to review and improve current existing seismic sources models (e.g. Mueller & Murphy, 1971; Denny & Johnson, 1991) by providing first principles calculations provided by the coupled codes capability. The hydrodynamic codes, Abaqus, CASH and HOSS, model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. A new material model for unconsolidated alluvium materials has been developed and validated with past nuclear explosions, including the 10 kT 1965 Merlin event (Perret, 1971) ; Perret and Bass, 1975). We use the efficient Spectral Element Method code, SPECFEM3D (e.g. Komatitsch, 1998; 2002), and Geologic Framework Models to model the evolution of wavefield as it propagates across 3D complex structures. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. We will present validation tests and waveforms modeled for several SPE tests which provide evidence that the damage processes happening in the vicinity of the explosions create secondary seismic sources. These sources interfere with the original explosion moment and reduces the apparent seismic moment at the origin of Rg waves up to 20%.

  17. Schroedinger’s Code: A Preliminary Study on Research Source Code Availability and Link Persistence in Astrophysics

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Teuben, Peter J.; Ryan, P. Wesley

    2018-05-01

    We examined software usage in a sample set of astrophysics research articles published in 2015 and searched for the source codes for the software mentioned in these research papers. We categorized the software to indicate whether the source code is available for download and whether there are restrictions to accessing it, and if the source code is not available, whether some other form of the software, such as a binary, is. We also extracted hyperlinks from one journal’s 2015 research articles, as links in articles can serve as an acknowledgment of software use and lead to the data used in the research, and tested them to determine which of these URLs are still accessible. For our sample of 715 software instances in the 166 articles we examined, we were able to categorize 418 records as according to whether source code was available and found that 285 unique codes were used, 58% of which offered the source code for download. Of the 2558 hyperlinks extracted from 1669 research articles, at best, 90% of them were available over our testing period.

  18. Design Considerations of a Virtual Laboratory for Advanced X-ray Sources

    NASA Astrophysics Data System (ADS)

    Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.

    2004-11-01

    The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.

  19. Status report on the 'Merging' of the Electron-Cloud Code POSINST with the 3-D Accelerator PIC CODE WARP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vay, J.-L.; Furman, M.A.; Azevedo, A.W.

    2004-04-19

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.

  20. Advanced turboprop noise prediction based on recent theoretical results

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Padula, S. L.; Dunn, M. H.

    1987-01-01

    The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.

  1. An efficient system for reliably transmitting image and video data over low bit rate noisy channels

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Huang, Y. F.; Stevenson, Robert L.

    1994-01-01

    This research project is intended to develop an efficient system for reliably transmitting image and video data over low bit rate noisy channels. The basic ideas behind the proposed approach are the following: employ statistical-based image modeling to facilitate pre- and post-processing and error detection, use spare redundancy that the source compression did not remove to add robustness, and implement coded modulation to improve bandwidth efficiency and noise rejection. Over the last six months, progress has been made on various aspects of the project. Through our studies of the integrated system, a list-based iterative Trellis decoder has been developed. The decoder accepts feedback from a post-processor which can detect channel errors in the reconstructed image. The error detection is based on the Huber Markov random field image model for the compressed image. The compression scheme used here is that of JPEG (Joint Photographic Experts Group). Experiments were performed and the results are quite encouraging. The principal ideas here are extendable to other compression techniques. In addition, research was also performed on unequal error protection channel coding, subband vector quantization as a means of source coding, and post processing for reducing coding artifacts. Our studies on unequal error protection (UEP) coding for image transmission focused on examining the properties of the UEP capabilities of convolutional codes. The investigation of subband vector quantization employed a wavelet transform with special emphasis on exploiting interband redundancy. The outcome of this investigation included the development of three algorithms for subband vector quantization. The reduction of transform coding artifacts was studied with the aid of a non-Gaussian Markov random field model. This results in improved image decompression. These studies are summarized and the technical papers included in the appendices.

  2. Lessons Learned through the Development and Publication of AstroImageJ

    NASA Astrophysics Data System (ADS)

    Collins, Karen

    2018-01-01

    As lead author of the scientific image processing software package AstroImageJ (AIJ), I will discuss the reasoning behind why we decided to release AIJ to the public, and the lessons we learned related to the development, publication, distribution, and support of AIJ. I will also summarize the AIJ code language selection, code documentation and testing approaches, code distribution, update, and support facilities used, and the code citation and licensing decisions. Since AIJ was initially developed as part of my graduate research and was my first scientific open source software publication, many of my experiences and difficulties encountered may parallel those of others new to scientific software publication. Finally, I will discuss the benefits and disadvantages of releasing scientific software that I now recognize after having AIJ in the public domain for more than five years.

  3. AN OPEN-SOURCE NEUTRINO RADIATION HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, Evan, E-mail: evanoconnor@ncsu.edu; CITA, Canadian Institute for Theoretical Astrophysics, Toronto, M5S 3H8

    2015-08-15

    We present an open-source update to the spherically symmetric, general-relativistic hydrodynamics, core-collapse supernova (CCSN) code GR1D. The source code is available at http://www.GR1Dcode.org. We extend its capabilities to include a general-relativistic treatment of neutrino transport based on the moment formalisms of Shibata et al. and Cardall et al. We pay special attention to implementing and testing numerical methods and approximations that lessen the computational demand of the transport scheme by removing the need to invert large matrices. This is especially important for the implementation and development of moment-like transport methods in two and three dimensions. A critical component of neutrinomore » transport calculations is the neutrino–matter interaction coefficients that describe the production, absorption, scattering, and annihilation of neutrinos. In this article we also describe our open-source neutrino interaction library NuLib (available at http://www.nulib.org). We believe that an open-source approach to describing these interactions is one of the major steps needed to progress toward robust models of CCSNe and robust predictions of the neutrino signal. We show, via comparisons to full Boltzmann neutrino-transport simulations of CCSNe, that our neutrino transport code performs remarkably well. Furthermore, we show that the methods and approximations we employ to increase efficiency do not decrease the fidelity of our results. We also test the ability of our general-relativistic transport code to model failed CCSNe by evolving a 40-solar-mass progenitor to the onset of collapse to a black hole.« less

  4. MELCOR/CONTAIN LMR Implementation Report. FY14 Progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphries, Larry L; Louie, David L.Y.

    2014-10-01

    This report describes the preliminary implementation of the sodium thermophysical properties and the design documentation for the sodium models of CONTAIN-LMR to be implemented into MELCOR 2.1. In the past year, the implementation included two separate sodium properties from two different sources. The first source is based on the previous work done by Idaho National Laboratory by modifying MELCOR to include liquid lithium equation of state as a working fluid to model the nuclear fusion safety research. To minimize the impact to MELCOR, the implementation of the fusion safety database (FSD) was done by utilizing the detection of the datamore » input file as a way to invoking the FSD. The FSD methodology has been adapted currently for this work, but it may subject modification as the project continues. The second source uses properties generated for the SIMMER code. Preliminary testing and results from this implementation of sodium properties are given. In this year, the design document for the CONTAIN-LMR sodium models, such as the two condensable option, sodium spray fire, and sodium pool fire is being developed. This design document is intended to serve as a guide for the MELCOR implementation. In addition, CONTAIN-LMR code used was based on the earlier version of CONTAIN code. Many physical models that were developed since this early version of CONTAIN may not be captured by the code. Although CONTAIN 2, which represents the latest development of CONTAIN, contains some sodium specific models, which are not complete, the utilizing CONTAIN 2 with all sodium models implemented from CONTAIN-LMR as a comparison code for MELCOR should be done. This implementation should be completed in early next year, while sodium models from CONTAIN-LMR are being integrated into MELCOR. For testing, CONTAIN decks have been developed for verification and validation use.« less

  5. mdFoam+: Advanced molecular dynamics in OpenFOAM

    NASA Astrophysics Data System (ADS)

    Longshaw, S. M.; Borg, M. K.; Ramisetti, S. B.; Zhang, J.; Lockerby, D. A.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes.

  6. An open-source textbook for teaching climate-related risk analysis using the R computing environment

    NASA Astrophysics Data System (ADS)

    Applegate, P. J.; Keller, K.

    2015-12-01

    Greenhouse gas emissions lead to increased surface air temperatures and sea level rise. In turn, sea level rise increases the risks of flooding for people living near the world's coastlines. Our own research on assessing sea level rise-related risks emphasizes both Earth science and statistics. At the same time, the free, open-source computing environment R is growing in popularity among statisticians and scientists due to its flexibility and graphics capabilities, as well as its large library of existing functions. We have developed a set of laboratory exercises that introduce students to the Earth science and statistical concepts needed for assessing the risks presented by climate change, particularly sea-level rise. These exercises will be published as a free, open-source textbook on the Web. Each exercise begins with a description of the Earth science and/or statistical concepts that the exercise teaches, with references to key journal articles where appropriate. Next, students are asked to examine in detail a piece of existing R code, and the exercise text provides a clear explanation of how the code works. Finally, students are asked to modify the existing code to produce a well-defined outcome. We discuss our experiences in developing the exercises over two separate semesters at Penn State, plus using R Markdown to interweave explanatory text with sample code and figures in the textbook.

  7. You've Written a Cool Astronomy Code! Now What Do You Do with It?

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Accomazzi, A.; Berriman, G. B.; DuPrie, K.; Hanisch, R. J.; Mink, J. D.; Nemiroff, R. J.; Shamir, L.; Shortridge, K.; Taylor, M. B.; Teuben, P. J.; Wallin, J. F.

    2014-01-01

    Now that you've written a useful astronomy code for your soon-to-be-published research, you have to figure out what you want to do with it. Our suggestion? Share it! This presentation highlights the means and benefits of sharing your code. Make your code citable -- submit it to the Astrophysics Source Code Library and have it indexed by ADS! The Astrophysics Source Code Library (ASCL) is a free online registry of source codes of interest to astronomers and astrophysicists. With over 700 codes, it is continuing its rapid growth, with an average of 17 new codes a month. The editors seek out codes for inclusion; indexing by ADS improves the discoverability of codes and provides a way to cite codes as separate entries, especially codes without papers that describe them.

  8. Thermodynamic Analysis of Coherently Grown GaAsN/Ge: Effects of Different Gaseous Sources

    NASA Astrophysics Data System (ADS)

    Kawano, Jun; Kangawa, Yoshihiro; Yayama, Tomoe; Kakimoto, Koichi; Koukitu, Akinori

    2013-04-01

    Thermodynamic analysis of coherently grown GaAs1-xNx on Ge with low N content was performed to determine the relationship between solid composition and growth conditions. In this study, a new algorithm for the simulation code, which is applicable to wider combinations of gaseous sources than the traditional algorithm, was developed to determine the influence of different gaseous sources on N incorporation. Using this code, here we successfully compared two cases: one is a system using trimethylgallium (TMG), AsH3, and NH3, and the other uses dimethylhydrazine (DMHy) instead of NH3. It was found that the optimal N/As ratio of input gas in the system using DMHy was much lower than that using NH3. This shows that the newly developed algorithm could be a useful tool for analyzing the N incorporation during the vapor growth of GaAs1-xNx.

  9. Resurrecting Legacy Code Using Ontosoft Knowledge-Sharing and Digital Object Management to Revitalize and Reproduce Software for Groundwater Management Research

    NASA Astrophysics Data System (ADS)

    Kwon, N.; Gentle, J.; Pierce, S. A.

    2015-12-01

    Software code developed for research is often used for a relatively short period of time before it is abandoned, lost, or becomes outdated. This unintentional abandonment of code is a valid problem in the 21st century scientific process, hindering widespread reusability and increasing the effort needed to develop research software. Potentially important assets, these legacy codes may be resurrected and documented digitally for long-term reuse, often with modest effort. Furthermore, the revived code may be openly accessible in a public repository for researchers to reuse or improve. For this study, the research team has begun to revive the codebase for Groundwater Decision Support System (GWDSS), originally developed for participatory decision making to aid urban planning and groundwater management, though it may serve multiple use cases beyond those originally envisioned. GWDSS was designed as a java-based wrapper with loosely federated commercial and open source components. If successfully revitalized, GWDSS will be useful for both practical applications as a teaching tool and case study for groundwater management, as well as informing theoretical research. Using the knowledge-sharing approaches documented by the NSF-funded Ontosoft project, digital documentation of GWDSS is underway, from conception to development, deployment, characterization, integration, composition, and dissemination through open source communities and geosciences modeling frameworks. Information assets, documentation, and examples are shared using open platforms for data sharing and assigned digital object identifiers. Two instances of GWDSS version 3.0 are being created: 1) a virtual machine instance for the original case study to serve as a live demonstration of the decision support tool, assuring the original version is usable, and 2) an open version of the codebase, executable installation files, and developer guide available via an open repository, assuring the source for the application is accessible with version control and potential for new branch developments. Finally, metadata about the software has been completed within the OntoSoft portal to provide descriptive curation, make GWDSS searchable, and complete documentation of the scientific software lifecycle.

  10. TIME-DEPENDENT MULTI-GROUP MULTI-DIMENSIONAL RELATIVISTIC RADIATIVE TRANSFER CODE BASED ON SPHERICAL HARMONIC DISCRETE ORDINATE METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tominaga, Nozomu; Shibata, Sanshiro; Blinnikov, Sergei I., E-mail: tominaga@konan-u.ac.jp, E-mail: sshibata@post.kek.jp, E-mail: Sergei.Blinnikov@itep.ru

    We develop a time-dependent, multi-group, multi-dimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids that are involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) which evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed-frame approach; the source functionmore » is evaluated in the comoving frame, whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated using various test problems and comparisons with the results from a relativistic Monte Carlo code. These validations confirm that the code correctly calculates the intensity and its evolution in the computational domain. The code enables us to obtain an Eddington tensor that relates the first and third moments of intensity (energy density and radiation pressure) and is frequently used as a closure relation in radiation hydrodynamics calculations.« less

  11. Methods for nuclear air-cleaning-system accident-consequence assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrae, R.W.; Bolstad, J.W.; Gregory, W.S.

    1982-01-01

    This paper describes a multilaboratory research program that is directed toward addressing many questions that analysts face when performing air cleaning accident consequence assessments. The program involves developing analytical tools and supportive experimental data that will be useful in making more realistic assessments of accident source terms within and up to the atmospheric boundaries of nuclear fuel cycle facilities. The types of accidents considered in this study includes fires, explosions, spills, tornadoes, criticalities, and equipment failures. The main focus of the program is developing an accident analysis handbook (AAH). We will describe the contents of the AAH, which include descriptionsmore » of selected nuclear fuel cycle facilities, process unit operations, source-term development, and accident consequence analyses. Three computer codes designed to predict gas and material propagation through facility air cleaning systems are described. These computer codes address accidents involving fires (FIRAC), explosions (EXPAC), and tornadoes (TORAC). The handbook relies on many illustrative examples to show the analyst how to approach accident consequence assessments. We will use the FIRAC code and a hypothetical fire scenario to illustrate the accident analysis capability.« less

  12. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The random energy model in a magnetic field and joint source channel coding

    NASA Astrophysics Data System (ADS)

    Merhav, Neri

    2008-09-01

    We demonstrate that there is an intimate relationship between the magnetic properties of Derrida’s random energy model (REM) of spin glasses and the problem of joint source-channel coding in Information Theory. In particular, typical patterns of erroneously decoded messages in the coding problem have “magnetization” properties that are analogous to those of the REM in certain phases, where the non-uniformity of the distribution of the source in the coding problem plays the role of an external magnetic field applied to the REM. We also relate the ensemble performance (random coding exponents) of joint source-channel codes to the free energy of the REM in its different phases.

  14. A translator writing system for microcomputer high-level languages and assemblers

    NASA Technical Reports Server (NTRS)

    Collins, W. R.; Knight, J. C.; Noonan, R. E.

    1980-01-01

    In order to implement high level languages whenever possible, a translator writing system of advanced design was developed. It is intended for routine production use by many programmers working on different projects. As well as a fairly conventional parser generator, it includes a system for the rapid generation of table driven code generators. The parser generator was developed from a prototype version. The translator writing system includes various tools for the management of the source text of a compiler under construction. In addition, it supplies various default source code sections so that its output is always compilable and executable. The system thereby encourages iterative enhancement as a development methodology by ensuring an executable program from the earliest stages of a compiler development project. The translator writing system includes PASCAL/48 compiler, three assemblers, and two compilers for a subset of HAL/S.

  15. User Manual and Source Code for a LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E)

    DTIC Science & Technology

    2014-06-01

    User Manual and Source Code for a LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E) by James P. Larentzos...Laboratory Aberdeen Proving Ground, MD 21005-5069 ARL-SR-290 June 2014 User Manual and Source Code for a LAMMPS Implementation of Constant...3. DATES COVERED (From - To) September 2013–February 2014 4. TITLE AND SUBTITLE User Manual and Source Code for a LAMMPS Implementation of

  16. AKM in Open Source Communities

    NASA Astrophysics Data System (ADS)

    Stamelos, Ioannis; Kakarontzas, George

    Previous chapters in this book have dealt with Architecture Knowledge Management in traditional Closed Source Software (CSS) projects. This chapterwill attempt to examine the ways that knowledge is shared among participants in Free Libre Open Source Software (FLOSS 1) projects and how architectural knowledge is managed w.r.t. CSS. FLOSS projects are organized and developed in a fundamentally different way than CSS projects. FLOSS projects simply do not develop code as CSS projects do. As a consequence, their knowledge management mechanisms are also based on different concepts and tools.

  17. EUPDF: An Eulerian-Based Monte Carlo Probability Density Function (PDF) Solver. User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    EUPDF is an Eulerian-based Monte Carlo PDF solver developed for application with sprays, combustion, parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with the coding required to couple the PDF code to any given flow code and a basic understanding of the EUPDF code structure as well as the models involved in the PDF formulation. The source code of EUPDF will be available with the release of the National Combustion Code (NCC) as a complete package.

  18. Astronomy education and the Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Nemiroff, Robert J.

    2016-01-01

    The Astrophysics Source Code Library (ASCL) is an online registry of source codes used in refereed astrophysics research. It currently lists nearly 1,200 codes and covers all aspects of computational astrophysics. How can this resource be of use to educators and to the graduate students they mentor? The ASCL serves as a discovery tool for codes that can be used for one's own research. Graduate students can also investigate existing codes to see how common astronomical problems are approached numerically in practice, and use these codes as benchmarks for their own solutions to these problems. Further, they can deepen their knowledge of software practices and techniques through examination of others' codes.

  19. Development of Three-Phase Source Inverter for Research and Laboratories

    DTIC Science & Technology

    2011-03-01

    Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1 . AGENCY USE ONLY (Leave blank) 2 . REPORT DATE March 2011 3. REPORT TYPE AND...THEORY OF OPERATION ................................5 1 . Overview ......................................5 2 . Voltage Source Inverter...29 1 . Low Pass Filter MATLAB Code ..................31 2 . Current Sensor ...............................33 3. Optocouplers

  20. Experimental benchmark of the NINJA code for application to the Linac4 H- ion source plasma

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Mattei, S.; Rauner, D.; Lettry, J.; Tran, M. Q.; Fantz, U.

    2017-10-01

    For a dedicated performance optimization of negative hydrogen ion sources applied at particle accelerators, a detailed assessment of the plasma processes is required. Due to the compact design of these sources, diagnostic access is typically limited to optical emission spectroscopy yielding only line-of-sight integrated results. In order to allow for a spatially resolved investigation, the electromagnetic particle-in-cell Monte Carlo collision code NINJA has been developed for the Linac4 ion source at CERN. This code considers the RF field generated by the ICP coil as well as the external static magnetic fields and calculates self-consistently the resulting discharge properties. NINJA is benchmarked at the diagnostically well accessible lab experiment CHARLIE (Concept studies for Helicon Assisted RF Low pressure Ion sourcEs) at varying RF power and gas pressure. A good general agreement is observed between experiment and simulation although the simulated electron density trends for varying pressure and power as well as the absolute electron temperature values deviate slightly from the measured ones. This can be explained by the assumption of strong inductive coupling in NINJA, whereas the CHARLIE discharges show the characteristics of loosely coupled plasmas. For the Linac4 plasma, this assumption is valid. Accordingly, both the absolute values of the accessible plasma parameters and their trends for varying RF power agree well in measurement and simulation. At varying RF power, the H- current extracted from the Linac4 source peaks at 40 kW. For volume operation, this is perfectly reflected by assessing the processes in front of the extraction aperture based on the simulation results where the highest H- density is obtained for the same power level. In surface operation, the production of negative hydrogen ions at the converter surface can only be considered by specialized beam formation codes, which require plasma parameters as input. It has been demonstrated that this input can be provided reliably by the NINJA code.

  1. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  2. An interactive programme for weighted Steiner trees

    NASA Astrophysics Data System (ADS)

    Zanchetta do Nascimento, Marcelo; Ramos Batista, Valério; Raffa Coimbra, Wendhel

    2015-01-01

    We introduce a fully written programmed code with a supervised method for generating weighted Steiner trees. Our choice of the programming language, and the use of well- known theorems from Geometry and Complex Analysis, allowed this method to be implemented with only 764 lines of effective source code. This eases the understanding and the handling of this beta version for future developments.

  3. Data compression using adaptive transform coding. Appendix 1: Item 1. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rost, Martin Christopher

    1988-01-01

    Adaptive low-rate source coders are described in this dissertation. These coders adapt by adjusting the complexity of the coder to match the local coding difficulty of the image. This is accomplished by using a threshold driven maximum distortion criterion to select the specific coder used. The different coders are built using variable blocksized transform techniques, and the threshold criterion selects small transform blocks to code the more difficult regions and larger blocks to code the less complex regions. A theoretical framework is constructed from which the study of these coders can be explored. An algorithm for selecting the optimal bit allocation for the quantization of transform coefficients is developed. The bit allocation algorithm is more fully developed, and can be used to achieve more accurate bit assignments than the algorithms currently used in the literature. Some upper and lower bounds for the bit-allocation distortion-rate function are developed. An obtainable distortion-rate function is developed for a particular scalar quantizer mixing method that can be used to code transform coefficients at any rate.

  4. A MATLAB based 3D modeling and inversion code for MT data

    NASA Astrophysics Data System (ADS)

    Singh, Arun; Dehiya, Rahul; Gupta, Pravin K.; Israil, M.

    2017-07-01

    The development of a MATLAB based computer code, AP3DMT, for modeling and inversion of 3D Magnetotelluric (MT) data is presented. The code comprises two independent components: grid generator code and modeling/inversion code. The grid generator code performs model discretization and acts as an interface by generating various I/O files. The inversion code performs core computations in modular form - forward modeling, data functionals, sensitivity computations and regularization. These modules can be readily extended to other similar inverse problems like Controlled-Source EM (CSEM). The modular structure of the code provides a framework useful for implementation of new applications and inversion algorithms. The use of MATLAB and its libraries makes it more compact and user friendly. The code has been validated on several published models. To demonstrate its versatility and capabilities the results of inversion for two complex models are presented.

  5. SKYSINE-II procedure: calculation of the effects of structure design on neutron, primary gamma-ray and secondary gamma-ray dose rates in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampley, C.M.

    1979-01-01

    An updated version of the SKYSHINE Monte Carlo procedure has been developed. The new computer code, SKYSHINE-II, provides a substantial increase in versatility in that the program possesses the ability to address three types of point-isotropic radiation sources: (1) primary gamma rays, (2) neutrons, and (3) secondary gamma rays. In addition, the emitted radiation may now be characterized by an energy emission spectrum product of a new energy-dependent atmospheric transmission data base developed by Radiation Research Associates, Inc. for each of the three source types described above. Most of the computational options present in the original program have been retainedmore » in the new version. Hence, the SKYSHINE-II computer code provides a versatile and viable tool for the analysis of the radiation environment in the vicinity of a building structure containing radiation sources, situated within the confines of a nuclear power plant. This report describes many of the calculational methods employed within the SKYSHINE-II program. A brief description of the new data base is included. Utilization instructions for the program are provided for operation of the SKYSHINE-II code on the Brookhaven National Laboratory Central Scientific Computing Facility. A listing of the source decks, block data routines, and the new atmospheric transmission data base are provided in the appendices of the report.« less

  6. OpenSQUID: A Flexible Open-Source Software Framework for the Control of SQUID Electronics

    DOE PAGES

    Jaeckel, Felix T.; Lafler, Randy J.; Boyd, S. T. P.

    2013-02-06

    We report commercially available computer-controlled SQUID electronics are usually delivered with software providing a basic user interface for adjustment of SQUID tuning parameters, such as bias current, flux offset, and feedback loop settings. However, in a research context it would often be useful to be able to modify this code and/or to have full control over all these parameters from researcher-written software. In the case of the STAR Cryoelectronics PCI/PFL family of SQUID control electronics, the supplied software contains modules for automatic tuning and noise characterization, but does not provide an interface for user code. On the other hand, themore » Magnicon SQUIDViewer software package includes a public application programming interface (API), but lacks auto-tuning and noise characterization features. To overcome these and other limitations, we are developing an "open-source" framework for controlling SQUID electronics which should provide maximal interoperability with user software, a unified user interface for electronics from different manufacturers, and a flexible platform for the rapid development of customized SQUID auto-tuning and other advanced features. Finally, we have completed a first implementation for the STAR Cryoelectronics hardware and have made the source code for this ongoing project available to the research community on SourceForge (http://opensquid.sourceforge.net) under the GNU public license.« less

  7. Real time wind farm emulation using SimWindFarm toolbox

    NASA Astrophysics Data System (ADS)

    Topor, Marcel

    2016-06-01

    This paper presents a wind farm emulation solution using an open source Matlab/Simulink toolbox and the National Instruments cRIO platform. This work is based on the Aeolus SimWindFarm (SWF) toolbox models developed at Aalborg university, Denmark. Using the Matlab Simulink models developed in SWF, the modeling code can be exported to a real time model using the NI Veristand model framework and the resulting code is integrated as a hardware in the loop control on the NI 9068 platform.

  8. Studying the laws of software evolution in a long-lived FLOSS project.

    PubMed

    Gonzalez-Barahona, Jesus M; Robles, Gregorio; Herraiz, Israel; Ortega, Felipe

    2014-07-01

    Some free, open-source software projects have been around for quite a long time, the longest living ones dating from the early 1980s. For some of them, detailed information about their evolution is available in source code management systems tracking all their code changes for periods of more than 15 years. This paper examines in detail the evolution of one of such projects, glibc, with the main aim of understanding how it evolved and how it matched Lehman's laws of software evolution. As a result, we have developed a methodology for studying the evolution of such long-lived projects based on the information in their source code management repository, described in detail several aspects of the history of glibc, including some activity and size metrics, and found how some of the laws of software evolution may not hold in this case. © 2013 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.

  9. Status and future plans for open source QuickPIC

    NASA Astrophysics Data System (ADS)

    An, Weiming; Decyk, Viktor; Mori, Warren

    2017-10-01

    QuickPIC is a three dimensional (3D) quasi-static particle-in-cell (PIC) code developed based on the UPIC framework. It can be used for efficiently modeling plasma based accelerator (PBA) problems. With quasi-static approximation, QuickPIC can use different time scales for calculating the beam (or laser) evolution and the plasma response, and a 3D plasma wake field can be simulated using a two-dimensional (2D) PIC code where the time variable is ξ = ct - z and z is the beam propagation direction. QuickPIC can be thousand times faster than the normal PIC code when simulating the PBA. It uses an MPI/OpenMP hybrid parallel algorithm, which can be run on either a laptop or the largest supercomputer. The open source QuickPIC is an object-oriented program with high level classes written in Fortran 2003. It can be found at https://github.com/UCLA-Plasma-Simulation-Group/QuickPIC-OpenSource.git

  10. Studying the laws of software evolution in a long-lived FLOSS project

    PubMed Central

    Gonzalez-Barahona, Jesus M; Robles, Gregorio; Herraiz, Israel; Ortega, Felipe

    2014-01-01

    Some free, open-source software projects have been around for quite a long time, the longest living ones dating from the early 1980s. For some of them, detailed information about their evolution is available in source code management systems tracking all their code changes for periods of more than 15 years. This paper examines in detail the evolution of one of such projects, glibc, with the main aim of understanding how it evolved and how it matched Lehman's laws of software evolution. As a result, we have developed a methodology for studying the evolution of such long-lived projects based on the information in their source code management repository, described in detail several aspects of the history of glibc, including some activity and size metrics, and found how some of the laws of software evolution may not hold in this case. © 2013 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd. PMID:25893093

  11. Source Lines Counter (SLiC) Version 4.0

    NASA Technical Reports Server (NTRS)

    Monson, Erik W.; Smith, Kevin A.; Newport, Brian J.; Gostelow, Roli D.; Hihn, Jairus M.; Kandt, Ronald K.

    2011-01-01

    Source Lines Counter (SLiC) is a software utility designed to measure software source code size using logical source statements and other common measures for 22 of the programming languages commonly used at NASA and the aerospace industry. Such metrics can be used in a wide variety of applications, from parametric cost estimation to software defect analysis. SLiC has a variety of unique features such as automatic code search, automatic file detection, hierarchical directory totals, and spreadsheet-compatible output. SLiC was written for extensibility; new programming language support can be added with minimal effort in a short amount of time. SLiC runs on a variety of platforms including UNIX, Windows, and Mac OSX. Its straightforward command-line interface allows for customization and incorporation into the software build process for tracking development metrics. T

  12. Data processing with microcode designed with source coding

    DOEpatents

    McCoy, James A; Morrison, Steven E

    2013-05-07

    Programming for a data processor to execute a data processing application is provided using microcode source code. The microcode source code is assembled to produce microcode that includes digital microcode instructions with which to signal the data processor to execute the data processing application.

  13. Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators

    NASA Astrophysics Data System (ADS)

    Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.

    2015-12-01

    Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  14. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    DOE PAGES

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha; ...

    2017-03-20

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, whichmore » is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,‘bottom-up’ and ‘top-down’, are illustrated. Here, preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.« less

  15. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, whichmore » is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,‘bottom-up’ and ‘top-down’, are illustrated. Here, preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.« less

  16. General Mission Analysis Tool (GMAT): Mission, Vision, and Business Case

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.

    2007-01-01

    The Goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities businesses and other government organizations; and to share that technology in an open and unhindered way. GMAT's a free and open source software system; free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or future technology development.

  17. Semi-automated Modular Program Constructor for physiological modeling: Building cell and organ models.

    PubMed

    Jardine, Bartholomew; Raymond, Gary M; Bassingthwaighte, James B

    2015-01-01

    The Modular Program Constructor (MPC) is an open-source Java based modeling utility, built upon JSim's Mathematical Modeling Language (MML) ( http://www.physiome.org/jsim/) that uses directives embedded in model code to construct larger, more complicated models quickly and with less error than manually combining models. A major obstacle in writing complex models for physiological processes is the large amount of time it takes to model the myriad processes taking place simultaneously in cells, tissues, and organs. MPC replaces this task with code-generating algorithms that take model code from several different existing models and produce model code for a new JSim model. This is particularly useful during multi-scale model development where many variants are to be configured and tested against data. MPC encodes and preserves information about how a model is built from its simpler model modules, allowing the researcher to quickly substitute or update modules for hypothesis testing. MPC is implemented in Java and requires JSim to use its output. MPC source code and documentation are available at http://www.physiome.org/software/MPC/.

  18. Software engineering and automatic continuous verification of scientific software

    NASA Astrophysics Data System (ADS)

    Piggott, M. D.; Hill, J.; Farrell, P. E.; Kramer, S. C.; Wilson, C. R.; Ham, D.; Gorman, G. J.; Bond, T.

    2011-12-01

    Software engineering of scientific code is challenging for a number of reasons including pressure to publish and a lack of awareness of the pitfalls of software engineering by scientists. The Applied Modelling and Computation Group at Imperial College is a diverse group of researchers that employ best practice software engineering methods whilst developing open source scientific software. Our main code is Fluidity - a multi-purpose computational fluid dynamics (CFD) code that can be used for a wide range of scientific applications from earth-scale mantle convection, through basin-scale ocean dynamics, to laboratory-scale classic CFD problems, and is coupled to a number of other codes including nuclear radiation and solid modelling. Our software development infrastructure consists of a number of free tools that could be employed by any group that develops scientific code and has been developed over a number of years with many lessons learnt. A single code base is developed by over 30 people for which we use bazaar for revision control, making good use of the strong branching and merging capabilities. Using features of Canonical's Launchpad platform, such as code review, blueprints for designing features and bug reporting gives the group, partners and other Fluidity uers an easy-to-use platform to collaborate and allows the induction of new members of the group into an environment where software development forms a central part of their work. The code repositoriy are coupled to an automated test and verification system which performs over 20,000 tests, including unit tests, short regression tests, code verification and large parallel tests. Included in these tests are build tests on HPC systems, including local and UK National HPC services. The testing of code in this manner leads to a continuous verification process; not a discrete event performed once development has ceased. Much of the code verification is done via the "gold standard" of comparisons to analytical solutions via the method of manufactured solutions. By developing and verifying code in tandem we avoid a number of pitfalls in scientific software development and advocate similar procedures for other scientific code applications.

  19. Phase II evaluation of clinical coding schemes: completeness, taxonomy, mapping, definitions, and clarity. CPRI Work Group on Codes and Structures.

    PubMed

    Campbell, J R; Carpenter, P; Sneiderman, C; Cohn, S; Chute, C G; Warren, J

    1997-01-01

    To compare three potential sources of controlled clinical terminology (READ codes version 3.1, SNOMED International, and Unified Medical Language System (UMLS) version 1.6) relative to attributes of completeness, clinical taxonomy, administrative mapping, term definitions and clarity (duplicate coding rate). The authors assembled 1929 source concept records from a variety of clinical information taken from four medical centers across the United States. The source data included medical as well as ample nursing terminology. The source records were coded in each scheme by an investigator and checked by the coding scheme owner. The codings were then scored by an independent panel of clinicians for acceptability. Codes were checked for definitions provided with the scheme. Codes for a random sample of source records were analyzed by an investigator for "parent" and "child" codes within the scheme. Parent and child pairs were scored by an independent panel of medical informatics specialists for clinical acceptability. Administrative and billing code mapping from the published scheme were reviewed for all coded records and analyzed by independent reviewers for accuracy. The investigator for each scheme exhaustively searched a sample of coded records for duplications. SNOMED was judged to be significantly more complete in coding the source material than the other schemes (SNOMED* 70%; READ 57%; UMLS 50%; *p < .00001). SNOMED also had a richer clinical taxonomy judged by the number of acceptable first-degree relatives per coded concept (SNOMED* 4.56, UMLS 3.17; READ 2.14, *p < .005). Only the UMLS provided any definitions; these were found for 49% of records which had a coding assignment. READ and UMLS had better administrative mappings (composite score: READ* 40.6%; UMLS* 36.1%; SNOMED 20.7%, *p < .00001), and SNOMED had substantially more duplications of coding assignments (duplication rate: READ 0%; UMLS 4.2%; SNOMED* 13.9%, *p < .004) associated with a loss of clarity. No major terminology source can lay claim to being the ideal resource for a computer-based patient record. However, based upon this analysis of releases for April 1995, SNOMED International is considerably more complete, has a compositional nature and a richer taxonomy. Is suffers from less clarity, resulting from a lack of syntax and evolutionary changes in its coding scheme. READ has greater clarity and better mapping to administrative schemes (ICD-10 and OPCS-4), is rapidly changing and is less complete. UMLS is a rich lexical resource, with mappings to many source vocabularies. It provides definitions for many of its terms. However, due to the varying granularities and purposes of its source schemes, it has limitations for representation of clinical concepts within a computer-based patient record.

  20. Open source tools and toolkits for bioinformatics: significance, and where are we?

    PubMed

    Stajich, Jason E; Lapp, Hilmar

    2006-09-01

    This review summarizes important work in open-source bioinformatics software that has occurred over the past couple of years. The survey is intended to illustrate how programs and toolkits whose source code has been developed or released under an Open Source license have changed informatics-heavy areas of life science research. Rather than creating a comprehensive list of all tools developed over the last 2-3 years, we use a few selected projects encompassing toolkit libraries, analysis tools, data analysis environments and interoperability standards to show how freely available and modifiable open-source software can serve as the foundation for building important applications, analysis workflows and resources.

  1. Electron-beam-ion-source (EBIS) modeling progress at FAR-TECH, Inc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J. S., E-mail: kim@far-tech.com; Zhao, L., E-mail: kim@far-tech.com; Spencer, J. A., E-mail: kim@far-tech.com

    FAR-TECH, Inc. has been developing a numerical modeling tool for Electron-Beam-Ion-Sources (EBISs). The tool consists of two codes. One is the Particle-Beam-Gun-Simulation (PBGUNS) code to simulate a steady state electron beam and the other is the EBIS-Particle-In-Cell (EBIS-PIC) code to simulate ion charge breeding with the electron beam. PBGUNS, a 2D (r,z) electron gun and ion source simulation code, has been extended for efficient modeling of EBISs and the work was presented previously. EBIS-PIC is a space charge self-consistent PIC code and is written to simulate charge breeding in an axisymmetric 2D (r,z) device allowing for full three-dimensional ion dynamics.more » This 2D code has been successfully benchmarked with Test-EBIS measurements at Brookhaven National Laboratory. For long timescale (< tens of ms) ion charge breeding, the 2D EBIS-PIC simulations take a long computational time making the simulation less practical. Most of the EBIS charge breeding, however, may be modeled in 1D (r) as the axial dependence of the ion dynamics may be ignored in the trap. Where 1D approximations are valid, simulations of charge breeding in an EBIS over long time scales become possible, using EBIS-PIC together with PBGUNS. Initial 1D results are presented. The significance of the magnetic field to ion dynamics, ion cooling effects due to collisions with neutral gas, and the role of Coulomb collisions are presented.« less

  2. Mads.jl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesselinov, Velimir; O'Malley, Daniel; Lin, Youzuo

    2016-07-01

    Mads.jl (Model analysis and decision support in Julia) is a code that streamlines the process of using data and models for analysis and decision support. It is based on another open-source code developed at LANL and written in C/C++ (MADS; http://mads.lanl.gov; LA-CC-11- 035). Mads.jl can work with external models of arbitrary complexity as well as built-in models of flow and transport in porous media. It enables a number of data- and model-based analyses including model calibration, sensitivity analysis, uncertainty quantification, and decision analysis. The code also can use a series of alternative adaptive computational techniques for Bayesian sampling, Monte Carlo,more » and Bayesian Information-Gap Decision Theory. The code is implemented in the Julia programming language, and has high-performance (parallel) and memory management capabilities. The code uses a series of third party modules developed by others. The code development will also include contributions to the existing third party modules written in Julia; this contributions will be important for the efficient implementation of the algorithm used by Mads.jl. The code also uses a series of LANL developed modules that are developed by Dan O'Malley; these modules will be also a part of the Mads.jl release. Mads.jl will be released under GPL V3 license. The code will be distributed as a Git repo at gitlab.com and github.com. Mads.jl manual and documentation will be posted at madsjulia.lanl.gov.« less

  3. Domain Specific Language Support for Exascale. Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baden, Scott

    The project developed a domain specific translator enable legacy MPI source code to tolerate communication delays, which are increasing over time due to technological factors. The translator performs source-to-source translation that incorporates semantic information into the translation process. The output of the translator is a C program runs as a data driven program, and uses an existing run time to overlap communication automatically

  4. Uncertainty Analysis Principles and Methods

    DTIC Science & Technology

    2007-09-01

    error source . The Data Processor converts binary coded numbers to values, performs D/A curve fitting and applies any correction factors that may be...describes the stages or modules involved in the measurement process. We now need to identify all relevant error sources and develop the mathematical... sources , gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden

  5. Expanding Human Capabilities through the Adoption and Utilization of Free, Libre, and Open Source Software

    ERIC Educational Resources Information Center

    Simpson, James Daniel

    2014-01-01

    Free, libre, and open source software (FLOSS) is software that is collaboratively developed. FLOSS provides end-users with the source code and the freedom to adapt or modify a piece of software to fit their needs (Deek & McHugh, 2008; Stallman, 2010). FLOSS has a 30 year history that dates to the open hacker community at the Massachusetts…

  6. [GNU Pattern: open source pattern hunter for biological sequences based on SPLASH algorithm].

    PubMed

    Xu, Ying; Li, Yi-xue; Kong, Xiang-yin

    2005-06-01

    To construct a high performance open source software engine based on IBM SPLASH algorithm for later research on pattern discovery. Gpat, which is based on SPLASH algorithm, was developed by using open source software. GNU Pattern (Gpat) software was developped, which efficiently implemented the core part of SPLASH algorithm. Full source code of Gpat was also available for other researchers to modify the program under the GNU license. Gpat is a successful implementation of SPLASH algorithm and can be used as a basic framework for later research on pattern recognition in biological sequences.

  7. The case for open-source software in drug discovery.

    PubMed

    DeLano, Warren L

    2005-02-01

    Widespread adoption of open-source software for network infrastructure, web servers, code development, and operating systems leads one to ask how far it can go. Will "open source" spread broadly, or will it be restricted to niches frequented by hopeful hobbyists and midnight hackers? Here we identify reasons for the success of open-source software and predict how consumers in drug discovery will benefit from new open-source products that address their needs with increased flexibility and in ways complementary to proprietary options.

  8. Python-Assisted MODFLOW Application and Code Development

    NASA Astrophysics Data System (ADS)

    Langevin, C.

    2013-12-01

    The U.S. Geological Survey (USGS) has a long history of developing and maintaining free, open-source software for hydrological investigations. The MODFLOW program is one of the most popular hydrologic simulation programs released by the USGS, and it is considered to be the most widely used groundwater flow simulation code. MODFLOW was written using a modular design and a procedural FORTRAN style, which resulted in code that could be understood, modified, and enhanced by many hydrologists. The code is fast, and because it uses standard FORTRAN it can be run on most operating systems. Most MODFLOW users rely on proprietary graphical user interfaces for constructing models and viewing model results. Some recent efforts, however, have focused on construction of MODFLOW models using open-source Python scripts. Customizable Python packages, such as FloPy (https://code.google.com/p/flopy), can be used to generate input files, read simulation results, and visualize results in two and three dimensions. Automating this sequence of steps leads to models that can be reproduced directly from original data and rediscretized in space and time. Python is also being used in the development and testing of new MODFLOW functionality. New packages and numerical formulations can be quickly prototyped and tested first with Python programs before implementation in MODFLOW. This is made possible by the flexible object-oriented design capabilities available in Python, the ability to call FORTRAN code from Python, and the ease with which linear systems of equations can be solved using SciPy, for example. Once new features are added to MODFLOW, Python can then be used to automate comprehensive regression testing and ensure reliability and accuracy of new versions prior to release.

  9. Mod3DMT and EMTF: Free Software for MT Data Processing and Inversion

    NASA Astrophysics Data System (ADS)

    Egbert, G. D.; Kelbert, A.; Meqbel, N. M.

    2017-12-01

    "ModEM" was developed at Oregon State University as a modular system for inversion of electromagnetic (EM) geophysical data (Egbert and Kelbert, 2012; Kelbert et al., 2014). Although designed for more general (frequency domain) EM applications, and originally intended as a testbed for exploring inversion search and regularization strategies, our own initial uses of ModEM were for 3-D imaging of the deep crust and upper mantle at large scales. Since 2013 we have offered a version of the source code suitable for 3D magnetotelluric (MT) inversion on an "as is, user beware" basis for free for non-commercial applications. This version, which we refer to as Mod3DMT, has since been widely used by the international MT community. Over 250 users have registered to download the source code, and at least 50 MT studies in the refereed literature, covering locations around the globe at a range of spatial scales, cite use of ModEM for 3D inversion. For over 30 years I have also made MT processing software available for free use. In this presentation, I will discuss my experience with these freely available (but perhaps not truly open-source) computer codes. Although users are allowed to make modifications to the codes (on conditions that they provide a copy of the modified version) only a handful of users have tried to make any modification, and only rarely are modifications even reported, much less provided back to the developers.

  10. Impacts of DNAPL Source Treatment: Experimental and Modeling Assessment of the Benefits of Partial DNAPL Source Removal

    DTIC Science & Technology

    2009-09-01

    nuclear industry for conducting performance assessment calculations. The analytical FORTRAN code for the DNAPL source function, REMChlor, was...project. The first was to apply existing deterministic codes , such as T2VOC and UTCHEM, to the DNAPL source zone to simulate the remediation processes...but describe the spatial variability of source zones unlike one-dimensional flow and transport codes that assume homogeneity. The Lagrangian models

  11. SU-E-T-103: Development and Implementation of Web Based Quality Control Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studinski, R; Taylor, R; Angers, C

    Purpose: Historically many radiation medicine programs have maintained their Quality Control (QC) test results in paper records or Microsoft Excel worksheets. Both these approaches represent significant logistical challenges, and are not predisposed to data review and approval. It has been our group's aim to develop and implement web based software designed not just to record and store QC data in a centralized database, but to provide scheduling and data review tools to help manage a radiation therapy clinics Equipment Quality control program. Methods: The software was written in the Python programming language using the Django web framework. In order tomore » promote collaboration and validation from other centres the code was made open source and is freely available to the public via an online source code repository. The code was written to provide a common user interface for data entry, formalize the review and approval process, and offer automated data trending and process control analysis of test results. Results: As of February 2014, our installation of QAtrack+ has 180 tests defined in its database and has collected ∼22 000 test results, all of which have been reviewed and approved by a physicist via QATrack+'s review tools. These results include records for quality control of Elekta accelerators, CT simulators, our brachytherapy programme, TomoTherapy and Cyberknife units. Currently at least 5 other centres are known to be running QAtrack+ clinically, forming the start of an international user community. Conclusion: QAtrack+ has proven to be an effective tool for collecting radiation therapy QC data, allowing for rapid review and trending of data for a wide variety of treatment units. As free and open source software, all source code, documentation and a bug tracker are available to the public at https://bitbucket.org/tohccmedphys/qatrackplus/.« less

  12. Hydrodynamic Modeling of Free Surface Interactions and Implications for P and Rg Waves Recorded on the Source Physics Experiments

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Rougier, E.; Knight, E.; Yang, X.; Patton, H. J.

    2013-12-01

    A goal of the Source Physics Experiments (SPE) is to develop explosion source models expanding monitoring capabilities beyond empirical methods. The SPE project combines field experimentation with numerical modelling. The models take into account non-linear processes occurring from the first moment of the explosion as well as complex linear propagation effects of signals reaching far-field recording stations. The hydrodynamic code CASH is used for modelling high-strain rate, non-linear response occurring in the material near the source. Our development efforts focused on incorporating in-situ stress and fracture processes. CASH simulates the material response from the near-source, strong shock zone out to the small-strain and ultimately the elastic regime where a linear code can take over. We developed an interface with the Spectral Element Method code, SPECFEM3D, that is an efficient implementation on parallel computers of a high-order finite element method. SPECFEM3D allows accurate modelling of wave propagation to remote monitoring distance at low cost. We will present CASH-SPECFEM3D results for SPE1, which was a chemical detonation of about 85 kg of TNT at 55 m depth in a granitic geologic unit. Spallation was observed for SPE1. Keeping yield fixed we vary the depth of the source systematically and compute synthetic seismograms to distances where the P and Rg waves are separated, so that analysis can be performed without concern about interference effects due to overlapping energy. We study the time and frequency characteristics of P and Rg waves and analyse them in regard to the impact of free-surface interactions and rock damage resulting from those interactions. We also perform traditional CMT inversions as well as advanced CMT inversions, developed at LANL to take into account the damage. This will allow us to assess the effect of spallation on CMT solutions as well as to validate our inversion procedure. Further work will aim to validate the developed models with the data recorded on SPEs. This long-term goal requires taking into account the 3D structure and thus a comprehensive characterization of the site.

  13. Developing open-source codes for electromagnetic geophysics using industry support

    NASA Astrophysics Data System (ADS)

    Key, K.

    2017-12-01

    Funding for open-source software development in academia often takes the form of grants and fellowships awarded by government bodies and foundations where there is no conflict-of-interest between the funding entity and the free dissemination of the open-source software products. Conversely, funding for open-source projects in the geophysics industry presents challenges to conventional business models where proprietary licensing offers value that is not present in open-source software. Such proprietary constraints make it easier to convince companies to fund academic software development under exclusive software distribution agreements. A major challenge for obtaining commercial funding for open-source projects is to offer a value proposition that overcomes the criticism that such funding is a give-away to the competition. This work draws upon a decade of experience developing open-source electromagnetic geophysics software for the oil, gas and minerals exploration industry, and examines various approaches that have been effective for sustaining industry sponsorship.

  14. An Embedded Rule-Based Diagnostic Expert System in Ada

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Liberman, Eugene M.

    1992-01-01

    Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with it portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assumed a growing role in providing human-like reasoning capability expertise for computer systems. The integration is discussed of expert system technology with Ada programming language, especially a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell. NASA Lewis was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-based power expert system, in ART-Ada. Three components, the rule-based expert systems, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The rules were written in the ART-Ada development environment and converted to Ada source code. The graphics interface was developed with the Transportable Application Environment (TAE) Plus, which generates Ada source code to control graphics images. SMART-Ada communicates with a remote host to obtain either simulated or real data. The Ada source code generated with ART-Ada, TAE Plus, and communications code was incorporated into an Ada expert system that reads the data from a power distribution test bed, applies the rule to determine a fault, if one exists, and graphically displays it on the screen. The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.

  15. Phase II Evaluation of Clinical Coding Schemes

    PubMed Central

    Campbell, James R.; Carpenter, Paul; Sneiderman, Charles; Cohn, Simon; Chute, Christopher G.; Warren, Judith

    1997-01-01

    Abstract Objective: To compare three potential sources of controlled clinical terminology (READ codes version 3.1, SNOMED International, and Unified Medical Language System (UMLS) version 1.6) relative to attributes of completeness, clinical taxonomy, administrative mapping, term definitions and clarity (duplicate coding rate). Methods: The authors assembled 1929 source concept records from a variety of clinical information taken from four medical centers across the United States. The source data included medical as well as ample nursing terminology. The source records were coded in each scheme by an investigator and checked by the coding scheme owner. The codings were then scored by an independent panel of clinicians for acceptability. Codes were checked for definitions provided with the scheme. Codes for a random sample of source records were analyzed by an investigator for “parent” and “child” codes within the scheme. Parent and child pairs were scored by an independent panel of medical informatics specialists for clinical acceptability. Administrative and billing code mapping from the published scheme were reviewed for all coded records and analyzed by independent reviewers for accuracy. The investigator for each scheme exhaustively searched a sample of coded records for duplications. Results: SNOMED was judged to be significantly more complete in coding the source material than the other schemes (SNOMED* 70%; READ 57%; UMLS 50%; *p <.00001). SNOMED also had a richer clinical taxonomy judged by the number of acceptable first-degree relatives per coded concept (SNOMED* 4.56; UMLS 3.17; READ 2.14, *p <.005). Only the UMLS provided any definitions; these were found for 49% of records which had a coding assignment. READ and UMLS had better administrative mappings (composite score: READ* 40.6%; UMLS* 36.1%; SNOMED 20.7%, *p <. 00001), and SNOMED had substantially more duplications of coding assignments (duplication rate: READ 0%; UMLS 4.2%; SNOMED* 13.9%, *p <. 004) associated with a loss of clarity. Conclusion: No major terminology source can lay claim to being the ideal resource for a computer-based patient record. However, based upon this analysis of releases for April 1995, SNOMED International is considerably more complete, has a compositional nature and a richer taxonomy. It suffers from less clarity, resulting from a lack of syntax and evolutionary changes in its coding scheme. READ has greater clarity and better mapping to administrative schemes (ICD-10 and OPCS-4), is rapidly changing and is less complete. UMLS is a rich lexical resource, with mappings to many source vocabularies. It provides definitions for many of its terms. However, due to the varying granularities and purposes of its source schemes, it has limitations for representation of clinical concepts within a computer-based patient record. PMID:9147343

  16. SOPHAEROS code development and its application to falcon tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lajtha, G.; Missirlian, M.; Kissane, M.

    1996-12-31

    One of the key issues in source-term evaluation in nuclear reactor severe accidents is determination of the transport behavior of fission products released from the degrading core. The SOPHAEROS computer code is being developed to predict fission product transport in a mechanistic way in light water reactor circuits. These applications of the SOPHAEROS code to the Falcon experiments, among others not presented here, indicate that the numerical scheme of the code is robust, and no convergence problems are encountered. The calculation is also very fast being three times longer on a Sun SPARC 5 workstation than real time and typicallymore » {approx} 10 times faster than an identical calculation with the VICTORIA code. The study demonstrates that the SOPHAEROS 1.3 code is a suitable tool for prediction of the vapor chemistry and fission product transport with a reasonable level of accuracy. Furthermore, the fexibility of the code material data bank allows improvement of understanding of fission product transport and deposition in the circuit. Performing sensitivity studies with different chemical species or with different properties (saturation pressure, chemical equilibrium constants) is very straightforward.« less

  17. JSPAM: A restricted three-body code for simulating interacting galaxies

    NASA Astrophysics Data System (ADS)

    Wallin, J. F.; Holincheck, A. J.; Harvey, A.

    2016-07-01

    Restricted three-body codes have a proven ability to recreate much of the disturbed morphology of actual interacting galaxies. As more sophisticated n-body models were developed and computer speed increased, restricted three-body codes fell out of favor. However, their supporting role for performing wide searches of parameter space when fitting orbits to real systems demonstrates a continuing need for their use. Here we present the model and algorithm used in the JSPAM code. A precursor of this code was originally described in 1990, and was called SPAM. We have recently updated the software with an alternate potential and a treatment of dynamical friction to more closely mimic the results from n-body tree codes. The code is released publicly for use under the terms of the Academic Free License ("AFL") v. 3.0 and has been added to the Astrophysics Source Code Library.

  18. Joint Source-Channel Coding by Means of an Oversampled Filter Bank Code

    NASA Astrophysics Data System (ADS)

    Marinkovic, Slavica; Guillemot, Christine

    2006-12-01

    Quantized frame expansions based on block transforms and oversampled filter banks (OFBs) have been considered recently as joint source-channel codes (JSCCs) for erasure and error-resilient signal transmission over noisy channels. In this paper, we consider a coding chain involving an OFB-based signal decomposition followed by scalar quantization and a variable-length code (VLC) or a fixed-length code (FLC). This paper first examines the problem of channel error localization and correction in quantized OFB signal expansions. The error localization problem is treated as an[InlineEquation not available: see fulltext.]-ary hypothesis testing problem. The likelihood values are derived from the joint pdf of the syndrome vectors under various hypotheses of impulse noise positions, and in a number of consecutive windows of the received samples. The error amplitudes are then estimated by solving the syndrome equations in the least-square sense. The message signal is reconstructed from the corrected received signal by a pseudoinverse receiver. We then improve the error localization procedure by introducing a per-symbol reliability information in the hypothesis testing procedure of the OFB syndrome decoder. The per-symbol reliability information is produced by the soft-input soft-output (SISO) VLC/FLC decoders. This leads to the design of an iterative algorithm for joint decoding of an FLC and an OFB code. The performance of the algorithms developed is evaluated in a wavelet-based image coding system.

  19. NARMER-1: a photon point-kernel code with build-up factors

    NASA Astrophysics Data System (ADS)

    Visonneau, Thierry; Pangault, Laurence; Malouch, Fadhel; Malvagi, Fausto; Dolci, Florence

    2017-09-01

    This paper presents an overview of NARMER-1, the new generation of photon point-kernel code developed by the Reactor Studies and Applied Mathematics Unit (SERMA) at CEA Saclay Center. After a short introduction giving some history points and the current context of development of the code, the paper exposes the principles implemented in the calculation, the physical quantities computed and surveys the generic features: programming language, computer platforms, geometry package, sources description, etc. Moreover, specific and recent features are also detailed: exclusion sphere, tetrahedral meshes, parallel operations. Then some points about verification and validation are presented. Finally we present some tools that can help the user for operations like visualization and pre-treatment.

  20. InterProScan 5: genome-scale protein function classification

    PubMed Central

    Jones, Philip; Binns, David; Chang, Hsin-Yu; Fraser, Matthew; Li, Weizhong; McAnulla, Craig; McWilliam, Hamish; Maslen, John; Mitchell, Alex; Nuka, Gift; Pesseat, Sebastien; Quinn, Antony F.; Sangrador-Vegas, Amaia; Scheremetjew, Maxim; Yong, Siew-Yit; Lopez, Rodrigo; Hunter, Sarah

    2014-01-01

    Motivation: Robust large-scale sequence analysis is a major challenge in modern genomic science, where biologists are frequently trying to characterize many millions of sequences. Here, we describe a new Java-based architecture for the widely used protein function prediction software package InterProScan. Developments include improvements and additions to the outputs of the software and the complete reimplementation of the software framework, resulting in a flexible and stable system that is able to use both multiprocessor machines and/or conventional clusters to achieve scalable distributed data analysis. InterProScan is freely available for download from the EMBl-EBI FTP site and the open source code is hosted at Google Code. Availability and implementation: InterProScan is distributed via FTP at ftp://ftp.ebi.ac.uk/pub/software/unix/iprscan/5/ and the source code is available from http://code.google.com/p/interproscan/. Contact: http://www.ebi.ac.uk/support or interhelp@ebi.ac.uk or mitchell@ebi.ac.uk PMID:24451626

  1. 22 CFR 228.54 - Suppliers of services-foreign government-owned organizations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... organizations. 228.54 Section 228.54 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT RULES ON SOURCE... contract will be open to firms from countries or areas included in the authorized geographic code and... interested in competing for the contract. (c) Services are not available from any other source. (d) Foreign...

  2. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    PubMed Central

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-01-01

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization. PMID:26343660

  3. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    PubMed

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-08-27

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  4. Doclet To Synthesize UML

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2005-01-01

    The RoseDoclet computer program extends the capability of Java doclet software to automatically synthesize Unified Modeling Language (UML) content from Java language source code. [Doclets are Java-language programs that use the doclet application programming interface (API) to specify the content and format of the output of Javadoc. Javadoc is a program, originally designed to generate API documentation from Java source code, now also useful as an extensible engine for processing Java source code.] RoseDoclet takes advantage of Javadoc comments and tags already in the source code to produce a UML model of that code. RoseDoclet applies the doclet API to create a doclet passed to Javadoc. The Javadoc engine applies the doclet to the source code, emitting the output format specified by the doclet. RoseDoclet emits a Rose model file and populates it with fully documented packages, classes, methods, variables, and class diagrams identified in the source code. The way in which UML models are generated can be controlled by use of new Javadoc comment tags that RoseDoclet provides. The advantage of using RoseDoclet is that Javadoc documentation becomes leveraged for two purposes: documenting the as-built API and keeping the design documentation up to date.

  5. shiftNMFk 1.1: Robust Nonnegative matrix factorization with kmeans clustering and signal shift, for allocation of unknown physical sources, toy version for open sourcing with publications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Boian S.; Lliev, Filip L.; Stanev, Valentin G.

    This code is a toy (short) version of CODE-2016-83. From a general perspective, the code represents an unsupervised adaptive machine learning algorithm that allows efficient and high performance de-mixing and feature extraction of a multitude of non-negative signals mixed and recorded by a network of uncorrelated sensor arrays. The code identifies the number of the mixed original signals and their locations. Further, the code also allows deciphering of signals that have been delayed in regards to the mixing process in each sensor. This code is high customizable and it can be efficiently used for a fast macro-analyses of data. Themore » code is applicable to a plethora of distinct problems: chemical decomposition, pressure transient decomposition, unknown sources/signal allocation, EM signal decomposition. An additional procedure for allocation of the unknown sources is incorporated in the code.« less

  6. Airport-Noise Levels and Annoyance Model (ALAMO) system's reference manual

    NASA Technical Reports Server (NTRS)

    Deloach, R.; Donaldson, J. L.; Johnson, M. J.

    1986-01-01

    The airport-noise levels and annoyance model (ALAMO) is described in terms of the constituent modules, the execution of ALAMO procedure files, necessary for system execution, and the source code documentation associated with code development at Langley Research Center. The modules constituting ALAMO are presented both in flow graph form, and through a description of the subroutines and functions that comprise them.

  7. Joint Source-Channel Decoding of Variable-Length Codes with Soft Information: A Survey

    NASA Astrophysics Data System (ADS)

    Guillemot, Christine; Siohan, Pierre

    2005-12-01

    Multimedia transmission over time-varying wireless channels presents a number of challenges beyond existing capabilities conceived so far for third-generation networks. Efficient quality-of-service (QoS) provisioning for multimedia on these channels may in particular require a loosening and a rethinking of the layer separation principle. In that context, joint source-channel decoding (JSCD) strategies have gained attention as viable alternatives to separate decoding of source and channel codes. A statistical framework based on hidden Markov models (HMM) capturing dependencies between the source and channel coding components sets the foundation for optimal design of techniques of joint decoding of source and channel codes. The problem has been largely addressed in the research community, by considering both fixed-length codes (FLC) and variable-length source codes (VLC) widely used in compression standards. Joint source-channel decoding of VLC raises specific difficulties due to the fact that the segmentation of the received bitstream into source symbols is random. This paper makes a survey of recent theoretical and practical advances in the area of JSCD with soft information of VLC-encoded sources. It first describes the main paths followed for designing efficient estimators for VLC-encoded sources, the key component of the JSCD iterative structure. It then presents the main issues involved in the application of the turbo principle to JSCD of VLC-encoded sources as well as the main approaches to source-controlled channel decoding. This survey terminates by performance illustrations with real image and video decoding systems.

  8. A universal Model-R Coupler to facilitate the use of R functions for model calibration and analysis

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Yan, Wende

    2014-01-01

    Mathematical models are useful in various fields of science and engineering. However, it is a challenge to make a model utilize the open and growing functions (e.g., model inversion) on the R platform due to the requirement of accessing and revising the model's source code. To overcome this barrier, we developed a universal tool that aims to convert a model developed in any computer language to an R function using the template and instruction concept of the Parameter ESTimation program (PEST) and the operational structure of the R-Soil and Water Assessment Tool (R-SWAT). The developed tool (Model-R Coupler) is promising because users of any model can connect an external algorithm (written in R) with their model to implement various model behavior analyses (e.g., parameter optimization, sensitivity and uncertainty analysis, performance evaluation, and visualization) without accessing or modifying the model's source code.

  9. Air-kerma strength determination of a miniature x-ray source for brachytherapy applications

    NASA Astrophysics Data System (ADS)

    Davis, Stephen D.

    A miniature x-ray source has been developed by Xoft Inc. for high dose-rate brachytherapy treatments. The source is contained in a 5.4 mm diameter water-cooling catheter. The source voltage can be adjusted from 40 kV to 50 kV and the beam current is adjustable up to 300 muA. Electrons are accelerated toward a tungsten-coated anode to produce a lightly-filtered bremsstrahlung photon spectrum. The sources were initially used for early-stage breast cancer treatment using a balloon applicator. More recently, Xoft Inc. has developed vaginal and surface applicators. The miniature x-ray sources have been characterized using a modification of the American Association of Physicists in Medicine Task Group No. 43 formalism normally used for radioactive brachytherapy sources. Primary measurements of air kerma were performed using free-air ionization chambers at the University of Wisconsin (UW) and the National Institute of Standards and Technology (NIST). The measurements at UW were used to calibrate a well-type ionization chamber for clinical verification of source strength. Accurate knowledge of the emitted photon spectrum was necessary to calculate the corrections required to determine air-kerma strength, defined in vacuo. Theoretical predictions of the photon spectrum were calculated using three separate Monte Carlo codes: MCNP5, EGSnrc, and PENELOPE. Each code used different implementations of the underlying radiological physics. Benchmark studies were performed to investigate these differences in detail. The most important variation among the codes was found to be the calculation of fluorescence photon production following electron-induced vacancies in the L shell of tungsten atoms. The low-energy tungsten L-shell fluorescence photons have little clinical significance at the treatment distance, but could have a large impact on air-kerma measurements. Calculated photon spectra were compared to spectra measured with high-purity germanium spectroscopy systems at both UW and NIST. The effects of escaped germanium fluorescence photons and Compton-scattered photons were taken into account for the UW measurements. The photon spectrum calculated using the PENELOPE Monte Carlo code had the best agreement with the spectrum measured at NIST. Corrections were applied to the free-air chamber measurements to arrive at an air-kerma strength determination for the miniature x-ray sources.

  10. Scalar collapse in AdS with an OpenCL open source code

    NASA Astrophysics Data System (ADS)

    Liebling, Steven L.; Khanna, Gaurav

    2017-10-01

    We study the spherically symmetric collapse of a scalar field in anti-de Sitter spacetime using a newly constructed, open-source code which parallelizes over heterogeneous architectures using the open standard OpenCL. An open question for this scenario concerns how to tell, a priori, whether some form of initial data will be stable or will instead develop under the turbulent instability into a black hole in the limit of vanishing amplitude. Previous work suggested the existence of islands of stability around quasi-periodic solutions, and we use this new code to examine the stability properties of approximately quasi-periodic solutions which balance energy transfer to higher modes with energy transfer to lower modes. The evolutions provide some evidence, though not conclusively, for stability of initial data sufficiently close to quasiperiodic solutions.

  11. Multidimensional incremental parsing for universal source coding.

    PubMed

    Bae, Soo Hyun; Juang, Biing-Hwang

    2008-10-01

    A multidimensional incremental parsing algorithm (MDIP) for multidimensional discrete sources, as a generalization of the Lempel-Ziv coding algorithm, is investigated. It consists of three essential component schemes, maximum decimation matching, hierarchical structure of multidimensional source coding, and dictionary augmentation. As a counterpart of the longest match search in the Lempel-Ziv algorithm, two classes of maximum decimation matching are studied. Also, an underlying behavior of the dictionary augmentation scheme for estimating the source statistics is examined. For an m-dimensional source, m augmentative patches are appended into the dictionary at each coding epoch, thus requiring the transmission of a substantial amount of information to the decoder. The property of the hierarchical structure of the source coding algorithm resolves this issue by successively incorporating lower dimensional coding procedures in the scheme. In regard to universal lossy source coders, we propose two distortion functions, the local average distortion and the local minimax distortion with a set of threshold levels for each source symbol. For performance evaluation, we implemented three image compression algorithms based upon the MDIP; one is lossless and the others are lossy. The lossless image compression algorithm does not perform better than the Lempel-Ziv-Welch coding, but experimentally shows efficiency in capturing the source structure. The two lossy image compression algorithms are implemented using the two distortion functions, respectively. The algorithm based on the local average distortion is efficient at minimizing the signal distortion, but the images by the one with the local minimax distortion have a good perceptual fidelity among other compression algorithms. Our insights inspire future research on feature extraction of multidimensional discrete sources.

  12. The Five 'R's' for Developing Trusted Software Frameworks to increase confidence in, and maximise reuse of, Open Source Software.

    NASA Astrophysics Data System (ADS)

    Fraser, Ryan; Gross, Lutz; Wyborn, Lesley; Evans, Ben; Klump, Jens

    2015-04-01

    Recent investments in HPC, cloud and Petascale data stores, have dramatically increased the scale and resolution that earth science challenges can now be tackled. These new infrastructures are highly parallelised and to fully utilise them and access the large volumes of earth science data now available, a new approach to software stack engineering needs to be developed. The size, complexity and cost of the new infrastructures mean any software deployed has to be reliable, trusted and reusable. Increasingly software is available via open source repositories, but these usually only enable code to be discovered and downloaded. As a user it is hard for a scientist to judge the suitability and quality of individual codes: rarely is there information on how and where codes can be run, what the critical dependencies are, and in particular, on the version requirements and licensing of the underlying software stack. A trusted software framework is proposed to enable reliable software to be discovered, accessed and then deployed on multiple hardware environments. More specifically, this framework will enable those who generate the software, and those who fund the development of software, to gain credit for the effort, IP, time and dollars spent, and facilitate quantification of the impact of individual codes. For scientific users, the framework delivers reviewed and benchmarked scientific software with mechanisms to reproduce results. The trusted framework will have five separate, but connected components: Register, Review, Reference, Run, and Repeat. 1) The Register component will facilitate discovery of relevant software from multiple open source code repositories. The registration process of the code should include information about licensing, hardware environments it can be run on, define appropriate validation (testing) procedures and list the critical dependencies. 2) The Review component is targeting on the verification of the software typically against a set of benchmark cases. This will be achieved by linking the code in the software framework to peer review forums such as Mozilla Science or appropriate Journals (e.g. Geoscientific Model Development Journal) to assist users to know which codes to trust. 3) Referencing will be accomplished by linking the Software Framework to groups such as Figshare or ImpactStory that help disseminate and measure the impact of scientific research, including program code. 4) The Run component will draw on information supplied in the registration process, benchmark cases described in the review and relevant information to instantiate the scientific code on the selected environment. 5) The Repeat component will tap into existing Provenance Workflow engines that will automatically capture information that relate to a particular run of that software, including identification of all input and output artefacts, and all elements and transactions within that workflow. The proposed trusted software framework will enable users to rapidly discover and access reliable code, reduce the time to deploy it and greatly facilitate sharing, reuse and reinstallation of code. Properly designed it could enable an ability to scale out to massively parallel systems and be accessed nationally/ internationally for multiple use cases, including Supercomputer centres, cloud facilities, and local computers.

  13. Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder

    NASA Technical Reports Server (NTRS)

    Staats, Matt

    2009-01-01

    We present work on a prototype tool based on the JavaPathfinder (JPF) model checker for automatically generating tests satisfying the MC/DC code coverage criterion. Using the Eclipse IDE, developers and testers can quickly instrument Java source code with JPF annotations covering all MC/DC coverage obligations, and JPF can then be used to automatically generate tests that satisfy these obligations. The prototype extension to JPF enables various tasks useful in automatic test generation to be performed, such as test suite reduction and execution of generated tests.

  14. An Efficient Variable Length Coding Scheme for an IID Source

    NASA Technical Reports Server (NTRS)

    Cheung, K. -M.

    1995-01-01

    A scheme is examined for using two alternating Huffman codes to encode a discrete independent and identically distributed source with a dominant symbol. This combined strategy, or alternating runlength Huffman (ARH) coding, was found to be more efficient than ordinary coding in certain circumstances.

  15. SiC JFET Transistor Circuit Model for Extreme Temperature Range

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2008-01-01

    A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.

  16. Interfacing Computer Aided Parallelization and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)

    2003-01-01

    When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.

  17. Macroeconomic Activity Module - NEMS Documentation

    EIA Publications

    2016-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 2016 (AEO2016). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code

  18. Modeling of negative ion transport in a plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riz, David; Departement de Recherches sur la Fusion Controelee CE Cadarache, 13108 St Paul lez Durance; Pamela, Jerome

    1998-08-20

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, severalmore » phenomena observed in negative ion sources, such as the isotopic H{sup -}/D{sup -} effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm{sup -3}), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of 'volume production' (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.« less

  19. Modeling of negative ion transport in a plasma source (invited)

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-02-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  20. Modeling of negative ion transport in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-08-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  1. Source Code Plagiarism--A Student Perspective

    ERIC Educational Resources Information Center

    Joy, M.; Cosma, G.; Yau, J. Y.-K.; Sinclair, J.

    2011-01-01

    This paper considers the problem of source code plagiarism by students within the computing disciplines and reports the results of a survey of students in Computing departments in 18 institutions in the U.K. This survey was designed to investigate how well students understand the concept of source code plagiarism and to discover what, if any,…

  2. TOWARD THE DEVELOPMENT OF A CONSENSUS MATERIALS DATABASE FOR PRESSURE TECHNOLGY APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindeman, Robert W; Ren, Weiju

    The ASME construction code books specify materials and fabrication procedures that are acceptable for pressure technology applications. However, with few exceptions, the materials properties provided in the ASME code books provide no statistics or other information pertaining to material variability. Such information is central to the prediction and prevention of failure events. Many sources of materials data exist that provide variability information but such sources do not necessarily represent a consensus of experts with respect to the reported trends that are represented. Such a need has been identified by the ASME Standards Technology, LLC and initial steps have been takenmore » to address these needs: however, these steps are limited to project-specific applications only, such as the joint DOE-ASME project on materials for Generation IV nuclear reactors. In contrast to light-water reactor technology, the experience base for the Generation IV nuclear reactors is somewhat lacking and heavy reliance must be placed on model development and predictive capability. The database for model development is being assembled and includes existing code alloys such as alloy 800H and 9Cr-1Mo-V steel. Ownership and use rights are potential barriers that must be addressed.« less

  3. Cloud based, Open Source Software Application for Mitigating Herbicide Drift

    NASA Astrophysics Data System (ADS)

    Saraswat, D.; Scott, B.

    2014-12-01

    The spread of herbicide resistant weeds has resulted in the need for clearly marked fields. In response to this need, the University of Arkansas Cooperative Extension Service launched a program named Flag the Technology in 2011. This program uses color-coded flags as a visual alert of the herbicide trait technology within a farm field. The flag based program also serves to help avoid herbicide misapplication and prevent herbicide drift damage between fields with differing crop technologies. This program has been endorsed by Southern Weed Science Society of America and is attracting interest from across the USA, Canada, and Australia. However, flags have risk of misplacement or disappearance due to mischief or severe windstorms/thunderstorms, respectively. This presentation will discuss the design and development of a cloud-based, free application utilizing open-source technologies, called Flag the Technology Cloud (FTTCloud), for allowing agricultural stakeholders to color code their farm fields for indicating herbicide resistant technologies. The developed software utilizes modern web development practices, widely used design technologies, and basic geographic information system (GIS) based interactive interfaces for representing, color-coding, searching, and visualizing fields. This program has also been made compatible for a wider usability on different size devices- smartphones, tablets, desktops and laptops.

  4. Software engineering capability for Ada (GRASP/Ada Tool)

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1995-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada Source code. A new Motif compliant graphical user interface has been developed for the GRASP/Ada prototype.

  5. Recent advances in coding theory for near error-free communications

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Deutsch, L. J.; Dolinar, S. J.; Mceliece, R. J.; Pollara, F.; Shahshahani, M.; Swanson, L.

    1991-01-01

    Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression.

  6. Hybrid concatenated codes and iterative decoding

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Pollara, Fabrizio (Inventor)

    2000-01-01

    Several improved turbo code apparatuses and methods. The invention encompasses several classes: (1) A data source is applied to two or more encoders with an interleaver between the source and each of the second and subsequent encoders. Each encoder outputs a code element which may be transmitted or stored. A parallel decoder provides the ability to decode the code elements to derive the original source information d without use of a received data signal corresponding to d. The output may be coupled to a multilevel trellis-coded modulator (TCM). (2) A data source d is applied to two or more encoders with an interleaver between the source and each of the second and subsequent encoders. Each of the encoders outputs a code element. In addition, the original data source d is output from the encoder. All of the output elements are coupled to a TCM. (3) At least two data sources are applied to two or more encoders with an interleaver between each source and each of the second and subsequent encoders. The output may be coupled to a TCM. (4) At least two data sources are applied to two or more encoders with at least two interleavers between each source and each of the second and subsequent encoders. (5) At least one data source is applied to one or more serially linked encoders through at least one interleaver. The output may be coupled to a TCM. The invention includes a novel way of terminating a turbo coder.

  7. ObsPy: Establishing and maintaining an open-source community package

    NASA Astrophysics Data System (ADS)

    Krischer, L.; Megies, T.; Barsch, R.

    2017-12-01

    Python's ecosystem evolved into one of the most powerful and productive research environment across disciplines. ObsPy (https://obspy.org) is a fully community driven, open-source project dedicated to provide a bridge for seismology into that ecosystem. It does so by offering Read and write support for essentially every commonly used data format in seismology, Integrated access to the largest data centers, web services, and real-time data streams, A powerful signal processing toolbox tuned to the specific needs of seismologists, and Utility functionality like travel time calculations, geodetic functions, and data visualizations. ObsPy has been in constant unfunded development for more than eight years and is developed and used by scientists around the world with successful applications in all branches of seismology. By now around 70 people directly contributed code to ObsPy and we aim to make it a self-sustaining community project.This contributions focusses on several meta aspects of open-source software in science, in particular how we experienced them. During the panel we would like to discuss obvious questions like long-term sustainability with very limited to no funding, insufficient computer science training in many sciences, and gaining hard scientific credits for software development, but also the following questions: How to best deal with the fact that a lot of scientific software is very specialized thus usually solves a complex problem but at the same time can only ever reach a limited pool of developers and users by virtue of it being so specialized? Therefore the "many eyes on the code" approach to develop and improve open-source software only applies in a limited fashion. An initial publication for a significant new scientific software package is fairly straightforward. How to on-board and motivate potential new contributors when they can no longer be lured by a potential co-authorship? When is spending significant time and effort on reusable scientific open-source development a reasonable choice for young researchers? The effort to go from purpose tailored code for a single application resulting in a scientific publication is significantly less compared to generalising and engineering it well enough so it can be used by others.

  8. Industrial Demand Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  9. On transform coding tools under development for VP10

    NASA Astrophysics Data System (ADS)

    Parker, Sarah; Chen, Yue; Han, Jingning; Liu, Zoe; Mukherjee, Debargha; Su, Hui; Wang, Yongzhe; Bankoski, Jim; Li, Shunyao

    2016-09-01

    Google started the WebM Project in 2010 to develop open source, royaltyfree video codecs designed specifically for media on the Web. The second generation codec released by the WebM project, VP9, is currently served by YouTube, and enjoys billions of views per day. Realizing the need for even greater compression efficiency to cope with the growing demand for video on the web, the WebM team embarked on an ambitious project to develop a next edition codec, VP10, that achieves at least a generational improvement in coding efficiency over VP9. Starting from VP9, a set of new experimental coding tools have already been added to VP10 to achieve decent coding gains. Subsequently, Google joined a consortium of major tech companies called the Alliance for Open Media to jointly develop a new codec AV1. As a result, the VP10 effort is largely expected to merge with AV1. In this paper, we focus primarily on new tools in VP10 that improve coding of the prediction residue using transform coding techniques. Specifically, we describe tools that increase the flexibility of available transforms, allowing the codec to handle a more diverse range or residue structures. Results are presented on a standard test set.

  10. Traleika Glacier X-Stack Extension Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryman, Joshua

    The XStack Extension Project continued along the direction of the XStack program in exploring the software tools and frameworks to support a task-based community runtime towards the goal of Exascale programming. The momentum built as part of the XStack project, with the development of the task-based Open Community Runtime (OCR) and related tools, was carried through during the XStack Extension with the focus areas of easing application development, improving performance and supporting more features. The infrastructure set up for a community-driven open-source development continued to be used towards these areas, with continued co-development of runtime and applications. A variety ofmore » OCR programming environments were studied, as described in Sections Revolutionary Programming Environments & Applications – to assist with application development on OCR, and we develop OCR Translator, a ROSE-based source-to-source compiler that parses high-level annotations in an MPI program to generate equivalent OCR code. Figure 2 compares the number of OCR objects needed to generate the 2D stencil workload using the translator, against manual approaches based on SPMD library or native coding. The rate of increase with the translator, with an increase in number of ranks, is consistent with other approaches. This is explored further in Section OCR Translator.« less

  11. Performing aggressive code optimization with an ability to rollback changes made by the aggressive optimizations

    DOEpatents

    Gschwind, Michael K

    2013-07-23

    Mechanisms for aggressively optimizing computer code are provided. With these mechanisms, a compiler determines an optimization to apply to a portion of source code and determines if the optimization as applied to the portion of source code will result in unsafe optimized code that introduces a new source of exceptions being generated by the optimized code. In response to a determination that the optimization is an unsafe optimization, the compiler generates an aggressively compiled code version, in which the unsafe optimization is applied, and a conservatively compiled code version in which the unsafe optimization is not applied. The compiler stores both versions and provides them for execution. Mechanisms are provided for switching between these versions during execution in the event of a failure of the aggressively compiled code version. Moreover, predictive mechanisms are provided for predicting whether such a failure is likely.

  12. Qualitative Data Analysis for Health Services Research: Developing Taxonomy, Themes, and Theory

    PubMed Central

    Bradley, Elizabeth H; Curry, Leslie A; Devers, Kelly J

    2007-01-01

    Objective To provide practical strategies for conducting and evaluating analyses of qualitative data applicable for health services researchers. Data Sources and Design We draw on extant qualitative methodological literature to describe practical approaches to qualitative data analysis. Approaches to data analysis vary by discipline and analytic tradition; however, we focus on qualitative data analysis that has as a goal the generation of taxonomy, themes, and theory germane to health services research. Principle Findings We describe an approach to qualitative data analysis that applies the principles of inductive reasoning while also employing predetermined code types to guide data analysis and interpretation. These code types (conceptual, relationship, perspective, participant characteristics, and setting codes) define a structure that is appropriate for generation of taxonomy, themes, and theory. Conceptual codes and subcodes facilitate the development of taxonomies. Relationship and perspective codes facilitate the development of themes and theory. Intersectional analyses with data coded for participant characteristics and setting codes can facilitate comparative analyses. Conclusions Qualitative inquiry can improve the description and explanation of complex, real-world phenomena pertinent to health services research. Greater understanding of the processes of qualitative data analysis can be helpful for health services researchers as they use these methods themselves or collaborate with qualitative researchers from a wide range of disciplines. PMID:17286625

  13. Qualitative data analysis for health services research: developing taxonomy, themes, and theory.

    PubMed

    Bradley, Elizabeth H; Curry, Leslie A; Devers, Kelly J

    2007-08-01

    To provide practical strategies for conducting and evaluating analyses of qualitative data applicable for health services researchers. DATA SOURCES AND DESIGN: We draw on extant qualitative methodological literature to describe practical approaches to qualitative data analysis. Approaches to data analysis vary by discipline and analytic tradition; however, we focus on qualitative data analysis that has as a goal the generation of taxonomy, themes, and theory germane to health services research. We describe an approach to qualitative data analysis that applies the principles of inductive reasoning while also employing predetermined code types to guide data analysis and interpretation. These code types (conceptual, relationship, perspective, participant characteristics, and setting codes) define a structure that is appropriate for generation of taxonomy, themes, and theory. Conceptual codes and subcodes facilitate the development of taxonomies. Relationship and perspective codes facilitate the development of themes and theory. Intersectional analyses with data coded for participant characteristics and setting codes can facilitate comparative analyses. Qualitative inquiry can improve the description and explanation of complex, real-world phenomena pertinent to health services research. Greater understanding of the processes of qualitative data analysis can be helpful for health services researchers as they use these methods themselves or collaborate with qualitative researchers from a wide range of disciplines.

  14. FRAGS: estimation of coding sequence substitution rates from fragmentary data

    PubMed Central

    Swart, Estienne C; Hide, Winston A; Seoighe, Cathal

    2004-01-01

    Background Rates of substitution in protein-coding sequences can provide important insights into evolutionary processes that are of biomedical and theoretical interest. Increased availability of coding sequence data has enabled researchers to estimate more accurately the coding sequence divergence of pairs of organisms. However the use of different data sources, alignment protocols and methods to estimate substitution rates leads to widely varying estimates of key parameters that define the coding sequence divergence of orthologous genes. Although complete genome sequence data are not available for all organisms, fragmentary sequence data can provide accurate estimates of substitution rates provided that an appropriate and consistent methodology is used and that differences in the estimates obtainable from different data sources are taken into account. Results We have developed FRAGS, an application framework that uses existing, freely available software components to construct in-frame alignments and estimate coding substitution rates from fragmentary sequence data. Coding sequence substitution estimates for human and chimpanzee sequences, generated by FRAGS, reveal that methodological differences can give rise to significantly different estimates of important substitution parameters. The estimated substitution rates were also used to infer upper-bounds on the amount of sequencing error in the datasets that we have analysed. Conclusion We have developed a system that performs robust estimation of substitution rates for orthologous sequences from a pair of organisms. Our system can be used when fragmentary genomic or transcript data is available from one of the organisms and the other is a completely sequenced genome within the Ensembl database. As well as estimating substitution statistics our system enables the user to manage and query alignment and substitution data. PMID:15005802

  15. A new free and open source tool for space plasma modeling.

    NASA Astrophysics Data System (ADS)

    Honkonen, I. J.

    2014-12-01

    I will present a new distributed memory parallel, free and open source computational model for studying space plasma. The model is written in C++ with emphasis on good software development practices and code readability without sacrificing serial or parallel performance. As such the model could be especially useful for education, for learning both (magneto)hydrodynamics (MHD) and computational model development. By using latest features of the C++ standard (2011) it has been possible to develop a very modular program which improves not only the readability of code but also the testability of the model and decreases the effort required to make changes to various parts of the program. Major parts of the model, functionality not directly related to (M)HD, have been outsourced to other freely available libraries which has reduced the development time of the model significantly. I will present an overview of the code architecture as well as details of different parts of the model and will show examples of using the model including preparing input files and plotting results. A multitude of 1-, 2- and 3-dimensional test cases are included in the software distribution and the results of, for example, Kelvin-Helmholtz, bow shock, blast wave and reconnection tests, will be presented.

  16. General Mission Analysis Tool (GMAT) Architectural Specification. Draft

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Conway, Darrel, J.

    2007-01-01

    Early in 2002, Goddard Space Flight Center (GSFC) began to identify requirements for the flight dynamics software needed to fly upcoming missions that use formations of spacecraft to collect data. These requirements ranged from low level modeling features to large scale interoperability requirements. In 2003 we began work on a system designed to meet these requirement; this system is GMAT. The General Mission Analysis Tool (GMAT) is a general purpose flight dynamics modeling tool built on open source principles. The GMAT code is written in C++, and uses modern C++ constructs extensively. GMAT can be run through either a fully functional Graphical User Interface (GUI) or as a command line program with minimal user feedback. The system is built and runs on Microsoft Windows, Linux, and Macintosh OS X platforms. The GMAT GUI is written using wxWidgets, a cross platform library of components that streamlines the development and extension of the user interface Flight dynamics modeling is performed in GMAT by building components that represent the players in the analysis problem that is being modeled. These components interact through the sequential execution of instructions, embodied in the GMAT Mission Sequence. A typical Mission Sequence will model the trajectories of a set of spacecraft evolving over time, calculating relevant parameters during this propagation, and maneuvering individual spacecraft to maintain a set of mission constraints as established by the mission analyst. All of the elements used in GMAT for mission analysis can be viewed in the GMAT GUI or through a custom scripting language. Analysis problems modeled in GMAT are saved as script files, and these files can be read into GMAT. When a script is read into the GMAT GUI, the corresponding user interface elements are constructed in the GMAT GUI. The GMAT system was developed from the ground up to run in a platform agnostic environment. The source code compiles on numerous different platforms, and is regularly exercised running on Windows, Linux and Macintosh computers by the development and analysis teams working on the project. The system can be run using either a graphical user interface, written using the open source wxWidgets framework, or from a text console. The GMAT source code was written using open source tools. GSFC has released the code using the NASA open source license.

  17. OFF, Open source Finite volume Fluid dynamics code: A free, high-order solver based on parallel, modular, object-oriented Fortran API

    NASA Astrophysics Data System (ADS)

    Zaghi, S.

    2014-07-01

    OFF, an open source (free software) code for performing fluid dynamics simulations, is presented. The aim of OFF is to solve, numerically, the unsteady (and steady) compressible Navier-Stokes equations of fluid dynamics by means of finite volume techniques: the research background is mainly focused on high-order (WENO) schemes for multi-fluids, multi-phase flows over complex geometries. To this purpose a highly modular, object-oriented application program interface (API) has been developed. In particular, the concepts of data encapsulation and inheritance available within Fortran language (from standard 2003) have been stressed in order to represent each fluid dynamics "entity" (e.g. the conservative variables of a finite volume, its geometry, etc…) by a single object so that a large variety of computational libraries can be easily (and efficiently) developed upon these objects. The main features of OFF can be summarized as follows: Programming LanguageOFF is written in standard (compliant) Fortran 2003; its design is highly modular in order to enhance simplicity of use and maintenance without compromising the efficiency; Parallel Frameworks Supported the development of OFF has been also targeted to maximize the computational efficiency: the code is designed to run on shared-memory multi-cores workstations and distributed-memory clusters of shared-memory nodes (supercomputers); the code's parallelization is based on Open Multiprocessing (OpenMP) and Message Passing Interface (MPI) paradigms; Usability, Maintenance and Enhancement in order to improve the usability, maintenance and enhancement of the code also the documentation has been carefully taken into account; the documentation is built upon comprehensive comments placed directly into the source files (no external documentation files needed): these comments are parsed by means of doxygen free software producing high quality html and latex documentation pages; the distributed versioning system referred as git has been adopted in order to facilitate the collaborative maintenance and improvement of the code; CopyrightsOFF is a free software that anyone can use, copy, distribute, study, change and improve under the GNU Public License version 3. The present paper is a manifesto of OFF code and presents the currently implemented features and ongoing developments. This work is focused on the computational techniques adopted and a detailed description of the main API characteristics is reported. OFF capabilities are demonstrated by means of one and two dimensional examples and a three dimensional real application.

  18. SU-E-T-212: Comparison of TG-43 Dosimetric Parameters of Low and High Energy Brachytherapy Sources Obtained by MCNP Code Versions of 4C, X and 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehtabian, M; Zaker, N; Sina, S

    2015-06-15

    Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 whichmore » is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.« less

  19. Commercial Demand Module - NEMS Documentation

    EIA Publications

    2017-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  20. Implementation of a kappa-epsilon turbulence model to RPLUS3D code

    NASA Technical Reports Server (NTRS)

    Chitsomboon, Tawit

    1992-01-01

    The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.

  1. Implementation of a kappa-epsilon turbulence model to RPLUS3D code

    NASA Astrophysics Data System (ADS)

    Chitsomboon, Tawit

    1992-02-01

    The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.

  2. A family of chaotic pure analog coding schemes based on baker's map function

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Jing; Lu, Xuanxuan; Yuen, Chau; Wu, Jun

    2015-12-01

    This paper considers a family of pure analog coding schemes constructed from dynamic systems which are governed by chaotic functions—baker's map function and its variants. Various decoding methods, including maximum likelihood (ML), minimum mean square error (MMSE), and mixed ML-MMSE decoding algorithms, have been developed for these novel encoding schemes. The proposed mirrored baker's and single-input baker's analog codes perform a balanced protection against the fold error (large distortion) and weak distortion and outperform the classical chaotic analog coding and analog joint source-channel coding schemes in literature. Compared to the conventional digital communication system, where quantization and digital error correction codes are used, the proposed analog coding system has graceful performance evolution, low decoding latency, and no quantization noise. Numerical results show that under the same bandwidth expansion, the proposed analog system outperforms the digital ones over a wide signal-to-noise (SNR) range.

  3. Lack of agreement in pediatric emergency department discharge diagnoses from clinical and administrative data sources.

    PubMed

    Gorelick, Marc H; Knight, Stacey; Alessandrini, Evaline A; Stanley, Rachel M; Chamberlain, James M; Kuppermann, Nathan; Alpern, Elizabeth R

    2007-07-01

    Diagnosis information from existing data sources is used commonly for epidemiologic, administrative, and research purposes. The quality of such data for emergency department (ED) visits is unknown. To determine the agreement on final diagnoses between two sources, electronic administrative sources and manually abstracted medical records, for pediatric ED visits, in a multicenter network. This was a cross sectional study at 19 EDs nationwide. The authors obtained data from two sources at each ED during a three-month period in 2003: administrative sources for all visits and abstracted records for randomly selected visits during ten days over the study period. Records were matched using unique identifiers and probabilistic linkage. The authors recorded up to three diagnoses from each abstracted medical record and up to ten for the administrative data source. Diagnoses were grouped into 104 groups using a modification of the Clinical Classification System. A total of 8,860 abstracted records had at least one valid diagnosis code (with a total of 12,895 diagnoses) and were successfully matched to records in the administrative source. Overall, 67% (95% confidence interval = 66% to 68%) of diagnoses from the administrative and abstracted sources were within the same diagnosis group. Agreement varied by site, ranging from 54% to 77%. Agreement varied substantially by diagnosis group; there was no difference by method of linkage. Clustering clinically similar diagnosis groups improved agreement between administrative and abstracted data sources. ED diagnoses retrieved from electronic administrative sources and manual chart review frequently disagree, even if similar diagnosis codes are grouped. Agreement varies by institution and by diagnosis. Further work is needed to improve the accuracy of diagnosis coding; development of a grouping system specific to pediatric emergency care may be beneficial.

  4. Process Model Improvement for Source Code Plagiarism Detection in Student Programming Assignments

    ERIC Educational Resources Information Center

    Kermek, Dragutin; Novak, Matija

    2016-01-01

    In programming courses there are various ways in which students attempt to cheat. The most commonly used method is copying source code from other students and making minimal changes in it, like renaming variable names. Several tools like Sherlock, JPlag and Moss have been devised to detect source code plagiarism. However, for larger student…

  5. Make Movies out of Your Dynamical Simulations with OGRE!

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Douglas, R. W.; Ge, H. W.; Burns, J. A.

    2013-10-01

    We have developed OGRE, the Orbital GRaphics Environment, an open-source project comprising a graphical user interface that allows the user to view the output from several dynamical integrators (e.g., SWIFT) that are commonly used for academic work. One can interactively vary the display speed, rotate the view and zoom the camera. This makes OGRE a great tool for students or the general public to explore accurate orbital histories that may display interesting dynamical features, e.g. the destabilization of Solar System orbits under the Nice model, or interacting pairs of exoplanets. Furthermore, OGRE allows the user to choreograph sequences of transformations as the simulation is played to generate movies for use in public talks or professional presentations. The graphical user interface is coded using Qt to ensure portability across different operating systems. OGRE will run on Linux and Mac OS X. The program is available as a self-contained executable, or as source code that the user can compile. We are continually updating the code, and hope that people who find it useful will contribute to the development of new features.

  6. Make Movies out of Your Dynamical Simulations with OGRE!

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Douglas, R. W.; Ge, H. W.; Burns, J. A.

    2014-01-01

    We have developed OGRE, the Orbital GRaphics Environment, an open-source project comprising a graphical user interface that allows the user to view the output from several dynamical integrators (e.g., SWIFT) that are commonly used for academic work. One can interactively vary the display speed, rotate the view and zoom the camera. This makes OGRE a great tool for students or the general public to explore accurate orbital histories that may display interesting dynamical features, e.g. the destabilization of Solar System orbits under the Nice model, or interacting pairs of exoplanets. Furthermore, OGRE allows the user to choreograph sequences of transformations as the simulation is played to generate movies for use in public talks or professional presentations. The graphical user interface is coded using Qt to ensure portability across different operating systems. OGRE will run on Linux and Mac OS X. The program is available as a self-contained executable, or as source code that the user can compile. We are continually updating the code, and hope that people who find it useful will contribute to the development of new features.

  7. Finding Resolution for the Responsible Transparency of Economic Models in Health and Medicine.

    PubMed

    Padula, William V; McQueen, Robert Brett; Pronovost, Peter J

    2017-11-01

    The Second Panel on Cost-Effectiveness in Health and Medicine recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses has a number of questions unanswered with respect to the implementation of transparent, open source code interface for economic models. The possibility of making economic model source code could be positive and progressive for the field; however, several unintended consequences of this system should be first considered before complete implementation of this model. First, there is the concern regarding intellectual property rights that modelers have to their analyses. Second, the open source code could make analyses more accessible to inexperienced modelers, leading to inaccurate or misinterpreted results. We propose several resolutions to these concerns. The field should establish a licensing system of open source code such that the model originators maintain control of the code use and grant permissions to other investigators who wish to use it. The field should also be more forthcoming towards the teaching of cost-effectiveness analysis in medical and health services education so that providers and other professionals are familiar with economic modeling and able to conduct analyses with open source code. These types of unintended consequences need to be fully considered before the field's preparedness to move forward into an era of model transparency with open source code.

  8. Fac-Back-OPAC: An Open Source Interface to Your Library System

    ERIC Educational Resources Information Center

    Beccaria, Mike; Scott, Dan

    2007-01-01

    The new Fac-Back-OPAC (a faceted backup OPAC) is built on code that was originally developed by Casey Durfee in February 2007. It represents the convergence of two prominent trends in library tools: the decoupling of discovery tools from the traditional integrated library system (ILS) and the use of readily available open source components to…

  9. Computation of Reacting Flows in Combustion Processes

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Chen, Kuo-Huey

    1997-01-01

    The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.

  10. 40 CFR 51.50 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accuracy description (MAD) codes means a set of six codes used to define the accuracy of latitude/longitude data for point sources. The six codes and their definitions are: (1) Coordinate Data Source Code: The... physical piece of or a closely related set of equipment. The EPA's reporting format for a given inventory...

  11. Deuteron nuclear data for the design of accelerator-based neutron sources: Measurement, model analysis, evaluation, and application

    NASA Astrophysics Data System (ADS)

    Watanabe, Yukinobu; Kin, Tadahiro; Araki, Shouhei; Nakayama, Shinsuke; Iwamoto, Osamu

    2017-09-01

    A comprehensive research program on deuteron nuclear data motivated by development of accelerator-based neutron sources is being executed. It is composed of measurements of neutron and gamma-ray yields and production cross sections, modelling of deuteron-induced reactions and code development, nuclear data evaluation and benchmark test, and its application to medical radioisotopes production. The goal of this program is to develop a state-of-the-art deuteron nuclear data library up to 200 MeV which will be useful for the design of future (d,xn) neutron sources. The current status and future plan are reviewed.

  12. Astrophysics Source Code Library: Incite to Cite!

    NASA Astrophysics Data System (ADS)

    DuPrie, K.; Allen, A.; Berriman, B.; Hanisch, R. J.; Mink, J.; Nemiroff, R. J.; Shamir, L.; Shortridge, K.; Taylor, M. B.; Teuben, P.; Wallen, J. F.

    2014-05-01

    The Astrophysics Source Code Library (ASCl,http://ascl.net/) is an on-line registry of over 700 source codes that are of interest to astrophysicists, with more being added regularly. The ASCL actively seeks out codes as well as accepting submissions from the code authors, and all entries are citable and indexed by ADS. All codes have been used to generate results published in or submitted to a refereed journal and are available either via a download site or from an identified source. In addition to being the largest directory of scientist-written astrophysics programs available, the ASCL is also an active participant in the reproducible research movement with presentations at various conferences, numerous blog posts and a journal article. This poster provides a description of the ASCL and the changes that we are starting to see in the astrophysics community as a result of the work we are doing.

  13. Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, A.; DuPrie, K.; Berriman, B.; Hanisch, R. J.; Mink, J.; Teuben, P. J.

    2013-10-01

    The Astrophysics Source Code Library (ASCL), founded in 1999, is a free on-line registry for source codes of interest to astronomers and astrophysicists. The library is housed on the discussion forum for Astronomy Picture of the Day (APOD) and can be accessed at http://ascl.net. The ASCL has a comprehensive listing that covers a significant number of the astrophysics source codes used to generate results published in or submitted to refereed journals and continues to grow. The ASCL currently has entries for over 500 codes; its records are citable and are indexed by ADS. The editors of the ASCL and members of its Advisory Committee were on hand at a demonstration table in the ADASS poster room to present the ASCL, accept code submissions, show how the ASCL is starting to be used by the astrophysics community, and take questions on and suggestions for improving the resource.

  14. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOEpatents

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  15. CTF Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avramova, Maria N.; Salko, Robert K.

    Coolant-Boiling in Rod Arrays|Two Fluids (COBRA-TF) is a thermal/ hydraulic (T/H) simulation code designed for light water reactor (LWR) vessel analysis. It uses a two-fluid, three-field (i.e. fluid film, fluid drops, and vapor) modeling approach. Both sub-channel and 3D Cartesian forms of 9 conservation equations are available for LWR modeling. The code was originally developed by Pacific Northwest Laboratory in 1980 and had been used and modified by several institutions over the last few decades. COBRA-TF also found use at the Pennsylvania State University (PSU) by the Reactor Dynamics and Fuel Management Group (RDFMG) and has been improved, updated, andmore » subsequently re-branded as CTF. As part of the improvement process, it was necessary to generate sufficient documentation for the open-source code which had lacked such material upon being adopted by RDFMG. This document serves mainly as a theory manual for CTF, detailing the many two-phase heat transfer, drag, and important accident scenario models contained in the code as well as the numerical solution process utilized. Coding of the models is also discussed, all with consideration for updates that have been made when transitioning from COBRA-TF to CTF. Further documentation outside of this manual is also available at RDFMG which focus on code input deck generation and source code global variable and module listings.« less

  16. International Natural Gas Model 2011, Model Documentation Report

    EIA Publications

    2013-01-01

    This report documents the objectives, analytical approach and development of the International Natural Gas Model (INGM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  17. Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks

    NASA Astrophysics Data System (ADS)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2011-01-01

    In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.

  18. An Open-Source Bayesian Atmospheric Radiative Transfer (BART) Code, with Application to WASP-12b

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph; Blecic, Jasmina; Cubillos, Patricio; Rojo, Patricio; Loredo, Thomas J.; Bowman, M. Oliver; Foster, Andrew S. D.; Stemm, Madison M.; Lust, Nate B.

    2015-01-01

    Atmospheric retrievals for solar-system planets typically fit, either with a minimizer or by eye, a synthetic spectrum to high-resolution (Δλ/λ ~ 1000-100,000) data with S/N > 100 per point. In contrast, exoplanet data often have S/N ~ 10 per point, and may have just a few points representing bandpasses larger than 1 um. To derive atmospheric constraints and robust parameter uncertainty estimates from such data requires a Bayesian approach. To date there are few investigators with the relevant codes, none of which are publicly available. We are therefore pleased to announce the open-source Bayesian Atmospheric Radiative Transfer (BART) code. BART uses a Bayesian phase-space explorer to drive a radiative-transfer model through the parameter phase space, producing the most robust estimates available for the thermal profile and chemical abundances in the atmosphere. We present an overview of the code and an initial application to Spitzer eclipse data for WASP-12b. We invite the community to use and improve BART via the open-source development site GitHub.com. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  19. An Open-Source Bayesian Atmospheric Radiative Transfer (BART) Code, and Application to WASP-12b

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph; Blecic, Jasmina; Cubillos, Patricio; Rojo, Patricio M.; Loredo, Thomas J.; Bowman, Matthew O.; Foster, Andrew S.; Stemm, Madison M.; Lust, Nate B.

    2014-11-01

    Atmospheric retrievals for solar-system planets typically fit, either with a minimizer or by eye, a synthetic spectrum to high-resolution (Δλ/λ ~ 1000-100,000) data with S/N > 100 per point. In contrast, exoplanet data often have S/N ~ 10 per point, and may have just a few points representing bandpasses larger than 1 um. To derive atmospheric constraints and robust parameter uncertainty estimates from such data requires a Bayesian approach. To date there are few investigators with the relevant codes, none of which are publicly available. We are therefore pleased to announce the open-source Bayesian Atmospheric Radiative Transfer (BART) code. BART uses a Bayesian phase-space explorer to drive a radiative-transfer model through the parameter phase space, producing the most robust estimates available for the thermal profile and chemical abundances in the atmosphere. We present an overview of the code and an initial application to Spitzer eclipse data for WASP-12b. We invite the community to use and improve BART via the open-source development site GitHub.com. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  20. OVERFLOW-Interaction with Industry

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; George, Michael W. (Technical Monitor)

    1996-01-01

    A Navier-Stokes flow solver, OVERFLOW, has been developed by researchers at NASA Ames Research Center to use overset (Chimera) grids to simulate the flow about complex aerodynamic shapes. Primary customers of the OVERFLOW flow solver and related software include McDonnell Douglas and Boeing, as well as the NASA Focused Programs for Advanced Subsonic Technology (AST) and High Speed Research (HSR). Code development has focused on customer issues, including improving code performance, ability to run on workstation clusters and the NAS SP2, and direct interaction with industry on accuracy assessment and validation. Significant interaction with NAS has produced a capability tailored to the Ames computing environment, and code contributions have come from a wide range of sources, both within and outside Ames.

  1. HydroDesktop as a Community Designed and Developed Resource for Hydrologic Data Discovery and Analysis

    NASA Astrophysics Data System (ADS)

    Ames, D. P.

    2013-12-01

    As has been seen in other informatics fields, well-documented and appropriately licensed open source software tools have the potential to significantly increase both opportunities and motivation for inter-institutional science and technology collaboration. The CUAHSI HIS (and related HydroShare) projects have aimed to foster such activities in hydrology resulting in the development of many useful community software components including the HydroDesktop software application. HydroDesktop is an open source, GIS-based, scriptable software application for discovering data on the CUAHSI Hydrologic Information System and related resources. It includes a well-defined plugin architecture and interface to allow 3rd party developers to create extensions and add new functionality without requiring recompiling of the full source code. HydroDesktop is built in the C# programming language and uses the open source DotSpatial GIS engine for spatial data management. Capabilities include data search, discovery, download, visualization, and export. An extension that integrates the R programming language with HydroDesktop provides scripting and data automation capabilities and an OpenMI plugin provides the ability to link models. Current revision and updates to HydroDesktop include migration of core business logic to cross platform, scriptable Python code modules that can be executed in any operating system or linked into other software front-end applications.

  2. Algorithms for high-speed universal noiseless coding

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Yeh, Pen-Shu; Miller, Warner

    1993-01-01

    This paper provides the basic algorithmic definitions and performance characterizations for a high-performance adaptive noiseless (lossless) 'coding module' which is currently under separate developments as single-chip microelectronic circuits at two NASA centers. Laboratory tests of one of these implementations recently demonstrated coding rates of up to 900 Mbits/s. Operation of a companion 'decoding module' can operate at up to half the coder's rate. The functionality provided by these modules should be applicable to most of NASA's science data. The hardware modules incorporate a powerful adaptive noiseless coder for 'standard form' data sources (i.e., sources whose symbols can be represented by uncorrelated nonnegative integers where the smaller integers are more likely than the larger ones). Performance close to data entries can be expected over a 'dynamic range' of from 1.5 to 12-15 bits/sample (depending on the implementation). This is accomplished by adaptively choosing the best of many Huffman equivalent codes to use on each block of 1-16 samples. Because of the extreme simplicity of these codes no table lookups are actually required in an implementation, thus leading to the expected very high data rate capabilities already noted.

  3. Developing Surveillance Methodology for Agricultural and Logging Injury in New Hampshire Using Electronic Administrative Data Sets.

    PubMed

    Scott, Erika E; Hirabayashi, Liane; Krupa, Nicole L; Sorensen, Julie A; Jenkins, Paul L

    2015-08-01

    Agriculture and logging rank among industries with the highest rates of occupational fatality and injury. Establishing a nonfatal injury surveillance system is a top priority in the National Occupational Research Agenda. Sources of data such as patient care reports (PCRs) and hospitalization data have recently transitioned to electronic databases. Using narrative and location codes from PCRs, along with International Classification of Diseases, 9th Revision, external cause of injury codes (E-codes) in hospital data, researchers are designing a surveillance system to track farm and logging injury. A total of 357 true agricultural or logging cases were identified. These data indicate that it is possible to identify agricultural and logging injury events in PCR and hospital data. Multiple data sources increase catchment; nevertheless, limitations in methods of identification of agricultural and logging injury contribute to the likely undercount of injury events.

  4. Simulation of Jet Noise with OVERFLOW CFD Code and Kirchhoff Surface Integral

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Caimi, R.; Voska, N. (Technical Monitor)

    2002-01-01

    An acoustic prediction capability for supersonic axisymmetric jets was developed on the basis of OVERFLOW Navier-Stokes CFD (Computational Fluid Dynamics) code of NASA Langley Research Center. Reynolds-averaged turbulent stresses in the flow field are modeled with the aid of Spalart-Allmaras one-equation turbulence model. Appropriate acoustic and outflow boundary conditions were implemented to compute time-dependent acoustic pressure in the nonlinear source-field. Based on the specification of acoustic pressure, its temporal and normal derivatives on the Kirchhoff surface, the near-field and the far-field sound pressure levels are computed via Kirchhoff surface integral, with the Kirchhoff surface chosen to enclose the nonlinear sound source region described by the CFD code. The methods are validated by a comparison of the predictions of sound pressure levels with the available data for an axisymmetric turbulent supersonic (Mach 2) perfectly expanded jet.

  5. Simulation of Supersonic Jet Noise with the Adaptation of Overflow CFD Code and Kirchhoff Surface Integral

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Caimi, Raoul; Steinrock, T. (Technical Monitor)

    2001-01-01

    An acoustic prediction capability for supersonic axisymmetric jets was developed on the basis of OVERFLOW Navier-Stokes CFD (Computational Fluid Dynamics) code of NASA Langley Research Center. Reynolds-averaged turbulent stresses in the flow field are modeled with the aid of Spalart-Allmaras one-equation turbulence model. Appropriate acoustic and outflow boundary conditions were implemented to compute time-dependent acoustic pressure in the nonlinear source-field. Based on the specification of acoustic pressure, its temporal and normal derivatives on the Kirchhoff surface, the near-field and the far-field sound pressure levels are computed via Kirchhoff surface integral, with the Kirchhoff surface chosen to enclose the nonlinear sound source region described by the CFD code. The methods are validated by a comparison of the predictions of sound pressure levels with the available data for an axisymmetric turbulent supersonic (Mach 2) perfectly expanded jet.

  6. Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.

    2008-01-01

    This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.

  7. Supersonic propulsion simulation by incorporating component models in the large perturbation inlet (LAPIN) computer code

    NASA Technical Reports Server (NTRS)

    Cole, Gary L.; Richard, Jacques C.

    1991-01-01

    An approach to simulating the internal flows of supersonic propulsion systems is presented. The approach is based on a fairly simple modification of the Large Perturbation Inlet (LAPIN) computer code. LAPIN uses a quasi-one dimensional, inviscid, unsteady formulation of the continuity, momentum, and energy equations. The equations are solved using a shock capturing, finite difference algorithm. The original code, developed for simulating supersonic inlets, includes engineering models of unstart/restart, bleed, bypass, and variable duct geometry, by means of source terms in the equations. The source terms also provide a mechanism for incorporating, with the inlet, propulsion system components such as compressor stages, combustors, and turbine stages. This requires each component to be distributed axially over a number of grid points. Because of the distributed nature of such components, this representation should be more accurate than a lumped parameter model. Components can be modeled by performance map(s), which in turn are used to compute the source terms. The general approach is described. Then, simulation of a compressor/fan stage is discussed to show the approach in detail.

  8. Robustness of Feedback Systems with Several Modelling Errors

    DTIC Science & Technology

    1990-06-01

    Patterson AFB, OH 45433-6553 to help us maintain a current mailing list. Copies of this report should not be returned unless return is required by security...Wright Research (If applicable) and Development Center WRDC/FIGC F33615-88-C-3601 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS...feedback systems with several sources of modelling uncertainty. We assume that each source of uncertainty is modelled as a stable unstructured

  9. Data compression for satellite images

    NASA Technical Reports Server (NTRS)

    Chen, P. H.; Wintz, P. A.

    1976-01-01

    An efficient data compression system is presented for satellite pictures and two grey level pictures derived from satellite pictures. The compression techniques take advantages of the correlation between adjacent picture elements. Several source coding methods are investigated. Double delta coding is presented and shown to be the most efficient. Both predictive differential quantizing technique and double delta coding can be significantly improved by applying a background skipping technique. An extension code is constructed. This code requires very little storage space and operates efficiently. Simulation results are presented for various coding schemes and source codes.

  10. Development of Alabama Resources Information System (ARIS)

    NASA Technical Reports Server (NTRS)

    Herring, B. E.; Vachon, R. I.

    1976-01-01

    A formal, organized set of information concerning the development status of the Alabama Resources Information System (ARIS) as of September 1976 is provided. A series of computer source language programs, and flow charts related to each of the computer programs to provide greater ease in performing future change are presented. Listings of the variable names, and their meanings, used in the various source code programs, and copies of the various user manuals which were prepared through this time are given.

  11. The 2017 Bioinformatics Open Source Conference (BOSC)

    PubMed Central

    Harris, Nomi L.; Cock, Peter J.A.; Chapman, Brad; Fields, Christopher J.; Hokamp, Karsten; Lapp, Hilmar; Munoz-Torres, Monica; Tzovaras, Bastian Greshake; Wiencko, Heather

    2017-01-01

    The Bioinformatics Open Source Conference (BOSC) is a meeting organized by the Open Bioinformatics Foundation (OBF), a non-profit group dedicated to promoting the practice and philosophy of Open Source software development and Open Science within the biological research community. The 18th annual BOSC ( http://www.open-bio.org/wiki/BOSC_2017) took place in Prague, Czech Republic in July 2017. The conference brought together nearly 250 bioinformatics researchers, developers and users of open source software to interact and share ideas about standards, bioinformatics software development, open and reproducible science, and this year’s theme, open data. As in previous years, the conference was preceded by a two-day collaborative coding event open to the bioinformatics community, called the OBF Codefest. PMID:29118973

  12. The 2017 Bioinformatics Open Source Conference (BOSC).

    PubMed

    Harris, Nomi L; Cock, Peter J A; Chapman, Brad; Fields, Christopher J; Hokamp, Karsten; Lapp, Hilmar; Munoz-Torres, Monica; Tzovaras, Bastian Greshake; Wiencko, Heather

    2017-01-01

    The Bioinformatics Open Source Conference (BOSC) is a meeting organized by the Open Bioinformatics Foundation (OBF), a non-profit group dedicated to promoting the practice and philosophy of Open Source software development and Open Science within the biological research community. The 18th annual BOSC ( http://www.open-bio.org/wiki/BOSC_2017) took place in Prague, Czech Republic in July 2017. The conference brought together nearly 250 bioinformatics researchers, developers and users of open source software to interact and share ideas about standards, bioinformatics software development, open and reproducible science, and this year's theme, open data. As in previous years, the conference was preceded by a two-day collaborative coding event open to the bioinformatics community, called the OBF Codefest.

  13. Development of an IHE MRRT-compliant open-source web-based reporting platform.

    PubMed

    Pinto Dos Santos, Daniel; Klos, G; Kloeckner, R; Oberle, R; Dueber, C; Mildenberger, P

    2017-01-01

    To develop a platform that uses structured reporting templates according to the IHE Management of Radiology Report Templates (MRRT) profile, and to implement this platform into clinical routine. The reporting platform uses standard web technologies (HTML / JavaScript and PHP / MySQL) only. Several freely available external libraries were used to simplify the programming. The platform runs on a standard web server, connects with the radiology information system (RIS) and PACS, and is easily accessible via a standard web browser. A prototype platform that allows structured reporting to be easily incorporated into the clinical routine was developed and successfully tested. To date, 797 reports were generated using IHE MRRT-compliant templates (many of them downloaded from the RSNA's radreport.org website). Reports are stored in a MySQL database and are easily accessible for further analyses. Development of an IHE MRRT-compliant platform for structured reporting is feasible using only standard web technologies. All source code will be made available upon request under a free license, and the participation of other institutions in further development is welcome. • A platform for structured reporting using IHE MRRT-compliant templates is presented. • Incorporating structured reporting into clinical routine is feasible. • Full source code will be provided upon request under a free license.

  14. Distributed Joint Source-Channel Coding in Wireless Sensor Networks

    PubMed Central

    Zhu, Xuqi; Liu, Yu; Zhang, Lin

    2009-01-01

    Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency. PMID:22408560

  15. State-Chart Autocoder

    NASA Technical Reports Server (NTRS)

    Clark, Kenneth; Watney, Garth; Murray, Alexander; Benowitz, Edward

    2007-01-01

    A computer program translates Unified Modeling Language (UML) representations of state charts into source code in the C, C++, and Python computing languages. ( State charts signifies graphical descriptions of states and state transitions of a spacecraft or other complex system.) The UML representations constituting the input to this program are generated by using a UML-compliant graphical design program to draw the state charts. The generated source code is consistent with the "quantum programming" approach, which is so named because it involves discrete states and state transitions that have features in common with states and state transitions in quantum mechanics. Quantum programming enables efficient implementation of state charts, suitable for real-time embedded flight software. In addition to source code, the autocoder program generates a graphical-user-interface (GUI) program that, in turn, generates a display of state transitions in response to events triggered by the user. The GUI program is wrapped around, and can be used to exercise the state-chart behavior of, the generated source code. Once the expected state-chart behavior is confirmed, the generated source code can be augmented with a software interface to the rest of the software with which the source code is required to interact.

  16. 22 CFR 228.39 - Special source rules for construction and engineering services.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... engineering services. 228.39 Section 228.39 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT RULES ON... engineering services. Advanced developing countries, eligible under Geographic Code 941, which have attained a competitive capability in international markets for construction services or engineering services are not...

  17. 22 CFR 228.39 - Special source rules for construction and engineering services.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... engineering services. 228.39 Section 228.39 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT RULES ON... engineering services. Advanced developing countries, eligible under Geographic Code 941, which have attained a competitive capability in international markets for construction services or engineering services are not...

  18. A Need for a Theory of Visual Literacy.

    ERIC Educational Resources Information Center

    Hortin, John A.

    1982-01-01

    Examines sources available for developing a theory of visual literacy and attempts to clarify the meaning of the term. Suggests that visual thinking, a concept supported by recent research on mental imagery, visualization, and dual coding, ought to be the emphasis for future theory development. (FL)

  19. User's manual: Subsonic/supersonic advanced panel pilot code

    NASA Technical Reports Server (NTRS)

    Moran, J.; Tinoco, E. N.; Johnson, F. T.

    1978-01-01

    Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.

  20. The development of a program analysis environment for Ada: Reverse engineering tools for Ada

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1991-01-01

    The Graphical Representations of Algorithms, Structures, and Processes for Ada (GRASP/Ada) has successfully created and prototyped a new algorithm level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and thus improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under the Virtual Memory System (VMS) on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. In Phase 3 of the project, the prototype was prepared for limited distribution (GRASP/Ada Version 3.0) to facilitate evaluation. The user interface was extensively reworked. The current prototype provides the capability for the user to generate CSD from Ada source code in a reverse engineering mode with a level of flexibility suitable for practical application.

  1. MATLAB-based algorithm to estimate depths of isolated thin dike-like sources using higher-order horizontal derivatives of magnetic anomalies.

    PubMed

    Ekinci, Yunus Levent

    2016-01-01

    This paper presents an easy-to-use open source computer algorithm (code) for estimating the depths of isolated single thin dike-like source bodies by using numerical second-, third-, and fourth-order horizontal derivatives computed from observed magnetic anomalies. The approach does not require a priori information and uses some filters of successive graticule spacings. The computed higher-order horizontal derivative datasets are used to solve nonlinear equations for depth determination. The solutions are independent from the magnetization and ambient field directions. The practical usability of the developed code, designed in MATLAB R2012b (MathWorks Inc.), was successfully examined using some synthetic simulations with and without noise. The algorithm was then used to estimate the depths of some ore bodies buried in different regions (USA, Sweden, and Canada). Real data tests clearly indicated that the obtained depths are in good agreement with those of previous studies and drilling information. Additionally, a state-of-the-art inversion scheme based on particle swarm optimization produced comparable results to those of the higher-order horizontal derivative analyses in both synthetic and real anomaly cases. Accordingly, the proposed code is verified to be useful in interpreting isolated single thin dike-like magnetized bodies and may be an alternative processing technique. The open source code can be easily modified and adapted to suit the benefits of other researchers.

  2. General Mission Analysis Tool (GMAT)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.

    2007-01-01

    The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development. The goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities, businesses, and other government organizations, and to share that technology in an open and unhindered way. GMAT is a free and open source software system licensed under the NASA Open Source Agreement: free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or further technology development.

  3. Sandia National Laboratories environmental fluid dynamics code. Marine Hydrokinetic Module User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Scott Carlton; Roberts, Jesse D.

    2014-03-01

    This document describes the marine hydrokinetic (MHK) input file and subroutines for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC), which is a combined hydrodynamic, sediment transport, and water quality model based on the Environmental Fluid Dynamics Code (EFDC) developed by John Hamrick [1], formerly sponsored by the U.S. Environmental Protection Agency, and now maintained by Tetra Tech, Inc. SNL-EFDC has been previously enhanced with the incorporation of the SEDZLJ sediment dynamics model developed by Ziegler, Lick, and Jones [2-4]. SNL-EFDC has also been upgraded to more accurately simulate algae growth with specific application to optimizing biomass in anmore » open-channel raceway for biofuels production [5]. A detailed description of the input file containing data describing the MHK device/array is provided, along with a description of the MHK FORTRAN routine. Both a theoretical description of the MHK dynamics as incorporated into SNL-EFDC and an explanation of the source code are provided. This user manual is meant to be used in conjunction with the original EFDC [6] and sediment dynamics SNL-EFDC manuals [7]. Through this document, the authors provide information for users who wish to model the effects of an MHK device (or array of devices) on a flow system with EFDC and who also seek a clear understanding of the source code, which is available from staff in the Water Power Technologies Department at Sandia National Laboratories, Albuquerque, New Mexico.« less

  4. W-026, Waste Receiving and Processing Facility data management system validation and verification report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, M.E.

    1997-12-05

    This V and V Report includes analysis of two revisions of the DMS [data management system] System Requirements Specification (SRS) and the Preliminary System Design Document (PSDD); the source code for the DMS Communication Module (DMSCOM) messages; the source code for selected DMS Screens, and the code for the BWAS Simulator. BDM Federal analysts used a series of matrices to: compare the requirements in the System Requirements Specification (SRS) to the specifications found in the System Design Document (SDD), to ensure the design supports the business functions, compare the discreet parts of the SDD with each other, to ensure thatmore » the design is consistent and cohesive, compare the source code of the DMS Communication Module with the specifications, to ensure that the resultant messages will support the design, compare the source code of selected screens to the specifications to ensure that resultant system screens will support the design, compare the source code of the BWAS simulator with the requirements to interface with DMS messages and data transfers relating to the BWAS operations.« less

  5. Software on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    . Development Tools View list of tools for build automation, version control, and high-level or specialized scripting. Toolchains Learn about the available toolchains to build applications from source code

  6. Residential Demand Module - NEMS Documentation

    EIA Publications

    2017-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  7. MKHITAR GOSH'S MEDIEVAL LAW CODE AND ITS IMPLICATIONS FOR ARMENIAN COMMUNITIES ABROAD.

    PubMed

    Davtyan, Susanna; Khachatryan, Mikayel; Johrian, Ara; Ghazaryan, Karen

    2014-07-01

    The Law Book of the medieval Armenian legal and economic thought is an exceptional work that encompasses valuable information of the Armenian nation's domestic life. Mkhitar Gosh was considered to be one of the most outstanding figures and lawyers (lawmakers) of all times. Armenian Law Code after Mkhitar Gosh is writhed at 12 century. One of the primary sources for the law code was Armenian customary law. This Code became moral code for guiding for hall Armenians over the world because of high moral spirit reflecting Armenian mentality. This article presents the brief history of extension of legal rules setting out in the Law Code. The Law Code was established and widely used not only in Armenia but also in a number of Armenian communities abroad (Russian, Poland, Georgia, Latvia, India etc.). Law Code was accepted by all Armenians. Moreover, it served for the development of legislation for a number of civilized European and Asian countries.

  8. Overview of the ArbiTER edge plasma eigenvalue code

    NASA Astrophysics Data System (ADS)

    Baver, Derek; Myra, James; Umansky, Maxim

    2011-10-01

    The Arbitrary Topology Equation Reader, or ArbiTER, is a flexible eigenvalue solver that is currently under development for plasma physics applications. The ArbiTER code builds on the equation parser framework of the existing 2DX code, extending it to include a topology parser. This will give the code the capability to model problems with complicated geometries (such as multiple X-points and scrape-off layers) or model equations with arbitrary numbers of dimensions (e.g. for kinetic analysis). In the equation parser framework, model equations are not included in the program's source code. Instead, an input file contains instructions for building a matrix from profile functions and elementary differential operators. The program then executes these instructions in a sequential manner. These instructions may also be translated into analytic form, thus giving the code transparency as well as flexibility. We will present an overview of how the ArbiTER code is to work, as well as preliminary results from early versions of this code. Work supported by the U.S. DOE.

  9. Neutronic calculation of fast reactors by the EUCLID/V1 integrated code

    NASA Astrophysics Data System (ADS)

    Koltashev, D. A.; Stakhanova, A. A.

    2017-01-01

    This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.

  10. Authorship attribution of source code by using back propagation neural network based on particle swarm optimization

    PubMed Central

    Xu, Guoai; Li, Qi; Guo, Yanhui; Zhang, Miao

    2017-01-01

    Authorship attribution is to identify the most likely author of a given sample among a set of candidate known authors. It can be not only applied to discover the original author of plain text, such as novels, blogs, emails, posts etc., but also used to identify source code programmers. Authorship attribution of source code is required in diverse applications, ranging from malicious code tracking to solving authorship dispute or software plagiarism detection. This paper aims to propose a new method to identify the programmer of Java source code samples with a higher accuracy. To this end, it first introduces back propagation (BP) neural network based on particle swarm optimization (PSO) into authorship attribution of source code. It begins by computing a set of defined feature metrics, including lexical and layout metrics, structure and syntax metrics, totally 19 dimensions. Then these metrics are input to neural network for supervised learning, the weights of which are output by PSO and BP hybrid algorithm. The effectiveness of the proposed method is evaluated on a collected dataset with 3,022 Java files belong to 40 authors. Experiment results show that the proposed method achieves 91.060% accuracy. And a comparison with previous work on authorship attribution of source code for Java language illustrates that this proposed method outperforms others overall, also with an acceptable overhead. PMID:29095934

  11. Theory and Performance of AIMS for Active Interrogation

    NASA Astrophysics Data System (ADS)

    Walters, William J.; Royston, Katherine E. K.; Haghighat, Alireza

    2014-06-01

    A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) determination of neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, γ) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water. In the first step, a response-function formulation has been developed to calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, γ) cross sections to find the resulting gamma source distribution. Finally, in the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma flux at a detector window. A code, AIMS (Active Interrogation for Monitoring Special-Nuclear-materials), has been written to output the gamma current for an source-detector assembly scanning across the cargo using the pre-calculated values and takes significantly less time than a reference MCNP5 calculation.

  12. The mathematical theory of signal processing and compression-designs

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2006-05-01

    The mathematical theory of signal processing, named processor coding, will be shown to inherently arise as the computational time dual of Shannon's mathematical theory of communication which is also known as source coding. Source coding is concerned with signal source memory space compression while processor coding deals with signal processor computational time compression. Their combination is named compression-designs and referred as Conde in short. A compelling and pedagogically appealing diagram will be discussed highlighting Conde's remarkable successful application to real-world knowledge-aided (KA) airborne moving target indicator (AMTI) radar.

  13. Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low-Altitude VLF Transmitter

    DTIC Science & Technology

    2007-08-31

    latitude) for 3 different grid spacings. 14 8. Low-altitude fields produced by a 10-kHz source computed using the FD and TD codes. The agreement is...excellent, validating the new FD code. 16 9. High-altitude fields produced by a 10-kHz source computed using the FD and TD codes. The agreement is...again excellent. 17 10. Low-altitude fields produced by a 20-k.Hz source computed using the FD and TD codes. 17 11. High-altitude fields produced

  14. Guided Writing Lessons: Second-Grade Students' Development of Strategic Behavior

    ERIC Educational Resources Information Center

    Gibson, Sharan A.

    2008-01-01

    This study describes intra-individual change in strategic behavior of five second-grade students during three months of guided writing instruction for informational text. Data sources included sequential coding of writing behavior from videotaped writing events and analytic assessment of writing products. Students' development of self-scaffolding…

  15. Application of a Java-based, univel geometry, neutral particle Monte Carlo code to the searchlight problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles A. Wemple; Joshua J. Cogliati

    2005-04-01

    A univel geometry, neutral particle Monte Carlo transport code, written entirely in the Java programming language, is under development for medical radiotherapy applications. The code uses ENDF-VI based continuous energy cross section data in a flexible XML format. Full neutron-photon coupling, including detailed photon production and photonuclear reactions, is included. Charged particle equilibrium is assumed within the patient model so that detailed transport of electrons produced by photon interactions may be neglected. External beam and internal distributed source descriptions for mixed neutron-photon sources are allowed. Flux and dose tallies are performed on a univel basis. A four-tap, shift-register-sequence random numbermore » generator is used. Initial verification and validation testing of the basic neutron transport routines is underway. The searchlight problem was chosen as a suitable first application because of the simplicity of the physical model. Results show excellent agreement with analytic solutions. Computation times for similar numbers of histories are comparable to other neutron MC codes written in C and FORTRAN.« less

  16. Seeing the Invisible: Embedding Tests in Code That Cannot be Modified

    NASA Technical Reports Server (NTRS)

    O'Malley, Owen; Mansouri-Samani, Masoud; Mehlitz, Peter; Penix, John

    2005-01-01

    The difficulty of characterizing and observing valid software behavior during testing can be very difficult in flight systems. To address this issue, we evaluated several approaches to increasing test observability on the Shuttle Abort Flight Management (SAFM) system. To increase test observability, we added probes into the running system to evaluate the internal state and analyze test data. To minimize the impact of the instrumentation and reduce manual effort, we used Aspect-Oriented Programming (AOP) tools to instrument the source code. We developed and elicited a spectrum of properties, from generic to application specific properties, to be monitored via the instrumentation. To evaluate additional approaches, SAFM was ported to Linux, enabling the use of gcov for measuring test coverage, Valgrind for looking for memory usage errors, and libraries for finding non-normal floating point values. An in-house C++ source code scanning tool was also used to identify violations of SAFM coding standards, and other potentially problematic C++ constructs. Using these approaches with the existing test data sets, we were able to verify several important properties, confirm several problems and identify some previously unidentified issues.

  17. Fast-neutron, coded-aperture imager

    NASA Astrophysics Data System (ADS)

    Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led to a reduction in the background by a factor of 1.7 and thus allowed for the detection and localization of the 1.8 μCi. The detection significance for each source at different standoff distances will be discussed.

  18. The National Transport Code Collaboration Module Library

    NASA Astrophysics Data System (ADS)

    Kritz, A. H.; Bateman, G.; Kinsey, J.; Pankin, A.; Onjun, T.; Redd, A.; McCune, D.; Ludescher, C.; Pletzer, A.; Andre, R.; Zakharov, L.; Lodestro, L.; Pearlstein, L. D.; Jong, R.; Houlberg, W.; Strand, P.; Wiley, J.; Valanju, P.; John, H. St.; Waltz, R.; Mandrekas, J.; Mau, T. K.; Carlsson, J.; Braams, B.

    2004-12-01

    This paper reports on the progress in developing a library of code modules under the auspices of the National Transport Code Collaboration (NTCC). Code modules are high quality, fully documented software packages with a clearly defined interface. The modules provide a variety of functions, such as implementing numerical physics models; performing ancillary functions such as I/O or graphics; or providing tools for dealing with common issues in scientific programming such as portability of Fortran codes. Researchers in the plasma community submit code modules, and a review procedure is followed to insure adherence to programming and documentation standards. The review process is designed to provide added confidence with regard to the use of the modules and to allow users and independent reviews to validate the claims of the modules' authors. All modules include source code; clear instructions for compilation of binaries on a variety of target architectures; and test cases with well-documented input and output. All the NTCC modules and ancillary information, such as current standards and documentation, are available from the NTCC Module Library Website http://w3.pppl.gov/NTCC. The goal of the project is to develop a resource of value to builders of integrated modeling codes and to plasma physics researchers generally. Currently, there are more than 40 modules in the module library.

  19. Replacing effective spectral radiance by temperature in occupational exposure limits to protect against retinal thermal injury from light and near IR radiation.

    PubMed

    Madjidi, Faramarz; Behroozy, Ali

    2014-01-01

    Exposure to visible light and near infrared (NIR) radiation in the wavelength region of 380 to 1400 nm may cause thermal retinal injury. In this analysis, the effective spectral radiance of a hot source is replaced by its temperature in the exposure limit values in the region of 380-1400 nm. This article describes the development and implementation of a computer code to predict those temperatures, corresponding to the exposure limits proposed by the American Conference of Governmental Industrial Hygienists (ACGIH). Viewing duration and apparent diameter of the source were inputs for the computer code. At the first stage, an infinite series was created for calculation of spectral radiance by integration with Planck's law. At the second stage for calculation of effective spectral radiance, the initial terms of this infinite series were selected and integration was performed by multiplying these terms by a weighting factor R(λ) in the wavelength region 380-1400 nm. At the third stage, using a computer code, the source temperature that can emit the same effective spectral radiance was found. As a result, based only on measuring the source temperature and accounting for the exposure time and the apparent diameter of the source, it is possible to decide whether the exposure to visible and NIR in any 8-hr workday is permissible. The substitution of source temperature for effective spectral radiance provides a convenient way to evaluate exposure to visible light and NIR.

  20. WARP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Ryan M.; Rowland, Kelly L.

    2017-04-12

    WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed at UC Berkeley to efficiently execute on NVIDIA graphics processing unit (GPU) platforms. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo method, namely, that very few physical and geometrical simplifications are applied. WARP is able to calculate multiplication factors, neutron flux distributions (in both space and energy), and fission source distributions for time-independent neutron transport problems. It can run in both criticality or fixed source modes, but fixed source mode is currentlymore » not robust, optimized, or maintained in the newest version. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. The goal of developing WARP is to investigate algorithms that can grow into a full-featured, continuous energy, Monte Carlo neutron transport code that is accelerated by running on GPUs. The crux of the effort is to make Monte Carlo calculations faster while producing accurate results. Modern supercomputers are commonly being built with GPU coprocessor cards in their nodes to increase their computational efficiency and performance. GPUs execute efficiently on data-parallel problems, but most CPU codes, including those for Monte Carlo neutral particle transport, are predominantly task-parallel. WARP uses a data-parallel neutron transport algorithm to take advantage of the computing power GPUs offer.« less

  1. GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids

    NASA Astrophysics Data System (ADS)

    Hubber, D. A.; Rosotti, G. P.; Booth, R. A.

    2018-01-01

    GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelized with both OPENMP and MPI and contains a PYTHON library for analysis and visualization. The code has been written with a fully object-oriented approach to easily allow user-defined implementations of physics modules or other algorithms. The code currently contains implementations of smoothed particle hydrodynamics, meshless finite-volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is available under the GPLv2 license.

  2. How to differentiate collective variables in free energy codes: Computer-algebra code generation and automatic differentiation

    NASA Astrophysics Data System (ADS)

    Giorgino, Toni

    2018-07-01

    The proper choice of collective variables (CVs) is central to biased-sampling free energy reconstruction methods in molecular dynamics simulations. The PLUMED 2 library, for instance, provides several sophisticated CV choices, implemented in a C++ framework; however, developing new CVs is still time consuming due to the need to provide code for the analytical derivatives of all functions with respect to atomic coordinates. We present two solutions to this problem, namely (a) symbolic differentiation and code generation, and (b) automatic code differentiation, in both cases leveraging open-source libraries (SymPy and Stan Math, respectively). The two approaches are demonstrated and discussed in detail implementing a realistic example CV, the local radius of curvature of a polymer. Users may use the code as a template to streamline the implementation of their own CVs using high-level constructs and automatic gradient computation.

  3. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer

    PubMed Central

    Budisan, Liviuta; Gulei, Diana; Zanoaga, Oana Mihaela; Irimie, Alexandra Iulia; Chira, Sergiu; Braicu, Cornelia; Gherman, Claudia Diana; Berindan-Neagoe, Ioana

    2017-01-01

    Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG), caffeic acid phenethyl ester (CAPE), genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer. PMID:28587155

  4. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer.

    PubMed

    Budisan, Liviuta; Gulei, Diana; Zanoaga, Oana Mihaela; Irimie, Alexandra Iulia; Sergiu, Chira; Braicu, Cornelia; Gherman, Claudia Diana; Berindan-Neagoe, Ioana

    2017-06-01

    Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG), caffeic acid phenethyl ester (CAPE), genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer.

  5. Forty Years of Research and Development at Griffiss Air Force Base, June 1951-June 1991

    DTIC Science & Technology

    1991-06-01

    joints to transfer a number of power sources from the stationary base to the rotating antenna in order to develop high power, multi -beam, long-range...2757. 1 2a. DISTFIBUIOWAVALABLUY STATEMENT 12. DISTILUION CODE Approved for public release; distribution unlimited. a3 ABSTRACT *-= in This historical...did not lend itself to the use of footnotes and a formal bibliography, so a brief note on the primary sources is in order here. The bulk of the

  6. Heat simulation via Scilab programming

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Khatim; Sulaiman, Jumat; Karim, Samsul Arifin Abdul

    2014-07-01

    This paper discussed the used of an open source sofware called Scilab to develop a heat simulator. In this paper, heat equation was used to simulate heat behavior in an object. The simulator was developed using finite difference method. Numerical experiment output show that Scilab can produce a good heat behavior simulation with marvellous visual output with only developing simple computer code.

  7. Rate-distortion analysis of dead-zone plus uniform threshold scalar quantization and its application--part II: two-pass VBR coding for H.264/AVC.

    PubMed

    Sun, Jun; Duan, Yizhou; Li, Jiangtao; Liu, Jiaying; Guo, Zongming

    2013-01-01

    In the first part of this paper, we derive a source model describing the relationship between the rate, distortion, and quantization steps of the dead-zone plus uniform threshold scalar quantizers with nearly uniform reconstruction quantizers for generalized Gaussian distribution. This source model consists of rate-quantization, distortion-quantization (D-Q), and distortion-rate (D-R) models. In this part, we first rigorously confirm the accuracy of the proposed source model by comparing the calculated results with the coding data of JM 16.0. Efficient parameter estimation strategies are then developed to better employ this source model in our two-pass rate control method for H.264 variable bit rate coding. Based on our D-Q and D-R models, the proposed method is of high stability, low complexity and is easy to implement. Extensive experiments demonstrate that the proposed method achieves: 1) average peak signal-to-noise ratio variance of only 0.0658 dB, compared to 1.8758 dB of JM 16.0's method, with an average rate control error of 1.95% and 2) significant improvement in smoothing the video quality compared with the latest two-pass rate control method.

  8. Monte Carlo dose calculations of beta-emitting sources for intravascular brachytherapy: a comparison between EGS4, EGSnrc, and MCNP.

    PubMed

    Wang, R; Li, X A

    2001-02-01

    The dose parameters for the beta-particle emitting 90Sr/90Y source for intravascular brachytherapy (IVBT) have been calculated by different investigators. At a distant distance from the source, noticeable differences are seen in these parameters calculated using different Monte Carlo codes. The purpose of this work is to quantify as well as to understand these differences. We have compared a series of calculations using an EGS4, an EGSnrc, and the MCNP Monte Carlo codes. Data calculated and compared include the depth dose curve for a broad parallel beam of electrons, and radial dose distributions for point electron sources (monoenergetic or polyenergetic) and for a real 90Sr/90Y source. For the 90Sr/90Y source, the doses at the reference position (2 mm radial distance) calculated by the three code agree within 2%. However, the differences between the dose calculated by the three codes can be over 20% in the radial distance range interested in IVBT. The difference increases with radial distance from source, and reaches 30% at the tail of dose curve. These differences may be partially attributed to the different multiple scattering theories and Monte Carlo models for electron transport adopted in these three codes. Doses calculated by the EGSnrc code are more accurate than those by the EGS4. The two calculations agree within 5% for radial distance <6 mm.

  9. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks.

    PubMed

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-07-09

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.

  10. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks †

    PubMed Central

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-01-01

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616

  11. Model-Based Least Squares Reconstruction of Coded Source Neutron Radiographs: Integrating the ORNL HFIR CG1D Source Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J; Gregor, Jens; Bingham, Philip R

    2014-01-01

    At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. Tomore » overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.« less

  12. 3D unstructured-mesh radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less

  13. World Energy Projection System Plus Model Documentation: Coal Module

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Coal Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  14. World Energy Projection System Plus Model Documentation: Transportation Module

    EIA Publications

    2017-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  15. World Energy Projection System Plus Model Documentation: Residential Module

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Residential Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  16. World Energy Projection System Plus Model Documentation: Refinery Module

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  17. World Energy Projection System Plus Model Documentation: Main Module

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  18. Transportation Sector Module - NEMS Documentation

    EIA Publications

    2017-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

  19. World Energy Projection System Plus Model Documentation: Electricity Module

    EIA Publications

    2017-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  20. Software Attribution for Geoscience Applications in the Computational Infrastructure for Geodynamics

    NASA Astrophysics Data System (ADS)

    Hwang, L.; Dumit, J.; Fish, A.; Soito, L.; Kellogg, L. H.; Smith, M.

    2015-12-01

    Scientific software is largely developed by individual scientists and represents a significant intellectual contribution to the field. As the scientific culture and funding agencies move towards an expectation that software be open-source, there is a corresponding need for mechanisms to cite software, both to provide credit and recognition to developers, and to aid in discoverability of software and scientific reproducibility. We assess the geodynamic modeling community's current citation practices by examining more than 300 predominantly self-reported publications utilizing scientific software in the past 5 years that is available through the Computational Infrastructure for Geodynamics (CIG). Preliminary results indicate that authors cite and attribute software either through citing (in rank order) peer-reviewed scientific publications, a user's manual, and/or a paper describing the software code. Attributions maybe found directly in the text, in acknowledgements, in figure captions, or in footnotes. What is considered citable varies widely. Citations predominantly lack software version numbers or persistent identifiers to find the software package. Versioning may be implied through reference to a versioned user manual. Authors sometimes report code features used and whether they have modified the code. As an open-source community, CIG requests that researchers contribute their modifications to the repository. However, such modifications may not be contributed back to a repository code branch, decreasing the chances of discoverability and reproducibility. Survey results through CIG's Software Attribution for Geoscience Applications (SAGA) project suggest that lack of knowledge, tools, and workflows to cite codes are barriers to effectively implement the emerging citation norms. Generated on-demand attributions on software landing pages and a prototype extensible plug-in to automatically generate attributions in codes are the first steps towards reproducibility.

  1. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model (version 2.52)

    NASA Astrophysics Data System (ADS)

    Alvanos, Michail; Christoudias, Theodoros

    2017-10-01

    This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  2. Microsoft C#.NET program and electromagnetic depth sounding for large loop source

    NASA Astrophysics Data System (ADS)

    Prabhakar Rao, K.; Ashok Babu, G.

    2009-07-01

    A program, in the C# (C Sharp) language with Microsoft.NET Framework, is developed to compute the normalized vertical magnetic field of a horizontal rectangular loop source placed on the surface of an n-layered earth. The field can be calculated either inside or outside the loop. Five C# classes with member functions in each class are, designed to compute the kernel, Hankel transform integral, coefficients for cubic spline interpolation between computed values and the normalized vertical magnetic field. The program computes the vertical magnetic field in the frequency domain using the integral expressions evaluated by a combination of straightforward numerical integration and the digital filter technique. The code utilizes different object-oriented programming (OOP) features. It finally computes the amplitude and phase of the normalized vertical magnetic field. The computed results are presented for geometric and parametric soundings. The code is developed in Microsoft.NET visual studio 2003 and uses various system class libraries.

  3. Automated variance reduction for MCNP using deterministic methods.

    PubMed

    Sweezy, J; Brown, F; Booth, T; Chiaramonte, J; Preeg, B

    2005-01-01

    In order to reduce the user's time and the computer time needed to solve deep penetration problems, an automated variance reduction capability has been developed for the MCNP Monte Carlo transport code. This new variance reduction capability developed for MCNP5 employs the PARTISN multigroup discrete ordinates code to generate mesh-based weight windows. The technique of using deterministic methods to generate importance maps has been widely used to increase the efficiency of deep penetration Monte Carlo calculations. The application of this method in MCNP uses the existing mesh-based weight window feature to translate the MCNP geometry into geometry suitable for PARTISN. The adjoint flux, which is calculated with PARTISN, is used to generate mesh-based weight windows for MCNP. Additionally, the MCNP source energy spectrum can be biased based on the adjoint energy spectrum at the source location. This method can also use angle-dependent weight windows.

  4. BioCIDER: a Contextualisation InDEx for biological Resources discovery

    PubMed Central

    Horro, Carlos; Cook, Martin; Attwood, Teresa K.; Brazas, Michelle D.; Hancock, John M.; Palagi, Patricia; Corpas, Manuel; Jimenez, Rafael

    2017-01-01

    Abstract Summary The vast, uncoordinated proliferation of bioinformatics resources (databases, software tools, training materials etc.) makes it difficult for users to find them. To facilitate their discovery, various services are being developed to collect such resources into registries. We have developed BioCIDER, which, rather like online shopping ‘recommendations’, provides a contextualization index to help identify biological resources relevant to the content of the sites in which it is embedded. Availability and Implementation BioCIDER (www.biocider.org) is an open-source platform. Documentation is available online (https://goo.gl/Klc51G), and source code is freely available via GitHub (https://github.com/BioCIDER). The BioJS widget that enables websites to embed contextualization is available from the BioJS registry (http://biojs.io/). All code is released under an MIT licence. Contact carlos.horro@earlham.ac.uk or rafael.jimenez@elixir-europe.org or manuel@repositive.io PMID:28407033

  5. FPT- FORTRAN PROGRAMMING TOOLS FOR THE DEC VAX

    NASA Technical Reports Server (NTRS)

    Ragosta, A. E.

    1994-01-01

    The FORTRAN Programming Tools (FPT) are a series of tools used to support the development and maintenance of FORTRAN 77 source codes. Included are a debugging aid, a CPU time monitoring program, source code maintenance aids, print utilities, and a library of useful, well-documented programs. These tools assist in reducing development time and encouraging high quality programming. Although intended primarily for FORTRAN programmers, some of the tools can be used on data files and other programming languages. BUGOUT is a series of FPT programs that have proven very useful in debugging a particular kind of error and in optimizing CPU-intensive codes. The particular type of error is the illegal addressing of data or code as a result of subtle FORTRAN errors that are not caught by the compiler or at run time. A TRACE option also allows the programmer to verify the execution path of a program. The TIME option assists the programmer in identifying the CPU-intensive routines in a program to aid in optimization studies. Program coding, maintenance, and print aids available in FPT include: routines for building standard format subprogram stubs; cleaning up common blocks and NAMELISTs; removing all characters after column 72; displaying two files side by side on a VT-100 terminal; creating a neat listing of a FORTRAN source code including a Table of Contents, an Index, and Page Headings; converting files between VMS internal format and standard carriage control format; changing text strings in a file without using EDT; and replacing tab characters with spaces. The library of useful, documented programs includes the following: time and date routines; a string categorization routine; routines for converting between decimal, hex, and octal; routines to delay process execution for a specified time; a Gaussian elimination routine for solving a set of simultaneous linear equations; a curve fitting routine for least squares fit to polynomial, exponential, and sinusoidal forms (with a screen-oriented editor); a cubic spline fit routine; a screen-oriented array editor; routines to support parsing; and various terminal support routines. These FORTRAN programming tools are written in FORTRAN 77 and ASSEMBLER for interactive and batch execution. FPT is intended for implementation on DEC VAX series computers operating under VMS. This collection of tools was developed in 1985.

  6. The FORTRAN static source code analyzer program (SAP) system description

    NASA Technical Reports Server (NTRS)

    Decker, W.; Taylor, W.; Merwarth, P.; Oneill, M.; Goorevich, C.; Waligora, S.

    1982-01-01

    A source code analyzer program (SAP) designed to assist personnel in conducting studies of FORTRAN programs is described. The SAP scans FORTRAN source code and produces reports that present statistics and measures of statements and structures that make up a module. The processing performed by SAP and of the routines, COMMON blocks, and files used by SAP are described. The system generation procedure for SAP is also presented.

  7. Flow-Centric, Back-in-Time Debugging

    NASA Astrophysics Data System (ADS)

    Lienhard, Adrian; Fierz, Julien; Nierstrasz, Oscar

    Conventional debugging tools present developers with means to explore the run-time context in which an error has occurred. In many cases this is enough to help the developer discover the faulty source code and correct it. However, rather often errors occur due to code that has executed in the past, leaving certain objects in an inconsistent state. The actual run-time error only occurs when these inconsistent objects are used later in the program. So-called back-in-time debuggers help developers step back through earlier states of the program and explore execution contexts not available to conventional debuggers. Nevertheless, even Back-in-Time Debuggers do not help answer the question, “Where did this object come from?” The Object-Flow Virtual Machine, which we have proposed in previous work, tracks the flow of objects to answer precisely such questions, but this VM does not provide dedicated debugging support to explore faulty programs. In this paper we present a novel debugger, called Compass, to navigate between conventional run-time stack-oriented control flow views and object flows. Compass enables a developer to effectively navigate from an object contributing to an error back-in-time through all the code that has touched the object. We present the design and implementation of Compass, and we demonstrate how flow-centric, back-in-time debugging can be used to effectively locate the source of hard-to-find bugs.

  8. TRIQS: A toolbox for research on interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Parcollet, Olivier; Ferrero, Michel; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka

    2015-11-01

    We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.

  9. High Speed Research Noise Prediction Code (HSRNOISE) User's and Theoretical Manual

    NASA Technical Reports Server (NTRS)

    Golub, Robert (Technical Monitor); Rawls, John W., Jr.; Yeager, Jessie C.

    2004-01-01

    This report describes a computer program, HSRNOISE, that predicts noise levels for a supersonic aircraft powered by mixed flow turbofan engines with rectangular mixer-ejector nozzles. It fully documents the noise prediction algorithms, provides instructions for executing the HSRNOISE code, and provides predicted noise levels for the High Speed Research (HSR) program Technology Concept (TC) aircraft. The component source noise prediction algorithms were developed jointly by Boeing, General Electric Aircraft Engines (GEAE), NASA and Pratt & Whitney during the course of the NASA HSR program. Modern Technologies Corporation developed an alternative mixer ejector jet noise prediction method under contract to GEAE that has also been incorporated into the HSRNOISE prediction code. Algorithms for determining propagation effects and calculating noise metrics were taken from the NASA Aircraft Noise Prediction Program.

  10. Data integration of structured and unstructured sources for assigning clinical codes to patient stays

    PubMed Central

    Luyckx, Kim; Luyten, Léon; Daelemans, Walter; Van den Bulcke, Tim

    2016-01-01

    Objective Enormous amounts of healthcare data are becoming increasingly accessible through the large-scale adoption of electronic health records. In this work, structured and unstructured (textual) data are combined to assign clinical diagnostic and procedural codes (specifically ICD-9-CM) to patient stays. We investigate whether integrating these heterogeneous data types improves prediction strength compared to using the data types in isolation. Methods Two separate data integration approaches were evaluated. Early data integration combines features of several sources within a single model, and late data integration learns a separate model per data source and combines these predictions with a meta-learner. This is evaluated on data sources and clinical codes from a broad set of medical specialties. Results When compared with the best individual prediction source, late data integration leads to improvements in predictive power (eg, overall F-measure increased from 30.6% to 38.3% for International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnostic codes), while early data integration is less consistent. The predictive strength strongly differs between medical specialties, both for ICD-9-CM diagnostic and procedural codes. Discussion Structured data provides complementary information to unstructured data (and vice versa) for predicting ICD-9-CM codes. This can be captured most effectively by the proposed late data integration approach. Conclusions We demonstrated that models using multiple electronic health record data sources systematically outperform models using data sources in isolation in the task of predicting ICD-9-CM codes over a broad range of medical specialties. PMID:26316458

  11. GISMO: A MATLAB toolbox for seismic research, monitoring, & education

    NASA Astrophysics Data System (ADS)

    Thompson, G.; Reyes, C. G.; Kempler, L. A.

    2017-12-01

    GISMO is an open-source MATLAB toolbox which provides an object-oriented framework to build workflows and applications that read, process, visualize and write seismic waveform, catalog and instrument response data. GISMO can retrieve data from a variety of sources (e.g. FDSN web services, Earthworm/Winston servers) and data formats (SAC, Seisan, etc.). It can handle waveform data that crosses file boundaries. All this alleviates one of the most time consuming part for scientists developing their own codes. GISMO simplifies seismic data analysis by providing a common interface for your data, regardless of its source. Several common plots are built-in to GISMO, such as record section plots, spectrograms, depth-time sections, event count per unit time, energy release per unit time, etc. Other visualizations include map views and cross-sections of hypocentral data. Several common processing methods are also included, such as an extensive set of tools for correlation analysis. Support is being added to interface GISMO with ObsPy. GISMO encourages community development of an integrated set of codes and accompanying documentation, eliminating the need for seismologists to "reinvent the wheel". By sharing code the consistency and repeatability of results can be enhanced. GISMO is hosted on GitHub with documentation both within the source code and in the project wiki. GISMO has been used at the University of South Florida and University of Alaska Fairbanks in graduate-level courses including Seismic Data Analysis, Time Series Analysis and Computational Seismology. GISMO has also been tailored to interface with the common seismic monitoring software and data formats used by volcano observatories in the US and elsewhere. As an example, toolbox training was delivered to researchers at INETER (Nicaragua). Applications built on GISMO include IceWeb (e.g. web-based spectrograms), which has been used by Alaska Volcano Observatory since 1998 and became the prototype for the USGS Pensive system.

  12. WEC-SIM Validation Testing Plan FY14 Q4.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruehl, Kelley Michelle

    2016-02-01

    The WEC-Sim project is currently on track, having met both the SNL and NREL FY14 Milestones, as shown in Table 1 and Table 2. This is also reflected in the Gantt chart uploaded to the WEC-Sim SharePoint site in the FY14 Q4 Deliverables folder. The work completed in FY14 includes code verification through code-to-code comparison (FY14 Q1 and Q2), preliminary code validation through comparison to experimental data (FY14 Q2 and Q3), presentation and publication of the WEC-Sim project at OMAE 2014 [1], [2], [3] and GMREC/METS 2014 [4] (FY14 Q3), WEC-Sim code development and public open-source release (FY14 Q3), andmore » development of a preliminary WEC-Sim validation test plan (FY14 Q4). This report presents the preliminary Validation Testing Plan developed in FY14 Q4. The validation test effort started in FY14 Q4 and will go on through FY15. Thus far the team has developed a device selection method, selected a device, and placed a contract with the testing facility, established several collaborations including industry contacts, and have working ideas on the testing details such as scaling, device design, and test conditions.« less

  13. 40 CFR Appendix A to Subpart A of... - Tables

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phone number ✓ ✓ (6) FIPS code ✓ ✓ (7) Facility ID codes ✓ ✓ (8) Unit ID code ✓ ✓ (9) Process ID code... for Reporting on Emissions From Nonpoint Sources and Nonroad Mobile Sources, Where Required by 40 CFR... start date ✓ ✓ (3) Inventory end date ✓ ✓ (4) Contact name ✓ ✓ (5) Contact phone number ✓ ✓ (6) FIPS...

  14. The 2016 Bioinformatics Open Source Conference (BOSC).

    PubMed

    Harris, Nomi L; Cock, Peter J A; Chapman, Brad; Fields, Christopher J; Hokamp, Karsten; Lapp, Hilmar; Muñoz-Torres, Monica; Wiencko, Heather

    2016-01-01

    Message from the ISCB: The Bioinformatics Open Source Conference (BOSC) is a yearly meeting organized by the Open Bioinformatics Foundation (OBF), a non-profit group dedicated to promoting the practice and philosophy of Open Source software development and Open Science within the biological research community. BOSC has been run since 2000 as a two-day Special Interest Group (SIG) before the annual ISMB conference. The 17th annual BOSC ( http://www.open-bio.org/wiki/BOSC_2016) took place in Orlando, Florida in July 2016. As in previous years, the conference was preceded by a two-day collaborative coding event open to the bioinformatics community. The conference brought together nearly 100 bioinformatics researchers, developers and users of open source software to interact and share ideas about standards, bioinformatics software development, and open and reproducible science.

  15. SOURCELESS STARTUP. A MACHINE CODE FOR COMPUTING LOW-SOURCE REACTOR STARTUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacMillan, D.B.

    1960-06-01

    >A revision to the sourceless start-up code is presented. The code solves a system of differential equations encountered in computing the probability distribution of activity at an observed power level during reactor start-up from a very low source level. (J.R.D.)

  16. ROSE Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, D.; Yi, Q.; Buduc, R.

    2005-02-17

    ROSE is an object-oriented software infrastructure for source-to-source translation that provides an interface for programmers to write their own specialized translators for optimizing scientific applications. ROSE is a part of current research on telescoping languages, which provides optimizations of the use of libraries in scientific applications. ROSE defines approaches to extend the optimization techniques, common in well defined languages, to the optimization of scientific applications using well defined libraries. ROSE includes a rich set of tools for generating customized transformations to support optimization of applications codes. We currently support full C and C++ (including template instantiation etc.), with Fortran 90more » support under development as part of a collaboration and contract with Rice to use their version of the open source Open64 F90 front-end. ROSE represents an attempt to define an open compiler infrastructure to handle the full complexity of full scale DOE applications codes using the languages common to scientific computing within DOE. We expect that such an infrastructure will also be useful for the development of numerous tools that may then realistically expect to work on DOE full scale applications.« less

  17. Optimal source coding, removable noise elimination, and natural coordinate system construction for general vector sources using replicator neural networks

    NASA Astrophysics Data System (ADS)

    Hecht-Nielsen, Robert

    1997-04-01

    A new universal one-chart smooth manifold model for vector information sources is introduced. Natural coordinates (a particular type of chart) for such data manifolds are then defined. Uniformly quantized natural coordinates form an optimal vector quantization code for a general vector source. Replicator neural networks (a specialized type of multilayer perceptron with three hidden layers) are the introduced. As properly configured examples of replicator networks approach minimum mean squared error (e.g., via training and architecture adjustment using randomly chosen vectors from the source), these networks automatically develop a mapping which, in the limit, produces natural coordinates for arbitrary source vectors. The new concept of removable noise (a noise model applicable to a wide variety of real-world noise processes) is then discussed. Replicator neural networks, when configured to approach minimum mean squared reconstruction error (e.g., via training and architecture adjustment on randomly chosen examples from a vector source, each with randomly chosen additive removable noise contamination), in the limit eliminate removable noise and produce natural coordinates for the data vector portions of the noise-corrupted source vectors. Consideration regarding selection of the dimension of a data manifold source model and the training/configuration of replicator neural networks are discussed.

  18. Neptune: An astrophysical smooth particle hydrodynamics code for massively parallel computer architectures

    NASA Astrophysics Data System (ADS)

    Sandalski, Stou

    Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named neptune after the Roman god of water. It is written in OpenMP parallelized C++ and OpenCL and includes octree based hydrodynamic and gravitational acceleration. The design relies on object-oriented methodologies in order to provide a flexible and modular framework that can be easily extended and modified by the user. Several pre-built scenarios for simulating collisions of polytropes and black-hole accretion are provided. The code is released under the MIT Open Source license and publicly available at http://code.google.com/p/neptune-sph/.

  19. LDPC-based iterative joint source-channel decoding for JPEG2000.

    PubMed

    Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane

    2007-02-01

    A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.

  20. Albany v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salinger, Andrew; Phipps, Eric; Ostien, Jakob

    2016-01-13

    The Albany code is a general-purpose finite element code for solving partial differential equations (PDEs). Albany is a research code that demonstrates how a PDE code can be built by interfacing many of the open-source software libraries that are released under Sandia's Trilinos project. Part of the mission of Albany is to be a testbed for new Trilinos libraries, to refine their methods, usability, and interfaces. Albany includes hooks to optimization and uncertainty quantification algorithms, including those in Trilinos as well as those in the Dakota toolkit. Because of this, Albany is a desirable starting point for new code developmentmore » efforts that wish to make heavy use of Trilinos. Albany is both a framework and the host for specific finite element applications. These applications have project names, and can be controlled by configuration option when the code is compiled, but are all developed and released as part of the single Albany code base, These include LCM, QCAD, FELIX, Aeras, and ATO applications.« less

  1. Understanding Lustre Internals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feiyi; Oral, H Sarp; Shipman, Galen M

    2009-04-01

    Lustre was initiated and funded, almost a decade ago, by the U.S. Department of Energy (DoE) Office of Science and National Nuclear Security Administration laboratories to address the need for an open source, highly-scalable, high-performance parallel filesystem on by then present and future supercomputing platforms. Throughout the last decade, it was deployed over numerous medium-to-large-scale supercomputing platforms and clusters, and it performed and met the expectations of the Lustre user community. As it stands at the time of writing this document, according to the Top500 list, 15 of the top 30 supercomputers in the world use Lustre filesystem. This reportmore » aims to present a streamlined overview on how Lustre works internally at reasonable details including relevant data structures, APIs, protocols and algorithms involved for Lustre version 1.6 source code base. More importantly, it tries to explain how various components interconnect with each other and function as a system. Portions of this report are based on discussions with Oak Ridge National Laboratory Lustre Center of Excellence team members and portions of it are based on our own understanding of how the code works. We, as the authors team bare all responsibilities for all errors and omissions in this document. We can only hope it helps current and future Lustre users and Lustre code developers as much as it helped us understanding the Lustre source code and its internal workings.« less

  2. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... funds; (ii) Studies, analyses, test data, or similar data produced for this contract, when the study...

  3. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE PAGES

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.; ...

    2016-12-01

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  4. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  5. Symmetry-Based Variance Reduction Applied to 60Co Teletherapy Unit Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Sheikh-Bagheri, D.

    A new variance reduction technique (VRT) is implemented in the BEAM code [1] to specifically improve the efficiency of calculating penumbral distributions of in-air fluence profiles calculated for isotopic sources. The simulations focus on 60Co teletherapy units. The VRT includes splitting of photons exiting the source capsule of a 60Co teletherapy source according to a splitting recipe and distributing the split photons randomly on the periphery of a circle, preserving the direction cosine along the beam axis, in addition to the energy of the photon. It is shown that the use of the VRT developed in this work can lead to a 6-9 fold improvement in the efficiency of the penumbral photon fluence of a 60Co beam compared to that calculated using the standard optimized BEAM code [1] (i.e., one with the proper selection of electron transport parameters).

  6. Development of an open-source web-based intervention for Brazilian smokers - Viva sem Tabaco.

    PubMed

    Gomide, H P; Bernardino, H S; Richter, K; Martins, L F; Ronzani, T M

    2016-08-02

    Web-based interventions for smoking cessation available in Portuguese do not adhere to evidence-based treatment guidelines. Besides, all existing web-based interventions are built on proprietary platforms that developing countries often cannot afford. We aimed to describe the development of "Viva sem Tabaco", an open-source web-based intervention. The development of the intervention included the selection of content from evidence-based guidelines for smoking cessation, the design of the first layout, conduction of 2 focus groups to identify potential features, refinement of the layout based on focus groups and correction of content based on feedback provided by specialists on smoking cessation. At the end, we released the source-code and intervention on the Internet and translated it into Spanish and English. The intervention developed fills gaps in the information available in Portuguese and the lack of open-source interventions for smoking cessation. The open-source licensing format and its translation system may help researchers from different countries deploying evidence-based interventions for smoking cessation.

  7. Subsurface Transport Over Multiple Phases Demonstration Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-01-05

    The STOMP simulator is a suite of numerical simulators developed by Pacific Northwest National Laboratory for addressing problems involving coupled multifluid hydrologic, thermal, geochemical, and geomechanical processes in the subsurface. The simulator has been applied to problems concerning environmental remediation, environmental stewardship, carbon sequestration, conventional petroleum production, and the production of unconventional hydrocarbon fuels. The simulator is copyrighted by Battelle Memorial Institute, and is available outside of PNNL via use agreements. To promote the open exchange of scientific ideas the simulator is provided as source code. A demonstration version of the simulator has been developed, which will provide potential newmore » users with an executable (not source code) implementation of the software royalty free. Demonstration versions will be offered via the STOMP website for all currently available operational modes of the simulator. The demonstration versions of the simulator will be configured with the direct banded linear system solver and have a limit of 1,000 active grid cells. This will provide potential new users with an opportunity to apply the code to simple problems, including many of the STOMP short course problems, without having to pay a license fee. Users will be required to register on the STOMP website prior to receiving an executable.« less

  8. Application of the MCNPX-McStas interface for shielding calculations and guide design at ESS

    NASA Astrophysics Data System (ADS)

    Klinkby, E. B.; Knudsen, E. B.; Willendrup, P. K.; Lauritzen, B.; Nonbøl, E.; Bentley, P.; Filges, U.

    2014-07-01

    Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed [1, 2]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides. The generation and moderation of neutrons is simulated using a full scale MCNPX model of the ESS target monolith. Upon entering the neutron beam extraction region, the individual neutron states are handed to McStas via the MCNPX-McStas interface. McStas transports the neutrons through the beam guide, and by using newly developed event logging capability, the neutron state parameters corresponding to un-reflected neutrons are recorded at each scattering. This information is handed back to MCNPX where it serves as neutron source input for a second MCNPX simulation. This simulation enables calculation of dose rates in the vicinity of the guide. In addition the logging mechanism is employed to record the scatterings along the guides which is exploited to simulate the supermirror quality requirements (i.e. m-values) needed at different positions along the beam guide to transport neutrons in the same guide/source setup.

  9. SolTrace | Concentrating Solar Power | NREL

    Science.gov Websites

    NREL packaged distribution or from source code at the SolTrace open source project website. NREL Publications Support FAQs SolTrace open source project The code uses Monte-Carlo ray-tracing methodology. The -tracing capabilities. With the release of the SolTrace open source project, the software has adopted

  10. Modelling of the anti-neutrino production and spectra from a Magnox reactor

    NASA Astrophysics Data System (ADS)

    Mills, Robert W.; Mountford, David J.; Coleman, Jonathon P.; Metelko, Carl; Murdoch, Matthew; Schnellbach, Yan-Jie

    2018-01-01

    The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152) during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of monitored reactor operation was calculated. The results of the preliminary calculations are shown and limitations in the methods and data discussed.

  11. A study of data coding technology developments in the 1980-1985 time frame, volume 2

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Shahsavari, M. M.

    1978-01-01

    The source parameters of digitized analog data are discussed. Different data compression schemes are outlined and analysis of their implementation are presented. Finally, bandwidth compression techniques are given for video signals.

  12. 77 FR 59095 - Approval and Promulgation of Implementation Plans; Mississippi: New Source Review-Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... authority for use in the PSD permitting process. See 75 FR 64864 at 64899. \\18\\ EPA is currently developing... ethanol by natural fermentation under the North American Industry Classification System (NAICS) codes...

  13. World Energy Projection System Plus Model Documentation: Greenhouse Gases Module

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  14. World Energy Projection System Plus Model Documentation: Natural Gas Module

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  15. World Energy Projection System Plus Model Documentation: District Heat Module

    EIA Publications

    2017-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  16. World Energy Projection System Plus Model Documentation: Industrial Module

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  17. Validation of the new diagnosis grouping system for pediatric emergency department visits using the International Classification of Diseases, 10th Revision.

    PubMed

    Lee, Jin Hee; Hong, Ki Jeong; Kim, Do Kyun; Kwak, Young Ho; Jang, Hye Young; Kim, Hahn Bom; Noh, Hyun; Park, Jungho; Song, Bongkyu; Jung, Jae Yun

    2013-12-01

    A clinically sensible diagnosis grouping system (DGS) is needed for describing pediatric emergency diagnoses for research, medical resource preparedness, and making national policy for pediatric emergency medical care. The Pediatric Emergency Care Applied Research Network (PECARN) developed the DGS successfully. We developed the modified PECARN DGS based on the different pediatric population of South Korea and validated the system to obtain the accurate and comparable epidemiologic data of pediatric emergent conditions of the selected population. The data source used to develop and validate the modified PECARN DGS was the National Emergency Department Information System of South Korea, which was coded by the International Classification of Diseases, 10th Revision (ICD-10) code system. To develop the modified DGS based on ICD-10 code, we matched the selected ICD-10 codes with those of the PECARN DGS by the General Equivalence Mappings (GEMs). After converting ICD-10 codes to ICD-9 codes by GEMs, we matched ICD-9 codes into PECARN DGS categories using the matrix developed by PECARN group. Lastly, we conducted the expert panel survey using Delphi method for the remaining diagnosis codes that were not matched. A total of 1879 ICD-10 codes were used in development of the modified DGS. After 1078 (57.4%) of 1879 ICD-10 codes were assigned to the modified DGS by GEM and PECARN conversion tools, investigators assigned each of the remaining 801 codes (42.6%) to DGS subgroups by 2 rounds of electronic Delphi surveys. And we assigned the remaining 29 codes (4%) into the modified DGS at the second expert consensus meeting. The modified DGS accounts for 98.7% and 95.2% of diagnoses of the 2008 and 2009 National Emergency Department Information System data set. This modified DGS also exhibited strong construct validity using the concepts of age, sex, site of care, and seasons. This also reflected the 2009 outbreak of H1N1 influenza in Korea. We developed and validated clinically feasible and sensible DGS system for describing pediatric emergent conditions in Korea. The modified PECARN DGS showed good comprehensiveness and demonstrated reliable construct validity. This modified DGS based on PECARN DGS framework may be effectively implemented for research, reporting, and resource planning in pediatric emergency system of South Korea.

  18. Development and Implementation of Dynamic Scripts to Execute Cycled WRF/GSI Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Quanli; Watson, Leela

    2014-01-01

    Automating the coupling of data assimilation (DA) and modeling systems is a unique challenge in the numerical weather prediction (NWP) research community. In recent years, the Development Testbed Center (DTC) has released well-documented tools such as the Weather Research and Forecasting (WRF) model and the Gridpoint Statistical Interpolation (GSI) DA system that can be easily downloaded, installed, and run by researchers on their local systems. However, developing a coupled system in which the various preprocessing, DA, model, and postprocessing capabilities are all integrated can be labor-intensive if one has little experience with any of these individual systems. Additionally, operational modeling entities generally have specific coupling methodologies that can take time to understand and develop code to implement properly. To better enable collaborating researchers to perform modeling and DA experiments with GSI, the Short-term Prediction Research and Transition (SPoRT) Center has developed a set of Perl scripts that couple GSI and WRF in a cycling methodology consistent with the use of real-time, regional observation data from the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC). Because Perl is open source, the code can be easily downloaded and executed regardless of the user's native shell environment. This paper will provide a description of this open-source code and descriptions of a number of the use cases that have been performed by SPoRT collaborators using the scripts on different computing systems.

  19. Combining structured and unstructured data to identify a cohort of ICU patients who received dialysis

    PubMed Central

    Abhyankar, Swapna; Demner-Fushman, Dina; Callaghan, Fiona M; McDonald, Clement J

    2014-01-01

    Objective To develop a generalizable method for identifying patient cohorts from electronic health record (EHR) data—in this case, patients having dialysis—that uses simple information retrieval (IR) tools. Methods We used the coded data and clinical notes from the 24 506 adult patients in the Multiparameter Intelligent Monitoring in Intensive Care database to identify patients who had dialysis. We used SQL queries to search the procedure, diagnosis, and coded nursing observations tables based on ICD-9 and local codes. We used a domain-specific search engine to find clinical notes containing terms related to dialysis. We manually validated the available records for a 10% random sample of patients who potentially had dialysis and a random sample of 200 patients who were not identified as having dialysis based on any of the sources. Results We identified 1844 patients that potentially had dialysis: 1481 from the three coded sources and 1624 from the clinical notes. Precision for identifying dialysis patients based on available data was estimated to be 78.4% (95% CI 71.9% to 84.2%) and recall was 100% (95% CI 86% to 100%). Conclusions Combining structured EHR data with information from clinical notes using simple queries increases the utility of both types of data for cohort identification. Patients identified by more than one source are more likely to meet the inclusion criteria; however, including patients found in any of the sources increases recall. This method is attractive because it is available to researchers with access to EHR data and off-the-shelf IR tools. PMID:24384230

  20. RADSOURCE. Volume 1, Part 1, A scaling factor prediction computer program technical manual and code validation: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vance, J.N.; Holderness, J.H.; James, D.W.

    1992-12-01

    Waste stream scaling factors based on sampling programs are vulnerable to one or more of the following factors: sample representativeness, analytic accuracy, and measurement sensitivity. As an alternative to sample analyses or as a verification of the sampling results, this project proposes the use of the RADSOURCE code, which accounts for the release of fuel-source radionuclides. Once the release rates of these nuclides from fuel are known, the code develops scaling factors for waste streams based on easily measured Cobalt-60 (Co-60) and Cesium-137 (Cs-137). The project team developed mathematical models to account for the appearance rate of 10CFR61 radionuclides inmore » reactor coolant. They based these models on the chemistry and nuclear physics of the radionuclides involved. Next, they incorporated the models into a computer code that calculates plant waste stream scaling factors based on reactor coolant gamma- isotopic data. Finally, the team performed special sampling at 17 reactors to validate the models in the RADSOURCE code.« less

  1. GRAYSKY-A new gamma-ray skyshine code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witts, D.J.; Twardowski, T.; Watmough, M.H.

    1993-01-01

    This paper describes a new prototype gamma-ray skyshine code GRAYSKY (Gamma-RAY SKYshine) that has been developed at BNFL, as part of an industrially based master of science course, to overcome the problems encountered with SKYSHINEII and RANKERN. GRAYSKY is a point kernel code based on the use of a skyshine response function. The scattering within source or shield materials is accounted for by the use of buildup factors. This is an approximate method of solution but one that has been shown to produce results that are acceptable for dose rate predictions on operating plants. The novel features of GRAYSKY aremore » as follows: 1. The code is fully integrated with a semianalytical point kernel shielding code, currently under development at BNFL, which offers powerful solid-body modeling capabilities. 2. The geometry modeling also allows the skyshine response function to be used in a manner that accounts for the shielding of air-scattered radiation. 3. Skyshine buildup factors calculated using the skyshine response function have been used as well as dose buildup factors.« less

  2. Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Mehdizadeh, S.; Hadad, K.

    Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.

  3. PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabharwall, Piyush; Skifton, Richard; Stoots, Carl

    2013-12-01

    Currently, computational fluid dynamics (CFD) is widely used in the nuclear thermal hydraulics field for design and safety analyses. To validate CFD codes, high quality multi dimensional flow field data are essential. The Matched Index of Refraction (MIR) Flow Facility at Idaho National Laboratory has a unique capability to contribute to the development of validated CFD codes through the use of Particle Image Velocimetry (PIV). The significance of the MIR facility is that it permits non intrusive velocity measurement techniques, such as PIV, through complex models without requiring probes and other instrumentation that disturb the flow. At the heart ofmore » any PIV calculation is the cross-correlation, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. This image displacement is indicated by the location of the largest peak. In the MIR facility, uncertainty quantification is a challenging task due to the use of optical measurement techniques. Currently, this study is developing a reliable method to analyze uncertainty and sensitivity of the measured data and develop a computer code to automatically analyze the uncertainty/sensitivity of the measured data. The main objective of this study is to develop a well established uncertainty quantification method for the MIR Flow Facility, which consists of many complicated uncertainty factors. In this study, the uncertainty sources are resolved in depth by categorizing them into uncertainties from the MIR flow loop and PIV system (including particle motion, image distortion, and data processing). Then, each uncertainty source is mathematically modeled or adequately defined. Finally, this study will provide a method and procedure to quantify the experimental uncertainty in the MIR Flow Facility with sample test results.« less

  4. PlotXY: A High Quality Plotting System for the Herschel Interactive Processing Environment (HIPE) and the Astronomical Community

    NASA Astrophysics Data System (ADS)

    Panuzzo, P.; Li, J.; Caux, E.

    2012-09-01

    The Herschel Interactive Processing Environment (HIPE) was developed by the European Space Agency (ESA) in collaboration with NASA and the Herschel Instrument Control Centres, to provide the astronomical community a complete environment to process and analyze the data gathered by the Herschel Space Observatory. One of the most important components of HIPE is the plotting system (named PlotXY) that we present here. With PlotXY it is possible to produce easily high quality publication-ready 2D plots. It provides a long list of features, with fully configurable components, and interactive zooming. The entire code of HIPE is written in Java and is open source released under the GNU Lesser General Public License version 3. A new version of PlotXY is being developed to be independent from the HIPE code base; it is available to the software development community for the inclusion in other projects at the URL http://code.google.com/p/jplot2d/.

  5. Two-terminal video coding.

    PubMed

    Yang, Yang; Stanković, Vladimir; Xiong, Zixiang; Zhao, Wei

    2009-03-01

    Following recent works on the rate region of the quadratic Gaussian two-terminal source coding problem and limit-approaching code designs, this paper examines multiterminal source coding of two correlated, i.e., stereo, video sequences to save the sum rate over independent coding of both sequences. Two multiterminal video coding schemes are proposed. In the first scheme, the left sequence of the stereo pair is coded by H.264/AVC and used at the joint decoder to facilitate Wyner-Ziv coding of the right video sequence. The first I-frame of the right sequence is successively coded by H.264/AVC Intracoding and Wyner-Ziv coding. An efficient stereo matching algorithm based on loopy belief propagation is then adopted at the decoder to produce pixel-level disparity maps between the corresponding frames of the two decoded video sequences on the fly. Based on the disparity maps, side information for both motion vectors and motion-compensated residual frames of the right sequence are generated at the decoder before Wyner-Ziv encoding. In the second scheme, source splitting is employed on top of classic and Wyner-Ziv coding for compression of both I-frames to allow flexible rate allocation between the two sequences. Experiments with both schemes on stereo video sequences using H.264/AVC, LDPC codes for Slepian-Wolf coding of the motion vectors, and scalar quantization in conjunction with LDPC codes for Wyner-Ziv coding of the residual coefficients give a slightly lower sum rate than separate H.264/AVC coding of both sequences at the same video quality.

  6. Research on Ajax and Hibernate technology in the development of E-shop system

    NASA Astrophysics Data System (ADS)

    Yin, Luo

    2011-12-01

    Hibernate is a object relational mapping framework of open source code, which conducts light-weighted object encapsulation of JDBC to let Java programmers use the concept of object-oriented programming to manipulate database at will. The appearence of the concept of Ajax (asynchronous JavaScript and XML technology) begins the time prelude of page partial refresh so that developers can develop web application programs with stronger interaction. The paper illustrates the concrete application of Ajax and Hibernate to the development of E-shop in details and adopts them to design to divide the entire program code into relatively independent parts which can cooperate with one another as well. In this way, it is easier for the entire program to maintain and expand.

  7. TANDEM: matching proteins with tandem mass spectra.

    PubMed

    Craig, Robertson; Beavis, Ronald C

    2004-06-12

    Tandem mass spectra obtained from fragmenting peptide ions contain some peptide sequence specific information, but often there is not enough information to sequence the original peptide completely. Several proprietary software applications have been developed to attempt to match the spectra with a list of protein sequences that may contain the sequence of the peptide. The application TANDEM was written to provide the proteomics research community with a set of components that can be used to test new methods and algorithms for performing this type of sequence-to-data matching. The source code and binaries for this software are available at http://www.proteome.ca/opensource.html, for Windows, Linux and Macintosh OSX. The source code is made available under the Artistic License, from the authors.

  8. Comparison of TG-43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes.

    PubMed

    Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S

    2016-03-08

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes.

  9. The Chandra Source Catalog: Algorithms

    NASA Astrophysics Data System (ADS)

    McDowell, Jonathan; Evans, I. N.; Primini, F. A.; Glotfelty, K. J.; McCollough, M. L.; Houck, J. C.; Nowak, M. A.; Karovska, M.; Davis, J. E.; Rots, A. H.; Siemiginowska, A. L.; Hain, R.; Evans, J. D.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Doe, S. M.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Lauer, J.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    Creation of the Chandra Source Catalog (CSC) required adjustment of existing pipeline processing, adaptation of existing interactive analysis software for automated use, and development of entirely new algorithms. Data calibration was based on the existing pipeline, but more rigorous data cleaning was applied and the latest calibration data products were used. For source detection, a local background map was created including the effects of ACIS source readout streaks. The existing wavelet source detection algorithm was modified and a set of post-processing scripts used to correct the results. To analyse the source properties we ran the SAO Traceray trace code for each source to generate a model point spread function, allowing us to find encircled energy correction factors and estimate source extent. Further algorithms were developed to characterize the spectral, spatial and temporal properties of the sources and to estimate the confidence intervals on count rates and fluxes. Finally, sources detected in multiple observations were matched, and best estimates of their merged properties derived. In this paper we present an overview of the algorithms used, with more detailed treatment of some of the newly developed algorithms presented in companion papers.

  10. Swept Impact Seismic Technique (SIST)

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Steeples, D.W.; Black, R.A.

    1996-01-01

    A coded seismic technique is developed that can result in a higher signal-to-noise ratio than a conventional single-pulse method does. The technique is cost-effective and time-efficient and therefore well suited for shallow-reflection surveys where high resolution and cost-effectiveness are critical. A low-power impact source transmits a few to several hundred high-frequency broad-band seismic pulses during several seconds of recording time according to a deterministic coding scheme. The coding scheme consists of a time-encoded impact sequence in which the rate of impact (cycles/s) changes linearly with time providing a broad range of impact rates. Impact times used during the decoding process are recorded on one channel of the seismograph. The coding concept combines the vibroseis swept-frequency and the Mini-Sosie random impact concepts. The swept-frequency concept greatly improves the suppression of correlation noise with much fewer impacts than normally used in the Mini-Sosie technique. The impact concept makes the technique simple and efficient in generating high-resolution seismic data especially in the presence of noise. The transfer function of the impact sequence simulates a low-cut filter with the cutoff frequency the same as the lowest impact rate. This property can be used to attenuate low-frequency ground-roll noise without using an analog low-cut filter or a spatial source (or receiver) array as is necessary with a conventional single-pulse method. Because of the discontinuous coding scheme, the decoding process is accomplished by a "shift-and-stacking" method that is much simpler and quicker than cross-correlation. The simplicity of the coding allows the mechanical design of the source to remain simple. Several different types of mechanical systems could be adapted to generate a linear impact sweep. In addition, the simplicity of the coding also allows the technique to be used with conventional acquisition systems, with only minor modifications.

  11. An Open-Source Sandbox for Increasing the Accessibility of Functional Programming to the Bioinformatics and Scientific Communities

    PubMed Central

    Fenwick, Matthew; Sesanker, Colbert; Schiller, Martin R.; Ellis, Heidi JC; Hinman, M. Lee; Vyas, Jay; Gryk, Michael R.

    2012-01-01

    Scientists are continually faced with the need to express complex mathematical notions in code. The renaissance of functional languages such as LISP and Haskell is often credited to their ability to implement complex data operations and mathematical constructs in an expressive and natural idiom. The slow adoption of functional computing in the scientific community does not, however, reflect the congeniality of these fields. Unfortunately, the learning curve for adoption of functional programming techniques is steeper than that for more traditional languages in the scientific community, such as Python and Java, and this is partially due to the relative sparseness of available learning resources. To fill this gap, we demonstrate and provide applied, scientifically substantial examples of functional programming, We present a multi-language source-code repository for software integration and algorithm development, which generally focuses on the fields of machine learning, data processing, bioinformatics. We encourage scientists who are interested in learning the basics of functional programming to adopt, reuse, and learn from these examples. The source code is available at: https://github.com/CONNJUR/CONNJUR-Sandbox (see also http://www.connjur.org). PMID:25328913

  12. Simulation of short period Lg, expansion of three-dimensional source simulation capabilities and simulation of near-field ground motion from the 1971 San Fernando, California, earthquake. Final report 1 Oct 79-30 Nov 80

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bache, T.C.; Swanger, H.J.; Shkoller, B.

    1981-07-01

    This report summarizes three efforts performed during the past fiscal year. The first these efforts is a study of the theoretical behavior of the regional seismic phase Lg in various tectonic provinces. Synthetic seismograms are used to determine the sensitivity of Lg to source and medium properties. The primary issues addressed concern the relationship of regional Lg characteristics to the crustal attenuation properties, the comparison of the Lg in many crustal structures and the source depth dependence of Lg. The second effort described is an expansion of hte capabilities of the three-dimensional finite difference code TRES. The present capabilities aremore » outlined with comparisons of the performance of the code on three computer systems. The last effort described is the development of an algorithm for simulation of the near-field ground motions from the 1971 San Fernando, California, earthquake. A computer code implementing this algorithm has been provided to the Mission Research Corporation foe simulation of the acoustic disturbances from such an earthquake.« less

  13. An Open-Source Sandbox for Increasing the Accessibility of Functional Programming to the Bioinformatics and Scientific Communities.

    PubMed

    Fenwick, Matthew; Sesanker, Colbert; Schiller, Martin R; Ellis, Heidi Jc; Hinman, M Lee; Vyas, Jay; Gryk, Michael R

    2012-01-01

    Scientists are continually faced with the need to express complex mathematical notions in code. The renaissance of functional languages such as LISP and Haskell is often credited to their ability to implement complex data operations and mathematical constructs in an expressive and natural idiom. The slow adoption of functional computing in the scientific community does not, however, reflect the congeniality of these fields. Unfortunately, the learning curve for adoption of functional programming techniques is steeper than that for more traditional languages in the scientific community, such as Python and Java, and this is partially due to the relative sparseness of available learning resources. To fill this gap, we demonstrate and provide applied, scientifically substantial examples of functional programming, We present a multi-language source-code repository for software integration and algorithm development, which generally focuses on the fields of machine learning, data processing, bioinformatics. We encourage scientists who are interested in learning the basics of functional programming to adopt, reuse, and learn from these examples. The source code is available at: https://github.com/CONNJUR/CONNJUR-Sandbox (see also http://www.connjur.org).

  14. JDFTx: Software for joint density-functional theory

    DOE PAGES

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...

    2017-11-14

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  15. JDFTx: Software for joint density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  16. A Software Development Platform for Wearable Medical Applications.

    PubMed

    Zhang, Ruikai; Lin, Wei

    2015-10-01

    Wearable medical devices have become a leading trend in healthcare industry. Microcontrollers are computers on a chip with sufficient processing power and preferred embedded computing units in those devices. We have developed a software platform specifically for the design of the wearable medical applications with a small code footprint on the microcontrollers. It is supported by the open source real time operating system FreeRTOS and supplemented with a set of standard APIs for the architectural specific hardware interfaces on the microcontrollers for data acquisition and wireless communication. We modified the tick counter routine in FreeRTOS to include a real time soft clock. When combined with the multitasking features in the FreeRTOS, the platform offers the quick development of wearable applications and easy porting of the application code to different microprocessors. Test results have demonstrated that the application software developed using this platform are highly efficient in CPU usage while maintaining a small code foot print to accommodate the limited memory space in microcontrollers.

  17. SIGNUM: A Matlab, TIN-based landscape evolution model

    NASA Astrophysics Data System (ADS)

    Refice, A.; Giachetta, E.; Capolongo, D.

    2012-08-01

    Several numerical landscape evolution models (LEMs) have been developed to date, and many are available as open source codes. Most are written in efficient programming languages such as Fortran or C, but often require additional code efforts to plug in to more user-friendly data analysis and/or visualization tools to ease interpretation and scientific insight. In this paper, we present an effort to port a common core of accepted physical principles governing landscape evolution directly into a high-level language and data analysis environment such as Matlab. SIGNUM (acronym for Simple Integrated Geomorphological Numerical Model) is an independent and self-contained Matlab, TIN-based landscape evolution model, built to simulate topography development at various space and time scales. SIGNUM is presently capable of simulating hillslope processes such as linear and nonlinear diffusion, fluvial incision into bedrock, spatially varying surface uplift which can be used to simulate changes in base level, thrust and faulting, as well as effects of climate changes. Although based on accepted and well-known processes and algorithms in its present version, it is built with a modular structure, which allows to easily modify and upgrade the simulated physical processes to suite virtually any user needs. The code is conceived as an open-source project, and is thus an ideal tool for both research and didactic purposes, thanks to the high-level nature of the Matlab environment and its popularity among the scientific community. In this paper the simulation code is presented together with some simple examples of surface evolution, and guidelines for development of new modules and algorithms are proposed.

  18. Cultural and Technological Issues and Solutions for Geodynamics Software Citation

    NASA Astrophysics Data System (ADS)

    Heien, E. M.; Hwang, L.; Fish, A. E.; Smith, M.; Dumit, J.; Kellogg, L. H.

    2014-12-01

    Computational software and custom-written codes play a key role in scientific research and teaching, providing tools to perform data analysis and forward modeling through numerical computation. However, development of these codes is often hampered by the fact that there is no well-defined way for the authors to receive credit or professional recognition for their work through the standard methods of scientific publication and subsequent citation of the work. This in turn may discourage researchers from publishing their codes or making them easier for other scientists to use. We investigate the issues involved in citing software in a scientific context, and introduce features that should be components of a citation infrastructure, particularly oriented towards the codes and scientific culture in the area of geodynamics research. The codes used in geodynamics are primarily specialized numerical modeling codes for continuum mechanics problems; they may be developed by individual researchers, teams of researchers, geophysicists in collaboration with computational scientists and applied mathematicians, or by coordinated community efforts such as the Computational Infrastructure for Geodynamics. Some but not all geodynamics codes are open-source. These characteristics are common to many areas of geophysical software development and use. We provide background on the problem of software citation and discuss some of the barriers preventing adoption of such citations, including social/cultural barriers, insufficient technological support infrastructure, and an overall lack of agreement about what a software citation should consist of. We suggest solutions in an initial effort to create a system to support citation of software and promotion of scientific software development.

  19. OOSTethys - Open Source Software for the Global Earth Observing Systems of Systems

    NASA Astrophysics Data System (ADS)

    Bridger, E.; Bermudez, L. E.; Maskey, M.; Rueda, C.; Babin, B. L.; Blair, R.

    2009-12-01

    An open source software project is much more than just picking the right license, hosting modular code and providing effective documentation. Success in advancing in an open collaborative way requires that the process match the expected code functionality to the developer's personal expertise and organizational needs as well as having an enthusiastic and responsive core lead group. We will present the lessons learned fromOOSTethys , which is a community of software developers and marine scientists who develop open source tools, in multiple languages, to integrate ocean observing systems into an Integrated Ocean Observing System (IOOS). OOSTethys' goal is to dramatically reduce the time it takes to install, adopt and update standards-compliant web services. OOSTethys has developed servers, clients and a registry. Open source PERL, PYTHON, JAVA and ASP tool kits and reference implementations are helping the marine community publish near real-time observation data in interoperable standard formats. In some cases publishing an OpenGeospatial Consortium (OGC), Sensor Observation Service (SOS) from NetCDF files or a database or even CSV text files could take only minutes depending on the skills of the developer. OOSTethys is also developing an OGC standard registry, Catalog Service for Web (CSW). This open source CSW registry was implemented to easily register and discover SOSs using ISO 19139 service metadata. A web interface layer over the CSW registry simplifies the registration process by harvesting metadata describing the observations and sensors from the “GetCapabilities” response of SOS. OPENIOOS is the web client, developed in PERL to visualize the sensors in the SOS services. While the number of OOSTethys software developers is small, currently about 10 around the world, the number of OOSTethys toolkit implementers is larger and growing and the ease of use has played a large role in spreading the use of interoperable standards compliant web services widely in the marine community.

  20. McSKY: A hybrid Monte-Carlo lime-beam code for shielded gamma skyshine calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J.K.; Faw, R.E.; Stedry, M.H.

    1994-07-01

    McSKY evaluates skyshine dose from an isotropic, monoenergetic, point photon source collimated into either a vertical cone or a vertical structure with an N-sided polygon cross section. The code assumes an overhead shield of two materials, through the user can specify zero shield thickness for an unshielded calculation. The code uses a Monte-Carlo algorithm to evaluate transport through source shields and the integral line source to describe photon transport through the atmosphere. The source energy must be between 0.02 and 100 MeV. For heavily shielded sources with energies above 20 MeV, McSKY results must be used cautiously, especially at detectormore » locations near the source.« less

  1. Recent Improvements in the FDNS CFD Code and its Associated Process

    NASA Technical Reports Server (NTRS)

    West, Jeff S.; Dorney, Suzanne M.; Turner, Jim (Technical Monitor)

    2002-01-01

    This viewgraph presentation gives an overview on recent improvements in the Finite Difference Navier Stokes (FDNS) computational fluid dynamics (CFD) code and its associated process. The development of a utility, PreViewer, has essentially eliminated the creeping of simple human error into the FDNS Solution process. Extension of PreViewer to encapsulate the Domain Decompression process has made practical the routine use of parallel processing. The combination of CVS source control and ATS consistency validation significantly increases the efficiency of the CFD process.

  2. LSSGalPy: Interactive Visualization of the Large-scale Environment Around Galaxies

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Duarte Puertas, S.; Ruiz, J. E.; Sabater, J.; Verley, S.; Bergond, G.

    2017-05-01

    New tools are needed to handle the growth of data in astrophysics delivered by recent and upcoming surveys. We aim to build open-source, light, flexible, and interactive software designed to visualize extensive three-dimensional (3D) tabular data. Entirely written in the Python language, we have developed interactive tools to browse and visualize the positions of galaxies in the universe and their positions with respect to its large-scale structures (LSS). Motivated by a previous study, we created two codes using Mollweide projection and wedge diagram visualizations, where survey galaxies can be overplotted on the LSS of the universe. These are interactive representations where the visualizations can be controlled by widgets. We have released these open-source codes that have been designed to be easily re-used and customized by the scientific community to fulfill their needs. The codes are adaptable to other kinds of 3D tabular data and are robust enough to handle several millions of objects. .

  3. Study of negative ion transport phenomena in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, D.; Paméla, J.

    1996-07-01

    NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.

  4. Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding

    NASA Astrophysics Data System (ADS)

    Zhang, Shunwai; Yang, Fengfan; Tang, Lei; Ejaz, Saqib; Luo, Lin; Maharaj, B. T.

    2016-03-01

    In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.

  5. Performance and Architecture Lab Modeling Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-06-19

    Analytical application performance models are critical for diagnosing performance-limiting resources, optimizing systems, and designing machines. Creating models, however, is difficult. Furthermore, models are frequently expressed in forms that are hard to distribute and validate. The Performance and Architecture Lab Modeling tool, or Palm, is a modeling tool designed to make application modeling easier. Palm provides a source code modeling annotation language. Not only does the modeling language divide the modeling task into sub problems, it formally links an application's source code with its model. This link is important because a model's purpose is to capture application behavior. Furthermore, this linkmore » makes it possible to define rules for generating models according to source code organization. Palm generates hierarchical models according to well-defined rules. Given an application, a set of annotations, and a representative execution environment, Palm will generate the same model. A generated model is a an executable program whose constituent parts directly correspond to the modeled application. Palm generates models by combining top-down (human-provided) semantic insight with bottom-up static and dynamic analysis. A model's hierarchy is defined by static and dynamic source code structure. Because Palm coordinates models and source code, Palm's models are 'first-class' and reproducible. Palm automates common modeling tasks. For instance, Palm incorporates measurements to focus attention, represent constant behavior, and validate models. Palm's workflow is as follows. The workflow's input is source code annotated with Palm modeling annotations. The most important annotation models an instance of a block of code. Given annotated source code, the Palm Compiler produces executables and the Palm Monitor collects a representative performance profile. The Palm Generator synthesizes a model based on the static and dynamic mapping of annotations to program behavior. The model -- an executable program -- is a hierarchical composition of annotation functions, synthesized functions, statistics for runtime values, and performance measurements.« less

  6. Developing Discontinuous Galerkin Methods for Solving Multiphysics Problems in General Relativity

    NASA Astrophysics Data System (ADS)

    Kidder, Lawrence; Field, Scott; Teukolsky, Saul; Foucart, Francois; SXS Collaboration

    2016-03-01

    Multi-messenger observations of the merger of black hole-neutron star and neutron star-neutron star binaries, and of supernova explosions will probe fundamental physics inaccessible to terrestrial experiments. Modeling these systems requires a relativistic treatment of hydrodynamics, including magnetic fields, as well as neutrino transport and nuclear reactions. The accuracy, efficiency, and robustness of current codes that treat all of these problems is not sufficient to keep up with the observational needs. We are building a new numerical code that uses the Discontinuous Galerkin method with a task-based parallelization strategy, a promising combination that will allow multiphysics applications to be treated both accurately and efficiently on petascale and exascale machines. The code will scale to more than 100,000 cores for efficient exploration of the parameter space of potential sources and allowed physics, and the high-fidelity predictions needed to realize the promise of multi-messenger astronomy. I will discuss the current status of the development of this new code.

  7. Chromaticity calculations and code comparisons for x-ray lithography source XLS and SXLS rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    1988-06-16

    This note presents the chromaticity calculations and code comparison results for the (x-ray lithography source) XLS (Chasman Green, XUV Cosy lattice) and (2 magnet 4T) SXLS lattices, with the standard beam optic codes, including programs SYNCH88.5, MAD6, PATRICIA88.4, PATPET88.2, DIMAD, BETA, and MARYLIE. This analysis is a part of our ongoing accelerator physics code studies. 4 figs., 10 tabs.

  8. The Astrophysics Source Code Library: Where Do We Go from Here?

    NASA Astrophysics Data System (ADS)

    Allen, A.; Berriman, B.; DuPrie, K.; Hanisch, R. J.; Mink, J.; Nemiroff, R. J.; Shamir, L.; Shortridge, K.; Taylor, M. B.; Teuben, P.; Wallen, J.

    2014-05-01

    The Astrophysics Source Code Library1, started in 1999, has in the past three years grown from a repository for 40 codes to a registry of over 700 codes that are now indexed by ADS. What comes next? We examine the future of the , the challenges facing it, the rationale behind its practices, and the need to balance what we might do with what we have the resources to accomplish.

  9. Evaluating Open-Source Full-Text Search Engines for Matching ICD-10 Codes.

    PubMed

    Jurcău, Daniel-Alexandru; Stoicu-Tivadar, Vasile

    2016-01-01

    This research presents the results of evaluating multiple free, open-source engines on matching ICD-10 diagnostic codes via full-text searches. The study investigates what it takes to get an accurate match when searching for a specific diagnostic code. For each code the evaluation starts by extracting the words that make up its text and continues with building full-text search queries from the combinations of these words. The queries are then run against all the ICD-10 codes until a match indicates the code in question as a match with the highest relative score. This method identifies the minimum number of words that must be provided in order for the search engines choose the desired entry. The engines analyzed include a popular Java-based full-text search engine, a lightweight engine written in JavaScript which can even execute on the user's browser, and two popular open-source relational database management systems.

  10. CARES/LIFE Software Commercialization

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Lewis Research Center has entered into a letter agreement with BIOSYM Technologies Inc. (now merged with Molecular Simulations Inc. (MSI)). Under this agreement, NASA will provide a developmental copy of the CARES/LIFE computer program to BIOSYM for evaluation. This computer code predicts the time-dependent reliability of a thermomechanically loaded component. BIOSYM will become familiar with CARES/LIFE, provide results of computations useful in validating the code, evaluate it for potential commercialization, and submit suggestions for improvements or extensions to the code or its documentation. If BIOSYM/Molecular Simulations reaches a favorable evaluation of CARES/LIFE, NASA will enter into negotiations for a cooperative agreement with BIOSYM/Molecular Simulations to further develop the code--adding features such as a user-friendly interface and other improvements. This agreement would give BIOSYM intellectual property rights in the modified codes, which they could protect and then commercialize. NASA would provide BIOSYM with the NASA-developed source codes and would agree to cooperate with BIOSYM in further developing the code. In return, NASA would receive certain use rights in the modified CARES/LIFE program. Presently BIOSYM Technologies Inc. has been involved with integration issues concerning its merger with Molecular Simulations Inc., since both companies used to compete in the computational chemistry market, and to some degree, in the materials market. Consequently, evaluation of the CARES/LIFE software is on hold for a month or two while the merger is finalized. Their interest in CARES continues, however, and they expect to get back to the evaluation by early November 1995.

  11. Clawpack: Building an open source ecosystem for solving hyperbolic PDEs

    USGS Publications Warehouse

    Iverson, Richard M.; Mandli, K.T.; Ahmadia, Aron J.; Berger, M.J.; Calhoun, Donna; George, David L.; Hadjimichael, Y.; Ketcheson, David I.; Lemoine, Grady L.; LeVeque, Randall J.

    2016-01-01

    Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model. Clawpack: building an open source ecosystem for solving hyperbolic PDEs.

  12. PACER -- A fast running computer code for the calculation of short-term containment/confinement loads following coolant boundary failure. Volume 2: User information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sienicki, J.J.

    A fast running and simple computer code has been developed to calculate pressure loadings inside light water reactor containments/confinements under loss-of-coolant accident conditions. PACER was originally developed to calculate containment/confinement pressure and temperature time histories for loss-of-coolant accidents in Soviet-designed VVER reactors and is relevant to the activities of the US International Nuclear Safety Center. The code employs a multicompartment representation of the containment volume and is focused upon application to early time containment phenomena during and immediately following blowdown. PACER has been developed for FORTRAN 77 and earlier versions of FORTRAN. The code has been successfully compiled and executedmore » on SUN SPARC and Hewlett-Packard HP-735 workstations provided that appropriate compiler options are specified. The code incorporates both capabilities built around a hardwired default generic VVER-440 Model V230 design as well as fairly general user-defined input. However, array dimensions are hardwired and must be changed by modifying the source code if the number of compartments/cells differs from the default number of nine. Detailed input instructions are provided as well as a description of outputs. Input files and selected output are presented for two sample problems run on both HP-735 and SUN SPARC workstations.« less

  13. Software Model Checking of ARINC-653 Flight Code with MCP

    NASA Technical Reports Server (NTRS)

    Thompson, Sarah J.; Brat, Guillaume; Venet, Arnaud

    2010-01-01

    The ARINC-653 standard defines a common interface for Integrated Modular Avionics (IMA) code. In particular, ARINC-653 Part 1 specifies a process- and partition-management API that is analogous to POSIX threads, but with certain extensions and restrictions intended to support the implementation of high reliability flight code. MCP is a software model checker, developed at NASA Ames, that provides capabilities for model checking C and C++ source code. In this paper, we present recent work aimed at implementing extensions to MCP that support ARINC-653, and we discuss the challenges and opportunities that consequentially arise. Providing support for ARINC-653 s time and space partitioning is nontrivial, though there are implicit benefits for partial order reduction possible as a consequence of the API s strict interprocess communication policy.

  14. Comment on ‘egs_brachy: a versatile and fast Monte Carlo code for brachytherapy’

    NASA Astrophysics Data System (ADS)

    Yegin, Gultekin

    2018-02-01

    In a recent paper (Chamberland et al 2016 Phys. Med. Biol. 61 8214) develop a new Monte Carlo code called egs_brachy for brachytherapy treatments. It is based on EGSnrc, and written in the C++ programming language. In order to benchmark the egs_brachy code, the authors use it in various test case scenarios in which complex geometry conditions exist. Another EGSnrc based brachytherapy dose calculation engine, BrachyDose, is used for dose comparisons. The authors fail to prove that egs_brachy can produce reasonable dose values for brachytherapy sources in a given medium. The dose comparisons in the paper are erroneous and misleading. egs_brachy should not be used in any further research studies unless and until all the potential bugs are fixed in the code.

  15. New developments in the McStas neutron instrument simulation package

    NASA Astrophysics Data System (ADS)

    Willendrup, P. K.; Knudsen, E. B.; Klinkby, E.; Nielsen, T.; Farhi, E.; Filges, U.; Lefmann, K.

    2014-07-01

    The McStas neutron ray-tracing software package is a versatile tool for building accurate simulators of neutron scattering instruments at reactors, short- and long-pulsed spallation sources such as the European Spallation Source. McStas is extensively used for design and optimization of instruments, virtual experiments, data analysis and user training. McStas was founded as a scientific, open-source collaborative code in 1997. This contribution presents the project at its current state and gives an overview of the main new developments in McStas 2.0 (December 2012) and McStas 2.1 (expected fall 2013), including many new components, component parameter uniformisation, partial loss of backward compatibility, updated source brilliance descriptions, developments toward new tools and user interfaces, web interfaces and a new method for estimating beam losses and background from neutron optics.

  16. The 2016 Bioinformatics Open Source Conference (BOSC)

    PubMed Central

    Harris, Nomi L.; Cock, Peter J.A.; Chapman, Brad; Fields, Christopher J.; Hokamp, Karsten; Lapp, Hilmar; Muñoz-Torres, Monica; Wiencko, Heather

    2016-01-01

    Message from the ISCB: The Bioinformatics Open Source Conference (BOSC) is a yearly meeting organized by the Open Bioinformatics Foundation (OBF), a non-profit group dedicated to promoting the practice and philosophy of Open Source software development and Open Science within the biological research community. BOSC has been run since 2000 as a two-day Special Interest Group (SIG) before the annual ISMB conference. The 17th annual BOSC ( http://www.open-bio.org/wiki/BOSC_2016) took place in Orlando, Florida in July 2016. As in previous years, the conference was preceded by a two-day collaborative coding event open to the bioinformatics community. The conference brought together nearly 100 bioinformatics researchers, developers and users of open source software to interact and share ideas about standards, bioinformatics software development, and open and reproducible science. PMID:27781083

  17. Technical Support Document for Version 3.4.0 of the COMcheck Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan

    2007-09-14

    COMcheck provides an optional way to demonstrate compliance with commercial and high-rise residential building energy codes. Commercial buildings include all use groups except single family and multifamily not over three stories in height. COMcheck was originally based on ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989) requirements and is intended for use with various codes based on Standard 90.1, including the Codification of ASHRAE/IES Standard 90.1-1989 (90.1-1989 Code) (ASHRAE 1989a, 1993b) and ASHRAE/IESNA Standard 90.1-1999 (Standard 90.1-1999). This includes jurisdictions that have adopted the 90.1-1989 Code, Standard 90.1-1989, Standard 90.1-1999, or their own code based on one of these. We view Standard 90.1-1989more » and the 90.1-1989 Code as having equivalent technical content and have used both as source documents in developing COMcheck. This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards.« less

  18. Optical Surface Analysis

    DTIC Science & Technology

    1996-08-01

    34 : " ... , h„.,. ... rP,„onse includinq the time for reviewing instructions, searching existing data sources , gÄÄa^^^ Shsi^ BT ::^^"!in9’°n...DISTRIBUTION CODE ^^ZZ^Z^ZZ centered around the continued development of a unique "^ ^^ to semiconductor materials characterization. A brief...NEW SCATTEROMETER CAPABILITIES 23 4.1 Polarization control 23 4.2 Four-inch sample translation 25 4.3 New photometer 26 4.4 New laser sources 27

  19. Hand Gesture Data Collection Procedure Using a Myo Armband for Machine Learning

    DTIC Science & Technology

    2015-09-01

    instructions, searching existing data sources , gathering and maintaining the data needed, and completing and reviewing the collection information...data using a Myo armband. The source code for this work is included as an Appendix. 15. SUBJECT TERMS Myo, Machine Learning, Classifier, Data...development in multiple platfonns (e.g., Windows, iOS, Android , etc.) and many languages (e.g. , Java, C++, C#, Lua, etc.). For the data collection

  20. Open Source Software Compliance within the Government

    DTIC Science & Technology

    2016-12-01

    The exception to this rule is the various General Public License (GPLs), which consider all distributions to contractors as outside distribution...is developed by a contractor at the government’s expense or for the government’s exclusive use. The third condition that must be met is that ERDC...executables and source code can only be offered by an authorized delivering entity to an authorized receiving entity. This means that contractors , with

  1. All Source Analysis System (ASAS): Migration from VAX to Alpha AXP computer systems

    NASA Technical Reports Server (NTRS)

    Sjoholm-Sierchio, Michael J.; Friedman, Steven Z. (Editor)

    1994-01-01

    The Jet Propulsion Laboratory's (JPL's) experience migrating existing VAX applications to Digital Equipment Corporation's new Alpha AXP processor is covered. The rapid development approach used during the 10-month period required to migrate the All Source Analysis System (ASAS), 1.5 million lines of FORTRAN, C, and Ada code, is also covered. ASAS, an automated tactical intelligence system, was developed by the Jet Propulsion Laboratory for the U. S. Army. Other benefits achieved as a result of the significant performance improvements provided by Alpha AXP platform are also described.

  2. MODEST: A Tool for Geodesy and Astronomy

    NASA Technical Reports Server (NTRS)

    Sovers, Ojars J.; Jacobs, Christopher S.; Lanyi, Gabor E.

    2004-01-01

    Features of the JPL VLBI modeling and estimation software "MODEST" are reviewed. Its main advantages include thoroughly documented model physics, portability, and detailed error modeling. Two unique models are included: modeling of source structure and modeling of both spatial and temporal correlations in tropospheric delay noise. History of the code parallels the development of the astrometric and geodetic VLBI technique and the software retains many of the models implemented during its advancement. The code has been traceably maintained since the early 1980s, and will continue to be updated with recent IERS standards. Scripts are being developed to facilitate user-friendly data processing in the era of e-VLBI.

  3. QGene 4.0, an extensible Java QTL-analysis platform.

    PubMed

    Joehanes, Roby; Nelson, James C

    2008-12-01

    Of many statistical methods developed to date for quantitative trait locus (QTL) analysis, only a limited subset are available in public software allowing their exploration, comparison and practical application by researchers. We have developed QGene 4.0, a plug-in platform that allows execution and comparison of a variety of modern QTL-mapping methods and supports third-party addition of new ones. The software accommodates line-cross mating designs consisting of any arbitrary sequence of selfing, backcrossing, intercrossing and haploid-doubling steps that includes map, population, and trait simulators; and is scriptable. Software and documentation are available at http://coding.plantpath.ksu.edu/qgene. Source code is available on request.

  4. Implementing the UCSD PASCAL system on the MODCOMP computer. [deep space network

    NASA Technical Reports Server (NTRS)

    Wolfe, T.

    1980-01-01

    The implementation of an interactive software development system (UCSD PASCAL) on the MODCOMP computer is discussed. The development of an interpreter for the MODCOMP II and the MODCOMP IV computers, written in MODCOMP II assembly language, is described. The complete Pascal programming system was run successfully on a MODCOMP II and MODCOMP IV under both the MAX II/III and MAX IV operating systems. The source code for an 8080 microcomputer version of the interpreter was used as the design for the MODCOMP interpreter. A mapping of the functions within the 8080 interpreter into MODCOMP II assembly language was the method used to code the interpreter.

  5. Object-oriented productivity metrics

    NASA Technical Reports Server (NTRS)

    Connell, John L.; Eller, Nancy

    1992-01-01

    Software productivity metrics are useful for sizing and costing proposed software and for measuring development productivity. Estimating and measuring source lines of code (SLOC) has proven to be a bad idea because it encourages writing more lines of code and using lower level languages. Function Point Analysis is an improved software metric system, but it is not compatible with newer rapid prototyping and object-oriented approaches to software development. A process is presented here for counting object-oriented effort points, based on a preliminary object-oriented analysis. It is proposed that this approach is compatible with object-oriented analysis, design, programming, and rapid prototyping. Statistics gathered on actual projects are presented to validate the approach.

  6. Exploration of Uncertainty in Glacier Modelling

    NASA Technical Reports Server (NTRS)

    Thompson, David E.

    1999-01-01

    There are procedures and methods for verification of coding algebra and for validations of models and calculations that are in use in the aerospace computational fluid dynamics (CFD) community. These methods would be efficacious if used by the glacier dynamics modelling community. This paper is a presentation of some of those methods, and how they might be applied to uncertainty management supporting code verification and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modelling are discussed. After establishing sources of uncertainty and methods for code verification, the paper looks at a representative sampling of verification and validation efforts that are underway in the glacier modelling community, and establishes a context for these within overall solution quality assessment. Finally, an information architecture and interactive interface is introduced and advocated. This Integrated Cryospheric Exploration (ICE) Environment is proposed for exploring and managing sources of uncertainty in glacier modelling codes and methods, and for supporting scientific numerical exploration and verification. The details and functionality of this Environment are described based on modifications of a system already developed for CFD modelling and analysis.

  7. Ray-tracing 3D dust radiative transfer with DART-Ray: code upgrade and public release

    NASA Astrophysics Data System (ADS)

    Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard J.; Clarke, Adam J.; Debattista, Victor P.; Fischera, Jörg; Pasetto, Stefano; Rushton, Mark; Thirlwall, Jordan J.

    2017-11-01

    We present an extensively updated version of the purely ray-tracing 3D dust radiation transfer code DART-Ray. The new version includes five major upgrades: 1) a series of optimizations for the ray-angular density and the scattered radiation source function; 2) the implementation of several data and task parallelizations using hybrid MPI+OpenMP schemes; 3) the inclusion of dust self-heating; 4) the ability to produce surface brightness maps for observers within the models in HEALPix format; 5) the possibility to set the expected numerical accuracy already at the start of the calculation. We tested the updated code with benchmark models where the dust self-heating is not negligible. Furthermore, we performed a study of the extent of the source influence volumes, using galaxy models, which are critical in determining the efficiency of the DART-Ray algorithm. The new code is publicly available, documented for both users and developers, and accompanied by several programmes to create input grids for different model geometries and to import the results of N-body and SPH simulations. These programmes can be easily adapted to different input geometries, and for different dust models or stellar emission libraries.

  8. Monte Carlo simulation of β γ coincidence system using plastic scintillators in 4π geometry

    NASA Astrophysics Data System (ADS)

    Dias, M. S.; Piuvezam-Filho, H.; Baccarelli, A. M.; Takeda, M. N.; Koskinas, M. F.

    2007-09-01

    A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, São Paulo, Brazil, has been applied for simulating a 4 πβ(PS)-γ coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4 π geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to 60Co and 133Ba radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4 πβ(PC)-γ coincidence system.

  9. Image authentication using distributed source coding.

    PubMed

    Lin, Yao-Chung; Varodayan, David; Girod, Bernd

    2012-01-01

    We present a novel approach using distributed source coding for image authentication. The key idea is to provide a Slepian-Wolf encoded quantized image projection as authentication data. This version can be correctly decoded with the help of an authentic image as side information. Distributed source coding provides the desired robustness against legitimate variations while detecting illegitimate modification. The decoder incorporating expectation maximization algorithms can authenticate images which have undergone contrast, brightness, and affine warping adjustments. Our authentication system also offers tampering localization by using the sum-product algorithm.

  10. Aquarius Project: Research in the System Architecture of Accelerators for the High Performance Execution of Logic Programs.

    DTIC Science & Technology

    1991-05-31

    benchmarks ............ .... . .. .. . . .. 220 Appendix G : Source code of the Aquarius Prolog compiler ........ . 224 Chapter I Introduction "You’re given...notation, a tool that is used throughout the compiler’s implementation. Appendix F lists the source code of the C and Prolog benchmarks. Appendix G lists the...source code of the compilcr. 5 "- standard form Prolog / a-sfomadon / head umrvln Convert to tmeikernel Prol g vrans~fonaon 1symbolic execution

  11. Integrating HCI Specialists into Open Source Software Development Projects

    NASA Astrophysics Data System (ADS)

    Hedberg, Henrik; Iivari, Netta

    Typical open source software (OSS) development projects are organized around technically talented developers, whose communication is based on technical aspects and source code. Decision-making power is gained through proven competence and activity in the project, and non-technical end-user opinions are too many times neglected. In addition, also human-computer interaction (HCI) specialists have encountered difficulties in trying to participate in OSS projects, because there seems to be no clear authority and responsibility for them. In this paper, based on HCI and OSS literature, we introduce an extended OSS development project organization model that adds a new level of communication and roles for attending human aspects of software. The proposed model makes the existence of HCI specialists visible in the projects, and promotes interaction between developers and the HCI specialists in the course of a project.

  12. Opening up Architectures of Software-Intensive Systems: A Functional Decomposition to Support System Comprehension

    DTIC Science & Technology

    2007-10-01

    Architecture ................................................................................ 14 Figure 2. Eclipse Java Model...16 Figure 3. Eclipse Java Model at the Source Code Level...24 Figure 9. Java Source Code

  13. WorldWide Telescope: A Newly Open Source Astronomy Visualization System

    NASA Astrophysics Data System (ADS)

    Fay, Jonathan; Roberts, Douglas A.

    2016-01-01

    After eight years of development by Microsoft Research, WorldWide Telescope (WWT) was made an open source project at the end of June 2015. WWT was motivated by the desire to put new surveys of objects, such as the Sloan Digital Sky Survey in the context of the night sky. The development of WWT under Microsoft started with the creation of a Windows desktop client that is widely used in various education, outreach and research projects. Using this, users can explore the data built into WWT as well as data that is loaded in. Beyond exploration, WWT can be used to create tours that present various datasets a narrative format.In the past two years, the team developed a collection of web controls, including an HTML5 web client, which contains much of the functionality of the Windows desktop client. The project under Microsoft has deep connections with several user communities such as education through the WWT Ambassadors program, http://wwtambassadors.org/ and with planetariums and museums such as the Adler Planetarium. WWT can also support research, including using WWT to visualize the Bones of the Milky Way and rich connections between WWT and the Astrophysical Data Systems (ADS, http://labs.adsabs.harvard.edu/adsabs/). One important new research connection is the use of WWT to create dynamic and potentially interactive supplements to journal articles, which have been created in 2015.Now WWT is an open source community lead project. The source code is available in GitHub (https://github.com/WorldWideTelescope). There is significant developer documentation on the website (http://worldwidetelescope.org/Developers/) and an extensive developer workshops (http://wwtworkshops.org/?tribe_events=wwt-developer-workshop) has taken place in the fall of 2015.Now that WWT is open source anyone who has the interest in the project can be a contributor. As important as helping out with coding, the project needs people interested in documentation, testing, training and other roles.

  14. Software Tools for Development on the Peregrine System | High-Performance

    Science.gov Websites

    Computing | NREL Software Tools for Development on the Peregrine System Software Tools for and manage software at the source code level. Cross-Platform Make and SCons The "Cross-Platform Make" (CMake) package is from Kitware, and SCons is a modern software build tool based on Python

  15. Model documentation: Electricity Market Module, Electricity Fuel Dispatch Submodule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report documents the objectives, analytical approach and development of the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  16. Accuracy of external cause-of-injury coding in VA polytrauma patient discharge records.

    PubMed

    Carlson, Kathleen F; Nugent, Sean M; Grill, Joseph; Sayer, Nina A

    2010-01-01

    Valid and efficient methods of identifying the etiology of treated injuries are critical for characterizing patient populations and developing prevention and rehabilitation strategies. We examined the accuracy of external cause-of-injury codes (E-codes) in Veterans Health Administration (VHA) administrative data for a population of injured patients. Chart notes and E-codes were extracted for 566 patients treated at any one of four VHA Polytrauma Rehabilitation Center sites between 2001 and 2006. Two expert coders, blinded to VHA E-codes, used chart notes to assign "gold standard" E-codes to injured patients. The accuracy of VHA E-coding was examined based on these gold standard E-codes. Only 382 of 517 (74%) injured patients were assigned E-codes in VHA records. Sensitivity of VHA E-codes varied significantly by site (range: 59%-91%, p < 0.001). Sensitivity was highest for combat-related injuries (81%) and lowest for fall-related injuries (60%). Overall specificity of E-codes was high (92%). E-coding accuracy was markedly higher when we restricted analyses to records that had been assigned VHA E-codes. E-codes may not be valid for ascertaining source-of-injury data for all injuries among VHA rehabilitation inpatients at this time. Enhanced training and policies may ensure more widespread, standardized use and accuracy of E-codes for injured veterans treated in the VHA.

  17. Scalable Video Transmission Over Multi-Rate Multiple Access Channels

    DTIC Science & Technology

    2007-06-01

    Rate - compatible punctured convolutional codes (RCPC codes ) and their ap- plications,” IEEE...source encoded using the MPEG-4 video codec. The source encoded bitstream is then channel encoded with Rate Compatible Punctured Convolutional (RCPC...Clark, and J. M. Geist, “ Punctured convolutional codes or rate (n-1)/n and simplified maximum likelihood decoding,” IEEE Transactions on

  18. Comparison of TG‐43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes

    PubMed Central

    Zaker, Neda; Sina, Sedigheh; Koontz, Craig; Meigooni1, Ali S.

    2016-01-01

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross‐sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross‐sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in  125I and  103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code — MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low‐energy sources such as  125I and  103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for  103Pd and 10 cm for  125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for  192Ir and less than 1.2% for  137Cs between the three codes. PACS number(s): 87.56.bg PMID:27074460

  19. Software to model AXAF image quality

    NASA Technical Reports Server (NTRS)

    Ahmad, Anees

    1993-01-01

    This draft final report describes the work performed under this delivery order from May 1992 through June 1993. The purpose of this contract was to enhance and develop an integrated optical performance modeling software for complex x-ray optical systems such as AXAF. The GRAZTRACE program developed by the MSFC Optical Systems Branch for modeling VETA-I was used as the starting baseline program. The original program was a large single file program and, therefore, could not be modified very efficiently. The original source code has been reorganized, and a 'Make Utility' has been written to update the original program. The new version of the source code consists of 36 small source files to make it easier for the code developer to manage and modify the program. A user library has also been built and a 'Makelib' utility has been furnished to update the library. With the user library, the users can easily access the GRAZTRACE source files and build a custom library. A user manual for the new version of GRAZTRACE has been compiled. The plotting capability for the 3-D point spread functions and contour plots has been provided in the GRAZTRACE using the graphics package DISPLAY. The Graphics emulator over the network has been set up for programming the graphics routine. The point spread function and the contour plot routines have also been modified to display the plot centroid, and to allow the user to specify the plot range, and the viewing angle options. A Command Mode version of GRAZTRACE has also been developed. More than 60 commands have been implemented in a Code-V like format. The functions covered in this version include data manipulation, performance evaluation, and inquiry and setting of internal parameters. The user manual for these commands has been formatted as in Code-V, showing the command syntax, synopsis, and options. An interactive on-line help system for the command mode has also been accomplished to allow the user to find valid commands, command syntax, and command function. A translation program has been written to convert FEA output from structural analysis to GRAZTRACE surface deformation file (.dfm file). The program can accept standard output files and list files from COSMOS/M and NASTRAN finite analysis programs. Some interactive options are also provided, such as Cartesian or cylindrical coordinate transformation, coordinate shift and scale, and axial length change. A computerized database for technical documents relating to the AXAF project has been established. Over 5000 technical documents have been entered into the master database. A user can now rapidly retrieve the desired documents relating to the AXAF project. The summary of the work performed under this contract is shown.

  20. An integrated development workflow for community-driven FOSS-projects using continuous integration tools

    NASA Astrophysics Data System (ADS)

    Bilke, Lars; Watanabe, Norihiro; Naumov, Dmitri; Kolditz, Olaf

    2016-04-01

    A complex software project in general with high standards regarding code quality requires automated tools to help developers in doing repetitive and tedious tasks such as compilation on different platforms and configurations, doing unit testing as well as end-to-end tests and generating distributable binaries and documentation. This is known as continuous integration (CI). A community-driven FOSS-project within the Earth Sciences benefits even more from CI as time and resources regarding software development are often limited. Therefore testing developed code on more than the developers PC is a task which is often neglected and where CI can be the solution. We developed an integrated workflow based on GitHub, Travis and Jenkins for the community project OpenGeoSys - a coupled multiphysics modeling and simulation package - allowing developers to concentrate on implementing new features in a tight feedback loop. Every interested developer/user can create a pull request containing source code modifications on the online collaboration platform GitHub. The modifications are checked (compilation, compiler warnings, memory leaks, undefined behaviors, unit tests, end-to-end tests, analyzing differences in simulation run results between changes etc.) from the CI system which automatically responds to the pull request or by email on success or failure with detailed reports eventually requesting to improve the modifications. Core team developers review the modifications and merge them into the main development line once they satisfy agreed standards. We aim for efficient data structures and algorithms, self-explaining code, comprehensive documentation and high test code coverage. This workflow keeps entry barriers to get involved into the project low and permits an agile development process concentrating on feature additions rather than software maintenance procedures.

  1. Hazardous Waste Handling Should be Defined

    ERIC Educational Resources Information Center

    Steigman, Harry

    1972-01-01

    An examination of the handling, storage and disposition of hazardous wastes from municipal and industrial sources, with a plea for the development of a uniform national hazardous waste code or listing that would be acceptable and useful to all state and federal agencies. (LK)

  2. 76 FR 23640 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... (Ophthalmic Instruments, Equipment, and Supplies), under the North American Industry Classification System...(a) Business Development (BD) program. DATES: Comments and source information must be submitted May... under PSC 6540 (Ophthalmic Instruments, Equipment, and Supplies), under NAICS code 339115 (Ophthalmic...

  3. Transforming Aggregate Object-Oriented Formal Specifications to Code

    DTIC Science & Technology

    1999-03-01

    integration issues associated with a formal-based software transformation system, such as the source specification, the problem space architecture , design architecture ... design transforms, and target software transforms. Software is critical in today’s Air Force, yet its specification, design, and development

  4. Complexity Measure for the Prototype System Description Language (PSDL)

    DTIC Science & Technology

    2002-06-01

    Albrecht, A. and Gaffney , J., Software Function Source Lines of Code and Development Effort Prediction, IEEE Transactions on Software Engineering...Through Meausrement”; Proceedings of the IEEE, Vol. 77, No. 4, April 89. Schach, Stephen, R., Software Engineering, Second Edition, IRWIN, Burr Ridge

  5. PD5: a general purpose library for primer design software.

    PubMed

    Riley, Michael C; Aubrey, Wayne; Young, Michael; Clare, Amanda

    2013-01-01

    Complex PCR applications for large genome-scale projects require fast, reliable and often highly sophisticated primer design software applications. Presently, such applications use pipelining methods to utilise many third party applications and this involves file parsing, interfacing and data conversion, which is slow and prone to error. A fully integrated suite of software tools for primer design would considerably improve the development time, the processing speed, and the reliability of bespoke primer design software applications. The PD5 software library is an open-source collection of classes and utilities, providing a complete collection of software building blocks for primer design and analysis. It is written in object-oriented C(++) with an emphasis on classes suitable for efficient and rapid development of bespoke primer design programs. The modular design of the software library simplifies the development of specific applications and also integration with existing third party software where necessary. We demonstrate several applications created using this software library that have already proved to be effective, but we view the project as a dynamic environment for building primer design software and it is open for future development by the bioinformatics community. Therefore, the PD5 software library is published under the terms of the GNU General Public License, which guarantee access to source-code and allow redistribution and modification. The PD5 software library is downloadable from Google Code and the accompanying Wiki includes instructions and examples: http://code.google.com/p/primer-design.

  6. ROS Hexapod

    NASA Technical Reports Server (NTRS)

    Davis, Kirsch; Bankieris, Derek

    2016-01-01

    As an intern project for NASA Johnson Space Center (JSC), my job was to familiarize myself and operate a Robotics Operating System (ROS). The project outcome converted existing software assets into ROS using nodes, enabling a robotic Hexapod to communicate to be functional and controlled by an existing PlayStation 3 (PS3) controller. Existing control algorithms and current libraries have no ROS capabilities within the Hexapod C++ source code when the internship started, but that has changed throughout my internship. Conversion of C++ codes to ROS enabled existing code to be compatible with ROS, and is now controlled using an existing PS3 controller. Furthermore, my job description was to design ROS messages and script programs that enabled assets to participate in the ROS ecosystem by subscribing and publishing messages. Software programming source code is written in directories using C++. Testing of software assets included compiling code within the Linux environment using a terminal. The terminal ran the code from a directory. Several problems occurred while compiling code and the code would not compile. So modifying code to where C++ can read the source code were made. Once the code was compiled and ran, the code was uploaded to Hexapod and then controlled by a PS3 controller. The project outcome has the Hexapod fully functional and compatible with ROS and operates using the PlayStation 3 controller. In addition, an open source software (IDE) Arduino board will be integrated into the ecosystem with designing circuitry on a breadboard to add additional behavior with push buttons, potentiometers and other simple elements in the electrical circuitry. Other projects with the Arduino will be a GPS module, digital clock that will run off 22 satellites to show accurate real time using a GPS signal and an internal patch antenna to communicate with satellites. In addition, this internship experience has led me to pursue myself to learn coding more efficiently and effectively to write, subscribe and publish my own source code in different programming languages. With some familiarity with software programming, it will enhance my skills in the electrical engineering field. In contrast, my experience here at JSC with the Simulation and Graphics Branch (ER7) has led me to take my coding skill to be more proficient to increase my knowledge in software programming, and also enhancing my skills in ROS. This knowledge will be taken back to my university to implement coding in a school project that will use source coding and ROS to work on the PR2 robot which is controlled by ROS software. My skills learned here will be used to integrate messages to subscribe and publish ROS messages to a PR2 robot. The PR2 robot will be controlled by an existing PS3 controller by changing C++ coding to subscribe and publish messages to ROS. Overall the skills that were obtained here will not be lost, but increased.

  7. Runtime Detection of C-Style Errors in UPC Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirkelbauer, P; Liao, C; Panas, T

    2011-09-29

    Unified Parallel C (UPC) extends the C programming language (ISO C 99) with explicit parallel programming support for the partitioned global address space (PGAS), which provides a global memory space with localized partitions to each thread. Like its ancestor C, UPC is a low-level language that emphasizes code efficiency over safety. The absence of dynamic (and static) safety checks allows programmer oversights and software flaws that can be hard to spot. In this paper, we present an extension of a dynamic analysis tool, ROSE-Code Instrumentation and Runtime Monitor (ROSECIRM), for UPC to help programmers find C-style errors involving the globalmore » address space. Built on top of the ROSE source-to-source compiler infrastructure, the tool instruments source files with code that monitors operations and keeps track of changes to the system state. The resulting code is linked to a runtime monitor that observes the program execution and finds software defects. We describe the extensions to ROSE-CIRM that were necessary to support UPC. We discuss complications that arise from parallel code and our solutions. We test ROSE-CIRM against a runtime error detection test suite, and present performance results obtained from running error-free codes. ROSE-CIRM is released as part of the ROSE compiler under a BSD-style open source license.« less

  8. Application of grammar-based codes for lossless compression of digital mammograms

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Krishnan, Srithar; Ma, Ngok-Wah

    2006-01-01

    A newly developed grammar-based lossless source coding theory and its implementation was proposed in 1999 and 2000, respectively, by Yang and Kieffer. The code first transforms the original data sequence into an irreducible context-free grammar, which is then compressed using arithmetic coding. In the study of grammar-based coding for mammography applications, we encountered two issues: processing time and limited number of single-character grammar G variables. For the first issue, we discover a feature that can simplify the matching subsequence search in the irreducible grammar transform process. Using this discovery, an extended grammar code technique is proposed and the processing time of the grammar code can be significantly reduced. For the second issue, we propose to use double-character symbols to increase the number of grammar variables. Under the condition that all the G variables have the same probability of being used, our analysis shows that the double- and single-character approaches have the same compression rates. By using the methods proposed, we show that the grammar code can outperform three other schemes: Lempel-Ziv-Welch (LZW), arithmetic, and Huffman on compression ratio, and has similar error tolerance capabilities as LZW coding under similar circumstances.

  9. Infrastructure Upgrades to Support Model Longevity and New Applications: The Variable Infiltration Capacity Model Version 5.0 (VIC 5.0)

    NASA Astrophysics Data System (ADS)

    Nijssen, B.; Hamman, J.; Bohn, T. J.

    2015-12-01

    The Variable Infiltration Capacity (VIC) model is a macro-scale semi-distributed hydrologic model. VIC development began in the early 1990s and it has been used extensively, applied from basin to global scales. VIC has been applied in a many use cases, including the construction of hydrologic data sets, trend analysis, data evaluation and assimilation, forecasting, coupled climate modeling, and climate change impact analysis. Ongoing applications of the VIC model include the University of Washington's drought monitor and forecast systems, and NASA's land data assimilation systems. The development of VIC version 5.0 focused on reconfiguring the legacy VIC source code to support a wider range of modern modeling applications. The VIC source code has been moved to a public Github repository to encourage participation by the model development community-at-large. The reconfiguration has separated the physical core of the model from the driver, which is responsible for memory allocation, pre- and post-processing and I/O. VIC 5.0 includes four drivers that use the same physical model core: classic, image, CESM, and Python. The classic driver supports legacy VIC configurations and runs in the traditional time-before-space configuration. The image driver includes a space-before-time configuration, netCDF I/O, and uses MPI for parallel processing. This configuration facilitates the direct coupling of streamflow routing, reservoir, and irrigation processes within VIC. The image driver is the foundation of the CESM driver; which couples VIC to CESM's CPL7 and a prognostic atmosphere. Finally, we have added a Python driver that provides access to the functions and datatypes of VIC's physical core from a Python interface. This presentation demonstrates how reconfiguring legacy source code extends the life and applicability of a research model.

  10. Delayed photo-emission model for beam optics codes

    DOE PAGES

    Jensen, Kevin L.; Petillo, John J.; Panagos, Dimitrios N.; ...

    2016-11-22

    Future advanced light sources and x-ray Free Electron Lasers require fast response from the photocathode to enable short electron pulse durations as well as pulse shaping, and so the ability to model delays in emission is needed for beam optics codes. The development of a time-dependent emission model accounting for delayed photoemission due to transport and scattering is given, and its inclusion in the Particle-in-Cell code MICHELLE results in changes to the pulse shape that are described. Furthermore, the model is applied to pulse elongation of a bunch traversing an rf injector, and to the smoothing of laser jitter onmore » a short pulse.« less

  11. Method of laser beam coding for control systems

    NASA Astrophysics Data System (ADS)

    Pałys, Tomasz; Arciuch, Artur; Walczak, Andrzej; Murawski, Krzysztof

    2017-08-01

    The article presents the method of encoding a laser beam for control systems. The experiments were performed using a red laser emitting source with a wavelength of λ = 650 nm and a power of P ≍ 3 mW. The aim of the study was to develop methods of modulation and demodulation of the laser beam. Results of research, in which we determined the effect of selected camera parameters, such as image resolution, number of frames per second on the result of demodulation of optical signal, is also shown in the paper. The experiments showed that the adopted coding method provides sufficient information encoded in a single laser beam (36 codes with the effectiveness of decoding at 99.9%).

  12. Feasibility study for a realistic training dedicated to radiological protection improvement

    NASA Astrophysics Data System (ADS)

    Courageot, Estelle; Reinald, Kutschera; Gaillard-Lecanu, Emmanuelle; Sylvie, Jahan; Riedel, Alexandre; Therache, Benjamin

    2014-06-01

    Any personnel involved in activities within the controlled area of a nuclear facility must be provided with appropriate radiological protection training. An evident purpose of this training is to know the regulation dedicated to workplaces where ionizing radiation may be present, in order to properly carry out the radiation monitoring, to use suitable protective equipments and to behave correctly if unexpected working conditions happen. A major difficulty of this training consist in having the most realistic reading from the monitoring devices for a given exposure situation, but without using real radioactive sources. A new approach is developed at EDF R&D for radiological protection training. This approach combines different technologies, in an environment representative of the workplace but geographically separated from the nuclear power plant: a training area representative of a workplace, a Man Machine Interface used by the trainer to define the source configuration and the training scenario, a geolocalization system, fictive radiation monitoring devices and a particle transport code able to calculate in real time the dose map due to the virtual sources. In a first approach, our real-time particles transport code, called Moderato, used only an attenuation low in straight line. To improve the realism further, we would like to switch a code based on the Monte Carlo transport of particles method like Geant 4 or MCNPX instead of Moderato. The aim of our study is the evaluation of the code in our application, in particular, the possibility to keep a real time response of our architecture.

  13. Lessons learned from a pilot implementation of the UMLS information sources map.

    PubMed

    Miller, P L; Frawley, S J; Wright, L; Roderer, N K; Powsner, S M

    1995-01-01

    To explore the software design issues involved in implementing an operational information sources map (ISM) knowledge base (KB) and system of navigational tools that can help medical users access network-based information sources relevant to a biomedical question. A pilot biomedical ISM KB and associated client-server software (ISM/Explorer) have been developed to help students, clinicians, researchers, and staff access network-based information sources, as part of the National Library of Medicine's (NLM) multi-institutional Unified Medical Language System (UMLS) project. The system allows the user to specify and constrain a search for a biomedical question of interest. The system then returns a list of sources matching the search. At this point the user may request 1) further information about a source, 2) that the list of sources be regrouped by different criteria to allow the user to get a better overall appreciation of the set of retrieved sources as a whole, or 3) automatic connection to a source. The pilot system operates in client-server mode and currently contains coded information for 121 sources. It is in routine use from approximately 40 workstations at the Yale School of Medicine. The lessons that have been learned are that: 1) it is important to make access to different versions of a source as seamless as possible, 2) achieving seamless, cross-platform access to heterogeneous sources is difficult, 3) significant differences exist between coding the subject content of an electronic information resource versus that of an article or a book, 4) customizing the ISM to multiple institutions entails significant complexities, and 5) there are many design trade-offs between specifying searches and viewing sets of retrieved sources that must be taken into consideration. An ISM KB and navigational tools have been constructed. In the process, much has been learned about the complexities of development and evaluation in this new environment, which are different from those for Gopher, wide area information servers (WAIS), World-Wide-Web (WWW), and MOSAIC resources.

  14. Advanced capabilities for materials modelling with Quantum ESPRESSO

    NASA Astrophysics Data System (ADS)

    Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S.

    2017-11-01

    Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

  15. Advanced capabilities for materials modelling with Quantum ESPRESSO.

    PubMed

    Giannozzi, P; Andreussi, O; Brumme, T; Bunau, O; Buongiorno Nardelli, M; Calandra, M; Car, R; Cavazzoni, C; Ceresoli, D; Cococcioni, M; Colonna, N; Carnimeo, I; Dal Corso, A; de Gironcoli, S; Delugas, P; DiStasio, R A; Ferretti, A; Floris, A; Fratesi, G; Fugallo, G; Gebauer, R; Gerstmann, U; Giustino, F; Gorni, T; Jia, J; Kawamura, M; Ko, H-Y; Kokalj, A; Küçükbenli, E; Lazzeri, M; Marsili, M; Marzari, N; Mauri, F; Nguyen, N L; Nguyen, H-V; Otero-de-la-Roza, A; Paulatto, L; Poncé, S; Rocca, D; Sabatini, R; Santra, B; Schlipf, M; Seitsonen, A P; Smogunov, A; Timrov, I; Thonhauser, T; Umari, P; Vast, N; Wu, X; Baroni, S

    2017-10-24

    Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

  16. Advanced capabilities for materials modelling with Quantum ESPRESSO.

    PubMed

    Andreussi, Oliviero; Brumme, Thomas; Bunau, Oana; Buongiorno Nardelli, Marco; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Cococcioni, Matteo; Colonna, Nicola; Carnimeo, Ivan; Dal Corso, Andrea; de Gironcoli, Stefano; Delugas, Pietro; DiStasio, Robert; Ferretti, Andrea; Floris, Andrea; Fratesi, Guido; Fugallo, Giorgia; Gebauer, Ralph; Gerstmann, Uwe; Giustino, Feliciano; Gorni, Tommaso; Jia, Junteng; Kawamura, Mitsuaki; Ko, Hsin-Yu; Kokalj, Anton; Küçükbenli, Emine; Lazzeri, Michele; Marsili, Margherita; Marzari, Nicola; Mauri, Francesco; Nguyen, Ngoc Linh; Nguyen, Huy-Viet; Otero-de-la-Roza, Alberto; Paulatto, Lorenzo; Poncé, Samuel; Giannozzi, Paolo; Rocca, Dario; Sabatini, Riccardo; Santra, Biswajit; Schlipf, Martin; Seitsonen, Ari Paavo; Smogunov, Alexander; Timrov, Iurii; Thonhauser, Timo; Umari, Paolo; Vast, Nathalie; Wu, Xifan; Baroni, Stefano

    2017-09-27

    Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software. © 2017 IOP Publishing Ltd.

  17. Code Sharing and Collaboration: Experiences from the Scientist's Expert Assistant Project and their Relevance to the Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Grosvenor, Sandy; Wolf, Karl; Li, Connie; Koratkar, Anuradha; Powers, Edward I. (Technical Monitor)

    2001-01-01

    In the Virtual Observatory (VO), software tools will perform the functions that have traditionally been performed by physical observatories and their instruments. These tools will not be adjuncts to VO functionality but will make up the very core of the VO. Consequently, the tradition of observatory and system independent tools serving a small user base is not valid for the VO. For the VO to succeed, we must improve software collaboration and code sharing between projects and groups. A significant goal of the Scientist's Expert Assistant (SEA) project has been promoting effective collaboration and code sharing between groups. During the past three years, the SEA project has been developing prototypes for new observation planning software tools and strategies. Initially funded by the Next Generation Space Telescope, parts of the SEA code have since been adopted by the Space Telescope Science Institute. SEA has also supplied code for SOFIA, the SIRTF planning tools, and the JSky Open Source Java library. The potential benefits of sharing code are clear. The recipient gains functionality for considerably less cost. The provider gains additional developers working with their code. If enough users groups adopt a set of common code and tools, defacto standards can emerge (as demonstrated by the success of the FITS standard). Code sharing also raises a number of challenges related to the management of the code. In this talk, we will review our experiences with SEA - both successes and failures - and offer some lessons learned that may promote further successes in collaboration and re-use.

  18. Matlab Based LOCO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portmann, Greg; /LBL, Berkeley; Safranek, James

    The LOCO algorithm has been used by many accelerators around the world. Although the uses for LOCO vary, the most common use has been to find calibration errors and correct the optics functions. The light source community in particular has made extensive use of the LOCO algorithms to tightly control the beta function and coupling. Maintaining high quality beam parameters requires constant attention so a relatively large effort was put into software development for the LOCO application. The LOCO code was originally written in FORTRAN. This code worked fine but it was somewhat awkward to use. For instance, the FORTRANmore » code itself did not calculate the model response matrix. It required a separate modeling code such as MAD to calculate the model matrix then one manually loads the data into the LOCO code. As the number of people interested in LOCO grew, it required making it easier to use. The decision to port LOCO to Matlab was relatively easy. It's best to use a matrix programming language with good graphics capability; Matlab was also being used for high level machine control; and the accelerator modeling code AT, [5], was already developed for Matlab. Since LOCO requires collecting and processing a relative large amount of data, it is very helpful to have the LOCO code compatible with the high level machine control, [3]. A number of new features were added while porting the code from FORTRAN and new methods continue to evolve, [7][9]. Although Matlab LOCO was written with AT as the underlying tracking code, a mechanism to connect to other modeling codes has been provided.« less

  19. Code Sharing and Collaboration: Experiences From the Scientist's Expert Assistant Project and Their Relevance to the Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Korathkar, Anuradha; Grosvenor, Sandy; Jones, Jeremy; Li, Connie; Mackey, Jennifer; Neher, Ken; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    In the Virtual Observatory (VO), software tools will perform the functions that have traditionally been performed by physical observatories and their instruments. These tools will not be adjuncts to VO functionality but will make up the very core of the VO. Consequently, the tradition of observatory and system independent tools serving a small user base is not valid for the VO. For the VO to succeed, we must improve software collaboration and code sharing between projects and groups. A significant goal of the Scientist's Expert Assistant (SEA) project has been promoting effective collaboration and code sharing among groups. During the past three years, the SEA project has been developing prototypes for new observation planning software tools and strategies. Initially funded by the Next Generation Space Telescope, parts of the SEA code have since been adopted by the Space Telescope Science Institute. SEA has also supplied code for the SIRTF (Space Infrared Telescope Facility) planning tools, and the JSky Open Source Java library. The potential benefits of sharing code are clear. The recipient gains functionality for considerably less cost. The provider gains additional developers working with their code. If enough users groups adopt a set of common code and tools, de facto standards can emerge (as demonstrated by the success of the FITS standard). Code sharing also raises a number of challenges related to the management of the code. In this talk, we will review our experiences with SEA--both successes and failures, and offer some lessons learned that might promote further successes in collaboration and re-use.

  20. Assume-Guarantee Verification of Source Code with Design-Level Assumptions

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Pasareanu, Corina S.; Cobleigh, Jamieson M.

    2004-01-01

    Model checking is an automated technique that can be used to determine whether a system satisfies certain required properties. To address the 'state explosion' problem associated with this technique, we propose to integrate assume-guarantee verification at different phases of system development. During design, developers build abstract behavioral models of the system components and use them to establish key properties of the system. To increase the scalability of model checking at this level, we have developed techniques that automatically decompose the verification task by generating component assumptions for the properties to hold. The design-level artifacts are subsequently used to guide the implementation of the system, but also to enable more efficient reasoning at the source code-level. In particular we propose to use design-level assumptions to similarly decompose the verification of the actual system implementation. We demonstrate our approach on a significant NASA application, where design-level models were used to identify; and correct a safety property violation, and design-level assumptions allowed us to check successfully that the property was presented by the implementation.

  1. GAMSOR: Gamma Source Preparation and DIF3D Flux Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. A.; Lee, C. H.; Hill, R. N.

    2016-12-15

    Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron absorption reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence. With the GAMSOR capability, users can take any valid steady state DIF3D calculation and compute the power distribution due to neutron and gamma heating. The MC2-3 code is the preferable companion code to use for generating neutron and gamma cross section data, but the GAMSOR code can accept cross section data from other sources. To further this aspect, an additional utility code was created which demonstrates how to merge the neutron and gamma cross section data together to carry out a simultaneous solve of the two systems.« less

  2. Reproducibility and Transparency in Ocean-Climate Modeling

    NASA Astrophysics Data System (ADS)

    Hannah, N.; Adcroft, A.; Hallberg, R.; Griffies, S. M.

    2015-12-01

    Reproducibility is a cornerstone of the scientific method. Within geophysical modeling and simulation achieving reproducibility can be difficult, especially given the complexity of numerical codes, enormous and disparate data sets, and variety of supercomputing technology. We have made progress on this problem in the context of a large project - the development of new ocean and sea ice models, MOM6 and SIS2. Here we present useful techniques and experience.We use version control not only for code but the entire experiment working directory, including configuration (run-time parameters, component versions), input data and checksums on experiment output. This allows us to document when the solutions to experiments change, whether due to code updates or changes in input data. To avoid distributing large input datasets we provide the tools for generating these from the sources, rather than provide raw input data.Bugs can be a source of non-determinism and hence irreproducibility, e.g. reading from or branching on uninitialized memory. To expose these we routinely run system tests, using a memory debugger, multiple compilers and different machines. Additional confidence in the code comes from specialised tests, for example automated dimensional analysis and domain transformations. This has entailed adopting a code style where we deliberately restrict what a compiler can do when re-arranging mathematical expressions.In the spirit of open science, all development is in the public domain. This leads to a positive feedback, where increased transparency and reproducibility makes using the model easier for external collaborators, who in turn provide valuable contributions. To facilitate users installing and running the model we provide (version controlled) digital notebooks that illustrate and record analysis of output. This has the dual role of providing a gross, platform-independent, testing capability and a means to documents model output and analysis.

  3. Cloudy - simulating the non-equilibrium microphysics of gas and dust, and its observed spectrum

    NASA Astrophysics Data System (ADS)

    Ferland, Gary J.

    2014-01-01

    Cloudy is an open-source plasma/spectral simulation code, last described in the open-access journal Revista Mexicana (Ferland et al. 2013, 2013RMxAA..49..137F). The project goal is a complete simulation of the microphysics of gas and dust over the full range of density, temperature, and ionization that we encounter in astrophysics, together with a prediction of the observed spectrum. Cloudy is one of the more widely used theory codes in astrophysics with roughly 200 papers citing its documentation each year. It is developed by graduate students, postdocs, and an international network of collaborators. Cloudy is freely available on the web at trac.nublado.org, the user community can post questions on http://groups.yahoo.com/neo/groups/cloudy_simulations/info, and summer schools are organized to learn more about Cloudy and its use (http://cloud9.pa.uky.edu gary/cloudy/CloudySummerSchool/). The code’s widespread use is possible because of extensive automatic testing. It is exercised over its full range of applicability whenever the source is changed. Changes in predicted quantities are automatically detected along with any newly introduced problems. The code is designed to be autonomous and self-aware. It generates a report at the end of a calculation that summarizes any problems encountered along with suggestions of potentially incorrect boundary conditions. This self-monitoring is a core feature since the code is now often used to generate large MPI grids of simulations, making it impossible for a user to verify each calculation by hand. I will describe some challenges in developing a large physics code, with its many interconnected physical processes, many at the frontier of research in atomic or molecular physics, all in an open environment.

  4. Admiralty Inlet Advanced Turbulence Measurements: final data and code archive

    DOE Data Explorer

    Kilcher, Levi (ORCID:0000000183851131); Thomson, Jim (ORCID:0000000289290088); Harding, Samuel

    2011-02-01

    Data and code that is not already in a public location that is used in Kilcher, Thomson, Harding, and Nylund (2017) "Turbulence Measurements from Compliant Moorings - Part II: Motion Correction" doi: 10.1175/JTECH-D-16-0213.1. The links point to Python source code used in the publication. All other files are source data used in the publication.

  5. Numerical Electromagnetic Code (NEC)-Basic Scattering Code. Part 2. Code Manual

    DTIC Science & Technology

    1979-09-01

    imaging of source axes for magnetic source. Ax R VSOURC(1,1) + 9 VSOURC(1,2) + T VSOURC(1,3) 4pi = x VIMAG(I,1) + ^ VINAG (1,2)+ VIMAG(l,3) An =unit...VNC A. yt and z components of the end cap unit normal OUTPUT VARIABLE VINAG X.. Y, and z components defining thesource image coordinate system axesin

  6. The HYPE Open Source Community

    NASA Astrophysics Data System (ADS)

    Strömbäck, Lena; Arheimer, Berit; Pers, Charlotta; Isberg, Kristina

    2013-04-01

    The Hydrological Predictions for the Environment (HYPE) model is a dynamic, semi-distributed, process-based, integrated catchment model (Lindström et al., 2010). It uses well-known hydrological and nutrient transport concepts and can be applied for both small and large scale assessments of water resources and status. In the model, the landscape is divided into classes according to soil type, vegetation and altitude. The soil representation is stratified and can be divided in up to three layers. Water and substances are routed through the same flow paths and storages (snow, soil, groundwater, streams, rivers, lakes) considering turn-over and transformation on the way towards the sea. In Sweden, the model is used by water authorities to fulfil the Water Framework Directive and the Marine Strategy Framework Directive. It is used for characterization, forecasts, and scenario analyses. Model data can be downloaded for free from three different HYPE applications: Europe (www.smhi.se/e-hype), Baltic Sea basin (www.smhi.se/balt-hype), and Sweden (vattenweb.smhi.se) The HYPE OSC (hype.sourceforge.net) is an open source initiative under the Lesser GNU Public License taken by SMHI to strengthen international collaboration in hydrological modelling and hydrological data production. The hypothesis is that more brains and more testing will result in better models and better code. The code is transparent and can be changed and learnt from. New versions of the main code will be delivered frequently. The main objective of the HYPE OSC is to provide public access to a state-of-the-art operational hydrological model and to encourage hydrologic expertise from different parts of the world to contribute to model improvement. HYPE OSC is open to everyone interested in hydrology, hydrological modelling and code development - e.g. scientists, authorities, and consultancies. The HYPE Open Source Community was initiated in November 2011 by a kick-off and workshop with 50 eager participants from twelve different countries. In beginning of 2013 we will release a new version of the code featuring new and better modularization, corresponding to hydrological processes which will make the code easier to understand and further develop. During 2013 we also plan a new workshop and HYPE course for everyone interested in the community. Lindström, G., Pers, C.P., Rosberg, R., Strömqvist, J., Arheimer, B. 2010. Development and test of the HYPE (Hydrological Predictions for the Environment) model - A water quality model for different spatial scales. Hydrology Research 41.3-4:295-319

  7. Development and program implementation of elements for identification of the electromagnet condition for movable element position control

    NASA Astrophysics Data System (ADS)

    Leukhin, R. I.; Shaykhutdinov, D. V.; Shirokov, K. M.; Narakidze, N. D.; Vlasov, A. S.

    2017-02-01

    Developing the experimental design of new electromagnetic constructions types in engineering industry enterprises requires solutions of two major problems: regulator’s parameters setup and comprehensive testing of electromagnets. A weber-ampere characteristic as a data source for electromagnet condition identification was selected. Present article focuses on development and implementation of the software for electromagnetic drive control system based on the weber-ampere characteristic measuring. The software for weber-ampere characteristic data processing based on artificial neural network is developed. Results of the design have been integrated into the program code in LabVIEW environment. The license package of LabVIEW graphic programming was used. The hardware is chosen and possibility of its use for control system implementation was proved. The trained artificial neural network defines electromagnetic drive effector position with minimal error. Developed system allows to control the electromagnetic drive powered by the voltage source, the current source and hybrid sources.

  8. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository

    NASA Astrophysics Data System (ADS)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.

    2017-11-01

    The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.

  9. Nmrglue: an open source Python package for the analysis of multidimensional NMR data.

    PubMed

    Helmus, Jonathan J; Jaroniec, Christopher P

    2013-04-01

    Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.com. The source code can be redistributed and modified under the New BSD license.

  10. Nmrglue: An Open Source Python Package for the Analysis of Multidimensional NMR Data

    PubMed Central

    Helmus, Jonathan J.; Jaroniec, Christopher P.

    2013-01-01

    Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.com. The source code can be redistributed and modified under the New BSD license. PMID:23456039

  11. MUFFSgenMC: An Open Source MUon Flexible Framework for Spectral GENeration for Monte Carlo Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzidakis, Stylianos; Greulich, Christopher

    A cosmic ray Muon Flexible Framework for Spectral GENeration for Monte Carlo Applications (MUFFSgenMC) has been developed to support state-of-the-art cosmic ray muon tomographic applications. The flexible framework allows for easy and fast creation of source terms for popular Monte Carlo applications like GEANT4 and MCNP. This code framework simplifies the process of simulations used for cosmic ray muon tomography.

  12. Transformation Systems at NASA Ames

    NASA Technical Reports Server (NTRS)

    Buntine, Wray; Fischer, Bernd; Havelund, Klaus; Lowry, Michael; Pressburger, TOm; Roach, Steve; Robinson, Peter; VanBaalen, Jeffrey

    1999-01-01

    In this paper, we describe the experiences of the Automated Software Engineering Group at the NASA Ames Research Center in the development and application of three different transformation systems. The systems span the entire technology range, from deductive synthesis, to logic-based transformation, to almost compiler-like source-to-source transformation. These systems also span a range of NASA applications, including solving solar system geometry problems, generating data analysis software, and analyzing multi-threaded Java code.

  13. Sunlamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutaro, James J

    The purpose of this model was to facilitate the design of a control system that uses fine grained control of residential and small commercial HVAC loads to counterbalance voltage swings caused by intermittent solar power sources (e.g., rooftop panels) installed in that distribution circuit. Included is the source code and pre-compiled 64 bit dll for adding building HVAC loads to an OpenDSS distribution circuit. As written, the Makefile assumes you are using the Microsoft C++ development tools.

  14. Development Of A Parallel Performance Model For The THOR Neutral Particle Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yessayan, Raffi; Azmy, Yousry; Schunert, Sebastian

    The THOR neutral particle transport code enables simulation of complex geometries for various problems from reactor simulations to nuclear non-proliferation. It is undergoing a thorough V&V requiring computational efficiency. This has motivated various improvements including angular parallelization, outer iteration acceleration, and development of peripheral tools. For guiding future improvements to the code’s efficiency, better characterization of its parallel performance is useful. A parallel performance model (PPM) can be used to evaluate the benefits of modifications and to identify performance bottlenecks. Using INL’s Falcon HPC, the PPM development incorporates an evaluation of network communication behavior over heterogeneous links and a functionalmore » characterization of the per-cell/angle/group runtime of each major code component. After evaluating several possible sources of variability, this resulted in a communication model and a parallel portion model. The former’s accuracy is bounded by the variability of communication on Falcon while the latter has an error on the order of 1%.« less

  15. LHCb migration from Subversion to Git

    NASA Astrophysics Data System (ADS)

    Clemencic, M.; Couturier, B.; Closier, J.; Cattaneo, M.

    2017-10-01

    Due to user demand and to support new development workflows based on code review and multiple development streams, LHCb decided to port the source code management from Subversion to Git, using the CERN GitLab hosting service. Although tools exist for this kind of migration, LHCb specificities and development models required careful planning of the migration, development of migration tools, changes to the development model, and redefinition of the release procedures. Moreover we had to support a hybrid situation with some software projects hosted in Git and others still in Subversion, or even branches of one projects hosted in different systems. We present the way we addressed the special LHCb requirements, the technical details of migrating large non standard Subversion repositories, and how we managed to smoothly migrate the software projects following the schedule of each project manager.

  16. A Stigmergy Approach for Open Source Software Developer Community Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Beaver, Justin M; Potok, Thomas E

    2009-01-01

    The stigmergy collaboration approach provides a hypothesized explanation about how online groups work together. In this research, we presented a stigmergy approach for building an agent based open source software (OSS) developer community collaboration simulation. We used group of actors who collaborate on OSS projects as our frame of reference and investigated how the choices actors make in contribution their work on the projects determinate the global status of the whole OSS projects. In our simulation, the forum posts and project codes served as the digital pheromone and the modified Pierre-Paul Grasse pheromone model is used for computing developer agentmore » behaviors selection probability.« less

  17. Report on GMI Special Study #15: Radio Frequency Interference

    NASA Technical Reports Server (NTRS)

    Draper, David W.

    2015-01-01

    This report contains the results of GMI special study #15. An analysis is conducted to identify sources of radio frequency interference (RFI) to the Global Precipitation Measurement (GPM) Microwave Imager (GMI). The RFI impacts the 10 GHz and 18 GHz channels at both polarities. The sources of RFI are identified for the following conditions: over the water (including major inland water bodies) in the earth view, and over land in the earth view, and in the cold sky view. A best effort is made to identify RFI sources in coastal regions, with noted degradation of flagging performance due to the highly variable earth scene over coastal regions. A database is developed of such sources, including latitude, longitude, country and city of earth emitters, and position in geosynchronous orbit for space emitters. A description of the recommended approach for identifying the sources and locations of RFI in the GMI channels is given in this paper. An algorithm to flag RFI contaminated pixels which can be incorporated into the GMI Level 1Base/1B algorithms is defined, which includes Matlab code to perform the necessary flagging of RFI. A Matlab version of the code is delivered with this distribution.

  18. Making your code citable with the Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, Alice; DuPrie, Kimberly; Schmidt, Judy; Berriman, G. Bruce; Hanisch, Robert J.; Mink, Jessica D.; Nemiroff, Robert J.; Shamir, Lior; Shortridge, Keith; Taylor, Mark B.; Teuben, Peter J.; Wallin, John F.

    2016-01-01

    The Astrophysics Source Code Library (ASCL, ascl.net) is a free online registry of codes used in astronomy research. With nearly 1,200 codes, it is the largest indexed resource for astronomy codes in existence. Established in 1999, it offers software authors a path to citation of their research codes even without publication of a paper describing the software, and offers scientists a way to find codes used in refereed publications, thus improving the transparency of the research. It also provides a method to quantify the impact of source codes in a fashion similar to the science metrics of journal articles. Citations using ASCL IDs are accepted by major astronomy journals and if formatted properly are tracked by ADS and other indexing services. The number of citations to ASCL entries increased sharply from 110 citations in January 2014 to 456 citations in September 2015. The percentage of code entries in ASCL that were cited at least once rose from 7.5% in January 2014 to 17.4% in September 2015. The ASCL's mid-2014 infrastructure upgrade added an easy entry submission form, more flexible browsing, search capabilities, and an RSS feeder for updates. A Changes/Additions form added this past fall lets authors submit links for papers that use their codes for addition to the ASCL entry even if those papers don't formally cite the codes, thus increasing the transparency of that research and capturing the value of their software to the community.

  19. A Theory of False Cognitive Expectancies in Airline Pilots

    NASA Astrophysics Data System (ADS)

    Cortes, Antonio I.

    The Theory of False Cognitive Expectancies was developed by studying high reliability flight operations. Airline pilots depend extensively on cognitive expectancies to perceive, understand, and predict actions and events. Out of 1,363 incident reports submitted by airline pilots to the National Aeronautics and Space Administration Aviation Safety Reporting System over a year's time, 110 reports were found to contain evidence of 127 false cognitive expectancies in pilots. A comprehensive taxonomy was developed with six categories of interest. The dataset of 127 false expectancies was used to initially code tentative taxon values for each category. Intermediate coding through constant comparative analysis completed the taxonomy. The taxonomy was used for the advanced coding of chronological context-dependent visualizations of expectancy factors, known as strands, which depict the major factors in the creation and propagation of each expectancy. Strands were mapped into common networks to detect highly represented expectancy processes. Theoretical integration established 11 sources of false expectancies, the most common expectancy errors, and those conspicuous factors worthy of future study. The most prevalent source of false cognitive expectancies within the dataset was determined to be unconscious individual modeling based on past events. Integrative analyses also revealed relationships between expectancies and flight deck automation, unresolved discrepancies, and levels of situation awareness. Particularly noteworthy were the findings that false expectancies can combine in three possible permutations to diminish situation awareness and examples of how false expectancies can be unwittingly transmitted from one person to another. The theory resulting from this research can enhance the error coding process used during aircraft line oriented safety audits, lays the foundation for developing expectancy management training programs, and will allow researchers to proffer hypotheses for human testing using flight simulators.

  20. Aspect-Oriented Programming

    NASA Technical Reports Server (NTRS)

    Elrad, Tzilla (Editor); Filman, Robert E. (Editor); Bader, Atef (Editor)

    2001-01-01

    Computer science has experienced an evolution in programming languages and systems from the crude assembly and machine codes of the earliest computers through concepts such as formula translation, procedural programming, structured programming, functional programming, logic programming, and programming with abstract data types. Each of these steps in programming technology has advanced our ability to achieve clear separation of concerns at the source code level. Currently, the dominant programming paradigm is object-oriented programming - the idea that one builds a software system by decomposing a problem into objects and then writing the code of those objects. Such objects abstract together behavior and data into a single conceptual and physical entity. Object-orientation is reflected in the entire spectrum of current software development methodologies and tools - we have OO methodologies, analysis and design tools, and OO programming languages. Writing complex applications such as graphical user interfaces, operating systems, and distributed applications while maintaining comprehensible source code has been made possible with OOP. Success at developing simpler systems leads to aspirations for greater complexity. Object orientation is a clever idea, but has certain limitations. We are now seeing that many requirements do not decompose neatly into behavior centered on a single locus. Object technology has difficulty localizing concerns invoking global constraints and pandemic behaviors, appropriately segregating concerns, and applying domain-specific knowledge. Post-object programming (POP) mechanisms that look to increase the expressiveness of the OO paradigm are a fertile arena for current research. Examples of POP technologies include domain-specific languages, generative programming, generic programming, constraint languages, reflection and metaprogramming, feature-oriented development, views/viewpoints, and asynchronous message brokering. (Czarneclu and Eisenecker s book includes a good survey of many of these technologies).

Top